drm/rockchip: vop2: Support 32x8 superblock afbc
[drm/drm-misc.git] / kernel / locking / mutex.c
blob3302e52f0c96727391025528a1022a24649f377b
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * kernel/locking/mutex.c
5 * Mutexes: blocking mutual exclusion locks
7 * Started by Ingo Molnar:
9 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
11 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
12 * David Howells for suggestions and improvements.
14 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
15 * from the -rt tree, where it was originally implemented for rtmutexes
16 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
17 * and Sven Dietrich.
19 * Also see Documentation/locking/mutex-design.rst.
21 #include <linux/mutex.h>
22 #include <linux/ww_mutex.h>
23 #include <linux/sched/signal.h>
24 #include <linux/sched/rt.h>
25 #include <linux/sched/wake_q.h>
26 #include <linux/sched/debug.h>
27 #include <linux/export.h>
28 #include <linux/spinlock.h>
29 #include <linux/interrupt.h>
30 #include <linux/debug_locks.h>
31 #include <linux/osq_lock.h>
33 #define CREATE_TRACE_POINTS
34 #include <trace/events/lock.h>
36 #ifndef CONFIG_PREEMPT_RT
37 #include "mutex.h"
39 #ifdef CONFIG_DEBUG_MUTEXES
40 # define MUTEX_WARN_ON(cond) DEBUG_LOCKS_WARN_ON(cond)
41 #else
42 # define MUTEX_WARN_ON(cond)
43 #endif
45 void
46 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
48 atomic_long_set(&lock->owner, 0);
49 raw_spin_lock_init(&lock->wait_lock);
50 INIT_LIST_HEAD(&lock->wait_list);
51 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
52 osq_lock_init(&lock->osq);
53 #endif
55 debug_mutex_init(lock, name, key);
57 EXPORT_SYMBOL(__mutex_init);
59 static inline struct task_struct *__owner_task(unsigned long owner)
61 return (struct task_struct *)(owner & ~MUTEX_FLAGS);
64 bool mutex_is_locked(struct mutex *lock)
66 return __mutex_owner(lock) != NULL;
68 EXPORT_SYMBOL(mutex_is_locked);
70 static inline unsigned long __owner_flags(unsigned long owner)
72 return owner & MUTEX_FLAGS;
76 * Returns: __mutex_owner(lock) on failure or NULL on success.
78 static inline struct task_struct *__mutex_trylock_common(struct mutex *lock, bool handoff)
80 unsigned long owner, curr = (unsigned long)current;
82 owner = atomic_long_read(&lock->owner);
83 for (;;) { /* must loop, can race against a flag */
84 unsigned long flags = __owner_flags(owner);
85 unsigned long task = owner & ~MUTEX_FLAGS;
87 if (task) {
88 if (flags & MUTEX_FLAG_PICKUP) {
89 if (task != curr)
90 break;
91 flags &= ~MUTEX_FLAG_PICKUP;
92 } else if (handoff) {
93 if (flags & MUTEX_FLAG_HANDOFF)
94 break;
95 flags |= MUTEX_FLAG_HANDOFF;
96 } else {
97 break;
99 } else {
100 MUTEX_WARN_ON(flags & (MUTEX_FLAG_HANDOFF | MUTEX_FLAG_PICKUP));
101 task = curr;
104 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &owner, task | flags)) {
105 if (task == curr)
106 return NULL;
107 break;
111 return __owner_task(owner);
115 * Trylock or set HANDOFF
117 static inline bool __mutex_trylock_or_handoff(struct mutex *lock, bool handoff)
119 return !__mutex_trylock_common(lock, handoff);
123 * Actual trylock that will work on any unlocked state.
125 static inline bool __mutex_trylock(struct mutex *lock)
127 return !__mutex_trylock_common(lock, false);
130 #ifndef CONFIG_DEBUG_LOCK_ALLOC
132 * Lockdep annotations are contained to the slow paths for simplicity.
133 * There is nothing that would stop spreading the lockdep annotations outwards
134 * except more code.
138 * Optimistic trylock that only works in the uncontended case. Make sure to
139 * follow with a __mutex_trylock() before failing.
141 static __always_inline bool __mutex_trylock_fast(struct mutex *lock)
143 unsigned long curr = (unsigned long)current;
144 unsigned long zero = 0UL;
146 if (atomic_long_try_cmpxchg_acquire(&lock->owner, &zero, curr))
147 return true;
149 return false;
152 static __always_inline bool __mutex_unlock_fast(struct mutex *lock)
154 unsigned long curr = (unsigned long)current;
156 return atomic_long_try_cmpxchg_release(&lock->owner, &curr, 0UL);
158 #endif
160 static inline void __mutex_set_flag(struct mutex *lock, unsigned long flag)
162 atomic_long_or(flag, &lock->owner);
165 static inline void __mutex_clear_flag(struct mutex *lock, unsigned long flag)
167 atomic_long_andnot(flag, &lock->owner);
170 static inline bool __mutex_waiter_is_first(struct mutex *lock, struct mutex_waiter *waiter)
172 return list_first_entry(&lock->wait_list, struct mutex_waiter, list) == waiter;
176 * Add @waiter to a given location in the lock wait_list and set the
177 * FLAG_WAITERS flag if it's the first waiter.
179 static void
180 __mutex_add_waiter(struct mutex *lock, struct mutex_waiter *waiter,
181 struct list_head *list)
183 debug_mutex_add_waiter(lock, waiter, current);
185 list_add_tail(&waiter->list, list);
186 if (__mutex_waiter_is_first(lock, waiter))
187 __mutex_set_flag(lock, MUTEX_FLAG_WAITERS);
190 static void
191 __mutex_remove_waiter(struct mutex *lock, struct mutex_waiter *waiter)
193 list_del(&waiter->list);
194 if (likely(list_empty(&lock->wait_list)))
195 __mutex_clear_flag(lock, MUTEX_FLAGS);
197 debug_mutex_remove_waiter(lock, waiter, current);
201 * Give up ownership to a specific task, when @task = NULL, this is equivalent
202 * to a regular unlock. Sets PICKUP on a handoff, clears HANDOFF, preserves
203 * WAITERS. Provides RELEASE semantics like a regular unlock, the
204 * __mutex_trylock() provides a matching ACQUIRE semantics for the handoff.
206 static void __mutex_handoff(struct mutex *lock, struct task_struct *task)
208 unsigned long owner = atomic_long_read(&lock->owner);
210 for (;;) {
211 unsigned long new;
213 MUTEX_WARN_ON(__owner_task(owner) != current);
214 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
216 new = (owner & MUTEX_FLAG_WAITERS);
217 new |= (unsigned long)task;
218 if (task)
219 new |= MUTEX_FLAG_PICKUP;
221 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, new))
222 break;
226 #ifndef CONFIG_DEBUG_LOCK_ALLOC
228 * We split the mutex lock/unlock logic into separate fastpath and
229 * slowpath functions, to reduce the register pressure on the fastpath.
230 * We also put the fastpath first in the kernel image, to make sure the
231 * branch is predicted by the CPU as default-untaken.
233 static void __sched __mutex_lock_slowpath(struct mutex *lock);
236 * mutex_lock - acquire the mutex
237 * @lock: the mutex to be acquired
239 * Lock the mutex exclusively for this task. If the mutex is not
240 * available right now, it will sleep until it can get it.
242 * The mutex must later on be released by the same task that
243 * acquired it. Recursive locking is not allowed. The task
244 * may not exit without first unlocking the mutex. Also, kernel
245 * memory where the mutex resides must not be freed with
246 * the mutex still locked. The mutex must first be initialized
247 * (or statically defined) before it can be locked. memset()-ing
248 * the mutex to 0 is not allowed.
250 * (The CONFIG_DEBUG_MUTEXES .config option turns on debugging
251 * checks that will enforce the restrictions and will also do
252 * deadlock debugging)
254 * This function is similar to (but not equivalent to) down().
256 void __sched mutex_lock(struct mutex *lock)
258 might_sleep();
260 if (!__mutex_trylock_fast(lock))
261 __mutex_lock_slowpath(lock);
263 EXPORT_SYMBOL(mutex_lock);
264 #endif
266 #include "ww_mutex.h"
268 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
271 * Trylock variant that returns the owning task on failure.
273 static inline struct task_struct *__mutex_trylock_or_owner(struct mutex *lock)
275 return __mutex_trylock_common(lock, false);
278 static inline
279 bool ww_mutex_spin_on_owner(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
280 struct mutex_waiter *waiter)
282 struct ww_mutex *ww;
284 ww = container_of(lock, struct ww_mutex, base);
287 * If ww->ctx is set the contents are undefined, only
288 * by acquiring wait_lock there is a guarantee that
289 * they are not invalid when reading.
291 * As such, when deadlock detection needs to be
292 * performed the optimistic spinning cannot be done.
294 * Check this in every inner iteration because we may
295 * be racing against another thread's ww_mutex_lock.
297 if (ww_ctx->acquired > 0 && READ_ONCE(ww->ctx))
298 return false;
301 * If we aren't on the wait list yet, cancel the spin
302 * if there are waiters. We want to avoid stealing the
303 * lock from a waiter with an earlier stamp, since the
304 * other thread may already own a lock that we also
305 * need.
307 if (!waiter && (atomic_long_read(&lock->owner) & MUTEX_FLAG_WAITERS))
308 return false;
311 * Similarly, stop spinning if we are no longer the
312 * first waiter.
314 if (waiter && !__mutex_waiter_is_first(lock, waiter))
315 return false;
317 return true;
321 * Look out! "owner" is an entirely speculative pointer access and not
322 * reliable.
324 * "noinline" so that this function shows up on perf profiles.
326 static noinline
327 bool mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner,
328 struct ww_acquire_ctx *ww_ctx, struct mutex_waiter *waiter)
330 bool ret = true;
332 lockdep_assert_preemption_disabled();
334 while (__mutex_owner(lock) == owner) {
336 * Ensure we emit the owner->on_cpu, dereference _after_
337 * checking lock->owner still matches owner. And we already
338 * disabled preemption which is equal to the RCU read-side
339 * crital section in optimistic spinning code. Thus the
340 * task_strcut structure won't go away during the spinning
341 * period
343 barrier();
346 * Use vcpu_is_preempted to detect lock holder preemption issue.
348 if (!owner_on_cpu(owner) || need_resched()) {
349 ret = false;
350 break;
353 if (ww_ctx && !ww_mutex_spin_on_owner(lock, ww_ctx, waiter)) {
354 ret = false;
355 break;
358 cpu_relax();
361 return ret;
365 * Initial check for entering the mutex spinning loop
367 static inline int mutex_can_spin_on_owner(struct mutex *lock)
369 struct task_struct *owner;
370 int retval = 1;
372 lockdep_assert_preemption_disabled();
374 if (need_resched())
375 return 0;
378 * We already disabled preemption which is equal to the RCU read-side
379 * crital section in optimistic spinning code. Thus the task_strcut
380 * structure won't go away during the spinning period.
382 owner = __mutex_owner(lock);
383 if (owner)
384 retval = owner_on_cpu(owner);
387 * If lock->owner is not set, the mutex has been released. Return true
388 * such that we'll trylock in the spin path, which is a faster option
389 * than the blocking slow path.
391 return retval;
395 * Optimistic spinning.
397 * We try to spin for acquisition when we find that the lock owner
398 * is currently running on a (different) CPU and while we don't
399 * need to reschedule. The rationale is that if the lock owner is
400 * running, it is likely to release the lock soon.
402 * The mutex spinners are queued up using MCS lock so that only one
403 * spinner can compete for the mutex. However, if mutex spinning isn't
404 * going to happen, there is no point in going through the lock/unlock
405 * overhead.
407 * Returns true when the lock was taken, otherwise false, indicating
408 * that we need to jump to the slowpath and sleep.
410 * The waiter flag is set to true if the spinner is a waiter in the wait
411 * queue. The waiter-spinner will spin on the lock directly and concurrently
412 * with the spinner at the head of the OSQ, if present, until the owner is
413 * changed to itself.
415 static __always_inline bool
416 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
417 struct mutex_waiter *waiter)
419 if (!waiter) {
421 * The purpose of the mutex_can_spin_on_owner() function is
422 * to eliminate the overhead of osq_lock() and osq_unlock()
423 * in case spinning isn't possible. As a waiter-spinner
424 * is not going to take OSQ lock anyway, there is no need
425 * to call mutex_can_spin_on_owner().
427 if (!mutex_can_spin_on_owner(lock))
428 goto fail;
431 * In order to avoid a stampede of mutex spinners trying to
432 * acquire the mutex all at once, the spinners need to take a
433 * MCS (queued) lock first before spinning on the owner field.
435 if (!osq_lock(&lock->osq))
436 goto fail;
439 for (;;) {
440 struct task_struct *owner;
442 /* Try to acquire the mutex... */
443 owner = __mutex_trylock_or_owner(lock);
444 if (!owner)
445 break;
448 * There's an owner, wait for it to either
449 * release the lock or go to sleep.
451 if (!mutex_spin_on_owner(lock, owner, ww_ctx, waiter))
452 goto fail_unlock;
455 * The cpu_relax() call is a compiler barrier which forces
456 * everything in this loop to be re-loaded. We don't need
457 * memory barriers as we'll eventually observe the right
458 * values at the cost of a few extra spins.
460 cpu_relax();
463 if (!waiter)
464 osq_unlock(&lock->osq);
466 return true;
469 fail_unlock:
470 if (!waiter)
471 osq_unlock(&lock->osq);
473 fail:
475 * If we fell out of the spin path because of need_resched(),
476 * reschedule now, before we try-lock the mutex. This avoids getting
477 * scheduled out right after we obtained the mutex.
479 if (need_resched()) {
481 * We _should_ have TASK_RUNNING here, but just in case
482 * we do not, make it so, otherwise we might get stuck.
484 __set_current_state(TASK_RUNNING);
485 schedule_preempt_disabled();
488 return false;
490 #else
491 static __always_inline bool
492 mutex_optimistic_spin(struct mutex *lock, struct ww_acquire_ctx *ww_ctx,
493 struct mutex_waiter *waiter)
495 return false;
497 #endif
499 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip);
502 * mutex_unlock - release the mutex
503 * @lock: the mutex to be released
505 * Unlock a mutex that has been locked by this task previously.
507 * This function must not be used in interrupt context. Unlocking
508 * of a not locked mutex is not allowed.
510 * The caller must ensure that the mutex stays alive until this function has
511 * returned - mutex_unlock() can NOT directly be used to release an object such
512 * that another concurrent task can free it.
513 * Mutexes are different from spinlocks & refcounts in this aspect.
515 * This function is similar to (but not equivalent to) up().
517 void __sched mutex_unlock(struct mutex *lock)
519 #ifndef CONFIG_DEBUG_LOCK_ALLOC
520 if (__mutex_unlock_fast(lock))
521 return;
522 #endif
523 __mutex_unlock_slowpath(lock, _RET_IP_);
525 EXPORT_SYMBOL(mutex_unlock);
528 * ww_mutex_unlock - release the w/w mutex
529 * @lock: the mutex to be released
531 * Unlock a mutex that has been locked by this task previously with any of the
532 * ww_mutex_lock* functions (with or without an acquire context). It is
533 * forbidden to release the locks after releasing the acquire context.
535 * This function must not be used in interrupt context. Unlocking
536 * of a unlocked mutex is not allowed.
538 void __sched ww_mutex_unlock(struct ww_mutex *lock)
540 __ww_mutex_unlock(lock);
541 mutex_unlock(&lock->base);
543 EXPORT_SYMBOL(ww_mutex_unlock);
546 * Lock a mutex (possibly interruptible), slowpath:
548 static __always_inline int __sched
549 __mutex_lock_common(struct mutex *lock, unsigned int state, unsigned int subclass,
550 struct lockdep_map *nest_lock, unsigned long ip,
551 struct ww_acquire_ctx *ww_ctx, const bool use_ww_ctx)
553 DEFINE_WAKE_Q(wake_q);
554 struct mutex_waiter waiter;
555 struct ww_mutex *ww;
556 unsigned long flags;
557 int ret;
559 if (!use_ww_ctx)
560 ww_ctx = NULL;
562 might_sleep();
564 MUTEX_WARN_ON(lock->magic != lock);
566 ww = container_of(lock, struct ww_mutex, base);
567 if (ww_ctx) {
568 if (unlikely(ww_ctx == READ_ONCE(ww->ctx)))
569 return -EALREADY;
572 * Reset the wounded flag after a kill. No other process can
573 * race and wound us here since they can't have a valid owner
574 * pointer if we don't have any locks held.
576 if (ww_ctx->acquired == 0)
577 ww_ctx->wounded = 0;
579 #ifdef CONFIG_DEBUG_LOCK_ALLOC
580 nest_lock = &ww_ctx->dep_map;
581 #endif
584 preempt_disable();
585 mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
587 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
588 if (__mutex_trylock(lock) ||
589 mutex_optimistic_spin(lock, ww_ctx, NULL)) {
590 /* got the lock, yay! */
591 lock_acquired(&lock->dep_map, ip);
592 if (ww_ctx)
593 ww_mutex_set_context_fastpath(ww, ww_ctx);
594 trace_contention_end(lock, 0);
595 preempt_enable();
596 return 0;
599 raw_spin_lock_irqsave(&lock->wait_lock, flags);
601 * After waiting to acquire the wait_lock, try again.
603 if (__mutex_trylock(lock)) {
604 if (ww_ctx)
605 __ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
607 goto skip_wait;
610 debug_mutex_lock_common(lock, &waiter);
611 waiter.task = current;
612 if (use_ww_ctx)
613 waiter.ww_ctx = ww_ctx;
615 lock_contended(&lock->dep_map, ip);
617 if (!use_ww_ctx) {
618 /* add waiting tasks to the end of the waitqueue (FIFO): */
619 __mutex_add_waiter(lock, &waiter, &lock->wait_list);
620 } else {
622 * Add in stamp order, waking up waiters that must kill
623 * themselves.
625 ret = __ww_mutex_add_waiter(&waiter, lock, ww_ctx, &wake_q);
626 if (ret)
627 goto err_early_kill;
630 set_current_state(state);
631 trace_contention_begin(lock, LCB_F_MUTEX);
632 for (;;) {
633 bool first;
636 * Once we hold wait_lock, we're serialized against
637 * mutex_unlock() handing the lock off to us, do a trylock
638 * before testing the error conditions to make sure we pick up
639 * the handoff.
641 if (__mutex_trylock(lock))
642 goto acquired;
645 * Check for signals and kill conditions while holding
646 * wait_lock. This ensures the lock cancellation is ordered
647 * against mutex_unlock() and wake-ups do not go missing.
649 if (signal_pending_state(state, current)) {
650 ret = -EINTR;
651 goto err;
654 if (ww_ctx) {
655 ret = __ww_mutex_check_kill(lock, &waiter, ww_ctx);
656 if (ret)
657 goto err;
660 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
661 /* Make sure we do wakeups before calling schedule */
662 wake_up_q(&wake_q);
663 wake_q_init(&wake_q);
665 schedule_preempt_disabled();
667 first = __mutex_waiter_is_first(lock, &waiter);
669 set_current_state(state);
671 * Here we order against unlock; we must either see it change
672 * state back to RUNNING and fall through the next schedule(),
673 * or we must see its unlock and acquire.
675 if (__mutex_trylock_or_handoff(lock, first))
676 break;
678 if (first) {
679 trace_contention_begin(lock, LCB_F_MUTEX | LCB_F_SPIN);
680 if (mutex_optimistic_spin(lock, ww_ctx, &waiter))
681 break;
682 trace_contention_begin(lock, LCB_F_MUTEX);
685 raw_spin_lock_irqsave(&lock->wait_lock, flags);
687 raw_spin_lock_irqsave(&lock->wait_lock, flags);
688 acquired:
689 __set_current_state(TASK_RUNNING);
691 if (ww_ctx) {
693 * Wound-Wait; we stole the lock (!first_waiter), check the
694 * waiters as anyone might want to wound us.
696 if (!ww_ctx->is_wait_die &&
697 !__mutex_waiter_is_first(lock, &waiter))
698 __ww_mutex_check_waiters(lock, ww_ctx, &wake_q);
701 __mutex_remove_waiter(lock, &waiter);
703 debug_mutex_free_waiter(&waiter);
705 skip_wait:
706 /* got the lock - cleanup and rejoice! */
707 lock_acquired(&lock->dep_map, ip);
708 trace_contention_end(lock, 0);
710 if (ww_ctx)
711 ww_mutex_lock_acquired(ww, ww_ctx);
713 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
714 wake_up_q(&wake_q);
715 preempt_enable();
716 return 0;
718 err:
719 __set_current_state(TASK_RUNNING);
720 __mutex_remove_waiter(lock, &waiter);
721 err_early_kill:
722 trace_contention_end(lock, ret);
723 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
724 debug_mutex_free_waiter(&waiter);
725 mutex_release(&lock->dep_map, ip);
726 wake_up_q(&wake_q);
727 preempt_enable();
728 return ret;
731 static int __sched
732 __mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
733 struct lockdep_map *nest_lock, unsigned long ip)
735 return __mutex_lock_common(lock, state, subclass, nest_lock, ip, NULL, false);
738 static int __sched
739 __ww_mutex_lock(struct mutex *lock, unsigned int state, unsigned int subclass,
740 unsigned long ip, struct ww_acquire_ctx *ww_ctx)
742 return __mutex_lock_common(lock, state, subclass, NULL, ip, ww_ctx, true);
746 * ww_mutex_trylock - tries to acquire the w/w mutex with optional acquire context
747 * @ww: mutex to lock
748 * @ww_ctx: optional w/w acquire context
750 * Trylocks a mutex with the optional acquire context; no deadlock detection is
751 * possible. Returns 1 if the mutex has been acquired successfully, 0 otherwise.
753 * Unlike ww_mutex_lock, no deadlock handling is performed. However, if a @ctx is
754 * specified, -EALREADY handling may happen in calls to ww_mutex_trylock.
756 * A mutex acquired with this function must be released with ww_mutex_unlock.
758 int ww_mutex_trylock(struct ww_mutex *ww, struct ww_acquire_ctx *ww_ctx)
760 if (!ww_ctx)
761 return mutex_trylock(&ww->base);
763 MUTEX_WARN_ON(ww->base.magic != &ww->base);
766 * Reset the wounded flag after a kill. No other process can
767 * race and wound us here, since they can't have a valid owner
768 * pointer if we don't have any locks held.
770 if (ww_ctx->acquired == 0)
771 ww_ctx->wounded = 0;
773 if (__mutex_trylock(&ww->base)) {
774 ww_mutex_set_context_fastpath(ww, ww_ctx);
775 mutex_acquire_nest(&ww->base.dep_map, 0, 1, &ww_ctx->dep_map, _RET_IP_);
776 return 1;
779 return 0;
781 EXPORT_SYMBOL(ww_mutex_trylock);
783 #ifdef CONFIG_DEBUG_LOCK_ALLOC
784 void __sched
785 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
787 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
790 EXPORT_SYMBOL_GPL(mutex_lock_nested);
792 void __sched
793 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
795 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
797 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
799 int __sched
800 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
802 return __mutex_lock(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
804 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
806 int __sched
807 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
809 return __mutex_lock(lock, TASK_INTERRUPTIBLE, subclass, NULL, _RET_IP_);
811 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
813 void __sched
814 mutex_lock_io_nested(struct mutex *lock, unsigned int subclass)
816 int token;
818 might_sleep();
820 token = io_schedule_prepare();
821 __mutex_lock_common(lock, TASK_UNINTERRUPTIBLE,
822 subclass, NULL, _RET_IP_, NULL, 0);
823 io_schedule_finish(token);
825 EXPORT_SYMBOL_GPL(mutex_lock_io_nested);
827 static inline int
828 ww_mutex_deadlock_injection(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
830 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
831 unsigned tmp;
833 if (ctx->deadlock_inject_countdown-- == 0) {
834 tmp = ctx->deadlock_inject_interval;
835 if (tmp > UINT_MAX/4)
836 tmp = UINT_MAX;
837 else
838 tmp = tmp*2 + tmp + tmp/2;
840 ctx->deadlock_inject_interval = tmp;
841 ctx->deadlock_inject_countdown = tmp;
842 ctx->contending_lock = lock;
844 ww_mutex_unlock(lock);
846 return -EDEADLK;
848 #endif
850 return 0;
853 int __sched
854 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
856 int ret;
858 might_sleep();
859 ret = __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE,
860 0, _RET_IP_, ctx);
861 if (!ret && ctx && ctx->acquired > 1)
862 return ww_mutex_deadlock_injection(lock, ctx);
864 return ret;
866 EXPORT_SYMBOL_GPL(ww_mutex_lock);
868 int __sched
869 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
871 int ret;
873 might_sleep();
874 ret = __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE,
875 0, _RET_IP_, ctx);
877 if (!ret && ctx && ctx->acquired > 1)
878 return ww_mutex_deadlock_injection(lock, ctx);
880 return ret;
882 EXPORT_SYMBOL_GPL(ww_mutex_lock_interruptible);
884 #endif
887 * Release the lock, slowpath:
889 static noinline void __sched __mutex_unlock_slowpath(struct mutex *lock, unsigned long ip)
891 struct task_struct *next = NULL;
892 DEFINE_WAKE_Q(wake_q);
893 unsigned long owner;
894 unsigned long flags;
896 mutex_release(&lock->dep_map, ip);
899 * Release the lock before (potentially) taking the spinlock such that
900 * other contenders can get on with things ASAP.
902 * Except when HANDOFF, in that case we must not clear the owner field,
903 * but instead set it to the top waiter.
905 owner = atomic_long_read(&lock->owner);
906 for (;;) {
907 MUTEX_WARN_ON(__owner_task(owner) != current);
908 MUTEX_WARN_ON(owner & MUTEX_FLAG_PICKUP);
910 if (owner & MUTEX_FLAG_HANDOFF)
911 break;
913 if (atomic_long_try_cmpxchg_release(&lock->owner, &owner, __owner_flags(owner))) {
914 if (owner & MUTEX_FLAG_WAITERS)
915 break;
917 return;
921 raw_spin_lock_irqsave(&lock->wait_lock, flags);
922 debug_mutex_unlock(lock);
923 if (!list_empty(&lock->wait_list)) {
924 /* get the first entry from the wait-list: */
925 struct mutex_waiter *waiter =
926 list_first_entry(&lock->wait_list,
927 struct mutex_waiter, list);
929 next = waiter->task;
931 debug_mutex_wake_waiter(lock, waiter);
932 wake_q_add(&wake_q, next);
935 if (owner & MUTEX_FLAG_HANDOFF)
936 __mutex_handoff(lock, next);
938 preempt_disable();
939 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
940 wake_up_q(&wake_q);
941 preempt_enable();
944 #ifndef CONFIG_DEBUG_LOCK_ALLOC
946 * Here come the less common (and hence less performance-critical) APIs:
947 * mutex_lock_interruptible() and mutex_trylock().
949 static noinline int __sched
950 __mutex_lock_killable_slowpath(struct mutex *lock);
952 static noinline int __sched
953 __mutex_lock_interruptible_slowpath(struct mutex *lock);
956 * mutex_lock_interruptible() - Acquire the mutex, interruptible by signals.
957 * @lock: The mutex to be acquired.
959 * Lock the mutex like mutex_lock(). If a signal is delivered while the
960 * process is sleeping, this function will return without acquiring the
961 * mutex.
963 * Context: Process context.
964 * Return: 0 if the lock was successfully acquired or %-EINTR if a
965 * signal arrived.
967 int __sched mutex_lock_interruptible(struct mutex *lock)
969 might_sleep();
971 if (__mutex_trylock_fast(lock))
972 return 0;
974 return __mutex_lock_interruptible_slowpath(lock);
977 EXPORT_SYMBOL(mutex_lock_interruptible);
980 * mutex_lock_killable() - Acquire the mutex, interruptible by fatal signals.
981 * @lock: The mutex to be acquired.
983 * Lock the mutex like mutex_lock(). If a signal which will be fatal to
984 * the current process is delivered while the process is sleeping, this
985 * function will return without acquiring the mutex.
987 * Context: Process context.
988 * Return: 0 if the lock was successfully acquired or %-EINTR if a
989 * fatal signal arrived.
991 int __sched mutex_lock_killable(struct mutex *lock)
993 might_sleep();
995 if (__mutex_trylock_fast(lock))
996 return 0;
998 return __mutex_lock_killable_slowpath(lock);
1000 EXPORT_SYMBOL(mutex_lock_killable);
1003 * mutex_lock_io() - Acquire the mutex and mark the process as waiting for I/O
1004 * @lock: The mutex to be acquired.
1006 * Lock the mutex like mutex_lock(). While the task is waiting for this
1007 * mutex, it will be accounted as being in the IO wait state by the
1008 * scheduler.
1010 * Context: Process context.
1012 void __sched mutex_lock_io(struct mutex *lock)
1014 int token;
1016 token = io_schedule_prepare();
1017 mutex_lock(lock);
1018 io_schedule_finish(token);
1020 EXPORT_SYMBOL_GPL(mutex_lock_io);
1022 static noinline void __sched
1023 __mutex_lock_slowpath(struct mutex *lock)
1025 __mutex_lock(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
1028 static noinline int __sched
1029 __mutex_lock_killable_slowpath(struct mutex *lock)
1031 return __mutex_lock(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
1034 static noinline int __sched
1035 __mutex_lock_interruptible_slowpath(struct mutex *lock)
1037 return __mutex_lock(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
1040 static noinline int __sched
1041 __ww_mutex_lock_slowpath(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1043 return __ww_mutex_lock(&lock->base, TASK_UNINTERRUPTIBLE, 0,
1044 _RET_IP_, ctx);
1047 static noinline int __sched
1048 __ww_mutex_lock_interruptible_slowpath(struct ww_mutex *lock,
1049 struct ww_acquire_ctx *ctx)
1051 return __ww_mutex_lock(&lock->base, TASK_INTERRUPTIBLE, 0,
1052 _RET_IP_, ctx);
1055 #endif
1058 * mutex_trylock - try to acquire the mutex, without waiting
1059 * @lock: the mutex to be acquired
1061 * Try to acquire the mutex atomically. Returns 1 if the mutex
1062 * has been acquired successfully, and 0 on contention.
1064 * NOTE: this function follows the spin_trylock() convention, so
1065 * it is negated from the down_trylock() return values! Be careful
1066 * about this when converting semaphore users to mutexes.
1068 * This function must not be used in interrupt context. The
1069 * mutex must be released by the same task that acquired it.
1071 int __sched mutex_trylock(struct mutex *lock)
1073 bool locked;
1075 MUTEX_WARN_ON(lock->magic != lock);
1077 locked = __mutex_trylock(lock);
1078 if (locked)
1079 mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1081 return locked;
1083 EXPORT_SYMBOL(mutex_trylock);
1085 #ifndef CONFIG_DEBUG_LOCK_ALLOC
1086 int __sched
1087 ww_mutex_lock(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1089 might_sleep();
1091 if (__mutex_trylock_fast(&lock->base)) {
1092 if (ctx)
1093 ww_mutex_set_context_fastpath(lock, ctx);
1094 return 0;
1097 return __ww_mutex_lock_slowpath(lock, ctx);
1099 EXPORT_SYMBOL(ww_mutex_lock);
1101 int __sched
1102 ww_mutex_lock_interruptible(struct ww_mutex *lock, struct ww_acquire_ctx *ctx)
1104 might_sleep();
1106 if (__mutex_trylock_fast(&lock->base)) {
1107 if (ctx)
1108 ww_mutex_set_context_fastpath(lock, ctx);
1109 return 0;
1112 return __ww_mutex_lock_interruptible_slowpath(lock, ctx);
1114 EXPORT_SYMBOL(ww_mutex_lock_interruptible);
1116 #endif /* !CONFIG_DEBUG_LOCK_ALLOC */
1117 #endif /* !CONFIG_PREEMPT_RT */
1119 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_begin);
1120 EXPORT_TRACEPOINT_SYMBOL_GPL(contention_end);
1123 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
1124 * @cnt: the atomic which we are to dec
1125 * @lock: the mutex to return holding if we dec to 0
1127 * return true and hold lock if we dec to 0, return false otherwise
1129 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
1131 /* dec if we can't possibly hit 0 */
1132 if (atomic_add_unless(cnt, -1, 1))
1133 return 0;
1134 /* we might hit 0, so take the lock */
1135 mutex_lock(lock);
1136 if (!atomic_dec_and_test(cnt)) {
1137 /* when we actually did the dec, we didn't hit 0 */
1138 mutex_unlock(lock);
1139 return 0;
1141 /* we hit 0, and we hold the lock */
1142 return 1;
1144 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);