accel/amdxdna: use modern PM helpers
[drm/drm-misc.git] / kernel / resource.c
blobb7c0e24d93980101f3598a5b4725aa5c0e2c07d5
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/resource.c
5 * Copyright (C) 1999 Linus Torvalds
6 * Copyright (C) 1999 Martin Mares <mj@ucw.cz>
8 * Arbitrary resource management.
9 */
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <linux/string.h>
31 #include <linux/vmalloc.h>
32 #include <asm/io.h>
35 struct resource ioport_resource = {
36 .name = "PCI IO",
37 .start = 0,
38 .end = IO_SPACE_LIMIT,
39 .flags = IORESOURCE_IO,
41 EXPORT_SYMBOL(ioport_resource);
43 struct resource iomem_resource = {
44 .name = "PCI mem",
45 .start = 0,
46 .end = -1,
47 .flags = IORESOURCE_MEM,
49 EXPORT_SYMBOL(iomem_resource);
51 static DEFINE_RWLOCK(resource_lock);
54 * Return the next node of @p in pre-order tree traversal. If
55 * @skip_children is true, skip the descendant nodes of @p in
56 * traversal. If @p is a descendant of @subtree_root, only traverse
57 * the subtree under @subtree_root.
59 static struct resource *next_resource(struct resource *p, bool skip_children,
60 struct resource *subtree_root)
62 if (!skip_children && p->child)
63 return p->child;
64 while (!p->sibling && p->parent) {
65 p = p->parent;
66 if (p == subtree_root)
67 return NULL;
69 return p->sibling;
73 * Traverse the resource subtree under @_root in pre-order, excluding
74 * @_root itself.
76 * NOTE: '__p' is introduced to avoid shadowing '_p' outside of loop.
77 * And it is referenced to avoid unused variable warning.
79 #define for_each_resource(_root, _p, _skip_children) \
80 for (typeof(_root) __root = (_root), __p = _p = __root->child; \
81 __p && _p; _p = next_resource(_p, _skip_children, __root))
83 #ifdef CONFIG_PROC_FS
85 enum { MAX_IORES_LEVEL = 5 };
87 static void *r_start(struct seq_file *m, loff_t *pos)
88 __acquires(resource_lock)
90 struct resource *root = pde_data(file_inode(m->file));
91 struct resource *p;
92 loff_t l = *pos;
94 read_lock(&resource_lock);
95 for_each_resource(root, p, false) {
96 if (l-- == 0)
97 break;
100 return p;
103 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
105 struct resource *p = v;
107 (*pos)++;
109 return (void *)next_resource(p, false, NULL);
112 static void r_stop(struct seq_file *m, void *v)
113 __releases(resource_lock)
115 read_unlock(&resource_lock);
118 static int r_show(struct seq_file *m, void *v)
120 struct resource *root = pde_data(file_inode(m->file));
121 struct resource *r = v, *p;
122 unsigned long long start, end;
123 int width = root->end < 0x10000 ? 4 : 8;
124 int depth;
126 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
127 if (p->parent == root)
128 break;
130 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
131 start = r->start;
132 end = r->end;
133 } else {
134 start = end = 0;
137 seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
138 depth * 2, "",
139 width, start,
140 width, end,
141 r->name ? r->name : "<BAD>");
142 return 0;
145 static const struct seq_operations resource_op = {
146 .start = r_start,
147 .next = r_next,
148 .stop = r_stop,
149 .show = r_show,
152 static int __init ioresources_init(void)
154 proc_create_seq_data("ioports", 0, NULL, &resource_op,
155 &ioport_resource);
156 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
157 return 0;
159 __initcall(ioresources_init);
161 #endif /* CONFIG_PROC_FS */
163 static void free_resource(struct resource *res)
166 * If the resource was allocated using memblock early during boot
167 * we'll leak it here: we can only return full pages back to the
168 * buddy and trying to be smart and reusing them eventually in
169 * alloc_resource() overcomplicates resource handling.
171 if (res && PageSlab(virt_to_head_page(res)))
172 kfree(res);
175 static struct resource *alloc_resource(gfp_t flags)
177 return kzalloc(sizeof(struct resource), flags);
180 /* Return the conflict entry if you can't request it */
181 static struct resource * __request_resource(struct resource *root, struct resource *new)
183 resource_size_t start = new->start;
184 resource_size_t end = new->end;
185 struct resource *tmp, **p;
187 if (end < start)
188 return root;
189 if (start < root->start)
190 return root;
191 if (end > root->end)
192 return root;
193 p = &root->child;
194 for (;;) {
195 tmp = *p;
196 if (!tmp || tmp->start > end) {
197 new->sibling = tmp;
198 *p = new;
199 new->parent = root;
200 return NULL;
202 p = &tmp->sibling;
203 if (tmp->end < start)
204 continue;
205 return tmp;
209 static int __release_resource(struct resource *old, bool release_child)
211 struct resource *tmp, **p, *chd;
213 p = &old->parent->child;
214 for (;;) {
215 tmp = *p;
216 if (!tmp)
217 break;
218 if (tmp == old) {
219 if (release_child || !(tmp->child)) {
220 *p = tmp->sibling;
221 } else {
222 for (chd = tmp->child;; chd = chd->sibling) {
223 chd->parent = tmp->parent;
224 if (!(chd->sibling))
225 break;
227 *p = tmp->child;
228 chd->sibling = tmp->sibling;
230 old->parent = NULL;
231 return 0;
233 p = &tmp->sibling;
235 return -EINVAL;
238 static void __release_child_resources(struct resource *r)
240 struct resource *tmp, *p;
241 resource_size_t size;
243 p = r->child;
244 r->child = NULL;
245 while (p) {
246 tmp = p;
247 p = p->sibling;
249 tmp->parent = NULL;
250 tmp->sibling = NULL;
251 __release_child_resources(tmp);
253 printk(KERN_DEBUG "release child resource %pR\n", tmp);
254 /* need to restore size, and keep flags */
255 size = resource_size(tmp);
256 tmp->start = 0;
257 tmp->end = size - 1;
261 void release_child_resources(struct resource *r)
263 write_lock(&resource_lock);
264 __release_child_resources(r);
265 write_unlock(&resource_lock);
269 * request_resource_conflict - request and reserve an I/O or memory resource
270 * @root: root resource descriptor
271 * @new: resource descriptor desired by caller
273 * Returns 0 for success, conflict resource on error.
275 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
277 struct resource *conflict;
279 write_lock(&resource_lock);
280 conflict = __request_resource(root, new);
281 write_unlock(&resource_lock);
282 return conflict;
286 * request_resource - request and reserve an I/O or memory resource
287 * @root: root resource descriptor
288 * @new: resource descriptor desired by caller
290 * Returns 0 for success, negative error code on error.
292 int request_resource(struct resource *root, struct resource *new)
294 struct resource *conflict;
296 conflict = request_resource_conflict(root, new);
297 return conflict ? -EBUSY : 0;
300 EXPORT_SYMBOL(request_resource);
303 * release_resource - release a previously reserved resource
304 * @old: resource pointer
306 int release_resource(struct resource *old)
308 int retval;
310 write_lock(&resource_lock);
311 retval = __release_resource(old, true);
312 write_unlock(&resource_lock);
313 return retval;
316 EXPORT_SYMBOL(release_resource);
318 static bool is_type_match(struct resource *p, unsigned long flags, unsigned long desc)
320 return (p->flags & flags) == flags && (desc == IORES_DESC_NONE || desc == p->desc);
324 * find_next_iomem_res - Finds the lowest iomem resource that covers part of
325 * [@start..@end].
327 * If a resource is found, returns 0 and @*res is overwritten with the part
328 * of the resource that's within [@start..@end]; if none is found, returns
329 * -ENODEV. Returns -EINVAL for invalid parameters.
331 * @start: start address of the resource searched for
332 * @end: end address of same resource
333 * @flags: flags which the resource must have
334 * @desc: descriptor the resource must have
335 * @res: return ptr, if resource found
337 * The caller must specify @start, @end, @flags, and @desc
338 * (which may be IORES_DESC_NONE).
340 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
341 unsigned long flags, unsigned long desc,
342 struct resource *res)
344 struct resource *p;
346 if (!res)
347 return -EINVAL;
349 if (start >= end)
350 return -EINVAL;
352 read_lock(&resource_lock);
354 for_each_resource(&iomem_resource, p, false) {
355 /* If we passed the resource we are looking for, stop */
356 if (p->start > end) {
357 p = NULL;
358 break;
361 /* Skip until we find a range that matches what we look for */
362 if (p->end < start)
363 continue;
365 /* Found a match, break */
366 if (is_type_match(p, flags, desc))
367 break;
370 if (p) {
371 /* copy data */
372 *res = (struct resource) {
373 .start = max(start, p->start),
374 .end = min(end, p->end),
375 .flags = p->flags,
376 .desc = p->desc,
377 .parent = p->parent,
381 read_unlock(&resource_lock);
382 return p ? 0 : -ENODEV;
385 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
386 unsigned long flags, unsigned long desc,
387 void *arg,
388 int (*func)(struct resource *, void *))
390 struct resource res;
391 int ret = -EINVAL;
393 while (start < end &&
394 !find_next_iomem_res(start, end, flags, desc, &res)) {
395 ret = (*func)(&res, arg);
396 if (ret)
397 break;
399 start = res.end + 1;
402 return ret;
406 * walk_iomem_res_desc - Walks through iomem resources and calls func()
407 * with matching resource ranges.
409 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
410 * @flags: I/O resource flags
411 * @start: start addr
412 * @end: end addr
413 * @arg: function argument for the callback @func
414 * @func: callback function that is called for each qualifying resource area
416 * All the memory ranges which overlap start,end and also match flags and
417 * desc are valid candidates.
419 * NOTE: For a new descriptor search, define a new IORES_DESC in
420 * <linux/ioport.h> and set it in 'desc' of a target resource entry.
422 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
423 u64 end, void *arg, int (*func)(struct resource *, void *))
425 return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
427 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
430 * This function calls the @func callback against all memory ranges of type
431 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
432 * Now, this function is only for System RAM, it deals with full ranges and
433 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
434 * ranges.
436 int walk_system_ram_res(u64 start, u64 end, void *arg,
437 int (*func)(struct resource *, void *))
439 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
441 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
442 func);
446 * This function, being a variant of walk_system_ram_res(), calls the @func
447 * callback against all memory ranges of type System RAM which are marked as
448 * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
449 * higher to lower.
451 int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
452 int (*func)(struct resource *, void *))
454 struct resource res, *rams;
455 int rams_size = 16, i;
456 unsigned long flags;
457 int ret = -1;
459 /* create a list */
460 rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
461 if (!rams)
462 return ret;
464 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
465 i = 0;
466 while ((start < end) &&
467 (!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
468 if (i >= rams_size) {
469 /* re-alloc */
470 struct resource *rams_new;
472 rams_new = kvrealloc(rams, (rams_size + 16) * sizeof(struct resource),
473 GFP_KERNEL);
474 if (!rams_new)
475 goto out;
477 rams = rams_new;
478 rams_size += 16;
481 rams[i++] = res;
482 start = res.end + 1;
485 /* go reverse */
486 for (i--; i >= 0; i--) {
487 ret = (*func)(&rams[i], arg);
488 if (ret)
489 break;
492 out:
493 kvfree(rams);
494 return ret;
498 * This function calls the @func callback against all memory ranges, which
499 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
501 int walk_mem_res(u64 start, u64 end, void *arg,
502 int (*func)(struct resource *, void *))
504 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
506 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
507 func);
511 * This function calls the @func callback against all memory ranges of type
512 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
513 * It is to be used only for System RAM.
515 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
516 void *arg, int (*func)(unsigned long, unsigned long, void *))
518 resource_size_t start, end;
519 unsigned long flags;
520 struct resource res;
521 unsigned long pfn, end_pfn;
522 int ret = -EINVAL;
524 start = (u64) start_pfn << PAGE_SHIFT;
525 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
526 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
527 while (start < end &&
528 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
529 pfn = PFN_UP(res.start);
530 end_pfn = PFN_DOWN(res.end + 1);
531 if (end_pfn > pfn)
532 ret = (*func)(pfn, end_pfn - pfn, arg);
533 if (ret)
534 break;
535 start = res.end + 1;
537 return ret;
540 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
542 return 1;
546 * This generic page_is_ram() returns true if specified address is
547 * registered as System RAM in iomem_resource list.
549 int __weak page_is_ram(unsigned long pfn)
551 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
553 EXPORT_SYMBOL_GPL(page_is_ram);
555 static int __region_intersects(struct resource *parent, resource_size_t start,
556 size_t size, unsigned long flags,
557 unsigned long desc)
559 int type = 0; int other = 0;
560 struct resource *p, *dp;
561 struct resource res, o;
562 bool covered;
564 res.start = start;
565 res.end = start + size - 1;
567 for (p = parent->child; p ; p = p->sibling) {
568 if (!resource_intersection(p, &res, &o))
569 continue;
570 if (is_type_match(p, flags, desc)) {
571 type++;
572 continue;
575 * Continue to search in descendant resources as if the
576 * matched descendant resources cover some ranges of 'p'.
578 * |------------- "CXL Window 0" ------------|
579 * |-- "System RAM" --|
581 * will behave similar as the following fake resource
582 * tree when searching "System RAM".
584 * |-- "System RAM" --||-- "CXL Window 0a" --|
586 covered = false;
587 for_each_resource(p, dp, false) {
588 if (!resource_overlaps(dp, &res))
589 continue;
590 if (is_type_match(dp, flags, desc)) {
591 type++;
593 * Range from 'o.start' to 'dp->start'
594 * isn't covered by matched resource.
596 if (dp->start > o.start)
597 break;
598 if (dp->end >= o.end) {
599 covered = true;
600 break;
602 /* Remove covered range */
603 o.start = max(o.start, dp->end + 1);
606 if (!covered)
607 other++;
610 if (type == 0)
611 return REGION_DISJOINT;
613 if (other == 0)
614 return REGION_INTERSECTS;
616 return REGION_MIXED;
620 * region_intersects() - determine intersection of region with known resources
621 * @start: region start address
622 * @size: size of region
623 * @flags: flags of resource (in iomem_resource)
624 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
626 * Check if the specified region partially overlaps or fully eclipses a
627 * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
628 * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
629 * return REGION_MIXED if the region overlaps @flags/@desc and another
630 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
631 * and no other defined resource. Note that REGION_INTERSECTS is also
632 * returned in the case when the specified region overlaps RAM and undefined
633 * memory holes.
635 * region_intersect() is used by memory remapping functions to ensure
636 * the user is not remapping RAM and is a vast speed up over walking
637 * through the resource table page by page.
639 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
640 unsigned long desc)
642 int ret;
644 read_lock(&resource_lock);
645 ret = __region_intersects(&iomem_resource, start, size, flags, desc);
646 read_unlock(&resource_lock);
648 return ret;
650 EXPORT_SYMBOL_GPL(region_intersects);
652 void __weak arch_remove_reservations(struct resource *avail)
656 static void resource_clip(struct resource *res, resource_size_t min,
657 resource_size_t max)
659 if (res->start < min)
660 res->start = min;
661 if (res->end > max)
662 res->end = max;
666 * Find empty space in the resource tree with the given range and
667 * alignment constraints
669 static int __find_resource_space(struct resource *root, struct resource *old,
670 struct resource *new, resource_size_t size,
671 struct resource_constraint *constraint)
673 struct resource *this = root->child;
674 struct resource tmp = *new, avail, alloc;
675 resource_alignf alignf = constraint->alignf;
677 tmp.start = root->start;
679 * Skip past an allocated resource that starts at 0, since the assignment
680 * of this->start - 1 to tmp->end below would cause an underflow.
682 if (this && this->start == root->start) {
683 tmp.start = (this == old) ? old->start : this->end + 1;
684 this = this->sibling;
686 for(;;) {
687 if (this)
688 tmp.end = (this == old) ? this->end : this->start - 1;
689 else
690 tmp.end = root->end;
692 if (tmp.end < tmp.start)
693 goto next;
695 resource_clip(&tmp, constraint->min, constraint->max);
696 arch_remove_reservations(&tmp);
698 /* Check for overflow after ALIGN() */
699 avail.start = ALIGN(tmp.start, constraint->align);
700 avail.end = tmp.end;
701 avail.flags = new->flags & ~IORESOURCE_UNSET;
702 if (avail.start >= tmp.start) {
703 alloc.flags = avail.flags;
704 if (alignf) {
705 alloc.start = alignf(constraint->alignf_data,
706 &avail, size, constraint->align);
707 } else {
708 alloc.start = avail.start;
710 alloc.end = alloc.start + size - 1;
711 if (alloc.start <= alloc.end &&
712 resource_contains(&avail, &alloc)) {
713 new->start = alloc.start;
714 new->end = alloc.end;
715 return 0;
719 next: if (!this || this->end == root->end)
720 break;
722 if (this != old)
723 tmp.start = this->end + 1;
724 this = this->sibling;
726 return -EBUSY;
730 * find_resource_space - Find empty space in the resource tree
731 * @root: Root resource descriptor
732 * @new: Resource descriptor awaiting an empty resource space
733 * @size: The minimum size of the empty space
734 * @constraint: The range and alignment constraints to be met
736 * Finds an empty space under @root in the resource tree satisfying range and
737 * alignment @constraints.
739 * Return:
740 * * %0 - if successful, @new members start, end, and flags are altered.
741 * * %-EBUSY - if no empty space was found.
743 int find_resource_space(struct resource *root, struct resource *new,
744 resource_size_t size,
745 struct resource_constraint *constraint)
747 return __find_resource_space(root, NULL, new, size, constraint);
749 EXPORT_SYMBOL_GPL(find_resource_space);
752 * reallocate_resource - allocate a slot in the resource tree given range & alignment.
753 * The resource will be relocated if the new size cannot be reallocated in the
754 * current location.
756 * @root: root resource descriptor
757 * @old: resource descriptor desired by caller
758 * @newsize: new size of the resource descriptor
759 * @constraint: the memory range and alignment constraints to be met.
761 static int reallocate_resource(struct resource *root, struct resource *old,
762 resource_size_t newsize,
763 struct resource_constraint *constraint)
765 int err=0;
766 struct resource new = *old;
767 struct resource *conflict;
769 write_lock(&resource_lock);
771 if ((err = __find_resource_space(root, old, &new, newsize, constraint)))
772 goto out;
774 if (resource_contains(&new, old)) {
775 old->start = new.start;
776 old->end = new.end;
777 goto out;
780 if (old->child) {
781 err = -EBUSY;
782 goto out;
785 if (resource_contains(old, &new)) {
786 old->start = new.start;
787 old->end = new.end;
788 } else {
789 __release_resource(old, true);
790 *old = new;
791 conflict = __request_resource(root, old);
792 BUG_ON(conflict);
794 out:
795 write_unlock(&resource_lock);
796 return err;
801 * allocate_resource - allocate empty slot in the resource tree given range & alignment.
802 * The resource will be reallocated with a new size if it was already allocated
803 * @root: root resource descriptor
804 * @new: resource descriptor desired by caller
805 * @size: requested resource region size
806 * @min: minimum boundary to allocate
807 * @max: maximum boundary to allocate
808 * @align: alignment requested, in bytes
809 * @alignf: alignment function, optional, called if not NULL
810 * @alignf_data: arbitrary data to pass to the @alignf function
812 int allocate_resource(struct resource *root, struct resource *new,
813 resource_size_t size, resource_size_t min,
814 resource_size_t max, resource_size_t align,
815 resource_alignf alignf,
816 void *alignf_data)
818 int err;
819 struct resource_constraint constraint;
821 constraint.min = min;
822 constraint.max = max;
823 constraint.align = align;
824 constraint.alignf = alignf;
825 constraint.alignf_data = alignf_data;
827 if ( new->parent ) {
828 /* resource is already allocated, try reallocating with
829 the new constraints */
830 return reallocate_resource(root, new, size, &constraint);
833 write_lock(&resource_lock);
834 err = find_resource_space(root, new, size, &constraint);
835 if (err >= 0 && __request_resource(root, new))
836 err = -EBUSY;
837 write_unlock(&resource_lock);
838 return err;
841 EXPORT_SYMBOL(allocate_resource);
844 * lookup_resource - find an existing resource by a resource start address
845 * @root: root resource descriptor
846 * @start: resource start address
848 * Returns a pointer to the resource if found, NULL otherwise
850 struct resource *lookup_resource(struct resource *root, resource_size_t start)
852 struct resource *res;
854 read_lock(&resource_lock);
855 for (res = root->child; res; res = res->sibling) {
856 if (res->start == start)
857 break;
859 read_unlock(&resource_lock);
861 return res;
865 * Insert a resource into the resource tree. If successful, return NULL,
866 * otherwise return the conflicting resource (compare to __request_resource())
868 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
870 struct resource *first, *next;
872 for (;; parent = first) {
873 first = __request_resource(parent, new);
874 if (!first)
875 return first;
877 if (first == parent)
878 return first;
879 if (WARN_ON(first == new)) /* duplicated insertion */
880 return first;
882 if ((first->start > new->start) || (first->end < new->end))
883 break;
884 if ((first->start == new->start) && (first->end == new->end))
885 break;
888 for (next = first; ; next = next->sibling) {
889 /* Partial overlap? Bad, and unfixable */
890 if (next->start < new->start || next->end > new->end)
891 return next;
892 if (!next->sibling)
893 break;
894 if (next->sibling->start > new->end)
895 break;
898 new->parent = parent;
899 new->sibling = next->sibling;
900 new->child = first;
902 next->sibling = NULL;
903 for (next = first; next; next = next->sibling)
904 next->parent = new;
906 if (parent->child == first) {
907 parent->child = new;
908 } else {
909 next = parent->child;
910 while (next->sibling != first)
911 next = next->sibling;
912 next->sibling = new;
914 return NULL;
918 * insert_resource_conflict - Inserts resource in the resource tree
919 * @parent: parent of the new resource
920 * @new: new resource to insert
922 * Returns 0 on success, conflict resource if the resource can't be inserted.
924 * This function is equivalent to request_resource_conflict when no conflict
925 * happens. If a conflict happens, and the conflicting resources
926 * entirely fit within the range of the new resource, then the new
927 * resource is inserted and the conflicting resources become children of
928 * the new resource.
930 * This function is intended for producers of resources, such as FW modules
931 * and bus drivers.
933 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
935 struct resource *conflict;
937 write_lock(&resource_lock);
938 conflict = __insert_resource(parent, new);
939 write_unlock(&resource_lock);
940 return conflict;
944 * insert_resource - Inserts a resource in the resource tree
945 * @parent: parent of the new resource
946 * @new: new resource to insert
948 * Returns 0 on success, -EBUSY if the resource can't be inserted.
950 * This function is intended for producers of resources, such as FW modules
951 * and bus drivers.
953 int insert_resource(struct resource *parent, struct resource *new)
955 struct resource *conflict;
957 conflict = insert_resource_conflict(parent, new);
958 return conflict ? -EBUSY : 0;
960 EXPORT_SYMBOL_GPL(insert_resource);
963 * insert_resource_expand_to_fit - Insert a resource into the resource tree
964 * @root: root resource descriptor
965 * @new: new resource to insert
967 * Insert a resource into the resource tree, possibly expanding it in order
968 * to make it encompass any conflicting resources.
970 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
972 if (new->parent)
973 return;
975 write_lock(&resource_lock);
976 for (;;) {
977 struct resource *conflict;
979 conflict = __insert_resource(root, new);
980 if (!conflict)
981 break;
982 if (conflict == root)
983 break;
985 /* Ok, expand resource to cover the conflict, then try again .. */
986 if (conflict->start < new->start)
987 new->start = conflict->start;
988 if (conflict->end > new->end)
989 new->end = conflict->end;
991 pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
993 write_unlock(&resource_lock);
996 * Not for general consumption, only early boot memory map parsing, PCI
997 * resource discovery, and late discovery of CXL resources are expected
998 * to use this interface. The former are built-in and only the latter,
999 * CXL, is a module.
1001 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, "CXL");
1004 * remove_resource - Remove a resource in the resource tree
1005 * @old: resource to remove
1007 * Returns 0 on success, -EINVAL if the resource is not valid.
1009 * This function removes a resource previously inserted by insert_resource()
1010 * or insert_resource_conflict(), and moves the children (if any) up to
1011 * where they were before. insert_resource() and insert_resource_conflict()
1012 * insert a new resource, and move any conflicting resources down to the
1013 * children of the new resource.
1015 * insert_resource(), insert_resource_conflict() and remove_resource() are
1016 * intended for producers of resources, such as FW modules and bus drivers.
1018 int remove_resource(struct resource *old)
1020 int retval;
1022 write_lock(&resource_lock);
1023 retval = __release_resource(old, false);
1024 write_unlock(&resource_lock);
1025 return retval;
1027 EXPORT_SYMBOL_GPL(remove_resource);
1029 static int __adjust_resource(struct resource *res, resource_size_t start,
1030 resource_size_t size)
1032 struct resource *tmp, *parent = res->parent;
1033 resource_size_t end = start + size - 1;
1034 int result = -EBUSY;
1036 if (!parent)
1037 goto skip;
1039 if ((start < parent->start) || (end > parent->end))
1040 goto out;
1042 if (res->sibling && (res->sibling->start <= end))
1043 goto out;
1045 tmp = parent->child;
1046 if (tmp != res) {
1047 while (tmp->sibling != res)
1048 tmp = tmp->sibling;
1049 if (start <= tmp->end)
1050 goto out;
1053 skip:
1054 for (tmp = res->child; tmp; tmp = tmp->sibling)
1055 if ((tmp->start < start) || (tmp->end > end))
1056 goto out;
1058 res->start = start;
1059 res->end = end;
1060 result = 0;
1062 out:
1063 return result;
1067 * adjust_resource - modify a resource's start and size
1068 * @res: resource to modify
1069 * @start: new start value
1070 * @size: new size
1072 * Given an existing resource, change its start and size to match the
1073 * arguments. Returns 0 on success, -EBUSY if it can't fit.
1074 * Existing children of the resource are assumed to be immutable.
1076 int adjust_resource(struct resource *res, resource_size_t start,
1077 resource_size_t size)
1079 int result;
1081 write_lock(&resource_lock);
1082 result = __adjust_resource(res, start, size);
1083 write_unlock(&resource_lock);
1084 return result;
1086 EXPORT_SYMBOL(adjust_resource);
1088 static void __init
1089 __reserve_region_with_split(struct resource *root, resource_size_t start,
1090 resource_size_t end, const char *name)
1092 struct resource *parent = root;
1093 struct resource *conflict;
1094 struct resource *res = alloc_resource(GFP_ATOMIC);
1095 struct resource *next_res = NULL;
1096 int type = resource_type(root);
1098 if (!res)
1099 return;
1101 res->name = name;
1102 res->start = start;
1103 res->end = end;
1104 res->flags = type | IORESOURCE_BUSY;
1105 res->desc = IORES_DESC_NONE;
1107 while (1) {
1109 conflict = __request_resource(parent, res);
1110 if (!conflict) {
1111 if (!next_res)
1112 break;
1113 res = next_res;
1114 next_res = NULL;
1115 continue;
1118 /* conflict covered whole area */
1119 if (conflict->start <= res->start &&
1120 conflict->end >= res->end) {
1121 free_resource(res);
1122 WARN_ON(next_res);
1123 break;
1126 /* failed, split and try again */
1127 if (conflict->start > res->start) {
1128 end = res->end;
1129 res->end = conflict->start - 1;
1130 if (conflict->end < end) {
1131 next_res = alloc_resource(GFP_ATOMIC);
1132 if (!next_res) {
1133 free_resource(res);
1134 break;
1136 next_res->name = name;
1137 next_res->start = conflict->end + 1;
1138 next_res->end = end;
1139 next_res->flags = type | IORESOURCE_BUSY;
1140 next_res->desc = IORES_DESC_NONE;
1142 } else {
1143 res->start = conflict->end + 1;
1149 void __init
1150 reserve_region_with_split(struct resource *root, resource_size_t start,
1151 resource_size_t end, const char *name)
1153 int abort = 0;
1155 write_lock(&resource_lock);
1156 if (root->start > start || root->end < end) {
1157 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1158 (unsigned long long)start, (unsigned long long)end,
1159 root);
1160 if (start > root->end || end < root->start)
1161 abort = 1;
1162 else {
1163 if (end > root->end)
1164 end = root->end;
1165 if (start < root->start)
1166 start = root->start;
1167 pr_err("fixing request to [0x%llx-0x%llx]\n",
1168 (unsigned long long)start,
1169 (unsigned long long)end);
1171 dump_stack();
1173 if (!abort)
1174 __reserve_region_with_split(root, start, end, name);
1175 write_unlock(&resource_lock);
1179 * resource_alignment - calculate resource's alignment
1180 * @res: resource pointer
1182 * Returns alignment on success, 0 (invalid alignment) on failure.
1184 resource_size_t resource_alignment(struct resource *res)
1186 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1187 case IORESOURCE_SIZEALIGN:
1188 return resource_size(res);
1189 case IORESOURCE_STARTALIGN:
1190 return res->start;
1191 default:
1192 return 0;
1197 * This is compatibility stuff for IO resources.
1199 * Note how this, unlike the above, knows about
1200 * the IO flag meanings (busy etc).
1202 * request_region creates a new busy region.
1204 * release_region releases a matching busy region.
1207 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1209 static struct inode *iomem_inode;
1211 #ifdef CONFIG_IO_STRICT_DEVMEM
1212 static void revoke_iomem(struct resource *res)
1214 /* pairs with smp_store_release() in iomem_init_inode() */
1215 struct inode *inode = smp_load_acquire(&iomem_inode);
1218 * Check that the initialization has completed. Losing the race
1219 * is ok because it means drivers are claiming resources before
1220 * the fs_initcall level of init and prevent iomem_get_mapping users
1221 * from establishing mappings.
1223 if (!inode)
1224 return;
1227 * The expectation is that the driver has successfully marked
1228 * the resource busy by this point, so devmem_is_allowed()
1229 * should start returning false, however for performance this
1230 * does not iterate the entire resource range.
1232 if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1233 devmem_is_allowed(PHYS_PFN(res->end))) {
1235 * *cringe* iomem=relaxed says "go ahead, what's the
1236 * worst that can happen?"
1238 return;
1241 unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1243 #else
1244 static void revoke_iomem(struct resource *res) {}
1245 #endif
1247 struct address_space *iomem_get_mapping(void)
1250 * This function is only called from file open paths, hence guaranteed
1251 * that fs_initcalls have completed and no need to check for NULL. But
1252 * since revoke_iomem can be called before the initcall we still need
1253 * the barrier to appease checkers.
1255 return smp_load_acquire(&iomem_inode)->i_mapping;
1258 static int __request_region_locked(struct resource *res, struct resource *parent,
1259 resource_size_t start, resource_size_t n,
1260 const char *name, int flags)
1262 DECLARE_WAITQUEUE(wait, current);
1264 res->name = name;
1265 res->start = start;
1266 res->end = start + n - 1;
1268 for (;;) {
1269 struct resource *conflict;
1271 res->flags = resource_type(parent) | resource_ext_type(parent);
1272 res->flags |= IORESOURCE_BUSY | flags;
1273 res->desc = parent->desc;
1275 conflict = __request_resource(parent, res);
1276 if (!conflict)
1277 break;
1279 * mm/hmm.c reserves physical addresses which then
1280 * become unavailable to other users. Conflicts are
1281 * not expected. Warn to aid debugging if encountered.
1283 if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1284 pr_warn("Unaddressable device %s %pR conflicts with %pR",
1285 conflict->name, conflict, res);
1287 if (conflict != parent) {
1288 if (!(conflict->flags & IORESOURCE_BUSY)) {
1289 parent = conflict;
1290 continue;
1293 if (conflict->flags & flags & IORESOURCE_MUXED) {
1294 add_wait_queue(&muxed_resource_wait, &wait);
1295 write_unlock(&resource_lock);
1296 set_current_state(TASK_UNINTERRUPTIBLE);
1297 schedule();
1298 remove_wait_queue(&muxed_resource_wait, &wait);
1299 write_lock(&resource_lock);
1300 continue;
1302 /* Uhhuh, that didn't work out.. */
1303 return -EBUSY;
1306 return 0;
1310 * __request_region - create a new busy resource region
1311 * @parent: parent resource descriptor
1312 * @start: resource start address
1313 * @n: resource region size
1314 * @name: reserving caller's ID string
1315 * @flags: IO resource flags
1317 struct resource *__request_region(struct resource *parent,
1318 resource_size_t start, resource_size_t n,
1319 const char *name, int flags)
1321 struct resource *res = alloc_resource(GFP_KERNEL);
1322 int ret;
1324 if (!res)
1325 return NULL;
1327 write_lock(&resource_lock);
1328 ret = __request_region_locked(res, parent, start, n, name, flags);
1329 write_unlock(&resource_lock);
1331 if (ret) {
1332 free_resource(res);
1333 return NULL;
1336 if (parent == &iomem_resource)
1337 revoke_iomem(res);
1339 return res;
1341 EXPORT_SYMBOL(__request_region);
1344 * __release_region - release a previously reserved resource region
1345 * @parent: parent resource descriptor
1346 * @start: resource start address
1347 * @n: resource region size
1349 * The described resource region must match a currently busy region.
1351 void __release_region(struct resource *parent, resource_size_t start,
1352 resource_size_t n)
1354 struct resource **p;
1355 resource_size_t end;
1357 p = &parent->child;
1358 end = start + n - 1;
1360 write_lock(&resource_lock);
1362 for (;;) {
1363 struct resource *res = *p;
1365 if (!res)
1366 break;
1367 if (res->start <= start && res->end >= end) {
1368 if (!(res->flags & IORESOURCE_BUSY)) {
1369 p = &res->child;
1370 continue;
1372 if (res->start != start || res->end != end)
1373 break;
1374 *p = res->sibling;
1375 write_unlock(&resource_lock);
1376 if (res->flags & IORESOURCE_MUXED)
1377 wake_up(&muxed_resource_wait);
1378 free_resource(res);
1379 return;
1381 p = &res->sibling;
1384 write_unlock(&resource_lock);
1386 pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
1388 EXPORT_SYMBOL(__release_region);
1390 #ifdef CONFIG_MEMORY_HOTREMOVE
1392 * release_mem_region_adjustable - release a previously reserved memory region
1393 * @start: resource start address
1394 * @size: resource region size
1396 * This interface is intended for memory hot-delete. The requested region
1397 * is released from a currently busy memory resource. The requested region
1398 * must either match exactly or fit into a single busy resource entry. In
1399 * the latter case, the remaining resource is adjusted accordingly.
1400 * Existing children of the busy memory resource must be immutable in the
1401 * request.
1403 * Note:
1404 * - Additional release conditions, such as overlapping region, can be
1405 * supported after they are confirmed as valid cases.
1406 * - When a busy memory resource gets split into two entries, the code
1407 * assumes that all children remain in the lower address entry for
1408 * simplicity. Enhance this logic when necessary.
1410 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1412 struct resource *parent = &iomem_resource;
1413 struct resource *new_res = NULL;
1414 bool alloc_nofail = false;
1415 struct resource **p;
1416 struct resource *res;
1417 resource_size_t end;
1419 end = start + size - 1;
1420 if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1421 return;
1424 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1425 * just before releasing the region. This is highly unlikely to
1426 * fail - let's play save and make it never fail as the caller cannot
1427 * perform any error handling (e.g., trying to re-add memory will fail
1428 * similarly).
1430 retry:
1431 new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1433 p = &parent->child;
1434 write_lock(&resource_lock);
1436 while ((res = *p)) {
1437 if (res->start >= end)
1438 break;
1440 /* look for the next resource if it does not fit into */
1441 if (res->start > start || res->end < end) {
1442 p = &res->sibling;
1443 continue;
1446 if (!(res->flags & IORESOURCE_MEM))
1447 break;
1449 if (!(res->flags & IORESOURCE_BUSY)) {
1450 p = &res->child;
1451 continue;
1454 /* found the target resource; let's adjust accordingly */
1455 if (res->start == start && res->end == end) {
1456 /* free the whole entry */
1457 *p = res->sibling;
1458 free_resource(res);
1459 } else if (res->start == start && res->end != end) {
1460 /* adjust the start */
1461 WARN_ON_ONCE(__adjust_resource(res, end + 1,
1462 res->end - end));
1463 } else if (res->start != start && res->end == end) {
1464 /* adjust the end */
1465 WARN_ON_ONCE(__adjust_resource(res, res->start,
1466 start - res->start));
1467 } else {
1468 /* split into two entries - we need a new resource */
1469 if (!new_res) {
1470 new_res = alloc_resource(GFP_ATOMIC);
1471 if (!new_res) {
1472 alloc_nofail = true;
1473 write_unlock(&resource_lock);
1474 goto retry;
1477 new_res->name = res->name;
1478 new_res->start = end + 1;
1479 new_res->end = res->end;
1480 new_res->flags = res->flags;
1481 new_res->desc = res->desc;
1482 new_res->parent = res->parent;
1483 new_res->sibling = res->sibling;
1484 new_res->child = NULL;
1486 if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1487 start - res->start)))
1488 break;
1489 res->sibling = new_res;
1490 new_res = NULL;
1493 break;
1496 write_unlock(&resource_lock);
1497 free_resource(new_res);
1499 #endif /* CONFIG_MEMORY_HOTREMOVE */
1501 #ifdef CONFIG_MEMORY_HOTPLUG
1502 static bool system_ram_resources_mergeable(struct resource *r1,
1503 struct resource *r2)
1505 /* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1506 return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1507 r1->name == r2->name && r1->desc == r2->desc &&
1508 !r1->child && !r2->child;
1512 * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1513 * merge it with adjacent, mergeable resources
1514 * @res: resource descriptor
1516 * This interface is intended for memory hotplug, whereby lots of contiguous
1517 * system ram resources are added (e.g., via add_memory*()) by a driver, and
1518 * the actual resource boundaries are not of interest (e.g., it might be
1519 * relevant for DIMMs). Only resources that are marked mergeable, that have the
1520 * same parent, and that don't have any children are considered. All mergeable
1521 * resources must be immutable during the request.
1523 * Note:
1524 * - The caller has to make sure that no pointers to resources that are
1525 * marked mergeable are used anymore after this call - the resource might
1526 * be freed and the pointer might be stale!
1527 * - release_mem_region_adjustable() will split on demand on memory hotunplug
1529 void merge_system_ram_resource(struct resource *res)
1531 const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1532 struct resource *cur;
1534 if (WARN_ON_ONCE((res->flags & flags) != flags))
1535 return;
1537 write_lock(&resource_lock);
1538 res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1540 /* Try to merge with next item in the list. */
1541 cur = res->sibling;
1542 if (cur && system_ram_resources_mergeable(res, cur)) {
1543 res->end = cur->end;
1544 res->sibling = cur->sibling;
1545 free_resource(cur);
1548 /* Try to merge with previous item in the list. */
1549 cur = res->parent->child;
1550 while (cur && cur->sibling != res)
1551 cur = cur->sibling;
1552 if (cur && system_ram_resources_mergeable(cur, res)) {
1553 cur->end = res->end;
1554 cur->sibling = res->sibling;
1555 free_resource(res);
1557 write_unlock(&resource_lock);
1559 #endif /* CONFIG_MEMORY_HOTPLUG */
1562 * Managed region resource
1564 static void devm_resource_release(struct device *dev, void *ptr)
1566 struct resource **r = ptr;
1568 release_resource(*r);
1572 * devm_request_resource() - request and reserve an I/O or memory resource
1573 * @dev: device for which to request the resource
1574 * @root: root of the resource tree from which to request the resource
1575 * @new: descriptor of the resource to request
1577 * This is a device-managed version of request_resource(). There is usually
1578 * no need to release resources requested by this function explicitly since
1579 * that will be taken care of when the device is unbound from its driver.
1580 * If for some reason the resource needs to be released explicitly, because
1581 * of ordering issues for example, drivers must call devm_release_resource()
1582 * rather than the regular release_resource().
1584 * When a conflict is detected between any existing resources and the newly
1585 * requested resource, an error message will be printed.
1587 * Returns 0 on success or a negative error code on failure.
1589 int devm_request_resource(struct device *dev, struct resource *root,
1590 struct resource *new)
1592 struct resource *conflict, **ptr;
1594 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1595 if (!ptr)
1596 return -ENOMEM;
1598 *ptr = new;
1600 conflict = request_resource_conflict(root, new);
1601 if (conflict) {
1602 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1603 new, conflict->name, conflict);
1604 devres_free(ptr);
1605 return -EBUSY;
1608 devres_add(dev, ptr);
1609 return 0;
1611 EXPORT_SYMBOL(devm_request_resource);
1613 static int devm_resource_match(struct device *dev, void *res, void *data)
1615 struct resource **ptr = res;
1617 return *ptr == data;
1621 * devm_release_resource() - release a previously requested resource
1622 * @dev: device for which to release the resource
1623 * @new: descriptor of the resource to release
1625 * Releases a resource previously requested using devm_request_resource().
1627 void devm_release_resource(struct device *dev, struct resource *new)
1629 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1630 new));
1632 EXPORT_SYMBOL(devm_release_resource);
1634 struct region_devres {
1635 struct resource *parent;
1636 resource_size_t start;
1637 resource_size_t n;
1640 static void devm_region_release(struct device *dev, void *res)
1642 struct region_devres *this = res;
1644 __release_region(this->parent, this->start, this->n);
1647 static int devm_region_match(struct device *dev, void *res, void *match_data)
1649 struct region_devres *this = res, *match = match_data;
1651 return this->parent == match->parent &&
1652 this->start == match->start && this->n == match->n;
1655 struct resource *
1656 __devm_request_region(struct device *dev, struct resource *parent,
1657 resource_size_t start, resource_size_t n, const char *name)
1659 struct region_devres *dr = NULL;
1660 struct resource *res;
1662 dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1663 GFP_KERNEL);
1664 if (!dr)
1665 return NULL;
1667 dr->parent = parent;
1668 dr->start = start;
1669 dr->n = n;
1671 res = __request_region(parent, start, n, name, 0);
1672 if (res)
1673 devres_add(dev, dr);
1674 else
1675 devres_free(dr);
1677 return res;
1679 EXPORT_SYMBOL(__devm_request_region);
1681 void __devm_release_region(struct device *dev, struct resource *parent,
1682 resource_size_t start, resource_size_t n)
1684 struct region_devres match_data = { parent, start, n };
1686 __release_region(parent, start, n);
1687 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1688 &match_data));
1690 EXPORT_SYMBOL(__devm_release_region);
1693 * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1695 #define MAXRESERVE 4
1696 static int __init reserve_setup(char *str)
1698 static int reserved;
1699 static struct resource reserve[MAXRESERVE];
1701 for (;;) {
1702 unsigned int io_start, io_num;
1703 int x = reserved;
1704 struct resource *parent;
1706 if (get_option(&str, &io_start) != 2)
1707 break;
1708 if (get_option(&str, &io_num) == 0)
1709 break;
1710 if (x < MAXRESERVE) {
1711 struct resource *res = reserve + x;
1714 * If the region starts below 0x10000, we assume it's
1715 * I/O port space; otherwise assume it's memory.
1717 if (io_start < 0x10000) {
1718 res->flags = IORESOURCE_IO;
1719 parent = &ioport_resource;
1720 } else {
1721 res->flags = IORESOURCE_MEM;
1722 parent = &iomem_resource;
1724 res->name = "reserved";
1725 res->start = io_start;
1726 res->end = io_start + io_num - 1;
1727 res->flags |= IORESOURCE_BUSY;
1728 res->desc = IORES_DESC_NONE;
1729 res->child = NULL;
1730 if (request_resource(parent, res) == 0)
1731 reserved = x+1;
1734 return 1;
1736 __setup("reserve=", reserve_setup);
1739 * Check if the requested addr and size spans more than any slot in the
1740 * iomem resource tree.
1742 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1744 resource_size_t end = addr + size - 1;
1745 struct resource *p;
1746 int err = 0;
1748 read_lock(&resource_lock);
1749 for_each_resource(&iomem_resource, p, false) {
1751 * We can probably skip the resources without
1752 * IORESOURCE_IO attribute?
1754 if (p->start > end)
1755 continue;
1756 if (p->end < addr)
1757 continue;
1758 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1759 PFN_DOWN(p->end) >= PFN_DOWN(end))
1760 continue;
1762 * if a resource is "BUSY", it's not a hardware resource
1763 * but a driver mapping of such a resource; we don't want
1764 * to warn for those; some drivers legitimately map only
1765 * partial hardware resources. (example: vesafb)
1767 if (p->flags & IORESOURCE_BUSY)
1768 continue;
1770 pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1771 &addr, &end, p->name, p);
1772 err = -1;
1773 break;
1775 read_unlock(&resource_lock);
1777 return err;
1780 #ifdef CONFIG_STRICT_DEVMEM
1781 static int strict_iomem_checks = 1;
1782 #else
1783 static int strict_iomem_checks;
1784 #endif
1787 * Check if an address is exclusive to the kernel and must not be mapped to
1788 * user space, for example, via /dev/mem.
1790 * Returns true if exclusive to the kernel, otherwise returns false.
1792 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1794 const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1795 IORESOURCE_EXCLUSIVE;
1796 bool skip_children = false, err = false;
1797 struct resource *p;
1799 read_lock(&resource_lock);
1800 for_each_resource(root, p, skip_children) {
1801 if (p->start >= addr + size)
1802 break;
1803 if (p->end < addr) {
1804 skip_children = true;
1805 continue;
1807 skip_children = false;
1810 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1811 * IORESOURCE_EXCLUSIVE is set, even if they
1812 * are not busy and even if "iomem=relaxed" is set. The
1813 * responsible driver dynamically adds/removes system RAM within
1814 * such an area and uncontrolled access is dangerous.
1816 if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1817 err = true;
1818 break;
1822 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1823 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1824 * resource is busy.
1826 if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1827 continue;
1828 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1829 || p->flags & IORESOURCE_EXCLUSIVE) {
1830 err = true;
1831 break;
1834 read_unlock(&resource_lock);
1836 return err;
1839 bool iomem_is_exclusive(u64 addr)
1841 return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1842 PAGE_SIZE);
1845 struct resource_entry *resource_list_create_entry(struct resource *res,
1846 size_t extra_size)
1848 struct resource_entry *entry;
1850 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1851 if (entry) {
1852 INIT_LIST_HEAD(&entry->node);
1853 entry->res = res ? res : &entry->__res;
1856 return entry;
1858 EXPORT_SYMBOL(resource_list_create_entry);
1860 void resource_list_free(struct list_head *head)
1862 struct resource_entry *entry, *tmp;
1864 list_for_each_entry_safe(entry, tmp, head, node)
1865 resource_list_destroy_entry(entry);
1867 EXPORT_SYMBOL(resource_list_free);
1869 #ifdef CONFIG_GET_FREE_REGION
1870 #define GFR_DESCENDING (1UL << 0)
1871 #define GFR_REQUEST_REGION (1UL << 1)
1872 #ifdef PA_SECTION_SHIFT
1873 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT)
1874 #else
1875 #define GFR_DEFAULT_ALIGN PAGE_SIZE
1876 #endif
1878 static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1879 resource_size_t align, unsigned long flags)
1881 if (flags & GFR_DESCENDING) {
1882 resource_size_t end;
1884 end = min_t(resource_size_t, base->end, DIRECT_MAP_PHYSMEM_END);
1885 return end - size + 1;
1888 return ALIGN(max(base->start, align), align);
1891 static bool gfr_continue(struct resource *base, resource_size_t addr,
1892 resource_size_t size, unsigned long flags)
1894 if (flags & GFR_DESCENDING)
1895 return addr > size && addr >= base->start;
1897 * In the ascend case be careful that the last increment by
1898 * @size did not wrap 0.
1900 return addr > addr - size &&
1901 addr <= min_t(resource_size_t, base->end, DIRECT_MAP_PHYSMEM_END);
1904 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1905 unsigned long flags)
1907 if (flags & GFR_DESCENDING)
1908 return addr - size;
1909 return addr + size;
1912 static void remove_free_mem_region(void *_res)
1914 struct resource *res = _res;
1916 if (res->parent)
1917 remove_resource(res);
1918 free_resource(res);
1921 static struct resource *
1922 get_free_mem_region(struct device *dev, struct resource *base,
1923 resource_size_t size, const unsigned long align,
1924 const char *name, const unsigned long desc,
1925 const unsigned long flags)
1927 resource_size_t addr;
1928 struct resource *res;
1929 struct region_devres *dr = NULL;
1931 size = ALIGN(size, align);
1933 res = alloc_resource(GFP_KERNEL);
1934 if (!res)
1935 return ERR_PTR(-ENOMEM);
1937 if (dev && (flags & GFR_REQUEST_REGION)) {
1938 dr = devres_alloc(devm_region_release,
1939 sizeof(struct region_devres), GFP_KERNEL);
1940 if (!dr) {
1941 free_resource(res);
1942 return ERR_PTR(-ENOMEM);
1944 } else if (dev) {
1945 if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1946 return ERR_PTR(-ENOMEM);
1949 write_lock(&resource_lock);
1950 for (addr = gfr_start(base, size, align, flags);
1951 gfr_continue(base, addr, align, flags);
1952 addr = gfr_next(addr, align, flags)) {
1953 if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1954 REGION_DISJOINT)
1955 continue;
1957 if (flags & GFR_REQUEST_REGION) {
1958 if (__request_region_locked(res, &iomem_resource, addr,
1959 size, name, 0))
1960 break;
1962 if (dev) {
1963 dr->parent = &iomem_resource;
1964 dr->start = addr;
1965 dr->n = size;
1966 devres_add(dev, dr);
1969 res->desc = desc;
1970 write_unlock(&resource_lock);
1974 * A driver is claiming this region so revoke any
1975 * mappings.
1977 revoke_iomem(res);
1978 } else {
1979 res->start = addr;
1980 res->end = addr + size - 1;
1981 res->name = name;
1982 res->desc = desc;
1983 res->flags = IORESOURCE_MEM;
1986 * Only succeed if the resource hosts an exclusive
1987 * range after the insert
1989 if (__insert_resource(base, res) || res->child)
1990 break;
1992 write_unlock(&resource_lock);
1995 return res;
1997 write_unlock(&resource_lock);
1999 if (flags & GFR_REQUEST_REGION) {
2000 free_resource(res);
2001 devres_free(dr);
2002 } else if (dev)
2003 devm_release_action(dev, remove_free_mem_region, res);
2005 return ERR_PTR(-ERANGE);
2009 * devm_request_free_mem_region - find free region for device private memory
2011 * @dev: device struct to bind the resource to
2012 * @size: size in bytes of the device memory to add
2013 * @base: resource tree to look in
2015 * This function tries to find an empty range of physical address big enough to
2016 * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
2017 * memory, which in turn allocates struct pages.
2019 struct resource *devm_request_free_mem_region(struct device *dev,
2020 struct resource *base, unsigned long size)
2022 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2024 return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
2025 dev_name(dev),
2026 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2028 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
2030 struct resource *request_free_mem_region(struct resource *base,
2031 unsigned long size, const char *name)
2033 unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2035 return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
2036 IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2038 EXPORT_SYMBOL_GPL(request_free_mem_region);
2041 * alloc_free_mem_region - find a free region relative to @base
2042 * @base: resource that will parent the new resource
2043 * @size: size in bytes of memory to allocate from @base
2044 * @align: alignment requirements for the allocation
2045 * @name: resource name
2047 * Buses like CXL, that can dynamically instantiate new memory regions,
2048 * need a method to allocate physical address space for those regions.
2049 * Allocate and insert a new resource to cover a free, unclaimed by a
2050 * descendant of @base, range in the span of @base.
2052 struct resource *alloc_free_mem_region(struct resource *base,
2053 unsigned long size, unsigned long align,
2054 const char *name)
2056 /* Default of ascending direction and insert resource */
2057 unsigned long flags = 0;
2059 return get_free_mem_region(NULL, base, size, align, name,
2060 IORES_DESC_NONE, flags);
2062 EXPORT_SYMBOL_GPL(alloc_free_mem_region);
2063 #endif /* CONFIG_GET_FREE_REGION */
2065 static int __init strict_iomem(char *str)
2067 if (strstr(str, "relaxed"))
2068 strict_iomem_checks = 0;
2069 if (strstr(str, "strict"))
2070 strict_iomem_checks = 1;
2071 return 1;
2074 static int iomem_fs_init_fs_context(struct fs_context *fc)
2076 return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2079 static struct file_system_type iomem_fs_type = {
2080 .name = "iomem",
2081 .owner = THIS_MODULE,
2082 .init_fs_context = iomem_fs_init_fs_context,
2083 .kill_sb = kill_anon_super,
2086 static int __init iomem_init_inode(void)
2088 static struct vfsmount *iomem_vfs_mount;
2089 static int iomem_fs_cnt;
2090 struct inode *inode;
2091 int rc;
2093 rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2094 if (rc < 0) {
2095 pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2096 return rc;
2099 inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2100 if (IS_ERR(inode)) {
2101 rc = PTR_ERR(inode);
2102 pr_err("Cannot allocate inode for iomem: %d\n", rc);
2103 simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2104 return rc;
2108 * Publish iomem revocation inode initialized.
2109 * Pairs with smp_load_acquire() in revoke_iomem().
2111 smp_store_release(&iomem_inode, inode);
2113 return 0;
2116 fs_initcall(iomem_init_inode);
2118 __setup("iomem=", strict_iomem);