1 /* SPDX-License-Identifier: GPL-2.0+ */
3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
4 * Internal non-public definitions that provide either classic
5 * or preemptible semantics.
7 * Copyright Red Hat, 2009
8 * Copyright IBM Corporation, 2009
10 * Author: Ingo Molnar <mingo@elte.hu>
11 * Paul E. McKenney <paulmck@linux.ibm.com>
14 #include "../locking/rtmutex_common.h"
16 static bool rcu_rdp_is_offloaded(struct rcu_data
*rdp
)
19 * In order to read the offloaded state of an rdp in a safe
20 * and stable way and prevent from its value to be changed
21 * under us, we must either hold the barrier mutex, the cpu
22 * hotplug lock (read or write) or the nocb lock. Local
23 * non-preemptible reads are also safe. NOCB kthreads and
24 * timers have their own means of synchronization against the
25 * offloaded state updaters.
27 RCU_NOCB_LOCKDEP_WARN(
28 !(lockdep_is_held(&rcu_state
.barrier_mutex
) ||
29 (IS_ENABLED(CONFIG_HOTPLUG_CPU
) && lockdep_is_cpus_held()) ||
30 lockdep_is_held(&rdp
->nocb_lock
) ||
31 lockdep_is_held(&rcu_state
.nocb_mutex
) ||
32 (!(IS_ENABLED(CONFIG_PREEMPT_COUNT
) && preemptible()) &&
33 rdp
== this_cpu_ptr(&rcu_data
)) ||
34 rcu_current_is_nocb_kthread(rdp
)),
35 "Unsafe read of RCU_NOCB offloaded state"
38 return rcu_segcblist_is_offloaded(&rdp
->cblist
);
42 * Check the RCU kernel configuration parameters and print informative
43 * messages about anything out of the ordinary.
45 static void __init
rcu_bootup_announce_oddness(void)
47 if (IS_ENABLED(CONFIG_RCU_TRACE
))
48 pr_info("\tRCU event tracing is enabled.\n");
49 if ((IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 64) ||
50 (!IS_ENABLED(CONFIG_64BIT
) && RCU_FANOUT
!= 32))
51 pr_info("\tCONFIG_RCU_FANOUT set to non-default value of %d.\n",
54 pr_info("\tHierarchical RCU autobalancing is disabled.\n");
55 if (IS_ENABLED(CONFIG_PROVE_RCU
))
56 pr_info("\tRCU lockdep checking is enabled.\n");
57 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD
))
58 pr_info("\tRCU strict (and thus non-scalable) grace periods are enabled.\n");
59 if (RCU_NUM_LVLS
>= 4)
60 pr_info("\tFour(or more)-level hierarchy is enabled.\n");
61 if (RCU_FANOUT_LEAF
!= 16)
62 pr_info("\tBuild-time adjustment of leaf fanout to %d.\n",
64 if (rcu_fanout_leaf
!= RCU_FANOUT_LEAF
)
65 pr_info("\tBoot-time adjustment of leaf fanout to %d.\n",
67 if (nr_cpu_ids
!= NR_CPUS
)
68 pr_info("\tRCU restricting CPUs from NR_CPUS=%d to nr_cpu_ids=%u.\n", NR_CPUS
, nr_cpu_ids
);
69 #ifdef CONFIG_RCU_BOOST
70 pr_info("\tRCU priority boosting: priority %d delay %d ms.\n",
71 kthread_prio
, CONFIG_RCU_BOOST_DELAY
);
73 if (blimit
!= DEFAULT_RCU_BLIMIT
)
74 pr_info("\tBoot-time adjustment of callback invocation limit to %ld.\n", blimit
);
75 if (qhimark
!= DEFAULT_RCU_QHIMARK
)
76 pr_info("\tBoot-time adjustment of callback high-water mark to %ld.\n", qhimark
);
77 if (qlowmark
!= DEFAULT_RCU_QLOMARK
)
78 pr_info("\tBoot-time adjustment of callback low-water mark to %ld.\n", qlowmark
);
79 if (qovld
!= DEFAULT_RCU_QOVLD
)
80 pr_info("\tBoot-time adjustment of callback overload level to %ld.\n", qovld
);
81 if (jiffies_till_first_fqs
!= ULONG_MAX
)
82 pr_info("\tBoot-time adjustment of first FQS scan delay to %ld jiffies.\n", jiffies_till_first_fqs
);
83 if (jiffies_till_next_fqs
!= ULONG_MAX
)
84 pr_info("\tBoot-time adjustment of subsequent FQS scan delay to %ld jiffies.\n", jiffies_till_next_fqs
);
85 if (jiffies_till_sched_qs
!= ULONG_MAX
)
86 pr_info("\tBoot-time adjustment of scheduler-enlistment delay to %ld jiffies.\n", jiffies_till_sched_qs
);
87 if (rcu_kick_kthreads
)
88 pr_info("\tKick kthreads if too-long grace period.\n");
89 if (IS_ENABLED(CONFIG_DEBUG_OBJECTS_RCU_HEAD
))
90 pr_info("\tRCU callback double-/use-after-free debug is enabled.\n");
92 pr_info("\tRCU debug GP pre-init slowdown %d jiffies.\n", gp_preinit_delay
);
94 pr_info("\tRCU debug GP init slowdown %d jiffies.\n", gp_init_delay
);
96 pr_info("\tRCU debug GP cleanup slowdown %d jiffies.\n", gp_cleanup_delay
);
97 if (nohz_full_patience_delay
< 0) {
98 pr_info("\tRCU NOCB CPU patience negative (%d), resetting to zero.\n", nohz_full_patience_delay
);
99 nohz_full_patience_delay
= 0;
100 } else if (nohz_full_patience_delay
> 5 * MSEC_PER_SEC
) {
101 pr_info("\tRCU NOCB CPU patience too large (%d), resetting to %ld.\n", nohz_full_patience_delay
, 5 * MSEC_PER_SEC
);
102 nohz_full_patience_delay
= 5 * MSEC_PER_SEC
;
103 } else if (nohz_full_patience_delay
) {
104 pr_info("\tRCU NOCB CPU patience set to %d milliseconds.\n", nohz_full_patience_delay
);
106 nohz_full_patience_delay_jiffies
= msecs_to_jiffies(nohz_full_patience_delay
);
108 pr_info("\tRCU_SOFTIRQ processing moved to rcuc kthreads.\n");
109 if (IS_ENABLED(CONFIG_RCU_EQS_DEBUG
))
110 pr_info("\tRCU debug extended QS entry/exit.\n");
111 rcupdate_announce_bootup_oddness();
114 #ifdef CONFIG_PREEMPT_RCU
116 static void rcu_report_exp_rnp(struct rcu_node
*rnp
, bool wake
);
117 static void rcu_read_unlock_special(struct task_struct
*t
);
120 * Tell them what RCU they are running.
122 static void __init
rcu_bootup_announce(void)
124 pr_info("Preemptible hierarchical RCU implementation.\n");
125 rcu_bootup_announce_oddness();
128 /* Flags for rcu_preempt_ctxt_queue() decision table. */
129 #define RCU_GP_TASKS 0x8
130 #define RCU_EXP_TASKS 0x4
131 #define RCU_GP_BLKD 0x2
132 #define RCU_EXP_BLKD 0x1
135 * Queues a task preempted within an RCU-preempt read-side critical
136 * section into the appropriate location within the ->blkd_tasks list,
137 * depending on the states of any ongoing normal and expedited grace
138 * periods. The ->gp_tasks pointer indicates which element the normal
139 * grace period is waiting on (NULL if none), and the ->exp_tasks pointer
140 * indicates which element the expedited grace period is waiting on (again,
141 * NULL if none). If a grace period is waiting on a given element in the
142 * ->blkd_tasks list, it also waits on all subsequent elements. Thus,
143 * adding a task to the tail of the list blocks any grace period that is
144 * already waiting on one of the elements. In contrast, adding a task
145 * to the head of the list won't block any grace period that is already
146 * waiting on one of the elements.
148 * This queuing is imprecise, and can sometimes make an ongoing grace
149 * period wait for a task that is not strictly speaking blocking it.
150 * Given the choice, we needlessly block a normal grace period rather than
151 * blocking an expedited grace period.
153 * Note that an endless sequence of expedited grace periods still cannot
154 * indefinitely postpone a normal grace period. Eventually, all of the
155 * fixed number of preempted tasks blocking the normal grace period that are
156 * not also blocking the expedited grace period will resume and complete
157 * their RCU read-side critical sections. At that point, the ->gp_tasks
158 * pointer will equal the ->exp_tasks pointer, at which point the end of
159 * the corresponding expedited grace period will also be the end of the
160 * normal grace period.
162 static void rcu_preempt_ctxt_queue(struct rcu_node
*rnp
, struct rcu_data
*rdp
)
163 __releases(rnp
->lock
) /* But leaves rrupts disabled. */
165 int blkd_state
= (rnp
->gp_tasks
? RCU_GP_TASKS
: 0) +
166 (rnp
->exp_tasks
? RCU_EXP_TASKS
: 0) +
167 (rnp
->qsmask
& rdp
->grpmask
? RCU_GP_BLKD
: 0) +
168 (rnp
->expmask
& rdp
->grpmask
? RCU_EXP_BLKD
: 0);
169 struct task_struct
*t
= current
;
171 raw_lockdep_assert_held_rcu_node(rnp
);
172 WARN_ON_ONCE(rdp
->mynode
!= rnp
);
173 WARN_ON_ONCE(!rcu_is_leaf_node(rnp
));
174 /* RCU better not be waiting on newly onlined CPUs! */
175 WARN_ON_ONCE(rnp
->qsmaskinitnext
& ~rnp
->qsmaskinit
& rnp
->qsmask
&
179 * Decide where to queue the newly blocked task. In theory,
180 * this could be an if-statement. In practice, when I tried
181 * that, it was quite messy.
183 switch (blkd_state
) {
186 case RCU_EXP_TASKS
| RCU_GP_BLKD
:
188 case RCU_GP_TASKS
| RCU_EXP_TASKS
:
191 * Blocking neither GP, or first task blocking the normal
192 * GP but not blocking the already-waiting expedited GP.
193 * Queue at the head of the list to avoid unnecessarily
194 * blocking the already-waiting GPs.
196 list_add(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
201 case RCU_GP_BLKD
| RCU_EXP_BLKD
:
202 case RCU_GP_TASKS
| RCU_EXP_BLKD
:
203 case RCU_GP_TASKS
| RCU_GP_BLKD
| RCU_EXP_BLKD
:
204 case RCU_GP_TASKS
| RCU_EXP_TASKS
| RCU_GP_BLKD
| RCU_EXP_BLKD
:
207 * First task arriving that blocks either GP, or first task
208 * arriving that blocks the expedited GP (with the normal
209 * GP already waiting), or a task arriving that blocks
210 * both GPs with both GPs already waiting. Queue at the
211 * tail of the list to avoid any GP waiting on any of the
212 * already queued tasks that are not blocking it.
214 list_add_tail(&t
->rcu_node_entry
, &rnp
->blkd_tasks
);
217 case RCU_EXP_TASKS
| RCU_EXP_BLKD
:
218 case RCU_EXP_TASKS
| RCU_GP_BLKD
| RCU_EXP_BLKD
:
219 case RCU_GP_TASKS
| RCU_EXP_TASKS
| RCU_EXP_BLKD
:
222 * Second or subsequent task blocking the expedited GP.
223 * The task either does not block the normal GP, or is the
224 * first task blocking the normal GP. Queue just after
225 * the first task blocking the expedited GP.
227 list_add(&t
->rcu_node_entry
, rnp
->exp_tasks
);
230 case RCU_GP_TASKS
| RCU_GP_BLKD
:
231 case RCU_GP_TASKS
| RCU_EXP_TASKS
| RCU_GP_BLKD
:
234 * Second or subsequent task blocking the normal GP.
235 * The task does not block the expedited GP. Queue just
236 * after the first task blocking the normal GP.
238 list_add(&t
->rcu_node_entry
, rnp
->gp_tasks
);
243 /* Yet another exercise in excessive paranoia. */
249 * We have now queued the task. If it was the first one to
250 * block either grace period, update the ->gp_tasks and/or
251 * ->exp_tasks pointers, respectively, to reference the newly
254 if (!rnp
->gp_tasks
&& (blkd_state
& RCU_GP_BLKD
)) {
255 WRITE_ONCE(rnp
->gp_tasks
, &t
->rcu_node_entry
);
256 WARN_ON_ONCE(rnp
->completedqs
== rnp
->gp_seq
);
258 if (!rnp
->exp_tasks
&& (blkd_state
& RCU_EXP_BLKD
))
259 WRITE_ONCE(rnp
->exp_tasks
, &t
->rcu_node_entry
);
260 WARN_ON_ONCE(!(blkd_state
& RCU_GP_BLKD
) !=
261 !(rnp
->qsmask
& rdp
->grpmask
));
262 WARN_ON_ONCE(!(blkd_state
& RCU_EXP_BLKD
) !=
263 !(rnp
->expmask
& rdp
->grpmask
));
264 raw_spin_unlock_rcu_node(rnp
); /* interrupts remain disabled. */
267 * Report the quiescent state for the expedited GP. This expedited
268 * GP should not be able to end until we report, so there should be
269 * no need to check for a subsequent expedited GP. (Though we are
270 * still in a quiescent state in any case.)
272 * Interrupts are disabled, so ->cpu_no_qs.b.exp cannot change.
274 if (blkd_state
& RCU_EXP_BLKD
&& rdp
->cpu_no_qs
.b
.exp
)
275 rcu_report_exp_rdp(rdp
);
277 WARN_ON_ONCE(rdp
->cpu_no_qs
.b
.exp
);
281 * Record a preemptible-RCU quiescent state for the specified CPU.
282 * Note that this does not necessarily mean that the task currently running
283 * on the CPU is in a quiescent state: Instead, it means that the current
284 * grace period need not wait on any RCU read-side critical section that
285 * starts later on this CPU. It also means that if the current task is
286 * in an RCU read-side critical section, it has already added itself to
287 * some leaf rcu_node structure's ->blkd_tasks list. In addition to the
288 * current task, there might be any number of other tasks blocked while
289 * in an RCU read-side critical section.
291 * Unlike non-preemptible-RCU, quiescent state reports for expedited
292 * grace periods are handled separately via deferred quiescent states
293 * and context switch events.
295 * Callers to this function must disable preemption.
297 static void rcu_qs(void)
299 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!\n");
300 if (__this_cpu_read(rcu_data
.cpu_no_qs
.b
.norm
)) {
301 trace_rcu_grace_period(TPS("rcu_preempt"),
302 __this_cpu_read(rcu_data
.gp_seq
),
304 __this_cpu_write(rcu_data
.cpu_no_qs
.b
.norm
, false);
305 barrier(); /* Coordinate with rcu_flavor_sched_clock_irq(). */
306 WRITE_ONCE(current
->rcu_read_unlock_special
.b
.need_qs
, false);
311 * We have entered the scheduler, and the current task might soon be
312 * context-switched away from. If this task is in an RCU read-side
313 * critical section, we will no longer be able to rely on the CPU to
314 * record that fact, so we enqueue the task on the blkd_tasks list.
315 * The task will dequeue itself when it exits the outermost enclosing
316 * RCU read-side critical section. Therefore, the current grace period
317 * cannot be permitted to complete until the blkd_tasks list entries
318 * predating the current grace period drain, in other words, until
319 * rnp->gp_tasks becomes NULL.
321 * Caller must disable interrupts.
323 void rcu_note_context_switch(bool preempt
)
325 struct task_struct
*t
= current
;
326 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
327 struct rcu_node
*rnp
;
329 trace_rcu_utilization(TPS("Start context switch"));
330 lockdep_assert_irqs_disabled();
331 WARN_ONCE(!preempt
&& rcu_preempt_depth() > 0, "Voluntary context switch within RCU read-side critical section!");
332 if (rcu_preempt_depth() > 0 &&
333 !t
->rcu_read_unlock_special
.b
.blocked
) {
335 /* Possibly blocking in an RCU read-side critical section. */
337 raw_spin_lock_rcu_node(rnp
);
338 t
->rcu_read_unlock_special
.b
.blocked
= true;
339 t
->rcu_blocked_node
= rnp
;
342 * Verify the CPU's sanity, trace the preemption, and
343 * then queue the task as required based on the states
344 * of any ongoing and expedited grace periods.
346 WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp
));
347 WARN_ON_ONCE(!list_empty(&t
->rcu_node_entry
));
348 trace_rcu_preempt_task(rcu_state
.name
,
350 (rnp
->qsmask
& rdp
->grpmask
)
352 : rcu_seq_snap(&rnp
->gp_seq
));
353 rcu_preempt_ctxt_queue(rnp
, rdp
);
355 rcu_preempt_deferred_qs(t
);
359 * Either we were not in an RCU read-side critical section to
360 * begin with, or we have now recorded that critical section
361 * globally. Either way, we can now note a quiescent state
362 * for this CPU. Again, if we were in an RCU read-side critical
363 * section, and if that critical section was blocking the current
364 * grace period, then the fact that the task has been enqueued
365 * means that we continue to block the current grace period.
368 if (rdp
->cpu_no_qs
.b
.exp
)
369 rcu_report_exp_rdp(rdp
);
370 rcu_tasks_qs(current
, preempt
);
371 trace_rcu_utilization(TPS("End context switch"));
373 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
376 * Check for preempted RCU readers blocking the current grace period
377 * for the specified rcu_node structure. If the caller needs a reliable
378 * answer, it must hold the rcu_node's ->lock.
380 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
382 return READ_ONCE(rnp
->gp_tasks
) != NULL
;
385 /* limit value for ->rcu_read_lock_nesting. */
386 #define RCU_NEST_PMAX (INT_MAX / 2)
388 static void rcu_preempt_read_enter(void)
390 WRITE_ONCE(current
->rcu_read_lock_nesting
, READ_ONCE(current
->rcu_read_lock_nesting
) + 1);
393 static int rcu_preempt_read_exit(void)
395 int ret
= READ_ONCE(current
->rcu_read_lock_nesting
) - 1;
397 WRITE_ONCE(current
->rcu_read_lock_nesting
, ret
);
401 static void rcu_preempt_depth_set(int val
)
403 WRITE_ONCE(current
->rcu_read_lock_nesting
, val
);
407 * Preemptible RCU implementation for rcu_read_lock().
408 * Just increment ->rcu_read_lock_nesting, shared state will be updated
411 void __rcu_read_lock(void)
413 rcu_preempt_read_enter();
414 if (IS_ENABLED(CONFIG_PROVE_LOCKING
))
415 WARN_ON_ONCE(rcu_preempt_depth() > RCU_NEST_PMAX
);
416 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD
) && rcu_state
.gp_kthread
)
417 WRITE_ONCE(current
->rcu_read_unlock_special
.b
.need_qs
, true);
418 barrier(); /* critical section after entry code. */
420 EXPORT_SYMBOL_GPL(__rcu_read_lock
);
423 * Preemptible RCU implementation for rcu_read_unlock().
424 * Decrement ->rcu_read_lock_nesting. If the result is zero (outermost
425 * rcu_read_unlock()) and ->rcu_read_unlock_special is non-zero, then
426 * invoke rcu_read_unlock_special() to clean up after a context switch
427 * in an RCU read-side critical section and other special cases.
429 void __rcu_read_unlock(void)
431 struct task_struct
*t
= current
;
433 barrier(); // critical section before exit code.
434 if (rcu_preempt_read_exit() == 0) {
435 barrier(); // critical-section exit before .s check.
436 if (unlikely(READ_ONCE(t
->rcu_read_unlock_special
.s
)))
437 rcu_read_unlock_special(t
);
439 if (IS_ENABLED(CONFIG_PROVE_LOCKING
)) {
440 int rrln
= rcu_preempt_depth();
442 WARN_ON_ONCE(rrln
< 0 || rrln
> RCU_NEST_PMAX
);
445 EXPORT_SYMBOL_GPL(__rcu_read_unlock
);
448 * Advance a ->blkd_tasks-list pointer to the next entry, instead
449 * returning NULL if at the end of the list.
451 static struct list_head
*rcu_next_node_entry(struct task_struct
*t
,
452 struct rcu_node
*rnp
)
454 struct list_head
*np
;
456 np
= t
->rcu_node_entry
.next
;
457 if (np
== &rnp
->blkd_tasks
)
463 * Return true if the specified rcu_node structure has tasks that were
464 * preempted within an RCU read-side critical section.
466 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
468 return !list_empty(&rnp
->blkd_tasks
);
472 * Report deferred quiescent states. The deferral time can
473 * be quite short, for example, in the case of the call from
474 * rcu_read_unlock_special().
477 rcu_preempt_deferred_qs_irqrestore(struct task_struct
*t
, unsigned long flags
)
482 struct list_head
*np
;
483 bool drop_boost_mutex
= false;
484 struct rcu_data
*rdp
;
485 struct rcu_node
*rnp
;
486 union rcu_special special
;
489 * If RCU core is waiting for this CPU to exit its critical section,
490 * report the fact that it has exited. Because irqs are disabled,
491 * t->rcu_read_unlock_special cannot change.
493 special
= t
->rcu_read_unlock_special
;
494 rdp
= this_cpu_ptr(&rcu_data
);
495 if (!special
.s
&& !rdp
->cpu_no_qs
.b
.exp
) {
496 local_irq_restore(flags
);
499 t
->rcu_read_unlock_special
.s
= 0;
500 if (special
.b
.need_qs
) {
501 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD
)) {
502 rdp
->cpu_no_qs
.b
.norm
= false;
503 rcu_report_qs_rdp(rdp
);
504 udelay(rcu_unlock_delay
);
511 * Respond to a request by an expedited grace period for a
512 * quiescent state from this CPU. Note that requests from
513 * tasks are handled when removing the task from the
514 * blocked-tasks list below.
516 if (rdp
->cpu_no_qs
.b
.exp
)
517 rcu_report_exp_rdp(rdp
);
519 /* Clean up if blocked during RCU read-side critical section. */
520 if (special
.b
.blocked
) {
523 * Remove this task from the list it blocked on. The task
524 * now remains queued on the rcu_node corresponding to the
525 * CPU it first blocked on, so there is no longer any need
526 * to loop. Retain a WARN_ON_ONCE() out of sheer paranoia.
528 rnp
= t
->rcu_blocked_node
;
529 raw_spin_lock_rcu_node(rnp
); /* irqs already disabled. */
530 WARN_ON_ONCE(rnp
!= t
->rcu_blocked_node
);
531 WARN_ON_ONCE(!rcu_is_leaf_node(rnp
));
532 empty_norm
= !rcu_preempt_blocked_readers_cgp(rnp
);
533 WARN_ON_ONCE(rnp
->completedqs
== rnp
->gp_seq
&&
534 (!empty_norm
|| rnp
->qsmask
));
535 empty_exp
= sync_rcu_exp_done(rnp
);
536 smp_mb(); /* ensure expedited fastpath sees end of RCU c-s. */
537 np
= rcu_next_node_entry(t
, rnp
);
538 list_del_init(&t
->rcu_node_entry
);
539 t
->rcu_blocked_node
= NULL
;
540 trace_rcu_unlock_preempted_task(TPS("rcu_preempt"),
541 rnp
->gp_seq
, t
->pid
);
542 if (&t
->rcu_node_entry
== rnp
->gp_tasks
)
543 WRITE_ONCE(rnp
->gp_tasks
, np
);
544 if (&t
->rcu_node_entry
== rnp
->exp_tasks
)
545 WRITE_ONCE(rnp
->exp_tasks
, np
);
546 if (IS_ENABLED(CONFIG_RCU_BOOST
)) {
547 /* Snapshot ->boost_mtx ownership w/rnp->lock held. */
548 drop_boost_mutex
= rt_mutex_owner(&rnp
->boost_mtx
.rtmutex
) == t
;
549 if (&t
->rcu_node_entry
== rnp
->boost_tasks
)
550 WRITE_ONCE(rnp
->boost_tasks
, np
);
554 * If this was the last task on the current list, and if
555 * we aren't waiting on any CPUs, report the quiescent state.
556 * Note that rcu_report_unblock_qs_rnp() releases rnp->lock,
557 * so we must take a snapshot of the expedited state.
559 empty_exp_now
= sync_rcu_exp_done(rnp
);
560 if (!empty_norm
&& !rcu_preempt_blocked_readers_cgp(rnp
)) {
561 trace_rcu_quiescent_state_report(TPS("preempt_rcu"),
568 rcu_report_unblock_qs_rnp(rnp
, flags
);
570 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
574 * If this was the last task on the expedited lists,
575 * then we need to report up the rcu_node hierarchy.
577 if (!empty_exp
&& empty_exp_now
)
578 rcu_report_exp_rnp(rnp
, true);
580 /* Unboost if we were boosted. */
581 if (IS_ENABLED(CONFIG_RCU_BOOST
) && drop_boost_mutex
)
582 rt_mutex_futex_unlock(&rnp
->boost_mtx
.rtmutex
);
584 local_irq_restore(flags
);
589 * Is a deferred quiescent-state pending, and are we also not in
590 * an RCU read-side critical section? It is the caller's responsibility
591 * to ensure it is otherwise safe to report any deferred quiescent
592 * states. The reason for this is that it is safe to report a
593 * quiescent state during context switch even though preemption
594 * is disabled. This function cannot be expected to understand these
595 * nuances, so the caller must handle them.
597 static notrace
bool rcu_preempt_need_deferred_qs(struct task_struct
*t
)
599 return (__this_cpu_read(rcu_data
.cpu_no_qs
.b
.exp
) ||
600 READ_ONCE(t
->rcu_read_unlock_special
.s
)) &&
601 rcu_preempt_depth() == 0;
605 * Report a deferred quiescent state if needed and safe to do so.
606 * As with rcu_preempt_need_deferred_qs(), "safe" involves only
607 * not being in an RCU read-side critical section. The caller must
608 * evaluate safety in terms of interrupt, softirq, and preemption
611 notrace
void rcu_preempt_deferred_qs(struct task_struct
*t
)
615 if (!rcu_preempt_need_deferred_qs(t
))
617 local_irq_save(flags
);
618 rcu_preempt_deferred_qs_irqrestore(t
, flags
);
622 * Minimal handler to give the scheduler a chance to re-evaluate.
624 static void rcu_preempt_deferred_qs_handler(struct irq_work
*iwp
)
626 struct rcu_data
*rdp
;
628 rdp
= container_of(iwp
, struct rcu_data
, defer_qs_iw
);
629 rdp
->defer_qs_iw_pending
= false;
633 * Handle special cases during rcu_read_unlock(), such as needing to
634 * notify RCU core processing or task having blocked during the RCU
635 * read-side critical section.
637 static void rcu_read_unlock_special(struct task_struct
*t
)
640 bool irqs_were_disabled
;
641 bool preempt_bh_were_disabled
=
642 !!(preempt_count() & (PREEMPT_MASK
| SOFTIRQ_MASK
));
644 /* NMI handlers cannot block and cannot safely manipulate state. */
648 local_irq_save(flags
);
649 irqs_were_disabled
= irqs_disabled_flags(flags
);
650 if (preempt_bh_were_disabled
|| irqs_were_disabled
) {
651 bool expboost
; // Expedited GP in flight or possible boosting.
652 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
653 struct rcu_node
*rnp
= rdp
->mynode
;
655 expboost
= (t
->rcu_blocked_node
&& READ_ONCE(t
->rcu_blocked_node
->exp_tasks
)) ||
656 (rdp
->grpmask
& READ_ONCE(rnp
->expmask
)) ||
657 (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD
) &&
658 ((rdp
->grpmask
& READ_ONCE(rnp
->qsmask
)) || t
->rcu_blocked_node
)) ||
659 (IS_ENABLED(CONFIG_RCU_BOOST
) && irqs_were_disabled
&&
660 t
->rcu_blocked_node
);
661 // Need to defer quiescent state until everything is enabled.
662 if (use_softirq
&& (in_hardirq() || (expboost
&& !irqs_were_disabled
))) {
663 // Using softirq, safe to awaken, and either the
664 // wakeup is free or there is either an expedited
665 // GP in flight or a potential need to deboost.
666 raise_softirq_irqoff(RCU_SOFTIRQ
);
668 // Enabling BH or preempt does reschedule, so...
669 // Also if no expediting and no possible deboosting,
670 // slow is OK. Plus nohz_full CPUs eventually get
672 set_tsk_need_resched(current
);
673 set_preempt_need_resched();
674 if (IS_ENABLED(CONFIG_IRQ_WORK
) && irqs_were_disabled
&&
675 expboost
&& !rdp
->defer_qs_iw_pending
&& cpu_online(rdp
->cpu
)) {
676 // Get scheduler to re-evaluate and call hooks.
677 // If !IRQ_WORK, FQS scan will eventually IPI.
678 if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD
) &&
679 IS_ENABLED(CONFIG_PREEMPT_RT
))
680 rdp
->defer_qs_iw
= IRQ_WORK_INIT_HARD(
681 rcu_preempt_deferred_qs_handler
);
683 init_irq_work(&rdp
->defer_qs_iw
,
684 rcu_preempt_deferred_qs_handler
);
685 rdp
->defer_qs_iw_pending
= true;
686 irq_work_queue_on(&rdp
->defer_qs_iw
, rdp
->cpu
);
689 local_irq_restore(flags
);
692 rcu_preempt_deferred_qs_irqrestore(t
, flags
);
696 * Check that the list of blocked tasks for the newly completed grace
697 * period is in fact empty. It is a serious bug to complete a grace
698 * period that still has RCU readers blocked! This function must be
699 * invoked -before- updating this rnp's ->gp_seq.
701 * Also, if there are blocked tasks on the list, they automatically
702 * block the newly created grace period, so set up ->gp_tasks accordingly.
704 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
706 struct task_struct
*t
;
708 RCU_LOCKDEP_WARN(preemptible(), "rcu_preempt_check_blocked_tasks() invoked with preemption enabled!!!\n");
709 raw_lockdep_assert_held_rcu_node(rnp
);
710 if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp
)))
711 dump_blkd_tasks(rnp
, 10);
712 if (rcu_preempt_has_tasks(rnp
) &&
713 (rnp
->qsmaskinit
|| rnp
->wait_blkd_tasks
)) {
714 WRITE_ONCE(rnp
->gp_tasks
, rnp
->blkd_tasks
.next
);
715 t
= container_of(rnp
->gp_tasks
, struct task_struct
,
717 trace_rcu_unlock_preempted_task(TPS("rcu_preempt-GPS"),
718 rnp
->gp_seq
, t
->pid
);
720 WARN_ON_ONCE(rnp
->qsmask
);
724 * Check for a quiescent state from the current CPU, including voluntary
725 * context switches for Tasks RCU. When a task blocks, the task is
726 * recorded in the corresponding CPU's rcu_node structure, which is checked
727 * elsewhere, hence this function need only check for quiescent states
728 * related to the current CPU, not to those related to tasks.
730 static void rcu_flavor_sched_clock_irq(int user
)
732 struct task_struct
*t
= current
;
734 lockdep_assert_irqs_disabled();
735 if (rcu_preempt_depth() > 0 ||
736 (preempt_count() & (PREEMPT_MASK
| SOFTIRQ_MASK
))) {
737 /* No QS, force context switch if deferred. */
738 if (rcu_preempt_need_deferred_qs(t
)) {
739 set_tsk_need_resched(t
);
740 set_preempt_need_resched();
742 } else if (rcu_preempt_need_deferred_qs(t
)) {
743 rcu_preempt_deferred_qs(t
); /* Report deferred QS. */
745 } else if (!WARN_ON_ONCE(rcu_preempt_depth())) {
746 rcu_qs(); /* Report immediate QS. */
750 /* If GP is oldish, ask for help from rcu_read_unlock_special(). */
751 if (rcu_preempt_depth() > 0 &&
752 __this_cpu_read(rcu_data
.core_needs_qs
) &&
753 __this_cpu_read(rcu_data
.cpu_no_qs
.b
.norm
) &&
754 !t
->rcu_read_unlock_special
.b
.need_qs
&&
755 time_after(jiffies
, rcu_state
.gp_start
+ HZ
))
756 t
->rcu_read_unlock_special
.b
.need_qs
= true;
760 * Check for a task exiting while in a preemptible-RCU read-side
761 * critical section, clean up if so. No need to issue warnings, as
762 * debug_check_no_locks_held() already does this if lockdep is enabled.
763 * Besides, if this function does anything other than just immediately
764 * return, there was a bug of some sort. Spewing warnings from this
765 * function is like as not to simply obscure important prior warnings.
769 struct task_struct
*t
= current
;
771 if (unlikely(!list_empty(¤t
->rcu_node_entry
))) {
772 rcu_preempt_depth_set(1);
774 WRITE_ONCE(t
->rcu_read_unlock_special
.b
.blocked
, true);
775 } else if (unlikely(rcu_preempt_depth())) {
776 rcu_preempt_depth_set(1);
781 rcu_preempt_deferred_qs(current
);
785 * Dump the blocked-tasks state, but limit the list dump to the
786 * specified number of elements.
789 dump_blkd_tasks(struct rcu_node
*rnp
, int ncheck
)
793 struct list_head
*lhp
;
794 struct rcu_data
*rdp
;
795 struct rcu_node
*rnp1
;
797 raw_lockdep_assert_held_rcu_node(rnp
);
798 pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
799 __func__
, rnp
->grplo
, rnp
->grphi
, rnp
->level
,
800 (long)READ_ONCE(rnp
->gp_seq
), (long)rnp
->completedqs
);
801 for (rnp1
= rnp
; rnp1
; rnp1
= rnp1
->parent
)
802 pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx\n",
803 __func__
, rnp1
->grplo
, rnp1
->grphi
, rnp1
->qsmask
, rnp1
->qsmaskinit
, rnp1
->qsmaskinitnext
);
804 pr_info("%s: ->gp_tasks %p ->boost_tasks %p ->exp_tasks %p\n",
805 __func__
, READ_ONCE(rnp
->gp_tasks
), data_race(rnp
->boost_tasks
),
806 READ_ONCE(rnp
->exp_tasks
));
807 pr_info("%s: ->blkd_tasks", __func__
);
809 list_for_each(lhp
, &rnp
->blkd_tasks
) {
815 for (cpu
= rnp
->grplo
; cpu
<= rnp
->grphi
; cpu
++) {
816 rdp
= per_cpu_ptr(&rcu_data
, cpu
);
817 pr_info("\t%d: %c online: %ld(%d) offline: %ld(%d)\n",
818 cpu
, ".o"[rcu_rdp_cpu_online(rdp
)],
819 (long)rdp
->rcu_onl_gp_seq
, rdp
->rcu_onl_gp_state
,
820 (long)rdp
->rcu_ofl_gp_seq
, rdp
->rcu_ofl_gp_state
);
824 #else /* #ifdef CONFIG_PREEMPT_RCU */
827 * If strict grace periods are enabled, and if the calling
828 * __rcu_read_unlock() marks the beginning of a quiescent state, immediately
829 * report that quiescent state and, if requested, spin for a bit.
831 void rcu_read_unlock_strict(void)
833 struct rcu_data
*rdp
;
835 if (irqs_disabled() || preempt_count() || !rcu_state
.gp_kthread
)
837 rdp
= this_cpu_ptr(&rcu_data
);
838 rdp
->cpu_no_qs
.b
.norm
= false;
839 rcu_report_qs_rdp(rdp
);
840 udelay(rcu_unlock_delay
);
842 EXPORT_SYMBOL_GPL(rcu_read_unlock_strict
);
845 * Tell them what RCU they are running.
847 static void __init
rcu_bootup_announce(void)
849 pr_info("Hierarchical RCU implementation.\n");
850 rcu_bootup_announce_oddness();
854 * Note a quiescent state for PREEMPTION=n. Because we do not need to know
855 * how many quiescent states passed, just if there was at least one since
856 * the start of the grace period, this just sets a flag. The caller must
857 * have disabled preemption.
859 static void rcu_qs(void)
861 RCU_LOCKDEP_WARN(preemptible(), "rcu_qs() invoked with preemption enabled!!!");
862 if (!__this_cpu_read(rcu_data
.cpu_no_qs
.s
))
864 trace_rcu_grace_period(TPS("rcu_sched"),
865 __this_cpu_read(rcu_data
.gp_seq
), TPS("cpuqs"));
866 __this_cpu_write(rcu_data
.cpu_no_qs
.b
.norm
, false);
867 if (__this_cpu_read(rcu_data
.cpu_no_qs
.b
.exp
))
868 rcu_report_exp_rdp(this_cpu_ptr(&rcu_data
));
872 * Register an urgently needed quiescent state. If there is an
873 * emergency, invoke rcu_momentary_eqs() to do a heavy-weight
874 * dyntick-idle quiescent state visible to other CPUs, which will in
875 * some cases serve for expedited as well as normal grace periods.
876 * Either way, register a lightweight quiescent state.
878 void rcu_all_qs(void)
882 if (!raw_cpu_read(rcu_data
.rcu_urgent_qs
))
884 preempt_disable(); // For CONFIG_PREEMPT_COUNT=y kernels
885 /* Load rcu_urgent_qs before other flags. */
886 if (!smp_load_acquire(this_cpu_ptr(&rcu_data
.rcu_urgent_qs
))) {
890 this_cpu_write(rcu_data
.rcu_urgent_qs
, false);
891 if (unlikely(raw_cpu_read(rcu_data
.rcu_need_heavy_qs
))) {
892 local_irq_save(flags
);
894 local_irq_restore(flags
);
899 EXPORT_SYMBOL_GPL(rcu_all_qs
);
902 * Note a PREEMPTION=n context switch. The caller must have disabled interrupts.
904 void rcu_note_context_switch(bool preempt
)
906 trace_rcu_utilization(TPS("Start context switch"));
908 /* Load rcu_urgent_qs before other flags. */
909 if (!smp_load_acquire(this_cpu_ptr(&rcu_data
.rcu_urgent_qs
)))
911 this_cpu_write(rcu_data
.rcu_urgent_qs
, false);
912 if (unlikely(raw_cpu_read(rcu_data
.rcu_need_heavy_qs
)))
915 rcu_tasks_qs(current
, preempt
);
916 trace_rcu_utilization(TPS("End context switch"));
918 EXPORT_SYMBOL_GPL(rcu_note_context_switch
);
921 * Because preemptible RCU does not exist, there are never any preempted
924 static int rcu_preempt_blocked_readers_cgp(struct rcu_node
*rnp
)
930 * Because there is no preemptible RCU, there can be no readers blocked.
932 static bool rcu_preempt_has_tasks(struct rcu_node
*rnp
)
938 * Because there is no preemptible RCU, there can be no deferred quiescent
941 static notrace
bool rcu_preempt_need_deferred_qs(struct task_struct
*t
)
946 // Except that we do need to respond to a request by an expedited
947 // grace period for a quiescent state from this CPU. Note that in
948 // non-preemptible kernels, there can be no context switches within RCU
949 // read-side critical sections, which in turn means that the leaf rcu_node
950 // structure's blocked-tasks list is always empty. is therefore no need to
951 // actually check it. Instead, a quiescent state from this CPU suffices,
952 // and this function is only called from such a quiescent state.
953 notrace
void rcu_preempt_deferred_qs(struct task_struct
*t
)
955 struct rcu_data
*rdp
= this_cpu_ptr(&rcu_data
);
957 if (READ_ONCE(rdp
->cpu_no_qs
.b
.exp
))
958 rcu_report_exp_rdp(rdp
);
962 * Because there is no preemptible RCU, there can be no readers blocked,
963 * so there is no need to check for blocked tasks. So check only for
964 * bogus qsmask values.
966 static void rcu_preempt_check_blocked_tasks(struct rcu_node
*rnp
)
968 WARN_ON_ONCE(rnp
->qsmask
);
972 * Check to see if this CPU is in a non-context-switch quiescent state,
973 * namely user mode and idle loop.
975 static void rcu_flavor_sched_clock_irq(int user
)
977 if (user
|| rcu_is_cpu_rrupt_from_idle()) {
980 * Get here if this CPU took its interrupt from user
981 * mode or from the idle loop, and if this is not a
982 * nested interrupt. In this case, the CPU is in
983 * a quiescent state, so note it.
985 * No memory barrier is required here because rcu_qs()
986 * references only CPU-local variables that other CPUs
987 * neither access nor modify, at least not while the
988 * corresponding CPU is online.
995 * Because preemptible RCU does not exist, tasks cannot possibly exit
996 * while in preemptible RCU read-side critical sections.
1003 * Dump the guaranteed-empty blocked-tasks state. Trust but verify.
1006 dump_blkd_tasks(struct rcu_node
*rnp
, int ncheck
)
1008 WARN_ON_ONCE(!list_empty(&rnp
->blkd_tasks
));
1011 #endif /* #else #ifdef CONFIG_PREEMPT_RCU */
1014 * If boosting, set rcuc kthreads to realtime priority.
1016 static void rcu_cpu_kthread_setup(unsigned int cpu
)
1018 struct rcu_data
*rdp
= per_cpu_ptr(&rcu_data
, cpu
);
1019 #ifdef CONFIG_RCU_BOOST
1020 struct sched_param sp
;
1022 sp
.sched_priority
= kthread_prio
;
1023 sched_setscheduler_nocheck(current
, SCHED_FIFO
, &sp
);
1024 #endif /* #ifdef CONFIG_RCU_BOOST */
1026 WRITE_ONCE(rdp
->rcuc_activity
, jiffies
);
1029 static bool rcu_is_callbacks_nocb_kthread(struct rcu_data
*rdp
)
1031 #ifdef CONFIG_RCU_NOCB_CPU
1032 return rdp
->nocb_cb_kthread
== current
;
1039 * Is the current CPU running the RCU-callbacks kthread?
1040 * Caller must have preemption disabled.
1042 static bool rcu_is_callbacks_kthread(struct rcu_data
*rdp
)
1044 return rdp
->rcu_cpu_kthread_task
== current
||
1045 rcu_is_callbacks_nocb_kthread(rdp
);
1048 #ifdef CONFIG_RCU_BOOST
1051 * Carry out RCU priority boosting on the task indicated by ->exp_tasks
1052 * or ->boost_tasks, advancing the pointer to the next task in the
1053 * ->blkd_tasks list.
1055 * Note that irqs must be enabled: boosting the task can block.
1056 * Returns 1 if there are more tasks needing to be boosted.
1058 static int rcu_boost(struct rcu_node
*rnp
)
1060 unsigned long flags
;
1061 struct task_struct
*t
;
1062 struct list_head
*tb
;
1064 if (READ_ONCE(rnp
->exp_tasks
) == NULL
&&
1065 READ_ONCE(rnp
->boost_tasks
) == NULL
)
1066 return 0; /* Nothing left to boost. */
1068 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1071 * Recheck under the lock: all tasks in need of boosting
1072 * might exit their RCU read-side critical sections on their own.
1074 if (rnp
->exp_tasks
== NULL
&& rnp
->boost_tasks
== NULL
) {
1075 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1080 * Preferentially boost tasks blocking expedited grace periods.
1081 * This cannot starve the normal grace periods because a second
1082 * expedited grace period must boost all blocked tasks, including
1083 * those blocking the pre-existing normal grace period.
1085 if (rnp
->exp_tasks
!= NULL
)
1086 tb
= rnp
->exp_tasks
;
1088 tb
= rnp
->boost_tasks
;
1091 * We boost task t by manufacturing an rt_mutex that appears to
1092 * be held by task t. We leave a pointer to that rt_mutex where
1093 * task t can find it, and task t will release the mutex when it
1094 * exits its outermost RCU read-side critical section. Then
1095 * simply acquiring this artificial rt_mutex will boost task
1096 * t's priority. (Thanks to tglx for suggesting this approach!)
1098 * Note that task t must acquire rnp->lock to remove itself from
1099 * the ->blkd_tasks list, which it will do from exit() if from
1100 * nowhere else. We therefore are guaranteed that task t will
1101 * stay around at least until we drop rnp->lock. Note that
1102 * rnp->lock also resolves races between our priority boosting
1103 * and task t's exiting its outermost RCU read-side critical
1106 t
= container_of(tb
, struct task_struct
, rcu_node_entry
);
1107 rt_mutex_init_proxy_locked(&rnp
->boost_mtx
.rtmutex
, t
);
1108 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1109 /* Lock only for side effect: boosts task t's priority. */
1110 rt_mutex_lock(&rnp
->boost_mtx
);
1111 rt_mutex_unlock(&rnp
->boost_mtx
); /* Then keep lockdep happy. */
1114 return READ_ONCE(rnp
->exp_tasks
) != NULL
||
1115 READ_ONCE(rnp
->boost_tasks
) != NULL
;
1119 * Priority-boosting kthread, one per leaf rcu_node.
1121 static int rcu_boost_kthread(void *arg
)
1123 struct rcu_node
*rnp
= (struct rcu_node
*)arg
;
1127 trace_rcu_utilization(TPS("Start boost kthread@init"));
1129 WRITE_ONCE(rnp
->boost_kthread_status
, RCU_KTHREAD_WAITING
);
1130 trace_rcu_utilization(TPS("End boost kthread@rcu_wait"));
1131 rcu_wait(READ_ONCE(rnp
->boost_tasks
) ||
1132 READ_ONCE(rnp
->exp_tasks
));
1133 trace_rcu_utilization(TPS("Start boost kthread@rcu_wait"));
1134 WRITE_ONCE(rnp
->boost_kthread_status
, RCU_KTHREAD_RUNNING
);
1135 more2boost
= rcu_boost(rnp
);
1141 WRITE_ONCE(rnp
->boost_kthread_status
, RCU_KTHREAD_YIELDING
);
1142 trace_rcu_utilization(TPS("End boost kthread@rcu_yield"));
1143 schedule_timeout_idle(2);
1144 trace_rcu_utilization(TPS("Start boost kthread@rcu_yield"));
1149 trace_rcu_utilization(TPS("End boost kthread@notreached"));
1154 * Check to see if it is time to start boosting RCU readers that are
1155 * blocking the current grace period, and, if so, tell the per-rcu_node
1156 * kthread to start boosting them. If there is an expedited grace
1157 * period in progress, it is always time to boost.
1159 * The caller must hold rnp->lock, which this function releases.
1160 * The ->boost_kthread_task is immortal, so we don't need to worry
1161 * about it going away.
1163 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1164 __releases(rnp
->lock
)
1166 raw_lockdep_assert_held_rcu_node(rnp
);
1167 if (!rnp
->boost_kthread_task
||
1168 (!rcu_preempt_blocked_readers_cgp(rnp
) && !rnp
->exp_tasks
)) {
1169 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1172 if (rnp
->exp_tasks
!= NULL
||
1173 (rnp
->gp_tasks
!= NULL
&&
1174 rnp
->boost_tasks
== NULL
&&
1176 (!time_after(rnp
->boost_time
, jiffies
) || rcu_state
.cbovld
||
1177 IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD
)))) {
1178 if (rnp
->exp_tasks
== NULL
)
1179 WRITE_ONCE(rnp
->boost_tasks
, rnp
->gp_tasks
);
1180 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1181 rcu_wake_cond(rnp
->boost_kthread_task
,
1182 READ_ONCE(rnp
->boost_kthread_status
));
1184 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1188 #define RCU_BOOST_DELAY_JIFFIES DIV_ROUND_UP(CONFIG_RCU_BOOST_DELAY * HZ, 1000)
1191 * Do priority-boost accounting for the start of a new grace period.
1193 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1195 rnp
->boost_time
= jiffies
+ RCU_BOOST_DELAY_JIFFIES
;
1199 * Create an RCU-boost kthread for the specified node if one does not
1200 * already exist. We only create this kthread for preemptible RCU.
1202 static void rcu_spawn_one_boost_kthread(struct rcu_node
*rnp
)
1204 unsigned long flags
;
1205 int rnp_index
= rnp
- rcu_get_root();
1206 struct sched_param sp
;
1207 struct task_struct
*t
;
1209 if (rnp
->boost_kthread_task
)
1212 t
= kthread_create(rcu_boost_kthread
, (void *)rnp
,
1213 "rcub/%d", rnp_index
);
1214 if (WARN_ON_ONCE(IS_ERR(t
)))
1217 raw_spin_lock_irqsave_rcu_node(rnp
, flags
);
1218 rnp
->boost_kthread_task
= t
;
1219 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1220 sp
.sched_priority
= kthread_prio
;
1221 sched_setscheduler_nocheck(t
, SCHED_FIFO
, &sp
);
1222 wake_up_process(t
); /* get to TASK_INTERRUPTIBLE quickly. */
1225 static struct task_struct
*rcu_boost_task(struct rcu_node
*rnp
)
1227 return READ_ONCE(rnp
->boost_kthread_task
);
1230 #else /* #ifdef CONFIG_RCU_BOOST */
1232 static void rcu_initiate_boost(struct rcu_node
*rnp
, unsigned long flags
)
1233 __releases(rnp
->lock
)
1235 raw_spin_unlock_irqrestore_rcu_node(rnp
, flags
);
1238 static void rcu_preempt_boost_start_gp(struct rcu_node
*rnp
)
1242 static void rcu_spawn_one_boost_kthread(struct rcu_node
*rnp
)
1246 static struct task_struct
*rcu_boost_task(struct rcu_node
*rnp
)
1250 #endif /* #else #ifdef CONFIG_RCU_BOOST */
1253 * Is this CPU a NO_HZ_FULL CPU that should ignore RCU so that the
1254 * grace-period kthread will do force_quiescent_state() processing?
1255 * The idea is to avoid waking up RCU core processing on such a
1256 * CPU unless the grace period has extended for too long.
1258 * This code relies on the fact that all NO_HZ_FULL CPUs are also
1259 * RCU_NOCB_CPU CPUs.
1261 static bool rcu_nohz_full_cpu(void)
1263 #ifdef CONFIG_NO_HZ_FULL
1264 if (tick_nohz_full_cpu(smp_processor_id()) &&
1265 (!rcu_gp_in_progress() ||
1266 time_before(jiffies
, READ_ONCE(rcu_state
.gp_start
) + HZ
)))
1268 #endif /* #ifdef CONFIG_NO_HZ_FULL */
1273 * Bind the RCU grace-period kthreads to the housekeeping CPU.
1275 static void rcu_bind_gp_kthread(void)
1277 if (!tick_nohz_full_enabled())
1279 housekeeping_affine(current
, HK_TYPE_RCU
);