1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
4 * Written by David Howells (dhowells@redhat.com).
5 * Derived from asm-i386/semaphore.h
7 * Writer lock-stealing by Alex Shi <alex.shi@intel.com>
8 * and Michel Lespinasse <walken@google.com>
10 * Optimistic spinning by Tim Chen <tim.c.chen@intel.com>
11 * and Davidlohr Bueso <davidlohr@hp.com>. Based on mutexes.
13 * Rwsem count bit fields re-definition and rwsem rearchitecture by
14 * Waiman Long <longman@redhat.com> and
15 * Peter Zijlstra <peterz@infradead.org>.
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 #include <trace/events/lock.h>
32 #ifndef CONFIG_PREEMPT_RT
33 #include "lock_events.h"
36 * The least significant 2 bits of the owner value has the following
38 * - Bit 0: RWSEM_READER_OWNED - rwsem may be owned by readers (just a hint)
39 * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
41 * When the rwsem is reader-owned and a spinning writer has timed out,
42 * the nonspinnable bit will be set to disable optimistic spinning.
44 * When a writer acquires a rwsem, it puts its task_struct pointer
45 * into the owner field. It is cleared after an unlock.
47 * When a reader acquires a rwsem, it will also puts its task_struct
48 * pointer into the owner field with the RWSEM_READER_OWNED bit set.
49 * On unlock, the owner field will largely be left untouched. So
50 * for a free or reader-owned rwsem, the owner value may contain
51 * information about the last reader that acquires the rwsem.
53 * That information may be helpful in debugging cases where the system
54 * seems to hang on a reader owned rwsem especially if only one reader
55 * is involved. Ideally we would like to track all the readers that own
56 * a rwsem, but the overhead is simply too big.
58 * A fast path reader optimistic lock stealing is supported when the rwsem
59 * is previously owned by a writer and the following conditions are met:
60 * - rwsem is not currently writer owned
61 * - the handoff isn't set.
63 #define RWSEM_READER_OWNED (1UL << 0)
64 #define RWSEM_NONSPINNABLE (1UL << 1)
65 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
67 #ifdef CONFIG_DEBUG_RWSEMS
68 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \
69 if (!debug_locks_silent && \
70 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
71 #c, atomic_long_read(&(sem)->count), \
72 (unsigned long) sem->magic, \
73 atomic_long_read(&(sem)->owner), (long)current, \
74 list_empty(&(sem)->wait_list) ? "" : "not ")) \
78 # define DEBUG_RWSEMS_WARN_ON(c, sem)
82 * On 64-bit architectures, the bit definitions of the count are:
84 * Bit 0 - writer locked bit
85 * Bit 1 - waiters present bit
86 * Bit 2 - lock handoff bit
88 * Bits 8-62 - 55-bit reader count
89 * Bit 63 - read fail bit
91 * On 32-bit architectures, the bit definitions of the count are:
93 * Bit 0 - writer locked bit
94 * Bit 1 - waiters present bit
95 * Bit 2 - lock handoff bit
97 * Bits 8-30 - 23-bit reader count
98 * Bit 31 - read fail bit
100 * It is not likely that the most significant bit (read fail bit) will ever
101 * be set. This guard bit is still checked anyway in the down_read() fastpath
102 * just in case we need to use up more of the reader bits for other purpose
105 * atomic_long_fetch_add() is used to obtain reader lock, whereas
106 * atomic_long_cmpxchg() will be used to obtain writer lock.
108 * There are three places where the lock handoff bit may be set or cleared.
109 * 1) rwsem_mark_wake() for readers -- set, clear
110 * 2) rwsem_try_write_lock() for writers -- set, clear
111 * 3) rwsem_del_waiter() -- clear
113 * For all the above cases, wait_lock will be held. A writer must also
114 * be the first one in the wait_list to be eligible for setting the handoff
115 * bit. So concurrent setting/clearing of handoff bit is not possible.
117 #define RWSEM_WRITER_LOCKED (1UL << 0)
118 #define RWSEM_FLAG_WAITERS (1UL << 1)
119 #define RWSEM_FLAG_HANDOFF (1UL << 2)
120 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1))
122 #define RWSEM_READER_SHIFT 8
123 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT)
124 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1))
125 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED
126 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK)
127 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
128 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
131 * All writes to owner are protected by WRITE_ONCE() to make sure that
132 * store tearing can't happen as optimistic spinners may read and use
133 * the owner value concurrently without lock. Read from owner, however,
134 * may not need READ_ONCE() as long as the pointer value is only used
135 * for comparison and isn't being dereferenced.
137 * Both rwsem_{set,clear}_owner() functions should be in the same
138 * preempt disable section as the atomic op that changes sem->count.
140 static inline void rwsem_set_owner(struct rw_semaphore
*sem
)
142 lockdep_assert_preemption_disabled();
143 atomic_long_set(&sem
->owner
, (long)current
);
146 static inline void rwsem_clear_owner(struct rw_semaphore
*sem
)
148 lockdep_assert_preemption_disabled();
149 atomic_long_set(&sem
->owner
, 0);
153 * Test the flags in the owner field.
155 static inline bool rwsem_test_oflags(struct rw_semaphore
*sem
, long flags
)
157 return atomic_long_read(&sem
->owner
) & flags
;
161 * The task_struct pointer of the last owning reader will be left in
164 * Note that the owner value just indicates the task has owned the rwsem
165 * previously, it may not be the real owner or one of the real owners
166 * anymore when that field is examined, so take it with a grain of salt.
168 * The reader non-spinnable bit is preserved.
170 static inline void __rwsem_set_reader_owned(struct rw_semaphore
*sem
,
171 struct task_struct
*owner
)
173 unsigned long val
= (unsigned long)owner
| RWSEM_READER_OWNED
|
174 (atomic_long_read(&sem
->owner
) & RWSEM_NONSPINNABLE
);
176 atomic_long_set(&sem
->owner
, val
);
179 static inline void rwsem_set_reader_owned(struct rw_semaphore
*sem
)
181 __rwsem_set_reader_owned(sem
, current
);
184 #ifdef CONFIG_DEBUG_RWSEMS
186 * Return just the real task structure pointer of the owner
188 static inline struct task_struct
*rwsem_owner(struct rw_semaphore
*sem
)
190 return (struct task_struct
*)
191 (atomic_long_read(&sem
->owner
) & ~RWSEM_OWNER_FLAGS_MASK
);
195 * Return true if the rwsem is owned by a reader.
197 static inline bool is_rwsem_reader_owned(struct rw_semaphore
*sem
)
200 * Check the count to see if it is write-locked.
202 long count
= atomic_long_read(&sem
->count
);
204 if (count
& RWSEM_WRITER_MASK
)
206 return rwsem_test_oflags(sem
, RWSEM_READER_OWNED
);
210 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
211 * is a task pointer in owner of a reader-owned rwsem, it will be the
212 * real owner or one of the real owners. The only exception is when the
213 * unlock is done by up_read_non_owner().
215 static inline void rwsem_clear_reader_owned(struct rw_semaphore
*sem
)
217 unsigned long val
= atomic_long_read(&sem
->owner
);
219 while ((val
& ~RWSEM_OWNER_FLAGS_MASK
) == (unsigned long)current
) {
220 if (atomic_long_try_cmpxchg(&sem
->owner
, &val
,
221 val
& RWSEM_OWNER_FLAGS_MASK
))
226 static inline void rwsem_clear_reader_owned(struct rw_semaphore
*sem
)
232 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
233 * remains set. Otherwise, the operation will be aborted.
235 static inline void rwsem_set_nonspinnable(struct rw_semaphore
*sem
)
237 unsigned long owner
= atomic_long_read(&sem
->owner
);
240 if (!(owner
& RWSEM_READER_OWNED
))
242 if (owner
& RWSEM_NONSPINNABLE
)
244 } while (!atomic_long_try_cmpxchg(&sem
->owner
, &owner
,
245 owner
| RWSEM_NONSPINNABLE
));
248 static inline bool rwsem_read_trylock(struct rw_semaphore
*sem
, long *cntp
)
250 *cntp
= atomic_long_add_return_acquire(RWSEM_READER_BIAS
, &sem
->count
);
252 if (WARN_ON_ONCE(*cntp
< 0))
253 rwsem_set_nonspinnable(sem
);
255 if (!(*cntp
& RWSEM_READ_FAILED_MASK
)) {
256 rwsem_set_reader_owned(sem
);
263 static inline bool rwsem_write_trylock(struct rw_semaphore
*sem
)
265 long tmp
= RWSEM_UNLOCKED_VALUE
;
267 if (atomic_long_try_cmpxchg_acquire(&sem
->count
, &tmp
, RWSEM_WRITER_LOCKED
)) {
268 rwsem_set_owner(sem
);
276 * Return the real task structure pointer of the owner and the embedded
277 * flags in the owner. pflags must be non-NULL.
279 static inline struct task_struct
*
280 rwsem_owner_flags(struct rw_semaphore
*sem
, unsigned long *pflags
)
282 unsigned long owner
= atomic_long_read(&sem
->owner
);
284 *pflags
= owner
& RWSEM_OWNER_FLAGS_MASK
;
285 return (struct task_struct
*)(owner
& ~RWSEM_OWNER_FLAGS_MASK
);
289 * Guide to the rw_semaphore's count field.
291 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
294 * The lock is owned by readers when
295 * (1) the RWSEM_WRITER_LOCKED isn't set in count,
296 * (2) some of the reader bits are set in count, and
297 * (3) the owner field has RWSEM_READ_OWNED bit set.
299 * Having some reader bits set is not enough to guarantee a readers owned
300 * lock as the readers may be in the process of backing out from the count
301 * and a writer has just released the lock. So another writer may steal
302 * the lock immediately after that.
306 * Initialize an rwsem:
308 void __init_rwsem(struct rw_semaphore
*sem
, const char *name
,
309 struct lock_class_key
*key
)
311 #ifdef CONFIG_DEBUG_LOCK_ALLOC
313 * Make sure we are not reinitializing a held semaphore:
315 debug_check_no_locks_freed((void *)sem
, sizeof(*sem
));
316 lockdep_init_map_wait(&sem
->dep_map
, name
, key
, 0, LD_WAIT_SLEEP
);
318 #ifdef CONFIG_DEBUG_RWSEMS
321 atomic_long_set(&sem
->count
, RWSEM_UNLOCKED_VALUE
);
322 raw_spin_lock_init(&sem
->wait_lock
);
323 INIT_LIST_HEAD(&sem
->wait_list
);
324 atomic_long_set(&sem
->owner
, 0L);
325 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
326 osq_lock_init(&sem
->osq
);
329 EXPORT_SYMBOL(__init_rwsem
);
331 enum rwsem_waiter_type
{
332 RWSEM_WAITING_FOR_WRITE
,
333 RWSEM_WAITING_FOR_READ
336 struct rwsem_waiter
{
337 struct list_head list
;
338 struct task_struct
*task
;
339 enum rwsem_waiter_type type
;
340 unsigned long timeout
;
343 #define rwsem_first_waiter(sem) \
344 list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
346 enum rwsem_wake_type
{
347 RWSEM_WAKE_ANY
, /* Wake whatever's at head of wait list */
348 RWSEM_WAKE_READERS
, /* Wake readers only */
349 RWSEM_WAKE_READ_OWNED
/* Waker thread holds the read lock */
353 * The typical HZ value is either 250 or 1000. So set the minimum waiting
354 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
355 * queue before initiating the handoff protocol.
357 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250)
360 * Magic number to batch-wakeup waiting readers, even when writers are
361 * also present in the queue. This both limits the amount of work the
362 * waking thread must do and also prevents any potential counter overflow,
365 #define MAX_READERS_WAKEUP 0x100
368 rwsem_add_waiter(struct rw_semaphore
*sem
, struct rwsem_waiter
*waiter
)
370 lockdep_assert_held(&sem
->wait_lock
);
371 list_add_tail(&waiter
->list
, &sem
->wait_list
);
372 /* caller will set RWSEM_FLAG_WAITERS */
376 * Remove a waiter from the wait_list and clear flags.
378 * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
379 * this function. Modify with care.
381 * Return: true if wait_list isn't empty and false otherwise
384 rwsem_del_waiter(struct rw_semaphore
*sem
, struct rwsem_waiter
*waiter
)
386 lockdep_assert_held(&sem
->wait_lock
);
387 list_del(&waiter
->list
);
388 if (likely(!list_empty(&sem
->wait_list
)))
391 atomic_long_andnot(RWSEM_FLAG_HANDOFF
| RWSEM_FLAG_WAITERS
, &sem
->count
);
396 * handle the lock release when processes blocked on it that can now run
397 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
399 * - there must be someone on the queue
400 * - the wait_lock must be held by the caller
401 * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
402 * to actually wakeup the blocked task(s) and drop the reference count,
403 * preferably when the wait_lock is released
404 * - woken process blocks are discarded from the list after having task zeroed
405 * - writers are only marked woken if downgrading is false
407 * Implies rwsem_del_waiter() for all woken readers.
409 static void rwsem_mark_wake(struct rw_semaphore
*sem
,
410 enum rwsem_wake_type wake_type
,
411 struct wake_q_head
*wake_q
)
413 struct rwsem_waiter
*waiter
, *tmp
;
414 long oldcount
, woken
= 0, adjustment
= 0;
415 struct list_head wlist
;
417 lockdep_assert_held(&sem
->wait_lock
);
420 * Take a peek at the queue head waiter such that we can determine
421 * the wakeup(s) to perform.
423 waiter
= rwsem_first_waiter(sem
);
425 if (waiter
->type
== RWSEM_WAITING_FOR_WRITE
) {
426 if (wake_type
== RWSEM_WAKE_ANY
) {
428 * Mark writer at the front of the queue for wakeup.
429 * Until the task is actually later awoken later by
430 * the caller, other writers are able to steal it.
431 * Readers, on the other hand, will block as they
432 * will notice the queued writer.
434 wake_q_add(wake_q
, waiter
->task
);
435 lockevent_inc(rwsem_wake_writer
);
442 * No reader wakeup if there are too many of them already.
444 if (unlikely(atomic_long_read(&sem
->count
) < 0))
448 * Writers might steal the lock before we grant it to the next reader.
449 * We prefer to do the first reader grant before counting readers
450 * so we can bail out early if a writer stole the lock.
452 if (wake_type
!= RWSEM_WAKE_READ_OWNED
) {
453 struct task_struct
*owner
;
455 adjustment
= RWSEM_READER_BIAS
;
456 oldcount
= atomic_long_fetch_add(adjustment
, &sem
->count
);
457 if (unlikely(oldcount
& RWSEM_WRITER_MASK
)) {
459 * When we've been waiting "too" long (for writers
460 * to give up the lock), request a HANDOFF to
463 if (time_after(jiffies
, waiter
->timeout
)) {
464 if (!(oldcount
& RWSEM_FLAG_HANDOFF
)) {
465 adjustment
-= RWSEM_FLAG_HANDOFF
;
466 lockevent_inc(rwsem_rlock_handoff
);
468 waiter
->handoff_set
= true;
471 atomic_long_add(-adjustment
, &sem
->count
);
475 * Set it to reader-owned to give spinners an early
476 * indication that readers now have the lock.
477 * The reader nonspinnable bit seen at slowpath entry of
478 * the reader is copied over.
480 owner
= waiter
->task
;
481 __rwsem_set_reader_owned(sem
, owner
);
485 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
486 * queue. We know that the woken will be at least 1 as we accounted
487 * for above. Note we increment the 'active part' of the count by the
488 * number of readers before waking any processes up.
490 * This is an adaptation of the phase-fair R/W locks where at the
491 * reader phase (first waiter is a reader), all readers are eligible
492 * to acquire the lock at the same time irrespective of their order
493 * in the queue. The writers acquire the lock according to their
494 * order in the queue.
496 * We have to do wakeup in 2 passes to prevent the possibility that
497 * the reader count may be decremented before it is incremented. It
498 * is because the to-be-woken waiter may not have slept yet. So it
499 * may see waiter->task got cleared, finish its critical section and
500 * do an unlock before the reader count increment.
502 * 1) Collect the read-waiters in a separate list, count them and
503 * fully increment the reader count in rwsem.
504 * 2) For each waiters in the new list, clear waiter->task and
505 * put them into wake_q to be woken up later.
507 INIT_LIST_HEAD(&wlist
);
508 list_for_each_entry_safe(waiter
, tmp
, &sem
->wait_list
, list
) {
509 if (waiter
->type
== RWSEM_WAITING_FOR_WRITE
)
513 list_move_tail(&waiter
->list
, &wlist
);
516 * Limit # of readers that can be woken up per wakeup call.
518 if (unlikely(woken
>= MAX_READERS_WAKEUP
))
522 adjustment
= woken
* RWSEM_READER_BIAS
- adjustment
;
523 lockevent_cond_inc(rwsem_wake_reader
, woken
);
525 oldcount
= atomic_long_read(&sem
->count
);
526 if (list_empty(&sem
->wait_list
)) {
528 * Combined with list_move_tail() above, this implies
529 * rwsem_del_waiter().
531 adjustment
-= RWSEM_FLAG_WAITERS
;
532 if (oldcount
& RWSEM_FLAG_HANDOFF
)
533 adjustment
-= RWSEM_FLAG_HANDOFF
;
536 * When we've woken a reader, we no longer need to force
537 * writers to give up the lock and we can clear HANDOFF.
539 if (oldcount
& RWSEM_FLAG_HANDOFF
)
540 adjustment
-= RWSEM_FLAG_HANDOFF
;
544 atomic_long_add(adjustment
, &sem
->count
);
547 list_for_each_entry_safe(waiter
, tmp
, &wlist
, list
) {
548 struct task_struct
*tsk
;
551 get_task_struct(tsk
);
554 * Ensure calling get_task_struct() before setting the reader
555 * waiter to nil such that rwsem_down_read_slowpath() cannot
556 * race with do_exit() by always holding a reference count
557 * to the task to wakeup.
559 smp_store_release(&waiter
->task
, NULL
);
561 * Ensure issuing the wakeup (either by us or someone else)
562 * after setting the reader waiter to nil.
564 wake_q_add_safe(wake_q
, tsk
);
569 * Remove a waiter and try to wake up other waiters in the wait queue
570 * This function is called from the out_nolock path of both the reader and
571 * writer slowpaths with wait_lock held. It releases the wait_lock and
572 * optionally wake up waiters before it returns.
575 rwsem_del_wake_waiter(struct rw_semaphore
*sem
, struct rwsem_waiter
*waiter
,
576 struct wake_q_head
*wake_q
)
577 __releases(&sem
->wait_lock
)
579 bool first
= rwsem_first_waiter(sem
) == waiter
;
584 * If the wait_list isn't empty and the waiter to be deleted is
585 * the first waiter, we wake up the remaining waiters as they may
586 * be eligible to acquire or spin on the lock.
588 if (rwsem_del_waiter(sem
, waiter
) && first
)
589 rwsem_mark_wake(sem
, RWSEM_WAKE_ANY
, wake_q
);
590 raw_spin_unlock_irq(&sem
->wait_lock
);
591 if (!wake_q_empty(wake_q
))
596 * This function must be called with the sem->wait_lock held to prevent
597 * race conditions between checking the rwsem wait list and setting the
598 * sem->count accordingly.
600 * Implies rwsem_del_waiter() on success.
602 static inline bool rwsem_try_write_lock(struct rw_semaphore
*sem
,
603 struct rwsem_waiter
*waiter
)
605 struct rwsem_waiter
*first
= rwsem_first_waiter(sem
);
608 lockdep_assert_held(&sem
->wait_lock
);
610 count
= atomic_long_read(&sem
->count
);
612 bool has_handoff
= !!(count
& RWSEM_FLAG_HANDOFF
);
616 * Honor handoff bit and yield only when the first
617 * waiter is the one that set it. Otherwisee, we
618 * still try to acquire the rwsem.
620 if (first
->handoff_set
&& (waiter
!= first
))
626 if (count
& RWSEM_LOCK_MASK
) {
628 * A waiter (first or not) can set the handoff bit
629 * if it is an RT task or wait in the wait queue
632 if (has_handoff
|| (!rt_or_dl_task(waiter
->task
) &&
633 !time_after(jiffies
, waiter
->timeout
)))
636 new |= RWSEM_FLAG_HANDOFF
;
638 new |= RWSEM_WRITER_LOCKED
;
639 new &= ~RWSEM_FLAG_HANDOFF
;
641 if (list_is_singular(&sem
->wait_list
))
642 new &= ~RWSEM_FLAG_WAITERS
;
644 } while (!atomic_long_try_cmpxchg_acquire(&sem
->count
, &count
, new));
647 * We have either acquired the lock with handoff bit cleared or set
648 * the handoff bit. Only the first waiter can have its handoff_set
649 * set here to enable optimistic spinning in slowpath loop.
651 if (new & RWSEM_FLAG_HANDOFF
) {
652 first
->handoff_set
= true;
653 lockevent_inc(rwsem_wlock_handoff
);
658 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
661 list_del(&waiter
->list
);
662 rwsem_set_owner(sem
);
667 * The rwsem_spin_on_owner() function returns the following 4 values
668 * depending on the lock owner state.
669 * OWNER_NULL : owner is currently NULL
670 * OWNER_WRITER: when owner changes and is a writer
671 * OWNER_READER: when owner changes and the new owner may be a reader.
672 * OWNER_NONSPINNABLE:
673 * when optimistic spinning has to stop because either the
674 * owner stops running, is unknown, or its timeslice has
679 OWNER_WRITER
= 1 << 1,
680 OWNER_READER
= 1 << 2,
681 OWNER_NONSPINNABLE
= 1 << 3,
684 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
686 * Try to acquire write lock before the writer has been put on wait queue.
688 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore
*sem
)
690 long count
= atomic_long_read(&sem
->count
);
692 while (!(count
& (RWSEM_LOCK_MASK
|RWSEM_FLAG_HANDOFF
))) {
693 if (atomic_long_try_cmpxchg_acquire(&sem
->count
, &count
,
694 count
| RWSEM_WRITER_LOCKED
)) {
695 rwsem_set_owner(sem
);
696 lockevent_inc(rwsem_opt_lock
);
703 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore
*sem
)
705 struct task_struct
*owner
;
709 if (need_resched()) {
710 lockevent_inc(rwsem_opt_fail
);
715 * Disable preemption is equal to the RCU read-side crital section,
716 * thus the task_strcut structure won't go away.
718 owner
= rwsem_owner_flags(sem
, &flags
);
720 * Don't check the read-owner as the entry may be stale.
722 if ((flags
& RWSEM_NONSPINNABLE
) ||
723 (owner
&& !(flags
& RWSEM_READER_OWNED
) && !owner_on_cpu(owner
)))
726 lockevent_cond_inc(rwsem_opt_fail
, !ret
);
730 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER)
732 static inline enum owner_state
733 rwsem_owner_state(struct task_struct
*owner
, unsigned long flags
)
735 if (flags
& RWSEM_NONSPINNABLE
)
736 return OWNER_NONSPINNABLE
;
738 if (flags
& RWSEM_READER_OWNED
)
741 return owner
? OWNER_WRITER
: OWNER_NULL
;
744 static noinline
enum owner_state
745 rwsem_spin_on_owner(struct rw_semaphore
*sem
)
747 struct task_struct
*new, *owner
;
748 unsigned long flags
, new_flags
;
749 enum owner_state state
;
751 lockdep_assert_preemption_disabled();
753 owner
= rwsem_owner_flags(sem
, &flags
);
754 state
= rwsem_owner_state(owner
, flags
);
755 if (state
!= OWNER_WRITER
)
760 * When a waiting writer set the handoff flag, it may spin
761 * on the owner as well. Once that writer acquires the lock,
762 * we can spin on it. So we don't need to quit even when the
763 * handoff bit is set.
765 new = rwsem_owner_flags(sem
, &new_flags
);
766 if ((new != owner
) || (new_flags
!= flags
)) {
767 state
= rwsem_owner_state(new, new_flags
);
772 * Ensure we emit the owner->on_cpu, dereference _after_
773 * checking sem->owner still matches owner, if that fails,
774 * owner might point to free()d memory, if it still matches,
775 * our spinning context already disabled preemption which is
776 * equal to RCU read-side crital section ensures the memory
781 if (need_resched() || !owner_on_cpu(owner
)) {
782 state
= OWNER_NONSPINNABLE
;
793 * Calculate reader-owned rwsem spinning threshold for writer
795 * The more readers own the rwsem, the longer it will take for them to
796 * wind down and free the rwsem. So the empirical formula used to
797 * determine the actual spinning time limit here is:
799 * Spinning threshold = (10 + nr_readers/2)us
801 * The limit is capped to a maximum of 25us (30 readers). This is just
802 * a heuristic and is subjected to change in the future.
804 static inline u64
rwsem_rspin_threshold(struct rw_semaphore
*sem
)
806 long count
= atomic_long_read(&sem
->count
);
807 int readers
= count
>> RWSEM_READER_SHIFT
;
812 delta
= (20 + readers
) * NSEC_PER_USEC
/ 2;
814 return sched_clock() + delta
;
817 static bool rwsem_optimistic_spin(struct rw_semaphore
*sem
)
820 int prev_owner_state
= OWNER_NULL
;
822 u64 rspin_threshold
= 0;
824 /* sem->wait_lock should not be held when doing optimistic spinning */
825 if (!osq_lock(&sem
->osq
))
829 * Optimistically spin on the owner field and attempt to acquire the
830 * lock whenever the owner changes. Spinning will be stopped when:
831 * 1) the owning writer isn't running; or
832 * 2) readers own the lock and spinning time has exceeded limit.
835 enum owner_state owner_state
;
837 owner_state
= rwsem_spin_on_owner(sem
);
838 if (!(owner_state
& OWNER_SPINNABLE
))
842 * Try to acquire the lock
844 taken
= rwsem_try_write_lock_unqueued(sem
);
850 * Time-based reader-owned rwsem optimistic spinning
852 if (owner_state
== OWNER_READER
) {
854 * Re-initialize rspin_threshold every time when
855 * the owner state changes from non-reader to reader.
856 * This allows a writer to steal the lock in between
857 * 2 reader phases and have the threshold reset at
858 * the beginning of the 2nd reader phase.
860 if (prev_owner_state
!= OWNER_READER
) {
861 if (rwsem_test_oflags(sem
, RWSEM_NONSPINNABLE
))
863 rspin_threshold
= rwsem_rspin_threshold(sem
);
868 * Check time threshold once every 16 iterations to
869 * avoid calling sched_clock() too frequently so
870 * as to reduce the average latency between the times
871 * when the lock becomes free and when the spinner
872 * is ready to do a trylock.
874 else if (!(++loop
& 0xf) && (sched_clock() > rspin_threshold
)) {
875 rwsem_set_nonspinnable(sem
);
876 lockevent_inc(rwsem_opt_nospin
);
882 * An RT task cannot do optimistic spinning if it cannot
883 * be sure the lock holder is running or live-lock may
884 * happen if the current task and the lock holder happen
885 * to run in the same CPU. However, aborting optimistic
886 * spinning while a NULL owner is detected may miss some
887 * opportunity where spinning can continue without causing
890 * There are 2 possible cases where an RT task may be able
891 * to continue spinning.
893 * 1) The lock owner is in the process of releasing the
894 * lock, sem->owner is cleared but the lock has not
896 * 2) The lock was free and owner cleared, but another
897 * task just comes in and acquire the lock before
898 * we try to get it. The new owner may be a spinnable
901 * To take advantage of two scenarios listed above, the RT
902 * task is made to retry one more time to see if it can
903 * acquire the lock or continue spinning on the new owning
904 * writer. Of course, if the time lag is long enough or the
905 * new owner is not a writer or spinnable, the RT task will
908 * If the owner is a writer, the need_resched() check is
909 * done inside rwsem_spin_on_owner(). If the owner is not
910 * a writer, need_resched() check needs to be done here.
912 if (owner_state
!= OWNER_WRITER
) {
915 if (rt_or_dl_task(current
) &&
916 (prev_owner_state
!= OWNER_WRITER
))
919 prev_owner_state
= owner_state
;
922 * The cpu_relax() call is a compiler barrier which forces
923 * everything in this loop to be re-loaded. We don't need
924 * memory barriers as we'll eventually observe the right
925 * values at the cost of a few extra spins.
929 osq_unlock(&sem
->osq
);
931 lockevent_cond_inc(rwsem_opt_fail
, !taken
);
936 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
937 * only be called when the reader count reaches 0.
939 static inline void clear_nonspinnable(struct rw_semaphore
*sem
)
941 if (unlikely(rwsem_test_oflags(sem
, RWSEM_NONSPINNABLE
)))
942 atomic_long_andnot(RWSEM_NONSPINNABLE
, &sem
->owner
);
946 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore
*sem
)
951 static inline bool rwsem_optimistic_spin(struct rw_semaphore
*sem
)
956 static inline void clear_nonspinnable(struct rw_semaphore
*sem
) { }
958 static inline enum owner_state
959 rwsem_spin_on_owner(struct rw_semaphore
*sem
)
961 return OWNER_NONSPINNABLE
;
966 * Prepare to wake up waiter(s) in the wait queue by putting them into the
967 * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely
968 * reader-owned, wake up read lock waiters in queue front or wake up any
969 * front waiter otherwise.
971 * This is being called from both reader and writer slow paths.
973 static inline void rwsem_cond_wake_waiter(struct rw_semaphore
*sem
, long count
,
974 struct wake_q_head
*wake_q
)
976 enum rwsem_wake_type wake_type
;
978 if (count
& RWSEM_WRITER_MASK
)
981 if (count
& RWSEM_READER_MASK
) {
982 wake_type
= RWSEM_WAKE_READERS
;
984 wake_type
= RWSEM_WAKE_ANY
;
985 clear_nonspinnable(sem
);
987 rwsem_mark_wake(sem
, wake_type
, wake_q
);
991 * Wait for the read lock to be granted
993 static struct rw_semaphore __sched
*
994 rwsem_down_read_slowpath(struct rw_semaphore
*sem
, long count
, unsigned int state
)
996 long adjustment
= -RWSEM_READER_BIAS
;
997 long rcnt
= (count
>> RWSEM_READER_SHIFT
);
998 struct rwsem_waiter waiter
;
999 DEFINE_WAKE_Q(wake_q
);
1002 * To prevent a constant stream of readers from starving a sleeping
1003 * writer, don't attempt optimistic lock stealing if the lock is
1004 * very likely owned by readers.
1006 if ((atomic_long_read(&sem
->owner
) & RWSEM_READER_OWNED
) &&
1007 (rcnt
> 1) && !(count
& RWSEM_WRITER_LOCKED
))
1011 * Reader optimistic lock stealing.
1013 if (!(count
& (RWSEM_WRITER_LOCKED
| RWSEM_FLAG_HANDOFF
))) {
1014 rwsem_set_reader_owned(sem
);
1015 lockevent_inc(rwsem_rlock_steal
);
1018 * Wake up other readers in the wait queue if it is
1021 if ((rcnt
== 1) && (count
& RWSEM_FLAG_WAITERS
)) {
1022 raw_spin_lock_irq(&sem
->wait_lock
);
1023 if (!list_empty(&sem
->wait_list
))
1024 rwsem_mark_wake(sem
, RWSEM_WAKE_READ_OWNED
,
1026 raw_spin_unlock_irq(&sem
->wait_lock
);
1033 waiter
.task
= current
;
1034 waiter
.type
= RWSEM_WAITING_FOR_READ
;
1035 waiter
.timeout
= jiffies
+ RWSEM_WAIT_TIMEOUT
;
1036 waiter
.handoff_set
= false;
1038 raw_spin_lock_irq(&sem
->wait_lock
);
1039 if (list_empty(&sem
->wait_list
)) {
1041 * In case the wait queue is empty and the lock isn't owned
1042 * by a writer, this reader can exit the slowpath and return
1043 * immediately as its RWSEM_READER_BIAS has already been set
1046 if (!(atomic_long_read(&sem
->count
) & RWSEM_WRITER_MASK
)) {
1047 /* Provide lock ACQUIRE */
1048 smp_acquire__after_ctrl_dep();
1049 raw_spin_unlock_irq(&sem
->wait_lock
);
1050 rwsem_set_reader_owned(sem
);
1051 lockevent_inc(rwsem_rlock_fast
);
1054 adjustment
+= RWSEM_FLAG_WAITERS
;
1056 rwsem_add_waiter(sem
, &waiter
);
1058 /* we're now waiting on the lock, but no longer actively locking */
1059 count
= atomic_long_add_return(adjustment
, &sem
->count
);
1061 rwsem_cond_wake_waiter(sem
, count
, &wake_q
);
1062 raw_spin_unlock_irq(&sem
->wait_lock
);
1064 if (!wake_q_empty(&wake_q
))
1067 trace_contention_begin(sem
, LCB_F_READ
);
1069 /* wait to be given the lock */
1071 set_current_state(state
);
1072 if (!smp_load_acquire(&waiter
.task
)) {
1073 /* Matches rwsem_mark_wake()'s smp_store_release(). */
1076 if (signal_pending_state(state
, current
)) {
1077 raw_spin_lock_irq(&sem
->wait_lock
);
1080 raw_spin_unlock_irq(&sem
->wait_lock
);
1081 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1084 schedule_preempt_disabled();
1085 lockevent_inc(rwsem_sleep_reader
);
1088 __set_current_state(TASK_RUNNING
);
1089 lockevent_inc(rwsem_rlock
);
1090 trace_contention_end(sem
, 0);
1094 rwsem_del_wake_waiter(sem
, &waiter
, &wake_q
);
1095 __set_current_state(TASK_RUNNING
);
1096 lockevent_inc(rwsem_rlock_fail
);
1097 trace_contention_end(sem
, -EINTR
);
1098 return ERR_PTR(-EINTR
);
1102 * Wait until we successfully acquire the write lock
1104 static struct rw_semaphore __sched
*
1105 rwsem_down_write_slowpath(struct rw_semaphore
*sem
, int state
)
1107 struct rwsem_waiter waiter
;
1108 DEFINE_WAKE_Q(wake_q
);
1110 /* do optimistic spinning and steal lock if possible */
1111 if (rwsem_can_spin_on_owner(sem
) && rwsem_optimistic_spin(sem
)) {
1112 /* rwsem_optimistic_spin() implies ACQUIRE on success */
1117 * Optimistic spinning failed, proceed to the slowpath
1118 * and block until we can acquire the sem.
1120 waiter
.task
= current
;
1121 waiter
.type
= RWSEM_WAITING_FOR_WRITE
;
1122 waiter
.timeout
= jiffies
+ RWSEM_WAIT_TIMEOUT
;
1123 waiter
.handoff_set
= false;
1125 raw_spin_lock_irq(&sem
->wait_lock
);
1126 rwsem_add_waiter(sem
, &waiter
);
1128 /* we're now waiting on the lock */
1129 if (rwsem_first_waiter(sem
) != &waiter
) {
1130 rwsem_cond_wake_waiter(sem
, atomic_long_read(&sem
->count
),
1132 if (!wake_q_empty(&wake_q
)) {
1134 * We want to minimize wait_lock hold time especially
1135 * when a large number of readers are to be woken up.
1137 raw_spin_unlock_irq(&sem
->wait_lock
);
1139 raw_spin_lock_irq(&sem
->wait_lock
);
1142 atomic_long_or(RWSEM_FLAG_WAITERS
, &sem
->count
);
1145 /* wait until we successfully acquire the lock */
1146 set_current_state(state
);
1147 trace_contention_begin(sem
, LCB_F_WRITE
);
1150 if (rwsem_try_write_lock(sem
, &waiter
)) {
1151 /* rwsem_try_write_lock() implies ACQUIRE on success */
1155 raw_spin_unlock_irq(&sem
->wait_lock
);
1157 if (signal_pending_state(state
, current
))
1161 * After setting the handoff bit and failing to acquire
1162 * the lock, attempt to spin on owner to accelerate lock
1163 * transfer. If the previous owner is a on-cpu writer and it
1164 * has just released the lock, OWNER_NULL will be returned.
1165 * In this case, we attempt to acquire the lock again
1168 if (waiter
.handoff_set
) {
1169 enum owner_state owner_state
;
1171 owner_state
= rwsem_spin_on_owner(sem
);
1172 if (owner_state
== OWNER_NULL
)
1176 schedule_preempt_disabled();
1177 lockevent_inc(rwsem_sleep_writer
);
1178 set_current_state(state
);
1180 raw_spin_lock_irq(&sem
->wait_lock
);
1182 __set_current_state(TASK_RUNNING
);
1183 raw_spin_unlock_irq(&sem
->wait_lock
);
1184 lockevent_inc(rwsem_wlock
);
1185 trace_contention_end(sem
, 0);
1189 __set_current_state(TASK_RUNNING
);
1190 raw_spin_lock_irq(&sem
->wait_lock
);
1191 rwsem_del_wake_waiter(sem
, &waiter
, &wake_q
);
1192 lockevent_inc(rwsem_wlock_fail
);
1193 trace_contention_end(sem
, -EINTR
);
1194 return ERR_PTR(-EINTR
);
1198 * handle waking up a waiter on the semaphore
1199 * - up_read/up_write has decremented the active part of count if we come here
1201 static struct rw_semaphore
*rwsem_wake(struct rw_semaphore
*sem
)
1203 unsigned long flags
;
1204 DEFINE_WAKE_Q(wake_q
);
1206 raw_spin_lock_irqsave(&sem
->wait_lock
, flags
);
1208 if (!list_empty(&sem
->wait_list
))
1209 rwsem_mark_wake(sem
, RWSEM_WAKE_ANY
, &wake_q
);
1211 raw_spin_unlock_irqrestore(&sem
->wait_lock
, flags
);
1218 * downgrade a write lock into a read lock
1219 * - caller incremented waiting part of count and discovered it still negative
1220 * - just wake up any readers at the front of the queue
1222 static struct rw_semaphore
*rwsem_downgrade_wake(struct rw_semaphore
*sem
)
1224 unsigned long flags
;
1225 DEFINE_WAKE_Q(wake_q
);
1227 raw_spin_lock_irqsave(&sem
->wait_lock
, flags
);
1229 if (!list_empty(&sem
->wait_list
))
1230 rwsem_mark_wake(sem
, RWSEM_WAKE_READ_OWNED
, &wake_q
);
1232 raw_spin_unlock_irqrestore(&sem
->wait_lock
, flags
);
1241 static __always_inline
int __down_read_common(struct rw_semaphore
*sem
, int state
)
1247 if (!rwsem_read_trylock(sem
, &count
)) {
1248 if (IS_ERR(rwsem_down_read_slowpath(sem
, count
, state
))) {
1252 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem
), sem
);
1259 static __always_inline
void __down_read(struct rw_semaphore
*sem
)
1261 __down_read_common(sem
, TASK_UNINTERRUPTIBLE
);
1264 static __always_inline
int __down_read_interruptible(struct rw_semaphore
*sem
)
1266 return __down_read_common(sem
, TASK_INTERRUPTIBLE
);
1269 static __always_inline
int __down_read_killable(struct rw_semaphore
*sem
)
1271 return __down_read_common(sem
, TASK_KILLABLE
);
1274 static inline int __down_read_trylock(struct rw_semaphore
*sem
)
1279 DEBUG_RWSEMS_WARN_ON(sem
->magic
!= sem
, sem
);
1282 tmp
= atomic_long_read(&sem
->count
);
1283 while (!(tmp
& RWSEM_READ_FAILED_MASK
)) {
1284 if (atomic_long_try_cmpxchg_acquire(&sem
->count
, &tmp
,
1285 tmp
+ RWSEM_READER_BIAS
)) {
1286 rwsem_set_reader_owned(sem
);
1298 static __always_inline
int __down_write_common(struct rw_semaphore
*sem
, int state
)
1303 if (unlikely(!rwsem_write_trylock(sem
))) {
1304 if (IS_ERR(rwsem_down_write_slowpath(sem
, state
)))
1311 static __always_inline
void __down_write(struct rw_semaphore
*sem
)
1313 __down_write_common(sem
, TASK_UNINTERRUPTIBLE
);
1316 static __always_inline
int __down_write_killable(struct rw_semaphore
*sem
)
1318 return __down_write_common(sem
, TASK_KILLABLE
);
1321 static inline int __down_write_trylock(struct rw_semaphore
*sem
)
1326 DEBUG_RWSEMS_WARN_ON(sem
->magic
!= sem
, sem
);
1327 ret
= rwsem_write_trylock(sem
);
1334 * unlock after reading
1336 static inline void __up_read(struct rw_semaphore
*sem
)
1340 DEBUG_RWSEMS_WARN_ON(sem
->magic
!= sem
, sem
);
1341 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem
), sem
);
1344 rwsem_clear_reader_owned(sem
);
1345 tmp
= atomic_long_add_return_release(-RWSEM_READER_BIAS
, &sem
->count
);
1346 DEBUG_RWSEMS_WARN_ON(tmp
< 0, sem
);
1347 if (unlikely((tmp
& (RWSEM_LOCK_MASK
|RWSEM_FLAG_WAITERS
)) ==
1348 RWSEM_FLAG_WAITERS
)) {
1349 clear_nonspinnable(sem
);
1356 * unlock after writing
1358 static inline void __up_write(struct rw_semaphore
*sem
)
1362 DEBUG_RWSEMS_WARN_ON(sem
->magic
!= sem
, sem
);
1364 * sem->owner may differ from current if the ownership is transferred
1365 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1367 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem
) != current
) &&
1368 !rwsem_test_oflags(sem
, RWSEM_NONSPINNABLE
), sem
);
1371 rwsem_clear_owner(sem
);
1372 tmp
= atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED
, &sem
->count
);
1373 if (unlikely(tmp
& RWSEM_FLAG_WAITERS
))
1379 * downgrade write lock to read lock
1381 static inline void __downgrade_write(struct rw_semaphore
*sem
)
1386 * When downgrading from exclusive to shared ownership,
1387 * anything inside the write-locked region cannot leak
1388 * into the read side. In contrast, anything in the
1389 * read-locked region is ok to be re-ordered into the
1390 * write side. As such, rely on RELEASE semantics.
1392 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem
) != current
, sem
);
1394 tmp
= atomic_long_fetch_add_release(
1395 -RWSEM_WRITER_LOCKED
+RWSEM_READER_BIAS
, &sem
->count
);
1396 rwsem_set_reader_owned(sem
);
1397 if (tmp
& RWSEM_FLAG_WAITERS
)
1398 rwsem_downgrade_wake(sem
);
1402 #else /* !CONFIG_PREEMPT_RT */
1404 #define RT_MUTEX_BUILD_MUTEX
1405 #include "rtmutex.c"
1407 #define rwbase_set_and_save_current_state(state) \
1408 set_current_state(state)
1410 #define rwbase_restore_current_state() \
1411 __set_current_state(TASK_RUNNING)
1413 #define rwbase_rtmutex_lock_state(rtm, state) \
1414 __rt_mutex_lock(rtm, state)
1416 #define rwbase_rtmutex_slowlock_locked(rtm, state, wq) \
1417 __rt_mutex_slowlock_locked(rtm, NULL, state, wq)
1419 #define rwbase_rtmutex_unlock(rtm) \
1420 __rt_mutex_unlock(rtm)
1422 #define rwbase_rtmutex_trylock(rtm) \
1423 __rt_mutex_trylock(rtm)
1425 #define rwbase_signal_pending_state(state, current) \
1426 signal_pending_state(state, current)
1428 #define rwbase_pre_schedule() \
1429 rt_mutex_pre_schedule()
1431 #define rwbase_schedule() \
1434 #define rwbase_post_schedule() \
1435 rt_mutex_post_schedule()
1437 #include "rwbase_rt.c"
1439 void __init_rwsem(struct rw_semaphore
*sem
, const char *name
,
1440 struct lock_class_key
*key
)
1442 init_rwbase_rt(&(sem
)->rwbase
);
1444 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1445 debug_check_no_locks_freed((void *)sem
, sizeof(*sem
));
1446 lockdep_init_map_wait(&sem
->dep_map
, name
, key
, 0, LD_WAIT_SLEEP
);
1449 EXPORT_SYMBOL(__init_rwsem
);
1451 static inline void __down_read(struct rw_semaphore
*sem
)
1453 rwbase_read_lock(&sem
->rwbase
, TASK_UNINTERRUPTIBLE
);
1456 static inline int __down_read_interruptible(struct rw_semaphore
*sem
)
1458 return rwbase_read_lock(&sem
->rwbase
, TASK_INTERRUPTIBLE
);
1461 static inline int __down_read_killable(struct rw_semaphore
*sem
)
1463 return rwbase_read_lock(&sem
->rwbase
, TASK_KILLABLE
);
1466 static inline int __down_read_trylock(struct rw_semaphore
*sem
)
1468 return rwbase_read_trylock(&sem
->rwbase
);
1471 static inline void __up_read(struct rw_semaphore
*sem
)
1473 rwbase_read_unlock(&sem
->rwbase
, TASK_NORMAL
);
1476 static inline void __sched
__down_write(struct rw_semaphore
*sem
)
1478 rwbase_write_lock(&sem
->rwbase
, TASK_UNINTERRUPTIBLE
);
1481 static inline int __sched
__down_write_killable(struct rw_semaphore
*sem
)
1483 return rwbase_write_lock(&sem
->rwbase
, TASK_KILLABLE
);
1486 static inline int __down_write_trylock(struct rw_semaphore
*sem
)
1488 return rwbase_write_trylock(&sem
->rwbase
);
1491 static inline void __up_write(struct rw_semaphore
*sem
)
1493 rwbase_write_unlock(&sem
->rwbase
);
1496 static inline void __downgrade_write(struct rw_semaphore
*sem
)
1498 rwbase_write_downgrade(&sem
->rwbase
);
1501 /* Debug stubs for the common API */
1502 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1504 static inline void __rwsem_set_reader_owned(struct rw_semaphore
*sem
,
1505 struct task_struct
*owner
)
1509 static inline bool is_rwsem_reader_owned(struct rw_semaphore
*sem
)
1511 int count
= atomic_read(&sem
->rwbase
.readers
);
1513 return count
< 0 && count
!= READER_BIAS
;
1516 #endif /* CONFIG_PREEMPT_RT */
1521 void __sched
down_read(struct rw_semaphore
*sem
)
1524 rwsem_acquire_read(&sem
->dep_map
, 0, 0, _RET_IP_
);
1526 LOCK_CONTENDED(sem
, __down_read_trylock
, __down_read
);
1528 EXPORT_SYMBOL(down_read
);
1530 int __sched
down_read_interruptible(struct rw_semaphore
*sem
)
1533 rwsem_acquire_read(&sem
->dep_map
, 0, 0, _RET_IP_
);
1535 if (LOCK_CONTENDED_RETURN(sem
, __down_read_trylock
, __down_read_interruptible
)) {
1536 rwsem_release(&sem
->dep_map
, _RET_IP_
);
1542 EXPORT_SYMBOL(down_read_interruptible
);
1544 int __sched
down_read_killable(struct rw_semaphore
*sem
)
1547 rwsem_acquire_read(&sem
->dep_map
, 0, 0, _RET_IP_
);
1549 if (LOCK_CONTENDED_RETURN(sem
, __down_read_trylock
, __down_read_killable
)) {
1550 rwsem_release(&sem
->dep_map
, _RET_IP_
);
1556 EXPORT_SYMBOL(down_read_killable
);
1559 * trylock for reading -- returns 1 if successful, 0 if contention
1561 int down_read_trylock(struct rw_semaphore
*sem
)
1563 int ret
= __down_read_trylock(sem
);
1566 rwsem_acquire_read(&sem
->dep_map
, 0, 1, _RET_IP_
);
1569 EXPORT_SYMBOL(down_read_trylock
);
1574 void __sched
down_write(struct rw_semaphore
*sem
)
1577 rwsem_acquire(&sem
->dep_map
, 0, 0, _RET_IP_
);
1578 LOCK_CONTENDED(sem
, __down_write_trylock
, __down_write
);
1580 EXPORT_SYMBOL(down_write
);
1585 int __sched
down_write_killable(struct rw_semaphore
*sem
)
1588 rwsem_acquire(&sem
->dep_map
, 0, 0, _RET_IP_
);
1590 if (LOCK_CONTENDED_RETURN(sem
, __down_write_trylock
,
1591 __down_write_killable
)) {
1592 rwsem_release(&sem
->dep_map
, _RET_IP_
);
1598 EXPORT_SYMBOL(down_write_killable
);
1601 * trylock for writing -- returns 1 if successful, 0 if contention
1603 int down_write_trylock(struct rw_semaphore
*sem
)
1605 int ret
= __down_write_trylock(sem
);
1608 rwsem_acquire(&sem
->dep_map
, 0, 1, _RET_IP_
);
1612 EXPORT_SYMBOL(down_write_trylock
);
1615 * release a read lock
1617 void up_read(struct rw_semaphore
*sem
)
1619 rwsem_release(&sem
->dep_map
, _RET_IP_
);
1622 EXPORT_SYMBOL(up_read
);
1625 * release a write lock
1627 void up_write(struct rw_semaphore
*sem
)
1629 rwsem_release(&sem
->dep_map
, _RET_IP_
);
1632 EXPORT_SYMBOL(up_write
);
1635 * downgrade write lock to read lock
1637 void downgrade_write(struct rw_semaphore
*sem
)
1639 lock_downgrade(&sem
->dep_map
, _RET_IP_
);
1640 __downgrade_write(sem
);
1642 EXPORT_SYMBOL(downgrade_write
);
1644 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1646 void down_read_nested(struct rw_semaphore
*sem
, int subclass
)
1649 rwsem_acquire_read(&sem
->dep_map
, subclass
, 0, _RET_IP_
);
1650 LOCK_CONTENDED(sem
, __down_read_trylock
, __down_read
);
1652 EXPORT_SYMBOL(down_read_nested
);
1654 int down_read_killable_nested(struct rw_semaphore
*sem
, int subclass
)
1657 rwsem_acquire_read(&sem
->dep_map
, subclass
, 0, _RET_IP_
);
1659 if (LOCK_CONTENDED_RETURN(sem
, __down_read_trylock
, __down_read_killable
)) {
1660 rwsem_release(&sem
->dep_map
, _RET_IP_
);
1666 EXPORT_SYMBOL(down_read_killable_nested
);
1668 void _down_write_nest_lock(struct rw_semaphore
*sem
, struct lockdep_map
*nest
)
1671 rwsem_acquire_nest(&sem
->dep_map
, 0, 0, nest
, _RET_IP_
);
1672 LOCK_CONTENDED(sem
, __down_write_trylock
, __down_write
);
1674 EXPORT_SYMBOL(_down_write_nest_lock
);
1676 void down_read_non_owner(struct rw_semaphore
*sem
)
1681 * The owner value for a reader-owned lock is mostly for debugging
1682 * purpose only and is not critical to the correct functioning of
1683 * rwsem. So it is perfectly fine to set it in a preempt-enabled
1686 __rwsem_set_reader_owned(sem
, NULL
);
1688 EXPORT_SYMBOL(down_read_non_owner
);
1690 void down_write_nested(struct rw_semaphore
*sem
, int subclass
)
1693 rwsem_acquire(&sem
->dep_map
, subclass
, 0, _RET_IP_
);
1694 LOCK_CONTENDED(sem
, __down_write_trylock
, __down_write
);
1696 EXPORT_SYMBOL(down_write_nested
);
1698 int __sched
down_write_killable_nested(struct rw_semaphore
*sem
, int subclass
)
1701 rwsem_acquire(&sem
->dep_map
, subclass
, 0, _RET_IP_
);
1703 if (LOCK_CONTENDED_RETURN(sem
, __down_write_trylock
,
1704 __down_write_killable
)) {
1705 rwsem_release(&sem
->dep_map
, _RET_IP_
);
1711 EXPORT_SYMBOL(down_write_killable_nested
);
1713 void up_read_non_owner(struct rw_semaphore
*sem
)
1715 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem
), sem
);
1718 EXPORT_SYMBOL(up_read_non_owner
);