1 /* SPDX-License-Identifier: GPL-2.0-only */
6 #define MUTEX_WAITER mutex_waiter
8 static inline struct mutex_waiter
*
9 __ww_waiter_first(struct mutex
*lock
)
11 struct mutex_waiter
*w
;
13 w
= list_first_entry(&lock
->wait_list
, struct mutex_waiter
, list
);
14 if (list_entry_is_head(w
, &lock
->wait_list
, list
))
20 static inline struct mutex_waiter
*
21 __ww_waiter_next(struct mutex
*lock
, struct mutex_waiter
*w
)
23 w
= list_next_entry(w
, list
);
24 if (list_entry_is_head(w
, &lock
->wait_list
, list
))
30 static inline struct mutex_waiter
*
31 __ww_waiter_prev(struct mutex
*lock
, struct mutex_waiter
*w
)
33 w
= list_prev_entry(w
, list
);
34 if (list_entry_is_head(w
, &lock
->wait_list
, list
))
40 static inline struct mutex_waiter
*
41 __ww_waiter_last(struct mutex
*lock
)
43 struct mutex_waiter
*w
;
45 w
= list_last_entry(&lock
->wait_list
, struct mutex_waiter
, list
);
46 if (list_entry_is_head(w
, &lock
->wait_list
, list
))
53 __ww_waiter_add(struct mutex
*lock
, struct mutex_waiter
*waiter
, struct mutex_waiter
*pos
)
55 struct list_head
*p
= &lock
->wait_list
;
58 __mutex_add_waiter(lock
, waiter
, p
);
61 static inline struct task_struct
*
62 __ww_mutex_owner(struct mutex
*lock
)
64 return __mutex_owner(lock
);
68 __ww_mutex_has_waiters(struct mutex
*lock
)
70 return atomic_long_read(&lock
->owner
) & MUTEX_FLAG_WAITERS
;
73 static inline void lock_wait_lock(struct mutex
*lock
, unsigned long *flags
)
75 raw_spin_lock_irqsave(&lock
->wait_lock
, *flags
);
78 static inline void unlock_wait_lock(struct mutex
*lock
, unsigned long *flags
)
80 raw_spin_unlock_irqrestore(&lock
->wait_lock
, *flags
);
83 static inline void lockdep_assert_wait_lock_held(struct mutex
*lock
)
85 lockdep_assert_held(&lock
->wait_lock
);
90 #define MUTEX rt_mutex
91 #define MUTEX_WAITER rt_mutex_waiter
93 static inline struct rt_mutex_waiter
*
94 __ww_waiter_first(struct rt_mutex
*lock
)
96 struct rb_node
*n
= rb_first(&lock
->rtmutex
.waiters
.rb_root
);
99 return rb_entry(n
, struct rt_mutex_waiter
, tree
.entry
);
102 static inline struct rt_mutex_waiter
*
103 __ww_waiter_next(struct rt_mutex
*lock
, struct rt_mutex_waiter
*w
)
105 struct rb_node
*n
= rb_next(&w
->tree
.entry
);
108 return rb_entry(n
, struct rt_mutex_waiter
, tree
.entry
);
111 static inline struct rt_mutex_waiter
*
112 __ww_waiter_prev(struct rt_mutex
*lock
, struct rt_mutex_waiter
*w
)
114 struct rb_node
*n
= rb_prev(&w
->tree
.entry
);
117 return rb_entry(n
, struct rt_mutex_waiter
, tree
.entry
);
120 static inline struct rt_mutex_waiter
*
121 __ww_waiter_last(struct rt_mutex
*lock
)
123 struct rb_node
*n
= rb_last(&lock
->rtmutex
.waiters
.rb_root
);
126 return rb_entry(n
, struct rt_mutex_waiter
, tree
.entry
);
130 __ww_waiter_add(struct rt_mutex
*lock
, struct rt_mutex_waiter
*waiter
, struct rt_mutex_waiter
*pos
)
132 /* RT unconditionally adds the waiter first and then removes it on error */
135 static inline struct task_struct
*
136 __ww_mutex_owner(struct rt_mutex
*lock
)
138 return rt_mutex_owner(&lock
->rtmutex
);
142 __ww_mutex_has_waiters(struct rt_mutex
*lock
)
144 return rt_mutex_has_waiters(&lock
->rtmutex
);
147 static inline void lock_wait_lock(struct rt_mutex
*lock
, unsigned long *flags
)
149 raw_spin_lock_irqsave(&lock
->rtmutex
.wait_lock
, *flags
);
152 static inline void unlock_wait_lock(struct rt_mutex
*lock
, unsigned long *flags
)
154 raw_spin_unlock_irqrestore(&lock
->rtmutex
.wait_lock
, *flags
);
157 static inline void lockdep_assert_wait_lock_held(struct rt_mutex
*lock
)
159 lockdep_assert_held(&lock
->rtmutex
.wait_lock
);
166 * The newer transactions are killed when:
167 * It (the new transaction) makes a request for a lock being held
168 * by an older transaction.
171 * The newer transactions are wounded when:
172 * An older transaction makes a request for a lock being held by
173 * the newer transaction.
177 * Associate the ww_mutex @ww with the context @ww_ctx under which we acquired
180 static __always_inline
void
181 ww_mutex_lock_acquired(struct ww_mutex
*ww
, struct ww_acquire_ctx
*ww_ctx
)
183 #ifdef DEBUG_WW_MUTEXES
185 * If this WARN_ON triggers, you used ww_mutex_lock to acquire,
186 * but released with a normal mutex_unlock in this call.
188 * This should never happen, always use ww_mutex_unlock.
190 DEBUG_LOCKS_WARN_ON(ww
->ctx
);
193 * Not quite done after calling ww_acquire_done() ?
195 DEBUG_LOCKS_WARN_ON(ww_ctx
->done_acquire
);
197 if (ww_ctx
->contending_lock
) {
199 * After -EDEADLK you tried to
200 * acquire a different ww_mutex? Bad!
202 DEBUG_LOCKS_WARN_ON(ww_ctx
->contending_lock
!= ww
);
205 * You called ww_mutex_lock after receiving -EDEADLK,
206 * but 'forgot' to unlock everything else first?
208 DEBUG_LOCKS_WARN_ON(ww_ctx
->acquired
> 0);
209 ww_ctx
->contending_lock
= NULL
;
213 * Naughty, using a different class will lead to undefined behavior!
215 DEBUG_LOCKS_WARN_ON(ww_ctx
->ww_class
!= ww
->ww_class
);
222 * Determine if @a is 'less' than @b. IOW, either @a is a lower priority task
223 * or, when of equal priority, a younger transaction than @b.
225 * Depending on the algorithm, @a will either need to wait for @b, or die.
228 __ww_ctx_less(struct ww_acquire_ctx
*a
, struct ww_acquire_ctx
*b
)
231 * Can only do the RT prio for WW_RT, because task->prio isn't stable due to PI,
232 * so the wait_list ordering will go wobbly. rt_mutex re-queues the waiter and
233 * isn't affected by this.
236 /* kernel prio; less is more */
237 int a_prio
= a
->task
->prio
;
238 int b_prio
= b
->task
->prio
;
240 if (rt_or_dl_prio(a_prio
) || rt_or_dl_prio(b_prio
)) {
248 /* equal static prio */
250 if (dl_prio(a_prio
)) {
251 if (dl_time_before(b
->task
->dl
.deadline
,
252 a
->task
->dl
.deadline
))
255 if (dl_time_before(a
->task
->dl
.deadline
,
256 b
->task
->dl
.deadline
))
264 /* FIFO order tie break -- bigger is younger */
265 return (signed long)(a
->stamp
- b
->stamp
) > 0;
269 * Wait-Die; wake a lesser waiter context (when locks held) such that it can
272 * Among waiters with context, only the first one can have other locks acquired
273 * already (ctx->acquired > 0), because __ww_mutex_add_waiter() and
274 * __ww_mutex_check_kill() wake any but the earliest context.
277 __ww_mutex_die(struct MUTEX
*lock
, struct MUTEX_WAITER
*waiter
,
278 struct ww_acquire_ctx
*ww_ctx
, struct wake_q_head
*wake_q
)
280 if (!ww_ctx
->is_wait_die
)
283 if (waiter
->ww_ctx
->acquired
> 0 && __ww_ctx_less(waiter
->ww_ctx
, ww_ctx
)) {
285 debug_mutex_wake_waiter(lock
, waiter
);
287 wake_q_add(wake_q
, waiter
->task
);
294 * Wound-Wait; wound a lesser @hold_ctx if it holds the lock.
296 * Wound the lock holder if there are waiters with more important transactions
297 * than the lock holders. Even if multiple waiters may wound the lock holder,
298 * it's sufficient that only one does.
300 static bool __ww_mutex_wound(struct MUTEX
*lock
,
301 struct ww_acquire_ctx
*ww_ctx
,
302 struct ww_acquire_ctx
*hold_ctx
,
303 struct wake_q_head
*wake_q
)
305 struct task_struct
*owner
= __ww_mutex_owner(lock
);
307 lockdep_assert_wait_lock_held(lock
);
310 * Possible through __ww_mutex_add_waiter() when we race with
311 * ww_mutex_set_context_fastpath(). In that case we'll get here again
312 * through __ww_mutex_check_waiters().
318 * Can have !owner because of __mutex_unlock_slowpath(), but if owner,
319 * it cannot go away because we'll have FLAG_WAITERS set and hold
325 if (ww_ctx
->acquired
> 0 && __ww_ctx_less(hold_ctx
, ww_ctx
)) {
326 hold_ctx
->wounded
= 1;
329 * wake_up_process() paired with set_current_state()
330 * inserts sufficient barriers to make sure @owner either sees
331 * it's wounded in __ww_mutex_check_kill() or has a
332 * wakeup pending to re-read the wounded state.
334 if (owner
!= current
)
335 wake_q_add(wake_q
, owner
);
344 * We just acquired @lock under @ww_ctx, if there are more important contexts
345 * waiting behind us on the wait-list, check if they need to die, or wound us.
347 * See __ww_mutex_add_waiter() for the list-order construction; basically the
348 * list is ordered by stamp, smallest (oldest) first.
350 * This relies on never mixing wait-die/wound-wait on the same wait-list;
351 * which is currently ensured by that being a ww_class property.
353 * The current task must not be on the wait list.
356 __ww_mutex_check_waiters(struct MUTEX
*lock
, struct ww_acquire_ctx
*ww_ctx
,
357 struct wake_q_head
*wake_q
)
359 struct MUTEX_WAITER
*cur
;
361 lockdep_assert_wait_lock_held(lock
);
363 for (cur
= __ww_waiter_first(lock
); cur
;
364 cur
= __ww_waiter_next(lock
, cur
)) {
369 if (__ww_mutex_die(lock
, cur
, ww_ctx
, wake_q
) ||
370 __ww_mutex_wound(lock
, cur
->ww_ctx
, ww_ctx
, wake_q
))
376 * After acquiring lock with fastpath, where we do not hold wait_lock, set ctx
377 * and wake up any waiters so they can recheck.
379 static __always_inline
void
380 ww_mutex_set_context_fastpath(struct ww_mutex
*lock
, struct ww_acquire_ctx
*ctx
)
382 DEFINE_WAKE_Q(wake_q
);
385 ww_mutex_lock_acquired(lock
, ctx
);
388 * The lock->ctx update should be visible on all cores before
389 * the WAITERS check is done, otherwise contended waiters might be
390 * missed. The contended waiters will either see ww_ctx == NULL
391 * and keep spinning, or it will acquire wait_lock, add itself
392 * to waiter list and sleep.
394 smp_mb(); /* See comments above and below. */
397 * [W] ww->ctx = ctx [W] MUTEX_FLAG_WAITERS
399 * [R] MUTEX_FLAG_WAITERS [R] ww->ctx
401 * The memory barrier above pairs with the memory barrier in
402 * __ww_mutex_add_waiter() and makes sure we either observe ww->ctx
403 * and/or !empty list.
405 if (likely(!__ww_mutex_has_waiters(&lock
->base
)))
409 * Uh oh, we raced in fastpath, check if any of the waiters need to
412 lock_wait_lock(&lock
->base
, &flags
);
413 __ww_mutex_check_waiters(&lock
->base
, ctx
, &wake_q
);
415 unlock_wait_lock(&lock
->base
, &flags
);
420 static __always_inline
int
421 __ww_mutex_kill(struct MUTEX
*lock
, struct ww_acquire_ctx
*ww_ctx
)
423 if (ww_ctx
->acquired
> 0) {
424 #ifdef DEBUG_WW_MUTEXES
427 ww
= container_of(lock
, struct ww_mutex
, base
);
428 DEBUG_LOCKS_WARN_ON(ww_ctx
->contending_lock
);
429 ww_ctx
->contending_lock
= ww
;
438 * Check the wound condition for the current lock acquire.
440 * Wound-Wait: If we're wounded, kill ourself.
442 * Wait-Die: If we're trying to acquire a lock already held by an older
443 * context, kill ourselves.
445 * Since __ww_mutex_add_waiter() orders the wait-list on stamp, we only have to
446 * look at waiters before us in the wait-list.
449 __ww_mutex_check_kill(struct MUTEX
*lock
, struct MUTEX_WAITER
*waiter
,
450 struct ww_acquire_ctx
*ctx
)
452 struct ww_mutex
*ww
= container_of(lock
, struct ww_mutex
, base
);
453 struct ww_acquire_ctx
*hold_ctx
= READ_ONCE(ww
->ctx
);
454 struct MUTEX_WAITER
*cur
;
456 if (ctx
->acquired
== 0)
459 if (!ctx
->is_wait_die
) {
461 return __ww_mutex_kill(lock
, ctx
);
466 if (hold_ctx
&& __ww_ctx_less(ctx
, hold_ctx
))
467 return __ww_mutex_kill(lock
, ctx
);
470 * If there is a waiter in front of us that has a context, then its
471 * stamp is earlier than ours and we must kill ourself.
473 for (cur
= __ww_waiter_prev(lock
, waiter
); cur
;
474 cur
= __ww_waiter_prev(lock
, cur
)) {
479 return __ww_mutex_kill(lock
, ctx
);
486 * Add @waiter to the wait-list, keep the wait-list ordered by stamp, smallest
487 * first. Such that older contexts are preferred to acquire the lock over
490 * Waiters without context are interspersed in FIFO order.
492 * Furthermore, for Wait-Die kill ourself immediately when possible (there are
493 * older contexts already waiting) to avoid unnecessary waiting and for
494 * Wound-Wait ensure we wound the owning context when it is younger.
497 __ww_mutex_add_waiter(struct MUTEX_WAITER
*waiter
,
499 struct ww_acquire_ctx
*ww_ctx
,
500 struct wake_q_head
*wake_q
)
502 struct MUTEX_WAITER
*cur
, *pos
= NULL
;
506 __ww_waiter_add(lock
, waiter
, NULL
);
510 is_wait_die
= ww_ctx
->is_wait_die
;
513 * Add the waiter before the first waiter with a higher stamp.
514 * Waiters without a context are skipped to avoid starving
515 * them. Wait-Die waiters may die here. Wound-Wait waiters
516 * never die here, but they are sorted in stamp order and
517 * may wound the lock holder.
519 for (cur
= __ww_waiter_last(lock
); cur
;
520 cur
= __ww_waiter_prev(lock
, cur
)) {
525 if (__ww_ctx_less(ww_ctx
, cur
->ww_ctx
)) {
527 * Wait-Die: if we find an older context waiting, there
528 * is no point in queueing behind it, as we'd have to
529 * die the moment it would acquire the lock.
532 int ret
= __ww_mutex_kill(lock
, ww_ctx
);
543 /* Wait-Die: ensure younger waiters die. */
544 __ww_mutex_die(lock
, cur
, ww_ctx
, wake_q
);
547 __ww_waiter_add(lock
, waiter
, pos
);
550 * Wound-Wait: if we're blocking on a mutex owned by a younger context,
551 * wound that such that we might proceed.
554 struct ww_mutex
*ww
= container_of(lock
, struct ww_mutex
, base
);
557 * See ww_mutex_set_context_fastpath(). Orders setting
558 * MUTEX_FLAG_WAITERS vs the ww->ctx load,
559 * such that either we or the fastpath will wound @ww->ctx.
562 __ww_mutex_wound(lock
, ww_ctx
, ww
->ctx
, wake_q
);
568 static inline void __ww_mutex_unlock(struct ww_mutex
*lock
)
571 #ifdef DEBUG_WW_MUTEXES
572 DEBUG_LOCKS_WARN_ON(!lock
->ctx
->acquired
);
574 if (lock
->ctx
->acquired
> 0)
575 lock
->ctx
->acquired
--;