1 // SPDX-License-Identifier: GPL-2.0+
3 * RCU segmented callback lists, function definitions
5 * Copyright IBM Corporation, 2017
7 * Authors: Paul E. McKenney <paulmck@linux.ibm.com>
10 #include <linux/cpu.h>
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
15 #include "rcu_segcblist.h"
17 /* Initialize simple callback list. */
18 void rcu_cblist_init(struct rcu_cblist
*rclp
)
21 rclp
->tail
= &rclp
->head
;
26 * Enqueue an rcu_head structure onto the specified callback list.
28 void rcu_cblist_enqueue(struct rcu_cblist
*rclp
, struct rcu_head
*rhp
)
31 rclp
->tail
= &rhp
->next
;
32 WRITE_ONCE(rclp
->len
, rclp
->len
+ 1);
36 * Flush the second rcu_cblist structure onto the first one, obliterating
37 * any contents of the first. If rhp is non-NULL, enqueue it as the sole
38 * element of the second rcu_cblist structure, but ensuring that the second
39 * rcu_cblist structure, if initially non-empty, always appears non-empty
40 * throughout the process. If rdp is NULL, the second rcu_cblist structure
41 * is instead initialized to empty.
43 void rcu_cblist_flush_enqueue(struct rcu_cblist
*drclp
,
44 struct rcu_cblist
*srclp
,
47 drclp
->head
= srclp
->head
;
49 drclp
->tail
= srclp
->tail
;
51 drclp
->tail
= &drclp
->head
;
52 drclp
->len
= srclp
->len
;
54 rcu_cblist_init(srclp
);
58 srclp
->tail
= &rhp
->next
;
59 WRITE_ONCE(srclp
->len
, 1);
64 * Dequeue the oldest rcu_head structure from the specified callback
67 struct rcu_head
*rcu_cblist_dequeue(struct rcu_cblist
*rclp
)
75 rclp
->head
= rhp
->next
;
77 rclp
->tail
= &rclp
->head
;
81 /* Set the length of an rcu_segcblist structure. */
82 static void rcu_segcblist_set_len(struct rcu_segcblist
*rsclp
, long v
)
84 #ifdef CONFIG_RCU_NOCB_CPU
85 atomic_long_set(&rsclp
->len
, v
);
87 WRITE_ONCE(rsclp
->len
, v
);
91 /* Get the length of a segment of the rcu_segcblist structure. */
92 long rcu_segcblist_get_seglen(struct rcu_segcblist
*rsclp
, int seg
)
94 return READ_ONCE(rsclp
->seglen
[seg
]);
97 /* Return number of callbacks in segmented callback list by summing seglen. */
98 long rcu_segcblist_n_segment_cbs(struct rcu_segcblist
*rsclp
)
103 for (i
= RCU_DONE_TAIL
; i
< RCU_CBLIST_NSEGS
; i
++)
104 len
+= rcu_segcblist_get_seglen(rsclp
, i
);
109 /* Set the length of a segment of the rcu_segcblist structure. */
110 static void rcu_segcblist_set_seglen(struct rcu_segcblist
*rsclp
, int seg
, long v
)
112 WRITE_ONCE(rsclp
->seglen
[seg
], v
);
115 /* Increase the numeric length of a segment by a specified amount. */
116 static void rcu_segcblist_add_seglen(struct rcu_segcblist
*rsclp
, int seg
, long v
)
118 WRITE_ONCE(rsclp
->seglen
[seg
], rsclp
->seglen
[seg
] + v
);
121 /* Move from's segment length to to's segment. */
122 static void rcu_segcblist_move_seglen(struct rcu_segcblist
*rsclp
, int from
, int to
)
129 len
= rcu_segcblist_get_seglen(rsclp
, from
);
133 rcu_segcblist_add_seglen(rsclp
, to
, len
);
134 rcu_segcblist_set_seglen(rsclp
, from
, 0);
137 /* Increment segment's length. */
138 static void rcu_segcblist_inc_seglen(struct rcu_segcblist
*rsclp
, int seg
)
140 rcu_segcblist_add_seglen(rsclp
, seg
, 1);
144 * Increase the numeric length of an rcu_segcblist structure by the
145 * specified amount, which can be negative. This can cause the ->len
146 * field to disagree with the actual number of callbacks on the structure.
147 * This increase is fully ordered with respect to the callers accesses
148 * both before and after.
150 * So why on earth is a memory barrier required both before and after
151 * the update to the ->len field???
153 * The reason is that rcu_barrier() locklessly samples each CPU's ->len
154 * field, and if a given CPU's field is zero, avoids IPIing that CPU.
155 * This can of course race with both queuing and invoking of callbacks.
156 * Failing to correctly handle either of these races could result in
157 * rcu_barrier() failing to IPI a CPU that actually had callbacks queued
158 * which rcu_barrier() was obligated to wait on. And if rcu_barrier()
159 * failed to wait on such a callback, unloading certain kernel modules
160 * would result in calls to functions whose code was no longer present in
161 * the kernel, for but one example.
163 * Therefore, ->len transitions from 1->0 and 0->1 have to be carefully
164 * ordered with respect with both list modifications and the rcu_barrier().
166 * The queuing case is CASE 1 and the invoking case is CASE 2.
168 * CASE 1: Suppose that CPU 0 has no callbacks queued, but invokes
169 * call_rcu() just as CPU 1 invokes rcu_barrier(). CPU 0's ->len field
170 * will transition from 0->1, which is one of the transitions that must
171 * be handled carefully. Without the full memory barriers after the ->len
172 * update and at the beginning of rcu_barrier(), the following could happen:
177 * rcu_barrier() sees ->len as 0.
179 * rcu_barrier() does nothing.
180 * module is unloaded.
181 * callback invokes unloaded function!
183 * With the full barriers, any case where rcu_barrier() sees ->len as 0 will
184 * have unambiguously preceded the return from the racing call_rcu(), which
185 * means that this call_rcu() invocation is OK to not wait on. After all,
186 * you are supposed to make sure that any problematic call_rcu() invocations
187 * happen before the rcu_barrier().
190 * CASE 2: Suppose that CPU 0 is invoking its last callback just as
191 * CPU 1 invokes rcu_barrier(). CPU 0's ->len field will transition from
192 * 1->0, which is one of the transitions that must be handled carefully.
193 * Without the full memory barriers before the ->len update and at the
194 * end of rcu_barrier(), the following could happen:
198 * start invoking last callback
199 * set ->len = 0 (reordered)
200 * rcu_barrier() sees ->len as 0
201 * rcu_barrier() does nothing.
203 * callback executing after unloaded!
205 * With the full barriers, any case where rcu_barrier() sees ->len as 0
206 * will be fully ordered after the completion of the callback function,
207 * so that the module unloading operation is completely safe.
210 void rcu_segcblist_add_len(struct rcu_segcblist
*rsclp
, long v
)
212 #ifdef CONFIG_RCU_NOCB_CPU
213 smp_mb__before_atomic(); // Read header comment above.
214 atomic_long_add(v
, &rsclp
->len
);
215 smp_mb__after_atomic(); // Read header comment above.
217 smp_mb(); // Read header comment above.
218 WRITE_ONCE(rsclp
->len
, rsclp
->len
+ v
);
219 smp_mb(); // Read header comment above.
224 * Increase the numeric length of an rcu_segcblist structure by one.
225 * This can cause the ->len field to disagree with the actual number of
226 * callbacks on the structure. This increase is fully ordered with respect
227 * to the callers accesses both before and after.
229 void rcu_segcblist_inc_len(struct rcu_segcblist
*rsclp
)
231 rcu_segcblist_add_len(rsclp
, 1);
235 * Initialize an rcu_segcblist structure.
237 void rcu_segcblist_init(struct rcu_segcblist
*rsclp
)
241 BUILD_BUG_ON(RCU_NEXT_TAIL
+ 1 != ARRAY_SIZE(rsclp
->gp_seq
));
242 BUILD_BUG_ON(ARRAY_SIZE(rsclp
->tails
) != ARRAY_SIZE(rsclp
->gp_seq
));
244 for (i
= 0; i
< RCU_CBLIST_NSEGS
; i
++) {
245 rsclp
->tails
[i
] = &rsclp
->head
;
246 rcu_segcblist_set_seglen(rsclp
, i
, 0);
248 rcu_segcblist_set_len(rsclp
, 0);
249 rcu_segcblist_set_flags(rsclp
, SEGCBLIST_ENABLED
);
253 * Disable the specified rcu_segcblist structure, so that callbacks can
254 * no longer be posted to it. This structure must be empty.
256 void rcu_segcblist_disable(struct rcu_segcblist
*rsclp
)
258 WARN_ON_ONCE(!rcu_segcblist_empty(rsclp
));
259 WARN_ON_ONCE(rcu_segcblist_n_cbs(rsclp
));
260 rcu_segcblist_clear_flags(rsclp
, SEGCBLIST_ENABLED
);
264 * Does the specified rcu_segcblist structure contain callbacks that
265 * are ready to be invoked?
267 bool rcu_segcblist_ready_cbs(struct rcu_segcblist
*rsclp
)
269 return rcu_segcblist_is_enabled(rsclp
) &&
270 &rsclp
->head
!= READ_ONCE(rsclp
->tails
[RCU_DONE_TAIL
]);
274 * Does the specified rcu_segcblist structure contain callbacks that
275 * are still pending, that is, not yet ready to be invoked?
277 bool rcu_segcblist_pend_cbs(struct rcu_segcblist
*rsclp
)
279 return rcu_segcblist_is_enabled(rsclp
) &&
280 !rcu_segcblist_restempty(rsclp
, RCU_DONE_TAIL
);
284 * Return a pointer to the first callback in the specified rcu_segcblist
285 * structure. This is useful for diagnostics.
287 struct rcu_head
*rcu_segcblist_first_cb(struct rcu_segcblist
*rsclp
)
289 if (rcu_segcblist_is_enabled(rsclp
))
295 * Return a pointer to the first pending callback in the specified
296 * rcu_segcblist structure. This is useful just after posting a given
297 * callback -- if that callback is the first pending callback, then
298 * you cannot rely on someone else having already started up the required
301 struct rcu_head
*rcu_segcblist_first_pend_cb(struct rcu_segcblist
*rsclp
)
303 if (rcu_segcblist_is_enabled(rsclp
))
304 return *rsclp
->tails
[RCU_DONE_TAIL
];
309 * Return false if there are no CBs awaiting grace periods, otherwise,
310 * return true and store the nearest waited-upon grace period into *lp.
312 bool rcu_segcblist_nextgp(struct rcu_segcblist
*rsclp
, unsigned long *lp
)
314 if (!rcu_segcblist_pend_cbs(rsclp
))
316 *lp
= rsclp
->gp_seq
[RCU_WAIT_TAIL
];
321 * Enqueue the specified callback onto the specified rcu_segcblist
322 * structure, updating accounting as needed. Note that the ->len
323 * field may be accessed locklessly, hence the WRITE_ONCE().
324 * The ->len field is used by rcu_barrier() and friends to determine
325 * if it must post a callback on this structure, and it is OK
326 * for rcu_barrier() to sometimes post callbacks needlessly, but
327 * absolutely not OK for it to ever miss posting a callback.
329 void rcu_segcblist_enqueue(struct rcu_segcblist
*rsclp
,
330 struct rcu_head
*rhp
)
332 rcu_segcblist_inc_len(rsclp
);
333 rcu_segcblist_inc_seglen(rsclp
, RCU_NEXT_TAIL
);
335 WRITE_ONCE(*rsclp
->tails
[RCU_NEXT_TAIL
], rhp
);
336 WRITE_ONCE(rsclp
->tails
[RCU_NEXT_TAIL
], &rhp
->next
);
340 * Entrain the specified callback onto the specified rcu_segcblist at
341 * the end of the last non-empty segment. If the entire rcu_segcblist
342 * is empty, make no change, but return false.
344 * This is intended for use by rcu_barrier()-like primitives, -not-
345 * for normal grace-period use. IMPORTANT: The callback you enqueue
346 * will wait for all prior callbacks, NOT necessarily for a grace
347 * period. You have been warned.
349 bool rcu_segcblist_entrain(struct rcu_segcblist
*rsclp
,
350 struct rcu_head
*rhp
)
354 if (rcu_segcblist_n_cbs(rsclp
) == 0)
356 rcu_segcblist_inc_len(rsclp
);
357 smp_mb(); /* Ensure counts are updated before callback is entrained. */
359 for (i
= RCU_NEXT_TAIL
; i
> RCU_DONE_TAIL
; i
--)
360 if (!rcu_segcblist_segempty(rsclp
, i
))
362 rcu_segcblist_inc_seglen(rsclp
, i
);
363 WRITE_ONCE(*rsclp
->tails
[i
], rhp
);
364 for (; i
<= RCU_NEXT_TAIL
; i
++)
365 WRITE_ONCE(rsclp
->tails
[i
], &rhp
->next
);
370 * Extract only those callbacks ready to be invoked from the specified
371 * rcu_segcblist structure and place them in the specified rcu_cblist
374 void rcu_segcblist_extract_done_cbs(struct rcu_segcblist
*rsclp
,
375 struct rcu_cblist
*rclp
)
379 if (!rcu_segcblist_ready_cbs(rsclp
))
380 return; /* Nothing to do. */
381 rclp
->len
= rcu_segcblist_get_seglen(rsclp
, RCU_DONE_TAIL
);
382 *rclp
->tail
= rsclp
->head
;
383 WRITE_ONCE(rsclp
->head
, *rsclp
->tails
[RCU_DONE_TAIL
]);
384 WRITE_ONCE(*rsclp
->tails
[RCU_DONE_TAIL
], NULL
);
385 rclp
->tail
= rsclp
->tails
[RCU_DONE_TAIL
];
386 for (i
= RCU_CBLIST_NSEGS
- 1; i
>= RCU_DONE_TAIL
; i
--)
387 if (rsclp
->tails
[i
] == rsclp
->tails
[RCU_DONE_TAIL
])
388 WRITE_ONCE(rsclp
->tails
[i
], &rsclp
->head
);
389 rcu_segcblist_set_seglen(rsclp
, RCU_DONE_TAIL
, 0);
393 * Extract only those callbacks still pending (not yet ready to be
394 * invoked) from the specified rcu_segcblist structure and place them in
395 * the specified rcu_cblist structure. Note that this loses information
396 * about any callbacks that might have been partway done waiting for
397 * their grace period. Too bad! They will have to start over.
399 void rcu_segcblist_extract_pend_cbs(struct rcu_segcblist
*rsclp
,
400 struct rcu_cblist
*rclp
)
404 if (!rcu_segcblist_pend_cbs(rsclp
))
405 return; /* Nothing to do. */
407 *rclp
->tail
= *rsclp
->tails
[RCU_DONE_TAIL
];
408 rclp
->tail
= rsclp
->tails
[RCU_NEXT_TAIL
];
409 WRITE_ONCE(*rsclp
->tails
[RCU_DONE_TAIL
], NULL
);
410 for (i
= RCU_DONE_TAIL
+ 1; i
< RCU_CBLIST_NSEGS
; i
++) {
411 rclp
->len
+= rcu_segcblist_get_seglen(rsclp
, i
);
412 WRITE_ONCE(rsclp
->tails
[i
], rsclp
->tails
[RCU_DONE_TAIL
]);
413 rcu_segcblist_set_seglen(rsclp
, i
, 0);
418 * Insert counts from the specified rcu_cblist structure in the
419 * specified rcu_segcblist structure.
421 void rcu_segcblist_insert_count(struct rcu_segcblist
*rsclp
,
422 struct rcu_cblist
*rclp
)
424 rcu_segcblist_add_len(rsclp
, rclp
->len
);
428 * Move callbacks from the specified rcu_cblist to the beginning of the
429 * done-callbacks segment of the specified rcu_segcblist.
431 void rcu_segcblist_insert_done_cbs(struct rcu_segcblist
*rsclp
,
432 struct rcu_cblist
*rclp
)
437 return; /* No callbacks to move. */
438 rcu_segcblist_add_seglen(rsclp
, RCU_DONE_TAIL
, rclp
->len
);
439 *rclp
->tail
= rsclp
->head
;
440 WRITE_ONCE(rsclp
->head
, rclp
->head
);
441 for (i
= RCU_DONE_TAIL
; i
< RCU_CBLIST_NSEGS
; i
++)
442 if (&rsclp
->head
== rsclp
->tails
[i
])
443 WRITE_ONCE(rsclp
->tails
[i
], rclp
->tail
);
447 rclp
->tail
= &rclp
->head
;
451 * Move callbacks from the specified rcu_cblist to the end of the
452 * new-callbacks segment of the specified rcu_segcblist.
454 void rcu_segcblist_insert_pend_cbs(struct rcu_segcblist
*rsclp
,
455 struct rcu_cblist
*rclp
)
458 return; /* Nothing to do. */
460 rcu_segcblist_add_seglen(rsclp
, RCU_NEXT_TAIL
, rclp
->len
);
461 WRITE_ONCE(*rsclp
->tails
[RCU_NEXT_TAIL
], rclp
->head
);
462 WRITE_ONCE(rsclp
->tails
[RCU_NEXT_TAIL
], rclp
->tail
);
466 * Advance the callbacks in the specified rcu_segcblist structure based
467 * on the current value passed in for the grace-period counter.
469 void rcu_segcblist_advance(struct rcu_segcblist
*rsclp
, unsigned long seq
)
473 WARN_ON_ONCE(!rcu_segcblist_is_enabled(rsclp
));
474 if (rcu_segcblist_restempty(rsclp
, RCU_DONE_TAIL
))
478 * Find all callbacks whose ->gp_seq numbers indicate that they
479 * are ready to invoke, and put them into the RCU_DONE_TAIL segment.
481 for (i
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++) {
482 if (ULONG_CMP_LT(seq
, rsclp
->gp_seq
[i
]))
484 WRITE_ONCE(rsclp
->tails
[RCU_DONE_TAIL
], rsclp
->tails
[i
]);
485 rcu_segcblist_move_seglen(rsclp
, i
, RCU_DONE_TAIL
);
488 /* If no callbacks moved, nothing more need be done. */
489 if (i
== RCU_WAIT_TAIL
)
492 /* Clean up tail pointers that might have been misordered above. */
493 for (j
= RCU_WAIT_TAIL
; j
< i
; j
++)
494 WRITE_ONCE(rsclp
->tails
[j
], rsclp
->tails
[RCU_DONE_TAIL
]);
497 * Callbacks moved, so there might be an empty RCU_WAIT_TAIL
498 * and a non-empty RCU_NEXT_READY_TAIL. If so, copy the
499 * RCU_NEXT_READY_TAIL segment to fill the RCU_WAIT_TAIL gap
500 * created by the now-ready-to-invoke segments.
502 for (j
= RCU_WAIT_TAIL
; i
< RCU_NEXT_TAIL
; i
++, j
++) {
503 if (rsclp
->tails
[j
] == rsclp
->tails
[RCU_NEXT_TAIL
])
504 break; /* No more callbacks. */
505 WRITE_ONCE(rsclp
->tails
[j
], rsclp
->tails
[i
]);
506 rcu_segcblist_move_seglen(rsclp
, i
, j
);
507 rsclp
->gp_seq
[j
] = rsclp
->gp_seq
[i
];
512 * "Accelerate" callbacks based on more-accurate grace-period information.
513 * The reason for this is that RCU does not synchronize the beginnings and
514 * ends of grace periods, and that callbacks are posted locally. This in
515 * turn means that the callbacks must be labelled conservatively early
516 * on, as getting exact information would degrade both performance and
517 * scalability. When more accurate grace-period information becomes
518 * available, previously posted callbacks can be "accelerated", marking
519 * them to complete at the end of the earlier grace period.
521 * This function operates on an rcu_segcblist structure, and also the
522 * grace-period sequence number seq at which new callbacks would become
523 * ready to invoke. Returns true if there are callbacks that won't be
524 * ready to invoke until seq, false otherwise.
526 bool rcu_segcblist_accelerate(struct rcu_segcblist
*rsclp
, unsigned long seq
)
530 WARN_ON_ONCE(!rcu_segcblist_is_enabled(rsclp
));
531 if (rcu_segcblist_restempty(rsclp
, RCU_DONE_TAIL
))
535 * Find the segment preceding the oldest segment of callbacks
536 * whose ->gp_seq[] completion is at or after that passed in via
537 * "seq", skipping any empty segments. This oldest segment, along
538 * with any later segments, can be merged in with any newly arrived
539 * callbacks in the RCU_NEXT_TAIL segment, and assigned "seq"
540 * as their ->gp_seq[] grace-period completion sequence number.
542 for (i
= RCU_NEXT_READY_TAIL
; i
> RCU_DONE_TAIL
; i
--)
543 if (!rcu_segcblist_segempty(rsclp
, i
) &&
544 ULONG_CMP_LT(rsclp
->gp_seq
[i
], seq
))
548 * If all the segments contain callbacks that correspond to
549 * earlier grace-period sequence numbers than "seq", leave.
550 * Assuming that the rcu_segcblist structure has enough
551 * segments in its arrays, this can only happen if some of
552 * the non-done segments contain callbacks that really are
553 * ready to invoke. This situation will get straightened
554 * out by the next call to rcu_segcblist_advance().
556 * Also advance to the oldest segment of callbacks whose
557 * ->gp_seq[] completion is at or after that passed in via "seq",
558 * skipping any empty segments.
560 * Note that segment "i" (and any lower-numbered segments
561 * containing older callbacks) will be unaffected, and their
562 * grace-period numbers remain unchanged. For example, if i ==
563 * WAIT_TAIL, then neither WAIT_TAIL nor DONE_TAIL will be touched.
564 * Instead, the CBs in NEXT_TAIL will be merged with those in
565 * NEXT_READY_TAIL and the grace-period number of NEXT_READY_TAIL
566 * would be updated. NEXT_TAIL would then be empty.
568 if (rcu_segcblist_restempty(rsclp
, i
) || ++i
>= RCU_NEXT_TAIL
)
571 /* Accounting: everything below i is about to get merged into i. */
572 for (j
= i
+ 1; j
<= RCU_NEXT_TAIL
; j
++)
573 rcu_segcblist_move_seglen(rsclp
, j
, i
);
576 * Merge all later callbacks, including newly arrived callbacks,
577 * into the segment located by the for-loop above. Assign "seq"
578 * as the ->gp_seq[] value in order to correctly handle the case
579 * where there were no pending callbacks in the rcu_segcblist
580 * structure other than in the RCU_NEXT_TAIL segment.
582 for (; i
< RCU_NEXT_TAIL
; i
++) {
583 WRITE_ONCE(rsclp
->tails
[i
], rsclp
->tails
[RCU_NEXT_TAIL
]);
584 rsclp
->gp_seq
[i
] = seq
;
590 * Merge the source rcu_segcblist structure into the destination
591 * rcu_segcblist structure, then initialize the source. Any pending
592 * callbacks from the source get to start over. It is best to
593 * advance and accelerate both the destination and the source
596 void rcu_segcblist_merge(struct rcu_segcblist
*dst_rsclp
,
597 struct rcu_segcblist
*src_rsclp
)
599 struct rcu_cblist donecbs
;
600 struct rcu_cblist pendcbs
;
602 lockdep_assert_cpus_held();
604 rcu_cblist_init(&donecbs
);
605 rcu_cblist_init(&pendcbs
);
607 rcu_segcblist_extract_done_cbs(src_rsclp
, &donecbs
);
608 rcu_segcblist_extract_pend_cbs(src_rsclp
, &pendcbs
);
611 * No need smp_mb() before setting length to 0, because CPU hotplug
612 * lock excludes rcu_barrier.
614 rcu_segcblist_set_len(src_rsclp
, 0);
616 rcu_segcblist_insert_count(dst_rsclp
, &donecbs
);
617 rcu_segcblist_insert_count(dst_rsclp
, &pendcbs
);
618 rcu_segcblist_insert_done_cbs(dst_rsclp
, &donecbs
);
619 rcu_segcblist_insert_pend_cbs(dst_rsclp
, &pendcbs
);
621 rcu_segcblist_init(src_rsclp
);