accel/amdxdna: use modern PM helpers
[drm/drm-misc.git] / kernel / livepatch / core.c
blob3c21c31796db0111d558e8fccdc00693eab0d3df
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * core.c - Kernel Live Patching Core
5 * Copyright (C) 2014 Seth Jennings <sjenning@redhat.com>
6 * Copyright (C) 2014 SUSE
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/mutex.h>
14 #include <linux/slab.h>
15 #include <linux/list.h>
16 #include <linux/kallsyms.h>
17 #include <linux/livepatch.h>
18 #include <linux/elf.h>
19 #include <linux/moduleloader.h>
20 #include <linux/completion.h>
21 #include <linux/memory.h>
22 #include <linux/rcupdate.h>
23 #include <asm/cacheflush.h>
24 #include "core.h"
25 #include "patch.h"
26 #include "state.h"
27 #include "transition.h"
30 * klp_mutex is a coarse lock which serializes access to klp data. All
31 * accesses to klp-related variables and structures must have mutex protection,
32 * except within the following functions which carefully avoid the need for it:
34 * - klp_ftrace_handler()
35 * - klp_update_patch_state()
36 * - __klp_sched_try_switch()
38 DEFINE_MUTEX(klp_mutex);
41 * Actively used patches: enabled or in transition. Note that replaced
42 * or disabled patches are not listed even though the related kernel
43 * module still can be loaded.
45 LIST_HEAD(klp_patches);
47 static struct kobject *klp_root_kobj;
49 static bool klp_is_module(struct klp_object *obj)
51 return obj->name;
54 /* sets obj->mod if object is not vmlinux and module is found */
55 static void klp_find_object_module(struct klp_object *obj)
57 struct module *mod;
59 if (!klp_is_module(obj))
60 return;
62 rcu_read_lock_sched();
64 * We do not want to block removal of patched modules and therefore
65 * we do not take a reference here. The patches are removed by
66 * klp_module_going() instead.
68 mod = find_module(obj->name);
70 * Do not mess work of klp_module_coming() and klp_module_going().
71 * Note that the patch might still be needed before klp_module_going()
72 * is called. Module functions can be called even in the GOING state
73 * until mod->exit() finishes. This is especially important for
74 * patches that modify semantic of the functions.
76 if (mod && mod->klp_alive)
77 obj->mod = mod;
79 rcu_read_unlock_sched();
82 static bool klp_initialized(void)
84 return !!klp_root_kobj;
87 static struct klp_func *klp_find_func(struct klp_object *obj,
88 struct klp_func *old_func)
90 struct klp_func *func;
92 klp_for_each_func(obj, func) {
93 if ((strcmp(old_func->old_name, func->old_name) == 0) &&
94 (old_func->old_sympos == func->old_sympos)) {
95 return func;
99 return NULL;
102 static struct klp_object *klp_find_object(struct klp_patch *patch,
103 struct klp_object *old_obj)
105 struct klp_object *obj;
107 klp_for_each_object(patch, obj) {
108 if (klp_is_module(old_obj)) {
109 if (klp_is_module(obj) &&
110 strcmp(old_obj->name, obj->name) == 0) {
111 return obj;
113 } else if (!klp_is_module(obj)) {
114 return obj;
118 return NULL;
121 struct klp_find_arg {
122 const char *name;
123 unsigned long addr;
124 unsigned long count;
125 unsigned long pos;
128 static int klp_match_callback(void *data, unsigned long addr)
130 struct klp_find_arg *args = data;
132 args->addr = addr;
133 args->count++;
136 * Finish the search when the symbol is found for the desired position
137 * or the position is not defined for a non-unique symbol.
139 if ((args->pos && (args->count == args->pos)) ||
140 (!args->pos && (args->count > 1)))
141 return 1;
143 return 0;
146 static int klp_find_callback(void *data, const char *name, unsigned long addr)
148 struct klp_find_arg *args = data;
150 if (strcmp(args->name, name))
151 return 0;
153 return klp_match_callback(data, addr);
156 static int klp_find_object_symbol(const char *objname, const char *name,
157 unsigned long sympos, unsigned long *addr)
159 struct klp_find_arg args = {
160 .name = name,
161 .addr = 0,
162 .count = 0,
163 .pos = sympos,
166 if (objname)
167 module_kallsyms_on_each_symbol(objname, klp_find_callback, &args);
168 else
169 kallsyms_on_each_match_symbol(klp_match_callback, name, &args);
172 * Ensure an address was found. If sympos is 0, ensure symbol is unique;
173 * otherwise ensure the symbol position count matches sympos.
175 if (args.addr == 0)
176 pr_err("symbol '%s' not found in symbol table\n", name);
177 else if (args.count > 1 && sympos == 0) {
178 pr_err("unresolvable ambiguity for symbol '%s' in object '%s'\n",
179 name, objname);
180 } else if (sympos != args.count && sympos > 0) {
181 pr_err("symbol position %lu for symbol '%s' in object '%s' not found\n",
182 sympos, name, objname ? objname : "vmlinux");
183 } else {
184 *addr = args.addr;
185 return 0;
188 *addr = 0;
189 return -EINVAL;
192 static int klp_resolve_symbols(Elf_Shdr *sechdrs, const char *strtab,
193 unsigned int symndx, Elf_Shdr *relasec,
194 const char *sec_objname)
196 int i, cnt, ret;
197 char sym_objname[MODULE_NAME_LEN];
198 char sym_name[KSYM_NAME_LEN];
199 Elf_Rela *relas;
200 Elf_Sym *sym;
201 unsigned long sympos, addr;
202 bool sym_vmlinux;
203 bool sec_vmlinux = !strcmp(sec_objname, "vmlinux");
206 * Since the field widths for sym_objname and sym_name in the sscanf()
207 * call are hard-coded and correspond to MODULE_NAME_LEN and
208 * KSYM_NAME_LEN respectively, we must make sure that MODULE_NAME_LEN
209 * and KSYM_NAME_LEN have the values we expect them to have.
211 * Because the value of MODULE_NAME_LEN can differ among architectures,
212 * we use the smallest/strictest upper bound possible (56, based on
213 * the current definition of MODULE_NAME_LEN) to prevent overflows.
215 BUILD_BUG_ON(MODULE_NAME_LEN < 56 || KSYM_NAME_LEN != 512);
217 relas = (Elf_Rela *) relasec->sh_addr;
218 /* For each rela in this klp relocation section */
219 for (i = 0; i < relasec->sh_size / sizeof(Elf_Rela); i++) {
220 sym = (Elf_Sym *)sechdrs[symndx].sh_addr + ELF_R_SYM(relas[i].r_info);
221 if (sym->st_shndx != SHN_LIVEPATCH) {
222 pr_err("symbol %s is not marked as a livepatch symbol\n",
223 strtab + sym->st_name);
224 return -EINVAL;
227 /* Format: .klp.sym.sym_objname.sym_name,sympos */
228 cnt = sscanf(strtab + sym->st_name,
229 ".klp.sym.%55[^.].%511[^,],%lu",
230 sym_objname, sym_name, &sympos);
231 if (cnt != 3) {
232 pr_err("symbol %s has an incorrectly formatted name\n",
233 strtab + sym->st_name);
234 return -EINVAL;
237 sym_vmlinux = !strcmp(sym_objname, "vmlinux");
240 * Prevent module-specific KLP rela sections from referencing
241 * vmlinux symbols. This helps prevent ordering issues with
242 * module special section initializations. Presumably such
243 * symbols are exported and normal relas can be used instead.
245 if (!sec_vmlinux && sym_vmlinux) {
246 pr_err("invalid access to vmlinux symbol '%s' from module-specific livepatch relocation section\n",
247 sym_name);
248 return -EINVAL;
251 /* klp_find_object_symbol() treats a NULL objname as vmlinux */
252 ret = klp_find_object_symbol(sym_vmlinux ? NULL : sym_objname,
253 sym_name, sympos, &addr);
254 if (ret)
255 return ret;
257 sym->st_value = addr;
260 return 0;
263 void __weak clear_relocate_add(Elf_Shdr *sechdrs,
264 const char *strtab,
265 unsigned int symindex,
266 unsigned int relsec,
267 struct module *me)
272 * At a high-level, there are two types of klp relocation sections: those which
273 * reference symbols which live in vmlinux; and those which reference symbols
274 * which live in other modules. This function is called for both types:
276 * 1) When a klp module itself loads, the module code calls this function to
277 * write vmlinux-specific klp relocations (.klp.rela.vmlinux.* sections).
278 * These relocations are written to the klp module text to allow the patched
279 * code/data to reference unexported vmlinux symbols. They're written as
280 * early as possible to ensure that other module init code (.e.g.,
281 * jump_label_apply_nops) can access any unexported vmlinux symbols which
282 * might be referenced by the klp module's special sections.
284 * 2) When a to-be-patched module loads -- or is already loaded when a
285 * corresponding klp module loads -- klp code calls this function to write
286 * module-specific klp relocations (.klp.rela.{module}.* sections). These
287 * are written to the klp module text to allow the patched code/data to
288 * reference symbols which live in the to-be-patched module or one of its
289 * module dependencies. Exported symbols are supported, in addition to
290 * unexported symbols, in order to enable late module patching, which allows
291 * the to-be-patched module to be loaded and patched sometime *after* the
292 * klp module is loaded.
294 static int klp_write_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
295 const char *shstrtab, const char *strtab,
296 unsigned int symndx, unsigned int secndx,
297 const char *objname, bool apply)
299 int cnt, ret;
300 char sec_objname[MODULE_NAME_LEN];
301 Elf_Shdr *sec = sechdrs + secndx;
304 * Format: .klp.rela.sec_objname.section_name
305 * See comment in klp_resolve_symbols() for an explanation
306 * of the selected field width value.
308 cnt = sscanf(shstrtab + sec->sh_name, ".klp.rela.%55[^.]",
309 sec_objname);
310 if (cnt != 1) {
311 pr_err("section %s has an incorrectly formatted name\n",
312 shstrtab + sec->sh_name);
313 return -EINVAL;
316 if (strcmp(objname ? objname : "vmlinux", sec_objname))
317 return 0;
319 if (apply) {
320 ret = klp_resolve_symbols(sechdrs, strtab, symndx,
321 sec, sec_objname);
322 if (ret)
323 return ret;
325 return apply_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
328 clear_relocate_add(sechdrs, strtab, symndx, secndx, pmod);
329 return 0;
332 int klp_apply_section_relocs(struct module *pmod, Elf_Shdr *sechdrs,
333 const char *shstrtab, const char *strtab,
334 unsigned int symndx, unsigned int secndx,
335 const char *objname)
337 return klp_write_section_relocs(pmod, sechdrs, shstrtab, strtab, symndx,
338 secndx, objname, true);
342 * Sysfs Interface
344 * /sys/kernel/livepatch
345 * /sys/kernel/livepatch/<patch>
346 * /sys/kernel/livepatch/<patch>/enabled
347 * /sys/kernel/livepatch/<patch>/transition
348 * /sys/kernel/livepatch/<patch>/force
349 * /sys/kernel/livepatch/<patch>/replace
350 * /sys/kernel/livepatch/<patch>/<object>
351 * /sys/kernel/livepatch/<patch>/<object>/patched
352 * /sys/kernel/livepatch/<patch>/<object>/<function,sympos>
354 static int __klp_disable_patch(struct klp_patch *patch);
356 static ssize_t enabled_store(struct kobject *kobj, struct kobj_attribute *attr,
357 const char *buf, size_t count)
359 struct klp_patch *patch;
360 int ret;
361 bool enabled;
363 ret = kstrtobool(buf, &enabled);
364 if (ret)
365 return ret;
367 patch = container_of(kobj, struct klp_patch, kobj);
369 mutex_lock(&klp_mutex);
371 if (patch->enabled == enabled) {
372 /* already in requested state */
373 ret = -EINVAL;
374 goto out;
378 * Allow to reverse a pending transition in both ways. It might be
379 * necessary to complete the transition without forcing and breaking
380 * the system integrity.
382 * Do not allow to re-enable a disabled patch.
384 if (patch == klp_transition_patch)
385 klp_reverse_transition();
386 else if (!enabled)
387 ret = __klp_disable_patch(patch);
388 else
389 ret = -EINVAL;
391 out:
392 mutex_unlock(&klp_mutex);
394 if (ret)
395 return ret;
396 return count;
399 static ssize_t enabled_show(struct kobject *kobj,
400 struct kobj_attribute *attr, char *buf)
402 struct klp_patch *patch;
404 patch = container_of(kobj, struct klp_patch, kobj);
405 return sysfs_emit(buf, "%d\n", patch->enabled);
408 static ssize_t transition_show(struct kobject *kobj,
409 struct kobj_attribute *attr, char *buf)
411 struct klp_patch *patch;
413 patch = container_of(kobj, struct klp_patch, kobj);
414 return sysfs_emit(buf, "%d\n", patch == klp_transition_patch);
417 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
418 const char *buf, size_t count)
420 struct klp_patch *patch;
421 int ret;
422 bool val;
424 ret = kstrtobool(buf, &val);
425 if (ret)
426 return ret;
428 if (!val)
429 return count;
431 mutex_lock(&klp_mutex);
433 patch = container_of(kobj, struct klp_patch, kobj);
434 if (patch != klp_transition_patch) {
435 mutex_unlock(&klp_mutex);
436 return -EINVAL;
439 klp_force_transition();
441 mutex_unlock(&klp_mutex);
443 return count;
446 static ssize_t replace_show(struct kobject *kobj,
447 struct kobj_attribute *attr, char *buf)
449 struct klp_patch *patch;
451 patch = container_of(kobj, struct klp_patch, kobj);
452 return sysfs_emit(buf, "%d\n", patch->replace);
455 static struct kobj_attribute enabled_kobj_attr = __ATTR_RW(enabled);
456 static struct kobj_attribute transition_kobj_attr = __ATTR_RO(transition);
457 static struct kobj_attribute force_kobj_attr = __ATTR_WO(force);
458 static struct kobj_attribute replace_kobj_attr = __ATTR_RO(replace);
459 static struct attribute *klp_patch_attrs[] = {
460 &enabled_kobj_attr.attr,
461 &transition_kobj_attr.attr,
462 &force_kobj_attr.attr,
463 &replace_kobj_attr.attr,
464 NULL
466 ATTRIBUTE_GROUPS(klp_patch);
468 static ssize_t patched_show(struct kobject *kobj,
469 struct kobj_attribute *attr, char *buf)
471 struct klp_object *obj;
473 obj = container_of(kobj, struct klp_object, kobj);
474 return sysfs_emit(buf, "%d\n", obj->patched);
477 static struct kobj_attribute patched_kobj_attr = __ATTR_RO(patched);
478 static struct attribute *klp_object_attrs[] = {
479 &patched_kobj_attr.attr,
480 NULL,
482 ATTRIBUTE_GROUPS(klp_object);
484 static void klp_free_object_dynamic(struct klp_object *obj)
486 kfree(obj->name);
487 kfree(obj);
490 static void klp_init_func_early(struct klp_object *obj,
491 struct klp_func *func);
492 static void klp_init_object_early(struct klp_patch *patch,
493 struct klp_object *obj);
495 static struct klp_object *klp_alloc_object_dynamic(const char *name,
496 struct klp_patch *patch)
498 struct klp_object *obj;
500 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
501 if (!obj)
502 return NULL;
504 if (name) {
505 obj->name = kstrdup(name, GFP_KERNEL);
506 if (!obj->name) {
507 kfree(obj);
508 return NULL;
512 klp_init_object_early(patch, obj);
513 obj->dynamic = true;
515 return obj;
518 static void klp_free_func_nop(struct klp_func *func)
520 kfree(func->old_name);
521 kfree(func);
524 static struct klp_func *klp_alloc_func_nop(struct klp_func *old_func,
525 struct klp_object *obj)
527 struct klp_func *func;
529 func = kzalloc(sizeof(*func), GFP_KERNEL);
530 if (!func)
531 return NULL;
533 if (old_func->old_name) {
534 func->old_name = kstrdup(old_func->old_name, GFP_KERNEL);
535 if (!func->old_name) {
536 kfree(func);
537 return NULL;
541 klp_init_func_early(obj, func);
543 * func->new_func is same as func->old_func. These addresses are
544 * set when the object is loaded, see klp_init_object_loaded().
546 func->old_sympos = old_func->old_sympos;
547 func->nop = true;
549 return func;
552 static int klp_add_object_nops(struct klp_patch *patch,
553 struct klp_object *old_obj)
555 struct klp_object *obj;
556 struct klp_func *func, *old_func;
558 obj = klp_find_object(patch, old_obj);
560 if (!obj) {
561 obj = klp_alloc_object_dynamic(old_obj->name, patch);
562 if (!obj)
563 return -ENOMEM;
566 klp_for_each_func(old_obj, old_func) {
567 func = klp_find_func(obj, old_func);
568 if (func)
569 continue;
571 func = klp_alloc_func_nop(old_func, obj);
572 if (!func)
573 return -ENOMEM;
576 return 0;
580 * Add 'nop' functions which simply return to the caller to run
581 * the original function. The 'nop' functions are added to a
582 * patch to facilitate a 'replace' mode.
584 static int klp_add_nops(struct klp_patch *patch)
586 struct klp_patch *old_patch;
587 struct klp_object *old_obj;
589 klp_for_each_patch(old_patch) {
590 klp_for_each_object(old_patch, old_obj) {
591 int err;
593 err = klp_add_object_nops(patch, old_obj);
594 if (err)
595 return err;
599 return 0;
602 static void klp_kobj_release_patch(struct kobject *kobj)
604 struct klp_patch *patch;
606 patch = container_of(kobj, struct klp_patch, kobj);
607 complete(&patch->finish);
610 static const struct kobj_type klp_ktype_patch = {
611 .release = klp_kobj_release_patch,
612 .sysfs_ops = &kobj_sysfs_ops,
613 .default_groups = klp_patch_groups,
616 static void klp_kobj_release_object(struct kobject *kobj)
618 struct klp_object *obj;
620 obj = container_of(kobj, struct klp_object, kobj);
622 if (obj->dynamic)
623 klp_free_object_dynamic(obj);
626 static const struct kobj_type klp_ktype_object = {
627 .release = klp_kobj_release_object,
628 .sysfs_ops = &kobj_sysfs_ops,
629 .default_groups = klp_object_groups,
632 static void klp_kobj_release_func(struct kobject *kobj)
634 struct klp_func *func;
636 func = container_of(kobj, struct klp_func, kobj);
638 if (func->nop)
639 klp_free_func_nop(func);
642 static const struct kobj_type klp_ktype_func = {
643 .release = klp_kobj_release_func,
644 .sysfs_ops = &kobj_sysfs_ops,
647 static void __klp_free_funcs(struct klp_object *obj, bool nops_only)
649 struct klp_func *func, *tmp_func;
651 klp_for_each_func_safe(obj, func, tmp_func) {
652 if (nops_only && !func->nop)
653 continue;
655 list_del(&func->node);
656 kobject_put(&func->kobj);
660 /* Clean up when a patched object is unloaded */
661 static void klp_free_object_loaded(struct klp_object *obj)
663 struct klp_func *func;
665 obj->mod = NULL;
667 klp_for_each_func(obj, func) {
668 func->old_func = NULL;
670 if (func->nop)
671 func->new_func = NULL;
675 static void __klp_free_objects(struct klp_patch *patch, bool nops_only)
677 struct klp_object *obj, *tmp_obj;
679 klp_for_each_object_safe(patch, obj, tmp_obj) {
680 __klp_free_funcs(obj, nops_only);
682 if (nops_only && !obj->dynamic)
683 continue;
685 list_del(&obj->node);
686 kobject_put(&obj->kobj);
690 static void klp_free_objects(struct klp_patch *patch)
692 __klp_free_objects(patch, false);
695 static void klp_free_objects_dynamic(struct klp_patch *patch)
697 __klp_free_objects(patch, true);
701 * This function implements the free operations that can be called safely
702 * under klp_mutex.
704 * The operation must be completed by calling klp_free_patch_finish()
705 * outside klp_mutex.
707 static void klp_free_patch_start(struct klp_patch *patch)
709 if (!list_empty(&patch->list))
710 list_del(&patch->list);
712 klp_free_objects(patch);
716 * This function implements the free part that must be called outside
717 * klp_mutex.
719 * It must be called after klp_free_patch_start(). And it has to be
720 * the last function accessing the livepatch structures when the patch
721 * gets disabled.
723 static void klp_free_patch_finish(struct klp_patch *patch)
726 * Avoid deadlock with enabled_store() sysfs callback by
727 * calling this outside klp_mutex. It is safe because
728 * this is called when the patch gets disabled and it
729 * cannot get enabled again.
731 kobject_put(&patch->kobj);
732 wait_for_completion(&patch->finish);
734 /* Put the module after the last access to struct klp_patch. */
735 if (!patch->forced)
736 module_put(patch->mod);
740 * The livepatch might be freed from sysfs interface created by the patch.
741 * This work allows to wait until the interface is destroyed in a separate
742 * context.
744 static void klp_free_patch_work_fn(struct work_struct *work)
746 struct klp_patch *patch =
747 container_of(work, struct klp_patch, free_work);
749 klp_free_patch_finish(patch);
752 void klp_free_patch_async(struct klp_patch *patch)
754 klp_free_patch_start(patch);
755 schedule_work(&patch->free_work);
758 void klp_free_replaced_patches_async(struct klp_patch *new_patch)
760 struct klp_patch *old_patch, *tmp_patch;
762 klp_for_each_patch_safe(old_patch, tmp_patch) {
763 if (old_patch == new_patch)
764 return;
765 klp_free_patch_async(old_patch);
769 static int klp_init_func(struct klp_object *obj, struct klp_func *func)
771 if (!func->old_name)
772 return -EINVAL;
775 * NOPs get the address later. The patched module must be loaded,
776 * see klp_init_object_loaded().
778 if (!func->new_func && !func->nop)
779 return -EINVAL;
781 if (strlen(func->old_name) >= KSYM_NAME_LEN)
782 return -EINVAL;
784 INIT_LIST_HEAD(&func->stack_node);
785 func->patched = false;
786 func->transition = false;
788 /* The format for the sysfs directory is <function,sympos> where sympos
789 * is the nth occurrence of this symbol in kallsyms for the patched
790 * object. If the user selects 0 for old_sympos, then 1 will be used
791 * since a unique symbol will be the first occurrence.
793 return kobject_add(&func->kobj, &obj->kobj, "%s,%lu",
794 func->old_name,
795 func->old_sympos ? func->old_sympos : 1);
798 static int klp_write_object_relocs(struct klp_patch *patch,
799 struct klp_object *obj,
800 bool apply)
802 int i, ret;
803 struct klp_modinfo *info = patch->mod->klp_info;
805 for (i = 1; i < info->hdr.e_shnum; i++) {
806 Elf_Shdr *sec = info->sechdrs + i;
808 if (!(sec->sh_flags & SHF_RELA_LIVEPATCH))
809 continue;
811 ret = klp_write_section_relocs(patch->mod, info->sechdrs,
812 info->secstrings,
813 patch->mod->core_kallsyms.strtab,
814 info->symndx, i, obj->name, apply);
815 if (ret)
816 return ret;
819 return 0;
822 static int klp_apply_object_relocs(struct klp_patch *patch,
823 struct klp_object *obj)
825 return klp_write_object_relocs(patch, obj, true);
828 static void klp_clear_object_relocs(struct klp_patch *patch,
829 struct klp_object *obj)
831 klp_write_object_relocs(patch, obj, false);
834 /* parts of the initialization that is done only when the object is loaded */
835 static int klp_init_object_loaded(struct klp_patch *patch,
836 struct klp_object *obj)
838 struct klp_func *func;
839 int ret;
841 if (klp_is_module(obj)) {
843 * Only write module-specific relocations here
844 * (.klp.rela.{module}.*). vmlinux-specific relocations were
845 * written earlier during the initialization of the klp module
846 * itself.
848 ret = klp_apply_object_relocs(patch, obj);
849 if (ret)
850 return ret;
853 klp_for_each_func(obj, func) {
854 ret = klp_find_object_symbol(obj->name, func->old_name,
855 func->old_sympos,
856 (unsigned long *)&func->old_func);
857 if (ret)
858 return ret;
860 ret = kallsyms_lookup_size_offset((unsigned long)func->old_func,
861 &func->old_size, NULL);
862 if (!ret) {
863 pr_err("kallsyms size lookup failed for '%s'\n",
864 func->old_name);
865 return -ENOENT;
868 if (func->nop)
869 func->new_func = func->old_func;
871 ret = kallsyms_lookup_size_offset((unsigned long)func->new_func,
872 &func->new_size, NULL);
873 if (!ret) {
874 pr_err("kallsyms size lookup failed for '%s' replacement\n",
875 func->old_name);
876 return -ENOENT;
880 return 0;
883 static int klp_init_object(struct klp_patch *patch, struct klp_object *obj)
885 struct klp_func *func;
886 int ret;
887 const char *name;
889 if (klp_is_module(obj) && strlen(obj->name) >= MODULE_NAME_LEN)
890 return -EINVAL;
892 obj->patched = false;
893 obj->mod = NULL;
895 klp_find_object_module(obj);
897 name = klp_is_module(obj) ? obj->name : "vmlinux";
898 ret = kobject_add(&obj->kobj, &patch->kobj, "%s", name);
899 if (ret)
900 return ret;
902 klp_for_each_func(obj, func) {
903 ret = klp_init_func(obj, func);
904 if (ret)
905 return ret;
908 if (klp_is_object_loaded(obj))
909 ret = klp_init_object_loaded(patch, obj);
911 return ret;
914 static void klp_init_func_early(struct klp_object *obj,
915 struct klp_func *func)
917 kobject_init(&func->kobj, &klp_ktype_func);
918 list_add_tail(&func->node, &obj->func_list);
921 static void klp_init_object_early(struct klp_patch *patch,
922 struct klp_object *obj)
924 INIT_LIST_HEAD(&obj->func_list);
925 kobject_init(&obj->kobj, &klp_ktype_object);
926 list_add_tail(&obj->node, &patch->obj_list);
929 static void klp_init_patch_early(struct klp_patch *patch)
931 struct klp_object *obj;
932 struct klp_func *func;
934 INIT_LIST_HEAD(&patch->list);
935 INIT_LIST_HEAD(&patch->obj_list);
936 kobject_init(&patch->kobj, &klp_ktype_patch);
937 patch->enabled = false;
938 patch->forced = false;
939 INIT_WORK(&patch->free_work, klp_free_patch_work_fn);
940 init_completion(&patch->finish);
942 klp_for_each_object_static(patch, obj) {
943 klp_init_object_early(patch, obj);
945 klp_for_each_func_static(obj, func) {
946 klp_init_func_early(obj, func);
951 static int klp_init_patch(struct klp_patch *patch)
953 struct klp_object *obj;
954 int ret;
956 ret = kobject_add(&patch->kobj, klp_root_kobj, "%s", patch->mod->name);
957 if (ret)
958 return ret;
960 if (patch->replace) {
961 ret = klp_add_nops(patch);
962 if (ret)
963 return ret;
966 klp_for_each_object(patch, obj) {
967 ret = klp_init_object(patch, obj);
968 if (ret)
969 return ret;
972 list_add_tail(&patch->list, &klp_patches);
974 return 0;
977 static int __klp_disable_patch(struct klp_patch *patch)
979 struct klp_object *obj;
981 if (WARN_ON(!patch->enabled))
982 return -EINVAL;
984 if (klp_transition_patch)
985 return -EBUSY;
987 klp_init_transition(patch, KLP_TRANSITION_UNPATCHED);
989 klp_for_each_object(patch, obj)
990 if (obj->patched)
991 klp_pre_unpatch_callback(obj);
994 * Enforce the order of the func->transition writes in
995 * klp_init_transition() and the TIF_PATCH_PENDING writes in
996 * klp_start_transition(). In the rare case where klp_ftrace_handler()
997 * is called shortly after klp_update_patch_state() switches the task,
998 * this ensures the handler sees that func->transition is set.
1000 smp_wmb();
1002 klp_start_transition();
1003 patch->enabled = false;
1004 klp_try_complete_transition();
1006 return 0;
1009 static int __klp_enable_patch(struct klp_patch *patch)
1011 struct klp_object *obj;
1012 int ret;
1014 if (klp_transition_patch)
1015 return -EBUSY;
1017 if (WARN_ON(patch->enabled))
1018 return -EINVAL;
1020 pr_notice("enabling patch '%s'\n", patch->mod->name);
1022 klp_init_transition(patch, KLP_TRANSITION_PATCHED);
1025 * Enforce the order of the func->transition writes in
1026 * klp_init_transition() and the ops->func_stack writes in
1027 * klp_patch_object(), so that klp_ftrace_handler() will see the
1028 * func->transition updates before the handler is registered and the
1029 * new funcs become visible to the handler.
1031 smp_wmb();
1033 klp_for_each_object(patch, obj) {
1034 if (!klp_is_object_loaded(obj))
1035 continue;
1037 ret = klp_pre_patch_callback(obj);
1038 if (ret) {
1039 pr_warn("pre-patch callback failed for object '%s'\n",
1040 klp_is_module(obj) ? obj->name : "vmlinux");
1041 goto err;
1044 ret = klp_patch_object(obj);
1045 if (ret) {
1046 pr_warn("failed to patch object '%s'\n",
1047 klp_is_module(obj) ? obj->name : "vmlinux");
1048 goto err;
1052 klp_start_transition();
1053 patch->enabled = true;
1054 klp_try_complete_transition();
1056 return 0;
1057 err:
1058 pr_warn("failed to enable patch '%s'\n", patch->mod->name);
1060 klp_cancel_transition();
1061 return ret;
1065 * klp_enable_patch() - enable the livepatch
1066 * @patch: patch to be enabled
1068 * Initializes the data structure associated with the patch, creates the sysfs
1069 * interface, performs the needed symbol lookups and code relocations,
1070 * registers the patched functions with ftrace.
1072 * This function is supposed to be called from the livepatch module_init()
1073 * callback.
1075 * Return: 0 on success, otherwise error
1077 int klp_enable_patch(struct klp_patch *patch)
1079 int ret;
1080 struct klp_object *obj;
1082 if (!patch || !patch->mod || !patch->objs)
1083 return -EINVAL;
1085 klp_for_each_object_static(patch, obj) {
1086 if (!obj->funcs)
1087 return -EINVAL;
1091 if (!is_livepatch_module(patch->mod)) {
1092 pr_err("module %s is not marked as a livepatch module\n",
1093 patch->mod->name);
1094 return -EINVAL;
1097 if (!klp_initialized())
1098 return -ENODEV;
1100 if (!klp_have_reliable_stack()) {
1101 pr_warn("This architecture doesn't have support for the livepatch consistency model.\n");
1102 pr_warn("The livepatch transition may never complete.\n");
1105 mutex_lock(&klp_mutex);
1107 if (!klp_is_patch_compatible(patch)) {
1108 pr_err("Livepatch patch (%s) is not compatible with the already installed livepatches.\n",
1109 patch->mod->name);
1110 mutex_unlock(&klp_mutex);
1111 return -EINVAL;
1114 if (!try_module_get(patch->mod)) {
1115 mutex_unlock(&klp_mutex);
1116 return -ENODEV;
1119 klp_init_patch_early(patch);
1121 ret = klp_init_patch(patch);
1122 if (ret)
1123 goto err;
1125 ret = __klp_enable_patch(patch);
1126 if (ret)
1127 goto err;
1129 mutex_unlock(&klp_mutex);
1131 return 0;
1133 err:
1134 klp_free_patch_start(patch);
1136 mutex_unlock(&klp_mutex);
1138 klp_free_patch_finish(patch);
1140 return ret;
1142 EXPORT_SYMBOL_GPL(klp_enable_patch);
1145 * This function unpatches objects from the replaced livepatches.
1147 * We could be pretty aggressive here. It is called in the situation where
1148 * these structures are no longer accessed from the ftrace handler.
1149 * All functions are redirected by the klp_transition_patch. They
1150 * use either a new code or they are in the original code because
1151 * of the special nop function patches.
1153 * The only exception is when the transition was forced. In this case,
1154 * klp_ftrace_handler() might still see the replaced patch on the stack.
1155 * Fortunately, it is carefully designed to work with removed functions
1156 * thanks to RCU. We only have to keep the patches on the system. Also
1157 * this is handled transparently by patch->module_put.
1159 void klp_unpatch_replaced_patches(struct klp_patch *new_patch)
1161 struct klp_patch *old_patch;
1163 klp_for_each_patch(old_patch) {
1164 if (old_patch == new_patch)
1165 return;
1167 old_patch->enabled = false;
1168 klp_unpatch_objects(old_patch);
1173 * This function removes the dynamically allocated 'nop' functions.
1175 * We could be pretty aggressive. NOPs do not change the existing
1176 * behavior except for adding unnecessary delay by the ftrace handler.
1178 * It is safe even when the transition was forced. The ftrace handler
1179 * will see a valid ops->func_stack entry thanks to RCU.
1181 * We could even free the NOPs structures. They must be the last entry
1182 * in ops->func_stack. Therefore unregister_ftrace_function() is called.
1183 * It does the same as klp_synchronize_transition() to make sure that
1184 * nobody is inside the ftrace handler once the operation finishes.
1186 * IMPORTANT: It must be called right after removing the replaced patches!
1188 void klp_discard_nops(struct klp_patch *new_patch)
1190 klp_unpatch_objects_dynamic(klp_transition_patch);
1191 klp_free_objects_dynamic(klp_transition_patch);
1195 * Remove parts of patches that touch a given kernel module. The list of
1196 * patches processed might be limited. When limit is NULL, all patches
1197 * will be handled.
1199 static void klp_cleanup_module_patches_limited(struct module *mod,
1200 struct klp_patch *limit)
1202 struct klp_patch *patch;
1203 struct klp_object *obj;
1205 klp_for_each_patch(patch) {
1206 if (patch == limit)
1207 break;
1209 klp_for_each_object(patch, obj) {
1210 if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1211 continue;
1213 if (patch != klp_transition_patch)
1214 klp_pre_unpatch_callback(obj);
1216 pr_notice("reverting patch '%s' on unloading module '%s'\n",
1217 patch->mod->name, obj->mod->name);
1218 klp_unpatch_object(obj);
1220 klp_post_unpatch_callback(obj);
1221 klp_clear_object_relocs(patch, obj);
1222 klp_free_object_loaded(obj);
1223 break;
1228 int klp_module_coming(struct module *mod)
1230 int ret;
1231 struct klp_patch *patch;
1232 struct klp_object *obj;
1234 if (WARN_ON(mod->state != MODULE_STATE_COMING))
1235 return -EINVAL;
1237 if (!strcmp(mod->name, "vmlinux")) {
1238 pr_err("vmlinux.ko: invalid module name\n");
1239 return -EINVAL;
1242 mutex_lock(&klp_mutex);
1244 * Each module has to know that klp_module_coming()
1245 * has been called. We never know what module will
1246 * get patched by a new patch.
1248 mod->klp_alive = true;
1250 klp_for_each_patch(patch) {
1251 klp_for_each_object(patch, obj) {
1252 if (!klp_is_module(obj) || strcmp(obj->name, mod->name))
1253 continue;
1255 obj->mod = mod;
1257 ret = klp_init_object_loaded(patch, obj);
1258 if (ret) {
1259 pr_warn("failed to initialize patch '%s' for module '%s' (%d)\n",
1260 patch->mod->name, obj->mod->name, ret);
1261 goto err;
1264 pr_notice("applying patch '%s' to loading module '%s'\n",
1265 patch->mod->name, obj->mod->name);
1267 ret = klp_pre_patch_callback(obj);
1268 if (ret) {
1269 pr_warn("pre-patch callback failed for object '%s'\n",
1270 obj->name);
1271 goto err;
1274 ret = klp_patch_object(obj);
1275 if (ret) {
1276 pr_warn("failed to apply patch '%s' to module '%s' (%d)\n",
1277 patch->mod->name, obj->mod->name, ret);
1279 klp_post_unpatch_callback(obj);
1280 goto err;
1283 if (patch != klp_transition_patch)
1284 klp_post_patch_callback(obj);
1286 break;
1290 mutex_unlock(&klp_mutex);
1292 return 0;
1294 err:
1296 * If a patch is unsuccessfully applied, return
1297 * error to the module loader.
1299 pr_warn("patch '%s' failed for module '%s', refusing to load module '%s'\n",
1300 patch->mod->name, obj->mod->name, obj->mod->name);
1301 mod->klp_alive = false;
1302 obj->mod = NULL;
1303 klp_cleanup_module_patches_limited(mod, patch);
1304 mutex_unlock(&klp_mutex);
1306 return ret;
1309 void klp_module_going(struct module *mod)
1311 if (WARN_ON(mod->state != MODULE_STATE_GOING &&
1312 mod->state != MODULE_STATE_COMING))
1313 return;
1315 mutex_lock(&klp_mutex);
1317 * Each module has to know that klp_module_going()
1318 * has been called. We never know what module will
1319 * get patched by a new patch.
1321 mod->klp_alive = false;
1323 klp_cleanup_module_patches_limited(mod, NULL);
1325 mutex_unlock(&klp_mutex);
1328 static int __init klp_init(void)
1330 klp_root_kobj = kobject_create_and_add("livepatch", kernel_kobj);
1331 if (!klp_root_kobj)
1332 return -ENOMEM;
1334 return 0;
1337 module_init(klp_init);