drm/rockchip: vop2: Support 32x8 superblock afbc
[drm/drm-misc.git] / kernel / locking / test-ww_mutex.c
blob5d58b2c0ef98bca244345f708a77690b5c0e17e9
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Module-based API test facility for ww_mutexes
4 */
6 #include <linux/kernel.h>
8 #include <linux/completion.h>
9 #include <linux/delay.h>
10 #include <linux/kthread.h>
11 #include <linux/module.h>
12 #include <linux/prandom.h>
13 #include <linux/slab.h>
14 #include <linux/ww_mutex.h>
16 static DEFINE_WD_CLASS(ww_class);
17 struct workqueue_struct *wq;
19 #ifdef CONFIG_DEBUG_WW_MUTEX_SLOWPATH
20 #define ww_acquire_init_noinject(a, b) do { \
21 ww_acquire_init((a), (b)); \
22 (a)->deadlock_inject_countdown = ~0U; \
23 } while (0)
24 #else
25 #define ww_acquire_init_noinject(a, b) ww_acquire_init((a), (b))
26 #endif
28 struct test_mutex {
29 struct work_struct work;
30 struct ww_mutex mutex;
31 struct completion ready, go, done;
32 unsigned int flags;
35 #define TEST_MTX_SPIN BIT(0)
36 #define TEST_MTX_TRY BIT(1)
37 #define TEST_MTX_CTX BIT(2)
38 #define __TEST_MTX_LAST BIT(3)
40 static void test_mutex_work(struct work_struct *work)
42 struct test_mutex *mtx = container_of(work, typeof(*mtx), work);
44 complete(&mtx->ready);
45 wait_for_completion(&mtx->go);
47 if (mtx->flags & TEST_MTX_TRY) {
48 while (!ww_mutex_trylock(&mtx->mutex, NULL))
49 cond_resched();
50 } else {
51 ww_mutex_lock(&mtx->mutex, NULL);
53 complete(&mtx->done);
54 ww_mutex_unlock(&mtx->mutex);
57 static int __test_mutex(unsigned int flags)
59 #define TIMEOUT (HZ / 16)
60 struct test_mutex mtx;
61 struct ww_acquire_ctx ctx;
62 int ret;
64 ww_mutex_init(&mtx.mutex, &ww_class);
65 if (flags & TEST_MTX_CTX)
66 ww_acquire_init(&ctx, &ww_class);
68 INIT_WORK_ONSTACK(&mtx.work, test_mutex_work);
69 init_completion(&mtx.ready);
70 init_completion(&mtx.go);
71 init_completion(&mtx.done);
72 mtx.flags = flags;
74 schedule_work(&mtx.work);
76 wait_for_completion(&mtx.ready);
77 ww_mutex_lock(&mtx.mutex, (flags & TEST_MTX_CTX) ? &ctx : NULL);
78 complete(&mtx.go);
79 if (flags & TEST_MTX_SPIN) {
80 unsigned long timeout = jiffies + TIMEOUT;
82 ret = 0;
83 do {
84 if (completion_done(&mtx.done)) {
85 ret = -EINVAL;
86 break;
88 cond_resched();
89 } while (time_before(jiffies, timeout));
90 } else {
91 ret = wait_for_completion_timeout(&mtx.done, TIMEOUT);
93 ww_mutex_unlock(&mtx.mutex);
94 if (flags & TEST_MTX_CTX)
95 ww_acquire_fini(&ctx);
97 if (ret) {
98 pr_err("%s(flags=%x): mutual exclusion failure\n",
99 __func__, flags);
100 ret = -EINVAL;
103 flush_work(&mtx.work);
104 destroy_work_on_stack(&mtx.work);
105 return ret;
106 #undef TIMEOUT
109 static int test_mutex(void)
111 int ret;
112 int i;
114 for (i = 0; i < __TEST_MTX_LAST; i++) {
115 ret = __test_mutex(i);
116 if (ret)
117 return ret;
120 return 0;
123 static int test_aa(bool trylock)
125 struct ww_mutex mutex;
126 struct ww_acquire_ctx ctx;
127 int ret;
128 const char *from = trylock ? "trylock" : "lock";
130 ww_mutex_init(&mutex, &ww_class);
131 ww_acquire_init(&ctx, &ww_class);
133 if (!trylock) {
134 ret = ww_mutex_lock(&mutex, &ctx);
135 if (ret) {
136 pr_err("%s: initial lock failed!\n", __func__);
137 goto out;
139 } else {
140 ret = !ww_mutex_trylock(&mutex, &ctx);
141 if (ret) {
142 pr_err("%s: initial trylock failed!\n", __func__);
143 goto out;
147 if (ww_mutex_trylock(&mutex, NULL)) {
148 pr_err("%s: trylocked itself without context from %s!\n", __func__, from);
149 ww_mutex_unlock(&mutex);
150 ret = -EINVAL;
151 goto out;
154 if (ww_mutex_trylock(&mutex, &ctx)) {
155 pr_err("%s: trylocked itself with context from %s!\n", __func__, from);
156 ww_mutex_unlock(&mutex);
157 ret = -EINVAL;
158 goto out;
161 ret = ww_mutex_lock(&mutex, &ctx);
162 if (ret != -EALREADY) {
163 pr_err("%s: missed deadlock for recursing, ret=%d from %s\n",
164 __func__, ret, from);
165 if (!ret)
166 ww_mutex_unlock(&mutex);
167 ret = -EINVAL;
168 goto out;
171 ww_mutex_unlock(&mutex);
172 ret = 0;
173 out:
174 ww_acquire_fini(&ctx);
175 return ret;
178 struct test_abba {
179 struct work_struct work;
180 struct ww_mutex a_mutex;
181 struct ww_mutex b_mutex;
182 struct completion a_ready;
183 struct completion b_ready;
184 bool resolve, trylock;
185 int result;
188 static void test_abba_work(struct work_struct *work)
190 struct test_abba *abba = container_of(work, typeof(*abba), work);
191 struct ww_acquire_ctx ctx;
192 int err;
194 ww_acquire_init_noinject(&ctx, &ww_class);
195 if (!abba->trylock)
196 ww_mutex_lock(&abba->b_mutex, &ctx);
197 else
198 WARN_ON(!ww_mutex_trylock(&abba->b_mutex, &ctx));
200 WARN_ON(READ_ONCE(abba->b_mutex.ctx) != &ctx);
202 complete(&abba->b_ready);
203 wait_for_completion(&abba->a_ready);
205 err = ww_mutex_lock(&abba->a_mutex, &ctx);
206 if (abba->resolve && err == -EDEADLK) {
207 ww_mutex_unlock(&abba->b_mutex);
208 ww_mutex_lock_slow(&abba->a_mutex, &ctx);
209 err = ww_mutex_lock(&abba->b_mutex, &ctx);
212 if (!err)
213 ww_mutex_unlock(&abba->a_mutex);
214 ww_mutex_unlock(&abba->b_mutex);
215 ww_acquire_fini(&ctx);
217 abba->result = err;
220 static int test_abba(bool trylock, bool resolve)
222 struct test_abba abba;
223 struct ww_acquire_ctx ctx;
224 int err, ret;
226 ww_mutex_init(&abba.a_mutex, &ww_class);
227 ww_mutex_init(&abba.b_mutex, &ww_class);
228 INIT_WORK_ONSTACK(&abba.work, test_abba_work);
229 init_completion(&abba.a_ready);
230 init_completion(&abba.b_ready);
231 abba.trylock = trylock;
232 abba.resolve = resolve;
234 schedule_work(&abba.work);
236 ww_acquire_init_noinject(&ctx, &ww_class);
237 if (!trylock)
238 ww_mutex_lock(&abba.a_mutex, &ctx);
239 else
240 WARN_ON(!ww_mutex_trylock(&abba.a_mutex, &ctx));
242 WARN_ON(READ_ONCE(abba.a_mutex.ctx) != &ctx);
244 complete(&abba.a_ready);
245 wait_for_completion(&abba.b_ready);
247 err = ww_mutex_lock(&abba.b_mutex, &ctx);
248 if (resolve && err == -EDEADLK) {
249 ww_mutex_unlock(&abba.a_mutex);
250 ww_mutex_lock_slow(&abba.b_mutex, &ctx);
251 err = ww_mutex_lock(&abba.a_mutex, &ctx);
254 if (!err)
255 ww_mutex_unlock(&abba.b_mutex);
256 ww_mutex_unlock(&abba.a_mutex);
257 ww_acquire_fini(&ctx);
259 flush_work(&abba.work);
260 destroy_work_on_stack(&abba.work);
262 ret = 0;
263 if (resolve) {
264 if (err || abba.result) {
265 pr_err("%s: failed to resolve ABBA deadlock, A err=%d, B err=%d\n",
266 __func__, err, abba.result);
267 ret = -EINVAL;
269 } else {
270 if (err != -EDEADLK && abba.result != -EDEADLK) {
271 pr_err("%s: missed ABBA deadlock, A err=%d, B err=%d\n",
272 __func__, err, abba.result);
273 ret = -EINVAL;
276 return ret;
279 struct test_cycle {
280 struct work_struct work;
281 struct ww_mutex a_mutex;
282 struct ww_mutex *b_mutex;
283 struct completion *a_signal;
284 struct completion b_signal;
285 int result;
288 static void test_cycle_work(struct work_struct *work)
290 struct test_cycle *cycle = container_of(work, typeof(*cycle), work);
291 struct ww_acquire_ctx ctx;
292 int err, erra = 0;
294 ww_acquire_init_noinject(&ctx, &ww_class);
295 ww_mutex_lock(&cycle->a_mutex, &ctx);
297 complete(cycle->a_signal);
298 wait_for_completion(&cycle->b_signal);
300 err = ww_mutex_lock(cycle->b_mutex, &ctx);
301 if (err == -EDEADLK) {
302 err = 0;
303 ww_mutex_unlock(&cycle->a_mutex);
304 ww_mutex_lock_slow(cycle->b_mutex, &ctx);
305 erra = ww_mutex_lock(&cycle->a_mutex, &ctx);
308 if (!err)
309 ww_mutex_unlock(cycle->b_mutex);
310 if (!erra)
311 ww_mutex_unlock(&cycle->a_mutex);
312 ww_acquire_fini(&ctx);
314 cycle->result = err ?: erra;
317 static int __test_cycle(unsigned int nthreads)
319 struct test_cycle *cycles;
320 unsigned int n, last = nthreads - 1;
321 int ret;
323 cycles = kmalloc_array(nthreads, sizeof(*cycles), GFP_KERNEL);
324 if (!cycles)
325 return -ENOMEM;
327 for (n = 0; n < nthreads; n++) {
328 struct test_cycle *cycle = &cycles[n];
330 ww_mutex_init(&cycle->a_mutex, &ww_class);
331 if (n == last)
332 cycle->b_mutex = &cycles[0].a_mutex;
333 else
334 cycle->b_mutex = &cycles[n + 1].a_mutex;
336 if (n == 0)
337 cycle->a_signal = &cycles[last].b_signal;
338 else
339 cycle->a_signal = &cycles[n - 1].b_signal;
340 init_completion(&cycle->b_signal);
342 INIT_WORK(&cycle->work, test_cycle_work);
343 cycle->result = 0;
346 for (n = 0; n < nthreads; n++)
347 queue_work(wq, &cycles[n].work);
349 flush_workqueue(wq);
351 ret = 0;
352 for (n = 0; n < nthreads; n++) {
353 struct test_cycle *cycle = &cycles[n];
355 if (!cycle->result)
356 continue;
358 pr_err("cyclic deadlock not resolved, ret[%d/%d] = %d\n",
359 n, nthreads, cycle->result);
360 ret = -EINVAL;
361 break;
364 for (n = 0; n < nthreads; n++)
365 ww_mutex_destroy(&cycles[n].a_mutex);
366 kfree(cycles);
367 return ret;
370 static int test_cycle(unsigned int ncpus)
372 unsigned int n;
373 int ret;
375 for (n = 2; n <= ncpus + 1; n++) {
376 ret = __test_cycle(n);
377 if (ret)
378 return ret;
381 return 0;
384 struct stress {
385 struct work_struct work;
386 struct ww_mutex *locks;
387 unsigned long timeout;
388 int nlocks;
391 struct rnd_state rng;
392 DEFINE_SPINLOCK(rng_lock);
394 static inline u32 prandom_u32_below(u32 ceil)
396 u32 ret;
398 spin_lock(&rng_lock);
399 ret = prandom_u32_state(&rng) % ceil;
400 spin_unlock(&rng_lock);
401 return ret;
404 static int *get_random_order(int count)
406 int *order;
407 int n, r, tmp;
409 order = kmalloc_array(count, sizeof(*order), GFP_KERNEL);
410 if (!order)
411 return order;
413 for (n = 0; n < count; n++)
414 order[n] = n;
416 for (n = count - 1; n > 1; n--) {
417 r = prandom_u32_below(n + 1);
418 if (r != n) {
419 tmp = order[n];
420 order[n] = order[r];
421 order[r] = tmp;
425 return order;
428 static void dummy_load(struct stress *stress)
430 usleep_range(1000, 2000);
433 static void stress_inorder_work(struct work_struct *work)
435 struct stress *stress = container_of(work, typeof(*stress), work);
436 const int nlocks = stress->nlocks;
437 struct ww_mutex *locks = stress->locks;
438 struct ww_acquire_ctx ctx;
439 int *order;
441 order = get_random_order(nlocks);
442 if (!order)
443 return;
445 do {
446 int contended = -1;
447 int n, err;
449 ww_acquire_init(&ctx, &ww_class);
450 retry:
451 err = 0;
452 for (n = 0; n < nlocks; n++) {
453 if (n == contended)
454 continue;
456 err = ww_mutex_lock(&locks[order[n]], &ctx);
457 if (err < 0)
458 break;
460 if (!err)
461 dummy_load(stress);
463 if (contended > n)
464 ww_mutex_unlock(&locks[order[contended]]);
465 contended = n;
466 while (n--)
467 ww_mutex_unlock(&locks[order[n]]);
469 if (err == -EDEADLK) {
470 if (!time_after(jiffies, stress->timeout)) {
471 ww_mutex_lock_slow(&locks[order[contended]], &ctx);
472 goto retry;
476 ww_acquire_fini(&ctx);
477 if (err) {
478 pr_err_once("stress (%s) failed with %d\n",
479 __func__, err);
480 break;
482 } while (!time_after(jiffies, stress->timeout));
484 kfree(order);
487 struct reorder_lock {
488 struct list_head link;
489 struct ww_mutex *lock;
492 static void stress_reorder_work(struct work_struct *work)
494 struct stress *stress = container_of(work, typeof(*stress), work);
495 LIST_HEAD(locks);
496 struct ww_acquire_ctx ctx;
497 struct reorder_lock *ll, *ln;
498 int *order;
499 int n, err;
501 order = get_random_order(stress->nlocks);
502 if (!order)
503 return;
505 for (n = 0; n < stress->nlocks; n++) {
506 ll = kmalloc(sizeof(*ll), GFP_KERNEL);
507 if (!ll)
508 goto out;
510 ll->lock = &stress->locks[order[n]];
511 list_add(&ll->link, &locks);
513 kfree(order);
514 order = NULL;
516 do {
517 ww_acquire_init(&ctx, &ww_class);
519 list_for_each_entry(ll, &locks, link) {
520 err = ww_mutex_lock(ll->lock, &ctx);
521 if (!err)
522 continue;
524 ln = ll;
525 list_for_each_entry_continue_reverse(ln, &locks, link)
526 ww_mutex_unlock(ln->lock);
528 if (err != -EDEADLK) {
529 pr_err_once("stress (%s) failed with %d\n",
530 __func__, err);
531 break;
534 ww_mutex_lock_slow(ll->lock, &ctx);
535 list_move(&ll->link, &locks); /* restarts iteration */
538 dummy_load(stress);
539 list_for_each_entry(ll, &locks, link)
540 ww_mutex_unlock(ll->lock);
542 ww_acquire_fini(&ctx);
543 } while (!time_after(jiffies, stress->timeout));
545 out:
546 list_for_each_entry_safe(ll, ln, &locks, link)
547 kfree(ll);
548 kfree(order);
551 static void stress_one_work(struct work_struct *work)
553 struct stress *stress = container_of(work, typeof(*stress), work);
554 const int nlocks = stress->nlocks;
555 struct ww_mutex *lock = stress->locks + get_random_u32_below(nlocks);
556 int err;
558 do {
559 err = ww_mutex_lock(lock, NULL);
560 if (!err) {
561 dummy_load(stress);
562 ww_mutex_unlock(lock);
563 } else {
564 pr_err_once("stress (%s) failed with %d\n",
565 __func__, err);
566 break;
568 } while (!time_after(jiffies, stress->timeout));
571 #define STRESS_INORDER BIT(0)
572 #define STRESS_REORDER BIT(1)
573 #define STRESS_ONE BIT(2)
574 #define STRESS_ALL (STRESS_INORDER | STRESS_REORDER | STRESS_ONE)
576 static int stress(int nlocks, int nthreads, unsigned int flags)
578 struct ww_mutex *locks;
579 struct stress *stress_array;
580 int n, count;
582 locks = kmalloc_array(nlocks, sizeof(*locks), GFP_KERNEL);
583 if (!locks)
584 return -ENOMEM;
586 stress_array = kmalloc_array(nthreads, sizeof(*stress_array),
587 GFP_KERNEL);
588 if (!stress_array) {
589 kfree(locks);
590 return -ENOMEM;
593 for (n = 0; n < nlocks; n++)
594 ww_mutex_init(&locks[n], &ww_class);
596 count = 0;
597 for (n = 0; nthreads; n++) {
598 struct stress *stress;
599 void (*fn)(struct work_struct *work);
601 fn = NULL;
602 switch (n & 3) {
603 case 0:
604 if (flags & STRESS_INORDER)
605 fn = stress_inorder_work;
606 break;
607 case 1:
608 if (flags & STRESS_REORDER)
609 fn = stress_reorder_work;
610 break;
611 case 2:
612 if (flags & STRESS_ONE)
613 fn = stress_one_work;
614 break;
617 if (!fn)
618 continue;
620 stress = &stress_array[count++];
622 INIT_WORK(&stress->work, fn);
623 stress->locks = locks;
624 stress->nlocks = nlocks;
625 stress->timeout = jiffies + 2*HZ;
627 queue_work(wq, &stress->work);
628 nthreads--;
631 flush_workqueue(wq);
633 for (n = 0; n < nlocks; n++)
634 ww_mutex_destroy(&locks[n]);
635 kfree(stress_array);
636 kfree(locks);
638 return 0;
641 static int __init test_ww_mutex_init(void)
643 int ncpus = num_online_cpus();
644 int ret, i;
646 printk(KERN_INFO "Beginning ww mutex selftests\n");
648 prandom_seed_state(&rng, get_random_u64());
650 wq = alloc_workqueue("test-ww_mutex", WQ_UNBOUND, 0);
651 if (!wq)
652 return -ENOMEM;
654 ret = test_mutex();
655 if (ret)
656 return ret;
658 ret = test_aa(false);
659 if (ret)
660 return ret;
662 ret = test_aa(true);
663 if (ret)
664 return ret;
666 for (i = 0; i < 4; i++) {
667 ret = test_abba(i & 1, i & 2);
668 if (ret)
669 return ret;
672 ret = test_cycle(ncpus);
673 if (ret)
674 return ret;
676 ret = stress(16, 2*ncpus, STRESS_INORDER);
677 if (ret)
678 return ret;
680 ret = stress(16, 2*ncpus, STRESS_REORDER);
681 if (ret)
682 return ret;
684 ret = stress(2046, hweight32(STRESS_ALL)*ncpus, STRESS_ALL);
685 if (ret)
686 return ret;
688 printk(KERN_INFO "All ww mutex selftests passed\n");
689 return 0;
692 static void __exit test_ww_mutex_exit(void)
694 destroy_workqueue(wq);
697 module_init(test_ww_mutex_init);
698 module_exit(test_ww_mutex_exit);
700 MODULE_LICENSE("GPL");
701 MODULE_AUTHOR("Intel Corporation");
702 MODULE_DESCRIPTION("API test facility for ww_mutexes");