1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/power/swap.c
5 * This file provides functions for reading the suspend image from
6 * and writing it to a swap partition.
8 * Copyright (C) 1998,2001-2005 Pavel Machek <pavel@ucw.cz>
9 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
10 * Copyright (C) 2010-2012 Bojan Smojver <bojan@rexursive.com>
13 #define pr_fmt(fmt) "PM: " fmt
15 #include <linux/module.h>
16 #include <linux/file.h>
17 #include <linux/delay.h>
18 #include <linux/bitops.h>
19 #include <linux/device.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <linux/cpumask.h>
28 #include <linux/atomic.h>
29 #include <linux/kthread.h>
30 #include <linux/crc32.h>
31 #include <linux/ktime.h>
35 #define HIBERNATE_SIG "S1SUSPEND"
37 u32 swsusp_hardware_signature
;
40 * When reading an {un,}compressed image, we may restore pages in place,
41 * in which case some architectures need these pages cleaning before they
42 * can be executed. We don't know which pages these may be, so clean the lot.
44 static bool clean_pages_on_read
;
45 static bool clean_pages_on_decompress
;
48 * The swap map is a data structure used for keeping track of each page
49 * written to a swap partition. It consists of many swap_map_page
50 * structures that contain each an array of MAP_PAGE_ENTRIES swap entries.
51 * These structures are stored on the swap and linked together with the
52 * help of the .next_swap member.
54 * The swap map is created during suspend. The swap map pages are
55 * allocated and populated one at a time, so we only need one memory
56 * page to set up the entire structure.
58 * During resume we pick up all swap_map_page structures into a list.
61 #define MAP_PAGE_ENTRIES (PAGE_SIZE / sizeof(sector_t) - 1)
64 * Number of free pages that are not high.
66 static inline unsigned long low_free_pages(void)
68 return nr_free_pages() - nr_free_highpages();
72 * Number of pages required to be kept free while writing the image. Always
73 * half of all available low pages before the writing starts.
75 static inline unsigned long reqd_free_pages(void)
77 return low_free_pages() / 2;
80 struct swap_map_page
{
81 sector_t entries
[MAP_PAGE_ENTRIES
];
85 struct swap_map_page_list
{
86 struct swap_map_page
*map
;
87 struct swap_map_page_list
*next
;
91 * The swap_map_handle structure is used for handling swap in
95 struct swap_map_handle
{
96 struct swap_map_page
*cur
;
97 struct swap_map_page_list
*maps
;
99 sector_t first_sector
;
101 unsigned long reqd_free_pages
;
105 struct swsusp_header
{
106 char reserved
[PAGE_SIZE
- 20 - sizeof(sector_t
) - sizeof(int) -
107 sizeof(u32
) - sizeof(u32
)];
111 unsigned int flags
; /* Flags to pass to the "boot" kernel */
116 static struct swsusp_header
*swsusp_header
;
119 * The following functions are used for tracing the allocated
120 * swap pages, so that they can be freed in case of an error.
123 struct swsusp_extent
{
129 static struct rb_root swsusp_extents
= RB_ROOT
;
131 static int swsusp_extents_insert(unsigned long swap_offset
)
133 struct rb_node
**new = &(swsusp_extents
.rb_node
);
134 struct rb_node
*parent
= NULL
;
135 struct swsusp_extent
*ext
;
137 /* Figure out where to put the new node */
139 ext
= rb_entry(*new, struct swsusp_extent
, node
);
141 if (swap_offset
< ext
->start
) {
143 if (swap_offset
== ext
->start
- 1) {
147 new = &((*new)->rb_left
);
148 } else if (swap_offset
> ext
->end
) {
150 if (swap_offset
== ext
->end
+ 1) {
154 new = &((*new)->rb_right
);
156 /* It already is in the tree */
160 /* Add the new node and rebalance the tree. */
161 ext
= kzalloc(sizeof(struct swsusp_extent
), GFP_KERNEL
);
165 ext
->start
= swap_offset
;
166 ext
->end
= swap_offset
;
167 rb_link_node(&ext
->node
, parent
, new);
168 rb_insert_color(&ext
->node
, &swsusp_extents
);
173 * alloc_swapdev_block - allocate a swap page and register that it has
174 * been allocated, so that it can be freed in case of an error.
177 sector_t
alloc_swapdev_block(int swap
)
179 unsigned long offset
;
181 offset
= swp_offset(get_swap_page_of_type(swap
));
183 if (swsusp_extents_insert(offset
))
184 swap_free(swp_entry(swap
, offset
));
186 return swapdev_block(swap
, offset
);
192 * free_all_swap_pages - free swap pages allocated for saving image data.
193 * It also frees the extents used to register which swap entries had been
197 void free_all_swap_pages(int swap
)
199 struct rb_node
*node
;
201 while ((node
= swsusp_extents
.rb_node
)) {
202 struct swsusp_extent
*ext
;
204 ext
= rb_entry(node
, struct swsusp_extent
, node
);
205 rb_erase(node
, &swsusp_extents
);
206 swap_free_nr(swp_entry(swap
, ext
->start
),
207 ext
->end
- ext
->start
+ 1);
213 int swsusp_swap_in_use(void)
215 return (swsusp_extents
.rb_node
!= NULL
);
222 static unsigned short root_swap
= 0xffff;
223 static struct file
*hib_resume_bdev_file
;
225 struct hib_bio_batch
{
227 wait_queue_head_t wait
;
229 struct blk_plug plug
;
232 static void hib_init_batch(struct hib_bio_batch
*hb
)
234 atomic_set(&hb
->count
, 0);
235 init_waitqueue_head(&hb
->wait
);
236 hb
->error
= BLK_STS_OK
;
237 blk_start_plug(&hb
->plug
);
240 static void hib_finish_batch(struct hib_bio_batch
*hb
)
242 blk_finish_plug(&hb
->plug
);
245 static void hib_end_io(struct bio
*bio
)
247 struct hib_bio_batch
*hb
= bio
->bi_private
;
248 struct page
*page
= bio_first_page_all(bio
);
250 if (bio
->bi_status
) {
251 pr_alert("Read-error on swap-device (%u:%u:%Lu)\n",
252 MAJOR(bio_dev(bio
)), MINOR(bio_dev(bio
)),
253 (unsigned long long)bio
->bi_iter
.bi_sector
);
256 if (bio_data_dir(bio
) == WRITE
)
258 else if (clean_pages_on_read
)
259 flush_icache_range((unsigned long)page_address(page
),
260 (unsigned long)page_address(page
) + PAGE_SIZE
);
262 if (bio
->bi_status
&& !hb
->error
)
263 hb
->error
= bio
->bi_status
;
264 if (atomic_dec_and_test(&hb
->count
))
270 static int hib_submit_io(blk_opf_t opf
, pgoff_t page_off
, void *addr
,
271 struct hib_bio_batch
*hb
)
273 struct page
*page
= virt_to_page(addr
);
277 bio
= bio_alloc(file_bdev(hib_resume_bdev_file
), 1, opf
,
278 GFP_NOIO
| __GFP_HIGH
);
279 bio
->bi_iter
.bi_sector
= page_off
* (PAGE_SIZE
>> 9);
281 if (bio_add_page(bio
, page
, PAGE_SIZE
, 0) < PAGE_SIZE
) {
282 pr_err("Adding page to bio failed at %llu\n",
283 (unsigned long long)bio
->bi_iter
.bi_sector
);
289 bio
->bi_end_io
= hib_end_io
;
290 bio
->bi_private
= hb
;
291 atomic_inc(&hb
->count
);
294 error
= submit_bio_wait(bio
);
301 static int hib_wait_io(struct hib_bio_batch
*hb
)
304 * We are relying on the behavior of blk_plug that a thread with
305 * a plug will flush the plug list before sleeping.
307 wait_event(hb
->wait
, atomic_read(&hb
->count
) == 0);
308 return blk_status_to_errno(hb
->error
);
314 static int mark_swapfiles(struct swap_map_handle
*handle
, unsigned int flags
)
318 hib_submit_io(REQ_OP_READ
, swsusp_resume_block
, swsusp_header
, NULL
);
319 if (!memcmp("SWAP-SPACE",swsusp_header
->sig
, 10) ||
320 !memcmp("SWAPSPACE2",swsusp_header
->sig
, 10)) {
321 memcpy(swsusp_header
->orig_sig
,swsusp_header
->sig
, 10);
322 memcpy(swsusp_header
->sig
, HIBERNATE_SIG
, 10);
323 swsusp_header
->image
= handle
->first_sector
;
324 if (swsusp_hardware_signature
) {
325 swsusp_header
->hw_sig
= swsusp_hardware_signature
;
328 swsusp_header
->flags
= flags
;
329 if (flags
& SF_CRC32_MODE
)
330 swsusp_header
->crc32
= handle
->crc32
;
331 error
= hib_submit_io(REQ_OP_WRITE
| REQ_SYNC
,
332 swsusp_resume_block
, swsusp_header
, NULL
);
334 pr_err("Swap header not found!\n");
341 * Hold the swsusp_header flag. This is used in software_resume() in
342 * 'kernel/power/hibernate' to check if the image is compressed and query
343 * for the compression algorithm support(if so).
345 unsigned int swsusp_header_flags
;
348 * swsusp_swap_check - check if the resume device is a swap device
349 * and get its index (if so)
351 * This is called before saving image
353 static int swsusp_swap_check(void)
357 if (swsusp_resume_device
)
358 res
= swap_type_of(swsusp_resume_device
, swsusp_resume_block
);
360 res
= find_first_swap(&swsusp_resume_device
);
365 hib_resume_bdev_file
= bdev_file_open_by_dev(swsusp_resume_device
,
366 BLK_OPEN_WRITE
, NULL
, NULL
);
367 if (IS_ERR(hib_resume_bdev_file
))
368 return PTR_ERR(hib_resume_bdev_file
);
374 * write_page - Write one page to given swap location.
375 * @buf: Address we're writing.
376 * @offset: Offset of the swap page we're writing to.
377 * @hb: bio completion batch
380 static int write_page(void *buf
, sector_t offset
, struct hib_bio_batch
*hb
)
389 src
= (void *)__get_free_page(GFP_NOIO
| __GFP_NOWARN
|
394 ret
= hib_wait_io(hb
); /* Free pages */
397 src
= (void *)__get_free_page(GFP_NOIO
|
404 hb
= NULL
; /* Go synchronous */
411 return hib_submit_io(REQ_OP_WRITE
| REQ_SYNC
, offset
, src
, hb
);
414 static void release_swap_writer(struct swap_map_handle
*handle
)
417 free_page((unsigned long)handle
->cur
);
421 static int get_swap_writer(struct swap_map_handle
*handle
)
425 ret
= swsusp_swap_check();
428 pr_err("Cannot find swap device, try swapon -a\n");
431 handle
->cur
= (struct swap_map_page
*)get_zeroed_page(GFP_KERNEL
);
436 handle
->cur_swap
= alloc_swapdev_block(root_swap
);
437 if (!handle
->cur_swap
) {
442 handle
->reqd_free_pages
= reqd_free_pages();
443 handle
->first_sector
= handle
->cur_swap
;
446 release_swap_writer(handle
);
452 static int swap_write_page(struct swap_map_handle
*handle
, void *buf
,
453 struct hib_bio_batch
*hb
)
460 offset
= alloc_swapdev_block(root_swap
);
461 error
= write_page(buf
, offset
, hb
);
464 handle
->cur
->entries
[handle
->k
++] = offset
;
465 if (handle
->k
>= MAP_PAGE_ENTRIES
) {
466 offset
= alloc_swapdev_block(root_swap
);
469 handle
->cur
->next_swap
= offset
;
470 error
= write_page(handle
->cur
, handle
->cur_swap
, hb
);
473 clear_page(handle
->cur
);
474 handle
->cur_swap
= offset
;
477 if (hb
&& low_free_pages() <= handle
->reqd_free_pages
) {
478 error
= hib_wait_io(hb
);
482 * Recalculate the number of required free pages, to
483 * make sure we never take more than half.
485 handle
->reqd_free_pages
= reqd_free_pages();
492 static int flush_swap_writer(struct swap_map_handle
*handle
)
494 if (handle
->cur
&& handle
->cur_swap
)
495 return write_page(handle
->cur
, handle
->cur_swap
, NULL
);
500 static int swap_writer_finish(struct swap_map_handle
*handle
,
501 unsigned int flags
, int error
)
505 error
= mark_swapfiles(handle
, flags
);
507 flush_swap_writer(handle
);
511 free_all_swap_pages(root_swap
);
512 release_swap_writer(handle
);
519 * Bytes we need for compressed data in worst case. We assume(limitation)
520 * this is the worst of all the compression algorithms.
522 #define bytes_worst_compress(x) ((x) + ((x) / 16) + 64 + 3 + 2)
524 /* We need to remember how much compressed data we need to read. */
525 #define CMP_HEADER sizeof(size_t)
527 /* Number of pages/bytes we'll compress at one time. */
529 #define UNC_SIZE (UNC_PAGES * PAGE_SIZE)
531 /* Number of pages we need for compressed data (worst case). */
532 #define CMP_PAGES DIV_ROUND_UP(bytes_worst_compress(UNC_SIZE) + \
533 CMP_HEADER, PAGE_SIZE)
534 #define CMP_SIZE (CMP_PAGES * PAGE_SIZE)
536 /* Maximum number of threads for compression/decompression. */
537 #define CMP_THREADS 3
539 /* Minimum/maximum number of pages for read buffering. */
540 #define CMP_MIN_RD_PAGES 1024
541 #define CMP_MAX_RD_PAGES 8192
544 * save_image - save the suspend image data
547 static int save_image(struct swap_map_handle
*handle
,
548 struct snapshot_handle
*snapshot
,
549 unsigned int nr_to_write
)
555 struct hib_bio_batch hb
;
561 pr_info("Saving image data pages (%u pages)...\n",
563 m
= nr_to_write
/ 10;
569 ret
= snapshot_read_next(snapshot
);
572 ret
= swap_write_page(handle
, data_of(*snapshot
), &hb
);
576 pr_info("Image saving progress: %3d%%\n",
580 err2
= hib_wait_io(&hb
);
581 hib_finish_batch(&hb
);
586 pr_info("Image saving done\n");
587 swsusp_show_speed(start
, stop
, nr_to_write
, "Wrote");
592 * Structure used for CRC32.
595 struct task_struct
*thr
; /* thread */
596 atomic_t ready
; /* ready to start flag */
597 atomic_t stop
; /* ready to stop flag */
598 unsigned run_threads
; /* nr current threads */
599 wait_queue_head_t go
; /* start crc update */
600 wait_queue_head_t done
; /* crc update done */
601 u32
*crc32
; /* points to handle's crc32 */
602 size_t *unc_len
[CMP_THREADS
]; /* uncompressed lengths */
603 unsigned char *unc
[CMP_THREADS
]; /* uncompressed data */
607 * CRC32 update function that runs in its own thread.
609 static int crc32_threadfn(void *data
)
611 struct crc_data
*d
= data
;
615 wait_event(d
->go
, atomic_read_acquire(&d
->ready
) ||
616 kthread_should_stop());
617 if (kthread_should_stop()) {
619 atomic_set_release(&d
->stop
, 1);
623 atomic_set(&d
->ready
, 0);
625 for (i
= 0; i
< d
->run_threads
; i
++)
626 *d
->crc32
= crc32_le(*d
->crc32
,
627 d
->unc
[i
], *d
->unc_len
[i
]);
628 atomic_set_release(&d
->stop
, 1);
634 * Structure used for data compression.
637 struct task_struct
*thr
; /* thread */
638 struct crypto_comp
*cc
; /* crypto compressor stream */
639 atomic_t ready
; /* ready to start flag */
640 atomic_t stop
; /* ready to stop flag */
641 int ret
; /* return code */
642 wait_queue_head_t go
; /* start compression */
643 wait_queue_head_t done
; /* compression done */
644 size_t unc_len
; /* uncompressed length */
645 size_t cmp_len
; /* compressed length */
646 unsigned char unc
[UNC_SIZE
]; /* uncompressed buffer */
647 unsigned char cmp
[CMP_SIZE
]; /* compressed buffer */
650 /* Indicates the image size after compression */
651 static atomic_t compressed_size
= ATOMIC_INIT(0);
654 * Compression function that runs in its own thread.
656 static int compress_threadfn(void *data
)
658 struct cmp_data
*d
= data
;
659 unsigned int cmp_len
= 0;
662 wait_event(d
->go
, atomic_read_acquire(&d
->ready
) ||
663 kthread_should_stop());
664 if (kthread_should_stop()) {
667 atomic_set_release(&d
->stop
, 1);
671 atomic_set(&d
->ready
, 0);
673 cmp_len
= CMP_SIZE
- CMP_HEADER
;
674 d
->ret
= crypto_comp_compress(d
->cc
, d
->unc
, d
->unc_len
,
677 d
->cmp_len
= cmp_len
;
679 atomic_set(&compressed_size
, atomic_read(&compressed_size
) + d
->cmp_len
);
680 atomic_set_release(&d
->stop
, 1);
687 * save_compressed_image - Save the suspend image data after compression.
688 * @handle: Swap map handle to use for saving the image.
689 * @snapshot: Image to read data from.
690 * @nr_to_write: Number of pages to save.
692 static int save_compressed_image(struct swap_map_handle
*handle
,
693 struct snapshot_handle
*snapshot
,
694 unsigned int nr_to_write
)
700 struct hib_bio_batch hb
;
704 unsigned thr
, run_threads
, nr_threads
;
705 unsigned char *page
= NULL
;
706 struct cmp_data
*data
= NULL
;
707 struct crc_data
*crc
= NULL
;
711 atomic_set(&compressed_size
, 0);
714 * We'll limit the number of threads for compression to limit memory
717 nr_threads
= num_online_cpus() - 1;
718 nr_threads
= clamp_val(nr_threads
, 1, CMP_THREADS
);
720 page
= (void *)__get_free_page(GFP_NOIO
| __GFP_HIGH
);
722 pr_err("Failed to allocate %s page\n", hib_comp_algo
);
727 data
= vzalloc(array_size(nr_threads
, sizeof(*data
)));
729 pr_err("Failed to allocate %s data\n", hib_comp_algo
);
734 crc
= kzalloc(sizeof(*crc
), GFP_KERNEL
);
736 pr_err("Failed to allocate crc\n");
742 * Start the compression threads.
744 for (thr
= 0; thr
< nr_threads
; thr
++) {
745 init_waitqueue_head(&data
[thr
].go
);
746 init_waitqueue_head(&data
[thr
].done
);
748 data
[thr
].cc
= crypto_alloc_comp(hib_comp_algo
, 0, 0);
749 if (IS_ERR_OR_NULL(data
[thr
].cc
)) {
750 pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data
[thr
].cc
));
755 data
[thr
].thr
= kthread_run(compress_threadfn
,
757 "image_compress/%u", thr
);
758 if (IS_ERR(data
[thr
].thr
)) {
759 data
[thr
].thr
= NULL
;
760 pr_err("Cannot start compression threads\n");
767 * Start the CRC32 thread.
769 init_waitqueue_head(&crc
->go
);
770 init_waitqueue_head(&crc
->done
);
773 crc
->crc32
= &handle
->crc32
;
774 for (thr
= 0; thr
< nr_threads
; thr
++) {
775 crc
->unc
[thr
] = data
[thr
].unc
;
776 crc
->unc_len
[thr
] = &data
[thr
].unc_len
;
779 crc
->thr
= kthread_run(crc32_threadfn
, crc
, "image_crc32");
780 if (IS_ERR(crc
->thr
)) {
782 pr_err("Cannot start CRC32 thread\n");
788 * Adjust the number of required free pages after all allocations have
789 * been done. We don't want to run out of pages when writing.
791 handle
->reqd_free_pages
= reqd_free_pages();
793 pr_info("Using %u thread(s) for %s compression\n", nr_threads
, hib_comp_algo
);
794 pr_info("Compressing and saving image data (%u pages)...\n",
796 m
= nr_to_write
/ 10;
802 for (thr
= 0; thr
< nr_threads
; thr
++) {
803 for (off
= 0; off
< UNC_SIZE
; off
+= PAGE_SIZE
) {
804 ret
= snapshot_read_next(snapshot
);
811 memcpy(data
[thr
].unc
+ off
,
812 data_of(*snapshot
), PAGE_SIZE
);
815 pr_info("Image saving progress: %3d%%\n",
822 data
[thr
].unc_len
= off
;
824 atomic_set_release(&data
[thr
].ready
, 1);
825 wake_up(&data
[thr
].go
);
831 crc
->run_threads
= thr
;
832 atomic_set_release(&crc
->ready
, 1);
835 for (run_threads
= thr
, thr
= 0; thr
< run_threads
; thr
++) {
836 wait_event(data
[thr
].done
,
837 atomic_read_acquire(&data
[thr
].stop
));
838 atomic_set(&data
[thr
].stop
, 0);
843 pr_err("%s compression failed\n", hib_comp_algo
);
847 if (unlikely(!data
[thr
].cmp_len
||
849 bytes_worst_compress(data
[thr
].unc_len
))) {
850 pr_err("Invalid %s compressed length\n", hib_comp_algo
);
855 *(size_t *)data
[thr
].cmp
= data
[thr
].cmp_len
;
858 * Given we are writing one page at a time to disk, we
859 * copy that much from the buffer, although the last
860 * bit will likely be smaller than full page. This is
861 * OK - we saved the length of the compressed data, so
862 * any garbage at the end will be discarded when we
866 off
< CMP_HEADER
+ data
[thr
].cmp_len
;
868 memcpy(page
, data
[thr
].cmp
+ off
, PAGE_SIZE
);
870 ret
= swap_write_page(handle
, page
, &hb
);
876 wait_event(crc
->done
, atomic_read_acquire(&crc
->stop
));
877 atomic_set(&crc
->stop
, 0);
881 err2
= hib_wait_io(&hb
);
886 pr_info("Image saving done\n");
887 swsusp_show_speed(start
, stop
, nr_to_write
, "Wrote");
888 pr_info("Image size after compression: %d kbytes\n",
889 (atomic_read(&compressed_size
) / 1024));
892 hib_finish_batch(&hb
);
895 kthread_stop(crc
->thr
);
899 for (thr
= 0; thr
< nr_threads
; thr
++) {
901 kthread_stop(data
[thr
].thr
);
903 crypto_free_comp(data
[thr
].cc
);
907 if (page
) free_page((unsigned long)page
);
913 * enough_swap - Make sure we have enough swap to save the image.
915 * Returns TRUE or FALSE after checking the total amount of swap
916 * space available from the resume partition.
919 static int enough_swap(unsigned int nr_pages
)
921 unsigned int free_swap
= count_swap_pages(root_swap
, 1);
922 unsigned int required
;
924 pr_debug("Free swap pages: %u\n", free_swap
);
926 required
= PAGES_FOR_IO
+ nr_pages
;
927 return free_swap
> required
;
931 * swsusp_write - Write entire image and metadata.
932 * @flags: flags to pass to the "boot" kernel in the image header
934 * It is important _NOT_ to umount filesystems at this point. We want
935 * them synced (in case something goes wrong) but we DO not want to mark
936 * filesystem clean: it is not. (And it does not matter, if we resume
937 * correctly, we'll mark system clean, anyway.)
940 int swsusp_write(unsigned int flags
)
942 struct swap_map_handle handle
;
943 struct snapshot_handle snapshot
;
944 struct swsusp_info
*header
;
948 pages
= snapshot_get_image_size();
949 error
= get_swap_writer(&handle
);
951 pr_err("Cannot get swap writer\n");
954 if (flags
& SF_NOCOMPRESS_MODE
) {
955 if (!enough_swap(pages
)) {
956 pr_err("Not enough free swap\n");
961 memset(&snapshot
, 0, sizeof(struct snapshot_handle
));
962 error
= snapshot_read_next(&snapshot
);
963 if (error
< (int)PAGE_SIZE
) {
969 header
= (struct swsusp_info
*)data_of(snapshot
);
970 error
= swap_write_page(&handle
, header
, NULL
);
972 error
= (flags
& SF_NOCOMPRESS_MODE
) ?
973 save_image(&handle
, &snapshot
, pages
- 1) :
974 save_compressed_image(&handle
, &snapshot
, pages
- 1);
977 error
= swap_writer_finish(&handle
, flags
, error
);
982 * The following functions allow us to read data using a swap map
983 * in a file-like way.
986 static void release_swap_reader(struct swap_map_handle
*handle
)
988 struct swap_map_page_list
*tmp
;
990 while (handle
->maps
) {
991 if (handle
->maps
->map
)
992 free_page((unsigned long)handle
->maps
->map
);
994 handle
->maps
= handle
->maps
->next
;
1000 static int get_swap_reader(struct swap_map_handle
*handle
,
1001 unsigned int *flags_p
)
1004 struct swap_map_page_list
*tmp
, *last
;
1007 *flags_p
= swsusp_header
->flags
;
1009 if (!swsusp_header
->image
) /* how can this happen? */
1013 last
= handle
->maps
= NULL
;
1014 offset
= swsusp_header
->image
;
1016 tmp
= kzalloc(sizeof(*handle
->maps
), GFP_KERNEL
);
1018 release_swap_reader(handle
);
1027 tmp
->map
= (struct swap_map_page
*)
1028 __get_free_page(GFP_NOIO
| __GFP_HIGH
);
1030 release_swap_reader(handle
);
1034 error
= hib_submit_io(REQ_OP_READ
, offset
, tmp
->map
, NULL
);
1036 release_swap_reader(handle
);
1039 offset
= tmp
->map
->next_swap
;
1042 handle
->cur
= handle
->maps
->map
;
1046 static int swap_read_page(struct swap_map_handle
*handle
, void *buf
,
1047 struct hib_bio_batch
*hb
)
1051 struct swap_map_page_list
*tmp
;
1055 offset
= handle
->cur
->entries
[handle
->k
];
1058 error
= hib_submit_io(REQ_OP_READ
, offset
, buf
, hb
);
1061 if (++handle
->k
>= MAP_PAGE_ENTRIES
) {
1063 free_page((unsigned long)handle
->maps
->map
);
1065 handle
->maps
= handle
->maps
->next
;
1068 release_swap_reader(handle
);
1070 handle
->cur
= handle
->maps
->map
;
1075 static int swap_reader_finish(struct swap_map_handle
*handle
)
1077 release_swap_reader(handle
);
1083 * load_image - load the image using the swap map handle
1084 * @handle and the snapshot handle @snapshot
1085 * (assume there are @nr_pages pages to load)
1088 static int load_image(struct swap_map_handle
*handle
,
1089 struct snapshot_handle
*snapshot
,
1090 unsigned int nr_to_read
)
1096 struct hib_bio_batch hb
;
1100 hib_init_batch(&hb
);
1102 clean_pages_on_read
= true;
1103 pr_info("Loading image data pages (%u pages)...\n", nr_to_read
);
1104 m
= nr_to_read
/ 10;
1108 start
= ktime_get();
1110 ret
= snapshot_write_next(snapshot
);
1113 ret
= swap_read_page(handle
, data_of(*snapshot
), &hb
);
1116 if (snapshot
->sync_read
)
1117 ret
= hib_wait_io(&hb
);
1120 if (!(nr_pages
% m
))
1121 pr_info("Image loading progress: %3d%%\n",
1125 err2
= hib_wait_io(&hb
);
1126 hib_finish_batch(&hb
);
1131 pr_info("Image loading done\n");
1132 ret
= snapshot_write_finalize(snapshot
);
1133 if (!ret
&& !snapshot_image_loaded(snapshot
))
1136 swsusp_show_speed(start
, stop
, nr_to_read
, "Read");
1141 * Structure used for data decompression.
1144 struct task_struct
*thr
; /* thread */
1145 struct crypto_comp
*cc
; /* crypto compressor stream */
1146 atomic_t ready
; /* ready to start flag */
1147 atomic_t stop
; /* ready to stop flag */
1148 int ret
; /* return code */
1149 wait_queue_head_t go
; /* start decompression */
1150 wait_queue_head_t done
; /* decompression done */
1151 size_t unc_len
; /* uncompressed length */
1152 size_t cmp_len
; /* compressed length */
1153 unsigned char unc
[UNC_SIZE
]; /* uncompressed buffer */
1154 unsigned char cmp
[CMP_SIZE
]; /* compressed buffer */
1158 * Decompression function that runs in its own thread.
1160 static int decompress_threadfn(void *data
)
1162 struct dec_data
*d
= data
;
1163 unsigned int unc_len
= 0;
1166 wait_event(d
->go
, atomic_read_acquire(&d
->ready
) ||
1167 kthread_should_stop());
1168 if (kthread_should_stop()) {
1171 atomic_set_release(&d
->stop
, 1);
1175 atomic_set(&d
->ready
, 0);
1178 d
->ret
= crypto_comp_decompress(d
->cc
, d
->cmp
+ CMP_HEADER
, d
->cmp_len
,
1180 d
->unc_len
= unc_len
;
1182 if (clean_pages_on_decompress
)
1183 flush_icache_range((unsigned long)d
->unc
,
1184 (unsigned long)d
->unc
+ d
->unc_len
);
1186 atomic_set_release(&d
->stop
, 1);
1193 * load_compressed_image - Load compressed image data and decompress it.
1194 * @handle: Swap map handle to use for loading data.
1195 * @snapshot: Image to copy uncompressed data into.
1196 * @nr_to_read: Number of pages to load.
1198 static int load_compressed_image(struct swap_map_handle
*handle
,
1199 struct snapshot_handle
*snapshot
,
1200 unsigned int nr_to_read
)
1205 struct hib_bio_batch hb
;
1210 unsigned i
, thr
, run_threads
, nr_threads
;
1211 unsigned ring
= 0, pg
= 0, ring_size
= 0,
1212 have
= 0, want
, need
, asked
= 0;
1213 unsigned long read_pages
= 0;
1214 unsigned char **page
= NULL
;
1215 struct dec_data
*data
= NULL
;
1216 struct crc_data
*crc
= NULL
;
1218 hib_init_batch(&hb
);
1221 * We'll limit the number of threads for decompression to limit memory
1224 nr_threads
= num_online_cpus() - 1;
1225 nr_threads
= clamp_val(nr_threads
, 1, CMP_THREADS
);
1227 page
= vmalloc(array_size(CMP_MAX_RD_PAGES
, sizeof(*page
)));
1229 pr_err("Failed to allocate %s page\n", hib_comp_algo
);
1234 data
= vzalloc(array_size(nr_threads
, sizeof(*data
)));
1236 pr_err("Failed to allocate %s data\n", hib_comp_algo
);
1241 crc
= kzalloc(sizeof(*crc
), GFP_KERNEL
);
1243 pr_err("Failed to allocate crc\n");
1248 clean_pages_on_decompress
= true;
1251 * Start the decompression threads.
1253 for (thr
= 0; thr
< nr_threads
; thr
++) {
1254 init_waitqueue_head(&data
[thr
].go
);
1255 init_waitqueue_head(&data
[thr
].done
);
1257 data
[thr
].cc
= crypto_alloc_comp(hib_comp_algo
, 0, 0);
1258 if (IS_ERR_OR_NULL(data
[thr
].cc
)) {
1259 pr_err("Could not allocate comp stream %ld\n", PTR_ERR(data
[thr
].cc
));
1264 data
[thr
].thr
= kthread_run(decompress_threadfn
,
1266 "image_decompress/%u", thr
);
1267 if (IS_ERR(data
[thr
].thr
)) {
1268 data
[thr
].thr
= NULL
;
1269 pr_err("Cannot start decompression threads\n");
1276 * Start the CRC32 thread.
1278 init_waitqueue_head(&crc
->go
);
1279 init_waitqueue_head(&crc
->done
);
1282 crc
->crc32
= &handle
->crc32
;
1283 for (thr
= 0; thr
< nr_threads
; thr
++) {
1284 crc
->unc
[thr
] = data
[thr
].unc
;
1285 crc
->unc_len
[thr
] = &data
[thr
].unc_len
;
1288 crc
->thr
= kthread_run(crc32_threadfn
, crc
, "image_crc32");
1289 if (IS_ERR(crc
->thr
)) {
1291 pr_err("Cannot start CRC32 thread\n");
1297 * Set the number of pages for read buffering.
1298 * This is complete guesswork, because we'll only know the real
1299 * picture once prepare_image() is called, which is much later on
1300 * during the image load phase. We'll assume the worst case and
1301 * say that none of the image pages are from high memory.
1303 if (low_free_pages() > snapshot_get_image_size())
1304 read_pages
= (low_free_pages() - snapshot_get_image_size()) / 2;
1305 read_pages
= clamp_val(read_pages
, CMP_MIN_RD_PAGES
, CMP_MAX_RD_PAGES
);
1307 for (i
= 0; i
< read_pages
; i
++) {
1308 page
[i
] = (void *)__get_free_page(i
< CMP_PAGES
?
1309 GFP_NOIO
| __GFP_HIGH
:
1310 GFP_NOIO
| __GFP_NOWARN
|
1314 if (i
< CMP_PAGES
) {
1316 pr_err("Failed to allocate %s pages\n", hib_comp_algo
);
1324 want
= ring_size
= i
;
1326 pr_info("Using %u thread(s) for %s decompression\n", nr_threads
, hib_comp_algo
);
1327 pr_info("Loading and decompressing image data (%u pages)...\n",
1329 m
= nr_to_read
/ 10;
1333 start
= ktime_get();
1335 ret
= snapshot_write_next(snapshot
);
1340 for (i
= 0; !eof
&& i
< want
; i
++) {
1341 ret
= swap_read_page(handle
, page
[ring
], &hb
);
1344 * On real read error, finish. On end of data,
1345 * set EOF flag and just exit the read loop.
1348 handle
->cur
->entries
[handle
->k
]) {
1355 if (++ring
>= ring_size
)
1362 * We are out of data, wait for some more.
1368 ret
= hib_wait_io(&hb
);
1377 if (crc
->run_threads
) {
1378 wait_event(crc
->done
, atomic_read_acquire(&crc
->stop
));
1379 atomic_set(&crc
->stop
, 0);
1380 crc
->run_threads
= 0;
1383 for (thr
= 0; have
&& thr
< nr_threads
; thr
++) {
1384 data
[thr
].cmp_len
= *(size_t *)page
[pg
];
1385 if (unlikely(!data
[thr
].cmp_len
||
1387 bytes_worst_compress(UNC_SIZE
))) {
1388 pr_err("Invalid %s compressed length\n", hib_comp_algo
);
1393 need
= DIV_ROUND_UP(data
[thr
].cmp_len
+ CMP_HEADER
,
1404 off
< CMP_HEADER
+ data
[thr
].cmp_len
;
1406 memcpy(data
[thr
].cmp
+ off
,
1407 page
[pg
], PAGE_SIZE
);
1410 if (++pg
>= ring_size
)
1414 atomic_set_release(&data
[thr
].ready
, 1);
1415 wake_up(&data
[thr
].go
);
1419 * Wait for more data while we are decompressing.
1421 if (have
< CMP_PAGES
&& asked
) {
1422 ret
= hib_wait_io(&hb
);
1431 for (run_threads
= thr
, thr
= 0; thr
< run_threads
; thr
++) {
1432 wait_event(data
[thr
].done
,
1433 atomic_read_acquire(&data
[thr
].stop
));
1434 atomic_set(&data
[thr
].stop
, 0);
1436 ret
= data
[thr
].ret
;
1439 pr_err("%s decompression failed\n", hib_comp_algo
);
1443 if (unlikely(!data
[thr
].unc_len
||
1444 data
[thr
].unc_len
> UNC_SIZE
||
1445 data
[thr
].unc_len
& (PAGE_SIZE
- 1))) {
1446 pr_err("Invalid %s uncompressed length\n", hib_comp_algo
);
1452 off
< data
[thr
].unc_len
; off
+= PAGE_SIZE
) {
1453 memcpy(data_of(*snapshot
),
1454 data
[thr
].unc
+ off
, PAGE_SIZE
);
1456 if (!(nr_pages
% m
))
1457 pr_info("Image loading progress: %3d%%\n",
1461 ret
= snapshot_write_next(snapshot
);
1463 crc
->run_threads
= thr
+ 1;
1464 atomic_set_release(&crc
->ready
, 1);
1471 crc
->run_threads
= thr
;
1472 atomic_set_release(&crc
->ready
, 1);
1477 if (crc
->run_threads
) {
1478 wait_event(crc
->done
, atomic_read_acquire(&crc
->stop
));
1479 atomic_set(&crc
->stop
, 0);
1483 pr_info("Image loading done\n");
1484 ret
= snapshot_write_finalize(snapshot
);
1485 if (!ret
&& !snapshot_image_loaded(snapshot
))
1488 if (swsusp_header
->flags
& SF_CRC32_MODE
) {
1489 if(handle
->crc32
!= swsusp_header
->crc32
) {
1490 pr_err("Invalid image CRC32!\n");
1496 swsusp_show_speed(start
, stop
, nr_to_read
, "Read");
1498 hib_finish_batch(&hb
);
1499 for (i
= 0; i
< ring_size
; i
++)
1500 free_page((unsigned long)page
[i
]);
1503 kthread_stop(crc
->thr
);
1507 for (thr
= 0; thr
< nr_threads
; thr
++) {
1509 kthread_stop(data
[thr
].thr
);
1511 crypto_free_comp(data
[thr
].cc
);
1521 * swsusp_read - read the hibernation image.
1522 * @flags_p: flags passed by the "frozen" kernel in the image header should
1523 * be written into this memory location
1526 int swsusp_read(unsigned int *flags_p
)
1529 struct swap_map_handle handle
;
1530 struct snapshot_handle snapshot
;
1531 struct swsusp_info
*header
;
1533 memset(&snapshot
, 0, sizeof(struct snapshot_handle
));
1534 error
= snapshot_write_next(&snapshot
);
1535 if (error
< (int)PAGE_SIZE
)
1536 return error
< 0 ? error
: -EFAULT
;
1537 header
= (struct swsusp_info
*)data_of(snapshot
);
1538 error
= get_swap_reader(&handle
, flags_p
);
1542 error
= swap_read_page(&handle
, header
, NULL
);
1544 error
= (*flags_p
& SF_NOCOMPRESS_MODE
) ?
1545 load_image(&handle
, &snapshot
, header
->pages
- 1) :
1546 load_compressed_image(&handle
, &snapshot
, header
->pages
- 1);
1548 swap_reader_finish(&handle
);
1551 pr_debug("Image successfully loaded\n");
1553 pr_debug("Error %d resuming\n", error
);
1557 static void *swsusp_holder
;
1560 * swsusp_check - Open the resume device and check for the swsusp signature.
1561 * @exclusive: Open the resume device exclusively.
1564 int swsusp_check(bool exclusive
)
1566 void *holder
= exclusive
? &swsusp_holder
: NULL
;
1569 hib_resume_bdev_file
= bdev_file_open_by_dev(swsusp_resume_device
,
1570 BLK_OPEN_READ
, holder
, NULL
);
1571 if (!IS_ERR(hib_resume_bdev_file
)) {
1572 clear_page(swsusp_header
);
1573 error
= hib_submit_io(REQ_OP_READ
, swsusp_resume_block
,
1574 swsusp_header
, NULL
);
1578 if (!memcmp(HIBERNATE_SIG
, swsusp_header
->sig
, 10)) {
1579 memcpy(swsusp_header
->sig
, swsusp_header
->orig_sig
, 10);
1580 swsusp_header_flags
= swsusp_header
->flags
;
1581 /* Reset swap signature now */
1582 error
= hib_submit_io(REQ_OP_WRITE
| REQ_SYNC
,
1583 swsusp_resume_block
,
1584 swsusp_header
, NULL
);
1588 if (!error
&& swsusp_header
->flags
& SF_HW_SIG
&&
1589 swsusp_header
->hw_sig
!= swsusp_hardware_signature
) {
1590 pr_info("Suspend image hardware signature mismatch (%08x now %08x); aborting resume.\n",
1591 swsusp_header
->hw_sig
, swsusp_hardware_signature
);
1597 bdev_fput(hib_resume_bdev_file
);
1599 pr_debug("Image signature found, resuming\n");
1601 error
= PTR_ERR(hib_resume_bdev_file
);
1605 pr_debug("Image not found (code %d)\n", error
);
1611 * swsusp_close - close resume device.
1614 void swsusp_close(void)
1616 if (IS_ERR(hib_resume_bdev_file
)) {
1617 pr_debug("Image device not initialised\n");
1621 fput(hib_resume_bdev_file
);
1625 * swsusp_unmark - Unmark swsusp signature in the resume device
1628 #ifdef CONFIG_SUSPEND
1629 int swsusp_unmark(void)
1633 hib_submit_io(REQ_OP_READ
, swsusp_resume_block
,
1634 swsusp_header
, NULL
);
1635 if (!memcmp(HIBERNATE_SIG
,swsusp_header
->sig
, 10)) {
1636 memcpy(swsusp_header
->sig
,swsusp_header
->orig_sig
, 10);
1637 error
= hib_submit_io(REQ_OP_WRITE
| REQ_SYNC
,
1638 swsusp_resume_block
,
1639 swsusp_header
, NULL
);
1641 pr_err("Cannot find swsusp signature!\n");
1646 * We just returned from suspend, we don't need the image any more.
1648 free_all_swap_pages(root_swap
);
1654 static int __init
swsusp_header_init(void)
1656 swsusp_header
= (struct swsusp_header
*) __get_free_page(GFP_KERNEL
);
1658 panic("Could not allocate memory for swsusp_header\n");
1662 core_initcall(swsusp_header_init
);