1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/power/snapshot.c
5 * This file provides system snapshot/restore functionality for swsusp.
7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
11 #define pr_fmt(fmt) "PM: hibernation: " fmt
13 #include <linux/version.h>
14 #include <linux/module.h>
16 #include <linux/suspend.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/spinlock.h>
20 #include <linux/kernel.h>
22 #include <linux/device.h>
23 #include <linux/init.h>
24 #include <linux/memblock.h>
25 #include <linux/nmi.h>
26 #include <linux/syscalls.h>
27 #include <linux/console.h>
28 #include <linux/highmem.h>
29 #include <linux/list.h>
30 #include <linux/slab.h>
31 #include <linux/compiler.h>
32 #include <linux/ktime.h>
33 #include <linux/set_memory.h>
35 #include <linux/uaccess.h>
36 #include <asm/mmu_context.h>
37 #include <asm/tlbflush.h>
42 #if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
43 static bool hibernate_restore_protection
;
44 static bool hibernate_restore_protection_active
;
46 void enable_restore_image_protection(void)
48 hibernate_restore_protection
= true;
51 static inline void hibernate_restore_protection_begin(void)
53 hibernate_restore_protection_active
= hibernate_restore_protection
;
56 static inline void hibernate_restore_protection_end(void)
58 hibernate_restore_protection_active
= false;
61 static inline int __must_check
hibernate_restore_protect_page(void *page_address
)
63 if (hibernate_restore_protection_active
)
64 return set_memory_ro((unsigned long)page_address
, 1);
68 static inline int hibernate_restore_unprotect_page(void *page_address
)
70 if (hibernate_restore_protection_active
)
71 return set_memory_rw((unsigned long)page_address
, 1);
75 static inline void hibernate_restore_protection_begin(void) {}
76 static inline void hibernate_restore_protection_end(void) {}
77 static inline int __must_check
hibernate_restore_protect_page(void *page_address
) {return 0; }
78 static inline int hibernate_restore_unprotect_page(void *page_address
) {return 0; }
79 #endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */
83 * The calls to set_direct_map_*() should not fail because remapping a page
84 * here means that we only update protection bits in an existing PTE.
85 * It is still worth to have a warning here if something changes and this
86 * will no longer be the case.
88 static inline void hibernate_map_page(struct page
*page
)
90 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP
)) {
91 int ret
= set_direct_map_default_noflush(page
);
94 pr_warn_once("Failed to remap page\n");
96 debug_pagealloc_map_pages(page
, 1);
100 static inline void hibernate_unmap_page(struct page
*page
)
102 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP
)) {
103 unsigned long addr
= (unsigned long)page_address(page
);
104 int ret
= set_direct_map_invalid_noflush(page
);
107 pr_warn_once("Failed to remap page\n");
109 flush_tlb_kernel_range(addr
, addr
+ PAGE_SIZE
);
111 debug_pagealloc_unmap_pages(page
, 1);
115 static int swsusp_page_is_free(struct page
*);
116 static void swsusp_set_page_forbidden(struct page
*);
117 static void swsusp_unset_page_forbidden(struct page
*);
120 * Number of bytes to reserve for memory allocations made by device drivers
121 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
122 * cause image creation to fail (tunable via /sys/power/reserved_size).
124 unsigned long reserved_size
;
126 void __init
hibernate_reserved_size_init(void)
128 reserved_size
= SPARE_PAGES
* PAGE_SIZE
;
132 * Preferred image size in bytes (tunable via /sys/power/image_size).
133 * When it is set to N, swsusp will do its best to ensure the image
134 * size will not exceed N bytes, but if that is impossible, it will
135 * try to create the smallest image possible.
137 unsigned long image_size
;
139 void __init
hibernate_image_size_init(void)
141 image_size
= ((totalram_pages() * 2) / 5) * PAGE_SIZE
;
145 * List of PBEs needed for restoring the pages that were allocated before
146 * the suspend and included in the suspend image, but have also been
147 * allocated by the "resume" kernel, so their contents cannot be written
148 * directly to their "original" page frames.
150 struct pbe
*restore_pblist
;
152 /* struct linked_page is used to build chains of pages */
154 #define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
157 struct linked_page
*next
;
158 char data
[LINKED_PAGE_DATA_SIZE
];
162 * List of "safe" pages (ie. pages that were not used by the image kernel
163 * before hibernation) that may be used as temporary storage for image kernel
166 static struct linked_page
*safe_pages_list
;
168 /* Pointer to an auxiliary buffer (1 page) */
173 #define PG_UNSAFE_CLEAR 1
174 #define PG_UNSAFE_KEEP 0
176 static unsigned int allocated_unsafe_pages
;
179 * get_image_page - Allocate a page for a hibernation image.
180 * @gfp_mask: GFP mask for the allocation.
181 * @safe_needed: Get pages that were not used before hibernation (restore only)
183 * During image restoration, for storing the PBE list and the image data, we can
184 * only use memory pages that do not conflict with the pages used before
185 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them
186 * using allocated_unsafe_pages.
188 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
189 * swsusp_free() can release it.
191 static void *get_image_page(gfp_t gfp_mask
, int safe_needed
)
195 res
= (void *)get_zeroed_page(gfp_mask
);
197 while (res
&& swsusp_page_is_free(virt_to_page(res
))) {
198 /* The page is unsafe, mark it for swsusp_free() */
199 swsusp_set_page_forbidden(virt_to_page(res
));
200 allocated_unsafe_pages
++;
201 res
= (void *)get_zeroed_page(gfp_mask
);
204 swsusp_set_page_forbidden(virt_to_page(res
));
205 swsusp_set_page_free(virt_to_page(res
));
210 static void *__get_safe_page(gfp_t gfp_mask
)
212 if (safe_pages_list
) {
213 void *ret
= safe_pages_list
;
215 safe_pages_list
= safe_pages_list
->next
;
216 memset(ret
, 0, PAGE_SIZE
);
219 return get_image_page(gfp_mask
, PG_SAFE
);
222 unsigned long get_safe_page(gfp_t gfp_mask
)
224 return (unsigned long)__get_safe_page(gfp_mask
);
227 static struct page
*alloc_image_page(gfp_t gfp_mask
)
231 page
= alloc_page(gfp_mask
);
233 swsusp_set_page_forbidden(page
);
234 swsusp_set_page_free(page
);
239 static void recycle_safe_page(void *page_address
)
241 struct linked_page
*lp
= page_address
;
243 lp
->next
= safe_pages_list
;
244 safe_pages_list
= lp
;
248 * free_image_page - Free a page allocated for hibernation image.
249 * @addr: Address of the page to free.
250 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
252 * The page to free should have been allocated by get_image_page() (page flags
253 * set by it are affected).
255 static inline void free_image_page(void *addr
, int clear_nosave_free
)
259 BUG_ON(!virt_addr_valid(addr
));
261 page
= virt_to_page(addr
);
263 swsusp_unset_page_forbidden(page
);
264 if (clear_nosave_free
)
265 swsusp_unset_page_free(page
);
270 static inline void free_list_of_pages(struct linked_page
*list
,
271 int clear_page_nosave
)
274 struct linked_page
*lp
= list
->next
;
276 free_image_page(list
, clear_page_nosave
);
282 * struct chain_allocator is used for allocating small objects out of
283 * a linked list of pages called 'the chain'.
285 * The chain grows each time when there is no room for a new object in
286 * the current page. The allocated objects cannot be freed individually.
287 * It is only possible to free them all at once, by freeing the entire
290 * NOTE: The chain allocator may be inefficient if the allocated objects
291 * are not much smaller than PAGE_SIZE.
293 struct chain_allocator
{
294 struct linked_page
*chain
; /* the chain */
295 unsigned int used_space
; /* total size of objects allocated out
296 of the current page */
297 gfp_t gfp_mask
; /* mask for allocating pages */
298 int safe_needed
; /* if set, only "safe" pages are allocated */
301 static void chain_init(struct chain_allocator
*ca
, gfp_t gfp_mask
,
305 ca
->used_space
= LINKED_PAGE_DATA_SIZE
;
306 ca
->gfp_mask
= gfp_mask
;
307 ca
->safe_needed
= safe_needed
;
310 static void *chain_alloc(struct chain_allocator
*ca
, unsigned int size
)
314 if (LINKED_PAGE_DATA_SIZE
- ca
->used_space
< size
) {
315 struct linked_page
*lp
;
317 lp
= ca
->safe_needed
? __get_safe_page(ca
->gfp_mask
) :
318 get_image_page(ca
->gfp_mask
, PG_ANY
);
322 lp
->next
= ca
->chain
;
326 ret
= ca
->chain
->data
+ ca
->used_space
;
327 ca
->used_space
+= size
;
332 * Data types related to memory bitmaps.
334 * Memory bitmap is a structure consisting of many linked lists of
335 * objects. The main list's elements are of type struct zone_bitmap
336 * and each of them corresponds to one zone. For each zone bitmap
337 * object there is a list of objects of type struct bm_block that
338 * represent each blocks of bitmap in which information is stored.
340 * struct memory_bitmap contains a pointer to the main list of zone
341 * bitmap objects, a struct bm_position used for browsing the bitmap,
342 * and a pointer to the list of pages used for allocating all of the
343 * zone bitmap objects and bitmap block objects.
345 * NOTE: It has to be possible to lay out the bitmap in memory
346 * using only allocations of order 0. Additionally, the bitmap is
347 * designed to work with arbitrary number of zones (this is over the
348 * top for now, but let's avoid making unnecessary assumptions ;-).
350 * struct zone_bitmap contains a pointer to a list of bitmap block
351 * objects and a pointer to the bitmap block object that has been
352 * most recently used for setting bits. Additionally, it contains the
353 * PFNs that correspond to the start and end of the represented zone.
355 * struct bm_block contains a pointer to the memory page in which
356 * information is stored (in the form of a block of bitmap)
357 * It also contains the pfns that correspond to the start and end of
358 * the represented memory area.
360 * The memory bitmap is organized as a radix tree to guarantee fast random
361 * access to the bits. There is one radix tree for each zone (as returned
362 * from create_mem_extents).
364 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
365 * two linked lists for the nodes of the tree, one for the inner nodes and
366 * one for the leave nodes. The linked leave nodes are used for fast linear
367 * access of the memory bitmap.
369 * The struct rtree_node represents one node of the radix tree.
372 #define BM_END_OF_MAP (~0UL)
374 #define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
375 #define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
376 #define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
379 * struct rtree_node is a wrapper struct to link the nodes
380 * of the rtree together for easy linear iteration over
381 * bits and easy freeing
384 struct list_head list
;
389 * struct mem_zone_bm_rtree represents a bitmap used for one
390 * populated memory zone.
392 struct mem_zone_bm_rtree
{
393 struct list_head list
; /* Link Zones together */
394 struct list_head nodes
; /* Radix Tree inner nodes */
395 struct list_head leaves
; /* Radix Tree leaves */
396 unsigned long start_pfn
; /* Zone start page frame */
397 unsigned long end_pfn
; /* Zone end page frame + 1 */
398 struct rtree_node
*rtree
; /* Radix Tree Root */
399 int levels
; /* Number of Radix Tree Levels */
400 unsigned int blocks
; /* Number of Bitmap Blocks */
403 /* struct bm_position is used for browsing memory bitmaps */
406 struct mem_zone_bm_rtree
*zone
;
407 struct rtree_node
*node
;
408 unsigned long node_pfn
;
409 unsigned long cur_pfn
;
413 struct memory_bitmap
{
414 struct list_head zones
;
415 struct linked_page
*p_list
; /* list of pages used to store zone
416 bitmap objects and bitmap block
418 struct bm_position cur
; /* most recently used bit position */
421 /* Functions that operate on memory bitmaps */
423 #define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
424 #if BITS_PER_LONG == 32
425 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
427 #define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
429 #define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
432 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
433 * @gfp_mask: GFP mask for the allocation.
434 * @safe_needed: Get pages not used before hibernation (restore only)
435 * @ca: Pointer to a linked list of pages ("a chain") to allocate from
436 * @list: Radix Tree node to add.
438 * This function is used to allocate inner nodes as well as the
439 * leave nodes of the radix tree. It also adds the node to the
440 * corresponding linked list passed in by the *list parameter.
442 static struct rtree_node
*alloc_rtree_node(gfp_t gfp_mask
, int safe_needed
,
443 struct chain_allocator
*ca
,
444 struct list_head
*list
)
446 struct rtree_node
*node
;
448 node
= chain_alloc(ca
, sizeof(struct rtree_node
));
452 node
->data
= get_image_page(gfp_mask
, safe_needed
);
456 list_add_tail(&node
->list
, list
);
462 * add_rtree_block - Add a new leave node to the radix tree.
464 * The leave nodes need to be allocated in order to keep the leaves
465 * linked list in order. This is guaranteed by the zone->blocks
468 static int add_rtree_block(struct mem_zone_bm_rtree
*zone
, gfp_t gfp_mask
,
469 int safe_needed
, struct chain_allocator
*ca
)
471 struct rtree_node
*node
, *block
, **dst
;
472 unsigned int levels_needed
, block_nr
;
475 block_nr
= zone
->blocks
;
478 /* How many levels do we need for this block nr? */
481 block_nr
>>= BM_RTREE_LEVEL_SHIFT
;
484 /* Make sure the rtree has enough levels */
485 for (i
= zone
->levels
; i
< levels_needed
; i
++) {
486 node
= alloc_rtree_node(gfp_mask
, safe_needed
, ca
,
491 node
->data
[0] = (unsigned long)zone
->rtree
;
496 /* Allocate new block */
497 block
= alloc_rtree_node(gfp_mask
, safe_needed
, ca
, &zone
->leaves
);
501 /* Now walk the rtree to insert the block */
504 block_nr
= zone
->blocks
;
505 for (i
= zone
->levels
; i
> 0; i
--) {
509 node
= alloc_rtree_node(gfp_mask
, safe_needed
, ca
,
516 index
= block_nr
>> ((i
- 1) * BM_RTREE_LEVEL_SHIFT
);
517 index
&= BM_RTREE_LEVEL_MASK
;
518 dst
= (struct rtree_node
**)&((*dst
)->data
[index
]);
528 static void free_zone_bm_rtree(struct mem_zone_bm_rtree
*zone
,
529 int clear_nosave_free
);
532 * create_zone_bm_rtree - Create a radix tree for one zone.
534 * Allocated the mem_zone_bm_rtree structure and initializes it.
535 * This function also allocated and builds the radix tree for the
538 static struct mem_zone_bm_rtree
*create_zone_bm_rtree(gfp_t gfp_mask
,
540 struct chain_allocator
*ca
,
544 struct mem_zone_bm_rtree
*zone
;
545 unsigned int i
, nr_blocks
;
549 zone
= chain_alloc(ca
, sizeof(struct mem_zone_bm_rtree
));
553 INIT_LIST_HEAD(&zone
->nodes
);
554 INIT_LIST_HEAD(&zone
->leaves
);
555 zone
->start_pfn
= start
;
557 nr_blocks
= DIV_ROUND_UP(pages
, BM_BITS_PER_BLOCK
);
559 for (i
= 0; i
< nr_blocks
; i
++) {
560 if (add_rtree_block(zone
, gfp_mask
, safe_needed
, ca
)) {
561 free_zone_bm_rtree(zone
, PG_UNSAFE_CLEAR
);
570 * free_zone_bm_rtree - Free the memory of the radix tree.
572 * Free all node pages of the radix tree. The mem_zone_bm_rtree
573 * structure itself is not freed here nor are the rtree_node
576 static void free_zone_bm_rtree(struct mem_zone_bm_rtree
*zone
,
577 int clear_nosave_free
)
579 struct rtree_node
*node
;
581 list_for_each_entry(node
, &zone
->nodes
, list
)
582 free_image_page(node
->data
, clear_nosave_free
);
584 list_for_each_entry(node
, &zone
->leaves
, list
)
585 free_image_page(node
->data
, clear_nosave_free
);
588 static void memory_bm_position_reset(struct memory_bitmap
*bm
)
590 bm
->cur
.zone
= list_entry(bm
->zones
.next
, struct mem_zone_bm_rtree
,
592 bm
->cur
.node
= list_entry(bm
->cur
.zone
->leaves
.next
,
593 struct rtree_node
, list
);
594 bm
->cur
.node_pfn
= 0;
595 bm
->cur
.cur_pfn
= BM_END_OF_MAP
;
596 bm
->cur
.node_bit
= 0;
599 static void memory_bm_free(struct memory_bitmap
*bm
, int clear_nosave_free
);
602 struct list_head hook
;
608 * free_mem_extents - Free a list of memory extents.
609 * @list: List of extents to free.
611 static void free_mem_extents(struct list_head
*list
)
613 struct mem_extent
*ext
, *aux
;
615 list_for_each_entry_safe(ext
, aux
, list
, hook
) {
616 list_del(&ext
->hook
);
622 * create_mem_extents - Create a list of memory extents.
623 * @list: List to put the extents into.
624 * @gfp_mask: Mask to use for memory allocations.
626 * The extents represent contiguous ranges of PFNs.
628 static int create_mem_extents(struct list_head
*list
, gfp_t gfp_mask
)
632 INIT_LIST_HEAD(list
);
634 for_each_populated_zone(zone
) {
635 unsigned long zone_start
, zone_end
;
636 struct mem_extent
*ext
, *cur
, *aux
;
638 zone_start
= zone
->zone_start_pfn
;
639 zone_end
= zone_end_pfn(zone
);
641 list_for_each_entry(ext
, list
, hook
)
642 if (zone_start
<= ext
->end
)
645 if (&ext
->hook
== list
|| zone_end
< ext
->start
) {
646 /* New extent is necessary */
647 struct mem_extent
*new_ext
;
649 new_ext
= kzalloc(sizeof(struct mem_extent
), gfp_mask
);
651 free_mem_extents(list
);
654 new_ext
->start
= zone_start
;
655 new_ext
->end
= zone_end
;
656 list_add_tail(&new_ext
->hook
, &ext
->hook
);
660 /* Merge this zone's range of PFNs with the existing one */
661 if (zone_start
< ext
->start
)
662 ext
->start
= zone_start
;
663 if (zone_end
> ext
->end
)
666 /* More merging may be possible */
668 list_for_each_entry_safe_continue(cur
, aux
, list
, hook
) {
669 if (zone_end
< cur
->start
)
671 if (zone_end
< cur
->end
)
673 list_del(&cur
->hook
);
682 * memory_bm_create - Allocate memory for a memory bitmap.
684 static int memory_bm_create(struct memory_bitmap
*bm
, gfp_t gfp_mask
,
687 struct chain_allocator ca
;
688 struct list_head mem_extents
;
689 struct mem_extent
*ext
;
692 chain_init(&ca
, gfp_mask
, safe_needed
);
693 INIT_LIST_HEAD(&bm
->zones
);
695 error
= create_mem_extents(&mem_extents
, gfp_mask
);
699 list_for_each_entry(ext
, &mem_extents
, hook
) {
700 struct mem_zone_bm_rtree
*zone
;
702 zone
= create_zone_bm_rtree(gfp_mask
, safe_needed
, &ca
,
703 ext
->start
, ext
->end
);
708 list_add_tail(&zone
->list
, &bm
->zones
);
711 bm
->p_list
= ca
.chain
;
712 memory_bm_position_reset(bm
);
714 free_mem_extents(&mem_extents
);
718 bm
->p_list
= ca
.chain
;
719 memory_bm_free(bm
, PG_UNSAFE_CLEAR
);
724 * memory_bm_free - Free memory occupied by the memory bitmap.
725 * @bm: Memory bitmap.
727 static void memory_bm_free(struct memory_bitmap
*bm
, int clear_nosave_free
)
729 struct mem_zone_bm_rtree
*zone
;
731 list_for_each_entry(zone
, &bm
->zones
, list
)
732 free_zone_bm_rtree(zone
, clear_nosave_free
);
734 free_list_of_pages(bm
->p_list
, clear_nosave_free
);
736 INIT_LIST_HEAD(&bm
->zones
);
740 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
742 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
743 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
745 * Walk the radix tree to find the page containing the bit that represents @pfn
746 * and return the position of the bit in @addr and @bit_nr.
748 static int memory_bm_find_bit(struct memory_bitmap
*bm
, unsigned long pfn
,
749 void **addr
, unsigned int *bit_nr
)
751 struct mem_zone_bm_rtree
*curr
, *zone
;
752 struct rtree_node
*node
;
757 if (pfn
>= zone
->start_pfn
&& pfn
< zone
->end_pfn
)
762 /* Find the right zone */
763 list_for_each_entry(curr
, &bm
->zones
, list
) {
764 if (pfn
>= curr
->start_pfn
&& pfn
< curr
->end_pfn
) {
775 * We have found the zone. Now walk the radix tree to find the leaf node
780 * If the zone we wish to scan is the current zone and the
781 * pfn falls into the current node then we do not need to walk
785 if (zone
== bm
->cur
.zone
&&
786 ((pfn
- zone
->start_pfn
) & ~BM_BLOCK_MASK
) == bm
->cur
.node_pfn
)
790 block_nr
= (pfn
- zone
->start_pfn
) >> BM_BLOCK_SHIFT
;
792 for (i
= zone
->levels
; i
> 0; i
--) {
795 index
= block_nr
>> ((i
- 1) * BM_RTREE_LEVEL_SHIFT
);
796 index
&= BM_RTREE_LEVEL_MASK
;
797 BUG_ON(node
->data
[index
] == 0);
798 node
= (struct rtree_node
*)node
->data
[index
];
802 /* Update last position */
805 bm
->cur
.node_pfn
= (pfn
- zone
->start_pfn
) & ~BM_BLOCK_MASK
;
806 bm
->cur
.cur_pfn
= pfn
;
808 /* Set return values */
810 *bit_nr
= (pfn
- zone
->start_pfn
) & BM_BLOCK_MASK
;
815 static void memory_bm_set_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
821 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
826 static int mem_bm_set_bit_check(struct memory_bitmap
*bm
, unsigned long pfn
)
832 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
839 static void memory_bm_clear_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
845 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
847 clear_bit(bit
, addr
);
850 static void memory_bm_clear_current(struct memory_bitmap
*bm
)
854 bit
= max(bm
->cur
.node_bit
- 1, 0);
855 clear_bit(bit
, bm
->cur
.node
->data
);
858 static unsigned long memory_bm_get_current(struct memory_bitmap
*bm
)
860 return bm
->cur
.cur_pfn
;
863 static int memory_bm_test_bit(struct memory_bitmap
*bm
, unsigned long pfn
)
869 error
= memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
871 return test_bit(bit
, addr
);
874 static bool memory_bm_pfn_present(struct memory_bitmap
*bm
, unsigned long pfn
)
879 return !memory_bm_find_bit(bm
, pfn
, &addr
, &bit
);
883 * rtree_next_node - Jump to the next leaf node.
885 * Set the position to the beginning of the next node in the
886 * memory bitmap. This is either the next node in the current
887 * zone's radix tree or the first node in the radix tree of the
890 * Return true if there is a next node, false otherwise.
892 static bool rtree_next_node(struct memory_bitmap
*bm
)
894 if (!list_is_last(&bm
->cur
.node
->list
, &bm
->cur
.zone
->leaves
)) {
895 bm
->cur
.node
= list_entry(bm
->cur
.node
->list
.next
,
896 struct rtree_node
, list
);
897 bm
->cur
.node_pfn
+= BM_BITS_PER_BLOCK
;
898 bm
->cur
.node_bit
= 0;
899 touch_softlockup_watchdog();
903 /* No more nodes, goto next zone */
904 if (!list_is_last(&bm
->cur
.zone
->list
, &bm
->zones
)) {
905 bm
->cur
.zone
= list_entry(bm
->cur
.zone
->list
.next
,
906 struct mem_zone_bm_rtree
, list
);
907 bm
->cur
.node
= list_entry(bm
->cur
.zone
->leaves
.next
,
908 struct rtree_node
, list
);
909 bm
->cur
.node_pfn
= 0;
910 bm
->cur
.node_bit
= 0;
919 * memory_bm_next_pfn - Find the next set bit in a memory bitmap.
920 * @bm: Memory bitmap.
922 * Starting from the last returned position this function searches for the next
923 * set bit in @bm and returns the PFN represented by it. If no more bits are
924 * set, BM_END_OF_MAP is returned.
926 * It is required to run memory_bm_position_reset() before the first call to
927 * this function for the given memory bitmap.
929 static unsigned long memory_bm_next_pfn(struct memory_bitmap
*bm
)
931 unsigned long bits
, pfn
, pages
;
935 pages
= bm
->cur
.zone
->end_pfn
- bm
->cur
.zone
->start_pfn
;
936 bits
= min(pages
- bm
->cur
.node_pfn
, BM_BITS_PER_BLOCK
);
937 bit
= find_next_bit(bm
->cur
.node
->data
, bits
,
940 pfn
= bm
->cur
.zone
->start_pfn
+ bm
->cur
.node_pfn
+ bit
;
941 bm
->cur
.node_bit
= bit
+ 1;
942 bm
->cur
.cur_pfn
= pfn
;
945 } while (rtree_next_node(bm
));
947 bm
->cur
.cur_pfn
= BM_END_OF_MAP
;
948 return BM_END_OF_MAP
;
952 * This structure represents a range of page frames the contents of which
953 * should not be saved during hibernation.
955 struct nosave_region
{
956 struct list_head list
;
957 unsigned long start_pfn
;
958 unsigned long end_pfn
;
961 static LIST_HEAD(nosave_regions
);
963 static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree
*zone
)
965 struct rtree_node
*node
;
967 list_for_each_entry(node
, &zone
->nodes
, list
)
968 recycle_safe_page(node
->data
);
970 list_for_each_entry(node
, &zone
->leaves
, list
)
971 recycle_safe_page(node
->data
);
974 static void memory_bm_recycle(struct memory_bitmap
*bm
)
976 struct mem_zone_bm_rtree
*zone
;
977 struct linked_page
*p_list
;
979 list_for_each_entry(zone
, &bm
->zones
, list
)
980 recycle_zone_bm_rtree(zone
);
984 struct linked_page
*lp
= p_list
;
987 recycle_safe_page(lp
);
992 * register_nosave_region - Register a region of unsaveable memory.
994 * Register a range of page frames the contents of which should not be saved
995 * during hibernation (to be used in the early initialization code).
997 void __init
register_nosave_region(unsigned long start_pfn
, unsigned long end_pfn
)
999 struct nosave_region
*region
;
1001 if (start_pfn
>= end_pfn
)
1004 if (!list_empty(&nosave_regions
)) {
1005 /* Try to extend the previous region (they should be sorted) */
1006 region
= list_entry(nosave_regions
.prev
,
1007 struct nosave_region
, list
);
1008 if (region
->end_pfn
== start_pfn
) {
1009 region
->end_pfn
= end_pfn
;
1013 /* This allocation cannot fail */
1014 region
= memblock_alloc(sizeof(struct nosave_region
),
1017 panic("%s: Failed to allocate %zu bytes\n", __func__
,
1018 sizeof(struct nosave_region
));
1019 region
->start_pfn
= start_pfn
;
1020 region
->end_pfn
= end_pfn
;
1021 list_add_tail(®ion
->list
, &nosave_regions
);
1023 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1024 (unsigned long long) start_pfn
<< PAGE_SHIFT
,
1025 ((unsigned long long) end_pfn
<< PAGE_SHIFT
) - 1);
1029 * Set bits in this map correspond to the page frames the contents of which
1030 * should not be saved during the suspend.
1032 static struct memory_bitmap
*forbidden_pages_map
;
1034 /* Set bits in this map correspond to free page frames. */
1035 static struct memory_bitmap
*free_pages_map
;
1038 * Each page frame allocated for creating the image is marked by setting the
1039 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1042 void swsusp_set_page_free(struct page
*page
)
1045 memory_bm_set_bit(free_pages_map
, page_to_pfn(page
));
1048 static int swsusp_page_is_free(struct page
*page
)
1050 return free_pages_map
?
1051 memory_bm_test_bit(free_pages_map
, page_to_pfn(page
)) : 0;
1054 void swsusp_unset_page_free(struct page
*page
)
1057 memory_bm_clear_bit(free_pages_map
, page_to_pfn(page
));
1060 static void swsusp_set_page_forbidden(struct page
*page
)
1062 if (forbidden_pages_map
)
1063 memory_bm_set_bit(forbidden_pages_map
, page_to_pfn(page
));
1066 int swsusp_page_is_forbidden(struct page
*page
)
1068 return forbidden_pages_map
?
1069 memory_bm_test_bit(forbidden_pages_map
, page_to_pfn(page
)) : 0;
1072 static void swsusp_unset_page_forbidden(struct page
*page
)
1074 if (forbidden_pages_map
)
1075 memory_bm_clear_bit(forbidden_pages_map
, page_to_pfn(page
));
1079 * mark_nosave_pages - Mark pages that should not be saved.
1080 * @bm: Memory bitmap.
1082 * Set the bits in @bm that correspond to the page frames the contents of which
1083 * should not be saved.
1085 static void mark_nosave_pages(struct memory_bitmap
*bm
)
1087 struct nosave_region
*region
;
1089 if (list_empty(&nosave_regions
))
1092 list_for_each_entry(region
, &nosave_regions
, list
) {
1095 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1096 (unsigned long long) region
->start_pfn
<< PAGE_SHIFT
,
1097 ((unsigned long long) region
->end_pfn
<< PAGE_SHIFT
)
1100 for (pfn
= region
->start_pfn
; pfn
< region
->end_pfn
; pfn
++)
1101 if (pfn_valid(pfn
)) {
1103 * It is safe to ignore the result of
1104 * mem_bm_set_bit_check() here, since we won't
1105 * touch the PFNs for which the error is
1108 mem_bm_set_bit_check(bm
, pfn
);
1114 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1116 * Create bitmaps needed for marking page frames that should not be saved and
1117 * free page frames. The forbidden_pages_map and free_pages_map pointers are
1118 * only modified if everything goes well, because we don't want the bits to be
1119 * touched before both bitmaps are set up.
1121 int create_basic_memory_bitmaps(void)
1123 struct memory_bitmap
*bm1
, *bm2
;
1126 if (forbidden_pages_map
&& free_pages_map
)
1129 BUG_ON(forbidden_pages_map
|| free_pages_map
);
1131 bm1
= kzalloc(sizeof(struct memory_bitmap
), GFP_KERNEL
);
1135 error
= memory_bm_create(bm1
, GFP_KERNEL
, PG_ANY
);
1137 goto Free_first_object
;
1139 bm2
= kzalloc(sizeof(struct memory_bitmap
), GFP_KERNEL
);
1141 goto Free_first_bitmap
;
1143 error
= memory_bm_create(bm2
, GFP_KERNEL
, PG_ANY
);
1145 goto Free_second_object
;
1147 forbidden_pages_map
= bm1
;
1148 free_pages_map
= bm2
;
1149 mark_nosave_pages(forbidden_pages_map
);
1151 pr_debug("Basic memory bitmaps created\n");
1158 memory_bm_free(bm1
, PG_UNSAFE_CLEAR
);
1165 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1167 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The
1168 * auxiliary pointers are necessary so that the bitmaps themselves are not
1169 * referred to while they are being freed.
1171 void free_basic_memory_bitmaps(void)
1173 struct memory_bitmap
*bm1
, *bm2
;
1175 if (WARN_ON(!(forbidden_pages_map
&& free_pages_map
)))
1178 bm1
= forbidden_pages_map
;
1179 bm2
= free_pages_map
;
1180 forbidden_pages_map
= NULL
;
1181 free_pages_map
= NULL
;
1182 memory_bm_free(bm1
, PG_UNSAFE_CLEAR
);
1184 memory_bm_free(bm2
, PG_UNSAFE_CLEAR
);
1187 pr_debug("Basic memory bitmaps freed\n");
1190 static void clear_or_poison_free_page(struct page
*page
)
1192 if (page_poisoning_enabled_static())
1193 __kernel_poison_pages(page
, 1);
1194 else if (want_init_on_free())
1195 clear_highpage(page
);
1198 void clear_or_poison_free_pages(void)
1200 struct memory_bitmap
*bm
= free_pages_map
;
1203 if (WARN_ON(!(free_pages_map
)))
1206 if (page_poisoning_enabled() || want_init_on_free()) {
1207 memory_bm_position_reset(bm
);
1208 pfn
= memory_bm_next_pfn(bm
);
1209 while (pfn
!= BM_END_OF_MAP
) {
1211 clear_or_poison_free_page(pfn_to_page(pfn
));
1213 pfn
= memory_bm_next_pfn(bm
);
1215 memory_bm_position_reset(bm
);
1216 pr_info("free pages cleared after restore\n");
1221 * snapshot_additional_pages - Estimate the number of extra pages needed.
1222 * @zone: Memory zone to carry out the computation for.
1224 * Estimate the number of additional pages needed for setting up a hibernation
1225 * image data structures for @zone (usually, the returned value is greater than
1226 * the exact number).
1228 unsigned int snapshot_additional_pages(struct zone
*zone
)
1230 unsigned int rtree
, nodes
;
1232 rtree
= nodes
= DIV_ROUND_UP(zone
->spanned_pages
, BM_BITS_PER_BLOCK
);
1233 rtree
+= DIV_ROUND_UP(rtree
* sizeof(struct rtree_node
),
1234 LINKED_PAGE_DATA_SIZE
);
1236 nodes
= DIV_ROUND_UP(nodes
, BM_ENTRIES_PER_LEVEL
);
1244 * Touch the watchdog for every WD_PAGE_COUNT pages.
1246 #define WD_PAGE_COUNT (128*1024)
1248 static void mark_free_pages(struct zone
*zone
)
1250 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
1251 unsigned long flags
;
1252 unsigned int order
, t
;
1255 if (zone_is_empty(zone
))
1258 spin_lock_irqsave(&zone
->lock
, flags
);
1260 max_zone_pfn
= zone_end_pfn(zone
);
1261 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1262 if (pfn_valid(pfn
)) {
1263 page
= pfn_to_page(pfn
);
1265 if (!--page_count
) {
1266 touch_nmi_watchdog();
1267 page_count
= WD_PAGE_COUNT
;
1270 if (page_zone(page
) != zone
)
1273 if (!swsusp_page_is_forbidden(page
))
1274 swsusp_unset_page_free(page
);
1277 for_each_migratetype_order(order
, t
) {
1278 list_for_each_entry(page
,
1279 &zone
->free_area
[order
].free_list
[t
], buddy_list
) {
1282 pfn
= page_to_pfn(page
);
1283 for (i
= 0; i
< (1UL << order
); i
++) {
1284 if (!--page_count
) {
1285 touch_nmi_watchdog();
1286 page_count
= WD_PAGE_COUNT
;
1288 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1292 spin_unlock_irqrestore(&zone
->lock
, flags
);
1295 #ifdef CONFIG_HIGHMEM
1297 * count_free_highmem_pages - Compute the total number of free highmem pages.
1299 * The returned number is system-wide.
1301 static unsigned int count_free_highmem_pages(void)
1304 unsigned int cnt
= 0;
1306 for_each_populated_zone(zone
)
1307 if (is_highmem(zone
))
1308 cnt
+= zone_page_state(zone
, NR_FREE_PAGES
);
1314 * saveable_highmem_page - Check if a highmem page is saveable.
1316 * Determine whether a highmem page should be included in a hibernation image.
1318 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1319 * and it isn't part of a free chunk of pages.
1321 static struct page
*saveable_highmem_page(struct zone
*zone
, unsigned long pfn
)
1325 if (!pfn_valid(pfn
))
1328 page
= pfn_to_online_page(pfn
);
1329 if (!page
|| page_zone(page
) != zone
)
1332 BUG_ON(!PageHighMem(page
));
1334 if (swsusp_page_is_forbidden(page
) || swsusp_page_is_free(page
))
1337 if (PageReserved(page
) || PageOffline(page
))
1340 if (page_is_guard(page
))
1347 * count_highmem_pages - Compute the total number of saveable highmem pages.
1349 static unsigned int count_highmem_pages(void)
1354 for_each_populated_zone(zone
) {
1355 unsigned long pfn
, max_zone_pfn
;
1357 if (!is_highmem(zone
))
1360 mark_free_pages(zone
);
1361 max_zone_pfn
= zone_end_pfn(zone
);
1362 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1363 if (saveable_highmem_page(zone
, pfn
))
1368 #endif /* CONFIG_HIGHMEM */
1371 * saveable_page - Check if the given page is saveable.
1373 * Determine whether a non-highmem page should be included in a hibernation
1376 * We should save the page if it isn't Nosave, and is not in the range
1377 * of pages statically defined as 'unsaveable', and it isn't part of
1378 * a free chunk of pages.
1380 static struct page
*saveable_page(struct zone
*zone
, unsigned long pfn
)
1384 if (!pfn_valid(pfn
))
1387 page
= pfn_to_online_page(pfn
);
1388 if (!page
|| page_zone(page
) != zone
)
1391 BUG_ON(PageHighMem(page
));
1393 if (swsusp_page_is_forbidden(page
) || swsusp_page_is_free(page
))
1396 if (PageOffline(page
))
1399 if (PageReserved(page
)
1400 && (!kernel_page_present(page
) || pfn_is_nosave(pfn
)))
1403 if (page_is_guard(page
))
1410 * count_data_pages - Compute the total number of saveable non-highmem pages.
1412 static unsigned int count_data_pages(void)
1415 unsigned long pfn
, max_zone_pfn
;
1418 for_each_populated_zone(zone
) {
1419 if (is_highmem(zone
))
1422 mark_free_pages(zone
);
1423 max_zone_pfn
= zone_end_pfn(zone
);
1424 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1425 if (saveable_page(zone
, pfn
))
1432 * This is needed, because copy_page and memcpy are not usable for copying
1433 * task structs. Returns true if the page was filled with only zeros,
1436 static inline bool do_copy_page(long *dst
, long *src
)
1441 for (n
= PAGE_SIZE
/ sizeof(long); n
; n
--) {
1449 * safe_copy_page - Copy a page in a safe way.
1451 * Check if the page we are going to copy is marked as present in the kernel
1452 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1453 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1454 * always returns 'true'. Returns true if the page was entirely composed of
1455 * zeros, otherwise it will return false.
1457 static bool safe_copy_page(void *dst
, struct page
*s_page
)
1461 if (kernel_page_present(s_page
)) {
1462 zeros_only
= do_copy_page(dst
, page_address(s_page
));
1464 hibernate_map_page(s_page
);
1465 zeros_only
= do_copy_page(dst
, page_address(s_page
));
1466 hibernate_unmap_page(s_page
);
1471 #ifdef CONFIG_HIGHMEM
1472 static inline struct page
*page_is_saveable(struct zone
*zone
, unsigned long pfn
)
1474 return is_highmem(zone
) ?
1475 saveable_highmem_page(zone
, pfn
) : saveable_page(zone
, pfn
);
1478 static bool copy_data_page(unsigned long dst_pfn
, unsigned long src_pfn
)
1480 struct page
*s_page
, *d_page
;
1484 s_page
= pfn_to_page(src_pfn
);
1485 d_page
= pfn_to_page(dst_pfn
);
1486 if (PageHighMem(s_page
)) {
1487 src
= kmap_local_page(s_page
);
1488 dst
= kmap_local_page(d_page
);
1489 zeros_only
= do_copy_page(dst
, src
);
1493 if (PageHighMem(d_page
)) {
1495 * The page pointed to by src may contain some kernel
1496 * data modified by kmap_atomic()
1498 zeros_only
= safe_copy_page(buffer
, s_page
);
1499 dst
= kmap_local_page(d_page
);
1500 copy_page(dst
, buffer
);
1503 zeros_only
= safe_copy_page(page_address(d_page
), s_page
);
1509 #define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1511 static inline int copy_data_page(unsigned long dst_pfn
, unsigned long src_pfn
)
1513 return safe_copy_page(page_address(pfn_to_page(dst_pfn
)),
1514 pfn_to_page(src_pfn
));
1516 #endif /* CONFIG_HIGHMEM */
1519 * Copy data pages will copy all pages into pages pulled from the copy_bm.
1520 * If a page was entirely filled with zeros it will be marked in the zero_bm.
1522 * Returns the number of pages copied.
1524 static unsigned long copy_data_pages(struct memory_bitmap
*copy_bm
,
1525 struct memory_bitmap
*orig_bm
,
1526 struct memory_bitmap
*zero_bm
)
1528 unsigned long copied_pages
= 0;
1530 unsigned long pfn
, copy_pfn
;
1532 for_each_populated_zone(zone
) {
1533 unsigned long max_zone_pfn
;
1535 mark_free_pages(zone
);
1536 max_zone_pfn
= zone_end_pfn(zone
);
1537 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1538 if (page_is_saveable(zone
, pfn
))
1539 memory_bm_set_bit(orig_bm
, pfn
);
1541 memory_bm_position_reset(orig_bm
);
1542 memory_bm_position_reset(copy_bm
);
1543 copy_pfn
= memory_bm_next_pfn(copy_bm
);
1545 pfn
= memory_bm_next_pfn(orig_bm
);
1546 if (unlikely(pfn
== BM_END_OF_MAP
))
1548 if (copy_data_page(copy_pfn
, pfn
)) {
1549 memory_bm_set_bit(zero_bm
, pfn
);
1550 /* Use this copy_pfn for a page that is not full of zeros */
1554 copy_pfn
= memory_bm_next_pfn(copy_bm
);
1556 return copied_pages
;
1559 /* Total number of image pages */
1560 static unsigned int nr_copy_pages
;
1561 /* Number of pages needed for saving the original pfns of the image pages */
1562 static unsigned int nr_meta_pages
;
1563 /* Number of zero pages */
1564 static unsigned int nr_zero_pages
;
1567 * Numbers of normal and highmem page frames allocated for hibernation image
1568 * before suspending devices.
1570 static unsigned int alloc_normal
, alloc_highmem
;
1572 * Memory bitmap used for marking saveable pages (during hibernation) or
1573 * hibernation image pages (during restore)
1575 static struct memory_bitmap orig_bm
;
1577 * Memory bitmap used during hibernation for marking allocated page frames that
1578 * will contain copies of saveable pages. During restore it is initially used
1579 * for marking hibernation image pages, but then the set bits from it are
1580 * duplicated in @orig_bm and it is released. On highmem systems it is next
1581 * used for marking "safe" highmem pages, but it has to be reinitialized for
1584 static struct memory_bitmap copy_bm
;
1586 /* Memory bitmap which tracks which saveable pages were zero filled. */
1587 static struct memory_bitmap zero_bm
;
1590 * swsusp_free - Free pages allocated for hibernation image.
1592 * Image pages are allocated before snapshot creation, so they need to be
1593 * released after resume.
1595 void swsusp_free(void)
1597 unsigned long fb_pfn
, fr_pfn
;
1599 if (!forbidden_pages_map
|| !free_pages_map
)
1602 memory_bm_position_reset(forbidden_pages_map
);
1603 memory_bm_position_reset(free_pages_map
);
1606 fr_pfn
= memory_bm_next_pfn(free_pages_map
);
1607 fb_pfn
= memory_bm_next_pfn(forbidden_pages_map
);
1610 * Find the next bit set in both bitmaps. This is guaranteed to
1611 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1614 if (fb_pfn
< fr_pfn
)
1615 fb_pfn
= memory_bm_next_pfn(forbidden_pages_map
);
1616 if (fr_pfn
< fb_pfn
)
1617 fr_pfn
= memory_bm_next_pfn(free_pages_map
);
1618 } while (fb_pfn
!= fr_pfn
);
1620 if (fr_pfn
!= BM_END_OF_MAP
&& pfn_valid(fr_pfn
)) {
1621 struct page
*page
= pfn_to_page(fr_pfn
);
1623 memory_bm_clear_current(forbidden_pages_map
);
1624 memory_bm_clear_current(free_pages_map
);
1625 hibernate_restore_unprotect_page(page_address(page
));
1634 restore_pblist
= NULL
;
1638 hibernate_restore_protection_end();
1641 /* Helper functions used for the shrinking of memory. */
1643 #define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1646 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1647 * @nr_pages: Number of page frames to allocate.
1648 * @mask: GFP flags to use for the allocation.
1650 * Return value: Number of page frames actually allocated
1652 static unsigned long preallocate_image_pages(unsigned long nr_pages
, gfp_t mask
)
1654 unsigned long nr_alloc
= 0;
1656 while (nr_pages
> 0) {
1659 page
= alloc_image_page(mask
);
1662 memory_bm_set_bit(©_bm
, page_to_pfn(page
));
1663 if (PageHighMem(page
))
1674 static unsigned long preallocate_image_memory(unsigned long nr_pages
,
1675 unsigned long avail_normal
)
1677 unsigned long alloc
;
1679 if (avail_normal
<= alloc_normal
)
1682 alloc
= avail_normal
- alloc_normal
;
1683 if (nr_pages
< alloc
)
1686 return preallocate_image_pages(alloc
, GFP_IMAGE
);
1689 #ifdef CONFIG_HIGHMEM
1690 static unsigned long preallocate_image_highmem(unsigned long nr_pages
)
1692 return preallocate_image_pages(nr_pages
, GFP_IMAGE
| __GFP_HIGHMEM
);
1696 * __fraction - Compute (an approximation of) x * (multiplier / base).
1698 static unsigned long __fraction(u64 x
, u64 multiplier
, u64 base
)
1700 return div64_u64(x
* multiplier
, base
);
1703 static unsigned long preallocate_highmem_fraction(unsigned long nr_pages
,
1704 unsigned long highmem
,
1705 unsigned long total
)
1707 unsigned long alloc
= __fraction(nr_pages
, highmem
, total
);
1709 return preallocate_image_pages(alloc
, GFP_IMAGE
| __GFP_HIGHMEM
);
1711 #else /* CONFIG_HIGHMEM */
1712 static inline unsigned long preallocate_image_highmem(unsigned long nr_pages
)
1717 static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages
,
1718 unsigned long highmem
,
1719 unsigned long total
)
1723 #endif /* CONFIG_HIGHMEM */
1726 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1728 static unsigned long free_unnecessary_pages(void)
1730 unsigned long save
, to_free_normal
, to_free_highmem
, free
;
1732 save
= count_data_pages();
1733 if (alloc_normal
>= save
) {
1734 to_free_normal
= alloc_normal
- save
;
1738 save
-= alloc_normal
;
1740 save
+= count_highmem_pages();
1741 if (alloc_highmem
>= save
) {
1742 to_free_highmem
= alloc_highmem
- save
;
1744 to_free_highmem
= 0;
1745 save
-= alloc_highmem
;
1746 if (to_free_normal
> save
)
1747 to_free_normal
-= save
;
1751 free
= to_free_normal
+ to_free_highmem
;
1753 memory_bm_position_reset(©_bm
);
1755 while (to_free_normal
> 0 || to_free_highmem
> 0) {
1756 unsigned long pfn
= memory_bm_next_pfn(©_bm
);
1757 struct page
*page
= pfn_to_page(pfn
);
1759 if (PageHighMem(page
)) {
1760 if (!to_free_highmem
)
1765 if (!to_free_normal
)
1770 memory_bm_clear_bit(©_bm
, pfn
);
1771 swsusp_unset_page_forbidden(page
);
1772 swsusp_unset_page_free(page
);
1780 * minimum_image_size - Estimate the minimum acceptable size of an image.
1781 * @saveable: Number of saveable pages in the system.
1783 * We want to avoid attempting to free too much memory too hard, so estimate the
1784 * minimum acceptable size of a hibernation image to use as the lower limit for
1785 * preallocating memory.
1787 * We assume that the minimum image size should be proportional to
1789 * [number of saveable pages] - [number of pages that can be freed in theory]
1791 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1792 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1794 static unsigned long minimum_image_size(unsigned long saveable
)
1798 size
= global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B
)
1799 + global_node_page_state(NR_ACTIVE_ANON
)
1800 + global_node_page_state(NR_INACTIVE_ANON
)
1801 + global_node_page_state(NR_ACTIVE_FILE
)
1802 + global_node_page_state(NR_INACTIVE_FILE
);
1804 return saveable
<= size
? 0 : saveable
- size
;
1808 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1810 * To create a hibernation image it is necessary to make a copy of every page
1811 * frame in use. We also need a number of page frames to be free during
1812 * hibernation for allocations made while saving the image and for device
1813 * drivers, in case they need to allocate memory from their hibernation
1814 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1815 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1816 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1817 * total number of available page frames and allocate at least
1819 * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1820 * - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1822 * of them, which corresponds to the maximum size of a hibernation image.
1824 * If image_size is set below the number following from the above formula,
1825 * the preallocation of memory is continued until the total number of saveable
1826 * pages in the system is below the requested image size or the minimum
1827 * acceptable image size returned by minimum_image_size(), whichever is greater.
1829 int hibernate_preallocate_memory(void)
1832 unsigned long saveable
, size
, max_size
, count
, highmem
, pages
= 0;
1833 unsigned long alloc
, save_highmem
, pages_highmem
, avail_normal
;
1834 ktime_t start
, stop
;
1837 pr_info("Preallocating image memory\n");
1838 start
= ktime_get();
1840 error
= memory_bm_create(&orig_bm
, GFP_IMAGE
, PG_ANY
);
1842 pr_err("Cannot allocate original bitmap\n");
1846 error
= memory_bm_create(©_bm
, GFP_IMAGE
, PG_ANY
);
1848 pr_err("Cannot allocate copy bitmap\n");
1852 error
= memory_bm_create(&zero_bm
, GFP_IMAGE
, PG_ANY
);
1854 pr_err("Cannot allocate zero bitmap\n");
1862 /* Count the number of saveable data pages. */
1863 save_highmem
= count_highmem_pages();
1864 saveable
= count_data_pages();
1867 * Compute the total number of page frames we can use (count) and the
1868 * number of pages needed for image metadata (size).
1871 saveable
+= save_highmem
;
1872 highmem
= save_highmem
;
1874 for_each_populated_zone(zone
) {
1875 size
+= snapshot_additional_pages(zone
);
1876 if (is_highmem(zone
))
1877 highmem
+= zone_page_state(zone
, NR_FREE_PAGES
);
1879 count
+= zone_page_state(zone
, NR_FREE_PAGES
);
1881 avail_normal
= count
;
1883 count
-= totalreserve_pages
;
1885 /* Compute the maximum number of saveable pages to leave in memory. */
1886 max_size
= (count
- (size
+ PAGES_FOR_IO
)) / 2
1887 - 2 * DIV_ROUND_UP(reserved_size
, PAGE_SIZE
);
1888 /* Compute the desired number of image pages specified by image_size. */
1889 size
= DIV_ROUND_UP(image_size
, PAGE_SIZE
);
1890 if (size
> max_size
)
1893 * If the desired number of image pages is at least as large as the
1894 * current number of saveable pages in memory, allocate page frames for
1895 * the image and we're done.
1897 if (size
>= saveable
) {
1898 pages
= preallocate_image_highmem(save_highmem
);
1899 pages
+= preallocate_image_memory(saveable
- pages
, avail_normal
);
1903 /* Estimate the minimum size of the image. */
1904 pages
= minimum_image_size(saveable
);
1906 * To avoid excessive pressure on the normal zone, leave room in it to
1907 * accommodate an image of the minimum size (unless it's already too
1908 * small, in which case don't preallocate pages from it at all).
1910 if (avail_normal
> pages
)
1911 avail_normal
-= pages
;
1915 size
= min_t(unsigned long, pages
, max_size
);
1918 * Let the memory management subsystem know that we're going to need a
1919 * large number of page frames to allocate and make it free some memory.
1920 * NOTE: If this is not done, performance will be hurt badly in some
1923 shrink_all_memory(saveable
- size
);
1926 * The number of saveable pages in memory was too high, so apply some
1927 * pressure to decrease it. First, make room for the largest possible
1928 * image and fail if that doesn't work. Next, try to decrease the size
1929 * of the image as much as indicated by 'size' using allocations from
1930 * highmem and non-highmem zones separately.
1932 pages_highmem
= preallocate_image_highmem(highmem
/ 2);
1933 alloc
= count
- max_size
;
1934 if (alloc
> pages_highmem
)
1935 alloc
-= pages_highmem
;
1938 pages
= preallocate_image_memory(alloc
, avail_normal
);
1939 if (pages
< alloc
) {
1940 /* We have exhausted non-highmem pages, try highmem. */
1942 pages
+= pages_highmem
;
1943 pages_highmem
= preallocate_image_highmem(alloc
);
1944 if (pages_highmem
< alloc
) {
1945 pr_err("Image allocation is %lu pages short\n",
1946 alloc
- pages_highmem
);
1949 pages
+= pages_highmem
;
1951 * size is the desired number of saveable pages to leave in
1952 * memory, so try to preallocate (all memory - size) pages.
1954 alloc
= (count
- pages
) - size
;
1955 pages
+= preallocate_image_highmem(alloc
);
1958 * There are approximately max_size saveable pages at this point
1959 * and we want to reduce this number down to size.
1961 alloc
= max_size
- size
;
1962 size
= preallocate_highmem_fraction(alloc
, highmem
, count
);
1963 pages_highmem
+= size
;
1965 size
= preallocate_image_memory(alloc
, avail_normal
);
1966 pages_highmem
+= preallocate_image_highmem(alloc
- size
);
1967 pages
+= pages_highmem
+ size
;
1971 * We only need as many page frames for the image as there are saveable
1972 * pages in memory, but we have allocated more. Release the excessive
1975 pages
-= free_unnecessary_pages();
1979 pr_info("Allocated %lu pages for snapshot\n", pages
);
1980 swsusp_show_speed(start
, stop
, pages
, "Allocated");
1989 #ifdef CONFIG_HIGHMEM
1991 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1993 * Compute the number of non-highmem pages that will be necessary for creating
1994 * copies of highmem pages.
1996 static unsigned int count_pages_for_highmem(unsigned int nr_highmem
)
1998 unsigned int free_highmem
= count_free_highmem_pages() + alloc_highmem
;
2000 if (free_highmem
>= nr_highmem
)
2003 nr_highmem
-= free_highmem
;
2008 static unsigned int count_pages_for_highmem(unsigned int nr_highmem
) { return 0; }
2009 #endif /* CONFIG_HIGHMEM */
2012 * enough_free_mem - Check if there is enough free memory for the image.
2014 static int enough_free_mem(unsigned int nr_pages
, unsigned int nr_highmem
)
2017 unsigned int free
= alloc_normal
;
2019 for_each_populated_zone(zone
)
2020 if (!is_highmem(zone
))
2021 free
+= zone_page_state(zone
, NR_FREE_PAGES
);
2023 nr_pages
+= count_pages_for_highmem(nr_highmem
);
2024 pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
2025 nr_pages
, PAGES_FOR_IO
, free
);
2027 return free
> nr_pages
+ PAGES_FOR_IO
;
2030 #ifdef CONFIG_HIGHMEM
2032 * get_highmem_buffer - Allocate a buffer for highmem pages.
2034 * If there are some highmem pages in the hibernation image, we may need a
2035 * buffer to copy them and/or load their data.
2037 static inline int get_highmem_buffer(int safe_needed
)
2039 buffer
= get_image_page(GFP_ATOMIC
, safe_needed
);
2040 return buffer
? 0 : -ENOMEM
;
2044 * alloc_highmem_pages - Allocate some highmem pages for the image.
2046 * Try to allocate as many pages as needed, but if the number of free highmem
2047 * pages is less than that, allocate them all.
2049 static inline unsigned int alloc_highmem_pages(struct memory_bitmap
*bm
,
2050 unsigned int nr_highmem
)
2052 unsigned int to_alloc
= count_free_highmem_pages();
2054 if (to_alloc
> nr_highmem
)
2055 to_alloc
= nr_highmem
;
2057 nr_highmem
-= to_alloc
;
2058 while (to_alloc
-- > 0) {
2061 page
= alloc_image_page(__GFP_HIGHMEM
|__GFP_KSWAPD_RECLAIM
);
2062 memory_bm_set_bit(bm
, page_to_pfn(page
));
2067 static inline int get_highmem_buffer(int safe_needed
) { return 0; }
2069 static inline unsigned int alloc_highmem_pages(struct memory_bitmap
*bm
,
2070 unsigned int n
) { return 0; }
2071 #endif /* CONFIG_HIGHMEM */
2074 * swsusp_alloc - Allocate memory for hibernation image.
2076 * We first try to allocate as many highmem pages as there are
2077 * saveable highmem pages in the system. If that fails, we allocate
2078 * non-highmem pages for the copies of the remaining highmem ones.
2080 * In this approach it is likely that the copies of highmem pages will
2081 * also be located in the high memory, because of the way in which
2082 * copy_data_pages() works.
2084 static int swsusp_alloc(struct memory_bitmap
*copy_bm
,
2085 unsigned int nr_pages
, unsigned int nr_highmem
)
2087 if (nr_highmem
> 0) {
2088 if (get_highmem_buffer(PG_ANY
))
2090 if (nr_highmem
> alloc_highmem
) {
2091 nr_highmem
-= alloc_highmem
;
2092 nr_pages
+= alloc_highmem_pages(copy_bm
, nr_highmem
);
2095 if (nr_pages
> alloc_normal
) {
2096 nr_pages
-= alloc_normal
;
2097 while (nr_pages
-- > 0) {
2100 page
= alloc_image_page(GFP_ATOMIC
);
2103 memory_bm_set_bit(copy_bm
, page_to_pfn(page
));
2114 asmlinkage __visible
int swsusp_save(void)
2116 unsigned int nr_pages
, nr_highmem
;
2118 pr_info("Creating image:\n");
2120 drain_local_pages(NULL
);
2121 nr_pages
= count_data_pages();
2122 nr_highmem
= count_highmem_pages();
2123 pr_info("Need to copy %u pages\n", nr_pages
+ nr_highmem
);
2125 if (!enough_free_mem(nr_pages
, nr_highmem
)) {
2126 pr_err("Not enough free memory\n");
2130 if (swsusp_alloc(©_bm
, nr_pages
, nr_highmem
)) {
2131 pr_err("Memory allocation failed\n");
2136 * During allocating of suspend pagedir, new cold pages may appear.
2139 drain_local_pages(NULL
);
2140 nr_copy_pages
= copy_data_pages(©_bm
, &orig_bm
, &zero_bm
);
2143 * End of critical section. From now on, we can write to memory,
2144 * but we should not touch disk. This specially means we must _not_
2145 * touch swap space! Except we must write out our image of course.
2147 nr_pages
+= nr_highmem
;
2148 /* We don't actually copy the zero pages */
2149 nr_zero_pages
= nr_pages
- nr_copy_pages
;
2150 nr_meta_pages
= DIV_ROUND_UP(nr_pages
* sizeof(long), PAGE_SIZE
);
2152 pr_info("Image created (%d pages copied, %d zero pages)\n", nr_copy_pages
, nr_zero_pages
);
2157 #ifndef CONFIG_ARCH_HIBERNATION_HEADER
2158 static int init_header_complete(struct swsusp_info
*info
)
2160 memcpy(&info
->uts
, init_utsname(), sizeof(struct new_utsname
));
2161 info
->version_code
= LINUX_VERSION_CODE
;
2165 static const char *check_image_kernel(struct swsusp_info
*info
)
2167 if (info
->version_code
!= LINUX_VERSION_CODE
)
2168 return "kernel version";
2169 if (strcmp(info
->uts
.sysname
,init_utsname()->sysname
))
2170 return "system type";
2171 if (strcmp(info
->uts
.release
,init_utsname()->release
))
2172 return "kernel release";
2173 if (strcmp(info
->uts
.version
,init_utsname()->version
))
2175 if (strcmp(info
->uts
.machine
,init_utsname()->machine
))
2179 #endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2181 unsigned long snapshot_get_image_size(void)
2183 return nr_copy_pages
+ nr_meta_pages
+ 1;
2186 static int init_header(struct swsusp_info
*info
)
2188 memset(info
, 0, sizeof(struct swsusp_info
));
2189 info
->num_physpages
= get_num_physpages();
2190 info
->image_pages
= nr_copy_pages
;
2191 info
->pages
= snapshot_get_image_size();
2192 info
->size
= info
->pages
;
2193 info
->size
<<= PAGE_SHIFT
;
2194 return init_header_complete(info
);
2197 #define ENCODED_PFN_ZERO_FLAG ((unsigned long)1 << (BITS_PER_LONG - 1))
2198 #define ENCODED_PFN_MASK (~ENCODED_PFN_ZERO_FLAG)
2201 * pack_pfns - Prepare PFNs for saving.
2202 * @bm: Memory bitmap.
2203 * @buf: Memory buffer to store the PFNs in.
2204 * @zero_bm: Memory bitmap containing PFNs of zero pages.
2206 * PFNs corresponding to set bits in @bm are stored in the area of memory
2207 * pointed to by @buf (1 page at a time). Pages which were filled with only
2208 * zeros will have the highest bit set in the packed format to distinguish
2209 * them from PFNs which will be contained in the image file.
2211 static inline void pack_pfns(unsigned long *buf
, struct memory_bitmap
*bm
,
2212 struct memory_bitmap
*zero_bm
)
2216 for (j
= 0; j
< PAGE_SIZE
/ sizeof(long); j
++) {
2217 buf
[j
] = memory_bm_next_pfn(bm
);
2218 if (unlikely(buf
[j
] == BM_END_OF_MAP
))
2220 if (memory_bm_test_bit(zero_bm
, buf
[j
]))
2221 buf
[j
] |= ENCODED_PFN_ZERO_FLAG
;
2226 * snapshot_read_next - Get the address to read the next image page from.
2227 * @handle: Snapshot handle to be used for the reading.
2229 * On the first call, @handle should point to a zeroed snapshot_handle
2230 * structure. The structure gets populated then and a pointer to it should be
2231 * passed to this function every next time.
2233 * On success, the function returns a positive number. Then, the caller
2234 * is allowed to read up to the returned number of bytes from the memory
2235 * location computed by the data_of() macro.
2237 * The function returns 0 to indicate the end of the data stream condition,
2238 * and negative numbers are returned on errors. If that happens, the structure
2239 * pointed to by @handle is not updated and should not be used any more.
2241 int snapshot_read_next(struct snapshot_handle
*handle
)
2243 if (handle
->cur
> nr_meta_pages
+ nr_copy_pages
)
2247 /* This makes the buffer be freed by swsusp_free() */
2248 buffer
= get_image_page(GFP_ATOMIC
, PG_ANY
);
2255 error
= init_header((struct swsusp_info
*)buffer
);
2258 handle
->buffer
= buffer
;
2259 memory_bm_position_reset(&orig_bm
);
2260 memory_bm_position_reset(©_bm
);
2261 } else if (handle
->cur
<= nr_meta_pages
) {
2263 pack_pfns(buffer
, &orig_bm
, &zero_bm
);
2267 page
= pfn_to_page(memory_bm_next_pfn(©_bm
));
2268 if (PageHighMem(page
)) {
2270 * Highmem pages are copied to the buffer,
2271 * because we can't return with a kmapped
2272 * highmem page (we may not be called again).
2276 kaddr
= kmap_atomic(page
);
2277 copy_page(buffer
, kaddr
);
2278 kunmap_atomic(kaddr
);
2279 handle
->buffer
= buffer
;
2281 handle
->buffer
= page_address(page
);
2288 static void duplicate_memory_bitmap(struct memory_bitmap
*dst
,
2289 struct memory_bitmap
*src
)
2293 memory_bm_position_reset(src
);
2294 pfn
= memory_bm_next_pfn(src
);
2295 while (pfn
!= BM_END_OF_MAP
) {
2296 memory_bm_set_bit(dst
, pfn
);
2297 pfn
= memory_bm_next_pfn(src
);
2302 * mark_unsafe_pages - Mark pages that were used before hibernation.
2304 * Mark the pages that cannot be used for storing the image during restoration,
2305 * because they conflict with the pages that had been used before hibernation.
2307 static void mark_unsafe_pages(struct memory_bitmap
*bm
)
2311 /* Clear the "free"/"unsafe" bit for all PFNs */
2312 memory_bm_position_reset(free_pages_map
);
2313 pfn
= memory_bm_next_pfn(free_pages_map
);
2314 while (pfn
!= BM_END_OF_MAP
) {
2315 memory_bm_clear_current(free_pages_map
);
2316 pfn
= memory_bm_next_pfn(free_pages_map
);
2319 /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2320 duplicate_memory_bitmap(free_pages_map
, bm
);
2322 allocated_unsafe_pages
= 0;
2325 static int check_header(struct swsusp_info
*info
)
2329 reason
= check_image_kernel(info
);
2330 if (!reason
&& info
->num_physpages
!= get_num_physpages())
2331 reason
= "memory size";
2333 pr_err("Image mismatch: %s\n", reason
);
2340 * load_header - Check the image header and copy the data from it.
2342 static int load_header(struct swsusp_info
*info
)
2346 restore_pblist
= NULL
;
2347 error
= check_header(info
);
2349 nr_copy_pages
= info
->image_pages
;
2350 nr_meta_pages
= info
->pages
- info
->image_pages
- 1;
2356 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2357 * @bm: Memory bitmap.
2358 * @buf: Area of memory containing the PFNs.
2359 * @zero_bm: Memory bitmap with the zero PFNs marked.
2361 * For each element of the array pointed to by @buf (1 page at a time), set the
2362 * corresponding bit in @bm. If the page was originally populated with only
2363 * zeros then a corresponding bit will also be set in @zero_bm.
2365 static int unpack_orig_pfns(unsigned long *buf
, struct memory_bitmap
*bm
,
2366 struct memory_bitmap
*zero_bm
)
2368 unsigned long decoded_pfn
;
2372 for (j
= 0; j
< PAGE_SIZE
/ sizeof(long); j
++) {
2373 if (unlikely(buf
[j
] == BM_END_OF_MAP
))
2376 zero
= !!(buf
[j
] & ENCODED_PFN_ZERO_FLAG
);
2377 decoded_pfn
= buf
[j
] & ENCODED_PFN_MASK
;
2378 if (pfn_valid(decoded_pfn
) && memory_bm_pfn_present(bm
, decoded_pfn
)) {
2379 memory_bm_set_bit(bm
, decoded_pfn
);
2381 memory_bm_set_bit(zero_bm
, decoded_pfn
);
2385 if (!pfn_valid(decoded_pfn
))
2386 pr_err(FW_BUG
"Memory map mismatch at 0x%llx after hibernation\n",
2387 (unsigned long long)PFN_PHYS(decoded_pfn
));
2395 #ifdef CONFIG_HIGHMEM
2397 * struct highmem_pbe is used for creating the list of highmem pages that
2398 * should be restored atomically during the resume from disk, because the page
2399 * frames they have occupied before the suspend are in use.
2401 struct highmem_pbe
{
2402 struct page
*copy_page
; /* data is here now */
2403 struct page
*orig_page
; /* data was here before the suspend */
2404 struct highmem_pbe
*next
;
2408 * List of highmem PBEs needed for restoring the highmem pages that were
2409 * allocated before the suspend and included in the suspend image, but have
2410 * also been allocated by the "resume" kernel, so their contents cannot be
2411 * written directly to their "original" page frames.
2413 static struct highmem_pbe
*highmem_pblist
;
2416 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2417 * @bm: Memory bitmap.
2419 * The bits in @bm that correspond to image pages are assumed to be set.
2421 static unsigned int count_highmem_image_pages(struct memory_bitmap
*bm
)
2424 unsigned int cnt
= 0;
2426 memory_bm_position_reset(bm
);
2427 pfn
= memory_bm_next_pfn(bm
);
2428 while (pfn
!= BM_END_OF_MAP
) {
2429 if (PageHighMem(pfn_to_page(pfn
)))
2432 pfn
= memory_bm_next_pfn(bm
);
2437 static unsigned int safe_highmem_pages
;
2439 static struct memory_bitmap
*safe_highmem_bm
;
2442 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2443 * @bm: Pointer to an uninitialized memory bitmap structure.
2444 * @nr_highmem_p: Pointer to the number of highmem image pages.
2446 * Try to allocate as many highmem pages as there are highmem image pages
2447 * (@nr_highmem_p points to the variable containing the number of highmem image
2448 * pages). The pages that are "safe" (ie. will not be overwritten when the
2449 * hibernation image is restored entirely) have the corresponding bits set in
2450 * @bm (it must be uninitialized).
2452 * NOTE: This function should not be called if there are no highmem image pages.
2454 static int prepare_highmem_image(struct memory_bitmap
*bm
,
2455 unsigned int *nr_highmem_p
)
2457 unsigned int to_alloc
;
2459 if (memory_bm_create(bm
, GFP_ATOMIC
, PG_SAFE
))
2462 if (get_highmem_buffer(PG_SAFE
))
2465 to_alloc
= count_free_highmem_pages();
2466 if (to_alloc
> *nr_highmem_p
)
2467 to_alloc
= *nr_highmem_p
;
2469 *nr_highmem_p
= to_alloc
;
2471 safe_highmem_pages
= 0;
2472 while (to_alloc
-- > 0) {
2475 page
= alloc_page(__GFP_HIGHMEM
);
2476 if (!swsusp_page_is_free(page
)) {
2477 /* The page is "safe", set its bit the bitmap */
2478 memory_bm_set_bit(bm
, page_to_pfn(page
));
2479 safe_highmem_pages
++;
2481 /* Mark the page as allocated */
2482 swsusp_set_page_forbidden(page
);
2483 swsusp_set_page_free(page
);
2485 memory_bm_position_reset(bm
);
2486 safe_highmem_bm
= bm
;
2490 static struct page
*last_highmem_page
;
2493 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2495 * For a given highmem image page get a buffer that suspend_write_next() should
2496 * return to its caller to write to.
2498 * If the page is to be saved to its "original" page frame or a copy of
2499 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2500 * the copy of the page is to be made in normal memory, so the address of
2501 * the copy is returned.
2503 * If @buffer is returned, the caller of suspend_write_next() will write
2504 * the page's contents to @buffer, so they will have to be copied to the
2505 * right location on the next call to suspend_write_next() and it is done
2506 * with the help of copy_last_highmem_page(). For this purpose, if
2507 * @buffer is returned, @last_highmem_page is set to the page to which
2508 * the data will have to be copied from @buffer.
2510 static void *get_highmem_page_buffer(struct page
*page
,
2511 struct chain_allocator
*ca
)
2513 struct highmem_pbe
*pbe
;
2516 if (swsusp_page_is_forbidden(page
) && swsusp_page_is_free(page
)) {
2518 * We have allocated the "original" page frame and we can
2519 * use it directly to store the loaded page.
2521 last_highmem_page
= page
;
2525 * The "original" page frame has not been allocated and we have to
2526 * use a "safe" page frame to store the loaded page.
2528 pbe
= chain_alloc(ca
, sizeof(struct highmem_pbe
));
2531 return ERR_PTR(-ENOMEM
);
2533 pbe
->orig_page
= page
;
2534 if (safe_highmem_pages
> 0) {
2537 /* Copy of the page will be stored in high memory */
2539 tmp
= pfn_to_page(memory_bm_next_pfn(safe_highmem_bm
));
2540 safe_highmem_pages
--;
2541 last_highmem_page
= tmp
;
2542 pbe
->copy_page
= tmp
;
2544 /* Copy of the page will be stored in normal memory */
2545 kaddr
= __get_safe_page(ca
->gfp_mask
);
2547 return ERR_PTR(-ENOMEM
);
2548 pbe
->copy_page
= virt_to_page(kaddr
);
2550 pbe
->next
= highmem_pblist
;
2551 highmem_pblist
= pbe
;
2556 * copy_last_highmem_page - Copy most the most recent highmem image page.
2558 * Copy the contents of a highmem image from @buffer, where the caller of
2559 * snapshot_write_next() has stored them, to the right location represented by
2560 * @last_highmem_page .
2562 static void copy_last_highmem_page(void)
2564 if (last_highmem_page
) {
2567 dst
= kmap_atomic(last_highmem_page
);
2568 copy_page(dst
, buffer
);
2570 last_highmem_page
= NULL
;
2574 static inline int last_highmem_page_copied(void)
2576 return !last_highmem_page
;
2579 static inline void free_highmem_data(void)
2581 if (safe_highmem_bm
)
2582 memory_bm_free(safe_highmem_bm
, PG_UNSAFE_CLEAR
);
2585 free_image_page(buffer
, PG_UNSAFE_CLEAR
);
2588 static unsigned int count_highmem_image_pages(struct memory_bitmap
*bm
) { return 0; }
2590 static inline int prepare_highmem_image(struct memory_bitmap
*bm
,
2591 unsigned int *nr_highmem_p
) { return 0; }
2593 static inline void *get_highmem_page_buffer(struct page
*page
,
2594 struct chain_allocator
*ca
)
2596 return ERR_PTR(-EINVAL
);
2599 static inline void copy_last_highmem_page(void) {}
2600 static inline int last_highmem_page_copied(void) { return 1; }
2601 static inline void free_highmem_data(void) {}
2602 #endif /* CONFIG_HIGHMEM */
2604 #define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2607 * prepare_image - Make room for loading hibernation image.
2608 * @new_bm: Uninitialized memory bitmap structure.
2609 * @bm: Memory bitmap with unsafe pages marked.
2610 * @zero_bm: Memory bitmap containing the zero pages.
2612 * Use @bm to mark the pages that will be overwritten in the process of
2613 * restoring the system memory state from the suspend image ("unsafe" pages)
2614 * and allocate memory for the image.
2616 * The idea is to allocate a new memory bitmap first and then allocate
2617 * as many pages as needed for image data, but without specifying what those
2618 * pages will be used for just yet. Instead, we mark them all as allocated and
2619 * create a lists of "safe" pages to be used later. On systems with high
2620 * memory a list of "safe" highmem pages is created too.
2622 * Because it was not known which pages were unsafe when @zero_bm was created,
2623 * make a copy of it and recreate it within safe pages.
2625 static int prepare_image(struct memory_bitmap
*new_bm
, struct memory_bitmap
*bm
,
2626 struct memory_bitmap
*zero_bm
)
2628 unsigned int nr_pages
, nr_highmem
;
2629 struct memory_bitmap tmp
;
2630 struct linked_page
*lp
;
2633 /* If there is no highmem, the buffer will not be necessary */
2634 free_image_page(buffer
, PG_UNSAFE_CLEAR
);
2637 nr_highmem
= count_highmem_image_pages(bm
);
2638 mark_unsafe_pages(bm
);
2640 error
= memory_bm_create(new_bm
, GFP_ATOMIC
, PG_SAFE
);
2644 duplicate_memory_bitmap(new_bm
, bm
);
2645 memory_bm_free(bm
, PG_UNSAFE_KEEP
);
2647 /* Make a copy of zero_bm so it can be created in safe pages */
2648 error
= memory_bm_create(&tmp
, GFP_ATOMIC
, PG_SAFE
);
2652 duplicate_memory_bitmap(&tmp
, zero_bm
);
2653 memory_bm_free(zero_bm
, PG_UNSAFE_KEEP
);
2655 /* Recreate zero_bm in safe pages */
2656 error
= memory_bm_create(zero_bm
, GFP_ATOMIC
, PG_SAFE
);
2660 duplicate_memory_bitmap(zero_bm
, &tmp
);
2661 memory_bm_free(&tmp
, PG_UNSAFE_CLEAR
);
2662 /* At this point zero_bm is in safe pages and it can be used for restoring. */
2664 if (nr_highmem
> 0) {
2665 error
= prepare_highmem_image(bm
, &nr_highmem
);
2670 * Reserve some safe pages for potential later use.
2672 * NOTE: This way we make sure there will be enough safe pages for the
2673 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2674 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2676 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2678 nr_pages
= (nr_zero_pages
+ nr_copy_pages
) - nr_highmem
- allocated_unsafe_pages
;
2679 nr_pages
= DIV_ROUND_UP(nr_pages
, PBES_PER_LINKED_PAGE
);
2680 while (nr_pages
> 0) {
2681 lp
= get_image_page(GFP_ATOMIC
, PG_SAFE
);
2686 lp
->next
= safe_pages_list
;
2687 safe_pages_list
= lp
;
2690 /* Preallocate memory for the image */
2691 nr_pages
= (nr_zero_pages
+ nr_copy_pages
) - nr_highmem
- allocated_unsafe_pages
;
2692 while (nr_pages
> 0) {
2693 lp
= (struct linked_page
*)get_zeroed_page(GFP_ATOMIC
);
2698 if (!swsusp_page_is_free(virt_to_page(lp
))) {
2699 /* The page is "safe", add it to the list */
2700 lp
->next
= safe_pages_list
;
2701 safe_pages_list
= lp
;
2703 /* Mark the page as allocated */
2704 swsusp_set_page_forbidden(virt_to_page(lp
));
2705 swsusp_set_page_free(virt_to_page(lp
));
2716 * get_buffer - Get the address to store the next image data page.
2718 * Get the address that snapshot_write_next() should return to its caller to
2721 static void *get_buffer(struct memory_bitmap
*bm
, struct chain_allocator
*ca
)
2725 unsigned long pfn
= memory_bm_next_pfn(bm
);
2727 if (pfn
== BM_END_OF_MAP
)
2728 return ERR_PTR(-EFAULT
);
2730 page
= pfn_to_page(pfn
);
2731 if (PageHighMem(page
))
2732 return get_highmem_page_buffer(page
, ca
);
2734 if (swsusp_page_is_forbidden(page
) && swsusp_page_is_free(page
))
2736 * We have allocated the "original" page frame and we can
2737 * use it directly to store the loaded page.
2739 return page_address(page
);
2742 * The "original" page frame has not been allocated and we have to
2743 * use a "safe" page frame to store the loaded page.
2745 pbe
= chain_alloc(ca
, sizeof(struct pbe
));
2748 return ERR_PTR(-ENOMEM
);
2750 pbe
->orig_address
= page_address(page
);
2751 pbe
->address
= __get_safe_page(ca
->gfp_mask
);
2753 return ERR_PTR(-ENOMEM
);
2754 pbe
->next
= restore_pblist
;
2755 restore_pblist
= pbe
;
2756 return pbe
->address
;
2760 * snapshot_write_next - Get the address to store the next image page.
2761 * @handle: Snapshot handle structure to guide the writing.
2763 * On the first call, @handle should point to a zeroed snapshot_handle
2764 * structure. The structure gets populated then and a pointer to it should be
2765 * passed to this function every next time.
2767 * On success, the function returns a positive number. Then, the caller
2768 * is allowed to write up to the returned number of bytes to the memory
2769 * location computed by the data_of() macro.
2771 * The function returns 0 to indicate the "end of file" condition. Negative
2772 * numbers are returned on errors, in which cases the structure pointed to by
2773 * @handle is not updated and should not be used any more.
2775 int snapshot_write_next(struct snapshot_handle
*handle
)
2777 static struct chain_allocator ca
;
2781 /* Check if we have already loaded the entire image */
2782 if (handle
->cur
> 1 && handle
->cur
> nr_meta_pages
+ nr_copy_pages
+ nr_zero_pages
)
2787 /* This makes the buffer be freed by swsusp_free() */
2788 buffer
= get_image_page(GFP_ATOMIC
, PG_ANY
);
2793 handle
->buffer
= buffer
;
2794 } else if (handle
->cur
== 1) {
2795 error
= load_header(buffer
);
2799 safe_pages_list
= NULL
;
2801 error
= memory_bm_create(©_bm
, GFP_ATOMIC
, PG_ANY
);
2805 error
= memory_bm_create(&zero_bm
, GFP_ATOMIC
, PG_ANY
);
2811 hibernate_restore_protection_begin();
2812 } else if (handle
->cur
<= nr_meta_pages
+ 1) {
2813 error
= unpack_orig_pfns(buffer
, ©_bm
, &zero_bm
);
2817 if (handle
->cur
== nr_meta_pages
+ 1) {
2818 error
= prepare_image(&orig_bm
, ©_bm
, &zero_bm
);
2822 chain_init(&ca
, GFP_ATOMIC
, PG_SAFE
);
2823 memory_bm_position_reset(&orig_bm
);
2824 memory_bm_position_reset(&zero_bm
);
2825 restore_pblist
= NULL
;
2826 handle
->buffer
= get_buffer(&orig_bm
, &ca
);
2827 if (IS_ERR(handle
->buffer
))
2828 return PTR_ERR(handle
->buffer
);
2831 copy_last_highmem_page();
2832 error
= hibernate_restore_protect_page(handle
->buffer
);
2835 handle
->buffer
= get_buffer(&orig_bm
, &ca
);
2836 if (IS_ERR(handle
->buffer
))
2837 return PTR_ERR(handle
->buffer
);
2839 handle
->sync_read
= (handle
->buffer
== buffer
);
2842 /* Zero pages were not included in the image, memset it and move on. */
2843 if (handle
->cur
> nr_meta_pages
+ 1 &&
2844 memory_bm_test_bit(&zero_bm
, memory_bm_get_current(&orig_bm
))) {
2845 memset(handle
->buffer
, 0, PAGE_SIZE
);
2853 * snapshot_write_finalize - Complete the loading of a hibernation image.
2855 * Must be called after the last call to snapshot_write_next() in case the last
2856 * page in the image happens to be a highmem page and its contents should be
2857 * stored in highmem. Additionally, it recycles bitmap memory that's not
2858 * necessary any more.
2860 int snapshot_write_finalize(struct snapshot_handle
*handle
)
2864 copy_last_highmem_page();
2865 error
= hibernate_restore_protect_page(handle
->buffer
);
2866 /* Do that only if we have loaded the image entirely */
2867 if (handle
->cur
> 1 && handle
->cur
> nr_meta_pages
+ nr_copy_pages
+ nr_zero_pages
) {
2868 memory_bm_recycle(&orig_bm
);
2869 free_highmem_data();
2874 int snapshot_image_loaded(struct snapshot_handle
*handle
)
2876 return !(!nr_copy_pages
|| !last_highmem_page_copied() ||
2877 handle
->cur
<= nr_meta_pages
+ nr_copy_pages
+ nr_zero_pages
);
2880 #ifdef CONFIG_HIGHMEM
2881 /* Assumes that @buf is ready and points to a "safe" page */
2882 static inline void swap_two_pages_data(struct page
*p1
, struct page
*p2
,
2885 void *kaddr1
, *kaddr2
;
2887 kaddr1
= kmap_atomic(p1
);
2888 kaddr2
= kmap_atomic(p2
);
2889 copy_page(buf
, kaddr1
);
2890 copy_page(kaddr1
, kaddr2
);
2891 copy_page(kaddr2
, buf
);
2892 kunmap_atomic(kaddr2
);
2893 kunmap_atomic(kaddr1
);
2897 * restore_highmem - Put highmem image pages into their original locations.
2899 * For each highmem page that was in use before hibernation and is included in
2900 * the image, and also has been allocated by the "restore" kernel, swap its
2901 * current contents with the previous (ie. "before hibernation") ones.
2903 * If the restore eventually fails, we can call this function once again and
2904 * restore the highmem state as seen by the restore kernel.
2906 int restore_highmem(void)
2908 struct highmem_pbe
*pbe
= highmem_pblist
;
2914 buf
= get_image_page(GFP_ATOMIC
, PG_SAFE
);
2919 swap_two_pages_data(pbe
->copy_page
, pbe
->orig_page
, buf
);
2922 free_image_page(buf
, PG_UNSAFE_CLEAR
);
2925 #endif /* CONFIG_HIGHMEM */