1 // SPDX-License-Identifier: GPL-2.0
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
52 #include <asm/switch_to.h>
56 #include "autogroup.h"
59 * The initial- and re-scaling of tunables is configurable
63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
64 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
69 unsigned int sysctl_sched_tunable_scaling
= SCHED_TUNABLESCALING_LOG
;
72 * Minimal preemption granularity for CPU-bound tasks:
74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
76 unsigned int sysctl_sched_base_slice
= 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice
= 750000ULL;
79 const_debug
unsigned int sysctl_sched_migration_cost
= 500000UL;
81 static int __init
setup_sched_thermal_decay_shift(char *str
)
83 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift
);
90 * For asym packing, by default the lower numbered CPU has higher priority.
92 int __weak
arch_asym_cpu_priority(int cpu
)
98 * The margin used when comparing utilization with CPU capacity.
102 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
105 * The margin used when comparing CPU capacities.
106 * is 'cap1' noticeably greater than 'cap2'
110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
113 #ifdef CONFIG_CFS_BANDWIDTH
115 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
116 * each time a cfs_rq requests quota.
118 * Note: in the case that the slice exceeds the runtime remaining (either due
119 * to consumption or the quota being specified to be smaller than the slice)
120 * we will always only issue the remaining available time.
122 * (default: 5 msec, units: microseconds)
124 static unsigned int sysctl_sched_cfs_bandwidth_slice
= 5000UL;
127 #ifdef CONFIG_NUMA_BALANCING
128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
129 static unsigned int sysctl_numa_balancing_promote_rate_limit
= 65536;
133 static struct ctl_table sched_fair_sysctls
[] = {
134 #ifdef CONFIG_CFS_BANDWIDTH
136 .procname
= "sched_cfs_bandwidth_slice_us",
137 .data
= &sysctl_sched_cfs_bandwidth_slice
,
138 .maxlen
= sizeof(unsigned int),
140 .proc_handler
= proc_dointvec_minmax
,
141 .extra1
= SYSCTL_ONE
,
144 #ifdef CONFIG_NUMA_BALANCING
146 .procname
= "numa_balancing_promote_rate_limit_MBps",
147 .data
= &sysctl_numa_balancing_promote_rate_limit
,
148 .maxlen
= sizeof(unsigned int),
150 .proc_handler
= proc_dointvec_minmax
,
151 .extra1
= SYSCTL_ZERO
,
153 #endif /* CONFIG_NUMA_BALANCING */
156 static int __init
sched_fair_sysctl_init(void)
158 register_sysctl_init("kernel", sched_fair_sysctls
);
161 late_initcall(sched_fair_sysctl_init
);
164 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
170 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
176 static inline void update_load_set(struct load_weight
*lw
, unsigned long w
)
183 * Increase the granularity value when there are more CPUs,
184 * because with more CPUs the 'effective latency' as visible
185 * to users decreases. But the relationship is not linear,
186 * so pick a second-best guess by going with the log2 of the
189 * This idea comes from the SD scheduler of Con Kolivas:
191 static unsigned int get_update_sysctl_factor(void)
193 unsigned int cpus
= min_t(unsigned int, num_online_cpus(), 8);
196 switch (sysctl_sched_tunable_scaling
) {
197 case SCHED_TUNABLESCALING_NONE
:
200 case SCHED_TUNABLESCALING_LINEAR
:
203 case SCHED_TUNABLESCALING_LOG
:
205 factor
= 1 + ilog2(cpus
);
212 static void update_sysctl(void)
214 unsigned int factor
= get_update_sysctl_factor();
216 #define SET_SYSCTL(name) \
217 (sysctl_##name = (factor) * normalized_sysctl_##name)
218 SET_SYSCTL(sched_base_slice
);
222 void __init
sched_init_granularity(void)
227 #define WMULT_CONST (~0U)
228 #define WMULT_SHIFT 32
230 static void __update_inv_weight(struct load_weight
*lw
)
234 if (likely(lw
->inv_weight
))
237 w
= scale_load_down(lw
->weight
);
239 if (BITS_PER_LONG
> 32 && unlikely(w
>= WMULT_CONST
))
241 else if (unlikely(!w
))
242 lw
->inv_weight
= WMULT_CONST
;
244 lw
->inv_weight
= WMULT_CONST
/ w
;
248 * delta_exec * weight / lw.weight
250 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
252 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
253 * we're guaranteed shift stays positive because inv_weight is guaranteed to
254 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
256 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
257 * weight/lw.weight <= 1, and therefore our shift will also be positive.
259 static u64
__calc_delta(u64 delta_exec
, unsigned long weight
, struct load_weight
*lw
)
261 u64 fact
= scale_load_down(weight
);
262 u32 fact_hi
= (u32
)(fact
>> 32);
263 int shift
= WMULT_SHIFT
;
266 __update_inv_weight(lw
);
268 if (unlikely(fact_hi
)) {
274 fact
= mul_u32_u32(fact
, lw
->inv_weight
);
276 fact_hi
= (u32
)(fact
>> 32);
283 return mul_u64_u32_shr(delta_exec
, fact
, shift
);
289 static inline u64
calc_delta_fair(u64 delta
, struct sched_entity
*se
)
291 if (unlikely(se
->load
.weight
!= NICE_0_LOAD
))
292 delta
= __calc_delta(delta
, NICE_0_LOAD
, &se
->load
);
297 const struct sched_class fair_sched_class
;
299 /**************************************************************
300 * CFS operations on generic schedulable entities:
303 #ifdef CONFIG_FAIR_GROUP_SCHED
305 /* Walk up scheduling entities hierarchy */
306 #define for_each_sched_entity(se) \
307 for (; se; se = se->parent)
309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
311 struct rq
*rq
= rq_of(cfs_rq
);
312 int cpu
= cpu_of(rq
);
315 return rq
->tmp_alone_branch
== &rq
->leaf_cfs_rq_list
;
320 * Ensure we either appear before our parent (if already
321 * enqueued) or force our parent to appear after us when it is
322 * enqueued. The fact that we always enqueue bottom-up
323 * reduces this to two cases and a special case for the root
324 * cfs_rq. Furthermore, it also means that we will always reset
325 * tmp_alone_branch either when the branch is connected
326 * to a tree or when we reach the top of the tree
328 if (cfs_rq
->tg
->parent
&&
329 cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->on_list
) {
331 * If parent is already on the list, we add the child
332 * just before. Thanks to circular linked property of
333 * the list, this means to put the child at the tail
334 * of the list that starts by parent.
336 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
337 &(cfs_rq
->tg
->parent
->cfs_rq
[cpu
]->leaf_cfs_rq_list
));
339 * The branch is now connected to its tree so we can
340 * reset tmp_alone_branch to the beginning of the
343 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
347 if (!cfs_rq
->tg
->parent
) {
349 * cfs rq without parent should be put
350 * at the tail of the list.
352 list_add_tail_rcu(&cfs_rq
->leaf_cfs_rq_list
,
353 &rq
->leaf_cfs_rq_list
);
355 * We have reach the top of a tree so we can reset
356 * tmp_alone_branch to the beginning of the list.
358 rq
->tmp_alone_branch
= &rq
->leaf_cfs_rq_list
;
363 * The parent has not already been added so we want to
364 * make sure that it will be put after us.
365 * tmp_alone_branch points to the begin of the branch
366 * where we will add parent.
368 list_add_rcu(&cfs_rq
->leaf_cfs_rq_list
, rq
->tmp_alone_branch
);
370 * update tmp_alone_branch to points to the new begin
373 rq
->tmp_alone_branch
= &cfs_rq
->leaf_cfs_rq_list
;
377 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
379 if (cfs_rq
->on_list
) {
380 struct rq
*rq
= rq_of(cfs_rq
);
383 * With cfs_rq being unthrottled/throttled during an enqueue,
384 * it can happen the tmp_alone_branch points to the leaf that
385 * we finally want to delete. In this case, tmp_alone_branch moves
386 * to the prev element but it will point to rq->leaf_cfs_rq_list
387 * at the end of the enqueue.
389 if (rq
->tmp_alone_branch
== &cfs_rq
->leaf_cfs_rq_list
)
390 rq
->tmp_alone_branch
= cfs_rq
->leaf_cfs_rq_list
.prev
;
392 list_del_rcu(&cfs_rq
->leaf_cfs_rq_list
);
397 static inline void assert_list_leaf_cfs_rq(struct rq
*rq
)
399 SCHED_WARN_ON(rq
->tmp_alone_branch
!= &rq
->leaf_cfs_rq_list
);
402 /* Iterate through all leaf cfs_rq's on a runqueue */
403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
404 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
407 /* Do the two (enqueued) entities belong to the same group ? */
408 static inline struct cfs_rq
*
409 is_same_group(struct sched_entity
*se
, struct sched_entity
*pse
)
411 if (se
->cfs_rq
== pse
->cfs_rq
)
417 static inline struct sched_entity
*parent_entity(const struct sched_entity
*se
)
423 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
425 int se_depth
, pse_depth
;
428 * preemption test can be made between sibling entities who are in the
429 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
430 * both tasks until we find their ancestors who are siblings of common
434 /* First walk up until both entities are at same depth */
435 se_depth
= (*se
)->depth
;
436 pse_depth
= (*pse
)->depth
;
438 while (se_depth
> pse_depth
) {
440 *se
= parent_entity(*se
);
443 while (pse_depth
> se_depth
) {
445 *pse
= parent_entity(*pse
);
448 while (!is_same_group(*se
, *pse
)) {
449 *se
= parent_entity(*se
);
450 *pse
= parent_entity(*pse
);
454 static int tg_is_idle(struct task_group
*tg
)
459 static int cfs_rq_is_idle(struct cfs_rq
*cfs_rq
)
461 return cfs_rq
->idle
> 0;
464 static int se_is_idle(struct sched_entity
*se
)
466 if (entity_is_task(se
))
467 return task_has_idle_policy(task_of(se
));
468 return cfs_rq_is_idle(group_cfs_rq(se
));
471 #else /* !CONFIG_FAIR_GROUP_SCHED */
473 #define for_each_sched_entity(se) \
474 for (; se; se = NULL)
476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
481 static inline void list_del_leaf_cfs_rq(struct cfs_rq
*cfs_rq
)
485 static inline void assert_list_leaf_cfs_rq(struct rq
*rq
)
489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
490 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
492 static inline struct sched_entity
*parent_entity(struct sched_entity
*se
)
498 find_matching_se(struct sched_entity
**se
, struct sched_entity
**pse
)
502 static inline int tg_is_idle(struct task_group
*tg
)
507 static int cfs_rq_is_idle(struct cfs_rq
*cfs_rq
)
512 static int se_is_idle(struct sched_entity
*se
)
514 return task_has_idle_policy(task_of(se
));
517 #endif /* CONFIG_FAIR_GROUP_SCHED */
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
);
522 /**************************************************************
523 * Scheduling class tree data structure manipulation methods:
526 static inline u64
max_vruntime(u64 max_vruntime
, u64 vruntime
)
528 s64 delta
= (s64
)(vruntime
- max_vruntime
);
530 max_vruntime
= vruntime
;
535 static inline u64
min_vruntime(u64 min_vruntime
, u64 vruntime
)
537 s64 delta
= (s64
)(vruntime
- min_vruntime
);
539 min_vruntime
= vruntime
;
544 static inline bool entity_before(const struct sched_entity
*a
,
545 const struct sched_entity
*b
)
548 * Tiebreak on vruntime seems unnecessary since it can
551 return (s64
)(a
->deadline
- b
->deadline
) < 0;
554 static inline s64
entity_key(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
556 return (s64
)(se
->vruntime
- cfs_rq
->min_vruntime
);
559 #define __node_2_se(node) \
560 rb_entry((node), struct sched_entity, run_node)
563 * Compute virtual time from the per-task service numbers:
565 * Fair schedulers conserve lag:
569 * Where lag_i is given by:
571 * lag_i = S - s_i = w_i * (V - v_i)
573 * Where S is the ideal service time and V is it's virtual time counterpart.
577 * \Sum w_i * (V - v_i) = 0
578 * \Sum w_i * V - w_i * v_i = 0
580 * From which we can solve an expression for V in v_i (which we have in
583 * \Sum v_i * w_i \Sum v_i * w_i
584 * V = -------------- = --------------
587 * Specifically, this is the weighted average of all entity virtual runtimes.
589 * [[ NOTE: this is only equal to the ideal scheduler under the condition
590 * that join/leave operations happen at lag_i = 0, otherwise the
591 * virtual time has non-contiguous motion equivalent to:
595 * Also see the comment in place_entity() that deals with this. ]]
597 * However, since v_i is u64, and the multiplication could easily overflow
598 * transform it into a relative form that uses smaller quantities:
600 * Substitute: v_i == (v_i - v0) + v0
602 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
603 * V = ---------------------------- = --------------------- + v0
606 * Which we track using:
608 * v0 := cfs_rq->min_vruntime
609 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
610 * \Sum w_i := cfs_rq->avg_load
612 * Since min_vruntime is a monotonic increasing variable that closely tracks
613 * the per-task service, these deltas: (v_i - v), will be in the order of the
614 * maximal (virtual) lag induced in the system due to quantisation.
616 * Also, we use scale_load_down() to reduce the size.
618 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
621 avg_vruntime_add(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
623 unsigned long weight
= scale_load_down(se
->load
.weight
);
624 s64 key
= entity_key(cfs_rq
, se
);
626 cfs_rq
->avg_vruntime
+= key
* weight
;
627 cfs_rq
->avg_load
+= weight
;
631 avg_vruntime_sub(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
633 unsigned long weight
= scale_load_down(se
->load
.weight
);
634 s64 key
= entity_key(cfs_rq
, se
);
636 cfs_rq
->avg_vruntime
-= key
* weight
;
637 cfs_rq
->avg_load
-= weight
;
641 void avg_vruntime_update(struct cfs_rq
*cfs_rq
, s64 delta
)
644 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
646 cfs_rq
->avg_vruntime
-= cfs_rq
->avg_load
* delta
;
650 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
651 * For this to be so, the result of this function must have a left bias.
653 u64
avg_vruntime(struct cfs_rq
*cfs_rq
)
655 struct sched_entity
*curr
= cfs_rq
->curr
;
656 s64 avg
= cfs_rq
->avg_vruntime
;
657 long load
= cfs_rq
->avg_load
;
659 if (curr
&& curr
->on_rq
) {
660 unsigned long weight
= scale_load_down(curr
->load
.weight
);
662 avg
+= entity_key(cfs_rq
, curr
) * weight
;
667 /* sign flips effective floor / ceiling */
670 avg
= div_s64(avg
, load
);
673 return cfs_rq
->min_vruntime
+ avg
;
677 * lag_i = S - s_i = w_i * (V - v_i)
679 * However, since V is approximated by the weighted average of all entities it
680 * is possible -- by addition/removal/reweight to the tree -- to move V around
681 * and end up with a larger lag than we started with.
683 * Limit this to either double the slice length with a minimum of TICK_NSEC
684 * since that is the timing granularity.
686 * EEVDF gives the following limit for a steady state system:
688 * -r_max < lag < max(r_max, q)
690 * XXX could add max_slice to the augmented data to track this.
692 static s64
entity_lag(u64 avruntime
, struct sched_entity
*se
)
696 vlag
= avruntime
- se
->vruntime
;
697 limit
= calc_delta_fair(max_t(u64
, 2*se
->slice
, TICK_NSEC
), se
);
699 return clamp(vlag
, -limit
, limit
);
702 static void update_entity_lag(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
704 SCHED_WARN_ON(!se
->on_rq
);
706 se
->vlag
= entity_lag(avg_vruntime(cfs_rq
), se
);
710 * Entity is eligible once it received less service than it ought to have,
713 * lag_i = S - s_i = w_i*(V - v_i)
715 * lag_i >= 0 -> V >= v_i
718 * V = ------------------ + v
721 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
723 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
724 * to the loss in precision caused by the division.
726 static int vruntime_eligible(struct cfs_rq
*cfs_rq
, u64 vruntime
)
728 struct sched_entity
*curr
= cfs_rq
->curr
;
729 s64 avg
= cfs_rq
->avg_vruntime
;
730 long load
= cfs_rq
->avg_load
;
732 if (curr
&& curr
->on_rq
) {
733 unsigned long weight
= scale_load_down(curr
->load
.weight
);
735 avg
+= entity_key(cfs_rq
, curr
) * weight
;
739 return avg
>= (s64
)(vruntime
- cfs_rq
->min_vruntime
) * load
;
742 int entity_eligible(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
744 return vruntime_eligible(cfs_rq
, se
->vruntime
);
747 static u64
__update_min_vruntime(struct cfs_rq
*cfs_rq
, u64 vruntime
)
749 u64 min_vruntime
= cfs_rq
->min_vruntime
;
751 * open coded max_vruntime() to allow updating avg_vruntime
753 s64 delta
= (s64
)(vruntime
- min_vruntime
);
755 avg_vruntime_update(cfs_rq
, delta
);
756 min_vruntime
= vruntime
;
761 static void update_min_vruntime(struct cfs_rq
*cfs_rq
)
763 struct sched_entity
*se
= __pick_root_entity(cfs_rq
);
764 struct sched_entity
*curr
= cfs_rq
->curr
;
765 u64 vruntime
= cfs_rq
->min_vruntime
;
769 vruntime
= curr
->vruntime
;
776 vruntime
= se
->min_vruntime
;
778 vruntime
= min_vruntime(vruntime
, se
->min_vruntime
);
781 /* ensure we never gain time by being placed backwards. */
782 cfs_rq
->min_vruntime
= __update_min_vruntime(cfs_rq
, vruntime
);
785 static inline u64
cfs_rq_min_slice(struct cfs_rq
*cfs_rq
)
787 struct sched_entity
*root
= __pick_root_entity(cfs_rq
);
788 struct sched_entity
*curr
= cfs_rq
->curr
;
789 u64 min_slice
= ~0ULL;
791 if (curr
&& curr
->on_rq
)
792 min_slice
= curr
->slice
;
795 min_slice
= min(min_slice
, root
->min_slice
);
800 static inline bool __entity_less(struct rb_node
*a
, const struct rb_node
*b
)
802 return entity_before(__node_2_se(a
), __node_2_se(b
));
805 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
807 static inline void __min_vruntime_update(struct sched_entity
*se
, struct rb_node
*node
)
810 struct sched_entity
*rse
= __node_2_se(node
);
811 if (vruntime_gt(min_vruntime
, se
, rse
))
812 se
->min_vruntime
= rse
->min_vruntime
;
816 static inline void __min_slice_update(struct sched_entity
*se
, struct rb_node
*node
)
819 struct sched_entity
*rse
= __node_2_se(node
);
820 if (rse
->min_slice
< se
->min_slice
)
821 se
->min_slice
= rse
->min_slice
;
826 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
828 static inline bool min_vruntime_update(struct sched_entity
*se
, bool exit
)
830 u64 old_min_vruntime
= se
->min_vruntime
;
831 u64 old_min_slice
= se
->min_slice
;
832 struct rb_node
*node
= &se
->run_node
;
834 se
->min_vruntime
= se
->vruntime
;
835 __min_vruntime_update(se
, node
->rb_right
);
836 __min_vruntime_update(se
, node
->rb_left
);
838 se
->min_slice
= se
->slice
;
839 __min_slice_update(se
, node
->rb_right
);
840 __min_slice_update(se
, node
->rb_left
);
842 return se
->min_vruntime
== old_min_vruntime
&&
843 se
->min_slice
== old_min_slice
;
846 RB_DECLARE_CALLBACKS(static, min_vruntime_cb
, struct sched_entity
,
847 run_node
, min_vruntime
, min_vruntime_update
);
850 * Enqueue an entity into the rb-tree:
852 static void __enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
854 avg_vruntime_add(cfs_rq
, se
);
855 se
->min_vruntime
= se
->vruntime
;
856 se
->min_slice
= se
->slice
;
857 rb_add_augmented_cached(&se
->run_node
, &cfs_rq
->tasks_timeline
,
858 __entity_less
, &min_vruntime_cb
);
861 static void __dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
863 rb_erase_augmented_cached(&se
->run_node
, &cfs_rq
->tasks_timeline
,
865 avg_vruntime_sub(cfs_rq
, se
);
868 struct sched_entity
*__pick_root_entity(struct cfs_rq
*cfs_rq
)
870 struct rb_node
*root
= cfs_rq
->tasks_timeline
.rb_root
.rb_node
;
875 return __node_2_se(root
);
878 struct sched_entity
*__pick_first_entity(struct cfs_rq
*cfs_rq
)
880 struct rb_node
*left
= rb_first_cached(&cfs_rq
->tasks_timeline
);
885 return __node_2_se(left
);
889 * Earliest Eligible Virtual Deadline First
891 * In order to provide latency guarantees for different request sizes
892 * EEVDF selects the best runnable task from two criteria:
894 * 1) the task must be eligible (must be owed service)
896 * 2) from those tasks that meet 1), we select the one
897 * with the earliest virtual deadline.
899 * We can do this in O(log n) time due to an augmented RB-tree. The
900 * tree keeps the entries sorted on deadline, but also functions as a
901 * heap based on the vruntime by keeping:
903 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
905 * Which allows tree pruning through eligibility.
907 static struct sched_entity
*pick_eevdf(struct cfs_rq
*cfs_rq
)
909 struct rb_node
*node
= cfs_rq
->tasks_timeline
.rb_root
.rb_node
;
910 struct sched_entity
*se
= __pick_first_entity(cfs_rq
);
911 struct sched_entity
*curr
= cfs_rq
->curr
;
912 struct sched_entity
*best
= NULL
;
915 * We can safely skip eligibility check if there is only one entity
916 * in this cfs_rq, saving some cycles.
918 if (cfs_rq
->nr_running
== 1)
919 return curr
&& curr
->on_rq
? curr
: se
;
921 if (curr
&& (!curr
->on_rq
|| !entity_eligible(cfs_rq
, curr
)))
925 * Once selected, run a task until it either becomes non-eligible or
926 * until it gets a new slice. See the HACK in set_next_entity().
928 if (sched_feat(RUN_TO_PARITY
) && curr
&& curr
->vlag
== curr
->deadline
)
931 /* Pick the leftmost entity if it's eligible */
932 if (se
&& entity_eligible(cfs_rq
, se
)) {
937 /* Heap search for the EEVD entity */
939 struct rb_node
*left
= node
->rb_left
;
942 * Eligible entities in left subtree are always better
943 * choices, since they have earlier deadlines.
945 if (left
&& vruntime_eligible(cfs_rq
,
946 __node_2_se(left
)->min_vruntime
)) {
951 se
= __node_2_se(node
);
954 * The left subtree either is empty or has no eligible
955 * entity, so check the current node since it is the one
956 * with earliest deadline that might be eligible.
958 if (entity_eligible(cfs_rq
, se
)) {
963 node
= node
->rb_right
;
966 if (!best
|| (curr
&& entity_before(curr
, best
)))
972 #ifdef CONFIG_SCHED_DEBUG
973 struct sched_entity
*__pick_last_entity(struct cfs_rq
*cfs_rq
)
975 struct rb_node
*last
= rb_last(&cfs_rq
->tasks_timeline
.rb_root
);
980 return __node_2_se(last
);
983 /**************************************************************
984 * Scheduling class statistics methods:
987 int sched_update_scaling(void)
989 unsigned int factor
= get_update_sysctl_factor();
991 #define WRT_SYSCTL(name) \
992 (normalized_sysctl_##name = sysctl_##name / (factor))
993 WRT_SYSCTL(sched_base_slice
);
1001 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
);
1004 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1005 * this is probably good enough.
1007 static bool update_deadline(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1009 if ((s64
)(se
->vruntime
- se
->deadline
) < 0)
1013 * For EEVDF the virtual time slope is determined by w_i (iow.
1014 * nice) while the request time r_i is determined by
1015 * sysctl_sched_base_slice.
1017 if (!se
->custom_slice
)
1018 se
->slice
= sysctl_sched_base_slice
;
1021 * EEVDF: vd_i = ve_i + r_i / w_i
1023 se
->deadline
= se
->vruntime
+ calc_delta_fair(se
->slice
, se
);
1026 * The task has consumed its request, reschedule.
1034 static int select_idle_sibling(struct task_struct
*p
, int prev_cpu
, int cpu
);
1035 static unsigned long task_h_load(struct task_struct
*p
);
1036 static unsigned long capacity_of(int cpu
);
1038 /* Give new sched_entity start runnable values to heavy its load in infant time */
1039 void init_entity_runnable_average(struct sched_entity
*se
)
1041 struct sched_avg
*sa
= &se
->avg
;
1043 memset(sa
, 0, sizeof(*sa
));
1046 * Tasks are initialized with full load to be seen as heavy tasks until
1047 * they get a chance to stabilize to their real load level.
1048 * Group entities are initialized with zero load to reflect the fact that
1049 * nothing has been attached to the task group yet.
1051 if (entity_is_task(se
))
1052 sa
->load_avg
= scale_load_down(se
->load
.weight
);
1054 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1058 * With new tasks being created, their initial util_avgs are extrapolated
1059 * based on the cfs_rq's current util_avg:
1061 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1064 * However, in many cases, the above util_avg does not give a desired
1065 * value. Moreover, the sum of the util_avgs may be divergent, such
1066 * as when the series is a harmonic series.
1068 * To solve this problem, we also cap the util_avg of successive tasks to
1069 * only 1/2 of the left utilization budget:
1071 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1073 * where n denotes the nth task and cpu_scale the CPU capacity.
1075 * For example, for a CPU with 1024 of capacity, a simplest series from
1076 * the beginning would be like:
1078 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1079 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1081 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1082 * if util_avg > util_avg_cap.
1084 void post_init_entity_util_avg(struct task_struct
*p
)
1086 struct sched_entity
*se
= &p
->se
;
1087 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
1088 struct sched_avg
*sa
= &se
->avg
;
1089 long cpu_scale
= arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq
)));
1090 long cap
= (long)(cpu_scale
- cfs_rq
->avg
.util_avg
) / 2;
1092 if (p
->sched_class
!= &fair_sched_class
) {
1094 * For !fair tasks do:
1096 update_cfs_rq_load_avg(now, cfs_rq);
1097 attach_entity_load_avg(cfs_rq, se);
1098 switched_from_fair(rq, p);
1100 * such that the next switched_to_fair() has the
1103 se
->avg
.last_update_time
= cfs_rq_clock_pelt(cfs_rq
);
1108 if (cfs_rq
->avg
.util_avg
!= 0) {
1109 sa
->util_avg
= cfs_rq
->avg
.util_avg
* se_weight(se
);
1110 sa
->util_avg
/= (cfs_rq
->avg
.load_avg
+ 1);
1112 if (sa
->util_avg
> cap
)
1119 sa
->runnable_avg
= sa
->util_avg
;
1122 #else /* !CONFIG_SMP */
1123 void init_entity_runnable_average(struct sched_entity
*se
)
1126 void post_init_entity_util_avg(struct task_struct
*p
)
1129 static void update_tg_load_avg(struct cfs_rq
*cfs_rq
)
1132 #endif /* CONFIG_SMP */
1134 static s64
update_curr_se(struct rq
*rq
, struct sched_entity
*curr
)
1136 u64 now
= rq_clock_task(rq
);
1139 delta_exec
= now
- curr
->exec_start
;
1140 if (unlikely(delta_exec
<= 0))
1143 curr
->exec_start
= now
;
1144 curr
->sum_exec_runtime
+= delta_exec
;
1146 if (schedstat_enabled()) {
1147 struct sched_statistics
*stats
;
1149 stats
= __schedstats_from_se(curr
);
1150 __schedstat_set(stats
->exec_max
,
1151 max(delta_exec
, stats
->exec_max
));
1157 static inline void update_curr_task(struct task_struct
*p
, s64 delta_exec
)
1159 trace_sched_stat_runtime(p
, delta_exec
);
1160 account_group_exec_runtime(p
, delta_exec
);
1161 cgroup_account_cputime(p
, delta_exec
);
1163 dl_server_update(p
->dl_server
, delta_exec
);
1166 static inline bool did_preempt_short(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
)
1168 if (!sched_feat(PREEMPT_SHORT
))
1171 if (curr
->vlag
== curr
->deadline
)
1174 return !entity_eligible(cfs_rq
, curr
);
1177 static inline bool do_preempt_short(struct cfs_rq
*cfs_rq
,
1178 struct sched_entity
*pse
, struct sched_entity
*se
)
1180 if (!sched_feat(PREEMPT_SHORT
))
1183 if (pse
->slice
>= se
->slice
)
1186 if (!entity_eligible(cfs_rq
, pse
))
1189 if (entity_before(pse
, se
))
1192 if (!entity_eligible(cfs_rq
, se
))
1199 * Used by other classes to account runtime.
1201 s64
update_curr_common(struct rq
*rq
)
1203 struct task_struct
*donor
= rq
->donor
;
1206 delta_exec
= update_curr_se(rq
, &donor
->se
);
1207 if (likely(delta_exec
> 0))
1208 update_curr_task(donor
, delta_exec
);
1214 * Update the current task's runtime statistics.
1216 static void update_curr(struct cfs_rq
*cfs_rq
)
1218 struct sched_entity
*curr
= cfs_rq
->curr
;
1219 struct rq
*rq
= rq_of(cfs_rq
);
1223 if (unlikely(!curr
))
1226 delta_exec
= update_curr_se(rq
, curr
);
1227 if (unlikely(delta_exec
<= 0))
1230 curr
->vruntime
+= calc_delta_fair(delta_exec
, curr
);
1231 resched
= update_deadline(cfs_rq
, curr
);
1232 update_min_vruntime(cfs_rq
);
1234 if (entity_is_task(curr
)) {
1235 struct task_struct
*p
= task_of(curr
);
1237 update_curr_task(p
, delta_exec
);
1240 * Any fair task that runs outside of fair_server should
1241 * account against fair_server such that it can account for
1242 * this time and possibly avoid running this period.
1244 if (p
->dl_server
!= &rq
->fair_server
)
1245 dl_server_update(&rq
->fair_server
, delta_exec
);
1248 account_cfs_rq_runtime(cfs_rq
, delta_exec
);
1250 if (cfs_rq
->nr_running
== 1)
1253 if (resched
|| did_preempt_short(cfs_rq
, curr
)) {
1254 resched_curr_lazy(rq
);
1255 clear_buddies(cfs_rq
, curr
);
1259 static void update_curr_fair(struct rq
*rq
)
1261 update_curr(cfs_rq_of(&rq
->donor
->se
));
1265 update_stats_wait_start_fair(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1267 struct sched_statistics
*stats
;
1268 struct task_struct
*p
= NULL
;
1270 if (!schedstat_enabled())
1273 stats
= __schedstats_from_se(se
);
1275 if (entity_is_task(se
))
1278 __update_stats_wait_start(rq_of(cfs_rq
), p
, stats
);
1282 update_stats_wait_end_fair(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1284 struct sched_statistics
*stats
;
1285 struct task_struct
*p
= NULL
;
1287 if (!schedstat_enabled())
1290 stats
= __schedstats_from_se(se
);
1293 * When the sched_schedstat changes from 0 to 1, some sched se
1294 * maybe already in the runqueue, the se->statistics.wait_start
1295 * will be 0.So it will let the delta wrong. We need to avoid this
1298 if (unlikely(!schedstat_val(stats
->wait_start
)))
1301 if (entity_is_task(se
))
1304 __update_stats_wait_end(rq_of(cfs_rq
), p
, stats
);
1308 update_stats_enqueue_sleeper_fair(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1310 struct sched_statistics
*stats
;
1311 struct task_struct
*tsk
= NULL
;
1313 if (!schedstat_enabled())
1316 stats
= __schedstats_from_se(se
);
1318 if (entity_is_task(se
))
1321 __update_stats_enqueue_sleeper(rq_of(cfs_rq
), tsk
, stats
);
1325 * Task is being enqueued - update stats:
1328 update_stats_enqueue_fair(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1330 if (!schedstat_enabled())
1334 * Are we enqueueing a waiting task? (for current tasks
1335 * a dequeue/enqueue event is a NOP)
1337 if (se
!= cfs_rq
->curr
)
1338 update_stats_wait_start_fair(cfs_rq
, se
);
1340 if (flags
& ENQUEUE_WAKEUP
)
1341 update_stats_enqueue_sleeper_fair(cfs_rq
, se
);
1345 update_stats_dequeue_fair(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
1348 if (!schedstat_enabled())
1352 * Mark the end of the wait period if dequeueing a
1355 if (se
!= cfs_rq
->curr
)
1356 update_stats_wait_end_fair(cfs_rq
, se
);
1358 if ((flags
& DEQUEUE_SLEEP
) && entity_is_task(se
)) {
1359 struct task_struct
*tsk
= task_of(se
);
1362 /* XXX racy against TTWU */
1363 state
= READ_ONCE(tsk
->__state
);
1364 if (state
& TASK_INTERRUPTIBLE
)
1365 __schedstat_set(tsk
->stats
.sleep_start
,
1366 rq_clock(rq_of(cfs_rq
)));
1367 if (state
& TASK_UNINTERRUPTIBLE
)
1368 __schedstat_set(tsk
->stats
.block_start
,
1369 rq_clock(rq_of(cfs_rq
)));
1374 * We are picking a new current task - update its stats:
1377 update_stats_curr_start(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
1380 * We are starting a new run period:
1382 se
->exec_start
= rq_clock_task(rq_of(cfs_rq
));
1385 /**************************************************
1386 * Scheduling class queueing methods:
1389 static inline bool is_core_idle(int cpu
)
1391 #ifdef CONFIG_SCHED_SMT
1394 for_each_cpu(sibling
, cpu_smt_mask(cpu
)) {
1398 if (!idle_cpu(sibling
))
1407 #define NUMA_IMBALANCE_MIN 2
1410 adjust_numa_imbalance(int imbalance
, int dst_running
, int imb_numa_nr
)
1413 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1414 * threshold. Above this threshold, individual tasks may be contending
1415 * for both memory bandwidth and any shared HT resources. This is an
1416 * approximation as the number of running tasks may not be related to
1417 * the number of busy CPUs due to sched_setaffinity.
1419 if (dst_running
> imb_numa_nr
)
1423 * Allow a small imbalance based on a simple pair of communicating
1424 * tasks that remain local when the destination is lightly loaded.
1426 if (imbalance
<= NUMA_IMBALANCE_MIN
)
1431 #endif /* CONFIG_NUMA */
1433 #ifdef CONFIG_NUMA_BALANCING
1435 * Approximate time to scan a full NUMA task in ms. The task scan period is
1436 * calculated based on the tasks virtual memory size and
1437 * numa_balancing_scan_size.
1439 unsigned int sysctl_numa_balancing_scan_period_min
= 1000;
1440 unsigned int sysctl_numa_balancing_scan_period_max
= 60000;
1442 /* Portion of address space to scan in MB */
1443 unsigned int sysctl_numa_balancing_scan_size
= 256;
1445 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1446 unsigned int sysctl_numa_balancing_scan_delay
= 1000;
1448 /* The page with hint page fault latency < threshold in ms is considered hot */
1449 unsigned int sysctl_numa_balancing_hot_threshold
= MSEC_PER_SEC
;
1452 refcount_t refcount
;
1454 spinlock_t lock
; /* nr_tasks, tasks */
1459 struct rcu_head rcu
;
1460 unsigned long total_faults
;
1461 unsigned long max_faults_cpu
;
1463 * faults[] array is split into two regions: faults_mem and faults_cpu.
1465 * Faults_cpu is used to decide whether memory should move
1466 * towards the CPU. As a consequence, these stats are weighted
1467 * more by CPU use than by memory faults.
1469 unsigned long faults
[];
1473 * For functions that can be called in multiple contexts that permit reading
1474 * ->numa_group (see struct task_struct for locking rules).
1476 static struct numa_group
*deref_task_numa_group(struct task_struct
*p
)
1478 return rcu_dereference_check(p
->numa_group
, p
== current
||
1479 (lockdep_is_held(__rq_lockp(task_rq(p
))) && !READ_ONCE(p
->on_cpu
)));
1482 static struct numa_group
*deref_curr_numa_group(struct task_struct
*p
)
1484 return rcu_dereference_protected(p
->numa_group
, p
== current
);
1487 static inline unsigned long group_faults_priv(struct numa_group
*ng
);
1488 static inline unsigned long group_faults_shared(struct numa_group
*ng
);
1490 static unsigned int task_nr_scan_windows(struct task_struct
*p
)
1492 unsigned long rss
= 0;
1493 unsigned long nr_scan_pages
;
1496 * Calculations based on RSS as non-present and empty pages are skipped
1497 * by the PTE scanner and NUMA hinting faults should be trapped based
1500 nr_scan_pages
= sysctl_numa_balancing_scan_size
<< (20 - PAGE_SHIFT
);
1501 rss
= get_mm_rss(p
->mm
);
1503 rss
= nr_scan_pages
;
1505 rss
= round_up(rss
, nr_scan_pages
);
1506 return rss
/ nr_scan_pages
;
1509 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1510 #define MAX_SCAN_WINDOW 2560
1512 static unsigned int task_scan_min(struct task_struct
*p
)
1514 unsigned int scan_size
= READ_ONCE(sysctl_numa_balancing_scan_size
);
1515 unsigned int scan
, floor
;
1516 unsigned int windows
= 1;
1518 if (scan_size
< MAX_SCAN_WINDOW
)
1519 windows
= MAX_SCAN_WINDOW
/ scan_size
;
1520 floor
= 1000 / windows
;
1522 scan
= sysctl_numa_balancing_scan_period_min
/ task_nr_scan_windows(p
);
1523 return max_t(unsigned int, floor
, scan
);
1526 static unsigned int task_scan_start(struct task_struct
*p
)
1528 unsigned long smin
= task_scan_min(p
);
1529 unsigned long period
= smin
;
1530 struct numa_group
*ng
;
1532 /* Scale the maximum scan period with the amount of shared memory. */
1534 ng
= rcu_dereference(p
->numa_group
);
1536 unsigned long shared
= group_faults_shared(ng
);
1537 unsigned long private = group_faults_priv(ng
);
1539 period
*= refcount_read(&ng
->refcount
);
1540 period
*= shared
+ 1;
1541 period
/= private + shared
+ 1;
1545 return max(smin
, period
);
1548 static unsigned int task_scan_max(struct task_struct
*p
)
1550 unsigned long smin
= task_scan_min(p
);
1552 struct numa_group
*ng
;
1554 /* Watch for min being lower than max due to floor calculations */
1555 smax
= sysctl_numa_balancing_scan_period_max
/ task_nr_scan_windows(p
);
1557 /* Scale the maximum scan period with the amount of shared memory. */
1558 ng
= deref_curr_numa_group(p
);
1560 unsigned long shared
= group_faults_shared(ng
);
1561 unsigned long private = group_faults_priv(ng
);
1562 unsigned long period
= smax
;
1564 period
*= refcount_read(&ng
->refcount
);
1565 period
*= shared
+ 1;
1566 period
/= private + shared
+ 1;
1568 smax
= max(smax
, period
);
1571 return max(smin
, smax
);
1574 static void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
1576 rq
->nr_numa_running
+= (p
->numa_preferred_nid
!= NUMA_NO_NODE
);
1577 rq
->nr_preferred_running
+= (p
->numa_preferred_nid
== task_node(p
));
1580 static void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
1582 rq
->nr_numa_running
-= (p
->numa_preferred_nid
!= NUMA_NO_NODE
);
1583 rq
->nr_preferred_running
-= (p
->numa_preferred_nid
== task_node(p
));
1586 /* Shared or private faults. */
1587 #define NR_NUMA_HINT_FAULT_TYPES 2
1589 /* Memory and CPU locality */
1590 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1592 /* Averaged statistics, and temporary buffers. */
1593 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1595 pid_t
task_numa_group_id(struct task_struct
*p
)
1597 struct numa_group
*ng
;
1601 ng
= rcu_dereference(p
->numa_group
);
1610 * The averaged statistics, shared & private, memory & CPU,
1611 * occupy the first half of the array. The second half of the
1612 * array is for current counters, which are averaged into the
1613 * first set by task_numa_placement.
1615 static inline int task_faults_idx(enum numa_faults_stats s
, int nid
, int priv
)
1617 return NR_NUMA_HINT_FAULT_TYPES
* (s
* nr_node_ids
+ nid
) + priv
;
1620 static inline unsigned long task_faults(struct task_struct
*p
, int nid
)
1622 if (!p
->numa_faults
)
1625 return p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1626 p
->numa_faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1629 static inline unsigned long group_faults(struct task_struct
*p
, int nid
)
1631 struct numa_group
*ng
= deref_task_numa_group(p
);
1636 return ng
->faults
[task_faults_idx(NUMA_MEM
, nid
, 0)] +
1637 ng
->faults
[task_faults_idx(NUMA_MEM
, nid
, 1)];
1640 static inline unsigned long group_faults_cpu(struct numa_group
*group
, int nid
)
1642 return group
->faults
[task_faults_idx(NUMA_CPU
, nid
, 0)] +
1643 group
->faults
[task_faults_idx(NUMA_CPU
, nid
, 1)];
1646 static inline unsigned long group_faults_priv(struct numa_group
*ng
)
1648 unsigned long faults
= 0;
1651 for_each_online_node(node
) {
1652 faults
+= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
1658 static inline unsigned long group_faults_shared(struct numa_group
*ng
)
1660 unsigned long faults
= 0;
1663 for_each_online_node(node
) {
1664 faults
+= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
1671 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1672 * considered part of a numa group's pseudo-interleaving set. Migrations
1673 * between these nodes are slowed down, to allow things to settle down.
1675 #define ACTIVE_NODE_FRACTION 3
1677 static bool numa_is_active_node(int nid
, struct numa_group
*ng
)
1679 return group_faults_cpu(ng
, nid
) * ACTIVE_NODE_FRACTION
> ng
->max_faults_cpu
;
1682 /* Handle placement on systems where not all nodes are directly connected. */
1683 static unsigned long score_nearby_nodes(struct task_struct
*p
, int nid
,
1684 int lim_dist
, bool task
)
1686 unsigned long score
= 0;
1690 * All nodes are directly connected, and the same distance
1691 * from each other. No need for fancy placement algorithms.
1693 if (sched_numa_topology_type
== NUMA_DIRECT
)
1696 /* sched_max_numa_distance may be changed in parallel. */
1697 max_dist
= READ_ONCE(sched_max_numa_distance
);
1699 * This code is called for each node, introducing N^2 complexity,
1700 * which should be OK given the number of nodes rarely exceeds 8.
1702 for_each_online_node(node
) {
1703 unsigned long faults
;
1704 int dist
= node_distance(nid
, node
);
1707 * The furthest away nodes in the system are not interesting
1708 * for placement; nid was already counted.
1710 if (dist
>= max_dist
|| node
== nid
)
1714 * On systems with a backplane NUMA topology, compare groups
1715 * of nodes, and move tasks towards the group with the most
1716 * memory accesses. When comparing two nodes at distance
1717 * "hoplimit", only nodes closer by than "hoplimit" are part
1718 * of each group. Skip other nodes.
1720 if (sched_numa_topology_type
== NUMA_BACKPLANE
&& dist
>= lim_dist
)
1723 /* Add up the faults from nearby nodes. */
1725 faults
= task_faults(p
, node
);
1727 faults
= group_faults(p
, node
);
1730 * On systems with a glueless mesh NUMA topology, there are
1731 * no fixed "groups of nodes". Instead, nodes that are not
1732 * directly connected bounce traffic through intermediate
1733 * nodes; a numa_group can occupy any set of nodes.
1734 * The further away a node is, the less the faults count.
1735 * This seems to result in good task placement.
1737 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
1738 faults
*= (max_dist
- dist
);
1739 faults
/= (max_dist
- LOCAL_DISTANCE
);
1749 * These return the fraction of accesses done by a particular task, or
1750 * task group, on a particular numa node. The group weight is given a
1751 * larger multiplier, in order to group tasks together that are almost
1752 * evenly spread out between numa nodes.
1754 static inline unsigned long task_weight(struct task_struct
*p
, int nid
,
1757 unsigned long faults
, total_faults
;
1759 if (!p
->numa_faults
)
1762 total_faults
= p
->total_numa_faults
;
1767 faults
= task_faults(p
, nid
);
1768 faults
+= score_nearby_nodes(p
, nid
, dist
, true);
1770 return 1000 * faults
/ total_faults
;
1773 static inline unsigned long group_weight(struct task_struct
*p
, int nid
,
1776 struct numa_group
*ng
= deref_task_numa_group(p
);
1777 unsigned long faults
, total_faults
;
1782 total_faults
= ng
->total_faults
;
1787 faults
= group_faults(p
, nid
);
1788 faults
+= score_nearby_nodes(p
, nid
, dist
, false);
1790 return 1000 * faults
/ total_faults
;
1794 * If memory tiering mode is enabled, cpupid of slow memory page is
1795 * used to record scan time instead of CPU and PID. When tiering mode
1796 * is disabled at run time, the scan time (in cpupid) will be
1797 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1798 * access out of array bound.
1800 static inline bool cpupid_valid(int cpupid
)
1802 return cpupid_to_cpu(cpupid
) < nr_cpu_ids
;
1806 * For memory tiering mode, if there are enough free pages (more than
1807 * enough watermark defined here) in fast memory node, to take full
1808 * advantage of fast memory capacity, all recently accessed slow
1809 * memory pages will be migrated to fast memory node without
1810 * considering hot threshold.
1812 static bool pgdat_free_space_enough(struct pglist_data
*pgdat
)
1815 unsigned long enough_wmark
;
1817 enough_wmark
= max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT
,
1818 pgdat
->node_present_pages
>> 4);
1819 for (z
= pgdat
->nr_zones
- 1; z
>= 0; z
--) {
1820 struct zone
*zone
= pgdat
->node_zones
+ z
;
1822 if (!populated_zone(zone
))
1825 if (zone_watermark_ok(zone
, 0,
1826 promo_wmark_pages(zone
) + enough_wmark
,
1834 * For memory tiering mode, when page tables are scanned, the scan
1835 * time will be recorded in struct page in addition to make page
1836 * PROT_NONE for slow memory page. So when the page is accessed, in
1837 * hint page fault handler, the hint page fault latency is calculated
1840 * hint page fault latency = hint page fault time - scan time
1842 * The smaller the hint page fault latency, the higher the possibility
1843 * for the page to be hot.
1845 static int numa_hint_fault_latency(struct folio
*folio
)
1847 int last_time
, time
;
1849 time
= jiffies_to_msecs(jiffies
);
1850 last_time
= folio_xchg_access_time(folio
, time
);
1852 return (time
- last_time
) & PAGE_ACCESS_TIME_MASK
;
1856 * For memory tiering mode, too high promotion/demotion throughput may
1857 * hurt application latency. So we provide a mechanism to rate limit
1858 * the number of pages that are tried to be promoted.
1860 static bool numa_promotion_rate_limit(struct pglist_data
*pgdat
,
1861 unsigned long rate_limit
, int nr
)
1863 unsigned long nr_cand
;
1864 unsigned int now
, start
;
1866 now
= jiffies_to_msecs(jiffies
);
1867 mod_node_page_state(pgdat
, PGPROMOTE_CANDIDATE
, nr
);
1868 nr_cand
= node_page_state(pgdat
, PGPROMOTE_CANDIDATE
);
1869 start
= pgdat
->nbp_rl_start
;
1870 if (now
- start
> MSEC_PER_SEC
&&
1871 cmpxchg(&pgdat
->nbp_rl_start
, start
, now
) == start
)
1872 pgdat
->nbp_rl_nr_cand
= nr_cand
;
1873 if (nr_cand
- pgdat
->nbp_rl_nr_cand
>= rate_limit
)
1878 #define NUMA_MIGRATION_ADJUST_STEPS 16
1880 static void numa_promotion_adjust_threshold(struct pglist_data
*pgdat
,
1881 unsigned long rate_limit
,
1882 unsigned int ref_th
)
1884 unsigned int now
, start
, th_period
, unit_th
, th
;
1885 unsigned long nr_cand
, ref_cand
, diff_cand
;
1887 now
= jiffies_to_msecs(jiffies
);
1888 th_period
= sysctl_numa_balancing_scan_period_max
;
1889 start
= pgdat
->nbp_th_start
;
1890 if (now
- start
> th_period
&&
1891 cmpxchg(&pgdat
->nbp_th_start
, start
, now
) == start
) {
1892 ref_cand
= rate_limit
*
1893 sysctl_numa_balancing_scan_period_max
/ MSEC_PER_SEC
;
1894 nr_cand
= node_page_state(pgdat
, PGPROMOTE_CANDIDATE
);
1895 diff_cand
= nr_cand
- pgdat
->nbp_th_nr_cand
;
1896 unit_th
= ref_th
* 2 / NUMA_MIGRATION_ADJUST_STEPS
;
1897 th
= pgdat
->nbp_threshold
? : ref_th
;
1898 if (diff_cand
> ref_cand
* 11 / 10)
1899 th
= max(th
- unit_th
, unit_th
);
1900 else if (diff_cand
< ref_cand
* 9 / 10)
1901 th
= min(th
+ unit_th
, ref_th
* 2);
1902 pgdat
->nbp_th_nr_cand
= nr_cand
;
1903 pgdat
->nbp_threshold
= th
;
1907 bool should_numa_migrate_memory(struct task_struct
*p
, struct folio
*folio
,
1908 int src_nid
, int dst_cpu
)
1910 struct numa_group
*ng
= deref_curr_numa_group(p
);
1911 int dst_nid
= cpu_to_node(dst_cpu
);
1912 int last_cpupid
, this_cpupid
;
1915 * Cannot migrate to memoryless nodes.
1917 if (!node_state(dst_nid
, N_MEMORY
))
1921 * The pages in slow memory node should be migrated according
1922 * to hot/cold instead of private/shared.
1924 if (folio_use_access_time(folio
)) {
1925 struct pglist_data
*pgdat
;
1926 unsigned long rate_limit
;
1927 unsigned int latency
, th
, def_th
;
1929 pgdat
= NODE_DATA(dst_nid
);
1930 if (pgdat_free_space_enough(pgdat
)) {
1931 /* workload changed, reset hot threshold */
1932 pgdat
->nbp_threshold
= 0;
1936 def_th
= sysctl_numa_balancing_hot_threshold
;
1937 rate_limit
= sysctl_numa_balancing_promote_rate_limit
<< \
1939 numa_promotion_adjust_threshold(pgdat
, rate_limit
, def_th
);
1941 th
= pgdat
->nbp_threshold
? : def_th
;
1942 latency
= numa_hint_fault_latency(folio
);
1946 return !numa_promotion_rate_limit(pgdat
, rate_limit
,
1947 folio_nr_pages(folio
));
1950 this_cpupid
= cpu_pid_to_cpupid(dst_cpu
, current
->pid
);
1951 last_cpupid
= folio_xchg_last_cpupid(folio
, this_cpupid
);
1953 if (!(sysctl_numa_balancing_mode
& NUMA_BALANCING_MEMORY_TIERING
) &&
1954 !node_is_toptier(src_nid
) && !cpupid_valid(last_cpupid
))
1958 * Allow first faults or private faults to migrate immediately early in
1959 * the lifetime of a task. The magic number 4 is based on waiting for
1960 * two full passes of the "multi-stage node selection" test that is
1963 if ((p
->numa_preferred_nid
== NUMA_NO_NODE
|| p
->numa_scan_seq
<= 4) &&
1964 (cpupid_pid_unset(last_cpupid
) || cpupid_match_pid(p
, last_cpupid
)))
1968 * Multi-stage node selection is used in conjunction with a periodic
1969 * migration fault to build a temporal task<->page relation. By using
1970 * a two-stage filter we remove short/unlikely relations.
1972 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1973 * a task's usage of a particular page (n_p) per total usage of this
1974 * page (n_t) (in a given time-span) to a probability.
1976 * Our periodic faults will sample this probability and getting the
1977 * same result twice in a row, given these samples are fully
1978 * independent, is then given by P(n)^2, provided our sample period
1979 * is sufficiently short compared to the usage pattern.
1981 * This quadric squishes small probabilities, making it less likely we
1982 * act on an unlikely task<->page relation.
1984 if (!cpupid_pid_unset(last_cpupid
) &&
1985 cpupid_to_nid(last_cpupid
) != dst_nid
)
1988 /* Always allow migrate on private faults */
1989 if (cpupid_match_pid(p
, last_cpupid
))
1992 /* A shared fault, but p->numa_group has not been set up yet. */
1997 * Destination node is much more heavily used than the source
1998 * node? Allow migration.
2000 if (group_faults_cpu(ng
, dst_nid
) > group_faults_cpu(ng
, src_nid
) *
2001 ACTIVE_NODE_FRACTION
)
2005 * Distribute memory according to CPU & memory use on each node,
2006 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2008 * faults_cpu(dst) 3 faults_cpu(src)
2009 * --------------- * - > ---------------
2010 * faults_mem(dst) 4 faults_mem(src)
2012 return group_faults_cpu(ng
, dst_nid
) * group_faults(p
, src_nid
) * 3 >
2013 group_faults_cpu(ng
, src_nid
) * group_faults(p
, dst_nid
) * 4;
2017 * 'numa_type' describes the node at the moment of load balancing.
2020 /* The node has spare capacity that can be used to run more tasks. */
2023 * The node is fully used and the tasks don't compete for more CPU
2024 * cycles. Nevertheless, some tasks might wait before running.
2028 * The node is overloaded and can't provide expected CPU cycles to all
2034 /* Cached statistics for all CPUs within a node */
2037 unsigned long runnable
;
2039 /* Total compute capacity of CPUs on a node */
2040 unsigned long compute_capacity
;
2041 unsigned int nr_running
;
2042 unsigned int weight
;
2043 enum numa_type node_type
;
2047 struct task_numa_env
{
2048 struct task_struct
*p
;
2050 int src_cpu
, src_nid
;
2051 int dst_cpu
, dst_nid
;
2054 struct numa_stats src_stats
, dst_stats
;
2059 struct task_struct
*best_task
;
2064 static unsigned long cpu_load(struct rq
*rq
);
2065 static unsigned long cpu_runnable(struct rq
*rq
);
2068 numa_type
numa_classify(unsigned int imbalance_pct
,
2069 struct numa_stats
*ns
)
2071 if ((ns
->nr_running
> ns
->weight
) &&
2072 (((ns
->compute_capacity
* 100) < (ns
->util
* imbalance_pct
)) ||
2073 ((ns
->compute_capacity
* imbalance_pct
) < (ns
->runnable
* 100))))
2074 return node_overloaded
;
2076 if ((ns
->nr_running
< ns
->weight
) ||
2077 (((ns
->compute_capacity
* 100) > (ns
->util
* imbalance_pct
)) &&
2078 ((ns
->compute_capacity
* imbalance_pct
) > (ns
->runnable
* 100))))
2079 return node_has_spare
;
2081 return node_fully_busy
;
2084 #ifdef CONFIG_SCHED_SMT
2085 /* Forward declarations of select_idle_sibling helpers */
2086 static inline bool test_idle_cores(int cpu
);
2087 static inline int numa_idle_core(int idle_core
, int cpu
)
2089 if (!static_branch_likely(&sched_smt_present
) ||
2090 idle_core
>= 0 || !test_idle_cores(cpu
))
2094 * Prefer cores instead of packing HT siblings
2095 * and triggering future load balancing.
2097 if (is_core_idle(cpu
))
2103 static inline int numa_idle_core(int idle_core
, int cpu
)
2110 * Gather all necessary information to make NUMA balancing placement
2111 * decisions that are compatible with standard load balancer. This
2112 * borrows code and logic from update_sg_lb_stats but sharing a
2113 * common implementation is impractical.
2115 static void update_numa_stats(struct task_numa_env
*env
,
2116 struct numa_stats
*ns
, int nid
,
2119 int cpu
, idle_core
= -1;
2121 memset(ns
, 0, sizeof(*ns
));
2125 for_each_cpu(cpu
, cpumask_of_node(nid
)) {
2126 struct rq
*rq
= cpu_rq(cpu
);
2128 ns
->load
+= cpu_load(rq
);
2129 ns
->runnable
+= cpu_runnable(rq
);
2130 ns
->util
+= cpu_util_cfs(cpu
);
2131 ns
->nr_running
+= rq
->cfs
.h_nr_running
;
2132 ns
->compute_capacity
+= capacity_of(cpu
);
2134 if (find_idle
&& idle_core
< 0 && !rq
->nr_running
&& idle_cpu(cpu
)) {
2135 if (READ_ONCE(rq
->numa_migrate_on
) ||
2136 !cpumask_test_cpu(cpu
, env
->p
->cpus_ptr
))
2139 if (ns
->idle_cpu
== -1)
2142 idle_core
= numa_idle_core(idle_core
, cpu
);
2147 ns
->weight
= cpumask_weight(cpumask_of_node(nid
));
2149 ns
->node_type
= numa_classify(env
->imbalance_pct
, ns
);
2152 ns
->idle_cpu
= idle_core
;
2155 static void task_numa_assign(struct task_numa_env
*env
,
2156 struct task_struct
*p
, long imp
)
2158 struct rq
*rq
= cpu_rq(env
->dst_cpu
);
2160 /* Check if run-queue part of active NUMA balance. */
2161 if (env
->best_cpu
!= env
->dst_cpu
&& xchg(&rq
->numa_migrate_on
, 1)) {
2163 int start
= env
->dst_cpu
;
2165 /* Find alternative idle CPU. */
2166 for_each_cpu_wrap(cpu
, cpumask_of_node(env
->dst_nid
), start
+ 1) {
2167 if (cpu
== env
->best_cpu
|| !idle_cpu(cpu
) ||
2168 !cpumask_test_cpu(cpu
, env
->p
->cpus_ptr
)) {
2173 rq
= cpu_rq(env
->dst_cpu
);
2174 if (!xchg(&rq
->numa_migrate_on
, 1))
2178 /* Failed to find an alternative idle CPU */
2184 * Clear previous best_cpu/rq numa-migrate flag, since task now
2185 * found a better CPU to move/swap.
2187 if (env
->best_cpu
!= -1 && env
->best_cpu
!= env
->dst_cpu
) {
2188 rq
= cpu_rq(env
->best_cpu
);
2189 WRITE_ONCE(rq
->numa_migrate_on
, 0);
2193 put_task_struct(env
->best_task
);
2198 env
->best_imp
= imp
;
2199 env
->best_cpu
= env
->dst_cpu
;
2202 static bool load_too_imbalanced(long src_load
, long dst_load
,
2203 struct task_numa_env
*env
)
2206 long orig_src_load
, orig_dst_load
;
2207 long src_capacity
, dst_capacity
;
2210 * The load is corrected for the CPU capacity available on each node.
2213 * ------------ vs ---------
2214 * src_capacity dst_capacity
2216 src_capacity
= env
->src_stats
.compute_capacity
;
2217 dst_capacity
= env
->dst_stats
.compute_capacity
;
2219 imb
= abs(dst_load
* src_capacity
- src_load
* dst_capacity
);
2221 orig_src_load
= env
->src_stats
.load
;
2222 orig_dst_load
= env
->dst_stats
.load
;
2224 old_imb
= abs(orig_dst_load
* src_capacity
- orig_src_load
* dst_capacity
);
2226 /* Would this change make things worse? */
2227 return (imb
> old_imb
);
2231 * Maximum NUMA importance can be 1998 (2*999);
2232 * SMALLIMP @ 30 would be close to 1998/64.
2233 * Used to deter task migration.
2238 * This checks if the overall compute and NUMA accesses of the system would
2239 * be improved if the source tasks was migrated to the target dst_cpu taking
2240 * into account that it might be best if task running on the dst_cpu should
2241 * be exchanged with the source task
2243 static bool task_numa_compare(struct task_numa_env
*env
,
2244 long taskimp
, long groupimp
, bool maymove
)
2246 struct numa_group
*cur_ng
, *p_ng
= deref_curr_numa_group(env
->p
);
2247 struct rq
*dst_rq
= cpu_rq(env
->dst_cpu
);
2248 long imp
= p_ng
? groupimp
: taskimp
;
2249 struct task_struct
*cur
;
2250 long src_load
, dst_load
;
2251 int dist
= env
->dist
;
2254 bool stopsearch
= false;
2256 if (READ_ONCE(dst_rq
->numa_migrate_on
))
2260 cur
= rcu_dereference(dst_rq
->curr
);
2261 if (cur
&& ((cur
->flags
& PF_EXITING
) || is_idle_task(cur
)))
2265 * Because we have preemption enabled we can get migrated around and
2266 * end try selecting ourselves (current == env->p) as a swap candidate.
2268 if (cur
== env
->p
) {
2274 if (maymove
&& moveimp
>= env
->best_imp
)
2280 /* Skip this swap candidate if cannot move to the source cpu. */
2281 if (!cpumask_test_cpu(env
->src_cpu
, cur
->cpus_ptr
))
2285 * Skip this swap candidate if it is not moving to its preferred
2286 * node and the best task is.
2288 if (env
->best_task
&&
2289 env
->best_task
->numa_preferred_nid
== env
->src_nid
&&
2290 cur
->numa_preferred_nid
!= env
->src_nid
) {
2295 * "imp" is the fault differential for the source task between the
2296 * source and destination node. Calculate the total differential for
2297 * the source task and potential destination task. The more negative
2298 * the value is, the more remote accesses that would be expected to
2299 * be incurred if the tasks were swapped.
2301 * If dst and source tasks are in the same NUMA group, or not
2302 * in any group then look only at task weights.
2304 cur_ng
= rcu_dereference(cur
->numa_group
);
2305 if (cur_ng
== p_ng
) {
2307 * Do not swap within a group or between tasks that have
2308 * no group if there is spare capacity. Swapping does
2309 * not address the load imbalance and helps one task at
2310 * the cost of punishing another.
2312 if (env
->dst_stats
.node_type
== node_has_spare
)
2315 imp
= taskimp
+ task_weight(cur
, env
->src_nid
, dist
) -
2316 task_weight(cur
, env
->dst_nid
, dist
);
2318 * Add some hysteresis to prevent swapping the
2319 * tasks within a group over tiny differences.
2325 * Compare the group weights. If a task is all by itself
2326 * (not part of a group), use the task weight instead.
2329 imp
+= group_weight(cur
, env
->src_nid
, dist
) -
2330 group_weight(cur
, env
->dst_nid
, dist
);
2332 imp
+= task_weight(cur
, env
->src_nid
, dist
) -
2333 task_weight(cur
, env
->dst_nid
, dist
);
2336 /* Discourage picking a task already on its preferred node */
2337 if (cur
->numa_preferred_nid
== env
->dst_nid
)
2341 * Encourage picking a task that moves to its preferred node.
2342 * This potentially makes imp larger than it's maximum of
2343 * 1998 (see SMALLIMP and task_weight for why) but in this
2344 * case, it does not matter.
2346 if (cur
->numa_preferred_nid
== env
->src_nid
)
2349 if (maymove
&& moveimp
> imp
&& moveimp
> env
->best_imp
) {
2356 * Prefer swapping with a task moving to its preferred node over a
2359 if (env
->best_task
&& cur
->numa_preferred_nid
== env
->src_nid
&&
2360 env
->best_task
->numa_preferred_nid
!= env
->src_nid
) {
2365 * If the NUMA importance is less than SMALLIMP,
2366 * task migration might only result in ping pong
2367 * of tasks and also hurt performance due to cache
2370 if (imp
< SMALLIMP
|| imp
<= env
->best_imp
+ SMALLIMP
/ 2)
2374 * In the overloaded case, try and keep the load balanced.
2376 load
= task_h_load(env
->p
) - task_h_load(cur
);
2380 dst_load
= env
->dst_stats
.load
+ load
;
2381 src_load
= env
->src_stats
.load
- load
;
2383 if (load_too_imbalanced(src_load
, dst_load
, env
))
2387 /* Evaluate an idle CPU for a task numa move. */
2389 int cpu
= env
->dst_stats
.idle_cpu
;
2391 /* Nothing cached so current CPU went idle since the search. */
2396 * If the CPU is no longer truly idle and the previous best CPU
2397 * is, keep using it.
2399 if (!idle_cpu(cpu
) && env
->best_cpu
>= 0 &&
2400 idle_cpu(env
->best_cpu
)) {
2401 cpu
= env
->best_cpu
;
2407 task_numa_assign(env
, cur
, imp
);
2410 * If a move to idle is allowed because there is capacity or load
2411 * balance improves then stop the search. While a better swap
2412 * candidate may exist, a search is not free.
2414 if (maymove
&& !cur
&& env
->best_cpu
>= 0 && idle_cpu(env
->best_cpu
))
2418 * If a swap candidate must be identified and the current best task
2419 * moves its preferred node then stop the search.
2421 if (!maymove
&& env
->best_task
&&
2422 env
->best_task
->numa_preferred_nid
== env
->src_nid
) {
2431 static void task_numa_find_cpu(struct task_numa_env
*env
,
2432 long taskimp
, long groupimp
)
2434 bool maymove
= false;
2438 * If dst node has spare capacity, then check if there is an
2439 * imbalance that would be overruled by the load balancer.
2441 if (env
->dst_stats
.node_type
== node_has_spare
) {
2442 unsigned int imbalance
;
2443 int src_running
, dst_running
;
2446 * Would movement cause an imbalance? Note that if src has
2447 * more running tasks that the imbalance is ignored as the
2448 * move improves the imbalance from the perspective of the
2449 * CPU load balancer.
2451 src_running
= env
->src_stats
.nr_running
- 1;
2452 dst_running
= env
->dst_stats
.nr_running
+ 1;
2453 imbalance
= max(0, dst_running
- src_running
);
2454 imbalance
= adjust_numa_imbalance(imbalance
, dst_running
,
2457 /* Use idle CPU if there is no imbalance */
2460 if (env
->dst_stats
.idle_cpu
>= 0) {
2461 env
->dst_cpu
= env
->dst_stats
.idle_cpu
;
2462 task_numa_assign(env
, NULL
, 0);
2467 long src_load
, dst_load
, load
;
2469 * If the improvement from just moving env->p direction is better
2470 * than swapping tasks around, check if a move is possible.
2472 load
= task_h_load(env
->p
);
2473 dst_load
= env
->dst_stats
.load
+ load
;
2474 src_load
= env
->src_stats
.load
- load
;
2475 maymove
= !load_too_imbalanced(src_load
, dst_load
, env
);
2478 for_each_cpu(cpu
, cpumask_of_node(env
->dst_nid
)) {
2479 /* Skip this CPU if the source task cannot migrate */
2480 if (!cpumask_test_cpu(cpu
, env
->p
->cpus_ptr
))
2484 if (task_numa_compare(env
, taskimp
, groupimp
, maymove
))
2489 static int task_numa_migrate(struct task_struct
*p
)
2491 struct task_numa_env env
= {
2494 .src_cpu
= task_cpu(p
),
2495 .src_nid
= task_node(p
),
2497 .imbalance_pct
= 112,
2503 unsigned long taskweight
, groupweight
;
2504 struct sched_domain
*sd
;
2505 long taskimp
, groupimp
;
2506 struct numa_group
*ng
;
2511 * Pick the lowest SD_NUMA domain, as that would have the smallest
2512 * imbalance and would be the first to start moving tasks about.
2514 * And we want to avoid any moving of tasks about, as that would create
2515 * random movement of tasks -- counter the numa conditions we're trying
2519 sd
= rcu_dereference(per_cpu(sd_numa
, env
.src_cpu
));
2521 env
.imbalance_pct
= 100 + (sd
->imbalance_pct
- 100) / 2;
2522 env
.imb_numa_nr
= sd
->imb_numa_nr
;
2527 * Cpusets can break the scheduler domain tree into smaller
2528 * balance domains, some of which do not cross NUMA boundaries.
2529 * Tasks that are "trapped" in such domains cannot be migrated
2530 * elsewhere, so there is no point in (re)trying.
2532 if (unlikely(!sd
)) {
2533 sched_setnuma(p
, task_node(p
));
2537 env
.dst_nid
= p
->numa_preferred_nid
;
2538 dist
= env
.dist
= node_distance(env
.src_nid
, env
.dst_nid
);
2539 taskweight
= task_weight(p
, env
.src_nid
, dist
);
2540 groupweight
= group_weight(p
, env
.src_nid
, dist
);
2541 update_numa_stats(&env
, &env
.src_stats
, env
.src_nid
, false);
2542 taskimp
= task_weight(p
, env
.dst_nid
, dist
) - taskweight
;
2543 groupimp
= group_weight(p
, env
.dst_nid
, dist
) - groupweight
;
2544 update_numa_stats(&env
, &env
.dst_stats
, env
.dst_nid
, true);
2546 /* Try to find a spot on the preferred nid. */
2547 task_numa_find_cpu(&env
, taskimp
, groupimp
);
2550 * Look at other nodes in these cases:
2551 * - there is no space available on the preferred_nid
2552 * - the task is part of a numa_group that is interleaved across
2553 * multiple NUMA nodes; in order to better consolidate the group,
2554 * we need to check other locations.
2556 ng
= deref_curr_numa_group(p
);
2557 if (env
.best_cpu
== -1 || (ng
&& ng
->active_nodes
> 1)) {
2558 for_each_node_state(nid
, N_CPU
) {
2559 if (nid
== env
.src_nid
|| nid
== p
->numa_preferred_nid
)
2562 dist
= node_distance(env
.src_nid
, env
.dst_nid
);
2563 if (sched_numa_topology_type
== NUMA_BACKPLANE
&&
2565 taskweight
= task_weight(p
, env
.src_nid
, dist
);
2566 groupweight
= group_weight(p
, env
.src_nid
, dist
);
2569 /* Only consider nodes where both task and groups benefit */
2570 taskimp
= task_weight(p
, nid
, dist
) - taskweight
;
2571 groupimp
= group_weight(p
, nid
, dist
) - groupweight
;
2572 if (taskimp
< 0 && groupimp
< 0)
2577 update_numa_stats(&env
, &env
.dst_stats
, env
.dst_nid
, true);
2578 task_numa_find_cpu(&env
, taskimp
, groupimp
);
2583 * If the task is part of a workload that spans multiple NUMA nodes,
2584 * and is migrating into one of the workload's active nodes, remember
2585 * this node as the task's preferred numa node, so the workload can
2587 * A task that migrated to a second choice node will be better off
2588 * trying for a better one later. Do not set the preferred node here.
2591 if (env
.best_cpu
== -1)
2594 nid
= cpu_to_node(env
.best_cpu
);
2596 if (nid
!= p
->numa_preferred_nid
)
2597 sched_setnuma(p
, nid
);
2600 /* No better CPU than the current one was found. */
2601 if (env
.best_cpu
== -1) {
2602 trace_sched_stick_numa(p
, env
.src_cpu
, NULL
, -1);
2606 best_rq
= cpu_rq(env
.best_cpu
);
2607 if (env
.best_task
== NULL
) {
2608 ret
= migrate_task_to(p
, env
.best_cpu
);
2609 WRITE_ONCE(best_rq
->numa_migrate_on
, 0);
2611 trace_sched_stick_numa(p
, env
.src_cpu
, NULL
, env
.best_cpu
);
2615 ret
= migrate_swap(p
, env
.best_task
, env
.best_cpu
, env
.src_cpu
);
2616 WRITE_ONCE(best_rq
->numa_migrate_on
, 0);
2619 trace_sched_stick_numa(p
, env
.src_cpu
, env
.best_task
, env
.best_cpu
);
2620 put_task_struct(env
.best_task
);
2624 /* Attempt to migrate a task to a CPU on the preferred node. */
2625 static void numa_migrate_preferred(struct task_struct
*p
)
2627 unsigned long interval
= HZ
;
2629 /* This task has no NUMA fault statistics yet */
2630 if (unlikely(p
->numa_preferred_nid
== NUMA_NO_NODE
|| !p
->numa_faults
))
2633 /* Periodically retry migrating the task to the preferred node */
2634 interval
= min(interval
, msecs_to_jiffies(p
->numa_scan_period
) / 16);
2635 p
->numa_migrate_retry
= jiffies
+ interval
;
2637 /* Success if task is already running on preferred CPU */
2638 if (task_node(p
) == p
->numa_preferred_nid
)
2641 /* Otherwise, try migrate to a CPU on the preferred node */
2642 task_numa_migrate(p
);
2646 * Find out how many nodes the workload is actively running on. Do this by
2647 * tracking the nodes from which NUMA hinting faults are triggered. This can
2648 * be different from the set of nodes where the workload's memory is currently
2651 static void numa_group_count_active_nodes(struct numa_group
*numa_group
)
2653 unsigned long faults
, max_faults
= 0;
2654 int nid
, active_nodes
= 0;
2656 for_each_node_state(nid
, N_CPU
) {
2657 faults
= group_faults_cpu(numa_group
, nid
);
2658 if (faults
> max_faults
)
2659 max_faults
= faults
;
2662 for_each_node_state(nid
, N_CPU
) {
2663 faults
= group_faults_cpu(numa_group
, nid
);
2664 if (faults
* ACTIVE_NODE_FRACTION
> max_faults
)
2668 numa_group
->max_faults_cpu
= max_faults
;
2669 numa_group
->active_nodes
= active_nodes
;
2673 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2674 * increments. The more local the fault statistics are, the higher the scan
2675 * period will be for the next scan window. If local/(local+remote) ratio is
2676 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2677 * the scan period will decrease. Aim for 70% local accesses.
2679 #define NUMA_PERIOD_SLOTS 10
2680 #define NUMA_PERIOD_THRESHOLD 7
2683 * Increase the scan period (slow down scanning) if the majority of
2684 * our memory is already on our local node, or if the majority of
2685 * the page accesses are shared with other processes.
2686 * Otherwise, decrease the scan period.
2688 static void update_task_scan_period(struct task_struct
*p
,
2689 unsigned long shared
, unsigned long private)
2691 unsigned int period_slot
;
2692 int lr_ratio
, ps_ratio
;
2695 unsigned long remote
= p
->numa_faults_locality
[0];
2696 unsigned long local
= p
->numa_faults_locality
[1];
2699 * If there were no record hinting faults then either the task is
2700 * completely idle or all activity is in areas that are not of interest
2701 * to automatic numa balancing. Related to that, if there were failed
2702 * migration then it implies we are migrating too quickly or the local
2703 * node is overloaded. In either case, scan slower
2705 if (local
+ shared
== 0 || p
->numa_faults_locality
[2]) {
2706 p
->numa_scan_period
= min(p
->numa_scan_period_max
,
2707 p
->numa_scan_period
<< 1);
2709 p
->mm
->numa_next_scan
= jiffies
+
2710 msecs_to_jiffies(p
->numa_scan_period
);
2716 * Prepare to scale scan period relative to the current period.
2717 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2718 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2719 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2721 period_slot
= DIV_ROUND_UP(p
->numa_scan_period
, NUMA_PERIOD_SLOTS
);
2722 lr_ratio
= (local
* NUMA_PERIOD_SLOTS
) / (local
+ remote
);
2723 ps_ratio
= (private * NUMA_PERIOD_SLOTS
) / (private + shared
);
2725 if (ps_ratio
>= NUMA_PERIOD_THRESHOLD
) {
2727 * Most memory accesses are local. There is no need to
2728 * do fast NUMA scanning, since memory is already local.
2730 int slot
= ps_ratio
- NUMA_PERIOD_THRESHOLD
;
2733 diff
= slot
* period_slot
;
2734 } else if (lr_ratio
>= NUMA_PERIOD_THRESHOLD
) {
2736 * Most memory accesses are shared with other tasks.
2737 * There is no point in continuing fast NUMA scanning,
2738 * since other tasks may just move the memory elsewhere.
2740 int slot
= lr_ratio
- NUMA_PERIOD_THRESHOLD
;
2743 diff
= slot
* period_slot
;
2746 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2747 * yet they are not on the local NUMA node. Speed up
2748 * NUMA scanning to get the memory moved over.
2750 int ratio
= max(lr_ratio
, ps_ratio
);
2751 diff
= -(NUMA_PERIOD_THRESHOLD
- ratio
) * period_slot
;
2754 p
->numa_scan_period
= clamp(p
->numa_scan_period
+ diff
,
2755 task_scan_min(p
), task_scan_max(p
));
2756 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
2760 * Get the fraction of time the task has been running since the last
2761 * NUMA placement cycle. The scheduler keeps similar statistics, but
2762 * decays those on a 32ms period, which is orders of magnitude off
2763 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2764 * stats only if the task is so new there are no NUMA statistics yet.
2766 static u64
numa_get_avg_runtime(struct task_struct
*p
, u64
*period
)
2768 u64 runtime
, delta
, now
;
2769 /* Use the start of this time slice to avoid calculations. */
2770 now
= p
->se
.exec_start
;
2771 runtime
= p
->se
.sum_exec_runtime
;
2773 if (p
->last_task_numa_placement
) {
2774 delta
= runtime
- p
->last_sum_exec_runtime
;
2775 *period
= now
- p
->last_task_numa_placement
;
2777 /* Avoid time going backwards, prevent potential divide error: */
2778 if (unlikely((s64
)*period
< 0))
2781 delta
= p
->se
.avg
.load_sum
;
2782 *period
= LOAD_AVG_MAX
;
2785 p
->last_sum_exec_runtime
= runtime
;
2786 p
->last_task_numa_placement
= now
;
2792 * Determine the preferred nid for a task in a numa_group. This needs to
2793 * be done in a way that produces consistent results with group_weight,
2794 * otherwise workloads might not converge.
2796 static int preferred_group_nid(struct task_struct
*p
, int nid
)
2801 /* Direct connections between all NUMA nodes. */
2802 if (sched_numa_topology_type
== NUMA_DIRECT
)
2806 * On a system with glueless mesh NUMA topology, group_weight
2807 * scores nodes according to the number of NUMA hinting faults on
2808 * both the node itself, and on nearby nodes.
2810 if (sched_numa_topology_type
== NUMA_GLUELESS_MESH
) {
2811 unsigned long score
, max_score
= 0;
2812 int node
, max_node
= nid
;
2814 dist
= sched_max_numa_distance
;
2816 for_each_node_state(node
, N_CPU
) {
2817 score
= group_weight(p
, node
, dist
);
2818 if (score
> max_score
) {
2827 * Finding the preferred nid in a system with NUMA backplane
2828 * interconnect topology is more involved. The goal is to locate
2829 * tasks from numa_groups near each other in the system, and
2830 * untangle workloads from different sides of the system. This requires
2831 * searching down the hierarchy of node groups, recursively searching
2832 * inside the highest scoring group of nodes. The nodemask tricks
2833 * keep the complexity of the search down.
2835 nodes
= node_states
[N_CPU
];
2836 for (dist
= sched_max_numa_distance
; dist
> LOCAL_DISTANCE
; dist
--) {
2837 unsigned long max_faults
= 0;
2838 nodemask_t max_group
= NODE_MASK_NONE
;
2841 /* Are there nodes at this distance from each other? */
2842 if (!find_numa_distance(dist
))
2845 for_each_node_mask(a
, nodes
) {
2846 unsigned long faults
= 0;
2847 nodemask_t this_group
;
2848 nodes_clear(this_group
);
2850 /* Sum group's NUMA faults; includes a==b case. */
2851 for_each_node_mask(b
, nodes
) {
2852 if (node_distance(a
, b
) < dist
) {
2853 faults
+= group_faults(p
, b
);
2854 node_set(b
, this_group
);
2855 node_clear(b
, nodes
);
2859 /* Remember the top group. */
2860 if (faults
> max_faults
) {
2861 max_faults
= faults
;
2862 max_group
= this_group
;
2864 * subtle: at the smallest distance there is
2865 * just one node left in each "group", the
2866 * winner is the preferred nid.
2871 /* Next round, evaluate the nodes within max_group. */
2879 static void task_numa_placement(struct task_struct
*p
)
2881 int seq
, nid
, max_nid
= NUMA_NO_NODE
;
2882 unsigned long max_faults
= 0;
2883 unsigned long fault_types
[2] = { 0, 0 };
2884 unsigned long total_faults
;
2885 u64 runtime
, period
;
2886 spinlock_t
*group_lock
= NULL
;
2887 struct numa_group
*ng
;
2890 * The p->mm->numa_scan_seq field gets updated without
2891 * exclusive access. Use READ_ONCE() here to ensure
2892 * that the field is read in a single access:
2894 seq
= READ_ONCE(p
->mm
->numa_scan_seq
);
2895 if (p
->numa_scan_seq
== seq
)
2897 p
->numa_scan_seq
= seq
;
2898 p
->numa_scan_period_max
= task_scan_max(p
);
2900 total_faults
= p
->numa_faults_locality
[0] +
2901 p
->numa_faults_locality
[1];
2902 runtime
= numa_get_avg_runtime(p
, &period
);
2904 /* If the task is part of a group prevent parallel updates to group stats */
2905 ng
= deref_curr_numa_group(p
);
2907 group_lock
= &ng
->lock
;
2908 spin_lock_irq(group_lock
);
2911 /* Find the node with the highest number of faults */
2912 for_each_online_node(nid
) {
2913 /* Keep track of the offsets in numa_faults array */
2914 int mem_idx
, membuf_idx
, cpu_idx
, cpubuf_idx
;
2915 unsigned long faults
= 0, group_faults
= 0;
2918 for (priv
= 0; priv
< NR_NUMA_HINT_FAULT_TYPES
; priv
++) {
2919 long diff
, f_diff
, f_weight
;
2921 mem_idx
= task_faults_idx(NUMA_MEM
, nid
, priv
);
2922 membuf_idx
= task_faults_idx(NUMA_MEMBUF
, nid
, priv
);
2923 cpu_idx
= task_faults_idx(NUMA_CPU
, nid
, priv
);
2924 cpubuf_idx
= task_faults_idx(NUMA_CPUBUF
, nid
, priv
);
2926 /* Decay existing window, copy faults since last scan */
2927 diff
= p
->numa_faults
[membuf_idx
] - p
->numa_faults
[mem_idx
] / 2;
2928 fault_types
[priv
] += p
->numa_faults
[membuf_idx
];
2929 p
->numa_faults
[membuf_idx
] = 0;
2932 * Normalize the faults_from, so all tasks in a group
2933 * count according to CPU use, instead of by the raw
2934 * number of faults. Tasks with little runtime have
2935 * little over-all impact on throughput, and thus their
2936 * faults are less important.
2938 f_weight
= div64_u64(runtime
<< 16, period
+ 1);
2939 f_weight
= (f_weight
* p
->numa_faults
[cpubuf_idx
]) /
2941 f_diff
= f_weight
- p
->numa_faults
[cpu_idx
] / 2;
2942 p
->numa_faults
[cpubuf_idx
] = 0;
2944 p
->numa_faults
[mem_idx
] += diff
;
2945 p
->numa_faults
[cpu_idx
] += f_diff
;
2946 faults
+= p
->numa_faults
[mem_idx
];
2947 p
->total_numa_faults
+= diff
;
2950 * safe because we can only change our own group
2952 * mem_idx represents the offset for a given
2953 * nid and priv in a specific region because it
2954 * is at the beginning of the numa_faults array.
2956 ng
->faults
[mem_idx
] += diff
;
2957 ng
->faults
[cpu_idx
] += f_diff
;
2958 ng
->total_faults
+= diff
;
2959 group_faults
+= ng
->faults
[mem_idx
];
2964 if (faults
> max_faults
) {
2965 max_faults
= faults
;
2968 } else if (group_faults
> max_faults
) {
2969 max_faults
= group_faults
;
2974 /* Cannot migrate task to CPU-less node */
2975 max_nid
= numa_nearest_node(max_nid
, N_CPU
);
2978 numa_group_count_active_nodes(ng
);
2979 spin_unlock_irq(group_lock
);
2980 max_nid
= preferred_group_nid(p
, max_nid
);
2984 /* Set the new preferred node */
2985 if (max_nid
!= p
->numa_preferred_nid
)
2986 sched_setnuma(p
, max_nid
);
2989 update_task_scan_period(p
, fault_types
[0], fault_types
[1]);
2992 static inline int get_numa_group(struct numa_group
*grp
)
2994 return refcount_inc_not_zero(&grp
->refcount
);
2997 static inline void put_numa_group(struct numa_group
*grp
)
2999 if (refcount_dec_and_test(&grp
->refcount
))
3000 kfree_rcu(grp
, rcu
);
3003 static void task_numa_group(struct task_struct
*p
, int cpupid
, int flags
,
3006 struct numa_group
*grp
, *my_grp
;
3007 struct task_struct
*tsk
;
3009 int cpu
= cpupid_to_cpu(cpupid
);
3012 if (unlikely(!deref_curr_numa_group(p
))) {
3013 unsigned int size
= sizeof(struct numa_group
) +
3014 NR_NUMA_HINT_FAULT_STATS
*
3015 nr_node_ids
* sizeof(unsigned long);
3017 grp
= kzalloc(size
, GFP_KERNEL
| __GFP_NOWARN
);
3021 refcount_set(&grp
->refcount
, 1);
3022 grp
->active_nodes
= 1;
3023 grp
->max_faults_cpu
= 0;
3024 spin_lock_init(&grp
->lock
);
3027 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
3028 grp
->faults
[i
] = p
->numa_faults
[i
];
3030 grp
->total_faults
= p
->total_numa_faults
;
3033 rcu_assign_pointer(p
->numa_group
, grp
);
3037 tsk
= READ_ONCE(cpu_rq(cpu
)->curr
);
3039 if (!cpupid_match_pid(tsk
, cpupid
))
3042 grp
= rcu_dereference(tsk
->numa_group
);
3046 my_grp
= deref_curr_numa_group(p
);
3051 * Only join the other group if its bigger; if we're the bigger group,
3052 * the other task will join us.
3054 if (my_grp
->nr_tasks
> grp
->nr_tasks
)
3058 * Tie-break on the grp address.
3060 if (my_grp
->nr_tasks
== grp
->nr_tasks
&& my_grp
> grp
)
3063 /* Always join threads in the same process. */
3064 if (tsk
->mm
== current
->mm
)
3067 /* Simple filter to avoid false positives due to PID collisions */
3068 if (flags
& TNF_SHARED
)
3071 /* Update priv based on whether false sharing was detected */
3074 if (join
&& !get_numa_group(grp
))
3082 WARN_ON_ONCE(irqs_disabled());
3083 double_lock_irq(&my_grp
->lock
, &grp
->lock
);
3085 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++) {
3086 my_grp
->faults
[i
] -= p
->numa_faults
[i
];
3087 grp
->faults
[i
] += p
->numa_faults
[i
];
3089 my_grp
->total_faults
-= p
->total_numa_faults
;
3090 grp
->total_faults
+= p
->total_numa_faults
;
3095 spin_unlock(&my_grp
->lock
);
3096 spin_unlock_irq(&grp
->lock
);
3098 rcu_assign_pointer(p
->numa_group
, grp
);
3100 put_numa_group(my_grp
);
3109 * Get rid of NUMA statistics associated with a task (either current or dead).
3110 * If @final is set, the task is dead and has reached refcount zero, so we can
3111 * safely free all relevant data structures. Otherwise, there might be
3112 * concurrent reads from places like load balancing and procfs, and we should
3113 * reset the data back to default state without freeing ->numa_faults.
3115 void task_numa_free(struct task_struct
*p
, bool final
)
3117 /* safe: p either is current or is being freed by current */
3118 struct numa_group
*grp
= rcu_dereference_raw(p
->numa_group
);
3119 unsigned long *numa_faults
= p
->numa_faults
;
3120 unsigned long flags
;
3127 spin_lock_irqsave(&grp
->lock
, flags
);
3128 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
3129 grp
->faults
[i
] -= p
->numa_faults
[i
];
3130 grp
->total_faults
-= p
->total_numa_faults
;
3133 spin_unlock_irqrestore(&grp
->lock
, flags
);
3134 RCU_INIT_POINTER(p
->numa_group
, NULL
);
3135 put_numa_group(grp
);
3139 p
->numa_faults
= NULL
;
3142 p
->total_numa_faults
= 0;
3143 for (i
= 0; i
< NR_NUMA_HINT_FAULT_STATS
* nr_node_ids
; i
++)
3149 * Got a PROT_NONE fault for a page on @node.
3151 void task_numa_fault(int last_cpupid
, int mem_node
, int pages
, int flags
)
3153 struct task_struct
*p
= current
;
3154 bool migrated
= flags
& TNF_MIGRATED
;
3155 int cpu_node
= task_node(current
);
3156 int local
= !!(flags
& TNF_FAULT_LOCAL
);
3157 struct numa_group
*ng
;
3160 if (!static_branch_likely(&sched_numa_balancing
))
3163 /* for example, ksmd faulting in a user's mm */
3168 * NUMA faults statistics are unnecessary for the slow memory
3169 * node for memory tiering mode.
3171 if (!node_is_toptier(mem_node
) &&
3172 (sysctl_numa_balancing_mode
& NUMA_BALANCING_MEMORY_TIERING
||
3173 !cpupid_valid(last_cpupid
)))
3176 /* Allocate buffer to track faults on a per-node basis */
3177 if (unlikely(!p
->numa_faults
)) {
3178 int size
= sizeof(*p
->numa_faults
) *
3179 NR_NUMA_HINT_FAULT_BUCKETS
* nr_node_ids
;
3181 p
->numa_faults
= kzalloc(size
, GFP_KERNEL
|__GFP_NOWARN
);
3182 if (!p
->numa_faults
)
3185 p
->total_numa_faults
= 0;
3186 memset(p
->numa_faults_locality
, 0, sizeof(p
->numa_faults_locality
));
3190 * First accesses are treated as private, otherwise consider accesses
3191 * to be private if the accessing pid has not changed
3193 if (unlikely(last_cpupid
== (-1 & LAST_CPUPID_MASK
))) {
3196 priv
= cpupid_match_pid(p
, last_cpupid
);
3197 if (!priv
&& !(flags
& TNF_NO_GROUP
))
3198 task_numa_group(p
, last_cpupid
, flags
, &priv
);
3202 * If a workload spans multiple NUMA nodes, a shared fault that
3203 * occurs wholly within the set of nodes that the workload is
3204 * actively using should be counted as local. This allows the
3205 * scan rate to slow down when a workload has settled down.
3207 ng
= deref_curr_numa_group(p
);
3208 if (!priv
&& !local
&& ng
&& ng
->active_nodes
> 1 &&
3209 numa_is_active_node(cpu_node
, ng
) &&
3210 numa_is_active_node(mem_node
, ng
))
3214 * Retry to migrate task to preferred node periodically, in case it
3215 * previously failed, or the scheduler moved us.
3217 if (time_after(jiffies
, p
->numa_migrate_retry
)) {
3218 task_numa_placement(p
);
3219 numa_migrate_preferred(p
);
3223 p
->numa_pages_migrated
+= pages
;
3224 if (flags
& TNF_MIGRATE_FAIL
)
3225 p
->numa_faults_locality
[2] += pages
;
3227 p
->numa_faults
[task_faults_idx(NUMA_MEMBUF
, mem_node
, priv
)] += pages
;
3228 p
->numa_faults
[task_faults_idx(NUMA_CPUBUF
, cpu_node
, priv
)] += pages
;
3229 p
->numa_faults_locality
[local
] += pages
;
3232 static void reset_ptenuma_scan(struct task_struct
*p
)
3235 * We only did a read acquisition of the mmap sem, so
3236 * p->mm->numa_scan_seq is written to without exclusive access
3237 * and the update is not guaranteed to be atomic. That's not
3238 * much of an issue though, since this is just used for
3239 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3240 * expensive, to avoid any form of compiler optimizations:
3242 WRITE_ONCE(p
->mm
->numa_scan_seq
, READ_ONCE(p
->mm
->numa_scan_seq
) + 1);
3243 p
->mm
->numa_scan_offset
= 0;
3246 static bool vma_is_accessed(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
3250 * Allow unconditional access first two times, so that all the (pages)
3251 * of VMAs get prot_none fault introduced irrespective of accesses.
3252 * This is also done to avoid any side effect of task scanning
3253 * amplifying the unfairness of disjoint set of VMAs' access.
3255 if ((READ_ONCE(current
->mm
->numa_scan_seq
) - vma
->numab_state
->start_scan_seq
) < 2)
3258 pids
= vma
->numab_state
->pids_active
[0] | vma
->numab_state
->pids_active
[1];
3259 if (test_bit(hash_32(current
->pid
, ilog2(BITS_PER_LONG
)), &pids
))
3263 * Complete a scan that has already started regardless of PID access, or
3264 * some VMAs may never be scanned in multi-threaded applications:
3266 if (mm
->numa_scan_offset
> vma
->vm_start
) {
3267 trace_sched_skip_vma_numa(mm
, vma
, NUMAB_SKIP_IGNORE_PID
);
3272 * This vma has not been accessed for a while, and if the number
3273 * the threads in the same process is low, which means no other
3274 * threads can help scan this vma, force a vma scan.
3276 if (READ_ONCE(mm
->numa_scan_seq
) >
3277 (vma
->numab_state
->prev_scan_seq
+ get_nr_threads(current
)))
3283 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3286 * The expensive part of numa migration is done from task_work context.
3287 * Triggered from task_tick_numa().
3289 static void task_numa_work(struct callback_head
*work
)
3291 unsigned long migrate
, next_scan
, now
= jiffies
;
3292 struct task_struct
*p
= current
;
3293 struct mm_struct
*mm
= p
->mm
;
3294 u64 runtime
= p
->se
.sum_exec_runtime
;
3295 struct vm_area_struct
*vma
;
3296 unsigned long start
, end
;
3297 unsigned long nr_pte_updates
= 0;
3298 long pages
, virtpages
;
3299 struct vma_iterator vmi
;
3300 bool vma_pids_skipped
;
3301 bool vma_pids_forced
= false;
3303 SCHED_WARN_ON(p
!= container_of(work
, struct task_struct
, numa_work
));
3307 * Who cares about NUMA placement when they're dying.
3309 * NOTE: make sure not to dereference p->mm before this check,
3310 * exit_task_work() happens _after_ exit_mm() so we could be called
3311 * without p->mm even though we still had it when we enqueued this
3314 if (p
->flags
& PF_EXITING
)
3317 if (!mm
->numa_next_scan
) {
3318 mm
->numa_next_scan
= now
+
3319 msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
3323 * Enforce maximal scan/migration frequency..
3325 migrate
= mm
->numa_next_scan
;
3326 if (time_before(now
, migrate
))
3329 if (p
->numa_scan_period
== 0) {
3330 p
->numa_scan_period_max
= task_scan_max(p
);
3331 p
->numa_scan_period
= task_scan_start(p
);
3334 next_scan
= now
+ msecs_to_jiffies(p
->numa_scan_period
);
3335 if (!try_cmpxchg(&mm
->numa_next_scan
, &migrate
, next_scan
))
3339 * Delay this task enough that another task of this mm will likely win
3340 * the next time around.
3342 p
->node_stamp
+= 2 * TICK_NSEC
;
3344 pages
= sysctl_numa_balancing_scan_size
;
3345 pages
<<= 20 - PAGE_SHIFT
; /* MB in pages */
3346 virtpages
= pages
* 8; /* Scan up to this much virtual space */
3351 if (!mmap_read_trylock(mm
))
3355 * VMAs are skipped if the current PID has not trapped a fault within
3356 * the VMA recently. Allow scanning to be forced if there is no
3357 * suitable VMA remaining.
3359 vma_pids_skipped
= false;
3362 start
= mm
->numa_scan_offset
;
3363 vma_iter_init(&vmi
, mm
, start
);
3364 vma
= vma_next(&vmi
);
3366 reset_ptenuma_scan(p
);
3368 vma_iter_set(&vmi
, start
);
3369 vma
= vma_next(&vmi
);
3372 for (; vma
; vma
= vma_next(&vmi
)) {
3373 if (!vma_migratable(vma
) || !vma_policy_mof(vma
) ||
3374 is_vm_hugetlb_page(vma
) || (vma
->vm_flags
& VM_MIXEDMAP
)) {
3375 trace_sched_skip_vma_numa(mm
, vma
, NUMAB_SKIP_UNSUITABLE
);
3380 * Shared library pages mapped by multiple processes are not
3381 * migrated as it is expected they are cache replicated. Avoid
3382 * hinting faults in read-only file-backed mappings or the vDSO
3383 * as migrating the pages will be of marginal benefit.
3386 (vma
->vm_file
&& (vma
->vm_flags
& (VM_READ
|VM_WRITE
)) == (VM_READ
))) {
3387 trace_sched_skip_vma_numa(mm
, vma
, NUMAB_SKIP_SHARED_RO
);
3392 * Skip inaccessible VMAs to avoid any confusion between
3393 * PROT_NONE and NUMA hinting PTEs
3395 if (!vma_is_accessible(vma
)) {
3396 trace_sched_skip_vma_numa(mm
, vma
, NUMAB_SKIP_INACCESSIBLE
);
3400 /* Initialise new per-VMA NUMAB state. */
3401 if (!vma
->numab_state
) {
3402 struct vma_numab_state
*ptr
;
3404 ptr
= kzalloc(sizeof(*ptr
), GFP_KERNEL
);
3408 if (cmpxchg(&vma
->numab_state
, NULL
, ptr
)) {
3413 vma
->numab_state
->start_scan_seq
= mm
->numa_scan_seq
;
3415 vma
->numab_state
->next_scan
= now
+
3416 msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
3418 /* Reset happens after 4 times scan delay of scan start */
3419 vma
->numab_state
->pids_active_reset
= vma
->numab_state
->next_scan
+
3420 msecs_to_jiffies(VMA_PID_RESET_PERIOD
);
3423 * Ensure prev_scan_seq does not match numa_scan_seq,
3424 * to prevent VMAs being skipped prematurely on the
3427 vma
->numab_state
->prev_scan_seq
= mm
->numa_scan_seq
- 1;
3431 * Scanning the VMAs of short lived tasks add more overhead. So
3432 * delay the scan for new VMAs.
3434 if (mm
->numa_scan_seq
&& time_before(jiffies
,
3435 vma
->numab_state
->next_scan
)) {
3436 trace_sched_skip_vma_numa(mm
, vma
, NUMAB_SKIP_SCAN_DELAY
);
3440 /* RESET access PIDs regularly for old VMAs. */
3441 if (mm
->numa_scan_seq
&&
3442 time_after(jiffies
, vma
->numab_state
->pids_active_reset
)) {
3443 vma
->numab_state
->pids_active_reset
= vma
->numab_state
->pids_active_reset
+
3444 msecs_to_jiffies(VMA_PID_RESET_PERIOD
);
3445 vma
->numab_state
->pids_active
[0] = READ_ONCE(vma
->numab_state
->pids_active
[1]);
3446 vma
->numab_state
->pids_active
[1] = 0;
3449 /* Do not rescan VMAs twice within the same sequence. */
3450 if (vma
->numab_state
->prev_scan_seq
== mm
->numa_scan_seq
) {
3451 mm
->numa_scan_offset
= vma
->vm_end
;
3452 trace_sched_skip_vma_numa(mm
, vma
, NUMAB_SKIP_SEQ_COMPLETED
);
3457 * Do not scan the VMA if task has not accessed it, unless no other
3458 * VMA candidate exists.
3460 if (!vma_pids_forced
&& !vma_is_accessed(mm
, vma
)) {
3461 vma_pids_skipped
= true;
3462 trace_sched_skip_vma_numa(mm
, vma
, NUMAB_SKIP_PID_INACTIVE
);
3467 start
= max(start
, vma
->vm_start
);
3468 end
= ALIGN(start
+ (pages
<< PAGE_SHIFT
), HPAGE_SIZE
);
3469 end
= min(end
, vma
->vm_end
);
3470 nr_pte_updates
= change_prot_numa(vma
, start
, end
);
3473 * Try to scan sysctl_numa_balancing_size worth of
3474 * hpages that have at least one present PTE that
3475 * is not already PTE-numa. If the VMA contains
3476 * areas that are unused or already full of prot_numa
3477 * PTEs, scan up to virtpages, to skip through those
3481 pages
-= (end
- start
) >> PAGE_SHIFT
;
3482 virtpages
-= (end
- start
) >> PAGE_SHIFT
;
3485 if (pages
<= 0 || virtpages
<= 0)
3489 } while (end
!= vma
->vm_end
);
3491 /* VMA scan is complete, do not scan until next sequence. */
3492 vma
->numab_state
->prev_scan_seq
= mm
->numa_scan_seq
;
3495 * Only force scan within one VMA at a time, to limit the
3496 * cost of scanning a potentially uninteresting VMA.
3498 if (vma_pids_forced
)
3503 * If no VMAs are remaining and VMAs were skipped due to the PID
3504 * not accessing the VMA previously, then force a scan to ensure
3507 if (!vma
&& !vma_pids_forced
&& vma_pids_skipped
) {
3508 vma_pids_forced
= true;
3514 * It is possible to reach the end of the VMA list but the last few
3515 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3516 * would find the !migratable VMA on the next scan but not reset the
3517 * scanner to the start so check it now.
3520 mm
->numa_scan_offset
= start
;
3522 reset_ptenuma_scan(p
);
3523 mmap_read_unlock(mm
);
3526 * Make sure tasks use at least 32x as much time to run other code
3527 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3528 * Usually update_task_scan_period slows down scanning enough; on an
3529 * overloaded system we need to limit overhead on a per task basis.
3531 if (unlikely(p
->se
.sum_exec_runtime
!= runtime
)) {
3532 u64 diff
= p
->se
.sum_exec_runtime
- runtime
;
3533 p
->node_stamp
+= 32 * diff
;
3537 void init_numa_balancing(unsigned long clone_flags
, struct task_struct
*p
)
3540 struct mm_struct
*mm
= p
->mm
;
3543 mm_users
= atomic_read(&mm
->mm_users
);
3544 if (mm_users
== 1) {
3545 mm
->numa_next_scan
= jiffies
+ msecs_to_jiffies(sysctl_numa_balancing_scan_delay
);
3546 mm
->numa_scan_seq
= 0;
3550 p
->numa_scan_seq
= mm
? mm
->numa_scan_seq
: 0;
3551 p
->numa_scan_period
= sysctl_numa_balancing_scan_delay
;
3552 p
->numa_migrate_retry
= 0;
3553 /* Protect against double add, see task_tick_numa and task_numa_work */
3554 p
->numa_work
.next
= &p
->numa_work
;
3555 p
->numa_faults
= NULL
;
3556 p
->numa_pages_migrated
= 0;
3557 p
->total_numa_faults
= 0;
3558 RCU_INIT_POINTER(p
->numa_group
, NULL
);
3559 p
->last_task_numa_placement
= 0;
3560 p
->last_sum_exec_runtime
= 0;
3562 init_task_work(&p
->numa_work
, task_numa_work
);
3564 /* New address space, reset the preferred nid */
3565 if (!(clone_flags
& CLONE_VM
)) {
3566 p
->numa_preferred_nid
= NUMA_NO_NODE
;
3571 * New thread, keep existing numa_preferred_nid which should be copied
3572 * already by arch_dup_task_struct but stagger when scans start.
3577 delay
= min_t(unsigned int, task_scan_max(current
),
3578 current
->numa_scan_period
* mm_users
* NSEC_PER_MSEC
);
3579 delay
+= 2 * TICK_NSEC
;
3580 p
->node_stamp
= delay
;
3585 * Drive the periodic memory faults..
3587 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
3589 struct callback_head
*work
= &curr
->numa_work
;
3593 * We don't care about NUMA placement if we don't have memory.
3595 if (!curr
->mm
|| (curr
->flags
& (PF_EXITING
| PF_KTHREAD
)) || work
->next
!= work
)
3599 * Using runtime rather than walltime has the dual advantage that
3600 * we (mostly) drive the selection from busy threads and that the
3601 * task needs to have done some actual work before we bother with
3604 now
= curr
->se
.sum_exec_runtime
;
3605 period
= (u64
)curr
->numa_scan_period
* NSEC_PER_MSEC
;
3607 if (now
> curr
->node_stamp
+ period
) {
3608 if (!curr
->node_stamp
)
3609 curr
->numa_scan_period
= task_scan_start(curr
);
3610 curr
->node_stamp
+= period
;
3612 if (!time_before(jiffies
, curr
->mm
->numa_next_scan
))
3613 task_work_add(curr
, work
, TWA_RESUME
);
3617 static void update_scan_period(struct task_struct
*p
, int new_cpu
)
3619 int src_nid
= cpu_to_node(task_cpu(p
));
3620 int dst_nid
= cpu_to_node(new_cpu
);
3622 if (!static_branch_likely(&sched_numa_balancing
))
3625 if (!p
->mm
|| !p
->numa_faults
|| (p
->flags
& PF_EXITING
))
3628 if (src_nid
== dst_nid
)
3632 * Allow resets if faults have been trapped before one scan
3633 * has completed. This is most likely due to a new task that
3634 * is pulled cross-node due to wakeups or load balancing.
3636 if (p
->numa_scan_seq
) {
3638 * Avoid scan adjustments if moving to the preferred
3639 * node or if the task was not previously running on
3640 * the preferred node.
3642 if (dst_nid
== p
->numa_preferred_nid
||
3643 (p
->numa_preferred_nid
!= NUMA_NO_NODE
&&
3644 src_nid
!= p
->numa_preferred_nid
))
3648 p
->numa_scan_period
= task_scan_start(p
);
3652 static void task_tick_numa(struct rq
*rq
, struct task_struct
*curr
)
3656 static inline void account_numa_enqueue(struct rq
*rq
, struct task_struct
*p
)
3660 static inline void account_numa_dequeue(struct rq
*rq
, struct task_struct
*p
)
3664 static inline void update_scan_period(struct task_struct
*p
, int new_cpu
)
3668 #endif /* CONFIG_NUMA_BALANCING */
3671 account_entity_enqueue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3673 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
3675 if (entity_is_task(se
)) {
3676 struct rq
*rq
= rq_of(cfs_rq
);
3678 account_numa_enqueue(rq
, task_of(se
));
3679 list_add(&se
->group_node
, &rq
->cfs_tasks
);
3682 cfs_rq
->nr_running
++;
3684 cfs_rq
->idle_nr_running
++;
3688 account_entity_dequeue(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3690 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
3692 if (entity_is_task(se
)) {
3693 account_numa_dequeue(rq_of(cfs_rq
), task_of(se
));
3694 list_del_init(&se
->group_node
);
3697 cfs_rq
->nr_running
--;
3699 cfs_rq
->idle_nr_running
--;
3703 * Signed add and clamp on underflow.
3705 * Explicitly do a load-store to ensure the intermediate value never hits
3706 * memory. This allows lockless observations without ever seeing the negative
3709 #define add_positive(_ptr, _val) do { \
3710 typeof(_ptr) ptr = (_ptr); \
3711 typeof(_val) val = (_val); \
3712 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3716 if (val < 0 && res > var) \
3719 WRITE_ONCE(*ptr, res); \
3723 * Unsigned subtract and clamp on underflow.
3725 * Explicitly do a load-store to ensure the intermediate value never hits
3726 * memory. This allows lockless observations without ever seeing the negative
3729 #define sub_positive(_ptr, _val) do { \
3730 typeof(_ptr) ptr = (_ptr); \
3731 typeof(*ptr) val = (_val); \
3732 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3736 WRITE_ONCE(*ptr, res); \
3740 * Remove and clamp on negative, from a local variable.
3742 * A variant of sub_positive(), which does not use explicit load-store
3743 * and is thus optimized for local variable updates.
3745 #define lsub_positive(_ptr, _val) do { \
3746 typeof(_ptr) ptr = (_ptr); \
3747 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3752 enqueue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3754 cfs_rq
->avg
.load_avg
+= se
->avg
.load_avg
;
3755 cfs_rq
->avg
.load_sum
+= se_weight(se
) * se
->avg
.load_sum
;
3759 dequeue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
3761 sub_positive(&cfs_rq
->avg
.load_avg
, se
->avg
.load_avg
);
3762 sub_positive(&cfs_rq
->avg
.load_sum
, se_weight(se
) * se
->avg
.load_sum
);
3763 /* See update_cfs_rq_load_avg() */
3764 cfs_rq
->avg
.load_sum
= max_t(u32
, cfs_rq
->avg
.load_sum
,
3765 cfs_rq
->avg
.load_avg
* PELT_MIN_DIVIDER
);
3769 enqueue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
3771 dequeue_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) { }
3774 static void reweight_eevdf(struct sched_entity
*se
, u64 avruntime
,
3775 unsigned long weight
)
3777 unsigned long old_weight
= se
->load
.weight
;
3784 * COROLLARY #1: The virtual runtime of the entity needs to be
3785 * adjusted if re-weight at !0-lag point.
3787 * Proof: For contradiction assume this is not true, so we can
3788 * re-weight without changing vruntime at !0-lag point.
3790 * Weight VRuntime Avg-VRuntime
3794 * Since lag needs to be preserved through re-weight:
3796 * lag = (V - v)*w = (V'- v')*w', where v = v'
3797 * ==> V' = (V - v)*w/w' + v (1)
3799 * Let W be the total weight of the entities before reweight,
3800 * since V' is the new weighted average of entities:
3802 * V' = (WV + w'v - wv) / (W + w' - w) (2)
3804 * by using (1) & (2) we obtain:
3806 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3807 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3808 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3809 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3811 * Since we are doing at !0-lag point which means V != v, we
3814 * ==> W / (W + w' - w) = w / w'
3815 * ==> Ww' = Ww + ww' - ww
3816 * ==> W * (w' - w) = w * (w' - w)
3817 * ==> W = w (re-weight indicates w' != w)
3819 * So the cfs_rq contains only one entity, hence vruntime of
3820 * the entity @v should always equal to the cfs_rq's weighted
3821 * average vruntime @V, which means we will always re-weight
3822 * at 0-lag point, thus breach assumption. Proof completed.
3825 * COROLLARY #2: Re-weight does NOT affect weighted average
3826 * vruntime of all the entities.
3828 * Proof: According to corollary #1, Eq. (1) should be:
3830 * (V - v)*w = (V' - v')*w'
3831 * ==> v' = V' - (V - v)*w/w' (4)
3833 * According to the weighted average formula, we have:
3835 * V' = (WV - wv + w'v') / (W - w + w')
3836 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3837 * = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3838 * = (WV + w'V' - Vw) / (W - w + w')
3840 * ==> V'*(W - w + w') = WV + w'V' - Vw
3841 * ==> V' * (W - w) = (W - w) * V (5)
3843 * If the entity is the only one in the cfs_rq, then reweight
3844 * always occurs at 0-lag point, so V won't change. Or else
3845 * there are other entities, hence W != w, then Eq. (5) turns
3846 * into V' = V. So V won't change in either case, proof done.
3849 * So according to corollary #1 & #2, the effect of re-weight
3850 * on vruntime should be:
3852 * v' = V' - (V - v) * w / w' (4)
3853 * = V - (V - v) * w / w'
3857 if (avruntime
!= se
->vruntime
) {
3858 vlag
= entity_lag(avruntime
, se
);
3859 vlag
= div_s64(vlag
* old_weight
, weight
);
3860 se
->vruntime
= avruntime
- vlag
;
3867 * When the weight changes, the virtual time slope changes and
3868 * we should adjust the relative virtual deadline accordingly.
3870 * d' = v' + (d - v)*w/w'
3871 * = V' - (V - v)*w/w' + (d - v)*w/w'
3872 * = V - (V - v)*w/w' + (d - v)*w/w'
3873 * = V + (d - V)*w/w'
3875 vslice
= (s64
)(se
->deadline
- avruntime
);
3876 vslice
= div_s64(vslice
* old_weight
, weight
);
3877 se
->deadline
= avruntime
+ vslice
;
3880 static void reweight_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
,
3881 unsigned long weight
)
3883 bool curr
= cfs_rq
->curr
== se
;
3887 /* commit outstanding execution time */
3888 update_curr(cfs_rq
);
3889 avruntime
= avg_vruntime(cfs_rq
);
3891 __dequeue_entity(cfs_rq
, se
);
3892 update_load_sub(&cfs_rq
->load
, se
->load
.weight
);
3894 dequeue_load_avg(cfs_rq
, se
);
3897 reweight_eevdf(se
, avruntime
, weight
);
3900 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3901 * we need to scale se->vlag when w_i changes.
3903 se
->vlag
= div_s64(se
->vlag
* se
->load
.weight
, weight
);
3906 update_load_set(&se
->load
, weight
);
3910 u32 divider
= get_pelt_divider(&se
->avg
);
3912 se
->avg
.load_avg
= div_u64(se_weight(se
) * se
->avg
.load_sum
, divider
);
3916 enqueue_load_avg(cfs_rq
, se
);
3918 update_load_add(&cfs_rq
->load
, se
->load
.weight
);
3920 __enqueue_entity(cfs_rq
, se
);
3923 * The entity's vruntime has been adjusted, so let's check
3924 * whether the rq-wide min_vruntime needs updated too. Since
3925 * the calculations above require stable min_vruntime rather
3926 * than up-to-date one, we do the update at the end of the
3929 update_min_vruntime(cfs_rq
);
3933 static void reweight_task_fair(struct rq
*rq
, struct task_struct
*p
,
3934 const struct load_weight
*lw
)
3936 struct sched_entity
*se
= &p
->se
;
3937 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
3938 struct load_weight
*load
= &se
->load
;
3940 reweight_entity(cfs_rq
, se
, lw
->weight
);
3941 load
->inv_weight
= lw
->inv_weight
;
3944 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
);
3946 #ifdef CONFIG_FAIR_GROUP_SCHED
3949 * All this does is approximate the hierarchical proportion which includes that
3950 * global sum we all love to hate.
3952 * That is, the weight of a group entity, is the proportional share of the
3953 * group weight based on the group runqueue weights. That is:
3955 * tg->weight * grq->load.weight
3956 * ge->load.weight = ----------------------------- (1)
3957 * \Sum grq->load.weight
3959 * Now, because computing that sum is prohibitively expensive to compute (been
3960 * there, done that) we approximate it with this average stuff. The average
3961 * moves slower and therefore the approximation is cheaper and more stable.
3963 * So instead of the above, we substitute:
3965 * grq->load.weight -> grq->avg.load_avg (2)
3967 * which yields the following:
3969 * tg->weight * grq->avg.load_avg
3970 * ge->load.weight = ------------------------------ (3)
3973 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3975 * That is shares_avg, and it is right (given the approximation (2)).
3977 * The problem with it is that because the average is slow -- it was designed
3978 * to be exactly that of course -- this leads to transients in boundary
3979 * conditions. In specific, the case where the group was idle and we start the
3980 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3981 * yielding bad latency etc..
3983 * Now, in that special case (1) reduces to:
3985 * tg->weight * grq->load.weight
3986 * ge->load.weight = ----------------------------- = tg->weight (4)
3989 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3991 * So what we do is modify our approximation (3) to approach (4) in the (near)
3996 * tg->weight * grq->load.weight
3997 * --------------------------------------------------- (5)
3998 * tg->load_avg - grq->avg.load_avg + grq->load.weight
4000 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
4001 * we need to use grq->avg.load_avg as its lower bound, which then gives:
4004 * tg->weight * grq->load.weight
4005 * ge->load.weight = ----------------------------- (6)
4010 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
4011 * max(grq->load.weight, grq->avg.load_avg)
4013 * And that is shares_weight and is icky. In the (near) UP case it approaches
4014 * (4) while in the normal case it approaches (3). It consistently
4015 * overestimates the ge->load.weight and therefore:
4017 * \Sum ge->load.weight >= tg->weight
4021 static long calc_group_shares(struct cfs_rq
*cfs_rq
)
4023 long tg_weight
, tg_shares
, load
, shares
;
4024 struct task_group
*tg
= cfs_rq
->tg
;
4026 tg_shares
= READ_ONCE(tg
->shares
);
4028 load
= max(scale_load_down(cfs_rq
->load
.weight
), cfs_rq
->avg
.load_avg
);
4030 tg_weight
= atomic_long_read(&tg
->load_avg
);
4032 /* Ensure tg_weight >= load */
4033 tg_weight
-= cfs_rq
->tg_load_avg_contrib
;
4036 shares
= (tg_shares
* load
);
4038 shares
/= tg_weight
;
4041 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
4042 * of a group with small tg->shares value. It is a floor value which is
4043 * assigned as a minimum load.weight to the sched_entity representing
4044 * the group on a CPU.
4046 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
4047 * on an 8-core system with 8 tasks each runnable on one CPU shares has
4048 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
4049 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
4052 return clamp_t(long, shares
, MIN_SHARES
, tg_shares
);
4054 #endif /* CONFIG_SMP */
4057 * Recomputes the group entity based on the current state of its group
4060 static void update_cfs_group(struct sched_entity
*se
)
4062 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
4068 if (throttled_hierarchy(gcfs_rq
))
4072 shares
= READ_ONCE(gcfs_rq
->tg
->shares
);
4074 shares
= calc_group_shares(gcfs_rq
);
4076 if (unlikely(se
->load
.weight
!= shares
))
4077 reweight_entity(cfs_rq_of(se
), se
, shares
);
4080 #else /* CONFIG_FAIR_GROUP_SCHED */
4081 static inline void update_cfs_group(struct sched_entity
*se
)
4084 #endif /* CONFIG_FAIR_GROUP_SCHED */
4086 static inline void cfs_rq_util_change(struct cfs_rq
*cfs_rq
, int flags
)
4088 struct rq
*rq
= rq_of(cfs_rq
);
4090 if (&rq
->cfs
== cfs_rq
) {
4092 * There are a few boundary cases this might miss but it should
4093 * get called often enough that that should (hopefully) not be
4096 * It will not get called when we go idle, because the idle
4097 * thread is a different class (!fair), nor will the utilization
4098 * number include things like RT tasks.
4100 * As is, the util number is not freq-invariant (we'd have to
4101 * implement arch_scale_freq_capacity() for that).
4103 * See cpu_util_cfs().
4105 cpufreq_update_util(rq
, flags
);
4110 static inline bool load_avg_is_decayed(struct sched_avg
*sa
)
4118 if (sa
->runnable_sum
)
4122 * _avg must be null when _sum are null because _avg = _sum / divider
4123 * Make sure that rounding and/or propagation of PELT values never
4126 SCHED_WARN_ON(sa
->load_avg
||
4133 static inline u64
cfs_rq_last_update_time(struct cfs_rq
*cfs_rq
)
4135 return u64_u32_load_copy(cfs_rq
->avg
.last_update_time
,
4136 cfs_rq
->last_update_time_copy
);
4138 #ifdef CONFIG_FAIR_GROUP_SCHED
4140 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4141 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4142 * bottom-up, we only have to test whether the cfs_rq before us on the list
4144 * If cfs_rq is not on the list, test whether a child needs its to be added to
4145 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4147 static inline bool child_cfs_rq_on_list(struct cfs_rq
*cfs_rq
)
4149 struct cfs_rq
*prev_cfs_rq
;
4150 struct list_head
*prev
;
4152 if (cfs_rq
->on_list
) {
4153 prev
= cfs_rq
->leaf_cfs_rq_list
.prev
;
4155 struct rq
*rq
= rq_of(cfs_rq
);
4157 prev
= rq
->tmp_alone_branch
;
4160 prev_cfs_rq
= container_of(prev
, struct cfs_rq
, leaf_cfs_rq_list
);
4162 return (prev_cfs_rq
->tg
->parent
== cfs_rq
->tg
);
4165 static inline bool cfs_rq_is_decayed(struct cfs_rq
*cfs_rq
)
4167 if (cfs_rq
->load
.weight
)
4170 if (!load_avg_is_decayed(&cfs_rq
->avg
))
4173 if (child_cfs_rq_on_list(cfs_rq
))
4180 * update_tg_load_avg - update the tg's load avg
4181 * @cfs_rq: the cfs_rq whose avg changed
4183 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4184 * However, because tg->load_avg is a global value there are performance
4187 * In order to avoid having to look at the other cfs_rq's, we use a
4188 * differential update where we store the last value we propagated. This in
4189 * turn allows skipping updates if the differential is 'small'.
4191 * Updating tg's load_avg is necessary before update_cfs_share().
4193 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
)
4199 * No need to update load_avg for root_task_group as it is not used.
4201 if (cfs_rq
->tg
== &root_task_group
)
4204 /* rq has been offline and doesn't contribute to the share anymore: */
4205 if (!cpu_active(cpu_of(rq_of(cfs_rq
))))
4209 * For migration heavy workloads, access to tg->load_avg can be
4210 * unbound. Limit the update rate to at most once per ms.
4212 now
= sched_clock_cpu(cpu_of(rq_of(cfs_rq
)));
4213 if (now
- cfs_rq
->last_update_tg_load_avg
< NSEC_PER_MSEC
)
4216 delta
= cfs_rq
->avg
.load_avg
- cfs_rq
->tg_load_avg_contrib
;
4217 if (abs(delta
) > cfs_rq
->tg_load_avg_contrib
/ 64) {
4218 atomic_long_add(delta
, &cfs_rq
->tg
->load_avg
);
4219 cfs_rq
->tg_load_avg_contrib
= cfs_rq
->avg
.load_avg
;
4220 cfs_rq
->last_update_tg_load_avg
= now
;
4224 static inline void clear_tg_load_avg(struct cfs_rq
*cfs_rq
)
4230 * No need to update load_avg for root_task_group, as it is not used.
4232 if (cfs_rq
->tg
== &root_task_group
)
4235 now
= sched_clock_cpu(cpu_of(rq_of(cfs_rq
)));
4236 delta
= 0 - cfs_rq
->tg_load_avg_contrib
;
4237 atomic_long_add(delta
, &cfs_rq
->tg
->load_avg
);
4238 cfs_rq
->tg_load_avg_contrib
= 0;
4239 cfs_rq
->last_update_tg_load_avg
= now
;
4242 /* CPU offline callback: */
4243 static void __maybe_unused
clear_tg_offline_cfs_rqs(struct rq
*rq
)
4245 struct task_group
*tg
;
4247 lockdep_assert_rq_held(rq
);
4250 * The rq clock has already been updated in
4251 * set_rq_offline(), so we should skip updating
4252 * the rq clock again in unthrottle_cfs_rq().
4254 rq_clock_start_loop_update(rq
);
4257 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
4258 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
4260 clear_tg_load_avg(cfs_rq
);
4264 rq_clock_stop_loop_update(rq
);
4268 * Called within set_task_rq() right before setting a task's CPU. The
4269 * caller only guarantees p->pi_lock is held; no other assumptions,
4270 * including the state of rq->lock, should be made.
4272 void set_task_rq_fair(struct sched_entity
*se
,
4273 struct cfs_rq
*prev
, struct cfs_rq
*next
)
4275 u64 p_last_update_time
;
4276 u64 n_last_update_time
;
4278 if (!sched_feat(ATTACH_AGE_LOAD
))
4282 * We are supposed to update the task to "current" time, then its up to
4283 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4284 * getting what current time is, so simply throw away the out-of-date
4285 * time. This will result in the wakee task is less decayed, but giving
4286 * the wakee more load sounds not bad.
4288 if (!(se
->avg
.last_update_time
&& prev
))
4291 p_last_update_time
= cfs_rq_last_update_time(prev
);
4292 n_last_update_time
= cfs_rq_last_update_time(next
);
4294 __update_load_avg_blocked_se(p_last_update_time
, se
);
4295 se
->avg
.last_update_time
= n_last_update_time
;
4299 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4300 * propagate its contribution. The key to this propagation is the invariant
4301 * that for each group:
4303 * ge->avg == grq->avg (1)
4305 * _IFF_ we look at the pure running and runnable sums. Because they
4306 * represent the very same entity, just at different points in the hierarchy.
4308 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4309 * and simply copies the running/runnable sum over (but still wrong, because
4310 * the group entity and group rq do not have their PELT windows aligned).
4312 * However, update_tg_cfs_load() is more complex. So we have:
4314 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4316 * And since, like util, the runnable part should be directly transferable,
4317 * the following would _appear_ to be the straight forward approach:
4319 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4321 * And per (1) we have:
4323 * ge->avg.runnable_avg == grq->avg.runnable_avg
4327 * ge->load.weight * grq->avg.load_avg
4328 * ge->avg.load_avg = ----------------------------------- (4)
4331 * Except that is wrong!
4333 * Because while for entities historical weight is not important and we
4334 * really only care about our future and therefore can consider a pure
4335 * runnable sum, runqueues can NOT do this.
4337 * We specifically want runqueues to have a load_avg that includes
4338 * historical weights. Those represent the blocked load, the load we expect
4339 * to (shortly) return to us. This only works by keeping the weights as
4340 * integral part of the sum. We therefore cannot decompose as per (3).
4342 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4343 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4344 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4345 * runnable section of these tasks overlap (or not). If they were to perfectly
4346 * align the rq as a whole would be runnable 2/3 of the time. If however we
4347 * always have at least 1 runnable task, the rq as a whole is always runnable.
4349 * So we'll have to approximate.. :/
4351 * Given the constraint:
4353 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4355 * We can construct a rule that adds runnable to a rq by assuming minimal
4358 * On removal, we'll assume each task is equally runnable; which yields:
4360 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4362 * XXX: only do this for the part of runnable > running ?
4366 update_tg_cfs_util(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
4368 long delta_sum
, delta_avg
= gcfs_rq
->avg
.util_avg
- se
->avg
.util_avg
;
4369 u32 new_sum
, divider
;
4371 /* Nothing to update */
4376 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4377 * See ___update_load_avg() for details.
4379 divider
= get_pelt_divider(&cfs_rq
->avg
);
4382 /* Set new sched_entity's utilization */
4383 se
->avg
.util_avg
= gcfs_rq
->avg
.util_avg
;
4384 new_sum
= se
->avg
.util_avg
* divider
;
4385 delta_sum
= (long)new_sum
- (long)se
->avg
.util_sum
;
4386 se
->avg
.util_sum
= new_sum
;
4388 /* Update parent cfs_rq utilization */
4389 add_positive(&cfs_rq
->avg
.util_avg
, delta_avg
);
4390 add_positive(&cfs_rq
->avg
.util_sum
, delta_sum
);
4392 /* See update_cfs_rq_load_avg() */
4393 cfs_rq
->avg
.util_sum
= max_t(u32
, cfs_rq
->avg
.util_sum
,
4394 cfs_rq
->avg
.util_avg
* PELT_MIN_DIVIDER
);
4398 update_tg_cfs_runnable(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
4400 long delta_sum
, delta_avg
= gcfs_rq
->avg
.runnable_avg
- se
->avg
.runnable_avg
;
4401 u32 new_sum
, divider
;
4403 /* Nothing to update */
4408 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4409 * See ___update_load_avg() for details.
4411 divider
= get_pelt_divider(&cfs_rq
->avg
);
4413 /* Set new sched_entity's runnable */
4414 se
->avg
.runnable_avg
= gcfs_rq
->avg
.runnable_avg
;
4415 new_sum
= se
->avg
.runnable_avg
* divider
;
4416 delta_sum
= (long)new_sum
- (long)se
->avg
.runnable_sum
;
4417 se
->avg
.runnable_sum
= new_sum
;
4419 /* Update parent cfs_rq runnable */
4420 add_positive(&cfs_rq
->avg
.runnable_avg
, delta_avg
);
4421 add_positive(&cfs_rq
->avg
.runnable_sum
, delta_sum
);
4422 /* See update_cfs_rq_load_avg() */
4423 cfs_rq
->avg
.runnable_sum
= max_t(u32
, cfs_rq
->avg
.runnable_sum
,
4424 cfs_rq
->avg
.runnable_avg
* PELT_MIN_DIVIDER
);
4428 update_tg_cfs_load(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, struct cfs_rq
*gcfs_rq
)
4430 long delta_avg
, running_sum
, runnable_sum
= gcfs_rq
->prop_runnable_sum
;
4431 unsigned long load_avg
;
4439 gcfs_rq
->prop_runnable_sum
= 0;
4442 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4443 * See ___update_load_avg() for details.
4445 divider
= get_pelt_divider(&cfs_rq
->avg
);
4447 if (runnable_sum
>= 0) {
4449 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4450 * the CPU is saturated running == runnable.
4452 runnable_sum
+= se
->avg
.load_sum
;
4453 runnable_sum
= min_t(long, runnable_sum
, divider
);
4456 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4457 * assuming all tasks are equally runnable.
4459 if (scale_load_down(gcfs_rq
->load
.weight
)) {
4460 load_sum
= div_u64(gcfs_rq
->avg
.load_sum
,
4461 scale_load_down(gcfs_rq
->load
.weight
));
4464 /* But make sure to not inflate se's runnable */
4465 runnable_sum
= min(se
->avg
.load_sum
, load_sum
);
4469 * runnable_sum can't be lower than running_sum
4470 * Rescale running sum to be in the same range as runnable sum
4471 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4472 * runnable_sum is in [0 : LOAD_AVG_MAX]
4474 running_sum
= se
->avg
.util_sum
>> SCHED_CAPACITY_SHIFT
;
4475 runnable_sum
= max(runnable_sum
, running_sum
);
4477 load_sum
= se_weight(se
) * runnable_sum
;
4478 load_avg
= div_u64(load_sum
, divider
);
4480 delta_avg
= load_avg
- se
->avg
.load_avg
;
4484 delta_sum
= load_sum
- (s64
)se_weight(se
) * se
->avg
.load_sum
;
4486 se
->avg
.load_sum
= runnable_sum
;
4487 se
->avg
.load_avg
= load_avg
;
4488 add_positive(&cfs_rq
->avg
.load_avg
, delta_avg
);
4489 add_positive(&cfs_rq
->avg
.load_sum
, delta_sum
);
4490 /* See update_cfs_rq_load_avg() */
4491 cfs_rq
->avg
.load_sum
= max_t(u32
, cfs_rq
->avg
.load_sum
,
4492 cfs_rq
->avg
.load_avg
* PELT_MIN_DIVIDER
);
4495 static inline void add_tg_cfs_propagate(struct cfs_rq
*cfs_rq
, long runnable_sum
)
4497 cfs_rq
->propagate
= 1;
4498 cfs_rq
->prop_runnable_sum
+= runnable_sum
;
4501 /* Update task and its cfs_rq load average */
4502 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
4504 struct cfs_rq
*cfs_rq
, *gcfs_rq
;
4506 if (entity_is_task(se
))
4509 gcfs_rq
= group_cfs_rq(se
);
4510 if (!gcfs_rq
->propagate
)
4513 gcfs_rq
->propagate
= 0;
4515 cfs_rq
= cfs_rq_of(se
);
4517 add_tg_cfs_propagate(cfs_rq
, gcfs_rq
->prop_runnable_sum
);
4519 update_tg_cfs_util(cfs_rq
, se
, gcfs_rq
);
4520 update_tg_cfs_runnable(cfs_rq
, se
, gcfs_rq
);
4521 update_tg_cfs_load(cfs_rq
, se
, gcfs_rq
);
4523 trace_pelt_cfs_tp(cfs_rq
);
4524 trace_pelt_se_tp(se
);
4530 * Check if we need to update the load and the utilization of a blocked
4533 static inline bool skip_blocked_update(struct sched_entity
*se
)
4535 struct cfs_rq
*gcfs_rq
= group_cfs_rq(se
);
4538 * If sched_entity still have not zero load or utilization, we have to
4541 if (se
->avg
.load_avg
|| se
->avg
.util_avg
)
4545 * If there is a pending propagation, we have to update the load and
4546 * the utilization of the sched_entity:
4548 if (gcfs_rq
->propagate
)
4552 * Otherwise, the load and the utilization of the sched_entity is
4553 * already zero and there is no pending propagation, so it will be a
4554 * waste of time to try to decay it:
4559 #else /* CONFIG_FAIR_GROUP_SCHED */
4561 static inline void update_tg_load_avg(struct cfs_rq
*cfs_rq
) {}
4563 static inline void clear_tg_offline_cfs_rqs(struct rq
*rq
) {}
4565 static inline int propagate_entity_load_avg(struct sched_entity
*se
)
4570 static inline void add_tg_cfs_propagate(struct cfs_rq
*cfs_rq
, long runnable_sum
) {}
4572 #endif /* CONFIG_FAIR_GROUP_SCHED */
4574 #ifdef CONFIG_NO_HZ_COMMON
4575 static inline void migrate_se_pelt_lag(struct sched_entity
*se
)
4577 u64 throttled
= 0, now
, lut
;
4578 struct cfs_rq
*cfs_rq
;
4582 if (load_avg_is_decayed(&se
->avg
))
4585 cfs_rq
= cfs_rq_of(se
);
4589 is_idle
= is_idle_task(rcu_dereference(rq
->curr
));
4593 * The lag estimation comes with a cost we don't want to pay all the
4594 * time. Hence, limiting to the case where the source CPU is idle and
4595 * we know we are at the greatest risk to have an outdated clock.
4601 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4603 * last_update_time (the cfs_rq's last_update_time)
4604 * = cfs_rq_clock_pelt()@cfs_rq_idle
4605 * = rq_clock_pelt()@cfs_rq_idle
4606 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4608 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4609 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4611 * rq_idle_lag (delta between now and rq's update)
4612 * = sched_clock_cpu() - rq_clock()@rq_idle
4614 * We can then write:
4616 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4617 * sched_clock_cpu() - rq_clock()@rq_idle
4619 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4620 * rq_clock()@rq_idle is rq->clock_idle
4621 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4622 * is cfs_rq->throttled_pelt_idle
4625 #ifdef CONFIG_CFS_BANDWIDTH
4626 throttled
= u64_u32_load(cfs_rq
->throttled_pelt_idle
);
4627 /* The clock has been stopped for throttling */
4628 if (throttled
== U64_MAX
)
4631 now
= u64_u32_load(rq
->clock_pelt_idle
);
4633 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4634 * is observed the old clock_pelt_idle value and the new clock_idle,
4635 * which lead to an underestimation. The opposite would lead to an
4639 lut
= cfs_rq_last_update_time(cfs_rq
);
4644 * cfs_rq->avg.last_update_time is more recent than our
4645 * estimation, let's use it.
4649 now
+= sched_clock_cpu(cpu_of(rq
)) - u64_u32_load(rq
->clock_idle
);
4651 __update_load_avg_blocked_se(now
, se
);
4654 static void migrate_se_pelt_lag(struct sched_entity
*se
) {}
4658 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4659 * @now: current time, as per cfs_rq_clock_pelt()
4660 * @cfs_rq: cfs_rq to update
4662 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4663 * avg. The immediate corollary is that all (fair) tasks must be attached.
4665 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4667 * Return: true if the load decayed or we removed load.
4669 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4670 * call update_tg_load_avg() when this function returns true.
4673 update_cfs_rq_load_avg(u64 now
, struct cfs_rq
*cfs_rq
)
4675 unsigned long removed_load
= 0, removed_util
= 0, removed_runnable
= 0;
4676 struct sched_avg
*sa
= &cfs_rq
->avg
;
4679 if (cfs_rq
->removed
.nr
) {
4681 u32 divider
= get_pelt_divider(&cfs_rq
->avg
);
4683 raw_spin_lock(&cfs_rq
->removed
.lock
);
4684 swap(cfs_rq
->removed
.util_avg
, removed_util
);
4685 swap(cfs_rq
->removed
.load_avg
, removed_load
);
4686 swap(cfs_rq
->removed
.runnable_avg
, removed_runnable
);
4687 cfs_rq
->removed
.nr
= 0;
4688 raw_spin_unlock(&cfs_rq
->removed
.lock
);
4691 sub_positive(&sa
->load_avg
, r
);
4692 sub_positive(&sa
->load_sum
, r
* divider
);
4693 /* See sa->util_sum below */
4694 sa
->load_sum
= max_t(u32
, sa
->load_sum
, sa
->load_avg
* PELT_MIN_DIVIDER
);
4697 sub_positive(&sa
->util_avg
, r
);
4698 sub_positive(&sa
->util_sum
, r
* divider
);
4700 * Because of rounding, se->util_sum might ends up being +1 more than
4701 * cfs->util_sum. Although this is not a problem by itself, detaching
4702 * a lot of tasks with the rounding problem between 2 updates of
4703 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4704 * cfs_util_avg is not.
4705 * Check that util_sum is still above its lower bound for the new
4706 * util_avg. Given that period_contrib might have moved since the last
4707 * sync, we are only sure that util_sum must be above or equal to
4708 * util_avg * minimum possible divider
4710 sa
->util_sum
= max_t(u32
, sa
->util_sum
, sa
->util_avg
* PELT_MIN_DIVIDER
);
4712 r
= removed_runnable
;
4713 sub_positive(&sa
->runnable_avg
, r
);
4714 sub_positive(&sa
->runnable_sum
, r
* divider
);
4715 /* See sa->util_sum above */
4716 sa
->runnable_sum
= max_t(u32
, sa
->runnable_sum
,
4717 sa
->runnable_avg
* PELT_MIN_DIVIDER
);
4720 * removed_runnable is the unweighted version of removed_load so we
4721 * can use it to estimate removed_load_sum.
4723 add_tg_cfs_propagate(cfs_rq
,
4724 -(long)(removed_runnable
* divider
) >> SCHED_CAPACITY_SHIFT
);
4729 decayed
|= __update_load_avg_cfs_rq(now
, cfs_rq
);
4730 u64_u32_store_copy(sa
->last_update_time
,
4731 cfs_rq
->last_update_time_copy
,
4732 sa
->last_update_time
);
4737 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4738 * @cfs_rq: cfs_rq to attach to
4739 * @se: sched_entity to attach
4741 * Must call update_cfs_rq_load_avg() before this, since we rely on
4742 * cfs_rq->avg.last_update_time being current.
4744 static void attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4747 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4748 * See ___update_load_avg() for details.
4750 u32 divider
= get_pelt_divider(&cfs_rq
->avg
);
4753 * When we attach the @se to the @cfs_rq, we must align the decay
4754 * window because without that, really weird and wonderful things can
4759 se
->avg
.last_update_time
= cfs_rq
->avg
.last_update_time
;
4760 se
->avg
.period_contrib
= cfs_rq
->avg
.period_contrib
;
4763 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4764 * period_contrib. This isn't strictly correct, but since we're
4765 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4768 se
->avg
.util_sum
= se
->avg
.util_avg
* divider
;
4770 se
->avg
.runnable_sum
= se
->avg
.runnable_avg
* divider
;
4772 se
->avg
.load_sum
= se
->avg
.load_avg
* divider
;
4773 if (se_weight(se
) < se
->avg
.load_sum
)
4774 se
->avg
.load_sum
= div_u64(se
->avg
.load_sum
, se_weight(se
));
4776 se
->avg
.load_sum
= 1;
4778 enqueue_load_avg(cfs_rq
, se
);
4779 cfs_rq
->avg
.util_avg
+= se
->avg
.util_avg
;
4780 cfs_rq
->avg
.util_sum
+= se
->avg
.util_sum
;
4781 cfs_rq
->avg
.runnable_avg
+= se
->avg
.runnable_avg
;
4782 cfs_rq
->avg
.runnable_sum
+= se
->avg
.runnable_sum
;
4784 add_tg_cfs_propagate(cfs_rq
, se
->avg
.load_sum
);
4786 cfs_rq_util_change(cfs_rq
, 0);
4788 trace_pelt_cfs_tp(cfs_rq
);
4792 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4793 * @cfs_rq: cfs_rq to detach from
4794 * @se: sched_entity to detach
4796 * Must call update_cfs_rq_load_avg() before this, since we rely on
4797 * cfs_rq->avg.last_update_time being current.
4799 static void detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
4801 dequeue_load_avg(cfs_rq
, se
);
4802 sub_positive(&cfs_rq
->avg
.util_avg
, se
->avg
.util_avg
);
4803 sub_positive(&cfs_rq
->avg
.util_sum
, se
->avg
.util_sum
);
4804 /* See update_cfs_rq_load_avg() */
4805 cfs_rq
->avg
.util_sum
= max_t(u32
, cfs_rq
->avg
.util_sum
,
4806 cfs_rq
->avg
.util_avg
* PELT_MIN_DIVIDER
);
4808 sub_positive(&cfs_rq
->avg
.runnable_avg
, se
->avg
.runnable_avg
);
4809 sub_positive(&cfs_rq
->avg
.runnable_sum
, se
->avg
.runnable_sum
);
4810 /* See update_cfs_rq_load_avg() */
4811 cfs_rq
->avg
.runnable_sum
= max_t(u32
, cfs_rq
->avg
.runnable_sum
,
4812 cfs_rq
->avg
.runnable_avg
* PELT_MIN_DIVIDER
);
4814 add_tg_cfs_propagate(cfs_rq
, -se
->avg
.load_sum
);
4816 cfs_rq_util_change(cfs_rq
, 0);
4818 trace_pelt_cfs_tp(cfs_rq
);
4822 * Optional action to be done while updating the load average
4824 #define UPDATE_TG 0x1
4825 #define SKIP_AGE_LOAD 0x2
4826 #define DO_ATTACH 0x4
4827 #define DO_DETACH 0x8
4829 /* Update task and its cfs_rq load average */
4830 static inline void update_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
4832 u64 now
= cfs_rq_clock_pelt(cfs_rq
);
4836 * Track task load average for carrying it to new CPU after migrated, and
4837 * track group sched_entity load average for task_h_load calculation in migration
4839 if (se
->avg
.last_update_time
&& !(flags
& SKIP_AGE_LOAD
))
4840 __update_load_avg_se(now
, cfs_rq
, se
);
4842 decayed
= update_cfs_rq_load_avg(now
, cfs_rq
);
4843 decayed
|= propagate_entity_load_avg(se
);
4845 if (!se
->avg
.last_update_time
&& (flags
& DO_ATTACH
)) {
4848 * DO_ATTACH means we're here from enqueue_entity().
4849 * !last_update_time means we've passed through
4850 * migrate_task_rq_fair() indicating we migrated.
4852 * IOW we're enqueueing a task on a new CPU.
4854 attach_entity_load_avg(cfs_rq
, se
);
4855 update_tg_load_avg(cfs_rq
);
4857 } else if (flags
& DO_DETACH
) {
4859 * DO_DETACH means we're here from dequeue_entity()
4860 * and we are migrating task out of the CPU.
4862 detach_entity_load_avg(cfs_rq
, se
);
4863 update_tg_load_avg(cfs_rq
);
4864 } else if (decayed
) {
4865 cfs_rq_util_change(cfs_rq
, 0);
4867 if (flags
& UPDATE_TG
)
4868 update_tg_load_avg(cfs_rq
);
4873 * Synchronize entity load avg of dequeued entity without locking
4876 static void sync_entity_load_avg(struct sched_entity
*se
)
4878 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4879 u64 last_update_time
;
4881 last_update_time
= cfs_rq_last_update_time(cfs_rq
);
4882 __update_load_avg_blocked_se(last_update_time
, se
);
4886 * Task first catches up with cfs_rq, and then subtract
4887 * itself from the cfs_rq (task must be off the queue now).
4889 static void remove_entity_load_avg(struct sched_entity
*se
)
4891 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
4892 unsigned long flags
;
4895 * tasks cannot exit without having gone through wake_up_new_task() ->
4896 * enqueue_task_fair() which will have added things to the cfs_rq,
4897 * so we can remove unconditionally.
4900 sync_entity_load_avg(se
);
4902 raw_spin_lock_irqsave(&cfs_rq
->removed
.lock
, flags
);
4903 ++cfs_rq
->removed
.nr
;
4904 cfs_rq
->removed
.util_avg
+= se
->avg
.util_avg
;
4905 cfs_rq
->removed
.load_avg
+= se
->avg
.load_avg
;
4906 cfs_rq
->removed
.runnable_avg
+= se
->avg
.runnable_avg
;
4907 raw_spin_unlock_irqrestore(&cfs_rq
->removed
.lock
, flags
);
4910 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq
*cfs_rq
)
4912 return cfs_rq
->avg
.runnable_avg
;
4915 static inline unsigned long cfs_rq_load_avg(struct cfs_rq
*cfs_rq
)
4917 return cfs_rq
->avg
.load_avg
;
4920 static int sched_balance_newidle(struct rq
*this_rq
, struct rq_flags
*rf
);
4922 static inline unsigned long task_util(struct task_struct
*p
)
4924 return READ_ONCE(p
->se
.avg
.util_avg
);
4927 static inline unsigned long task_runnable(struct task_struct
*p
)
4929 return READ_ONCE(p
->se
.avg
.runnable_avg
);
4932 static inline unsigned long _task_util_est(struct task_struct
*p
)
4934 return READ_ONCE(p
->se
.avg
.util_est
) & ~UTIL_AVG_UNCHANGED
;
4937 static inline unsigned long task_util_est(struct task_struct
*p
)
4939 return max(task_util(p
), _task_util_est(p
));
4942 static inline void util_est_enqueue(struct cfs_rq
*cfs_rq
,
4943 struct task_struct
*p
)
4945 unsigned int enqueued
;
4947 if (!sched_feat(UTIL_EST
))
4950 /* Update root cfs_rq's estimated utilization */
4951 enqueued
= cfs_rq
->avg
.util_est
;
4952 enqueued
+= _task_util_est(p
);
4953 WRITE_ONCE(cfs_rq
->avg
.util_est
, enqueued
);
4955 trace_sched_util_est_cfs_tp(cfs_rq
);
4958 static inline void util_est_dequeue(struct cfs_rq
*cfs_rq
,
4959 struct task_struct
*p
)
4961 unsigned int enqueued
;
4963 if (!sched_feat(UTIL_EST
))
4966 /* Update root cfs_rq's estimated utilization */
4967 enqueued
= cfs_rq
->avg
.util_est
;
4968 enqueued
-= min_t(unsigned int, enqueued
, _task_util_est(p
));
4969 WRITE_ONCE(cfs_rq
->avg
.util_est
, enqueued
);
4971 trace_sched_util_est_cfs_tp(cfs_rq
);
4974 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4976 static inline void util_est_update(struct cfs_rq
*cfs_rq
,
4977 struct task_struct
*p
,
4980 unsigned int ewma
, dequeued
, last_ewma_diff
;
4982 if (!sched_feat(UTIL_EST
))
4986 * Skip update of task's estimated utilization when the task has not
4987 * yet completed an activation, e.g. being migrated.
4992 /* Get current estimate of utilization */
4993 ewma
= READ_ONCE(p
->se
.avg
.util_est
);
4996 * If the PELT values haven't changed since enqueue time,
4997 * skip the util_est update.
4999 if (ewma
& UTIL_AVG_UNCHANGED
)
5002 /* Get utilization at dequeue */
5003 dequeued
= task_util(p
);
5006 * Reset EWMA on utilization increases, the moving average is used only
5007 * to smooth utilization decreases.
5009 if (ewma
<= dequeued
) {
5015 * Skip update of task's estimated utilization when its members are
5016 * already ~1% close to its last activation value.
5018 last_ewma_diff
= ewma
- dequeued
;
5019 if (last_ewma_diff
< UTIL_EST_MARGIN
)
5023 * To avoid overestimation of actual task utilization, skip updates if
5024 * we cannot grant there is idle time in this CPU.
5026 if (dequeued
> arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq
))))
5030 * To avoid underestimate of task utilization, skip updates of EWMA if
5031 * we cannot grant that thread got all CPU time it wanted.
5033 if ((dequeued
+ UTIL_EST_MARGIN
) < task_runnable(p
))
5038 * Update Task's estimated utilization
5040 * When *p completes an activation we can consolidate another sample
5041 * of the task size. This is done by using this value to update the
5042 * Exponential Weighted Moving Average (EWMA):
5044 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
5045 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
5046 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
5047 * = w * ( -last_ewma_diff ) + ewma(t-1)
5048 * = w * (-last_ewma_diff + ewma(t-1) / w)
5050 * Where 'w' is the weight of new samples, which is configured to be
5051 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
5053 ewma
<<= UTIL_EST_WEIGHT_SHIFT
;
5054 ewma
-= last_ewma_diff
;
5055 ewma
>>= UTIL_EST_WEIGHT_SHIFT
;
5057 ewma
|= UTIL_AVG_UNCHANGED
;
5058 WRITE_ONCE(p
->se
.avg
.util_est
, ewma
);
5060 trace_sched_util_est_se_tp(&p
->se
);
5063 static inline unsigned long get_actual_cpu_capacity(int cpu
)
5065 unsigned long capacity
= arch_scale_cpu_capacity(cpu
);
5067 capacity
-= max(hw_load_avg(cpu_rq(cpu
)), cpufreq_get_pressure(cpu
));
5072 static inline int util_fits_cpu(unsigned long util
,
5073 unsigned long uclamp_min
,
5074 unsigned long uclamp_max
,
5077 unsigned long capacity
= capacity_of(cpu
);
5078 unsigned long capacity_orig
;
5079 bool fits
, uclamp_max_fits
;
5082 * Check if the real util fits without any uclamp boost/cap applied.
5084 fits
= fits_capacity(util
, capacity
);
5086 if (!uclamp_is_used())
5090 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5091 * uclamp_max. We only care about capacity pressure (by using
5092 * capacity_of()) for comparing against the real util.
5094 * If a task is boosted to 1024 for example, we don't want a tiny
5095 * pressure to skew the check whether it fits a CPU or not.
5097 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5098 * should fit a little cpu even if there's some pressure.
5100 * Only exception is for HW or cpufreq pressure since it has a direct impact
5101 * on available OPP of the system.
5103 * We honour it for uclamp_min only as a drop in performance level
5104 * could result in not getting the requested minimum performance level.
5106 * For uclamp_max, we can tolerate a drop in performance level as the
5107 * goal is to cap the task. So it's okay if it's getting less.
5109 capacity_orig
= arch_scale_cpu_capacity(cpu
);
5112 * We want to force a task to fit a cpu as implied by uclamp_max.
5113 * But we do have some corner cases to cater for..
5119 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5122 * | | | | | | | (util somewhere in this region)
5125 * +----------------------------------------
5128 * In the above example if a task is capped to a specific performance
5129 * point, y, then when:
5131 * * util = 80% of x then it does not fit on CPU0 and should migrate
5133 * * util = 80% of y then it is forced to fit on CPU1 to honour
5134 * uclamp_max request.
5136 * which is what we're enforcing here. A task always fits if
5137 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5138 * the normal upmigration rules should withhold still.
5140 * Only exception is when we are on max capacity, then we need to be
5141 * careful not to block overutilized state. This is so because:
5143 * 1. There's no concept of capping at max_capacity! We can't go
5144 * beyond this performance level anyway.
5145 * 2. The system is being saturated when we're operating near
5146 * max capacity, it doesn't make sense to block overutilized.
5148 uclamp_max_fits
= (capacity_orig
== SCHED_CAPACITY_SCALE
) && (uclamp_max
== SCHED_CAPACITY_SCALE
);
5149 uclamp_max_fits
= !uclamp_max_fits
&& (uclamp_max
<= capacity_orig
);
5150 fits
= fits
|| uclamp_max_fits
;
5155 * | ___ (region a, capped, util >= uclamp_max)
5157 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5159 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
5160 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5162 * | | | | | | | (region c, boosted, util < uclamp_min)
5163 * +----------------------------------------
5166 * a) If util > uclamp_max, then we're capped, we don't care about
5167 * actual fitness value here. We only care if uclamp_max fits
5168 * capacity without taking margin/pressure into account.
5169 * See comment above.
5171 * b) If uclamp_min <= util <= uclamp_max, then the normal
5172 * fits_capacity() rules apply. Except we need to ensure that we
5173 * enforce we remain within uclamp_max, see comment above.
5175 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5176 * need to take into account the boosted value fits the CPU without
5177 * taking margin/pressure into account.
5179 * Cases (a) and (b) are handled in the 'fits' variable already. We
5180 * just need to consider an extra check for case (c) after ensuring we
5181 * handle the case uclamp_min > uclamp_max.
5183 uclamp_min
= min(uclamp_min
, uclamp_max
);
5184 if (fits
&& (util
< uclamp_min
) &&
5185 (uclamp_min
> get_actual_cpu_capacity(cpu
)))
5191 static inline int task_fits_cpu(struct task_struct
*p
, int cpu
)
5193 unsigned long uclamp_min
= uclamp_eff_value(p
, UCLAMP_MIN
);
5194 unsigned long uclamp_max
= uclamp_eff_value(p
, UCLAMP_MAX
);
5195 unsigned long util
= task_util_est(p
);
5197 * Return true only if the cpu fully fits the task requirements, which
5198 * include the utilization but also the performance hints.
5200 return (util_fits_cpu(util
, uclamp_min
, uclamp_max
, cpu
) > 0);
5203 static inline void update_misfit_status(struct task_struct
*p
, struct rq
*rq
)
5205 int cpu
= cpu_of(rq
);
5207 if (!sched_asym_cpucap_active())
5211 * Affinity allows us to go somewhere higher? Or are we on biggest
5212 * available CPU already? Or do we fit into this CPU ?
5214 if (!p
|| (p
->nr_cpus_allowed
== 1) ||
5215 (arch_scale_cpu_capacity(cpu
) == p
->max_allowed_capacity
) ||
5216 task_fits_cpu(p
, cpu
)) {
5218 rq
->misfit_task_load
= 0;
5223 * Make sure that misfit_task_load will not be null even if
5224 * task_h_load() returns 0.
5226 rq
->misfit_task_load
= max_t(unsigned long, task_h_load(p
), 1);
5229 #else /* CONFIG_SMP */
5231 static inline bool cfs_rq_is_decayed(struct cfs_rq
*cfs_rq
)
5233 return !cfs_rq
->nr_running
;
5236 #define UPDATE_TG 0x0
5237 #define SKIP_AGE_LOAD 0x0
5238 #define DO_ATTACH 0x0
5239 #define DO_DETACH 0x0
5241 static inline void update_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int not_used1
)
5243 cfs_rq_util_change(cfs_rq
, 0);
5246 static inline void remove_entity_load_avg(struct sched_entity
*se
) {}
5249 attach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
5251 detach_entity_load_avg(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
) {}
5253 static inline int sched_balance_newidle(struct rq
*rq
, struct rq_flags
*rf
)
5259 util_est_enqueue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
) {}
5262 util_est_dequeue(struct cfs_rq
*cfs_rq
, struct task_struct
*p
) {}
5265 util_est_update(struct cfs_rq
*cfs_rq
, struct task_struct
*p
,
5267 static inline void update_misfit_status(struct task_struct
*p
, struct rq
*rq
) {}
5269 #endif /* CONFIG_SMP */
5272 place_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
5274 u64 vslice
, vruntime
= avg_vruntime(cfs_rq
);
5277 if (!se
->custom_slice
)
5278 se
->slice
= sysctl_sched_base_slice
;
5279 vslice
= calc_delta_fair(se
->slice
, se
);
5282 * Due to how V is constructed as the weighted average of entities,
5283 * adding tasks with positive lag, or removing tasks with negative lag
5284 * will move 'time' backwards, this can screw around with the lag of
5287 * EEVDF: placement strategy #1 / #2
5289 if (sched_feat(PLACE_LAG
) && cfs_rq
->nr_running
&& se
->vlag
) {
5290 struct sched_entity
*curr
= cfs_rq
->curr
;
5296 * If we want to place a task and preserve lag, we have to
5297 * consider the effect of the new entity on the weighted
5298 * average and compensate for this, otherwise lag can quickly
5301 * Lag is defined as:
5303 * lag_i = S - s_i = w_i * (V - v_i)
5305 * To avoid the 'w_i' term all over the place, we only track
5308 * vl_i = V - v_i <=> v_i = V - vl_i
5310 * And we take V to be the weighted average of all v:
5312 * V = (\Sum w_j*v_j) / W
5314 * Where W is: \Sum w_j
5316 * Then, the weighted average after adding an entity with lag
5319 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5320 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5321 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5322 * = (V*(W + w_i) - w_i*l) / (W + w_i)
5323 * = V - w_i*vl_i / (W + w_i)
5325 * And the actual lag after adding an entity with vl_i is:
5328 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5329 * = vl_i - w_i*vl_i / (W + w_i)
5331 * Which is strictly less than vl_i. So in order to preserve lag
5332 * we should inflate the lag before placement such that the
5333 * effective lag after placement comes out right.
5335 * As such, invert the above relation for vl'_i to get the vl_i
5336 * we need to use such that the lag after placement is the lag
5337 * we computed before dequeue.
5339 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5340 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5342 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5345 * vl_i = (W + w_i)*vl'_i / W
5347 load
= cfs_rq
->avg_load
;
5348 if (curr
&& curr
->on_rq
)
5349 load
+= scale_load_down(curr
->load
.weight
);
5351 lag
*= load
+ scale_load_down(se
->load
.weight
);
5352 if (WARN_ON_ONCE(!load
))
5354 lag
= div_s64(lag
, load
);
5357 se
->vruntime
= vruntime
- lag
;
5359 if (sched_feat(PLACE_REL_DEADLINE
) && se
->rel_deadline
) {
5360 se
->deadline
+= se
->vruntime
;
5361 se
->rel_deadline
= 0;
5366 * When joining the competition; the existing tasks will be,
5367 * on average, halfway through their slice, as such start tasks
5368 * off with half a slice to ease into the competition.
5370 if (sched_feat(PLACE_DEADLINE_INITIAL
) && (flags
& ENQUEUE_INITIAL
))
5374 * EEVDF: vd_i = ve_i + r_i/w_i
5376 se
->deadline
= se
->vruntime
+ vslice
;
5379 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
);
5380 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
);
5382 static inline bool cfs_bandwidth_used(void);
5385 requeue_delayed_entity(struct sched_entity
*se
);
5388 enqueue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
5390 bool curr
= cfs_rq
->curr
== se
;
5393 * If we're the current task, we must renormalise before calling
5397 place_entity(cfs_rq
, se
, flags
);
5399 update_curr(cfs_rq
);
5402 * When enqueuing a sched_entity, we must:
5403 * - Update loads to have both entity and cfs_rq synced with now.
5404 * - For group_entity, update its runnable_weight to reflect the new
5405 * h_nr_running of its group cfs_rq.
5406 * - For group_entity, update its weight to reflect the new share of
5408 * - Add its new weight to cfs_rq->load.weight
5410 update_load_avg(cfs_rq
, se
, UPDATE_TG
| DO_ATTACH
);
5411 se_update_runnable(se
);
5413 * XXX update_load_avg() above will have attached us to the pelt sum;
5414 * but update_cfs_group() here will re-adjust the weight and have to
5415 * undo/redo all that. Seems wasteful.
5417 update_cfs_group(se
);
5420 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5421 * we can place the entity.
5424 place_entity(cfs_rq
, se
, flags
);
5426 account_entity_enqueue(cfs_rq
, se
);
5428 /* Entity has migrated, no longer consider this task hot */
5429 if (flags
& ENQUEUE_MIGRATED
)
5432 check_schedstat_required();
5433 update_stats_enqueue_fair(cfs_rq
, se
, flags
);
5435 __enqueue_entity(cfs_rq
, se
);
5438 if (cfs_rq
->nr_running
== 1) {
5439 check_enqueue_throttle(cfs_rq
);
5440 if (!throttled_hierarchy(cfs_rq
)) {
5441 list_add_leaf_cfs_rq(cfs_rq
);
5443 #ifdef CONFIG_CFS_BANDWIDTH
5444 struct rq
*rq
= rq_of(cfs_rq
);
5446 if (cfs_rq_throttled(cfs_rq
) && !cfs_rq
->throttled_clock
)
5447 cfs_rq
->throttled_clock
= rq_clock(rq
);
5448 if (!cfs_rq
->throttled_clock_self
)
5449 cfs_rq
->throttled_clock_self
= rq_clock(rq
);
5455 static void __clear_buddies_next(struct sched_entity
*se
)
5457 for_each_sched_entity(se
) {
5458 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
5459 if (cfs_rq
->next
!= se
)
5462 cfs_rq
->next
= NULL
;
5466 static void clear_buddies(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
5468 if (cfs_rq
->next
== se
)
5469 __clear_buddies_next(se
);
5472 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
5474 static inline void finish_delayed_dequeue_entity(struct sched_entity
*se
)
5476 se
->sched_delayed
= 0;
5477 if (sched_feat(DELAY_ZERO
) && se
->vlag
> 0)
5482 dequeue_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
, int flags
)
5484 bool sleep
= flags
& DEQUEUE_SLEEP
;
5486 update_curr(cfs_rq
);
5488 if (flags
& DEQUEUE_DELAYED
) {
5489 SCHED_WARN_ON(!se
->sched_delayed
);
5493 * DELAY_DEQUEUE relies on spurious wakeups, special task
5494 * states must not suffer spurious wakeups, excempt them.
5496 if (flags
& DEQUEUE_SPECIAL
)
5499 SCHED_WARN_ON(delay
&& se
->sched_delayed
);
5501 if (sched_feat(DELAY_DEQUEUE
) && delay
&&
5502 !entity_eligible(cfs_rq
, se
)) {
5503 if (cfs_rq
->next
== se
)
5504 cfs_rq
->next
= NULL
;
5505 update_load_avg(cfs_rq
, se
, 0);
5506 se
->sched_delayed
= 1;
5511 int action
= UPDATE_TG
;
5512 if (entity_is_task(se
) && task_on_rq_migrating(task_of(se
)))
5513 action
|= DO_DETACH
;
5516 * When dequeuing a sched_entity, we must:
5517 * - Update loads to have both entity and cfs_rq synced with now.
5518 * - For group_entity, update its runnable_weight to reflect the new
5519 * h_nr_running of its group cfs_rq.
5520 * - Subtract its previous weight from cfs_rq->load.weight.
5521 * - For group entity, update its weight to reflect the new share
5522 * of its group cfs_rq.
5524 update_load_avg(cfs_rq
, se
, action
);
5525 se_update_runnable(se
);
5527 update_stats_dequeue_fair(cfs_rq
, se
, flags
);
5529 clear_buddies(cfs_rq
, se
);
5531 update_entity_lag(cfs_rq
, se
);
5532 if (sched_feat(PLACE_REL_DEADLINE
) && !sleep
) {
5533 se
->deadline
-= se
->vruntime
;
5534 se
->rel_deadline
= 1;
5537 if (se
!= cfs_rq
->curr
)
5538 __dequeue_entity(cfs_rq
, se
);
5540 account_entity_dequeue(cfs_rq
, se
);
5542 /* return excess runtime on last dequeue */
5543 return_cfs_rq_runtime(cfs_rq
);
5545 update_cfs_group(se
);
5548 * Now advance min_vruntime if @se was the entity holding it back,
5549 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5550 * put back on, and if we advance min_vruntime, we'll be placed back
5551 * further than we started -- i.e. we'll be penalized.
5553 if ((flags
& (DEQUEUE_SAVE
| DEQUEUE_MOVE
)) != DEQUEUE_SAVE
)
5554 update_min_vruntime(cfs_rq
);
5556 if (flags
& DEQUEUE_DELAYED
)
5557 finish_delayed_dequeue_entity(se
);
5559 if (cfs_rq
->nr_running
== 0)
5560 update_idle_cfs_rq_clock_pelt(cfs_rq
);
5566 set_next_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*se
)
5568 clear_buddies(cfs_rq
, se
);
5570 /* 'current' is not kept within the tree. */
5573 * Any task has to be enqueued before it get to execute on
5574 * a CPU. So account for the time it spent waiting on the
5577 update_stats_wait_end_fair(cfs_rq
, se
);
5578 __dequeue_entity(cfs_rq
, se
);
5579 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
5581 * HACK, stash a copy of deadline at the point of pick in vlag,
5582 * which isn't used until dequeue.
5584 se
->vlag
= se
->deadline
;
5587 update_stats_curr_start(cfs_rq
, se
);
5588 SCHED_WARN_ON(cfs_rq
->curr
);
5592 * Track our maximum slice length, if the CPU's load is at
5593 * least twice that of our own weight (i.e. don't track it
5594 * when there are only lesser-weight tasks around):
5596 if (schedstat_enabled() &&
5597 rq_of(cfs_rq
)->cfs
.load
.weight
>= 2*se
->load
.weight
) {
5598 struct sched_statistics
*stats
;
5600 stats
= __schedstats_from_se(se
);
5601 __schedstat_set(stats
->slice_max
,
5602 max((u64
)stats
->slice_max
,
5603 se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
));
5606 se
->prev_sum_exec_runtime
= se
->sum_exec_runtime
;
5609 static int dequeue_entities(struct rq
*rq
, struct sched_entity
*se
, int flags
);
5612 * Pick the next process, keeping these things in mind, in this order:
5613 * 1) keep things fair between processes/task groups
5614 * 2) pick the "next" process, since someone really wants that to run
5615 * 3) pick the "last" process, for cache locality
5616 * 4) do not run the "skip" process, if something else is available
5618 static struct sched_entity
*
5619 pick_next_entity(struct rq
*rq
, struct cfs_rq
*cfs_rq
)
5622 * Enabling NEXT_BUDDY will affect latency but not fairness.
5624 if (sched_feat(NEXT_BUDDY
) &&
5625 cfs_rq
->next
&& entity_eligible(cfs_rq
, cfs_rq
->next
)) {
5626 /* ->next will never be delayed */
5627 SCHED_WARN_ON(cfs_rq
->next
->sched_delayed
);
5628 return cfs_rq
->next
;
5631 struct sched_entity
*se
= pick_eevdf(cfs_rq
);
5632 if (se
->sched_delayed
) {
5633 dequeue_entities(rq
, se
, DEQUEUE_SLEEP
| DEQUEUE_DELAYED
);
5635 * Must not reference @se again, see __block_task().
5642 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
);
5644 static void put_prev_entity(struct cfs_rq
*cfs_rq
, struct sched_entity
*prev
)
5647 * If still on the runqueue then deactivate_task()
5648 * was not called and update_curr() has to be done:
5651 update_curr(cfs_rq
);
5653 /* throttle cfs_rqs exceeding runtime */
5654 check_cfs_rq_runtime(cfs_rq
);
5657 update_stats_wait_start_fair(cfs_rq
, prev
);
5658 /* Put 'current' back into the tree. */
5659 __enqueue_entity(cfs_rq
, prev
);
5660 /* in !on_rq case, update occurred at dequeue */
5661 update_load_avg(cfs_rq
, prev
, 0);
5663 SCHED_WARN_ON(cfs_rq
->curr
!= prev
);
5664 cfs_rq
->curr
= NULL
;
5668 entity_tick(struct cfs_rq
*cfs_rq
, struct sched_entity
*curr
, int queued
)
5671 * Update run-time statistics of the 'current'.
5673 update_curr(cfs_rq
);
5676 * Ensure that runnable average is periodically updated.
5678 update_load_avg(cfs_rq
, curr
, UPDATE_TG
);
5679 update_cfs_group(curr
);
5681 #ifdef CONFIG_SCHED_HRTICK
5683 * queued ticks are scheduled to match the slice, so don't bother
5684 * validating it and just reschedule.
5687 resched_curr_lazy(rq_of(cfs_rq
));
5694 /**************************************************
5695 * CFS bandwidth control machinery
5698 #ifdef CONFIG_CFS_BANDWIDTH
5700 #ifdef CONFIG_JUMP_LABEL
5701 static struct static_key __cfs_bandwidth_used
;
5703 static inline bool cfs_bandwidth_used(void)
5705 return static_key_false(&__cfs_bandwidth_used
);
5708 void cfs_bandwidth_usage_inc(void)
5710 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used
);
5713 void cfs_bandwidth_usage_dec(void)
5715 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used
);
5717 #else /* CONFIG_JUMP_LABEL */
5718 static bool cfs_bandwidth_used(void)
5723 void cfs_bandwidth_usage_inc(void) {}
5724 void cfs_bandwidth_usage_dec(void) {}
5725 #endif /* CONFIG_JUMP_LABEL */
5728 * default period for cfs group bandwidth.
5729 * default: 0.1s, units: nanoseconds
5731 static inline u64
default_cfs_period(void)
5733 return 100000000ULL;
5736 static inline u64
sched_cfs_bandwidth_slice(void)
5738 return (u64
)sysctl_sched_cfs_bandwidth_slice
* NSEC_PER_USEC
;
5742 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5743 * directly instead of rq->clock to avoid adding additional synchronization
5746 * requires cfs_b->lock
5748 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth
*cfs_b
)
5752 if (unlikely(cfs_b
->quota
== RUNTIME_INF
))
5755 cfs_b
->runtime
+= cfs_b
->quota
;
5756 runtime
= cfs_b
->runtime_snap
- cfs_b
->runtime
;
5758 cfs_b
->burst_time
+= runtime
;
5762 cfs_b
->runtime
= min(cfs_b
->runtime
, cfs_b
->quota
+ cfs_b
->burst
);
5763 cfs_b
->runtime_snap
= cfs_b
->runtime
;
5766 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
5768 return &tg
->cfs_bandwidth
;
5771 /* returns 0 on failure to allocate runtime */
5772 static int __assign_cfs_rq_runtime(struct cfs_bandwidth
*cfs_b
,
5773 struct cfs_rq
*cfs_rq
, u64 target_runtime
)
5775 u64 min_amount
, amount
= 0;
5777 lockdep_assert_held(&cfs_b
->lock
);
5779 /* note: this is a positive sum as runtime_remaining <= 0 */
5780 min_amount
= target_runtime
- cfs_rq
->runtime_remaining
;
5782 if (cfs_b
->quota
== RUNTIME_INF
)
5783 amount
= min_amount
;
5785 start_cfs_bandwidth(cfs_b
);
5787 if (cfs_b
->runtime
> 0) {
5788 amount
= min(cfs_b
->runtime
, min_amount
);
5789 cfs_b
->runtime
-= amount
;
5794 cfs_rq
->runtime_remaining
+= amount
;
5796 return cfs_rq
->runtime_remaining
> 0;
5799 /* returns 0 on failure to allocate runtime */
5800 static int assign_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
5802 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
5805 raw_spin_lock(&cfs_b
->lock
);
5806 ret
= __assign_cfs_rq_runtime(cfs_b
, cfs_rq
, sched_cfs_bandwidth_slice());
5807 raw_spin_unlock(&cfs_b
->lock
);
5812 static void __account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
5814 /* dock delta_exec before expiring quota (as it could span periods) */
5815 cfs_rq
->runtime_remaining
-= delta_exec
;
5817 if (likely(cfs_rq
->runtime_remaining
> 0))
5820 if (cfs_rq
->throttled
)
5823 * if we're unable to extend our runtime we resched so that the active
5824 * hierarchy can be throttled
5826 if (!assign_cfs_rq_runtime(cfs_rq
) && likely(cfs_rq
->curr
))
5827 resched_curr(rq_of(cfs_rq
));
5830 static __always_inline
5831 void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
)
5833 if (!cfs_bandwidth_used() || !cfs_rq
->runtime_enabled
)
5836 __account_cfs_rq_runtime(cfs_rq
, delta_exec
);
5839 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
5841 return cfs_bandwidth_used() && cfs_rq
->throttled
;
5844 /* check whether cfs_rq, or any parent, is throttled */
5845 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
5847 return cfs_bandwidth_used() && cfs_rq
->throttle_count
;
5851 * Ensure that neither of the group entities corresponding to src_cpu or
5852 * dest_cpu are members of a throttled hierarchy when performing group
5853 * load-balance operations.
5855 static inline int throttled_lb_pair(struct task_group
*tg
,
5856 int src_cpu
, int dest_cpu
)
5858 struct cfs_rq
*src_cfs_rq
, *dest_cfs_rq
;
5860 src_cfs_rq
= tg
->cfs_rq
[src_cpu
];
5861 dest_cfs_rq
= tg
->cfs_rq
[dest_cpu
];
5863 return throttled_hierarchy(src_cfs_rq
) ||
5864 throttled_hierarchy(dest_cfs_rq
);
5867 static int tg_unthrottle_up(struct task_group
*tg
, void *data
)
5869 struct rq
*rq
= data
;
5870 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
5872 cfs_rq
->throttle_count
--;
5873 if (!cfs_rq
->throttle_count
) {
5874 cfs_rq
->throttled_clock_pelt_time
+= rq_clock_pelt(rq
) -
5875 cfs_rq
->throttled_clock_pelt
;
5877 /* Add cfs_rq with load or one or more already running entities to the list */
5878 if (!cfs_rq_is_decayed(cfs_rq
))
5879 list_add_leaf_cfs_rq(cfs_rq
);
5881 if (cfs_rq
->throttled_clock_self
) {
5882 u64 delta
= rq_clock(rq
) - cfs_rq
->throttled_clock_self
;
5884 cfs_rq
->throttled_clock_self
= 0;
5886 if (SCHED_WARN_ON((s64
)delta
< 0))
5889 cfs_rq
->throttled_clock_self_time
+= delta
;
5896 static int tg_throttle_down(struct task_group
*tg
, void *data
)
5898 struct rq
*rq
= data
;
5899 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
5901 /* group is entering throttled state, stop time */
5902 if (!cfs_rq
->throttle_count
) {
5903 cfs_rq
->throttled_clock_pelt
= rq_clock_pelt(rq
);
5904 list_del_leaf_cfs_rq(cfs_rq
);
5906 SCHED_WARN_ON(cfs_rq
->throttled_clock_self
);
5907 if (cfs_rq
->nr_running
)
5908 cfs_rq
->throttled_clock_self
= rq_clock(rq
);
5910 cfs_rq
->throttle_count
++;
5915 static bool throttle_cfs_rq(struct cfs_rq
*cfs_rq
)
5917 struct rq
*rq
= rq_of(cfs_rq
);
5918 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
5919 struct sched_entity
*se
;
5920 long task_delta
, idle_task_delta
, dequeue
= 1;
5921 long rq_h_nr_running
= rq
->cfs
.h_nr_running
;
5923 raw_spin_lock(&cfs_b
->lock
);
5924 /* This will start the period timer if necessary */
5925 if (__assign_cfs_rq_runtime(cfs_b
, cfs_rq
, 1)) {
5927 * We have raced with bandwidth becoming available, and if we
5928 * actually throttled the timer might not unthrottle us for an
5929 * entire period. We additionally needed to make sure that any
5930 * subsequent check_cfs_rq_runtime calls agree not to throttle
5931 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5932 * for 1ns of runtime rather than just check cfs_b.
5936 list_add_tail_rcu(&cfs_rq
->throttled_list
,
5937 &cfs_b
->throttled_cfs_rq
);
5939 raw_spin_unlock(&cfs_b
->lock
);
5942 return false; /* Throttle no longer required. */
5944 se
= cfs_rq
->tg
->se
[cpu_of(rq_of(cfs_rq
))];
5946 /* freeze hierarchy runnable averages while throttled */
5948 walk_tg_tree_from(cfs_rq
->tg
, tg_throttle_down
, tg_nop
, (void *)rq
);
5951 task_delta
= cfs_rq
->h_nr_running
;
5952 idle_task_delta
= cfs_rq
->idle_h_nr_running
;
5953 for_each_sched_entity(se
) {
5954 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
5957 /* throttled entity or throttle-on-deactivate */
5962 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5963 * This avoids teaching dequeue_entities() about throttled
5964 * entities and keeps things relatively simple.
5966 flags
= DEQUEUE_SLEEP
| DEQUEUE_SPECIAL
;
5967 if (se
->sched_delayed
)
5968 flags
|= DEQUEUE_DELAYED
;
5969 dequeue_entity(qcfs_rq
, se
, flags
);
5971 if (cfs_rq_is_idle(group_cfs_rq(se
)))
5972 idle_task_delta
= cfs_rq
->h_nr_running
;
5974 qcfs_rq
->h_nr_running
-= task_delta
;
5975 qcfs_rq
->idle_h_nr_running
-= idle_task_delta
;
5977 if (qcfs_rq
->load
.weight
) {
5978 /* Avoid re-evaluating load for this entity: */
5979 se
= parent_entity(se
);
5984 for_each_sched_entity(se
) {
5985 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
5986 /* throttled entity or throttle-on-deactivate */
5990 update_load_avg(qcfs_rq
, se
, 0);
5991 se_update_runnable(se
);
5993 if (cfs_rq_is_idle(group_cfs_rq(se
)))
5994 idle_task_delta
= cfs_rq
->h_nr_running
;
5996 qcfs_rq
->h_nr_running
-= task_delta
;
5997 qcfs_rq
->idle_h_nr_running
-= idle_task_delta
;
6000 /* At this point se is NULL and we are at root level*/
6001 sub_nr_running(rq
, task_delta
);
6003 /* Stop the fair server if throttling resulted in no runnable tasks */
6004 if (rq_h_nr_running
&& !rq
->cfs
.h_nr_running
)
6005 dl_server_stop(&rq
->fair_server
);
6008 * Note: distribution will already see us throttled via the
6009 * throttled-list. rq->lock protects completion.
6011 cfs_rq
->throttled
= 1;
6012 SCHED_WARN_ON(cfs_rq
->throttled_clock
);
6013 if (cfs_rq
->nr_running
)
6014 cfs_rq
->throttled_clock
= rq_clock(rq
);
6018 void unthrottle_cfs_rq(struct cfs_rq
*cfs_rq
)
6020 struct rq
*rq
= rq_of(cfs_rq
);
6021 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
6022 struct sched_entity
*se
;
6023 long task_delta
, idle_task_delta
;
6024 long rq_h_nr_running
= rq
->cfs
.h_nr_running
;
6026 se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
6028 cfs_rq
->throttled
= 0;
6030 update_rq_clock(rq
);
6032 raw_spin_lock(&cfs_b
->lock
);
6033 if (cfs_rq
->throttled_clock
) {
6034 cfs_b
->throttled_time
+= rq_clock(rq
) - cfs_rq
->throttled_clock
;
6035 cfs_rq
->throttled_clock
= 0;
6037 list_del_rcu(&cfs_rq
->throttled_list
);
6038 raw_spin_unlock(&cfs_b
->lock
);
6040 /* update hierarchical throttle state */
6041 walk_tg_tree_from(cfs_rq
->tg
, tg_nop
, tg_unthrottle_up
, (void *)rq
);
6043 if (!cfs_rq
->load
.weight
) {
6044 if (!cfs_rq
->on_list
)
6047 * Nothing to run but something to decay (on_list)?
6048 * Complete the branch.
6050 for_each_sched_entity(se
) {
6051 if (list_add_leaf_cfs_rq(cfs_rq_of(se
)))
6054 goto unthrottle_throttle
;
6057 task_delta
= cfs_rq
->h_nr_running
;
6058 idle_task_delta
= cfs_rq
->idle_h_nr_running
;
6059 for_each_sched_entity(se
) {
6060 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
6062 /* Handle any unfinished DELAY_DEQUEUE business first. */
6063 if (se
->sched_delayed
) {
6064 int flags
= DEQUEUE_SLEEP
| DEQUEUE_DELAYED
;
6066 dequeue_entity(qcfs_rq
, se
, flags
);
6067 } else if (se
->on_rq
)
6069 enqueue_entity(qcfs_rq
, se
, ENQUEUE_WAKEUP
);
6071 if (cfs_rq_is_idle(group_cfs_rq(se
)))
6072 idle_task_delta
= cfs_rq
->h_nr_running
;
6074 qcfs_rq
->h_nr_running
+= task_delta
;
6075 qcfs_rq
->idle_h_nr_running
+= idle_task_delta
;
6077 /* end evaluation on encountering a throttled cfs_rq */
6078 if (cfs_rq_throttled(qcfs_rq
))
6079 goto unthrottle_throttle
;
6082 for_each_sched_entity(se
) {
6083 struct cfs_rq
*qcfs_rq
= cfs_rq_of(se
);
6085 update_load_avg(qcfs_rq
, se
, UPDATE_TG
);
6086 se_update_runnable(se
);
6088 if (cfs_rq_is_idle(group_cfs_rq(se
)))
6089 idle_task_delta
= cfs_rq
->h_nr_running
;
6091 qcfs_rq
->h_nr_running
+= task_delta
;
6092 qcfs_rq
->idle_h_nr_running
+= idle_task_delta
;
6094 /* end evaluation on encountering a throttled cfs_rq */
6095 if (cfs_rq_throttled(qcfs_rq
))
6096 goto unthrottle_throttle
;
6099 /* Start the fair server if un-throttling resulted in new runnable tasks */
6100 if (!rq_h_nr_running
&& rq
->cfs
.h_nr_running
)
6101 dl_server_start(&rq
->fair_server
);
6103 /* At this point se is NULL and we are at root level*/
6104 add_nr_running(rq
, task_delta
);
6106 unthrottle_throttle
:
6107 assert_list_leaf_cfs_rq(rq
);
6109 /* Determine whether we need to wake up potentially idle CPU: */
6110 if (rq
->curr
== rq
->idle
&& rq
->cfs
.nr_running
)
6115 static void __cfsb_csd_unthrottle(void *arg
)
6117 struct cfs_rq
*cursor
, *tmp
;
6118 struct rq
*rq
= arg
;
6124 * Iterating over the list can trigger several call to
6125 * update_rq_clock() in unthrottle_cfs_rq().
6126 * Do it once and skip the potential next ones.
6128 update_rq_clock(rq
);
6129 rq_clock_start_loop_update(rq
);
6132 * Since we hold rq lock we're safe from concurrent manipulation of
6133 * the CSD list. However, this RCU critical section annotates the
6134 * fact that we pair with sched_free_group_rcu(), so that we cannot
6135 * race with group being freed in the window between removing it
6136 * from the list and advancing to the next entry in the list.
6140 list_for_each_entry_safe(cursor
, tmp
, &rq
->cfsb_csd_list
,
6141 throttled_csd_list
) {
6142 list_del_init(&cursor
->throttled_csd_list
);
6144 if (cfs_rq_throttled(cursor
))
6145 unthrottle_cfs_rq(cursor
);
6150 rq_clock_stop_loop_update(rq
);
6154 static inline void __unthrottle_cfs_rq_async(struct cfs_rq
*cfs_rq
)
6156 struct rq
*rq
= rq_of(cfs_rq
);
6159 if (rq
== this_rq()) {
6160 unthrottle_cfs_rq(cfs_rq
);
6164 /* Already enqueued */
6165 if (SCHED_WARN_ON(!list_empty(&cfs_rq
->throttled_csd_list
)))
6168 first
= list_empty(&rq
->cfsb_csd_list
);
6169 list_add_tail(&cfs_rq
->throttled_csd_list
, &rq
->cfsb_csd_list
);
6171 smp_call_function_single_async(cpu_of(rq
), &rq
->cfsb_csd
);
6174 static inline void __unthrottle_cfs_rq_async(struct cfs_rq
*cfs_rq
)
6176 unthrottle_cfs_rq(cfs_rq
);
6180 static void unthrottle_cfs_rq_async(struct cfs_rq
*cfs_rq
)
6182 lockdep_assert_rq_held(rq_of(cfs_rq
));
6184 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq
) ||
6185 cfs_rq
->runtime_remaining
<= 0))
6188 __unthrottle_cfs_rq_async(cfs_rq
);
6191 static bool distribute_cfs_runtime(struct cfs_bandwidth
*cfs_b
)
6193 int this_cpu
= smp_processor_id();
6194 u64 runtime
, remaining
= 1;
6195 bool throttled
= false;
6196 struct cfs_rq
*cfs_rq
, *tmp
;
6199 LIST_HEAD(local_unthrottle
);
6202 list_for_each_entry_rcu(cfs_rq
, &cfs_b
->throttled_cfs_rq
,
6211 rq_lock_irqsave(rq
, &rf
);
6212 if (!cfs_rq_throttled(cfs_rq
))
6215 /* Already queued for async unthrottle */
6216 if (!list_empty(&cfs_rq
->throttled_csd_list
))
6219 /* By the above checks, this should never be true */
6220 SCHED_WARN_ON(cfs_rq
->runtime_remaining
> 0);
6222 raw_spin_lock(&cfs_b
->lock
);
6223 runtime
= -cfs_rq
->runtime_remaining
+ 1;
6224 if (runtime
> cfs_b
->runtime
)
6225 runtime
= cfs_b
->runtime
;
6226 cfs_b
->runtime
-= runtime
;
6227 remaining
= cfs_b
->runtime
;
6228 raw_spin_unlock(&cfs_b
->lock
);
6230 cfs_rq
->runtime_remaining
+= runtime
;
6232 /* we check whether we're throttled above */
6233 if (cfs_rq
->runtime_remaining
> 0) {
6234 if (cpu_of(rq
) != this_cpu
) {
6235 unthrottle_cfs_rq_async(cfs_rq
);
6238 * We currently only expect to be unthrottling
6239 * a single cfs_rq locally.
6241 SCHED_WARN_ON(!list_empty(&local_unthrottle
));
6242 list_add_tail(&cfs_rq
->throttled_csd_list
,
6250 rq_unlock_irqrestore(rq
, &rf
);
6253 list_for_each_entry_safe(cfs_rq
, tmp
, &local_unthrottle
,
6254 throttled_csd_list
) {
6255 struct rq
*rq
= rq_of(cfs_rq
);
6257 rq_lock_irqsave(rq
, &rf
);
6259 list_del_init(&cfs_rq
->throttled_csd_list
);
6261 if (cfs_rq_throttled(cfs_rq
))
6262 unthrottle_cfs_rq(cfs_rq
);
6264 rq_unlock_irqrestore(rq
, &rf
);
6266 SCHED_WARN_ON(!list_empty(&local_unthrottle
));
6274 * Responsible for refilling a task_group's bandwidth and unthrottling its
6275 * cfs_rqs as appropriate. If there has been no activity within the last
6276 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6277 * used to track this state.
6279 static int do_sched_cfs_period_timer(struct cfs_bandwidth
*cfs_b
, int overrun
, unsigned long flags
)
6283 /* no need to continue the timer with no bandwidth constraint */
6284 if (cfs_b
->quota
== RUNTIME_INF
)
6285 goto out_deactivate
;
6287 throttled
= !list_empty(&cfs_b
->throttled_cfs_rq
);
6288 cfs_b
->nr_periods
+= overrun
;
6290 /* Refill extra burst quota even if cfs_b->idle */
6291 __refill_cfs_bandwidth_runtime(cfs_b
);
6294 * idle depends on !throttled (for the case of a large deficit), and if
6295 * we're going inactive then everything else can be deferred
6297 if (cfs_b
->idle
&& !throttled
)
6298 goto out_deactivate
;
6301 /* mark as potentially idle for the upcoming period */
6306 /* account preceding periods in which throttling occurred */
6307 cfs_b
->nr_throttled
+= overrun
;
6310 * This check is repeated as we release cfs_b->lock while we unthrottle.
6312 while (throttled
&& cfs_b
->runtime
> 0) {
6313 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
6314 /* we can't nest cfs_b->lock while distributing bandwidth */
6315 throttled
= distribute_cfs_runtime(cfs_b
);
6316 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
6320 * While we are ensured activity in the period following an
6321 * unthrottle, this also covers the case in which the new bandwidth is
6322 * insufficient to cover the existing bandwidth deficit. (Forcing the
6323 * timer to remain active while there are any throttled entities.)
6333 /* a cfs_rq won't donate quota below this amount */
6334 static const u64 min_cfs_rq_runtime
= 1 * NSEC_PER_MSEC
;
6335 /* minimum remaining period time to redistribute slack quota */
6336 static const u64 min_bandwidth_expiration
= 2 * NSEC_PER_MSEC
;
6337 /* how long we wait to gather additional slack before distributing */
6338 static const u64 cfs_bandwidth_slack_period
= 5 * NSEC_PER_MSEC
;
6341 * Are we near the end of the current quota period?
6343 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6344 * hrtimer base being cleared by hrtimer_start. In the case of
6345 * migrate_hrtimers, base is never cleared, so we are fine.
6347 static int runtime_refresh_within(struct cfs_bandwidth
*cfs_b
, u64 min_expire
)
6349 struct hrtimer
*refresh_timer
= &cfs_b
->period_timer
;
6352 /* if the call-back is running a quota refresh is already occurring */
6353 if (hrtimer_callback_running(refresh_timer
))
6356 /* is a quota refresh about to occur? */
6357 remaining
= ktime_to_ns(hrtimer_expires_remaining(refresh_timer
));
6358 if (remaining
< (s64
)min_expire
)
6364 static void start_cfs_slack_bandwidth(struct cfs_bandwidth
*cfs_b
)
6366 u64 min_left
= cfs_bandwidth_slack_period
+ min_bandwidth_expiration
;
6368 /* if there's a quota refresh soon don't bother with slack */
6369 if (runtime_refresh_within(cfs_b
, min_left
))
6372 /* don't push forwards an existing deferred unthrottle */
6373 if (cfs_b
->slack_started
)
6375 cfs_b
->slack_started
= true;
6377 hrtimer_start(&cfs_b
->slack_timer
,
6378 ns_to_ktime(cfs_bandwidth_slack_period
),
6382 /* we know any runtime found here is valid as update_curr() precedes return */
6383 static void __return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
6385 struct cfs_bandwidth
*cfs_b
= tg_cfs_bandwidth(cfs_rq
->tg
);
6386 s64 slack_runtime
= cfs_rq
->runtime_remaining
- min_cfs_rq_runtime
;
6388 if (slack_runtime
<= 0)
6391 raw_spin_lock(&cfs_b
->lock
);
6392 if (cfs_b
->quota
!= RUNTIME_INF
) {
6393 cfs_b
->runtime
+= slack_runtime
;
6395 /* we are under rq->lock, defer unthrottling using a timer */
6396 if (cfs_b
->runtime
> sched_cfs_bandwidth_slice() &&
6397 !list_empty(&cfs_b
->throttled_cfs_rq
))
6398 start_cfs_slack_bandwidth(cfs_b
);
6400 raw_spin_unlock(&cfs_b
->lock
);
6402 /* even if it's not valid for return we don't want to try again */
6403 cfs_rq
->runtime_remaining
-= slack_runtime
;
6406 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
6408 if (!cfs_bandwidth_used())
6411 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->nr_running
)
6414 __return_cfs_rq_runtime(cfs_rq
);
6418 * This is done with a timer (instead of inline with bandwidth return) since
6419 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6421 static void do_sched_cfs_slack_timer(struct cfs_bandwidth
*cfs_b
)
6423 u64 runtime
= 0, slice
= sched_cfs_bandwidth_slice();
6424 unsigned long flags
;
6426 /* confirm we're still not at a refresh boundary */
6427 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
6428 cfs_b
->slack_started
= false;
6430 if (runtime_refresh_within(cfs_b
, min_bandwidth_expiration
)) {
6431 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
6435 if (cfs_b
->quota
!= RUNTIME_INF
&& cfs_b
->runtime
> slice
)
6436 runtime
= cfs_b
->runtime
;
6438 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
6443 distribute_cfs_runtime(cfs_b
);
6447 * When a group wakes up we want to make sure that its quota is not already
6448 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6449 * runtime as update_curr() throttling can not trigger until it's on-rq.
6451 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
)
6453 if (!cfs_bandwidth_used())
6456 /* an active group must be handled by the update_curr()->put() path */
6457 if (!cfs_rq
->runtime_enabled
|| cfs_rq
->curr
)
6460 /* ensure the group is not already throttled */
6461 if (cfs_rq_throttled(cfs_rq
))
6464 /* update runtime allocation */
6465 account_cfs_rq_runtime(cfs_rq
, 0);
6466 if (cfs_rq
->runtime_remaining
<= 0)
6467 throttle_cfs_rq(cfs_rq
);
6470 static void sync_throttle(struct task_group
*tg
, int cpu
)
6472 struct cfs_rq
*pcfs_rq
, *cfs_rq
;
6474 if (!cfs_bandwidth_used())
6480 cfs_rq
= tg
->cfs_rq
[cpu
];
6481 pcfs_rq
= tg
->parent
->cfs_rq
[cpu
];
6483 cfs_rq
->throttle_count
= pcfs_rq
->throttle_count
;
6484 cfs_rq
->throttled_clock_pelt
= rq_clock_pelt(cpu_rq(cpu
));
6487 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6488 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
6490 if (!cfs_bandwidth_used())
6493 if (likely(!cfs_rq
->runtime_enabled
|| cfs_rq
->runtime_remaining
> 0))
6497 * it's possible for a throttled entity to be forced into a running
6498 * state (e.g. set_curr_task), in this case we're finished.
6500 if (cfs_rq_throttled(cfs_rq
))
6503 return throttle_cfs_rq(cfs_rq
);
6506 static enum hrtimer_restart
sched_cfs_slack_timer(struct hrtimer
*timer
)
6508 struct cfs_bandwidth
*cfs_b
=
6509 container_of(timer
, struct cfs_bandwidth
, slack_timer
);
6511 do_sched_cfs_slack_timer(cfs_b
);
6513 return HRTIMER_NORESTART
;
6516 extern const u64 max_cfs_quota_period
;
6518 static enum hrtimer_restart
sched_cfs_period_timer(struct hrtimer
*timer
)
6520 struct cfs_bandwidth
*cfs_b
=
6521 container_of(timer
, struct cfs_bandwidth
, period_timer
);
6522 unsigned long flags
;
6527 raw_spin_lock_irqsave(&cfs_b
->lock
, flags
);
6529 overrun
= hrtimer_forward_now(timer
, cfs_b
->period
);
6533 idle
= do_sched_cfs_period_timer(cfs_b
, overrun
, flags
);
6536 u64
new, old
= ktime_to_ns(cfs_b
->period
);
6539 * Grow period by a factor of 2 to avoid losing precision.
6540 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6544 if (new < max_cfs_quota_period
) {
6545 cfs_b
->period
= ns_to_ktime(new);
6549 pr_warn_ratelimited(
6550 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6552 div_u64(new, NSEC_PER_USEC
),
6553 div_u64(cfs_b
->quota
, NSEC_PER_USEC
));
6555 pr_warn_ratelimited(
6556 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6558 div_u64(old
, NSEC_PER_USEC
),
6559 div_u64(cfs_b
->quota
, NSEC_PER_USEC
));
6562 /* reset count so we don't come right back in here */
6567 cfs_b
->period_active
= 0;
6568 raw_spin_unlock_irqrestore(&cfs_b
->lock
, flags
);
6570 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
6573 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
, struct cfs_bandwidth
*parent
)
6575 raw_spin_lock_init(&cfs_b
->lock
);
6577 cfs_b
->quota
= RUNTIME_INF
;
6578 cfs_b
->period
= ns_to_ktime(default_cfs_period());
6580 cfs_b
->hierarchical_quota
= parent
? parent
->hierarchical_quota
: RUNTIME_INF
;
6582 INIT_LIST_HEAD(&cfs_b
->throttled_cfs_rq
);
6583 hrtimer_init(&cfs_b
->period_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS_PINNED
);
6584 cfs_b
->period_timer
.function
= sched_cfs_period_timer
;
6586 /* Add a random offset so that timers interleave */
6587 hrtimer_set_expires(&cfs_b
->period_timer
,
6588 get_random_u32_below(cfs_b
->period
));
6589 hrtimer_init(&cfs_b
->slack_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
6590 cfs_b
->slack_timer
.function
= sched_cfs_slack_timer
;
6591 cfs_b
->slack_started
= false;
6594 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
)
6596 cfs_rq
->runtime_enabled
= 0;
6597 INIT_LIST_HEAD(&cfs_rq
->throttled_list
);
6598 INIT_LIST_HEAD(&cfs_rq
->throttled_csd_list
);
6601 void start_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
6603 lockdep_assert_held(&cfs_b
->lock
);
6605 if (cfs_b
->period_active
)
6608 cfs_b
->period_active
= 1;
6609 hrtimer_forward_now(&cfs_b
->period_timer
, cfs_b
->period
);
6610 hrtimer_start_expires(&cfs_b
->period_timer
, HRTIMER_MODE_ABS_PINNED
);
6613 static void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
)
6615 int __maybe_unused i
;
6617 /* init_cfs_bandwidth() was not called */
6618 if (!cfs_b
->throttled_cfs_rq
.next
)
6621 hrtimer_cancel(&cfs_b
->period_timer
);
6622 hrtimer_cancel(&cfs_b
->slack_timer
);
6625 * It is possible that we still have some cfs_rq's pending on a CSD
6626 * list, though this race is very rare. In order for this to occur, we
6627 * must have raced with the last task leaving the group while there
6628 * exist throttled cfs_rq(s), and the period_timer must have queued the
6629 * CSD item but the remote cpu has not yet processed it. To handle this,
6630 * we can simply flush all pending CSD work inline here. We're
6631 * guaranteed at this point that no additional cfs_rq of this group can
6635 for_each_possible_cpu(i
) {
6636 struct rq
*rq
= cpu_rq(i
);
6637 unsigned long flags
;
6639 if (list_empty(&rq
->cfsb_csd_list
))
6642 local_irq_save(flags
);
6643 __cfsb_csd_unthrottle(rq
);
6644 local_irq_restore(flags
);
6650 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6652 * The race is harmless, since modifying bandwidth settings of unhooked group
6653 * bits doesn't do much.
6656 /* cpu online callback */
6657 static void __maybe_unused
update_runtime_enabled(struct rq
*rq
)
6659 struct task_group
*tg
;
6661 lockdep_assert_rq_held(rq
);
6664 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
6665 struct cfs_bandwidth
*cfs_b
= &tg
->cfs_bandwidth
;
6666 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
6668 raw_spin_lock(&cfs_b
->lock
);
6669 cfs_rq
->runtime_enabled
= cfs_b
->quota
!= RUNTIME_INF
;
6670 raw_spin_unlock(&cfs_b
->lock
);
6675 /* cpu offline callback */
6676 static void __maybe_unused
unthrottle_offline_cfs_rqs(struct rq
*rq
)
6678 struct task_group
*tg
;
6680 lockdep_assert_rq_held(rq
);
6683 * The rq clock has already been updated in the
6684 * set_rq_offline(), so we should skip updating
6685 * the rq clock again in unthrottle_cfs_rq().
6687 rq_clock_start_loop_update(rq
);
6690 list_for_each_entry_rcu(tg
, &task_groups
, list
) {
6691 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu_of(rq
)];
6693 if (!cfs_rq
->runtime_enabled
)
6697 * clock_task is not advancing so we just need to make sure
6698 * there's some valid quota amount
6700 cfs_rq
->runtime_remaining
= 1;
6702 * Offline rq is schedulable till CPU is completely disabled
6703 * in take_cpu_down(), so we prevent new cfs throttling here.
6705 cfs_rq
->runtime_enabled
= 0;
6707 if (cfs_rq_throttled(cfs_rq
))
6708 unthrottle_cfs_rq(cfs_rq
);
6712 rq_clock_stop_loop_update(rq
);
6715 bool cfs_task_bw_constrained(struct task_struct
*p
)
6717 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
6719 if (!cfs_bandwidth_used())
6722 if (cfs_rq
->runtime_enabled
||
6723 tg_cfs_bandwidth(cfs_rq
->tg
)->hierarchical_quota
!= RUNTIME_INF
)
6729 #ifdef CONFIG_NO_HZ_FULL
6730 /* called from pick_next_task_fair() */
6731 static void sched_fair_update_stop_tick(struct rq
*rq
, struct task_struct
*p
)
6733 int cpu
= cpu_of(rq
);
6735 if (!cfs_bandwidth_used())
6738 if (!tick_nohz_full_cpu(cpu
))
6741 if (rq
->nr_running
!= 1)
6745 * We know there is only one task runnable and we've just picked it. The
6746 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6747 * be otherwise able to stop the tick. Just need to check if we are using
6748 * bandwidth control.
6750 if (cfs_task_bw_constrained(p
))
6751 tick_nohz_dep_set_cpu(cpu
, TICK_DEP_BIT_SCHED
);
6755 #else /* CONFIG_CFS_BANDWIDTH */
6757 static inline bool cfs_bandwidth_used(void)
6762 static void account_cfs_rq_runtime(struct cfs_rq
*cfs_rq
, u64 delta_exec
) {}
6763 static bool check_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) { return false; }
6764 static void check_enqueue_throttle(struct cfs_rq
*cfs_rq
) {}
6765 static inline void sync_throttle(struct task_group
*tg
, int cpu
) {}
6766 static __always_inline
void return_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
6768 static inline int cfs_rq_throttled(struct cfs_rq
*cfs_rq
)
6773 static inline int throttled_hierarchy(struct cfs_rq
*cfs_rq
)
6778 static inline int throttled_lb_pair(struct task_group
*tg
,
6779 int src_cpu
, int dest_cpu
)
6784 #ifdef CONFIG_FAIR_GROUP_SCHED
6785 void init_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
, struct cfs_bandwidth
*parent
) {}
6786 static void init_cfs_rq_runtime(struct cfs_rq
*cfs_rq
) {}
6789 static inline struct cfs_bandwidth
*tg_cfs_bandwidth(struct task_group
*tg
)
6793 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth
*cfs_b
) {}
6794 static inline void update_runtime_enabled(struct rq
*rq
) {}
6795 static inline void unthrottle_offline_cfs_rqs(struct rq
*rq
) {}
6796 #ifdef CONFIG_CGROUP_SCHED
6797 bool cfs_task_bw_constrained(struct task_struct
*p
)
6802 #endif /* CONFIG_CFS_BANDWIDTH */
6804 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6805 static inline void sched_fair_update_stop_tick(struct rq
*rq
, struct task_struct
*p
) {}
6808 /**************************************************
6809 * CFS operations on tasks:
6812 #ifdef CONFIG_SCHED_HRTICK
6813 static void hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
6815 struct sched_entity
*se
= &p
->se
;
6817 SCHED_WARN_ON(task_rq(p
) != rq
);
6819 if (rq
->cfs
.h_nr_running
> 1) {
6820 u64 ran
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
6821 u64 slice
= se
->slice
;
6822 s64 delta
= slice
- ran
;
6825 if (task_current_donor(rq
, p
))
6829 hrtick_start(rq
, delta
);
6834 * called from enqueue/dequeue and updates the hrtick when the
6835 * current task is from our class and nr_running is low enough
6838 static void hrtick_update(struct rq
*rq
)
6840 struct task_struct
*donor
= rq
->donor
;
6842 if (!hrtick_enabled_fair(rq
) || donor
->sched_class
!= &fair_sched_class
)
6845 hrtick_start_fair(rq
, donor
);
6847 #else /* !CONFIG_SCHED_HRTICK */
6849 hrtick_start_fair(struct rq
*rq
, struct task_struct
*p
)
6853 static inline void hrtick_update(struct rq
*rq
)
6859 static inline bool cpu_overutilized(int cpu
)
6861 unsigned long rq_util_min
, rq_util_max
;
6863 if (!sched_energy_enabled())
6866 rq_util_min
= uclamp_rq_get(cpu_rq(cpu
), UCLAMP_MIN
);
6867 rq_util_max
= uclamp_rq_get(cpu_rq(cpu
), UCLAMP_MAX
);
6869 /* Return true only if the utilization doesn't fit CPU's capacity */
6870 return !util_fits_cpu(cpu_util_cfs(cpu
), rq_util_min
, rq_util_max
, cpu
);
6874 * overutilized value make sense only if EAS is enabled
6876 static inline bool is_rd_overutilized(struct root_domain
*rd
)
6878 return !sched_energy_enabled() || READ_ONCE(rd
->overutilized
);
6881 static inline void set_rd_overutilized(struct root_domain
*rd
, bool flag
)
6883 if (!sched_energy_enabled())
6886 WRITE_ONCE(rd
->overutilized
, flag
);
6887 trace_sched_overutilized_tp(rd
, flag
);
6890 static inline void check_update_overutilized_status(struct rq
*rq
)
6893 * overutilized field is used for load balancing decisions only
6894 * if energy aware scheduler is being used
6897 if (!is_rd_overutilized(rq
->rd
) && cpu_overutilized(rq
->cpu
))
6898 set_rd_overutilized(rq
->rd
, 1);
6901 static inline void check_update_overutilized_status(struct rq
*rq
) { }
6904 /* Runqueue only has SCHED_IDLE tasks enqueued */
6905 static int sched_idle_rq(struct rq
*rq
)
6907 return unlikely(rq
->nr_running
== rq
->cfs
.idle_h_nr_running
&&
6912 static int sched_idle_cpu(int cpu
)
6914 return sched_idle_rq(cpu_rq(cpu
));
6919 requeue_delayed_entity(struct sched_entity
*se
)
6921 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
6924 * se->sched_delayed should imply: se->on_rq == 1.
6925 * Because a delayed entity is one that is still on
6926 * the runqueue competing until elegibility.
6928 SCHED_WARN_ON(!se
->sched_delayed
);
6929 SCHED_WARN_ON(!se
->on_rq
);
6931 if (sched_feat(DELAY_ZERO
)) {
6932 update_entity_lag(cfs_rq
, se
);
6934 cfs_rq
->nr_running
--;
6935 if (se
!= cfs_rq
->curr
)
6936 __dequeue_entity(cfs_rq
, se
);
6938 place_entity(cfs_rq
, se
, 0);
6939 if (se
!= cfs_rq
->curr
)
6940 __enqueue_entity(cfs_rq
, se
);
6941 cfs_rq
->nr_running
++;
6945 update_load_avg(cfs_rq
, se
, 0);
6946 se
->sched_delayed
= 0;
6950 * The enqueue_task method is called before nr_running is
6951 * increased. Here we update the fair scheduling stats and
6952 * then put the task into the rbtree:
6955 enqueue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
6957 struct cfs_rq
*cfs_rq
;
6958 struct sched_entity
*se
= &p
->se
;
6959 int idle_h_nr_running
= task_has_idle_policy(p
);
6960 int task_new
= !(flags
& ENQUEUE_WAKEUP
);
6961 int rq_h_nr_running
= rq
->cfs
.h_nr_running
;
6965 * The code below (indirectly) updates schedutil which looks at
6966 * the cfs_rq utilization to select a frequency.
6967 * Let's add the task's estimated utilization to the cfs_rq's
6968 * estimated utilization, before we update schedutil.
6970 if (!(p
->se
.sched_delayed
&& (task_on_rq_migrating(p
) || (flags
& ENQUEUE_RESTORE
))))
6971 util_est_enqueue(&rq
->cfs
, p
);
6973 if (flags
& ENQUEUE_DELAYED
) {
6974 requeue_delayed_entity(se
);
6979 * If in_iowait is set, the code below may not trigger any cpufreq
6980 * utilization updates, so do it here explicitly with the IOWAIT flag
6984 cpufreq_update_util(rq
, SCHED_CPUFREQ_IOWAIT
);
6986 for_each_sched_entity(se
) {
6988 if (se
->sched_delayed
)
6989 requeue_delayed_entity(se
);
6992 cfs_rq
= cfs_rq_of(se
);
6995 * Basically set the slice of group entries to the min_slice of
6996 * their respective cfs_rq. This ensures the group can service
6997 * its entities in the desired time-frame.
7001 se
->custom_slice
= 1;
7003 enqueue_entity(cfs_rq
, se
, flags
);
7004 slice
= cfs_rq_min_slice(cfs_rq
);
7006 cfs_rq
->h_nr_running
++;
7007 cfs_rq
->idle_h_nr_running
+= idle_h_nr_running
;
7009 if (cfs_rq_is_idle(cfs_rq
))
7010 idle_h_nr_running
= 1;
7012 /* end evaluation on encountering a throttled cfs_rq */
7013 if (cfs_rq_throttled(cfs_rq
))
7014 goto enqueue_throttle
;
7016 flags
= ENQUEUE_WAKEUP
;
7019 for_each_sched_entity(se
) {
7020 cfs_rq
= cfs_rq_of(se
);
7022 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
7023 se_update_runnable(se
);
7024 update_cfs_group(se
);
7027 slice
= cfs_rq_min_slice(cfs_rq
);
7029 cfs_rq
->h_nr_running
++;
7030 cfs_rq
->idle_h_nr_running
+= idle_h_nr_running
;
7032 if (cfs_rq_is_idle(cfs_rq
))
7033 idle_h_nr_running
= 1;
7035 /* end evaluation on encountering a throttled cfs_rq */
7036 if (cfs_rq_throttled(cfs_rq
))
7037 goto enqueue_throttle
;
7040 if (!rq_h_nr_running
&& rq
->cfs
.h_nr_running
) {
7041 /* Account for idle runtime */
7042 if (!rq
->nr_running
)
7043 dl_server_update_idle_time(rq
, rq
->curr
);
7044 dl_server_start(&rq
->fair_server
);
7047 /* At this point se is NULL and we are at root level*/
7048 add_nr_running(rq
, 1);
7051 * Since new tasks are assigned an initial util_avg equal to
7052 * half of the spare capacity of their CPU, tiny tasks have the
7053 * ability to cross the overutilized threshold, which will
7054 * result in the load balancer ruining all the task placement
7055 * done by EAS. As a way to mitigate that effect, do not account
7056 * for the first enqueue operation of new tasks during the
7057 * overutilized flag detection.
7059 * A better way of solving this problem would be to wait for
7060 * the PELT signals of tasks to converge before taking them
7061 * into account, but that is not straightforward to implement,
7062 * and the following generally works well enough in practice.
7065 check_update_overutilized_status(rq
);
7068 assert_list_leaf_cfs_rq(rq
);
7073 static void set_next_buddy(struct sched_entity
*se
);
7076 * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7077 * failing half-way through and resume the dequeue later.
7080 * -1 - dequeue delayed
7081 * 0 - dequeue throttled
7082 * 1 - dequeue complete
7084 static int dequeue_entities(struct rq
*rq
, struct sched_entity
*se
, int flags
)
7086 bool was_sched_idle
= sched_idle_rq(rq
);
7087 int rq_h_nr_running
= rq
->cfs
.h_nr_running
;
7088 bool task_sleep
= flags
& DEQUEUE_SLEEP
;
7089 bool task_delayed
= flags
& DEQUEUE_DELAYED
;
7090 struct task_struct
*p
= NULL
;
7091 int idle_h_nr_running
= 0;
7092 int h_nr_running
= 0;
7093 struct cfs_rq
*cfs_rq
;
7096 if (entity_is_task(se
)) {
7099 idle_h_nr_running
= task_has_idle_policy(p
);
7101 cfs_rq
= group_cfs_rq(se
);
7102 slice
= cfs_rq_min_slice(cfs_rq
);
7105 for_each_sched_entity(se
) {
7106 cfs_rq
= cfs_rq_of(se
);
7108 if (!dequeue_entity(cfs_rq
, se
, flags
)) {
7109 if (p
&& &p
->se
== se
)
7115 cfs_rq
->h_nr_running
-= h_nr_running
;
7116 cfs_rq
->idle_h_nr_running
-= idle_h_nr_running
;
7118 if (cfs_rq_is_idle(cfs_rq
))
7119 idle_h_nr_running
= h_nr_running
;
7121 /* end evaluation on encountering a throttled cfs_rq */
7122 if (cfs_rq_throttled(cfs_rq
))
7125 /* Don't dequeue parent if it has other entities besides us */
7126 if (cfs_rq
->load
.weight
) {
7127 slice
= cfs_rq_min_slice(cfs_rq
);
7129 /* Avoid re-evaluating load for this entity: */
7130 se
= parent_entity(se
);
7132 * Bias pick_next to pick a task from this cfs_rq, as
7133 * p is sleeping when it is within its sched_slice.
7135 if (task_sleep
&& se
&& !throttled_hierarchy(cfs_rq
))
7139 flags
|= DEQUEUE_SLEEP
;
7140 flags
&= ~(DEQUEUE_DELAYED
| DEQUEUE_SPECIAL
);
7143 for_each_sched_entity(se
) {
7144 cfs_rq
= cfs_rq_of(se
);
7146 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
7147 se_update_runnable(se
);
7148 update_cfs_group(se
);
7151 slice
= cfs_rq_min_slice(cfs_rq
);
7153 cfs_rq
->h_nr_running
-= h_nr_running
;
7154 cfs_rq
->idle_h_nr_running
-= idle_h_nr_running
;
7156 if (cfs_rq_is_idle(cfs_rq
))
7157 idle_h_nr_running
= h_nr_running
;
7159 /* end evaluation on encountering a throttled cfs_rq */
7160 if (cfs_rq_throttled(cfs_rq
))
7164 sub_nr_running(rq
, h_nr_running
);
7166 if (rq_h_nr_running
&& !rq
->cfs
.h_nr_running
)
7167 dl_server_stop(&rq
->fair_server
);
7169 /* balance early to pull high priority tasks */
7170 if (unlikely(!was_sched_idle
&& sched_idle_rq(rq
)))
7171 rq
->next_balance
= jiffies
;
7173 if (p
&& task_delayed
) {
7174 SCHED_WARN_ON(!task_sleep
);
7175 SCHED_WARN_ON(p
->on_rq
!= 1);
7177 /* Fix-up what dequeue_task_fair() skipped */
7181 * Fix-up what block_task() skipped.
7183 * Must be last, @p might not be valid after this.
7185 __block_task(rq
, p
);
7192 * The dequeue_task method is called before nr_running is
7193 * decreased. We remove the task from the rbtree and
7194 * update the fair scheduling stats:
7196 static bool dequeue_task_fair(struct rq
*rq
, struct task_struct
*p
, int flags
)
7198 if (!(p
->se
.sched_delayed
&& (task_on_rq_migrating(p
) || (flags
& DEQUEUE_SAVE
))))
7199 util_est_dequeue(&rq
->cfs
, p
);
7201 util_est_update(&rq
->cfs
, p
, flags
& DEQUEUE_SLEEP
);
7202 if (dequeue_entities(rq
, &p
->se
, flags
) < 0)
7206 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7215 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7216 static DEFINE_PER_CPU(cpumask_var_t
, load_balance_mask
);
7217 static DEFINE_PER_CPU(cpumask_var_t
, select_rq_mask
);
7218 static DEFINE_PER_CPU(cpumask_var_t
, should_we_balance_tmpmask
);
7220 #ifdef CONFIG_NO_HZ_COMMON
7223 cpumask_var_t idle_cpus_mask
;
7225 int has_blocked
; /* Idle CPUS has blocked load */
7226 int needs_update
; /* Newly idle CPUs need their next_balance collated */
7227 unsigned long next_balance
; /* in jiffy units */
7228 unsigned long next_blocked
; /* Next update of blocked load in jiffies */
7229 } nohz ____cacheline_aligned
;
7231 #endif /* CONFIG_NO_HZ_COMMON */
7233 static unsigned long cpu_load(struct rq
*rq
)
7235 return cfs_rq_load_avg(&rq
->cfs
);
7239 * cpu_load_without - compute CPU load without any contributions from *p
7240 * @cpu: the CPU which load is requested
7241 * @p: the task which load should be discounted
7243 * The load of a CPU is defined by the load of tasks currently enqueued on that
7244 * CPU as well as tasks which are currently sleeping after an execution on that
7247 * This method returns the load of the specified CPU by discounting the load of
7248 * the specified task, whenever the task is currently contributing to the CPU
7251 static unsigned long cpu_load_without(struct rq
*rq
, struct task_struct
*p
)
7253 struct cfs_rq
*cfs_rq
;
7256 /* Task has no contribution or is new */
7257 if (cpu_of(rq
) != task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
7258 return cpu_load(rq
);
7261 load
= READ_ONCE(cfs_rq
->avg
.load_avg
);
7263 /* Discount task's util from CPU's util */
7264 lsub_positive(&load
, task_h_load(p
));
7269 static unsigned long cpu_runnable(struct rq
*rq
)
7271 return cfs_rq_runnable_avg(&rq
->cfs
);
7274 static unsigned long cpu_runnable_without(struct rq
*rq
, struct task_struct
*p
)
7276 struct cfs_rq
*cfs_rq
;
7277 unsigned int runnable
;
7279 /* Task has no contribution or is new */
7280 if (cpu_of(rq
) != task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
7281 return cpu_runnable(rq
);
7284 runnable
= READ_ONCE(cfs_rq
->avg
.runnable_avg
);
7286 /* Discount task's runnable from CPU's runnable */
7287 lsub_positive(&runnable
, p
->se
.avg
.runnable_avg
);
7292 static unsigned long capacity_of(int cpu
)
7294 return cpu_rq(cpu
)->cpu_capacity
;
7297 static void record_wakee(struct task_struct
*p
)
7300 * Only decay a single time; tasks that have less then 1 wakeup per
7301 * jiffy will not have built up many flips.
7303 if (time_after(jiffies
, current
->wakee_flip_decay_ts
+ HZ
)) {
7304 current
->wakee_flips
>>= 1;
7305 current
->wakee_flip_decay_ts
= jiffies
;
7308 if (current
->last_wakee
!= p
) {
7309 current
->last_wakee
= p
;
7310 current
->wakee_flips
++;
7315 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7317 * A waker of many should wake a different task than the one last awakened
7318 * at a frequency roughly N times higher than one of its wakees.
7320 * In order to determine whether we should let the load spread vs consolidating
7321 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7322 * partner, and a factor of lls_size higher frequency in the other.
7324 * With both conditions met, we can be relatively sure that the relationship is
7325 * non-monogamous, with partner count exceeding socket size.
7327 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7328 * whatever is irrelevant, spread criteria is apparent partner count exceeds
7331 static int wake_wide(struct task_struct
*p
)
7333 unsigned int master
= current
->wakee_flips
;
7334 unsigned int slave
= p
->wakee_flips
;
7335 int factor
= __this_cpu_read(sd_llc_size
);
7338 swap(master
, slave
);
7339 if (slave
< factor
|| master
< slave
* factor
)
7345 * The purpose of wake_affine() is to quickly determine on which CPU we can run
7346 * soonest. For the purpose of speed we only consider the waking and previous
7349 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7350 * cache-affine and is (or will be) idle.
7352 * wake_affine_weight() - considers the weight to reflect the average
7353 * scheduling latency of the CPUs. This seems to work
7354 * for the overloaded case.
7357 wake_affine_idle(int this_cpu
, int prev_cpu
, int sync
)
7360 * If this_cpu is idle, it implies the wakeup is from interrupt
7361 * context. Only allow the move if cache is shared. Otherwise an
7362 * interrupt intensive workload could force all tasks onto one
7363 * node depending on the IO topology or IRQ affinity settings.
7365 * If the prev_cpu is idle and cache affine then avoid a migration.
7366 * There is no guarantee that the cache hot data from an interrupt
7367 * is more important than cache hot data on the prev_cpu and from
7368 * a cpufreq perspective, it's better to have higher utilisation
7371 if (available_idle_cpu(this_cpu
) && cpus_share_cache(this_cpu
, prev_cpu
))
7372 return available_idle_cpu(prev_cpu
) ? prev_cpu
: this_cpu
;
7374 if (sync
&& cpu_rq(this_cpu
)->nr_running
== 1)
7377 if (available_idle_cpu(prev_cpu
))
7380 return nr_cpumask_bits
;
7384 wake_affine_weight(struct sched_domain
*sd
, struct task_struct
*p
,
7385 int this_cpu
, int prev_cpu
, int sync
)
7387 s64 this_eff_load
, prev_eff_load
;
7388 unsigned long task_load
;
7390 this_eff_load
= cpu_load(cpu_rq(this_cpu
));
7393 unsigned long current_load
= task_h_load(current
);
7395 if (current_load
> this_eff_load
)
7398 this_eff_load
-= current_load
;
7401 task_load
= task_h_load(p
);
7403 this_eff_load
+= task_load
;
7404 if (sched_feat(WA_BIAS
))
7405 this_eff_load
*= 100;
7406 this_eff_load
*= capacity_of(prev_cpu
);
7408 prev_eff_load
= cpu_load(cpu_rq(prev_cpu
));
7409 prev_eff_load
-= task_load
;
7410 if (sched_feat(WA_BIAS
))
7411 prev_eff_load
*= 100 + (sd
->imbalance_pct
- 100) / 2;
7412 prev_eff_load
*= capacity_of(this_cpu
);
7415 * If sync, adjust the weight of prev_eff_load such that if
7416 * prev_eff == this_eff that select_idle_sibling() will consider
7417 * stacking the wakee on top of the waker if no other CPU is
7423 return this_eff_load
< prev_eff_load
? this_cpu
: nr_cpumask_bits
;
7426 static int wake_affine(struct sched_domain
*sd
, struct task_struct
*p
,
7427 int this_cpu
, int prev_cpu
, int sync
)
7429 int target
= nr_cpumask_bits
;
7431 if (sched_feat(WA_IDLE
))
7432 target
= wake_affine_idle(this_cpu
, prev_cpu
, sync
);
7434 if (sched_feat(WA_WEIGHT
) && target
== nr_cpumask_bits
)
7435 target
= wake_affine_weight(sd
, p
, this_cpu
, prev_cpu
, sync
);
7437 schedstat_inc(p
->stats
.nr_wakeups_affine_attempts
);
7438 if (target
!= this_cpu
)
7441 schedstat_inc(sd
->ttwu_move_affine
);
7442 schedstat_inc(p
->stats
.nr_wakeups_affine
);
7446 static struct sched_group
*
7447 sched_balance_find_dst_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
);
7450 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7453 sched_balance_find_dst_group_cpu(struct sched_group
*group
, struct task_struct
*p
, int this_cpu
)
7455 unsigned long load
, min_load
= ULONG_MAX
;
7456 unsigned int min_exit_latency
= UINT_MAX
;
7457 u64 latest_idle_timestamp
= 0;
7458 int least_loaded_cpu
= this_cpu
;
7459 int shallowest_idle_cpu
= -1;
7462 /* Check if we have any choice: */
7463 if (group
->group_weight
== 1)
7464 return cpumask_first(sched_group_span(group
));
7466 /* Traverse only the allowed CPUs */
7467 for_each_cpu_and(i
, sched_group_span(group
), p
->cpus_ptr
) {
7468 struct rq
*rq
= cpu_rq(i
);
7470 if (!sched_core_cookie_match(rq
, p
))
7473 if (sched_idle_cpu(i
))
7476 if (available_idle_cpu(i
)) {
7477 struct cpuidle_state
*idle
= idle_get_state(rq
);
7478 if (idle
&& idle
->exit_latency
< min_exit_latency
) {
7480 * We give priority to a CPU whose idle state
7481 * has the smallest exit latency irrespective
7482 * of any idle timestamp.
7484 min_exit_latency
= idle
->exit_latency
;
7485 latest_idle_timestamp
= rq
->idle_stamp
;
7486 shallowest_idle_cpu
= i
;
7487 } else if ((!idle
|| idle
->exit_latency
== min_exit_latency
) &&
7488 rq
->idle_stamp
> latest_idle_timestamp
) {
7490 * If equal or no active idle state, then
7491 * the most recently idled CPU might have
7494 latest_idle_timestamp
= rq
->idle_stamp
;
7495 shallowest_idle_cpu
= i
;
7497 } else if (shallowest_idle_cpu
== -1) {
7498 load
= cpu_load(cpu_rq(i
));
7499 if (load
< min_load
) {
7501 least_loaded_cpu
= i
;
7506 return shallowest_idle_cpu
!= -1 ? shallowest_idle_cpu
: least_loaded_cpu
;
7509 static inline int sched_balance_find_dst_cpu(struct sched_domain
*sd
, struct task_struct
*p
,
7510 int cpu
, int prev_cpu
, int sd_flag
)
7514 if (!cpumask_intersects(sched_domain_span(sd
), p
->cpus_ptr
))
7518 * We need task's util for cpu_util_without, sync it up to
7519 * prev_cpu's last_update_time.
7521 if (!(sd_flag
& SD_BALANCE_FORK
))
7522 sync_entity_load_avg(&p
->se
);
7525 struct sched_group
*group
;
7526 struct sched_domain
*tmp
;
7529 if (!(sd
->flags
& sd_flag
)) {
7534 group
= sched_balance_find_dst_group(sd
, p
, cpu
);
7540 new_cpu
= sched_balance_find_dst_group_cpu(group
, p
, cpu
);
7541 if (new_cpu
== cpu
) {
7542 /* Now try balancing at a lower domain level of 'cpu': */
7547 /* Now try balancing at a lower domain level of 'new_cpu': */
7549 weight
= sd
->span_weight
;
7551 for_each_domain(cpu
, tmp
) {
7552 if (weight
<= tmp
->span_weight
)
7554 if (tmp
->flags
& sd_flag
)
7562 static inline int __select_idle_cpu(int cpu
, struct task_struct
*p
)
7564 if ((available_idle_cpu(cpu
) || sched_idle_cpu(cpu
)) &&
7565 sched_cpu_cookie_match(cpu_rq(cpu
), p
))
7571 #ifdef CONFIG_SCHED_SMT
7572 DEFINE_STATIC_KEY_FALSE(sched_smt_present
);
7573 EXPORT_SYMBOL_GPL(sched_smt_present
);
7575 static inline void set_idle_cores(int cpu
, int val
)
7577 struct sched_domain_shared
*sds
;
7579 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
7581 WRITE_ONCE(sds
->has_idle_cores
, val
);
7584 static inline bool test_idle_cores(int cpu
)
7586 struct sched_domain_shared
*sds
;
7588 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
7590 return READ_ONCE(sds
->has_idle_cores
);
7596 * Scans the local SMT mask to see if the entire core is idle, and records this
7597 * information in sd_llc_shared->has_idle_cores.
7599 * Since SMT siblings share all cache levels, inspecting this limited remote
7600 * state should be fairly cheap.
7602 void __update_idle_core(struct rq
*rq
)
7604 int core
= cpu_of(rq
);
7608 if (test_idle_cores(core
))
7611 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
7615 if (!available_idle_cpu(cpu
))
7619 set_idle_cores(core
, 1);
7625 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7626 * there are no idle cores left in the system; tracked through
7627 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7629 static int select_idle_core(struct task_struct
*p
, int core
, struct cpumask
*cpus
, int *idle_cpu
)
7634 for_each_cpu(cpu
, cpu_smt_mask(core
)) {
7635 if (!available_idle_cpu(cpu
)) {
7637 if (*idle_cpu
== -1) {
7638 if (sched_idle_cpu(cpu
) && cpumask_test_cpu(cpu
, cpus
)) {
7646 if (*idle_cpu
== -1 && cpumask_test_cpu(cpu
, cpus
))
7653 cpumask_andnot(cpus
, cpus
, cpu_smt_mask(core
));
7658 * Scan the local SMT mask for idle CPUs.
7660 static int select_idle_smt(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
7664 for_each_cpu_and(cpu
, cpu_smt_mask(target
), p
->cpus_ptr
) {
7668 * Check if the CPU is in the LLC scheduling domain of @target.
7669 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7671 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
)))
7673 if (available_idle_cpu(cpu
) || sched_idle_cpu(cpu
))
7680 #else /* CONFIG_SCHED_SMT */
7682 static inline void set_idle_cores(int cpu
, int val
)
7686 static inline bool test_idle_cores(int cpu
)
7691 static inline int select_idle_core(struct task_struct
*p
, int core
, struct cpumask
*cpus
, int *idle_cpu
)
7693 return __select_idle_cpu(core
, p
);
7696 static inline int select_idle_smt(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
7701 #endif /* CONFIG_SCHED_SMT */
7704 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7705 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7706 * average idle time for this rq (as found in rq->avg_idle).
7708 static int select_idle_cpu(struct task_struct
*p
, struct sched_domain
*sd
, bool has_idle_core
, int target
)
7710 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_rq_mask
);
7711 int i
, cpu
, idle_cpu
= -1, nr
= INT_MAX
;
7712 struct sched_domain_shared
*sd_share
;
7714 cpumask_and(cpus
, sched_domain_span(sd
), p
->cpus_ptr
);
7716 if (sched_feat(SIS_UTIL
)) {
7717 sd_share
= rcu_dereference(per_cpu(sd_llc_shared
, target
));
7719 /* because !--nr is the condition to stop scan */
7720 nr
= READ_ONCE(sd_share
->nr_idle_scan
) + 1;
7721 /* overloaded LLC is unlikely to have idle cpu/core */
7727 if (static_branch_unlikely(&sched_cluster_active
)) {
7728 struct sched_group
*sg
= sd
->groups
;
7730 if (sg
->flags
& SD_CLUSTER
) {
7731 for_each_cpu_wrap(cpu
, sched_group_span(sg
), target
+ 1) {
7732 if (!cpumask_test_cpu(cpu
, cpus
))
7735 if (has_idle_core
) {
7736 i
= select_idle_core(p
, cpu
, cpus
, &idle_cpu
);
7737 if ((unsigned int)i
< nr_cpumask_bits
)
7742 idle_cpu
= __select_idle_cpu(cpu
, p
);
7743 if ((unsigned int)idle_cpu
< nr_cpumask_bits
)
7747 cpumask_andnot(cpus
, cpus
, sched_group_span(sg
));
7751 for_each_cpu_wrap(cpu
, cpus
, target
+ 1) {
7752 if (has_idle_core
) {
7753 i
= select_idle_core(p
, cpu
, cpus
, &idle_cpu
);
7754 if ((unsigned int)i
< nr_cpumask_bits
)
7760 idle_cpu
= __select_idle_cpu(cpu
, p
);
7761 if ((unsigned int)idle_cpu
< nr_cpumask_bits
)
7767 set_idle_cores(target
, false);
7773 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7774 * the task fits. If no CPU is big enough, but there are idle ones, try to
7775 * maximize capacity.
7778 select_idle_capacity(struct task_struct
*p
, struct sched_domain
*sd
, int target
)
7780 unsigned long task_util
, util_min
, util_max
, best_cap
= 0;
7781 int fits
, best_fits
= 0;
7782 int cpu
, best_cpu
= -1;
7783 struct cpumask
*cpus
;
7785 cpus
= this_cpu_cpumask_var_ptr(select_rq_mask
);
7786 cpumask_and(cpus
, sched_domain_span(sd
), p
->cpus_ptr
);
7788 task_util
= task_util_est(p
);
7789 util_min
= uclamp_eff_value(p
, UCLAMP_MIN
);
7790 util_max
= uclamp_eff_value(p
, UCLAMP_MAX
);
7792 for_each_cpu_wrap(cpu
, cpus
, target
) {
7793 unsigned long cpu_cap
= capacity_of(cpu
);
7795 if (!available_idle_cpu(cpu
) && !sched_idle_cpu(cpu
))
7798 fits
= util_fits_cpu(task_util
, util_min
, util_max
, cpu
);
7800 /* This CPU fits with all requirements */
7804 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7805 * Look for the CPU with best capacity.
7808 cpu_cap
= get_actual_cpu_capacity(cpu
);
7811 * First, select CPU which fits better (-1 being better than 0).
7812 * Then, select the one with best capacity at same level.
7814 if ((fits
< best_fits
) ||
7815 ((fits
== best_fits
) && (cpu_cap
> best_cap
))) {
7825 static inline bool asym_fits_cpu(unsigned long util
,
7826 unsigned long util_min
,
7827 unsigned long util_max
,
7830 if (sched_asym_cpucap_active())
7832 * Return true only if the cpu fully fits the task requirements
7833 * which include the utilization and the performance hints.
7835 return (util_fits_cpu(util
, util_min
, util_max
, cpu
) > 0);
7841 * Try and locate an idle core/thread in the LLC cache domain.
7843 static int select_idle_sibling(struct task_struct
*p
, int prev
, int target
)
7845 bool has_idle_core
= false;
7846 struct sched_domain
*sd
;
7847 unsigned long task_util
, util_min
, util_max
;
7848 int i
, recent_used_cpu
, prev_aff
= -1;
7851 * On asymmetric system, update task utilization because we will check
7852 * that the task fits with CPU's capacity.
7854 if (sched_asym_cpucap_active()) {
7855 sync_entity_load_avg(&p
->se
);
7856 task_util
= task_util_est(p
);
7857 util_min
= uclamp_eff_value(p
, UCLAMP_MIN
);
7858 util_max
= uclamp_eff_value(p
, UCLAMP_MAX
);
7862 * per-cpu select_rq_mask usage
7864 lockdep_assert_irqs_disabled();
7866 if ((available_idle_cpu(target
) || sched_idle_cpu(target
)) &&
7867 asym_fits_cpu(task_util
, util_min
, util_max
, target
))
7871 * If the previous CPU is cache affine and idle, don't be stupid:
7873 if (prev
!= target
&& cpus_share_cache(prev
, target
) &&
7874 (available_idle_cpu(prev
) || sched_idle_cpu(prev
)) &&
7875 asym_fits_cpu(task_util
, util_min
, util_max
, prev
)) {
7877 if (!static_branch_unlikely(&sched_cluster_active
) ||
7878 cpus_share_resources(prev
, target
))
7885 * Allow a per-cpu kthread to stack with the wakee if the
7886 * kworker thread and the tasks previous CPUs are the same.
7887 * The assumption is that the wakee queued work for the
7888 * per-cpu kthread that is now complete and the wakeup is
7889 * essentially a sync wakeup. An obvious example of this
7890 * pattern is IO completions.
7892 if (is_per_cpu_kthread(current
) &&
7894 prev
== smp_processor_id() &&
7895 this_rq()->nr_running
<= 1 &&
7896 asym_fits_cpu(task_util
, util_min
, util_max
, prev
)) {
7900 /* Check a recently used CPU as a potential idle candidate: */
7901 recent_used_cpu
= p
->recent_used_cpu
;
7902 p
->recent_used_cpu
= prev
;
7903 if (recent_used_cpu
!= prev
&&
7904 recent_used_cpu
!= target
&&
7905 cpus_share_cache(recent_used_cpu
, target
) &&
7906 (available_idle_cpu(recent_used_cpu
) || sched_idle_cpu(recent_used_cpu
)) &&
7907 cpumask_test_cpu(recent_used_cpu
, p
->cpus_ptr
) &&
7908 asym_fits_cpu(task_util
, util_min
, util_max
, recent_used_cpu
)) {
7910 if (!static_branch_unlikely(&sched_cluster_active
) ||
7911 cpus_share_resources(recent_used_cpu
, target
))
7912 return recent_used_cpu
;
7915 recent_used_cpu
= -1;
7919 * For asymmetric CPU capacity systems, our domain of interest is
7920 * sd_asym_cpucapacity rather than sd_llc.
7922 if (sched_asym_cpucap_active()) {
7923 sd
= rcu_dereference(per_cpu(sd_asym_cpucapacity
, target
));
7925 * On an asymmetric CPU capacity system where an exclusive
7926 * cpuset defines a symmetric island (i.e. one unique
7927 * capacity_orig value through the cpuset), the key will be set
7928 * but the CPUs within that cpuset will not have a domain with
7929 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7933 i
= select_idle_capacity(p
, sd
, target
);
7934 return ((unsigned)i
< nr_cpumask_bits
) ? i
: target
;
7938 sd
= rcu_dereference(per_cpu(sd_llc
, target
));
7942 if (sched_smt_active()) {
7943 has_idle_core
= test_idle_cores(target
);
7945 if (!has_idle_core
&& cpus_share_cache(prev
, target
)) {
7946 i
= select_idle_smt(p
, sd
, prev
);
7947 if ((unsigned int)i
< nr_cpumask_bits
)
7952 i
= select_idle_cpu(p
, sd
, has_idle_core
, target
);
7953 if ((unsigned)i
< nr_cpumask_bits
)
7957 * For cluster machines which have lower sharing cache like L2 or
7958 * LLC Tag, we tend to find an idle CPU in the target's cluster
7959 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7960 * use them if possible when no idle CPU found in select_idle_cpu().
7962 if ((unsigned int)prev_aff
< nr_cpumask_bits
)
7964 if ((unsigned int)recent_used_cpu
< nr_cpumask_bits
)
7965 return recent_used_cpu
;
7971 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7972 * @cpu: the CPU to get the utilization for
7973 * @p: task for which the CPU utilization should be predicted or NULL
7974 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7975 * @boost: 1 to enable boosting, otherwise 0
7977 * The unit of the return value must be the same as the one of CPU capacity
7978 * so that CPU utilization can be compared with CPU capacity.
7980 * CPU utilization is the sum of running time of runnable tasks plus the
7981 * recent utilization of currently non-runnable tasks on that CPU.
7982 * It represents the amount of CPU capacity currently used by CFS tasks in
7983 * the range [0..max CPU capacity] with max CPU capacity being the CPU
7984 * capacity at f_max.
7986 * The estimated CPU utilization is defined as the maximum between CPU
7987 * utilization and sum of the estimated utilization of the currently
7988 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7989 * previously-executed tasks, which helps better deduce how busy a CPU will
7990 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7991 * of such a task would be significantly decayed at this point of time.
7993 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7994 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7995 * utilization. Boosting is implemented in cpu_util() so that internal
7996 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7997 * latter via cpu_util_cfs_boost().
7999 * CPU utilization can be higher than the current CPU capacity
8000 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
8001 * of rounding errors as well as task migrations or wakeups of new tasks.
8002 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
8003 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
8004 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
8005 * capacity. CPU utilization is allowed to overshoot current CPU capacity
8006 * though since this is useful for predicting the CPU capacity required
8007 * after task migrations (scheduler-driven DVFS).
8009 * Return: (Boosted) (estimated) utilization for the specified CPU.
8011 static unsigned long
8012 cpu_util(int cpu
, struct task_struct
*p
, int dst_cpu
, int boost
)
8014 struct cfs_rq
*cfs_rq
= &cpu_rq(cpu
)->cfs
;
8015 unsigned long util
= READ_ONCE(cfs_rq
->avg
.util_avg
);
8016 unsigned long runnable
;
8019 runnable
= READ_ONCE(cfs_rq
->avg
.runnable_avg
);
8020 util
= max(util
, runnable
);
8024 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8025 * contribution. If @p migrates from another CPU to @cpu add its
8026 * contribution. In all the other cases @cpu is not impacted by the
8027 * migration so its util_avg is already correct.
8029 if (p
&& task_cpu(p
) == cpu
&& dst_cpu
!= cpu
)
8030 lsub_positive(&util
, task_util(p
));
8031 else if (p
&& task_cpu(p
) != cpu
&& dst_cpu
== cpu
)
8032 util
+= task_util(p
);
8034 if (sched_feat(UTIL_EST
)) {
8035 unsigned long util_est
;
8037 util_est
= READ_ONCE(cfs_rq
->avg
.util_est
);
8040 * During wake-up @p isn't enqueued yet and doesn't contribute
8041 * to any cpu_rq(cpu)->cfs.avg.util_est.
8042 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8043 * has been enqueued.
8045 * During exec (@dst_cpu = -1) @p is enqueued and does
8046 * contribute to cpu_rq(cpu)->cfs.util_est.
8047 * Remove it to "simulate" cpu_util without @p's contribution.
8049 * Despite the task_on_rq_queued(@p) check there is still a
8050 * small window for a possible race when an exec
8051 * select_task_rq_fair() races with LB's detach_task().
8055 * p->on_rq = TASK_ON_RQ_MIGRATING;
8056 * -------------------------------- A
8058 * dequeue_task_fair() + Race Time
8059 * util_est_dequeue() /
8060 * -------------------------------- B
8062 * The additional check "current == p" is required to further
8063 * reduce the race window.
8066 util_est
+= _task_util_est(p
);
8067 else if (p
&& unlikely(task_on_rq_queued(p
) || current
== p
))
8068 lsub_positive(&util_est
, _task_util_est(p
));
8070 util
= max(util
, util_est
);
8073 return min(util
, arch_scale_cpu_capacity(cpu
));
8076 unsigned long cpu_util_cfs(int cpu
)
8078 return cpu_util(cpu
, NULL
, -1, 0);
8081 unsigned long cpu_util_cfs_boost(int cpu
)
8083 return cpu_util(cpu
, NULL
, -1, 1);
8087 * cpu_util_without: compute cpu utilization without any contributions from *p
8088 * @cpu: the CPU which utilization is requested
8089 * @p: the task which utilization should be discounted
8091 * The utilization of a CPU is defined by the utilization of tasks currently
8092 * enqueued on that CPU as well as tasks which are currently sleeping after an
8093 * execution on that CPU.
8095 * This method returns the utilization of the specified CPU by discounting the
8096 * utilization of the specified task, whenever the task is currently
8097 * contributing to the CPU utilization.
8099 static unsigned long cpu_util_without(int cpu
, struct task_struct
*p
)
8101 /* Task has no contribution or is new */
8102 if (cpu
!= task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
8105 return cpu_util(cpu
, p
, -1, 0);
8109 * This function computes an effective utilization for the given CPU, to be
8110 * used for frequency selection given the linear relation: f = u * f_max.
8112 * The scheduler tracks the following metrics:
8114 * cpu_util_{cfs,rt,dl,irq}()
8117 * Where the cfs,rt and dl util numbers are tracked with the same metric and
8118 * synchronized windows and are thus directly comparable.
8120 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8121 * which excludes things like IRQ and steal-time. These latter are then accrued
8122 * in the IRQ utilization.
8124 * The DL bandwidth number OTOH is not a measured metric but a value computed
8125 * based on the task model parameters and gives the minimal utilization
8126 * required to meet deadlines.
8128 unsigned long effective_cpu_util(int cpu
, unsigned long util_cfs
,
8132 unsigned long util
, irq
, scale
;
8133 struct rq
*rq
= cpu_rq(cpu
);
8135 scale
= arch_scale_cpu_capacity(cpu
);
8138 * Early check to see if IRQ/steal time saturates the CPU, can be
8139 * because of inaccuracies in how we track these -- see
8140 * update_irq_load_avg().
8142 irq
= cpu_util_irq(rq
);
8143 if (unlikely(irq
>= scale
)) {
8153 * The minimum utilization returns the highest level between:
8154 * - the computed DL bandwidth needed with the IRQ pressure which
8155 * steals time to the deadline task.
8156 * - The minimum performance requirement for CFS and/or RT.
8158 *min
= max(irq
+ cpu_bw_dl(rq
), uclamp_rq_get(rq
, UCLAMP_MIN
));
8161 * When an RT task is runnable and uclamp is not used, we must
8162 * ensure that the task will run at maximum compute capacity.
8164 if (!uclamp_is_used() && rt_rq_is_runnable(&rq
->rt
))
8165 *min
= max(*min
, scale
);
8169 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8170 * CFS tasks and we use the same metric to track the effective
8171 * utilization (PELT windows are synchronized) we can directly add them
8172 * to obtain the CPU's actual utilization.
8174 util
= util_cfs
+ cpu_util_rt(rq
);
8175 util
+= cpu_util_dl(rq
);
8178 * The maximum hint is a soft bandwidth requirement, which can be lower
8179 * than the actual utilization because of uclamp_max requirements.
8182 *max
= min(scale
, uclamp_rq_get(rq
, UCLAMP_MAX
));
8188 * There is still idle time; further improve the number by using the
8189 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8190 * need to scale the task numbers:
8193 * U' = irq + --------- * U
8196 util
= scale_irq_capacity(util
, irq
, scale
);
8199 return min(scale
, util
);
8202 unsigned long sched_cpu_util(int cpu
)
8204 return effective_cpu_util(cpu
, cpu_util_cfs(cpu
), NULL
, NULL
);
8208 * energy_env - Utilization landscape for energy estimation.
8209 * @task_busy_time: Utilization contribution by the task for which we test the
8210 * placement. Given by eenv_task_busy_time().
8211 * @pd_busy_time: Utilization of the whole perf domain without the task
8212 * contribution. Given by eenv_pd_busy_time().
8213 * @cpu_cap: Maximum CPU capacity for the perf domain.
8214 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8217 unsigned long task_busy_time
;
8218 unsigned long pd_busy_time
;
8219 unsigned long cpu_cap
;
8220 unsigned long pd_cap
;
8224 * Compute the task busy time for compute_energy(). This time cannot be
8225 * injected directly into effective_cpu_util() because of the IRQ scaling.
8226 * The latter only makes sense with the most recent CPUs where the task has
8229 static inline void eenv_task_busy_time(struct energy_env
*eenv
,
8230 struct task_struct
*p
, int prev_cpu
)
8232 unsigned long busy_time
, max_cap
= arch_scale_cpu_capacity(prev_cpu
);
8233 unsigned long irq
= cpu_util_irq(cpu_rq(prev_cpu
));
8235 if (unlikely(irq
>= max_cap
))
8236 busy_time
= max_cap
;
8238 busy_time
= scale_irq_capacity(task_util_est(p
), irq
, max_cap
);
8240 eenv
->task_busy_time
= busy_time
;
8244 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8245 * utilization for each @pd_cpus, it however doesn't take into account
8246 * clamping since the ratio (utilization / cpu_capacity) is already enough to
8247 * scale the EM reported power consumption at the (eventually clamped)
8250 * The contribution of the task @p for which we want to estimate the
8251 * energy cost is removed (by cpu_util()) and must be calculated
8252 * separately (see eenv_task_busy_time). This ensures:
8254 * - A stable PD utilization, no matter which CPU of that PD we want to place
8257 * - A fair comparison between CPUs as the task contribution (task_util())
8258 * will always be the same no matter which CPU utilization we rely on
8259 * (util_avg or util_est).
8261 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8262 * exceed @eenv->pd_cap.
8264 static inline void eenv_pd_busy_time(struct energy_env
*eenv
,
8265 struct cpumask
*pd_cpus
,
8266 struct task_struct
*p
)
8268 unsigned long busy_time
= 0;
8271 for_each_cpu(cpu
, pd_cpus
) {
8272 unsigned long util
= cpu_util(cpu
, p
, -1, 0);
8274 busy_time
+= effective_cpu_util(cpu
, util
, NULL
, NULL
);
8277 eenv
->pd_busy_time
= min(eenv
->pd_cap
, busy_time
);
8281 * Compute the maximum utilization for compute_energy() when the task @p
8282 * is placed on the cpu @dst_cpu.
8284 * Returns the maximum utilization among @eenv->cpus. This utilization can't
8285 * exceed @eenv->cpu_cap.
8287 static inline unsigned long
8288 eenv_pd_max_util(struct energy_env
*eenv
, struct cpumask
*pd_cpus
,
8289 struct task_struct
*p
, int dst_cpu
)
8291 unsigned long max_util
= 0;
8294 for_each_cpu(cpu
, pd_cpus
) {
8295 struct task_struct
*tsk
= (cpu
== dst_cpu
) ? p
: NULL
;
8296 unsigned long util
= cpu_util(cpu
, p
, dst_cpu
, 1);
8297 unsigned long eff_util
, min
, max
;
8300 * Performance domain frequency: utilization clamping
8301 * must be considered since it affects the selection
8302 * of the performance domain frequency.
8303 * NOTE: in case RT tasks are running, by default the min
8304 * utilization can be max OPP.
8306 eff_util
= effective_cpu_util(cpu
, util
, &min
, &max
);
8308 /* Task's uclamp can modify min and max value */
8309 if (tsk
&& uclamp_is_used()) {
8310 min
= max(min
, uclamp_eff_value(p
, UCLAMP_MIN
));
8313 * If there is no active max uclamp constraint,
8314 * directly use task's one, otherwise keep max.
8316 if (uclamp_rq_is_idle(cpu_rq(cpu
)))
8317 max
= uclamp_eff_value(p
, UCLAMP_MAX
);
8319 max
= max(max
, uclamp_eff_value(p
, UCLAMP_MAX
));
8322 eff_util
= sugov_effective_cpu_perf(cpu
, eff_util
, min
, max
);
8323 max_util
= max(max_util
, eff_util
);
8326 return min(max_util
, eenv
->cpu_cap
);
8330 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8331 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8332 * contribution is ignored.
8334 static inline unsigned long
8335 compute_energy(struct energy_env
*eenv
, struct perf_domain
*pd
,
8336 struct cpumask
*pd_cpus
, struct task_struct
*p
, int dst_cpu
)
8338 unsigned long max_util
= eenv_pd_max_util(eenv
, pd_cpus
, p
, dst_cpu
);
8339 unsigned long busy_time
= eenv
->pd_busy_time
;
8340 unsigned long energy
;
8343 busy_time
= min(eenv
->pd_cap
, busy_time
+ eenv
->task_busy_time
);
8345 energy
= em_cpu_energy(pd
->em_pd
, max_util
, busy_time
, eenv
->cpu_cap
);
8347 trace_sched_compute_energy_tp(p
, dst_cpu
, energy
, max_util
, busy_time
);
8353 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8354 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8355 * spare capacity in each performance domain and uses it as a potential
8356 * candidate to execute the task. Then, it uses the Energy Model to figure
8357 * out which of the CPU candidates is the most energy-efficient.
8359 * The rationale for this heuristic is as follows. In a performance domain,
8360 * all the most energy efficient CPU candidates (according to the Energy
8361 * Model) are those for which we'll request a low frequency. When there are
8362 * several CPUs for which the frequency request will be the same, we don't
8363 * have enough data to break the tie between them, because the Energy Model
8364 * only includes active power costs. With this model, if we assume that
8365 * frequency requests follow utilization (e.g. using schedutil), the CPU with
8366 * the maximum spare capacity in a performance domain is guaranteed to be among
8367 * the best candidates of the performance domain.
8369 * In practice, it could be preferable from an energy standpoint to pack
8370 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8371 * but that could also hurt our chances to go cluster idle, and we have no
8372 * ways to tell with the current Energy Model if this is actually a good
8373 * idea or not. So, find_energy_efficient_cpu() basically favors
8374 * cluster-packing, and spreading inside a cluster. That should at least be
8375 * a good thing for latency, and this is consistent with the idea that most
8376 * of the energy savings of EAS come from the asymmetry of the system, and
8377 * not so much from breaking the tie between identical CPUs. That's also the
8378 * reason why EAS is enabled in the topology code only for systems where
8379 * SD_ASYM_CPUCAPACITY is set.
8381 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8382 * they don't have any useful utilization data yet and it's not possible to
8383 * forecast their impact on energy consumption. Consequently, they will be
8384 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8385 * to be energy-inefficient in some use-cases. The alternative would be to
8386 * bias new tasks towards specific types of CPUs first, or to try to infer
8387 * their util_avg from the parent task, but those heuristics could hurt
8388 * other use-cases too. So, until someone finds a better way to solve this,
8389 * let's keep things simple by re-using the existing slow path.
8391 static int find_energy_efficient_cpu(struct task_struct
*p
, int prev_cpu
)
8393 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_rq_mask
);
8394 unsigned long prev_delta
= ULONG_MAX
, best_delta
= ULONG_MAX
;
8395 unsigned long p_util_min
= uclamp_is_used() ? uclamp_eff_value(p
, UCLAMP_MIN
) : 0;
8396 unsigned long p_util_max
= uclamp_is_used() ? uclamp_eff_value(p
, UCLAMP_MAX
) : 1024;
8397 struct root_domain
*rd
= this_rq()->rd
;
8398 int cpu
, best_energy_cpu
, target
= -1;
8399 int prev_fits
= -1, best_fits
= -1;
8400 unsigned long best_actual_cap
= 0;
8401 unsigned long prev_actual_cap
= 0;
8402 struct sched_domain
*sd
;
8403 struct perf_domain
*pd
;
8404 struct energy_env eenv
;
8407 pd
= rcu_dereference(rd
->pd
);
8412 * Energy-aware wake-up happens on the lowest sched_domain starting
8413 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8415 sd
= rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity
));
8416 while (sd
&& !cpumask_test_cpu(prev_cpu
, sched_domain_span(sd
)))
8423 sync_entity_load_avg(&p
->se
);
8424 if (!task_util_est(p
) && p_util_min
== 0)
8427 eenv_task_busy_time(&eenv
, p
, prev_cpu
);
8429 for (; pd
; pd
= pd
->next
) {
8430 unsigned long util_min
= p_util_min
, util_max
= p_util_max
;
8431 unsigned long cpu_cap
, cpu_actual_cap
, util
;
8432 long prev_spare_cap
= -1, max_spare_cap
= -1;
8433 unsigned long rq_util_min
, rq_util_max
;
8434 unsigned long cur_delta
, base_energy
;
8435 int max_spare_cap_cpu
= -1;
8436 int fits
, max_fits
= -1;
8438 cpumask_and(cpus
, perf_domain_span(pd
), cpu_online_mask
);
8440 if (cpumask_empty(cpus
))
8443 /* Account external pressure for the energy estimation */
8444 cpu
= cpumask_first(cpus
);
8445 cpu_actual_cap
= get_actual_cpu_capacity(cpu
);
8447 eenv
.cpu_cap
= cpu_actual_cap
;
8450 for_each_cpu(cpu
, cpus
) {
8451 struct rq
*rq
= cpu_rq(cpu
);
8453 eenv
.pd_cap
+= cpu_actual_cap
;
8455 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
)))
8458 if (!cpumask_test_cpu(cpu
, p
->cpus_ptr
))
8461 util
= cpu_util(cpu
, p
, cpu
, 0);
8462 cpu_cap
= capacity_of(cpu
);
8465 * Skip CPUs that cannot satisfy the capacity request.
8466 * IOW, placing the task there would make the CPU
8467 * overutilized. Take uclamp into account to see how
8468 * much capacity we can get out of the CPU; this is
8469 * aligned with sched_cpu_util().
8471 if (uclamp_is_used() && !uclamp_rq_is_idle(rq
)) {
8473 * Open code uclamp_rq_util_with() except for
8474 * the clamp() part. I.e.: apply max aggregation
8475 * only. util_fits_cpu() logic requires to
8476 * operate on non clamped util but must use the
8477 * max-aggregated uclamp_{min, max}.
8479 rq_util_min
= uclamp_rq_get(rq
, UCLAMP_MIN
);
8480 rq_util_max
= uclamp_rq_get(rq
, UCLAMP_MAX
);
8482 util_min
= max(rq_util_min
, p_util_min
);
8483 util_max
= max(rq_util_max
, p_util_max
);
8486 fits
= util_fits_cpu(util
, util_min
, util_max
, cpu
);
8490 lsub_positive(&cpu_cap
, util
);
8492 if (cpu
== prev_cpu
) {
8493 /* Always use prev_cpu as a candidate. */
8494 prev_spare_cap
= cpu_cap
;
8496 } else if ((fits
> max_fits
) ||
8497 ((fits
== max_fits
) && ((long)cpu_cap
> max_spare_cap
))) {
8499 * Find the CPU with the maximum spare capacity
8500 * among the remaining CPUs in the performance
8503 max_spare_cap
= cpu_cap
;
8504 max_spare_cap_cpu
= cpu
;
8509 if (max_spare_cap_cpu
< 0 && prev_spare_cap
< 0)
8512 eenv_pd_busy_time(&eenv
, cpus
, p
);
8513 /* Compute the 'base' energy of the pd, without @p */
8514 base_energy
= compute_energy(&eenv
, pd
, cpus
, p
, -1);
8516 /* Evaluate the energy impact of using prev_cpu. */
8517 if (prev_spare_cap
> -1) {
8518 prev_delta
= compute_energy(&eenv
, pd
, cpus
, p
,
8520 /* CPU utilization has changed */
8521 if (prev_delta
< base_energy
)
8523 prev_delta
-= base_energy
;
8524 prev_actual_cap
= cpu_actual_cap
;
8525 best_delta
= min(best_delta
, prev_delta
);
8528 /* Evaluate the energy impact of using max_spare_cap_cpu. */
8529 if (max_spare_cap_cpu
>= 0 && max_spare_cap
> prev_spare_cap
) {
8530 /* Current best energy cpu fits better */
8531 if (max_fits
< best_fits
)
8535 * Both don't fit performance hint (i.e. uclamp_min)
8536 * but best energy cpu has better capacity.
8538 if ((max_fits
< 0) &&
8539 (cpu_actual_cap
<= best_actual_cap
))
8542 cur_delta
= compute_energy(&eenv
, pd
, cpus
, p
,
8544 /* CPU utilization has changed */
8545 if (cur_delta
< base_energy
)
8547 cur_delta
-= base_energy
;
8550 * Both fit for the task but best energy cpu has lower
8553 if ((max_fits
> 0) && (best_fits
> 0) &&
8554 (cur_delta
>= best_delta
))
8557 best_delta
= cur_delta
;
8558 best_energy_cpu
= max_spare_cap_cpu
;
8559 best_fits
= max_fits
;
8560 best_actual_cap
= cpu_actual_cap
;
8565 if ((best_fits
> prev_fits
) ||
8566 ((best_fits
> 0) && (best_delta
< prev_delta
)) ||
8567 ((best_fits
< 0) && (best_actual_cap
> prev_actual_cap
)))
8568 target
= best_energy_cpu
;
8579 * select_task_rq_fair: Select target runqueue for the waking task in domains
8580 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8581 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8583 * Balances load by selecting the idlest CPU in the idlest group, or under
8584 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8586 * Returns the target CPU number.
8589 select_task_rq_fair(struct task_struct
*p
, int prev_cpu
, int wake_flags
)
8591 int sync
= (wake_flags
& WF_SYNC
) && !(current
->flags
& PF_EXITING
);
8592 struct sched_domain
*tmp
, *sd
= NULL
;
8593 int cpu
= smp_processor_id();
8594 int new_cpu
= prev_cpu
;
8595 int want_affine
= 0;
8596 /* SD_flags and WF_flags share the first nibble */
8597 int sd_flag
= wake_flags
& 0xF;
8600 * required for stable ->cpus_allowed
8602 lockdep_assert_held(&p
->pi_lock
);
8603 if (wake_flags
& WF_TTWU
) {
8606 if ((wake_flags
& WF_CURRENT_CPU
) &&
8607 cpumask_test_cpu(cpu
, p
->cpus_ptr
))
8610 if (!is_rd_overutilized(this_rq()->rd
)) {
8611 new_cpu
= find_energy_efficient_cpu(p
, prev_cpu
);
8617 want_affine
= !wake_wide(p
) && cpumask_test_cpu(cpu
, p
->cpus_ptr
);
8621 for_each_domain(cpu
, tmp
) {
8623 * If both 'cpu' and 'prev_cpu' are part of this domain,
8624 * cpu is a valid SD_WAKE_AFFINE target.
8626 if (want_affine
&& (tmp
->flags
& SD_WAKE_AFFINE
) &&
8627 cpumask_test_cpu(prev_cpu
, sched_domain_span(tmp
))) {
8628 if (cpu
!= prev_cpu
)
8629 new_cpu
= wake_affine(tmp
, p
, cpu
, prev_cpu
, sync
);
8631 sd
= NULL
; /* Prefer wake_affine over balance flags */
8636 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8637 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8638 * will usually go to the fast path.
8640 if (tmp
->flags
& sd_flag
)
8642 else if (!want_affine
)
8648 new_cpu
= sched_balance_find_dst_cpu(sd
, p
, cpu
, prev_cpu
, sd_flag
);
8649 } else if (wake_flags
& WF_TTWU
) { /* XXX always ? */
8651 new_cpu
= select_idle_sibling(p
, prev_cpu
, new_cpu
);
8659 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8660 * cfs_rq_of(p) references at time of call are still valid and identify the
8661 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8663 static void migrate_task_rq_fair(struct task_struct
*p
, int new_cpu
)
8665 struct sched_entity
*se
= &p
->se
;
8667 if (!task_on_rq_migrating(p
)) {
8668 remove_entity_load_avg(se
);
8671 * Here, the task's PELT values have been updated according to
8672 * the current rq's clock. But if that clock hasn't been
8673 * updated in a while, a substantial idle time will be missed,
8674 * leading to an inflation after wake-up on the new rq.
8676 * Estimate the missing time from the cfs_rq last_update_time
8677 * and update sched_avg to improve the PELT continuity after
8680 migrate_se_pelt_lag(se
);
8683 /* Tell new CPU we are migrated */
8684 se
->avg
.last_update_time
= 0;
8686 update_scan_period(p
, new_cpu
);
8689 static void task_dead_fair(struct task_struct
*p
)
8691 struct sched_entity
*se
= &p
->se
;
8693 if (se
->sched_delayed
) {
8697 rq
= task_rq_lock(p
, &rf
);
8698 if (se
->sched_delayed
) {
8699 update_rq_clock(rq
);
8700 dequeue_entities(rq
, se
, DEQUEUE_SLEEP
| DEQUEUE_DELAYED
);
8702 task_rq_unlock(rq
, p
, &rf
);
8705 remove_entity_load_avg(se
);
8709 * Set the max capacity the task is allowed to run at for misfit detection.
8711 static void set_task_max_allowed_capacity(struct task_struct
*p
)
8713 struct asym_cap_data
*entry
;
8715 if (!sched_asym_cpucap_active())
8719 list_for_each_entry_rcu(entry
, &asym_cap_list
, link
) {
8722 cpumask
= cpu_capacity_span(entry
);
8723 if (!cpumask_intersects(p
->cpus_ptr
, cpumask
))
8726 p
->max_allowed_capacity
= entry
->capacity
;
8732 static void set_cpus_allowed_fair(struct task_struct
*p
, struct affinity_context
*ctx
)
8734 set_cpus_allowed_common(p
, ctx
);
8735 set_task_max_allowed_capacity(p
);
8739 balance_fair(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
8741 if (sched_fair_runnable(rq
))
8744 return sched_balance_newidle(rq
, rf
) != 0;
8747 static inline void set_task_max_allowed_capacity(struct task_struct
*p
) {}
8748 #endif /* CONFIG_SMP */
8750 static void set_next_buddy(struct sched_entity
*se
)
8752 for_each_sched_entity(se
) {
8753 if (SCHED_WARN_ON(!se
->on_rq
))
8757 cfs_rq_of(se
)->next
= se
;
8762 * Preempt the current task with a newly woken task if needed:
8764 static void check_preempt_wakeup_fair(struct rq
*rq
, struct task_struct
*p
, int wake_flags
)
8766 struct task_struct
*donor
= rq
->donor
;
8767 struct sched_entity
*se
= &donor
->se
, *pse
= &p
->se
;
8768 struct cfs_rq
*cfs_rq
= task_cfs_rq(donor
);
8769 int cse_is_idle
, pse_is_idle
;
8771 if (unlikely(se
== pse
))
8775 * This is possible from callers such as attach_tasks(), in which we
8776 * unconditionally wakeup_preempt() after an enqueue (which may have
8777 * lead to a throttle). This both saves work and prevents false
8778 * next-buddy nomination below.
8780 if (unlikely(throttled_hierarchy(cfs_rq_of(pse
))))
8783 if (sched_feat(NEXT_BUDDY
) && !(wake_flags
& WF_FORK
)) {
8784 set_next_buddy(pse
);
8788 * We can come here with TIF_NEED_RESCHED already set from new task
8791 * Note: this also catches the edge-case of curr being in a throttled
8792 * group (e.g. via set_curr_task), since update_curr() (in the
8793 * enqueue of curr) will have resulted in resched being set. This
8794 * prevents us from potentially nominating it as a false LAST_BUDDY
8797 if (test_tsk_need_resched(rq
->curr
))
8800 if (!sched_feat(WAKEUP_PREEMPTION
))
8803 find_matching_se(&se
, &pse
);
8806 cse_is_idle
= se_is_idle(se
);
8807 pse_is_idle
= se_is_idle(pse
);
8810 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8811 * in the inverse case).
8813 if (cse_is_idle
&& !pse_is_idle
)
8815 if (cse_is_idle
!= pse_is_idle
)
8819 * BATCH and IDLE tasks do not preempt others.
8821 if (unlikely(!normal_policy(p
->policy
)))
8824 cfs_rq
= cfs_rq_of(se
);
8825 update_curr(cfs_rq
);
8827 * If @p has a shorter slice than current and @p is eligible, override
8828 * current's slice protection in order to allow preemption.
8830 * Note that even if @p does not turn out to be the most eligible
8831 * task at this moment, current's slice protection will be lost.
8833 if (do_preempt_short(cfs_rq
, pse
, se
) && se
->vlag
== se
->deadline
)
8834 se
->vlag
= se
->deadline
+ 1;
8837 * If @p has become the most eligible task, force preemption.
8839 if (pick_eevdf(cfs_rq
) == pse
)
8845 resched_curr_lazy(rq
);
8848 static struct task_struct
*pick_task_fair(struct rq
*rq
)
8850 struct sched_entity
*se
;
8851 struct cfs_rq
*cfs_rq
;
8855 if (!cfs_rq
->nr_running
)
8859 /* Might not have done put_prev_entity() */
8860 if (cfs_rq
->curr
&& cfs_rq
->curr
->on_rq
)
8861 update_curr(cfs_rq
);
8863 if (unlikely(check_cfs_rq_runtime(cfs_rq
)))
8866 se
= pick_next_entity(rq
, cfs_rq
);
8869 cfs_rq
= group_cfs_rq(se
);
8875 static void __set_next_task_fair(struct rq
*rq
, struct task_struct
*p
, bool first
);
8876 static void set_next_task_fair(struct rq
*rq
, struct task_struct
*p
, bool first
);
8878 struct task_struct
*
8879 pick_next_task_fair(struct rq
*rq
, struct task_struct
*prev
, struct rq_flags
*rf
)
8881 struct sched_entity
*se
;
8882 struct task_struct
*p
;
8886 p
= pick_task_fair(rq
);
8891 #ifdef CONFIG_FAIR_GROUP_SCHED
8892 if (prev
->sched_class
!= &fair_sched_class
)
8895 __put_prev_set_next_dl_server(rq
, prev
, p
);
8898 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8899 * likely that a next task is from the same cgroup as the current.
8901 * Therefore attempt to avoid putting and setting the entire cgroup
8902 * hierarchy, only change the part that actually changes.
8904 * Since we haven't yet done put_prev_entity and if the selected task
8905 * is a different task than we started out with, try and touch the
8906 * least amount of cfs_rqs.
8909 struct sched_entity
*pse
= &prev
->se
;
8910 struct cfs_rq
*cfs_rq
;
8912 while (!(cfs_rq
= is_same_group(se
, pse
))) {
8913 int se_depth
= se
->depth
;
8914 int pse_depth
= pse
->depth
;
8916 if (se_depth
<= pse_depth
) {
8917 put_prev_entity(cfs_rq_of(pse
), pse
);
8918 pse
= parent_entity(pse
);
8920 if (se_depth
>= pse_depth
) {
8921 set_next_entity(cfs_rq_of(se
), se
);
8922 se
= parent_entity(se
);
8926 put_prev_entity(cfs_rq
, pse
);
8927 set_next_entity(cfs_rq
, se
);
8929 __set_next_task_fair(rq
, p
, true);
8936 put_prev_set_next_task(rq
, prev
, p
);
8943 new_tasks
= sched_balance_newidle(rq
, rf
);
8946 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8947 * possible for any higher priority task to appear. In that case we
8948 * must re-start the pick_next_entity() loop.
8957 * rq is about to be idle, check if we need to update the
8958 * lost_idle_time of clock_pelt
8960 update_idle_rq_clock_pelt(rq
);
8965 static struct task_struct
*__pick_next_task_fair(struct rq
*rq
, struct task_struct
*prev
)
8967 return pick_next_task_fair(rq
, prev
, NULL
);
8970 static bool fair_server_has_tasks(struct sched_dl_entity
*dl_se
)
8972 return !!dl_se
->rq
->cfs
.nr_running
;
8975 static struct task_struct
*fair_server_pick_task(struct sched_dl_entity
*dl_se
)
8977 return pick_task_fair(dl_se
->rq
);
8980 void fair_server_init(struct rq
*rq
)
8982 struct sched_dl_entity
*dl_se
= &rq
->fair_server
;
8984 init_dl_entity(dl_se
);
8986 dl_server_init(dl_se
, rq
, fair_server_has_tasks
, fair_server_pick_task
);
8990 * Account for a descheduled task:
8992 static void put_prev_task_fair(struct rq
*rq
, struct task_struct
*prev
, struct task_struct
*next
)
8994 struct sched_entity
*se
= &prev
->se
;
8995 struct cfs_rq
*cfs_rq
;
8997 for_each_sched_entity(se
) {
8998 cfs_rq
= cfs_rq_of(se
);
8999 put_prev_entity(cfs_rq
, se
);
9004 * sched_yield() is very simple
9006 static void yield_task_fair(struct rq
*rq
)
9008 struct task_struct
*curr
= rq
->curr
;
9009 struct cfs_rq
*cfs_rq
= task_cfs_rq(curr
);
9010 struct sched_entity
*se
= &curr
->se
;
9013 * Are we the only task in the tree?
9015 if (unlikely(rq
->nr_running
== 1))
9018 clear_buddies(cfs_rq
, se
);
9020 update_rq_clock(rq
);
9022 * Update run-time statistics of the 'current'.
9024 update_curr(cfs_rq
);
9026 * Tell update_rq_clock() that we've just updated,
9027 * so we don't do microscopic update in schedule()
9028 * and double the fastpath cost.
9030 rq_clock_skip_update(rq
);
9032 se
->deadline
+= calc_delta_fair(se
->slice
, se
);
9035 static bool yield_to_task_fair(struct rq
*rq
, struct task_struct
*p
)
9037 struct sched_entity
*se
= &p
->se
;
9039 /* throttled hierarchies are not runnable */
9040 if (!se
->on_rq
|| throttled_hierarchy(cfs_rq_of(se
)))
9043 /* Tell the scheduler that we'd really like se to run next. */
9046 yield_task_fair(rq
);
9052 /**************************************************
9053 * Fair scheduling class load-balancing methods.
9057 * The purpose of load-balancing is to achieve the same basic fairness the
9058 * per-CPU scheduler provides, namely provide a proportional amount of compute
9059 * time to each task. This is expressed in the following equation:
9061 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
9063 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9064 * W_i,0 is defined as:
9066 * W_i,0 = \Sum_j w_i,j (2)
9068 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9069 * is derived from the nice value as per sched_prio_to_weight[].
9071 * The weight average is an exponential decay average of the instantaneous
9074 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
9076 * C_i is the compute capacity of CPU i, typically it is the
9077 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9078 * can also include other factors [XXX].
9080 * To achieve this balance we define a measure of imbalance which follows
9081 * directly from (1):
9083 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
9085 * We them move tasks around to minimize the imbalance. In the continuous
9086 * function space it is obvious this converges, in the discrete case we get
9087 * a few fun cases generally called infeasible weight scenarios.
9090 * - infeasible weights;
9091 * - local vs global optima in the discrete case. ]
9096 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9097 * for all i,j solution, we create a tree of CPUs that follows the hardware
9098 * topology where each level pairs two lower groups (or better). This results
9099 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9100 * tree to only the first of the previous level and we decrease the frequency
9101 * of load-balance at each level inversely proportional to the number of CPUs in
9107 * \Sum { --- * --- * 2^i } = O(n) (5)
9109 * `- size of each group
9110 * | | `- number of CPUs doing load-balance
9112 * `- sum over all levels
9114 * Coupled with a limit on how many tasks we can migrate every balance pass,
9115 * this makes (5) the runtime complexity of the balancer.
9117 * An important property here is that each CPU is still (indirectly) connected
9118 * to every other CPU in at most O(log n) steps:
9120 * The adjacency matrix of the resulting graph is given by:
9123 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
9126 * And you'll find that:
9128 * A^(log_2 n)_i,j != 0 for all i,j (7)
9130 * Showing there's indeed a path between every CPU in at most O(log n) steps.
9131 * The task movement gives a factor of O(m), giving a convergence complexity
9134 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
9139 * In order to avoid CPUs going idle while there's still work to do, new idle
9140 * balancing is more aggressive and has the newly idle CPU iterate up the domain
9141 * tree itself instead of relying on other CPUs to bring it work.
9143 * This adds some complexity to both (5) and (8) but it reduces the total idle
9151 * Cgroups make a horror show out of (2), instead of a simple sum we get:
9154 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
9159 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
9161 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9163 * The big problem is S_k, its a global sum needed to compute a local (W_i)
9166 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9167 * rewrite all of this once again.]
9170 static unsigned long __read_mostly max_load_balance_interval
= HZ
/10;
9172 enum fbq_type
{ regular
, remote
, all
};
9175 * 'group_type' describes the group of CPUs at the moment of load balancing.
9177 * The enum is ordered by pulling priority, with the group with lowest priority
9178 * first so the group_type can simply be compared when selecting the busiest
9179 * group. See update_sd_pick_busiest().
9182 /* The group has spare capacity that can be used to run more tasks. */
9183 group_has_spare
= 0,
9185 * The group is fully used and the tasks don't compete for more CPU
9186 * cycles. Nevertheless, some tasks might wait before running.
9190 * One task doesn't fit with CPU's capacity and must be migrated to a
9191 * more powerful CPU.
9195 * Balance SMT group that's fully busy. Can benefit from migration
9196 * a task on SMT with busy sibling to another CPU on idle core.
9200 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9201 * and the task should be migrated to it instead of running on the
9206 * The tasks' affinity constraints previously prevented the scheduler
9207 * from balancing the load across the system.
9211 * The CPU is overloaded and can't provide expected CPU cycles to all
9217 enum migration_type
{
9224 #define LBF_ALL_PINNED 0x01
9225 #define LBF_NEED_BREAK 0x02
9226 #define LBF_DST_PINNED 0x04
9227 #define LBF_SOME_PINNED 0x08
9228 #define LBF_ACTIVE_LB 0x10
9231 struct sched_domain
*sd
;
9239 struct cpumask
*dst_grpmask
;
9241 enum cpu_idle_type idle
;
9243 /* The set of CPUs under consideration for load-balancing */
9244 struct cpumask
*cpus
;
9249 unsigned int loop_break
;
9250 unsigned int loop_max
;
9252 enum fbq_type fbq_type
;
9253 enum migration_type migration_type
;
9254 struct list_head tasks
;
9258 * Is this task likely cache-hot:
9260 static int task_hot(struct task_struct
*p
, struct lb_env
*env
)
9264 lockdep_assert_rq_held(env
->src_rq
);
9266 if (p
->sched_class
!= &fair_sched_class
)
9269 if (unlikely(task_has_idle_policy(p
)))
9272 /* SMT siblings share cache */
9273 if (env
->sd
->flags
& SD_SHARE_CPUCAPACITY
)
9277 * Buddy candidates are cache hot:
9279 if (sched_feat(CACHE_HOT_BUDDY
) && env
->dst_rq
->nr_running
&&
9280 (&p
->se
== cfs_rq_of(&p
->se
)->next
))
9283 if (sysctl_sched_migration_cost
== -1)
9287 * Don't migrate task if the task's cookie does not match
9288 * with the destination CPU's core cookie.
9290 if (!sched_core_cookie_match(cpu_rq(env
->dst_cpu
), p
))
9293 if (sysctl_sched_migration_cost
== 0)
9296 delta
= rq_clock_task(env
->src_rq
) - p
->se
.exec_start
;
9298 return delta
< (s64
)sysctl_sched_migration_cost
;
9301 #ifdef CONFIG_NUMA_BALANCING
9303 * Returns 1, if task migration degrades locality
9304 * Returns 0, if task migration improves locality i.e migration preferred.
9305 * Returns -1, if task migration is not affected by locality.
9307 static int migrate_degrades_locality(struct task_struct
*p
, struct lb_env
*env
)
9309 struct numa_group
*numa_group
= rcu_dereference(p
->numa_group
);
9310 unsigned long src_weight
, dst_weight
;
9311 int src_nid
, dst_nid
, dist
;
9313 if (!static_branch_likely(&sched_numa_balancing
))
9316 if (!p
->numa_faults
|| !(env
->sd
->flags
& SD_NUMA
))
9319 src_nid
= cpu_to_node(env
->src_cpu
);
9320 dst_nid
= cpu_to_node(env
->dst_cpu
);
9322 if (src_nid
== dst_nid
)
9325 /* Migrating away from the preferred node is always bad. */
9326 if (src_nid
== p
->numa_preferred_nid
) {
9327 if (env
->src_rq
->nr_running
> env
->src_rq
->nr_preferred_running
)
9333 /* Encourage migration to the preferred node. */
9334 if (dst_nid
== p
->numa_preferred_nid
)
9337 /* Leaving a core idle is often worse than degrading locality. */
9338 if (env
->idle
== CPU_IDLE
)
9341 dist
= node_distance(src_nid
, dst_nid
);
9343 src_weight
= group_weight(p
, src_nid
, dist
);
9344 dst_weight
= group_weight(p
, dst_nid
, dist
);
9346 src_weight
= task_weight(p
, src_nid
, dist
);
9347 dst_weight
= task_weight(p
, dst_nid
, dist
);
9350 return dst_weight
< src_weight
;
9354 static inline int migrate_degrades_locality(struct task_struct
*p
,
9362 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9365 int can_migrate_task(struct task_struct
*p
, struct lb_env
*env
)
9369 lockdep_assert_rq_held(env
->src_rq
);
9372 * We do not migrate tasks that are:
9373 * 1) throttled_lb_pair, or
9374 * 2) cannot be migrated to this CPU due to cpus_ptr, or
9375 * 3) running (obviously), or
9376 * 4) are cache-hot on their current CPU.
9378 if (throttled_lb_pair(task_group(p
), env
->src_cpu
, env
->dst_cpu
))
9381 /* Disregard percpu kthreads; they are where they need to be. */
9382 if (kthread_is_per_cpu(p
))
9385 if (!cpumask_test_cpu(env
->dst_cpu
, p
->cpus_ptr
)) {
9388 schedstat_inc(p
->stats
.nr_failed_migrations_affine
);
9390 env
->flags
|= LBF_SOME_PINNED
;
9393 * Remember if this task can be migrated to any other CPU in
9394 * our sched_group. We may want to revisit it if we couldn't
9395 * meet load balance goals by pulling other tasks on src_cpu.
9397 * Avoid computing new_dst_cpu
9399 * - if we have already computed one in current iteration
9400 * - if it's an active balance
9402 if (env
->idle
== CPU_NEWLY_IDLE
||
9403 env
->flags
& (LBF_DST_PINNED
| LBF_ACTIVE_LB
))
9406 /* Prevent to re-select dst_cpu via env's CPUs: */
9407 for_each_cpu_and(cpu
, env
->dst_grpmask
, env
->cpus
) {
9408 if (cpumask_test_cpu(cpu
, p
->cpus_ptr
)) {
9409 env
->flags
|= LBF_DST_PINNED
;
9410 env
->new_dst_cpu
= cpu
;
9418 /* Record that we found at least one task that could run on dst_cpu */
9419 env
->flags
&= ~LBF_ALL_PINNED
;
9421 if (task_on_cpu(env
->src_rq
, p
)) {
9422 schedstat_inc(p
->stats
.nr_failed_migrations_running
);
9427 * Aggressive migration if:
9429 * 2) destination numa is preferred
9430 * 3) task is cache cold, or
9431 * 4) too many balance attempts have failed.
9433 if (env
->flags
& LBF_ACTIVE_LB
)
9436 tsk_cache_hot
= migrate_degrades_locality(p
, env
);
9437 if (tsk_cache_hot
== -1)
9438 tsk_cache_hot
= task_hot(p
, env
);
9440 if (tsk_cache_hot
<= 0 ||
9441 env
->sd
->nr_balance_failed
> env
->sd
->cache_nice_tries
) {
9442 if (tsk_cache_hot
== 1) {
9443 schedstat_inc(env
->sd
->lb_hot_gained
[env
->idle
]);
9444 schedstat_inc(p
->stats
.nr_forced_migrations
);
9449 schedstat_inc(p
->stats
.nr_failed_migrations_hot
);
9454 * detach_task() -- detach the task for the migration specified in env
9456 static void detach_task(struct task_struct
*p
, struct lb_env
*env
)
9458 lockdep_assert_rq_held(env
->src_rq
);
9460 deactivate_task(env
->src_rq
, p
, DEQUEUE_NOCLOCK
);
9461 set_task_cpu(p
, env
->dst_cpu
);
9465 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9466 * part of active balancing operations within "domain".
9468 * Returns a task if successful and NULL otherwise.
9470 static struct task_struct
*detach_one_task(struct lb_env
*env
)
9472 struct task_struct
*p
;
9474 lockdep_assert_rq_held(env
->src_rq
);
9476 list_for_each_entry_reverse(p
,
9477 &env
->src_rq
->cfs_tasks
, se
.group_node
) {
9478 if (!can_migrate_task(p
, env
))
9481 detach_task(p
, env
);
9484 * Right now, this is only the second place where
9485 * lb_gained[env->idle] is updated (other is detach_tasks)
9486 * so we can safely collect stats here rather than
9487 * inside detach_tasks().
9489 schedstat_inc(env
->sd
->lb_gained
[env
->idle
]);
9496 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9497 * busiest_rq, as part of a balancing operation within domain "sd".
9499 * Returns number of detached tasks if successful and 0 otherwise.
9501 static int detach_tasks(struct lb_env
*env
)
9503 struct list_head
*tasks
= &env
->src_rq
->cfs_tasks
;
9504 unsigned long util
, load
;
9505 struct task_struct
*p
;
9508 lockdep_assert_rq_held(env
->src_rq
);
9511 * Source run queue has been emptied by another CPU, clear
9512 * LBF_ALL_PINNED flag as we will not test any task.
9514 if (env
->src_rq
->nr_running
<= 1) {
9515 env
->flags
&= ~LBF_ALL_PINNED
;
9519 if (env
->imbalance
<= 0)
9522 while (!list_empty(tasks
)) {
9524 * We don't want to steal all, otherwise we may be treated likewise,
9525 * which could at worst lead to a livelock crash.
9527 if (env
->idle
&& env
->src_rq
->nr_running
<= 1)
9531 /* We've more or less seen every task there is, call it quits */
9532 if (env
->loop
> env
->loop_max
)
9535 /* take a breather every nr_migrate tasks */
9536 if (env
->loop
> env
->loop_break
) {
9537 env
->loop_break
+= SCHED_NR_MIGRATE_BREAK
;
9538 env
->flags
|= LBF_NEED_BREAK
;
9542 p
= list_last_entry(tasks
, struct task_struct
, se
.group_node
);
9544 if (!can_migrate_task(p
, env
))
9547 switch (env
->migration_type
) {
9550 * Depending of the number of CPUs and tasks and the
9551 * cgroup hierarchy, task_h_load() can return a null
9552 * value. Make sure that env->imbalance decreases
9553 * otherwise detach_tasks() will stop only after
9554 * detaching up to loop_max tasks.
9556 load
= max_t(unsigned long, task_h_load(p
), 1);
9558 if (sched_feat(LB_MIN
) &&
9559 load
< 16 && !env
->sd
->nr_balance_failed
)
9563 * Make sure that we don't migrate too much load.
9564 * Nevertheless, let relax the constraint if
9565 * scheduler fails to find a good waiting task to
9568 if (shr_bound(load
, env
->sd
->nr_balance_failed
) > env
->imbalance
)
9571 env
->imbalance
-= load
;
9575 util
= task_util_est(p
);
9577 if (shr_bound(util
, env
->sd
->nr_balance_failed
) > env
->imbalance
)
9580 env
->imbalance
-= util
;
9587 case migrate_misfit
:
9588 /* This is not a misfit task */
9589 if (task_fits_cpu(p
, env
->src_cpu
))
9596 detach_task(p
, env
);
9597 list_add(&p
->se
.group_node
, &env
->tasks
);
9601 #ifdef CONFIG_PREEMPTION
9603 * NEWIDLE balancing is a source of latency, so preemptible
9604 * kernels will stop after the first task is detached to minimize
9605 * the critical section.
9607 if (env
->idle
== CPU_NEWLY_IDLE
)
9612 * We only want to steal up to the prescribed amount of
9615 if (env
->imbalance
<= 0)
9620 list_move(&p
->se
.group_node
, tasks
);
9624 * Right now, this is one of only two places we collect this stat
9625 * so we can safely collect detach_one_task() stats here rather
9626 * than inside detach_one_task().
9628 schedstat_add(env
->sd
->lb_gained
[env
->idle
], detached
);
9634 * attach_task() -- attach the task detached by detach_task() to its new rq.
9636 static void attach_task(struct rq
*rq
, struct task_struct
*p
)
9638 lockdep_assert_rq_held(rq
);
9640 WARN_ON_ONCE(task_rq(p
) != rq
);
9641 activate_task(rq
, p
, ENQUEUE_NOCLOCK
);
9642 wakeup_preempt(rq
, p
, 0);
9646 * attach_one_task() -- attaches the task returned from detach_one_task() to
9649 static void attach_one_task(struct rq
*rq
, struct task_struct
*p
)
9654 update_rq_clock(rq
);
9660 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9663 static void attach_tasks(struct lb_env
*env
)
9665 struct list_head
*tasks
= &env
->tasks
;
9666 struct task_struct
*p
;
9669 rq_lock(env
->dst_rq
, &rf
);
9670 update_rq_clock(env
->dst_rq
);
9672 while (!list_empty(tasks
)) {
9673 p
= list_first_entry(tasks
, struct task_struct
, se
.group_node
);
9674 list_del_init(&p
->se
.group_node
);
9676 attach_task(env
->dst_rq
, p
);
9679 rq_unlock(env
->dst_rq
, &rf
);
9682 #ifdef CONFIG_NO_HZ_COMMON
9683 static inline bool cfs_rq_has_blocked(struct cfs_rq
*cfs_rq
)
9685 if (cfs_rq
->avg
.load_avg
)
9688 if (cfs_rq
->avg
.util_avg
)
9694 static inline bool others_have_blocked(struct rq
*rq
)
9696 if (cpu_util_rt(rq
))
9699 if (cpu_util_dl(rq
))
9702 if (hw_load_avg(rq
))
9705 if (cpu_util_irq(rq
))
9711 static inline void update_blocked_load_tick(struct rq
*rq
)
9713 WRITE_ONCE(rq
->last_blocked_load_update_tick
, jiffies
);
9716 static inline void update_blocked_load_status(struct rq
*rq
, bool has_blocked
)
9719 rq
->has_blocked_load
= 0;
9722 static inline bool cfs_rq_has_blocked(struct cfs_rq
*cfs_rq
) { return false; }
9723 static inline bool others_have_blocked(struct rq
*rq
) { return false; }
9724 static inline void update_blocked_load_tick(struct rq
*rq
) {}
9725 static inline void update_blocked_load_status(struct rq
*rq
, bool has_blocked
) {}
9728 static bool __update_blocked_others(struct rq
*rq
, bool *done
)
9733 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9734 * DL and IRQ signals have been updated before updating CFS.
9736 updated
= update_other_load_avgs(rq
);
9738 if (others_have_blocked(rq
))
9744 #ifdef CONFIG_FAIR_GROUP_SCHED
9746 static bool __update_blocked_fair(struct rq
*rq
, bool *done
)
9748 struct cfs_rq
*cfs_rq
, *pos
;
9749 bool decayed
= false;
9750 int cpu
= cpu_of(rq
);
9753 * Iterates the task_group tree in a bottom up fashion, see
9754 * list_add_leaf_cfs_rq() for details.
9756 for_each_leaf_cfs_rq_safe(rq
, cfs_rq
, pos
) {
9757 struct sched_entity
*se
;
9759 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq
), cfs_rq
)) {
9760 update_tg_load_avg(cfs_rq
);
9762 if (cfs_rq
->nr_running
== 0)
9763 update_idle_cfs_rq_clock_pelt(cfs_rq
);
9765 if (cfs_rq
== &rq
->cfs
)
9769 /* Propagate pending load changes to the parent, if any: */
9770 se
= cfs_rq
->tg
->se
[cpu
];
9771 if (se
&& !skip_blocked_update(se
))
9772 update_load_avg(cfs_rq_of(se
), se
, UPDATE_TG
);
9775 * There can be a lot of idle CPU cgroups. Don't let fully
9776 * decayed cfs_rqs linger on the list.
9778 if (cfs_rq_is_decayed(cfs_rq
))
9779 list_del_leaf_cfs_rq(cfs_rq
);
9781 /* Don't need periodic decay once load/util_avg are null */
9782 if (cfs_rq_has_blocked(cfs_rq
))
9790 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9791 * This needs to be done in a top-down fashion because the load of a child
9792 * group is a fraction of its parents load.
9794 static void update_cfs_rq_h_load(struct cfs_rq
*cfs_rq
)
9796 struct rq
*rq
= rq_of(cfs_rq
);
9797 struct sched_entity
*se
= cfs_rq
->tg
->se
[cpu_of(rq
)];
9798 unsigned long now
= jiffies
;
9801 if (cfs_rq
->last_h_load_update
== now
)
9804 WRITE_ONCE(cfs_rq
->h_load_next
, NULL
);
9805 for_each_sched_entity(se
) {
9806 cfs_rq
= cfs_rq_of(se
);
9807 WRITE_ONCE(cfs_rq
->h_load_next
, se
);
9808 if (cfs_rq
->last_h_load_update
== now
)
9813 cfs_rq
->h_load
= cfs_rq_load_avg(cfs_rq
);
9814 cfs_rq
->last_h_load_update
= now
;
9817 while ((se
= READ_ONCE(cfs_rq
->h_load_next
)) != NULL
) {
9818 load
= cfs_rq
->h_load
;
9819 load
= div64_ul(load
* se
->avg
.load_avg
,
9820 cfs_rq_load_avg(cfs_rq
) + 1);
9821 cfs_rq
= group_cfs_rq(se
);
9822 cfs_rq
->h_load
= load
;
9823 cfs_rq
->last_h_load_update
= now
;
9827 static unsigned long task_h_load(struct task_struct
*p
)
9829 struct cfs_rq
*cfs_rq
= task_cfs_rq(p
);
9831 update_cfs_rq_h_load(cfs_rq
);
9832 return div64_ul(p
->se
.avg
.load_avg
* cfs_rq
->h_load
,
9833 cfs_rq_load_avg(cfs_rq
) + 1);
9836 static bool __update_blocked_fair(struct rq
*rq
, bool *done
)
9838 struct cfs_rq
*cfs_rq
= &rq
->cfs
;
9841 decayed
= update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq
), cfs_rq
);
9842 if (cfs_rq_has_blocked(cfs_rq
))
9848 static unsigned long task_h_load(struct task_struct
*p
)
9850 return p
->se
.avg
.load_avg
;
9854 static void sched_balance_update_blocked_averages(int cpu
)
9856 bool decayed
= false, done
= true;
9857 struct rq
*rq
= cpu_rq(cpu
);
9860 rq_lock_irqsave(rq
, &rf
);
9861 update_blocked_load_tick(rq
);
9862 update_rq_clock(rq
);
9864 decayed
|= __update_blocked_others(rq
, &done
);
9865 decayed
|= __update_blocked_fair(rq
, &done
);
9867 update_blocked_load_status(rq
, !done
);
9869 cpufreq_update_util(rq
, 0);
9870 rq_unlock_irqrestore(rq
, &rf
);
9873 /********** Helpers for sched_balance_find_src_group ************************/
9876 * sg_lb_stats - stats of a sched_group required for load-balancing:
9878 struct sg_lb_stats
{
9879 unsigned long avg_load
; /* Avg load over the CPUs of the group */
9880 unsigned long group_load
; /* Total load over the CPUs of the group */
9881 unsigned long group_capacity
; /* Capacity over the CPUs of the group */
9882 unsigned long group_util
; /* Total utilization over the CPUs of the group */
9883 unsigned long group_runnable
; /* Total runnable time over the CPUs of the group */
9884 unsigned int sum_nr_running
; /* Nr of all tasks running in the group */
9885 unsigned int sum_h_nr_running
; /* Nr of CFS tasks running in the group */
9886 unsigned int idle_cpus
; /* Nr of idle CPUs in the group */
9887 unsigned int group_weight
;
9888 enum group_type group_type
;
9889 unsigned int group_asym_packing
; /* Tasks should be moved to preferred CPU */
9890 unsigned int group_smt_balance
; /* Task on busy SMT be moved */
9891 unsigned long group_misfit_task_load
; /* A CPU has a task too big for its capacity */
9892 #ifdef CONFIG_NUMA_BALANCING
9893 unsigned int nr_numa_running
;
9894 unsigned int nr_preferred_running
;
9899 * sd_lb_stats - stats of a sched_domain required for load-balancing:
9901 struct sd_lb_stats
{
9902 struct sched_group
*busiest
; /* Busiest group in this sd */
9903 struct sched_group
*local
; /* Local group in this sd */
9904 unsigned long total_load
; /* Total load of all groups in sd */
9905 unsigned long total_capacity
; /* Total capacity of all groups in sd */
9906 unsigned long avg_load
; /* Average load across all groups in sd */
9907 unsigned int prefer_sibling
; /* Tasks should go to sibling first */
9909 struct sg_lb_stats busiest_stat
; /* Statistics of the busiest group */
9910 struct sg_lb_stats local_stat
; /* Statistics of the local group */
9913 static inline void init_sd_lb_stats(struct sd_lb_stats
*sds
)
9916 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9917 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9918 * We must however set busiest_stat::group_type and
9919 * busiest_stat::idle_cpus to the worst busiest group because
9920 * update_sd_pick_busiest() reads these before assignment.
9922 *sds
= (struct sd_lb_stats
){
9926 .total_capacity
= 0UL,
9928 .idle_cpus
= UINT_MAX
,
9929 .group_type
= group_has_spare
,
9934 static unsigned long scale_rt_capacity(int cpu
)
9936 unsigned long max
= get_actual_cpu_capacity(cpu
);
9937 struct rq
*rq
= cpu_rq(cpu
);
9938 unsigned long used
, free
;
9941 irq
= cpu_util_irq(rq
);
9943 if (unlikely(irq
>= max
))
9947 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9948 * (running and not running) with weights 0 and 1024 respectively.
9950 used
= cpu_util_rt(rq
);
9951 used
+= cpu_util_dl(rq
);
9953 if (unlikely(used
>= max
))
9958 return scale_irq_capacity(free
, irq
, max
);
9961 static void update_cpu_capacity(struct sched_domain
*sd
, int cpu
)
9963 unsigned long capacity
= scale_rt_capacity(cpu
);
9964 struct sched_group
*sdg
= sd
->groups
;
9969 cpu_rq(cpu
)->cpu_capacity
= capacity
;
9970 trace_sched_cpu_capacity_tp(cpu_rq(cpu
));
9972 sdg
->sgc
->capacity
= capacity
;
9973 sdg
->sgc
->min_capacity
= capacity
;
9974 sdg
->sgc
->max_capacity
= capacity
;
9977 void update_group_capacity(struct sched_domain
*sd
, int cpu
)
9979 struct sched_domain
*child
= sd
->child
;
9980 struct sched_group
*group
, *sdg
= sd
->groups
;
9981 unsigned long capacity
, min_capacity
, max_capacity
;
9982 unsigned long interval
;
9984 interval
= msecs_to_jiffies(sd
->balance_interval
);
9985 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
9986 sdg
->sgc
->next_update
= jiffies
+ interval
;
9989 update_cpu_capacity(sd
, cpu
);
9994 min_capacity
= ULONG_MAX
;
9997 if (child
->flags
& SD_OVERLAP
) {
9999 * SD_OVERLAP domains cannot assume that child groups
10000 * span the current group.
10003 for_each_cpu(cpu
, sched_group_span(sdg
)) {
10004 unsigned long cpu_cap
= capacity_of(cpu
);
10006 capacity
+= cpu_cap
;
10007 min_capacity
= min(cpu_cap
, min_capacity
);
10008 max_capacity
= max(cpu_cap
, max_capacity
);
10012 * !SD_OVERLAP domains can assume that child groups
10013 * span the current group.
10016 group
= child
->groups
;
10018 struct sched_group_capacity
*sgc
= group
->sgc
;
10020 capacity
+= sgc
->capacity
;
10021 min_capacity
= min(sgc
->min_capacity
, min_capacity
);
10022 max_capacity
= max(sgc
->max_capacity
, max_capacity
);
10023 group
= group
->next
;
10024 } while (group
!= child
->groups
);
10027 sdg
->sgc
->capacity
= capacity
;
10028 sdg
->sgc
->min_capacity
= min_capacity
;
10029 sdg
->sgc
->max_capacity
= max_capacity
;
10033 * Check whether the capacity of the rq has been noticeably reduced by side
10034 * activity. The imbalance_pct is used for the threshold.
10035 * Return true is the capacity is reduced
10038 check_cpu_capacity(struct rq
*rq
, struct sched_domain
*sd
)
10040 return ((rq
->cpu_capacity
* sd
->imbalance_pct
) <
10041 (arch_scale_cpu_capacity(cpu_of(rq
)) * 100));
10044 /* Check if the rq has a misfit task */
10045 static inline bool check_misfit_status(struct rq
*rq
)
10047 return rq
->misfit_task_load
;
10051 * Group imbalance indicates (and tries to solve) the problem where balancing
10052 * groups is inadequate due to ->cpus_ptr constraints.
10054 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10055 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10058 * { 0 1 2 3 } { 4 5 6 7 }
10061 * If we were to balance group-wise we'd place two tasks in the first group and
10062 * two tasks in the second group. Clearly this is undesired as it will overload
10063 * cpu 3 and leave one of the CPUs in the second group unused.
10065 * The current solution to this issue is detecting the skew in the first group
10066 * by noticing the lower domain failed to reach balance and had difficulty
10067 * moving tasks due to affinity constraints.
10069 * When this is so detected; this group becomes a candidate for busiest; see
10070 * update_sd_pick_busiest(). And calculate_imbalance() and
10071 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10072 * to create an effective group imbalance.
10074 * This is a somewhat tricky proposition since the next run might not find the
10075 * group imbalance and decide the groups need to be balanced again. A most
10076 * subtle and fragile situation.
10079 static inline int sg_imbalanced(struct sched_group
*group
)
10081 return group
->sgc
->imbalance
;
10085 * group_has_capacity returns true if the group has spare capacity that could
10086 * be used by some tasks.
10087 * We consider that a group has spare capacity if the number of task is
10088 * smaller than the number of CPUs or if the utilization is lower than the
10089 * available capacity for CFS tasks.
10090 * For the latter, we use a threshold to stabilize the state, to take into
10091 * account the variance of the tasks' load and to return true if the available
10092 * capacity in meaningful for the load balancer.
10093 * As an example, an available capacity of 1% can appear but it doesn't make
10094 * any benefit for the load balance.
10097 group_has_capacity(unsigned int imbalance_pct
, struct sg_lb_stats
*sgs
)
10099 if (sgs
->sum_nr_running
< sgs
->group_weight
)
10102 if ((sgs
->group_capacity
* imbalance_pct
) <
10103 (sgs
->group_runnable
* 100))
10106 if ((sgs
->group_capacity
* 100) >
10107 (sgs
->group_util
* imbalance_pct
))
10114 * group_is_overloaded returns true if the group has more tasks than it can
10116 * group_is_overloaded is not equals to !group_has_capacity because a group
10117 * with the exact right number of tasks, has no more spare capacity but is not
10118 * overloaded so both group_has_capacity and group_is_overloaded return
10122 group_is_overloaded(unsigned int imbalance_pct
, struct sg_lb_stats
*sgs
)
10124 if (sgs
->sum_nr_running
<= sgs
->group_weight
)
10127 if ((sgs
->group_capacity
* 100) <
10128 (sgs
->group_util
* imbalance_pct
))
10131 if ((sgs
->group_capacity
* imbalance_pct
) <
10132 (sgs
->group_runnable
* 100))
10139 group_type
group_classify(unsigned int imbalance_pct
,
10140 struct sched_group
*group
,
10141 struct sg_lb_stats
*sgs
)
10143 if (group_is_overloaded(imbalance_pct
, sgs
))
10144 return group_overloaded
;
10146 if (sg_imbalanced(group
))
10147 return group_imbalanced
;
10149 if (sgs
->group_asym_packing
)
10150 return group_asym_packing
;
10152 if (sgs
->group_smt_balance
)
10153 return group_smt_balance
;
10155 if (sgs
->group_misfit_task_load
)
10156 return group_misfit_task
;
10158 if (!group_has_capacity(imbalance_pct
, sgs
))
10159 return group_fully_busy
;
10161 return group_has_spare
;
10165 * sched_use_asym_prio - Check whether asym_packing priority must be used
10166 * @sd: The scheduling domain of the load balancing
10169 * Always use CPU priority when balancing load between SMT siblings. When
10170 * balancing load between cores, it is not sufficient that @cpu is idle. Only
10171 * use CPU priority if the whole core is idle.
10173 * Returns: True if the priority of @cpu must be followed. False otherwise.
10175 static bool sched_use_asym_prio(struct sched_domain
*sd
, int cpu
)
10177 if (!(sd
->flags
& SD_ASYM_PACKING
))
10180 if (!sched_smt_active())
10183 return sd
->flags
& SD_SHARE_CPUCAPACITY
|| is_core_idle(cpu
);
10186 static inline bool sched_asym(struct sched_domain
*sd
, int dst_cpu
, int src_cpu
)
10189 * First check if @dst_cpu can do asym_packing load balance. Only do it
10190 * if it has higher priority than @src_cpu.
10192 return sched_use_asym_prio(sd
, dst_cpu
) &&
10193 sched_asym_prefer(dst_cpu
, src_cpu
);
10197 * sched_group_asym - Check if the destination CPU can do asym_packing balance
10198 * @env: The load balancing environment
10199 * @sgs: Load-balancing statistics of the candidate busiest group
10200 * @group: The candidate busiest group
10202 * @env::dst_cpu can do asym_packing if it has higher priority than the
10203 * preferred CPU of @group.
10205 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10209 sched_group_asym(struct lb_env
*env
, struct sg_lb_stats
*sgs
, struct sched_group
*group
)
10212 * CPU priorities do not make sense for SMT cores with more than one
10215 if ((group
->flags
& SD_SHARE_CPUCAPACITY
) &&
10216 (sgs
->group_weight
- sgs
->idle_cpus
!= 1))
10219 return sched_asym(env
->sd
, env
->dst_cpu
, group
->asym_prefer_cpu
);
10222 /* One group has more than one SMT CPU while the other group does not */
10223 static inline bool smt_vs_nonsmt_groups(struct sched_group
*sg1
,
10224 struct sched_group
*sg2
)
10229 return (sg1
->flags
& SD_SHARE_CPUCAPACITY
) !=
10230 (sg2
->flags
& SD_SHARE_CPUCAPACITY
);
10233 static inline bool smt_balance(struct lb_env
*env
, struct sg_lb_stats
*sgs
,
10234 struct sched_group
*group
)
10240 * For SMT source group, it is better to move a task
10241 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10242 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10245 if (group
->flags
& SD_SHARE_CPUCAPACITY
&&
10246 sgs
->sum_h_nr_running
> 1)
10252 static inline long sibling_imbalance(struct lb_env
*env
,
10253 struct sd_lb_stats
*sds
,
10254 struct sg_lb_stats
*busiest
,
10255 struct sg_lb_stats
*local
)
10257 int ncores_busiest
, ncores_local
;
10260 if (!env
->idle
|| !busiest
->sum_nr_running
)
10263 ncores_busiest
= sds
->busiest
->cores
;
10264 ncores_local
= sds
->local
->cores
;
10266 if (ncores_busiest
== ncores_local
) {
10267 imbalance
= busiest
->sum_nr_running
;
10268 lsub_positive(&imbalance
, local
->sum_nr_running
);
10272 /* Balance such that nr_running/ncores ratio are same on both groups */
10273 imbalance
= ncores_local
* busiest
->sum_nr_running
;
10274 lsub_positive(&imbalance
, ncores_busiest
* local
->sum_nr_running
);
10275 /* Normalize imbalance and do rounding on normalization */
10276 imbalance
= 2 * imbalance
+ ncores_local
+ ncores_busiest
;
10277 imbalance
/= ncores_local
+ ncores_busiest
;
10279 /* Take advantage of resource in an empty sched group */
10280 if (imbalance
<= 1 && local
->sum_nr_running
== 0 &&
10281 busiest
->sum_nr_running
> 1)
10288 sched_reduced_capacity(struct rq
*rq
, struct sched_domain
*sd
)
10291 * When there is more than 1 task, the group_overloaded case already
10292 * takes care of cpu with reduced capacity
10294 if (rq
->cfs
.h_nr_running
!= 1)
10297 return check_cpu_capacity(rq
, sd
);
10301 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10302 * @env: The load balancing environment.
10303 * @sds: Load-balancing data with statistics of the local group.
10304 * @group: sched_group whose statistics are to be updated.
10305 * @sgs: variable to hold the statistics for this group.
10306 * @sg_overloaded: sched_group is overloaded
10307 * @sg_overutilized: sched_group is overutilized
10309 static inline void update_sg_lb_stats(struct lb_env
*env
,
10310 struct sd_lb_stats
*sds
,
10311 struct sched_group
*group
,
10312 struct sg_lb_stats
*sgs
,
10313 bool *sg_overloaded
,
10314 bool *sg_overutilized
)
10316 int i
, nr_running
, local_group
;
10318 memset(sgs
, 0, sizeof(*sgs
));
10320 local_group
= group
== sds
->local
;
10322 for_each_cpu_and(i
, sched_group_span(group
), env
->cpus
) {
10323 struct rq
*rq
= cpu_rq(i
);
10324 unsigned long load
= cpu_load(rq
);
10326 sgs
->group_load
+= load
;
10327 sgs
->group_util
+= cpu_util_cfs(i
);
10328 sgs
->group_runnable
+= cpu_runnable(rq
);
10329 sgs
->sum_h_nr_running
+= rq
->cfs
.h_nr_running
;
10331 nr_running
= rq
->nr_running
;
10332 sgs
->sum_nr_running
+= nr_running
;
10334 if (nr_running
> 1)
10335 *sg_overloaded
= 1;
10337 if (cpu_overutilized(i
))
10338 *sg_overutilized
= 1;
10340 #ifdef CONFIG_NUMA_BALANCING
10341 sgs
->nr_numa_running
+= rq
->nr_numa_running
;
10342 sgs
->nr_preferred_running
+= rq
->nr_preferred_running
;
10345 * No need to call idle_cpu() if nr_running is not 0
10347 if (!nr_running
&& idle_cpu(i
)) {
10349 /* Idle cpu can't have misfit task */
10356 if (env
->sd
->flags
& SD_ASYM_CPUCAPACITY
) {
10357 /* Check for a misfit task on the cpu */
10358 if (sgs
->group_misfit_task_load
< rq
->misfit_task_load
) {
10359 sgs
->group_misfit_task_load
= rq
->misfit_task_load
;
10360 *sg_overloaded
= 1;
10362 } else if (env
->idle
&& sched_reduced_capacity(rq
, env
->sd
)) {
10363 /* Check for a task running on a CPU with reduced capacity */
10364 if (sgs
->group_misfit_task_load
< load
)
10365 sgs
->group_misfit_task_load
= load
;
10369 sgs
->group_capacity
= group
->sgc
->capacity
;
10371 sgs
->group_weight
= group
->group_weight
;
10373 /* Check if dst CPU is idle and preferred to this group */
10374 if (!local_group
&& env
->idle
&& sgs
->sum_h_nr_running
&&
10375 sched_group_asym(env
, sgs
, group
))
10376 sgs
->group_asym_packing
= 1;
10378 /* Check for loaded SMT group to be balanced to dst CPU */
10379 if (!local_group
&& smt_balance(env
, sgs
, group
))
10380 sgs
->group_smt_balance
= 1;
10382 sgs
->group_type
= group_classify(env
->sd
->imbalance_pct
, group
, sgs
);
10384 /* Computing avg_load makes sense only when group is overloaded */
10385 if (sgs
->group_type
== group_overloaded
)
10386 sgs
->avg_load
= (sgs
->group_load
* SCHED_CAPACITY_SCALE
) /
10387 sgs
->group_capacity
;
10391 * update_sd_pick_busiest - return 1 on busiest group
10392 * @env: The load balancing environment.
10393 * @sds: sched_domain statistics
10394 * @sg: sched_group candidate to be checked for being the busiest
10395 * @sgs: sched_group statistics
10397 * Determine if @sg is a busier group than the previously selected
10400 * Return: %true if @sg is a busier group than the previously selected
10401 * busiest group. %false otherwise.
10403 static bool update_sd_pick_busiest(struct lb_env
*env
,
10404 struct sd_lb_stats
*sds
,
10405 struct sched_group
*sg
,
10406 struct sg_lb_stats
*sgs
)
10408 struct sg_lb_stats
*busiest
= &sds
->busiest_stat
;
10410 /* Make sure that there is at least one task to pull */
10411 if (!sgs
->sum_h_nr_running
)
10415 * Don't try to pull misfit tasks we can't help.
10416 * We can use max_capacity here as reduction in capacity on some
10417 * CPUs in the group should either be possible to resolve
10418 * internally or be covered by avg_load imbalance (eventually).
10420 if ((env
->sd
->flags
& SD_ASYM_CPUCAPACITY
) &&
10421 (sgs
->group_type
== group_misfit_task
) &&
10422 (!capacity_greater(capacity_of(env
->dst_cpu
), sg
->sgc
->max_capacity
) ||
10423 sds
->local_stat
.group_type
!= group_has_spare
))
10426 if (sgs
->group_type
> busiest
->group_type
)
10429 if (sgs
->group_type
< busiest
->group_type
)
10433 * The candidate and the current busiest group are the same type of
10434 * group. Let check which one is the busiest according to the type.
10437 switch (sgs
->group_type
) {
10438 case group_overloaded
:
10439 /* Select the overloaded group with highest avg_load. */
10440 return sgs
->avg_load
> busiest
->avg_load
;
10442 case group_imbalanced
:
10444 * Select the 1st imbalanced group as we don't have any way to
10445 * choose one more than another.
10449 case group_asym_packing
:
10450 /* Prefer to move from lowest priority CPU's work */
10451 return sched_asym_prefer(sds
->busiest
->asym_prefer_cpu
, sg
->asym_prefer_cpu
);
10453 case group_misfit_task
:
10455 * If we have more than one misfit sg go with the biggest
10458 return sgs
->group_misfit_task_load
> busiest
->group_misfit_task_load
;
10460 case group_smt_balance
:
10462 * Check if we have spare CPUs on either SMT group to
10463 * choose has spare or fully busy handling.
10465 if (sgs
->idle_cpus
!= 0 || busiest
->idle_cpus
!= 0)
10470 case group_fully_busy
:
10472 * Select the fully busy group with highest avg_load. In
10473 * theory, there is no need to pull task from such kind of
10474 * group because tasks have all compute capacity that they need
10475 * but we can still improve the overall throughput by reducing
10476 * contention when accessing shared HW resources.
10478 * XXX for now avg_load is not computed and always 0 so we
10479 * select the 1st one, except if @sg is composed of SMT
10483 if (sgs
->avg_load
< busiest
->avg_load
)
10486 if (sgs
->avg_load
== busiest
->avg_load
) {
10488 * SMT sched groups need more help than non-SMT groups.
10489 * If @sg happens to also be SMT, either choice is good.
10491 if (sds
->busiest
->flags
& SD_SHARE_CPUCAPACITY
)
10497 case group_has_spare
:
10499 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10500 * as we do not want to pull task off SMT core with one task
10501 * and make the core idle.
10503 if (smt_vs_nonsmt_groups(sds
->busiest
, sg
)) {
10504 if (sg
->flags
& SD_SHARE_CPUCAPACITY
&& sgs
->sum_h_nr_running
<= 1)
10512 * Select not overloaded group with lowest number of idle CPUs
10513 * and highest number of running tasks. We could also compare
10514 * the spare capacity which is more stable but it can end up
10515 * that the group has less spare capacity but finally more idle
10516 * CPUs which means less opportunity to pull tasks.
10518 if (sgs
->idle_cpus
> busiest
->idle_cpus
)
10520 else if ((sgs
->idle_cpus
== busiest
->idle_cpus
) &&
10521 (sgs
->sum_nr_running
<= busiest
->sum_nr_running
))
10528 * Candidate sg has no more than one task per CPU and has higher
10529 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10530 * throughput. Maximize throughput, power/energy consequences are not
10533 if ((env
->sd
->flags
& SD_ASYM_CPUCAPACITY
) &&
10534 (sgs
->group_type
<= group_fully_busy
) &&
10535 (capacity_greater(sg
->sgc
->min_capacity
, capacity_of(env
->dst_cpu
))))
10541 #ifdef CONFIG_NUMA_BALANCING
10542 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
10544 if (sgs
->sum_h_nr_running
> sgs
->nr_numa_running
)
10546 if (sgs
->sum_h_nr_running
> sgs
->nr_preferred_running
)
10551 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
10553 if (rq
->nr_running
> rq
->nr_numa_running
)
10555 if (rq
->nr_running
> rq
->nr_preferred_running
)
10560 static inline enum fbq_type
fbq_classify_group(struct sg_lb_stats
*sgs
)
10565 static inline enum fbq_type
fbq_classify_rq(struct rq
*rq
)
10569 #endif /* CONFIG_NUMA_BALANCING */
10572 struct sg_lb_stats
;
10575 * task_running_on_cpu - return 1 if @p is running on @cpu.
10578 static unsigned int task_running_on_cpu(int cpu
, struct task_struct
*p
)
10580 /* Task has no contribution or is new */
10581 if (cpu
!= task_cpu(p
) || !READ_ONCE(p
->se
.avg
.last_update_time
))
10584 if (task_on_rq_queued(p
))
10591 * idle_cpu_without - would a given CPU be idle without p ?
10592 * @cpu: the processor on which idleness is tested.
10593 * @p: task which should be ignored.
10595 * Return: 1 if the CPU would be idle. 0 otherwise.
10597 static int idle_cpu_without(int cpu
, struct task_struct
*p
)
10599 struct rq
*rq
= cpu_rq(cpu
);
10601 if (rq
->curr
!= rq
->idle
&& rq
->curr
!= p
)
10605 * rq->nr_running can't be used but an updated version without the
10606 * impact of p on cpu must be used instead. The updated nr_running
10607 * be computed and tested before calling idle_cpu_without().
10610 if (rq
->ttwu_pending
)
10617 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10618 * @sd: The sched_domain level to look for idlest group.
10619 * @group: sched_group whose statistics are to be updated.
10620 * @sgs: variable to hold the statistics for this group.
10621 * @p: The task for which we look for the idlest group/CPU.
10623 static inline void update_sg_wakeup_stats(struct sched_domain
*sd
,
10624 struct sched_group
*group
,
10625 struct sg_lb_stats
*sgs
,
10626 struct task_struct
*p
)
10630 memset(sgs
, 0, sizeof(*sgs
));
10632 /* Assume that task can't fit any CPU of the group */
10633 if (sd
->flags
& SD_ASYM_CPUCAPACITY
)
10634 sgs
->group_misfit_task_load
= 1;
10636 for_each_cpu(i
, sched_group_span(group
)) {
10637 struct rq
*rq
= cpu_rq(i
);
10638 unsigned int local
;
10640 sgs
->group_load
+= cpu_load_without(rq
, p
);
10641 sgs
->group_util
+= cpu_util_without(i
, p
);
10642 sgs
->group_runnable
+= cpu_runnable_without(rq
, p
);
10643 local
= task_running_on_cpu(i
, p
);
10644 sgs
->sum_h_nr_running
+= rq
->cfs
.h_nr_running
- local
;
10646 nr_running
= rq
->nr_running
- local
;
10647 sgs
->sum_nr_running
+= nr_running
;
10650 * No need to call idle_cpu_without() if nr_running is not 0
10652 if (!nr_running
&& idle_cpu_without(i
, p
))
10655 /* Check if task fits in the CPU */
10656 if (sd
->flags
& SD_ASYM_CPUCAPACITY
&&
10657 sgs
->group_misfit_task_load
&&
10658 task_fits_cpu(p
, i
))
10659 sgs
->group_misfit_task_load
= 0;
10663 sgs
->group_capacity
= group
->sgc
->capacity
;
10665 sgs
->group_weight
= group
->group_weight
;
10667 sgs
->group_type
= group_classify(sd
->imbalance_pct
, group
, sgs
);
10670 * Computing avg_load makes sense only when group is fully busy or
10673 if (sgs
->group_type
== group_fully_busy
||
10674 sgs
->group_type
== group_overloaded
)
10675 sgs
->avg_load
= (sgs
->group_load
* SCHED_CAPACITY_SCALE
) /
10676 sgs
->group_capacity
;
10679 static bool update_pick_idlest(struct sched_group
*idlest
,
10680 struct sg_lb_stats
*idlest_sgs
,
10681 struct sched_group
*group
,
10682 struct sg_lb_stats
*sgs
)
10684 if (sgs
->group_type
< idlest_sgs
->group_type
)
10687 if (sgs
->group_type
> idlest_sgs
->group_type
)
10691 * The candidate and the current idlest group are the same type of
10692 * group. Let check which one is the idlest according to the type.
10695 switch (sgs
->group_type
) {
10696 case group_overloaded
:
10697 case group_fully_busy
:
10698 /* Select the group with lowest avg_load. */
10699 if (idlest_sgs
->avg_load
<= sgs
->avg_load
)
10703 case group_imbalanced
:
10704 case group_asym_packing
:
10705 case group_smt_balance
:
10706 /* Those types are not used in the slow wakeup path */
10709 case group_misfit_task
:
10710 /* Select group with the highest max capacity */
10711 if (idlest
->sgc
->max_capacity
>= group
->sgc
->max_capacity
)
10715 case group_has_spare
:
10716 /* Select group with most idle CPUs */
10717 if (idlest_sgs
->idle_cpus
> sgs
->idle_cpus
)
10720 /* Select group with lowest group_util */
10721 if (idlest_sgs
->idle_cpus
== sgs
->idle_cpus
&&
10722 idlest_sgs
->group_util
<= sgs
->group_util
)
10732 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10735 * Assumes p is allowed on at least one CPU in sd.
10737 static struct sched_group
*
10738 sched_balance_find_dst_group(struct sched_domain
*sd
, struct task_struct
*p
, int this_cpu
)
10740 struct sched_group
*idlest
= NULL
, *local
= NULL
, *group
= sd
->groups
;
10741 struct sg_lb_stats local_sgs
, tmp_sgs
;
10742 struct sg_lb_stats
*sgs
;
10743 unsigned long imbalance
;
10744 struct sg_lb_stats idlest_sgs
= {
10745 .avg_load
= UINT_MAX
,
10746 .group_type
= group_overloaded
,
10752 /* Skip over this group if it has no CPUs allowed */
10753 if (!cpumask_intersects(sched_group_span(group
),
10757 /* Skip over this group if no cookie matched */
10758 if (!sched_group_cookie_match(cpu_rq(this_cpu
), p
, group
))
10761 local_group
= cpumask_test_cpu(this_cpu
,
10762 sched_group_span(group
));
10771 update_sg_wakeup_stats(sd
, group
, sgs
, p
);
10773 if (!local_group
&& update_pick_idlest(idlest
, &idlest_sgs
, group
, sgs
)) {
10778 } while (group
= group
->next
, group
!= sd
->groups
);
10781 /* There is no idlest group to push tasks to */
10785 /* The local group has been skipped because of CPU affinity */
10790 * If the local group is idler than the selected idlest group
10791 * don't try and push the task.
10793 if (local_sgs
.group_type
< idlest_sgs
.group_type
)
10797 * If the local group is busier than the selected idlest group
10798 * try and push the task.
10800 if (local_sgs
.group_type
> idlest_sgs
.group_type
)
10803 switch (local_sgs
.group_type
) {
10804 case group_overloaded
:
10805 case group_fully_busy
:
10807 /* Calculate allowed imbalance based on load */
10808 imbalance
= scale_load_down(NICE_0_LOAD
) *
10809 (sd
->imbalance_pct
-100) / 100;
10812 * When comparing groups across NUMA domains, it's possible for
10813 * the local domain to be very lightly loaded relative to the
10814 * remote domains but "imbalance" skews the comparison making
10815 * remote CPUs look much more favourable. When considering
10816 * cross-domain, add imbalance to the load on the remote node
10817 * and consider staying local.
10820 if ((sd
->flags
& SD_NUMA
) &&
10821 ((idlest_sgs
.avg_load
+ imbalance
) >= local_sgs
.avg_load
))
10825 * If the local group is less loaded than the selected
10826 * idlest group don't try and push any tasks.
10828 if (idlest_sgs
.avg_load
>= (local_sgs
.avg_load
+ imbalance
))
10831 if (100 * local_sgs
.avg_load
<= sd
->imbalance_pct
* idlest_sgs
.avg_load
)
10835 case group_imbalanced
:
10836 case group_asym_packing
:
10837 case group_smt_balance
:
10838 /* Those type are not used in the slow wakeup path */
10841 case group_misfit_task
:
10842 /* Select group with the highest max capacity */
10843 if (local
->sgc
->max_capacity
>= idlest
->sgc
->max_capacity
)
10847 case group_has_spare
:
10849 if (sd
->flags
& SD_NUMA
) {
10850 int imb_numa_nr
= sd
->imb_numa_nr
;
10851 #ifdef CONFIG_NUMA_BALANCING
10854 * If there is spare capacity at NUMA, try to select
10855 * the preferred node
10857 if (cpu_to_node(this_cpu
) == p
->numa_preferred_nid
)
10860 idlest_cpu
= cpumask_first(sched_group_span(idlest
));
10861 if (cpu_to_node(idlest_cpu
) == p
->numa_preferred_nid
)
10863 #endif /* CONFIG_NUMA_BALANCING */
10865 * Otherwise, keep the task close to the wakeup source
10866 * and improve locality if the number of running tasks
10867 * would remain below threshold where an imbalance is
10868 * allowed while accounting for the possibility the
10869 * task is pinned to a subset of CPUs. If there is a
10870 * real need of migration, periodic load balance will
10873 if (p
->nr_cpus_allowed
!= NR_CPUS
) {
10874 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(select_rq_mask
);
10876 cpumask_and(cpus
, sched_group_span(local
), p
->cpus_ptr
);
10877 imb_numa_nr
= min(cpumask_weight(cpus
), sd
->imb_numa_nr
);
10880 imbalance
= abs(local_sgs
.idle_cpus
- idlest_sgs
.idle_cpus
);
10881 if (!adjust_numa_imbalance(imbalance
,
10882 local_sgs
.sum_nr_running
+ 1,
10887 #endif /* CONFIG_NUMA */
10890 * Select group with highest number of idle CPUs. We could also
10891 * compare the utilization which is more stable but it can end
10892 * up that the group has less spare capacity but finally more
10893 * idle CPUs which means more opportunity to run task.
10895 if (local_sgs
.idle_cpus
>= idlest_sgs
.idle_cpus
)
10903 static void update_idle_cpu_scan(struct lb_env
*env
,
10904 unsigned long sum_util
)
10906 struct sched_domain_shared
*sd_share
;
10907 int llc_weight
, pct
;
10910 * Update the number of CPUs to scan in LLC domain, which could
10911 * be used as a hint in select_idle_cpu(). The update of sd_share
10912 * could be expensive because it is within a shared cache line.
10913 * So the write of this hint only occurs during periodic load
10914 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10915 * can fire way more frequently than the former.
10917 if (!sched_feat(SIS_UTIL
) || env
->idle
== CPU_NEWLY_IDLE
)
10920 llc_weight
= per_cpu(sd_llc_size
, env
->dst_cpu
);
10921 if (env
->sd
->span_weight
!= llc_weight
)
10924 sd_share
= rcu_dereference(per_cpu(sd_llc_shared
, env
->dst_cpu
));
10929 * The number of CPUs to search drops as sum_util increases, when
10930 * sum_util hits 85% or above, the scan stops.
10931 * The reason to choose 85% as the threshold is because this is the
10932 * imbalance_pct(117) when a LLC sched group is overloaded.
10934 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10935 * and y'= y / SCHED_CAPACITY_SCALE
10937 * x is the ratio of sum_util compared to the CPU capacity:
10938 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10939 * y' is the ratio of CPUs to be scanned in the LLC domain,
10940 * and the number of CPUs to scan is calculated by:
10942 * nr_scan = llc_weight * y' [2]
10944 * When x hits the threshold of overloaded, AKA, when
10945 * x = 100 / pct, y drops to 0. According to [1],
10946 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10948 * Scale x by SCHED_CAPACITY_SCALE:
10949 * x' = sum_util / llc_weight; [3]
10951 * and finally [1] becomes:
10952 * y = SCHED_CAPACITY_SCALE -
10953 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
10958 do_div(x
, llc_weight
);
10961 pct
= env
->sd
->imbalance_pct
;
10962 tmp
= x
* x
* pct
* pct
;
10963 do_div(tmp
, 10000 * SCHED_CAPACITY_SCALE
);
10964 tmp
= min_t(long, tmp
, SCHED_CAPACITY_SCALE
);
10965 y
= SCHED_CAPACITY_SCALE
- tmp
;
10969 do_div(y
, SCHED_CAPACITY_SCALE
);
10970 if ((int)y
!= sd_share
->nr_idle_scan
)
10971 WRITE_ONCE(sd_share
->nr_idle_scan
, (int)y
);
10975 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10976 * @env: The load balancing environment.
10977 * @sds: variable to hold the statistics for this sched_domain.
10980 static inline void update_sd_lb_stats(struct lb_env
*env
, struct sd_lb_stats
*sds
)
10982 struct sched_group
*sg
= env
->sd
->groups
;
10983 struct sg_lb_stats
*local
= &sds
->local_stat
;
10984 struct sg_lb_stats tmp_sgs
;
10985 unsigned long sum_util
= 0;
10986 bool sg_overloaded
= 0, sg_overutilized
= 0;
10989 struct sg_lb_stats
*sgs
= &tmp_sgs
;
10992 local_group
= cpumask_test_cpu(env
->dst_cpu
, sched_group_span(sg
));
10997 if (env
->idle
!= CPU_NEWLY_IDLE
||
10998 time_after_eq(jiffies
, sg
->sgc
->next_update
))
10999 update_group_capacity(env
->sd
, env
->dst_cpu
);
11002 update_sg_lb_stats(env
, sds
, sg
, sgs
, &sg_overloaded
, &sg_overutilized
);
11004 if (!local_group
&& update_sd_pick_busiest(env
, sds
, sg
, sgs
)) {
11006 sds
->busiest_stat
= *sgs
;
11009 /* Now, start updating sd_lb_stats */
11010 sds
->total_load
+= sgs
->group_load
;
11011 sds
->total_capacity
+= sgs
->group_capacity
;
11013 sum_util
+= sgs
->group_util
;
11015 } while (sg
!= env
->sd
->groups
);
11018 * Indicate that the child domain of the busiest group prefers tasks
11019 * go to a child's sibling domains first. NB the flags of a sched group
11020 * are those of the child domain.
11023 sds
->prefer_sibling
= !!(sds
->busiest
->flags
& SD_PREFER_SIBLING
);
11026 if (env
->sd
->flags
& SD_NUMA
)
11027 env
->fbq_type
= fbq_classify_group(&sds
->busiest_stat
);
11029 if (!env
->sd
->parent
) {
11030 /* update overload indicator if we are at root domain */
11031 set_rd_overloaded(env
->dst_rq
->rd
, sg_overloaded
);
11033 /* Update over-utilization (tipping point, U >= 0) indicator */
11034 set_rd_overutilized(env
->dst_rq
->rd
, sg_overutilized
);
11035 } else if (sg_overutilized
) {
11036 set_rd_overutilized(env
->dst_rq
->rd
, sg_overutilized
);
11039 update_idle_cpu_scan(env
, sum_util
);
11043 * calculate_imbalance - Calculate the amount of imbalance present within the
11044 * groups of a given sched_domain during load balance.
11045 * @env: load balance environment
11046 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11048 static inline void calculate_imbalance(struct lb_env
*env
, struct sd_lb_stats
*sds
)
11050 struct sg_lb_stats
*local
, *busiest
;
11052 local
= &sds
->local_stat
;
11053 busiest
= &sds
->busiest_stat
;
11055 if (busiest
->group_type
== group_misfit_task
) {
11056 if (env
->sd
->flags
& SD_ASYM_CPUCAPACITY
) {
11057 /* Set imbalance to allow misfit tasks to be balanced. */
11058 env
->migration_type
= migrate_misfit
;
11059 env
->imbalance
= 1;
11062 * Set load imbalance to allow moving task from cpu
11063 * with reduced capacity.
11065 env
->migration_type
= migrate_load
;
11066 env
->imbalance
= busiest
->group_misfit_task_load
;
11071 if (busiest
->group_type
== group_asym_packing
) {
11073 * In case of asym capacity, we will try to migrate all load to
11074 * the preferred CPU.
11076 env
->migration_type
= migrate_task
;
11077 env
->imbalance
= busiest
->sum_h_nr_running
;
11081 if (busiest
->group_type
== group_smt_balance
) {
11082 /* Reduce number of tasks sharing CPU capacity */
11083 env
->migration_type
= migrate_task
;
11084 env
->imbalance
= 1;
11088 if (busiest
->group_type
== group_imbalanced
) {
11090 * In the group_imb case we cannot rely on group-wide averages
11091 * to ensure CPU-load equilibrium, try to move any task to fix
11092 * the imbalance. The next load balance will take care of
11093 * balancing back the system.
11095 env
->migration_type
= migrate_task
;
11096 env
->imbalance
= 1;
11101 * Try to use spare capacity of local group without overloading it or
11102 * emptying busiest.
11104 if (local
->group_type
== group_has_spare
) {
11105 if ((busiest
->group_type
> group_fully_busy
) &&
11106 !(env
->sd
->flags
& SD_SHARE_LLC
)) {
11108 * If busiest is overloaded, try to fill spare
11109 * capacity. This might end up creating spare capacity
11110 * in busiest or busiest still being overloaded but
11111 * there is no simple way to directly compute the
11112 * amount of load to migrate in order to balance the
11115 env
->migration_type
= migrate_util
;
11116 env
->imbalance
= max(local
->group_capacity
, local
->group_util
) -
11120 * In some cases, the group's utilization is max or even
11121 * higher than capacity because of migrations but the
11122 * local CPU is (newly) idle. There is at least one
11123 * waiting task in this overloaded busiest group. Let's
11126 if (env
->idle
&& env
->imbalance
== 0) {
11127 env
->migration_type
= migrate_task
;
11128 env
->imbalance
= 1;
11134 if (busiest
->group_weight
== 1 || sds
->prefer_sibling
) {
11136 * When prefer sibling, evenly spread running tasks on
11139 env
->migration_type
= migrate_task
;
11140 env
->imbalance
= sibling_imbalance(env
, sds
, busiest
, local
);
11144 * If there is no overload, we just want to even the number of
11147 env
->migration_type
= migrate_task
;
11148 env
->imbalance
= max_t(long, 0,
11149 (local
->idle_cpus
- busiest
->idle_cpus
));
11153 /* Consider allowing a small imbalance between NUMA groups */
11154 if (env
->sd
->flags
& SD_NUMA
) {
11155 env
->imbalance
= adjust_numa_imbalance(env
->imbalance
,
11156 local
->sum_nr_running
+ 1,
11157 env
->sd
->imb_numa_nr
);
11161 /* Number of tasks to move to restore balance */
11162 env
->imbalance
>>= 1;
11168 * Local is fully busy but has to take more load to relieve the
11171 if (local
->group_type
< group_overloaded
) {
11173 * Local will become overloaded so the avg_load metrics are
11177 local
->avg_load
= (local
->group_load
* SCHED_CAPACITY_SCALE
) /
11178 local
->group_capacity
;
11181 * If the local group is more loaded than the selected
11182 * busiest group don't try to pull any tasks.
11184 if (local
->avg_load
>= busiest
->avg_load
) {
11185 env
->imbalance
= 0;
11189 sds
->avg_load
= (sds
->total_load
* SCHED_CAPACITY_SCALE
) /
11190 sds
->total_capacity
;
11193 * If the local group is more loaded than the average system
11194 * load, don't try to pull any tasks.
11196 if (local
->avg_load
>= sds
->avg_load
) {
11197 env
->imbalance
= 0;
11204 * Both group are or will become overloaded and we're trying to get all
11205 * the CPUs to the average_load, so we don't want to push ourselves
11206 * above the average load, nor do we wish to reduce the max loaded CPU
11207 * below the average load. At the same time, we also don't want to
11208 * reduce the group load below the group capacity. Thus we look for
11209 * the minimum possible imbalance.
11211 env
->migration_type
= migrate_load
;
11212 env
->imbalance
= min(
11213 (busiest
->avg_load
- sds
->avg_load
) * busiest
->group_capacity
,
11214 (sds
->avg_load
- local
->avg_load
) * local
->group_capacity
11215 ) / SCHED_CAPACITY_SCALE
;
11218 /******* sched_balance_find_src_group() helpers end here *********************/
11221 * Decision matrix according to the local and busiest group type:
11223 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11224 * has_spare nr_idle balanced N/A N/A balanced balanced
11225 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
11226 * misfit_task force N/A N/A N/A N/A N/A
11227 * asym_packing force force N/A N/A force force
11228 * imbalanced force force N/A N/A force force
11229 * overloaded force force N/A N/A force avg_load
11231 * N/A : Not Applicable because already filtered while updating
11233 * balanced : The system is balanced for these 2 groups.
11234 * force : Calculate the imbalance as load migration is probably needed.
11235 * avg_load : Only if imbalance is significant enough.
11236 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
11237 * different in groups.
11241 * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11242 * if there is an imbalance.
11243 * @env: The load balancing environment.
11245 * Also calculates the amount of runnable load which should be moved
11246 * to restore balance.
11248 * Return: - The busiest group if imbalance exists.
11250 static struct sched_group
*sched_balance_find_src_group(struct lb_env
*env
)
11252 struct sg_lb_stats
*local
, *busiest
;
11253 struct sd_lb_stats sds
;
11255 init_sd_lb_stats(&sds
);
11258 * Compute the various statistics relevant for load balancing at
11261 update_sd_lb_stats(env
, &sds
);
11263 /* There is no busy sibling group to pull tasks from */
11267 busiest
= &sds
.busiest_stat
;
11269 /* Misfit tasks should be dealt with regardless of the avg load */
11270 if (busiest
->group_type
== group_misfit_task
)
11271 goto force_balance
;
11273 if (!is_rd_overutilized(env
->dst_rq
->rd
) &&
11274 rcu_dereference(env
->dst_rq
->rd
->pd
))
11277 /* ASYM feature bypasses nice load balance check */
11278 if (busiest
->group_type
== group_asym_packing
)
11279 goto force_balance
;
11282 * If the busiest group is imbalanced the below checks don't
11283 * work because they assume all things are equal, which typically
11284 * isn't true due to cpus_ptr constraints and the like.
11286 if (busiest
->group_type
== group_imbalanced
)
11287 goto force_balance
;
11289 local
= &sds
.local_stat
;
11291 * If the local group is busier than the selected busiest group
11292 * don't try and pull any tasks.
11294 if (local
->group_type
> busiest
->group_type
)
11298 * When groups are overloaded, use the avg_load to ensure fairness
11301 if (local
->group_type
== group_overloaded
) {
11303 * If the local group is more loaded than the selected
11304 * busiest group don't try to pull any tasks.
11306 if (local
->avg_load
>= busiest
->avg_load
)
11309 /* XXX broken for overlapping NUMA groups */
11310 sds
.avg_load
= (sds
.total_load
* SCHED_CAPACITY_SCALE
) /
11311 sds
.total_capacity
;
11314 * Don't pull any tasks if this group is already above the
11315 * domain average load.
11317 if (local
->avg_load
>= sds
.avg_load
)
11321 * If the busiest group is more loaded, use imbalance_pct to be
11324 if (100 * busiest
->avg_load
<=
11325 env
->sd
->imbalance_pct
* local
->avg_load
)
11330 * Try to move all excess tasks to a sibling domain of the busiest
11331 * group's child domain.
11333 if (sds
.prefer_sibling
&& local
->group_type
== group_has_spare
&&
11334 sibling_imbalance(env
, &sds
, busiest
, local
) > 1)
11335 goto force_balance
;
11337 if (busiest
->group_type
!= group_overloaded
) {
11340 * If the busiest group is not overloaded (and as a
11341 * result the local one too) but this CPU is already
11342 * busy, let another idle CPU try to pull task.
11347 if (busiest
->group_type
== group_smt_balance
&&
11348 smt_vs_nonsmt_groups(sds
.local
, sds
.busiest
)) {
11349 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
11350 goto force_balance
;
11353 if (busiest
->group_weight
> 1 &&
11354 local
->idle_cpus
<= (busiest
->idle_cpus
+ 1)) {
11356 * If the busiest group is not overloaded
11357 * and there is no imbalance between this and busiest
11358 * group wrt idle CPUs, it is balanced. The imbalance
11359 * becomes significant if the diff is greater than 1
11360 * otherwise we might end up to just move the imbalance
11361 * on another group. Of course this applies only if
11362 * there is more than 1 CPU per group.
11367 if (busiest
->sum_h_nr_running
== 1) {
11369 * busiest doesn't have any tasks waiting to run
11376 /* Looks like there is an imbalance. Compute it */
11377 calculate_imbalance(env
, &sds
);
11378 return env
->imbalance
? sds
.busiest
: NULL
;
11381 env
->imbalance
= 0;
11386 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11388 static struct rq
*sched_balance_find_src_rq(struct lb_env
*env
,
11389 struct sched_group
*group
)
11391 struct rq
*busiest
= NULL
, *rq
;
11392 unsigned long busiest_util
= 0, busiest_load
= 0, busiest_capacity
= 1;
11393 unsigned int busiest_nr
= 0;
11396 for_each_cpu_and(i
, sched_group_span(group
), env
->cpus
) {
11397 unsigned long capacity
, load
, util
;
11398 unsigned int nr_running
;
11402 rt
= fbq_classify_rq(rq
);
11405 * We classify groups/runqueues into three groups:
11406 * - regular: there are !numa tasks
11407 * - remote: there are numa tasks that run on the 'wrong' node
11408 * - all: there is no distinction
11410 * In order to avoid migrating ideally placed numa tasks,
11411 * ignore those when there's better options.
11413 * If we ignore the actual busiest queue to migrate another
11414 * task, the next balance pass can still reduce the busiest
11415 * queue by moving tasks around inside the node.
11417 * If we cannot move enough load due to this classification
11418 * the next pass will adjust the group classification and
11419 * allow migration of more tasks.
11421 * Both cases only affect the total convergence complexity.
11423 if (rt
> env
->fbq_type
)
11426 nr_running
= rq
->cfs
.h_nr_running
;
11430 capacity
= capacity_of(i
);
11433 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11434 * eventually lead to active_balancing high->low capacity.
11435 * Higher per-CPU capacity is considered better than balancing
11438 if (env
->sd
->flags
& SD_ASYM_CPUCAPACITY
&&
11439 !capacity_greater(capacity_of(env
->dst_cpu
), capacity
) &&
11444 * Make sure we only pull tasks from a CPU of lower priority
11445 * when balancing between SMT siblings.
11447 * If balancing between cores, let lower priority CPUs help
11448 * SMT cores with more than one busy sibling.
11450 if (sched_asym(env
->sd
, i
, env
->dst_cpu
) && nr_running
== 1)
11453 switch (env
->migration_type
) {
11456 * When comparing with load imbalance, use cpu_load()
11457 * which is not scaled with the CPU capacity.
11459 load
= cpu_load(rq
);
11461 if (nr_running
== 1 && load
> env
->imbalance
&&
11462 !check_cpu_capacity(rq
, env
->sd
))
11466 * For the load comparisons with the other CPUs,
11467 * consider the cpu_load() scaled with the CPU
11468 * capacity, so that the load can be moved away
11469 * from the CPU that is potentially running at a
11472 * Thus we're looking for max(load_i / capacity_i),
11473 * crosswise multiplication to rid ourselves of the
11474 * division works out to:
11475 * load_i * capacity_j > load_j * capacity_i;
11476 * where j is our previous maximum.
11478 if (load
* busiest_capacity
> busiest_load
* capacity
) {
11479 busiest_load
= load
;
11480 busiest_capacity
= capacity
;
11486 util
= cpu_util_cfs_boost(i
);
11489 * Don't try to pull utilization from a CPU with one
11490 * running task. Whatever its utilization, we will fail
11493 if (nr_running
<= 1)
11496 if (busiest_util
< util
) {
11497 busiest_util
= util
;
11503 if (busiest_nr
< nr_running
) {
11504 busiest_nr
= nr_running
;
11509 case migrate_misfit
:
11511 * For ASYM_CPUCAPACITY domains with misfit tasks we
11512 * simply seek the "biggest" misfit task.
11514 if (rq
->misfit_task_load
> busiest_load
) {
11515 busiest_load
= rq
->misfit_task_load
;
11528 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11529 * so long as it is large enough.
11531 #define MAX_PINNED_INTERVAL 512
11534 asym_active_balance(struct lb_env
*env
)
11537 * ASYM_PACKING needs to force migrate tasks from busy but lower
11538 * priority CPUs in order to pack all tasks in the highest priority
11539 * CPUs. When done between cores, do it only if the whole core if the
11540 * whole core is idle.
11542 * If @env::src_cpu is an SMT core with busy siblings, let
11543 * the lower priority @env::dst_cpu help it. Do not follow
11546 return env
->idle
&& sched_use_asym_prio(env
->sd
, env
->dst_cpu
) &&
11547 (sched_asym_prefer(env
->dst_cpu
, env
->src_cpu
) ||
11548 !sched_use_asym_prio(env
->sd
, env
->src_cpu
));
11552 imbalanced_active_balance(struct lb_env
*env
)
11554 struct sched_domain
*sd
= env
->sd
;
11557 * The imbalanced case includes the case of pinned tasks preventing a fair
11558 * distribution of the load on the system but also the even distribution of the
11559 * threads on a system with spare capacity
11561 if ((env
->migration_type
== migrate_task
) &&
11562 (sd
->nr_balance_failed
> sd
->cache_nice_tries
+2))
11568 static int need_active_balance(struct lb_env
*env
)
11570 struct sched_domain
*sd
= env
->sd
;
11572 if (asym_active_balance(env
))
11575 if (imbalanced_active_balance(env
))
11579 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11580 * It's worth migrating the task if the src_cpu's capacity is reduced
11581 * because of other sched_class or IRQs if more capacity stays
11582 * available on dst_cpu.
11585 (env
->src_rq
->cfs
.h_nr_running
== 1)) {
11586 if ((check_cpu_capacity(env
->src_rq
, sd
)) &&
11587 (capacity_of(env
->src_cpu
)*sd
->imbalance_pct
< capacity_of(env
->dst_cpu
)*100))
11591 if (env
->migration_type
== migrate_misfit
)
11597 static int active_load_balance_cpu_stop(void *data
);
11599 static int should_we_balance(struct lb_env
*env
)
11601 struct cpumask
*swb_cpus
= this_cpu_cpumask_var_ptr(should_we_balance_tmpmask
);
11602 struct sched_group
*sg
= env
->sd
->groups
;
11603 int cpu
, idle_smt
= -1;
11606 * Ensure the balancing environment is consistent; can happen
11607 * when the softirq triggers 'during' hotplug.
11609 if (!cpumask_test_cpu(env
->dst_cpu
, env
->cpus
))
11613 * In the newly idle case, we will allow all the CPUs
11614 * to do the newly idle load balance.
11616 * However, we bail out if we already have tasks or a wakeup pending,
11617 * to optimize wakeup latency.
11619 if (env
->idle
== CPU_NEWLY_IDLE
) {
11620 if (env
->dst_rq
->nr_running
> 0 || env
->dst_rq
->ttwu_pending
)
11625 cpumask_copy(swb_cpus
, group_balance_mask(sg
));
11626 /* Try to find first idle CPU */
11627 for_each_cpu_and(cpu
, swb_cpus
, env
->cpus
) {
11628 if (!idle_cpu(cpu
))
11632 * Don't balance to idle SMT in busy core right away when
11633 * balancing cores, but remember the first idle SMT CPU for
11634 * later consideration. Find CPU on an idle core first.
11636 if (!(env
->sd
->flags
& SD_SHARE_CPUCAPACITY
) && !is_core_idle(cpu
)) {
11637 if (idle_smt
== -1)
11640 * If the core is not idle, and first SMT sibling which is
11641 * idle has been found, then its not needed to check other
11642 * SMT siblings for idleness:
11644 #ifdef CONFIG_SCHED_SMT
11645 cpumask_andnot(swb_cpus
, swb_cpus
, cpu_smt_mask(cpu
));
11651 * Are we the first idle core in a non-SMT domain or higher,
11652 * or the first idle CPU in a SMT domain?
11654 return cpu
== env
->dst_cpu
;
11657 /* Are we the first idle CPU with busy siblings? */
11658 if (idle_smt
!= -1)
11659 return idle_smt
== env
->dst_cpu
;
11661 /* Are we the first CPU of this group ? */
11662 return group_balance_cpu(sg
) == env
->dst_cpu
;
11666 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11667 * tasks if there is an imbalance.
11669 static int sched_balance_rq(int this_cpu
, struct rq
*this_rq
,
11670 struct sched_domain
*sd
, enum cpu_idle_type idle
,
11671 int *continue_balancing
)
11673 int ld_moved
, cur_ld_moved
, active_balance
= 0;
11674 struct sched_domain
*sd_parent
= sd
->parent
;
11675 struct sched_group
*group
;
11676 struct rq
*busiest
;
11677 struct rq_flags rf
;
11678 struct cpumask
*cpus
= this_cpu_cpumask_var_ptr(load_balance_mask
);
11679 struct lb_env env
= {
11681 .dst_cpu
= this_cpu
,
11683 .dst_grpmask
= group_balance_mask(sd
->groups
),
11685 .loop_break
= SCHED_NR_MIGRATE_BREAK
,
11688 .tasks
= LIST_HEAD_INIT(env
.tasks
),
11691 cpumask_and(cpus
, sched_domain_span(sd
), cpu_active_mask
);
11693 schedstat_inc(sd
->lb_count
[idle
]);
11696 if (!should_we_balance(&env
)) {
11697 *continue_balancing
= 0;
11701 group
= sched_balance_find_src_group(&env
);
11703 schedstat_inc(sd
->lb_nobusyg
[idle
]);
11707 busiest
= sched_balance_find_src_rq(&env
, group
);
11709 schedstat_inc(sd
->lb_nobusyq
[idle
]);
11713 WARN_ON_ONCE(busiest
== env
.dst_rq
);
11715 schedstat_add(sd
->lb_imbalance
[idle
], env
.imbalance
);
11717 env
.src_cpu
= busiest
->cpu
;
11718 env
.src_rq
= busiest
;
11721 /* Clear this flag as soon as we find a pullable task */
11722 env
.flags
|= LBF_ALL_PINNED
;
11723 if (busiest
->nr_running
> 1) {
11725 * Attempt to move tasks. If sched_balance_find_src_group has found
11726 * an imbalance but busiest->nr_running <= 1, the group is
11727 * still unbalanced. ld_moved simply stays zero, so it is
11728 * correctly treated as an imbalance.
11730 env
.loop_max
= min(sysctl_sched_nr_migrate
, busiest
->nr_running
);
11733 rq_lock_irqsave(busiest
, &rf
);
11734 update_rq_clock(busiest
);
11737 * cur_ld_moved - load moved in current iteration
11738 * ld_moved - cumulative load moved across iterations
11740 cur_ld_moved
= detach_tasks(&env
);
11743 * We've detached some tasks from busiest_rq. Every
11744 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11745 * unlock busiest->lock, and we are able to be sure
11746 * that nobody can manipulate the tasks in parallel.
11747 * See task_rq_lock() family for the details.
11750 rq_unlock(busiest
, &rf
);
11752 if (cur_ld_moved
) {
11753 attach_tasks(&env
);
11754 ld_moved
+= cur_ld_moved
;
11757 local_irq_restore(rf
.flags
);
11759 if (env
.flags
& LBF_NEED_BREAK
) {
11760 env
.flags
&= ~LBF_NEED_BREAK
;
11765 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11766 * us and move them to an alternate dst_cpu in our sched_group
11767 * where they can run. The upper limit on how many times we
11768 * iterate on same src_cpu is dependent on number of CPUs in our
11771 * This changes load balance semantics a bit on who can move
11772 * load to a given_cpu. In addition to the given_cpu itself
11773 * (or a ilb_cpu acting on its behalf where given_cpu is
11774 * nohz-idle), we now have balance_cpu in a position to move
11775 * load to given_cpu. In rare situations, this may cause
11776 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11777 * _independently_ and at _same_ time to move some load to
11778 * given_cpu) causing excess load to be moved to given_cpu.
11779 * This however should not happen so much in practice and
11780 * moreover subsequent load balance cycles should correct the
11781 * excess load moved.
11783 if ((env
.flags
& LBF_DST_PINNED
) && env
.imbalance
> 0) {
11785 /* Prevent to re-select dst_cpu via env's CPUs */
11786 __cpumask_clear_cpu(env
.dst_cpu
, env
.cpus
);
11788 env
.dst_rq
= cpu_rq(env
.new_dst_cpu
);
11789 env
.dst_cpu
= env
.new_dst_cpu
;
11790 env
.flags
&= ~LBF_DST_PINNED
;
11792 env
.loop_break
= SCHED_NR_MIGRATE_BREAK
;
11795 * Go back to "more_balance" rather than "redo" since we
11796 * need to continue with same src_cpu.
11802 * We failed to reach balance because of affinity.
11805 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
11807 if ((env
.flags
& LBF_SOME_PINNED
) && env
.imbalance
> 0)
11808 *group_imbalance
= 1;
11811 /* All tasks on this runqueue were pinned by CPU affinity */
11812 if (unlikely(env
.flags
& LBF_ALL_PINNED
)) {
11813 __cpumask_clear_cpu(cpu_of(busiest
), cpus
);
11815 * Attempting to continue load balancing at the current
11816 * sched_domain level only makes sense if there are
11817 * active CPUs remaining as possible busiest CPUs to
11818 * pull load from which are not contained within the
11819 * destination group that is receiving any migrated
11822 if (!cpumask_subset(cpus
, env
.dst_grpmask
)) {
11824 env
.loop_break
= SCHED_NR_MIGRATE_BREAK
;
11827 goto out_all_pinned
;
11832 schedstat_inc(sd
->lb_failed
[idle
]);
11834 * Increment the failure counter only on periodic balance.
11835 * We do not want newidle balance, which can be very
11836 * frequent, pollute the failure counter causing
11837 * excessive cache_hot migrations and active balances.
11839 * Similarly for migration_misfit which is not related to
11840 * load/util migration, don't pollute nr_balance_failed.
11842 if (idle
!= CPU_NEWLY_IDLE
&&
11843 env
.migration_type
!= migrate_misfit
)
11844 sd
->nr_balance_failed
++;
11846 if (need_active_balance(&env
)) {
11847 unsigned long flags
;
11849 raw_spin_rq_lock_irqsave(busiest
, flags
);
11852 * Don't kick the active_load_balance_cpu_stop,
11853 * if the curr task on busiest CPU can't be
11854 * moved to this_cpu:
11856 if (!cpumask_test_cpu(this_cpu
, busiest
->curr
->cpus_ptr
)) {
11857 raw_spin_rq_unlock_irqrestore(busiest
, flags
);
11858 goto out_one_pinned
;
11861 /* Record that we found at least one task that could run on this_cpu */
11862 env
.flags
&= ~LBF_ALL_PINNED
;
11865 * ->active_balance synchronizes accesses to
11866 * ->active_balance_work. Once set, it's cleared
11867 * only after active load balance is finished.
11869 if (!busiest
->active_balance
) {
11870 busiest
->active_balance
= 1;
11871 busiest
->push_cpu
= this_cpu
;
11872 active_balance
= 1;
11876 raw_spin_rq_unlock_irqrestore(busiest
, flags
);
11877 if (active_balance
) {
11878 stop_one_cpu_nowait(cpu_of(busiest
),
11879 active_load_balance_cpu_stop
, busiest
,
11880 &busiest
->active_balance_work
);
11885 sd
->nr_balance_failed
= 0;
11888 if (likely(!active_balance
) || need_active_balance(&env
)) {
11889 /* We were unbalanced, so reset the balancing interval */
11890 sd
->balance_interval
= sd
->min_interval
;
11897 * We reach balance although we may have faced some affinity
11898 * constraints. Clear the imbalance flag only if other tasks got
11899 * a chance to move and fix the imbalance.
11901 if (sd_parent
&& !(env
.flags
& LBF_ALL_PINNED
)) {
11902 int *group_imbalance
= &sd_parent
->groups
->sgc
->imbalance
;
11904 if (*group_imbalance
)
11905 *group_imbalance
= 0;
11910 * We reach balance because all tasks are pinned at this level so
11911 * we can't migrate them. Let the imbalance flag set so parent level
11912 * can try to migrate them.
11914 schedstat_inc(sd
->lb_balanced
[idle
]);
11916 sd
->nr_balance_failed
= 0;
11922 * sched_balance_newidle() disregards balance intervals, so we could
11923 * repeatedly reach this code, which would lead to balance_interval
11924 * skyrocketing in a short amount of time. Skip the balance_interval
11925 * increase logic to avoid that.
11927 * Similarly misfit migration which is not necessarily an indication of
11928 * the system being busy and requires lb to backoff to let it settle
11931 if (env
.idle
== CPU_NEWLY_IDLE
||
11932 env
.migration_type
== migrate_misfit
)
11935 /* tune up the balancing interval */
11936 if ((env
.flags
& LBF_ALL_PINNED
&&
11937 sd
->balance_interval
< MAX_PINNED_INTERVAL
) ||
11938 sd
->balance_interval
< sd
->max_interval
)
11939 sd
->balance_interval
*= 2;
11944 static inline unsigned long
11945 get_sd_balance_interval(struct sched_domain
*sd
, int cpu_busy
)
11947 unsigned long interval
= sd
->balance_interval
;
11950 interval
*= sd
->busy_factor
;
11952 /* scale ms to jiffies */
11953 interval
= msecs_to_jiffies(interval
);
11956 * Reduce likelihood of busy balancing at higher domains racing with
11957 * balancing at lower domains by preventing their balancing periods
11958 * from being multiples of each other.
11963 interval
= clamp(interval
, 1UL, max_load_balance_interval
);
11969 update_next_balance(struct sched_domain
*sd
, unsigned long *next_balance
)
11971 unsigned long interval
, next
;
11973 /* used by idle balance, so cpu_busy = 0 */
11974 interval
= get_sd_balance_interval(sd
, 0);
11975 next
= sd
->last_balance
+ interval
;
11977 if (time_after(*next_balance
, next
))
11978 *next_balance
= next
;
11982 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11983 * running tasks off the busiest CPU onto idle CPUs. It requires at
11984 * least 1 task to be running on each physical CPU where possible, and
11985 * avoids physical / logical imbalances.
11987 static int active_load_balance_cpu_stop(void *data
)
11989 struct rq
*busiest_rq
= data
;
11990 int busiest_cpu
= cpu_of(busiest_rq
);
11991 int target_cpu
= busiest_rq
->push_cpu
;
11992 struct rq
*target_rq
= cpu_rq(target_cpu
);
11993 struct sched_domain
*sd
;
11994 struct task_struct
*p
= NULL
;
11995 struct rq_flags rf
;
11997 rq_lock_irq(busiest_rq
, &rf
);
11999 * Between queueing the stop-work and running it is a hole in which
12000 * CPUs can become inactive. We should not move tasks from or to
12003 if (!cpu_active(busiest_cpu
) || !cpu_active(target_cpu
))
12006 /* Make sure the requested CPU hasn't gone down in the meantime: */
12007 if (unlikely(busiest_cpu
!= smp_processor_id() ||
12008 !busiest_rq
->active_balance
))
12011 /* Is there any task to move? */
12012 if (busiest_rq
->nr_running
<= 1)
12016 * This condition is "impossible", if it occurs
12017 * we need to fix it. Originally reported by
12018 * Bjorn Helgaas on a 128-CPU setup.
12020 WARN_ON_ONCE(busiest_rq
== target_rq
);
12022 /* Search for an sd spanning us and the target CPU. */
12024 for_each_domain(target_cpu
, sd
) {
12025 if (cpumask_test_cpu(busiest_cpu
, sched_domain_span(sd
)))
12030 struct lb_env env
= {
12032 .dst_cpu
= target_cpu
,
12033 .dst_rq
= target_rq
,
12034 .src_cpu
= busiest_rq
->cpu
,
12035 .src_rq
= busiest_rq
,
12037 .flags
= LBF_ACTIVE_LB
,
12040 schedstat_inc(sd
->alb_count
);
12041 update_rq_clock(busiest_rq
);
12043 p
= detach_one_task(&env
);
12045 schedstat_inc(sd
->alb_pushed
);
12046 /* Active balancing done, reset the failure counter. */
12047 sd
->nr_balance_failed
= 0;
12049 schedstat_inc(sd
->alb_failed
);
12054 busiest_rq
->active_balance
= 0;
12055 rq_unlock(busiest_rq
, &rf
);
12058 attach_one_task(target_rq
, p
);
12060 local_irq_enable();
12066 * This flag serializes load-balancing passes over large domains
12067 * (above the NODE topology level) - only one load-balancing instance
12068 * may run at a time, to reduce overhead on very large systems with
12069 * lots of CPUs and large NUMA distances.
12071 * - Note that load-balancing passes triggered while another one
12072 * is executing are skipped and not re-tried.
12074 * - Also note that this does not serialize rebalance_domains()
12075 * execution, as non-SD_SERIALIZE domains will still be
12076 * load-balanced in parallel.
12078 static atomic_t sched_balance_running
= ATOMIC_INIT(0);
12081 * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12082 * This trades load-balance latency on larger machines for less cross talk.
12084 void update_max_interval(void)
12086 max_load_balance_interval
= HZ
*num_online_cpus()/10;
12089 static inline bool update_newidle_cost(struct sched_domain
*sd
, u64 cost
)
12091 if (cost
> sd
->max_newidle_lb_cost
) {
12093 * Track max cost of a domain to make sure to not delay the
12094 * next wakeup on the CPU.
12096 sd
->max_newidle_lb_cost
= cost
;
12097 sd
->last_decay_max_lb_cost
= jiffies
;
12098 } else if (time_after(jiffies
, sd
->last_decay_max_lb_cost
+ HZ
)) {
12100 * Decay the newidle max times by ~1% per second to ensure that
12101 * it is not outdated and the current max cost is actually
12104 sd
->max_newidle_lb_cost
= (sd
->max_newidle_lb_cost
* 253) / 256;
12105 sd
->last_decay_max_lb_cost
= jiffies
;
12114 * It checks each scheduling domain to see if it is due to be balanced,
12115 * and initiates a balancing operation if so.
12117 * Balancing parameters are set up in init_sched_domains.
12119 static void sched_balance_domains(struct rq
*rq
, enum cpu_idle_type idle
)
12121 int continue_balancing
= 1;
12123 int busy
= idle
!= CPU_IDLE
&& !sched_idle_cpu(cpu
);
12124 unsigned long interval
;
12125 struct sched_domain
*sd
;
12126 /* Earliest time when we have to do rebalance again */
12127 unsigned long next_balance
= jiffies
+ 60*HZ
;
12128 int update_next_balance
= 0;
12129 int need_serialize
, need_decay
= 0;
12133 for_each_domain(cpu
, sd
) {
12135 * Decay the newidle max times here because this is a regular
12136 * visit to all the domains.
12138 need_decay
= update_newidle_cost(sd
, 0);
12139 max_cost
+= sd
->max_newidle_lb_cost
;
12142 * Stop the load balance at this level. There is another
12143 * CPU in our sched group which is doing load balancing more
12146 if (!continue_balancing
) {
12152 interval
= get_sd_balance_interval(sd
, busy
);
12154 need_serialize
= sd
->flags
& SD_SERIALIZE
;
12155 if (need_serialize
) {
12156 if (atomic_cmpxchg_acquire(&sched_balance_running
, 0, 1))
12160 if (time_after_eq(jiffies
, sd
->last_balance
+ interval
)) {
12161 if (sched_balance_rq(cpu
, rq
, sd
, idle
, &continue_balancing
)) {
12163 * The LBF_DST_PINNED logic could have changed
12164 * env->dst_cpu, so we can't know our idle
12165 * state even if we migrated tasks. Update it.
12167 idle
= idle_cpu(cpu
);
12168 busy
= !idle
&& !sched_idle_cpu(cpu
);
12170 sd
->last_balance
= jiffies
;
12171 interval
= get_sd_balance_interval(sd
, busy
);
12173 if (need_serialize
)
12174 atomic_set_release(&sched_balance_running
, 0);
12176 if (time_after(next_balance
, sd
->last_balance
+ interval
)) {
12177 next_balance
= sd
->last_balance
+ interval
;
12178 update_next_balance
= 1;
12183 * Ensure the rq-wide value also decays but keep it at a
12184 * reasonable floor to avoid funnies with rq->avg_idle.
12186 rq
->max_idle_balance_cost
=
12187 max((u64
)sysctl_sched_migration_cost
, max_cost
);
12192 * next_balance will be updated only when there is a need.
12193 * When the cpu is attached to null domain for ex, it will not be
12196 if (likely(update_next_balance
))
12197 rq
->next_balance
= next_balance
;
12201 static inline int on_null_domain(struct rq
*rq
)
12203 return unlikely(!rcu_dereference_sched(rq
->sd
));
12206 #ifdef CONFIG_NO_HZ_COMMON
12208 * NOHZ idle load balancing (ILB) details:
12210 * - When one of the busy CPUs notices that there may be an idle rebalancing
12211 * needed, they will kick the idle load balancer, which then does idle
12212 * load balancing for all the idle CPUs.
12214 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
12217 static inline int find_new_ilb(void)
12219 const struct cpumask
*hk_mask
;
12222 hk_mask
= housekeeping_cpumask(HK_TYPE_MISC
);
12224 for_each_cpu_and(ilb_cpu
, nohz
.idle_cpus_mask
, hk_mask
) {
12226 if (ilb_cpu
== smp_processor_id())
12229 if (idle_cpu(ilb_cpu
))
12237 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12238 * SMP function call (IPI).
12240 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
12242 static void kick_ilb(unsigned int flags
)
12247 * Increase nohz.next_balance only when if full ilb is triggered but
12248 * not if we only update stats.
12250 if (flags
& NOHZ_BALANCE_KICK
)
12251 nohz
.next_balance
= jiffies
+1;
12253 ilb_cpu
= find_new_ilb();
12258 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12259 * i.e. all bits in flags are already set in ilb_cpu.
12261 if ((atomic_read(nohz_flags(ilb_cpu
)) & flags
) == flags
)
12265 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12266 * the first flag owns it; cleared by nohz_csd_func().
12268 flags
= atomic_fetch_or(flags
, nohz_flags(ilb_cpu
));
12269 if (flags
& NOHZ_KICK_MASK
)
12273 * This way we generate an IPI on the target CPU which
12274 * is idle, and the softirq performing NOHZ idle load balancing
12275 * will be run before returning from the IPI.
12277 smp_call_function_single_async(ilb_cpu
, &cpu_rq(ilb_cpu
)->nohz_csd
);
12281 * Current decision point for kicking the idle load balancer in the presence
12282 * of idle CPUs in the system.
12284 static void nohz_balancer_kick(struct rq
*rq
)
12286 unsigned long now
= jiffies
;
12287 struct sched_domain_shared
*sds
;
12288 struct sched_domain
*sd
;
12289 int nr_busy
, i
, cpu
= rq
->cpu
;
12290 unsigned int flags
= 0;
12292 if (unlikely(rq
->idle_balance
))
12296 * We may be recently in ticked or tickless idle mode. At the first
12297 * busy tick after returning from idle, we will update the busy stats.
12299 nohz_balance_exit_idle(rq
);
12302 * None are in tickless mode and hence no need for NOHZ idle load
12305 if (likely(!atomic_read(&nohz
.nr_cpus
)))
12308 if (READ_ONCE(nohz
.has_blocked
) &&
12309 time_after(now
, READ_ONCE(nohz
.next_blocked
)))
12310 flags
= NOHZ_STATS_KICK
;
12312 if (time_before(now
, nohz
.next_balance
))
12315 if (rq
->nr_running
>= 2) {
12316 flags
= NOHZ_STATS_KICK
| NOHZ_BALANCE_KICK
;
12322 sd
= rcu_dereference(rq
->sd
);
12325 * If there's a runnable CFS task and the current CPU has reduced
12326 * capacity, kick the ILB to see if there's a better CPU to run on:
12328 if (rq
->cfs
.h_nr_running
>= 1 && check_cpu_capacity(rq
, sd
)) {
12329 flags
= NOHZ_STATS_KICK
| NOHZ_BALANCE_KICK
;
12334 sd
= rcu_dereference(per_cpu(sd_asym_packing
, cpu
));
12337 * When ASYM_PACKING; see if there's a more preferred CPU
12338 * currently idle; in which case, kick the ILB to move tasks
12341 * When balancing between cores, all the SMT siblings of the
12342 * preferred CPU must be idle.
12344 for_each_cpu_and(i
, sched_domain_span(sd
), nohz
.idle_cpus_mask
) {
12345 if (sched_asym(sd
, i
, cpu
)) {
12346 flags
= NOHZ_STATS_KICK
| NOHZ_BALANCE_KICK
;
12352 sd
= rcu_dereference(per_cpu(sd_asym_cpucapacity
, cpu
));
12355 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12356 * to run the misfit task on.
12358 if (check_misfit_status(rq
)) {
12359 flags
= NOHZ_STATS_KICK
| NOHZ_BALANCE_KICK
;
12364 * For asymmetric systems, we do not want to nicely balance
12365 * cache use, instead we want to embrace asymmetry and only
12366 * ensure tasks have enough CPU capacity.
12368 * Skip the LLC logic because it's not relevant in that case.
12373 sds
= rcu_dereference(per_cpu(sd_llc_shared
, cpu
));
12376 * If there is an imbalance between LLC domains (IOW we could
12377 * increase the overall cache utilization), we need a less-loaded LLC
12378 * domain to pull some load from. Likewise, we may need to spread
12379 * load within the current LLC domain (e.g. packed SMT cores but
12380 * other CPUs are idle). We can't really know from here how busy
12381 * the others are - so just get a NOHZ balance going if it looks
12382 * like this LLC domain has tasks we could move.
12384 nr_busy
= atomic_read(&sds
->nr_busy_cpus
);
12386 flags
= NOHZ_STATS_KICK
| NOHZ_BALANCE_KICK
;
12393 if (READ_ONCE(nohz
.needs_update
))
12394 flags
|= NOHZ_NEXT_KICK
;
12400 static void set_cpu_sd_state_busy(int cpu
)
12402 struct sched_domain
*sd
;
12405 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
12407 if (!sd
|| !sd
->nohz_idle
)
12411 atomic_inc(&sd
->shared
->nr_busy_cpus
);
12416 void nohz_balance_exit_idle(struct rq
*rq
)
12418 SCHED_WARN_ON(rq
!= this_rq());
12420 if (likely(!rq
->nohz_tick_stopped
))
12423 rq
->nohz_tick_stopped
= 0;
12424 cpumask_clear_cpu(rq
->cpu
, nohz
.idle_cpus_mask
);
12425 atomic_dec(&nohz
.nr_cpus
);
12427 set_cpu_sd_state_busy(rq
->cpu
);
12430 static void set_cpu_sd_state_idle(int cpu
)
12432 struct sched_domain
*sd
;
12435 sd
= rcu_dereference(per_cpu(sd_llc
, cpu
));
12437 if (!sd
|| sd
->nohz_idle
)
12441 atomic_dec(&sd
->shared
->nr_busy_cpus
);
12447 * This routine will record that the CPU is going idle with tick stopped.
12448 * This info will be used in performing idle load balancing in the future.
12450 void nohz_balance_enter_idle(int cpu
)
12452 struct rq
*rq
= cpu_rq(cpu
);
12454 SCHED_WARN_ON(cpu
!= smp_processor_id());
12456 /* If this CPU is going down, then nothing needs to be done: */
12457 if (!cpu_active(cpu
))
12460 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
12461 if (!housekeeping_cpu(cpu
, HK_TYPE_SCHED
))
12465 * Can be set safely without rq->lock held
12466 * If a clear happens, it will have evaluated last additions because
12467 * rq->lock is held during the check and the clear
12469 rq
->has_blocked_load
= 1;
12472 * The tick is still stopped but load could have been added in the
12473 * meantime. We set the nohz.has_blocked flag to trig a check of the
12474 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12475 * of nohz.has_blocked can only happen after checking the new load
12477 if (rq
->nohz_tick_stopped
)
12480 /* If we're a completely isolated CPU, we don't play: */
12481 if (on_null_domain(rq
))
12484 rq
->nohz_tick_stopped
= 1;
12486 cpumask_set_cpu(cpu
, nohz
.idle_cpus_mask
);
12487 atomic_inc(&nohz
.nr_cpus
);
12490 * Ensures that if nohz_idle_balance() fails to observe our
12491 * @idle_cpus_mask store, it must observe the @has_blocked
12492 * and @needs_update stores.
12494 smp_mb__after_atomic();
12496 set_cpu_sd_state_idle(cpu
);
12498 WRITE_ONCE(nohz
.needs_update
, 1);
12501 * Each time a cpu enter idle, we assume that it has blocked load and
12502 * enable the periodic update of the load of idle CPUs
12504 WRITE_ONCE(nohz
.has_blocked
, 1);
12507 static bool update_nohz_stats(struct rq
*rq
)
12509 unsigned int cpu
= rq
->cpu
;
12511 if (!rq
->has_blocked_load
)
12514 if (!cpumask_test_cpu(cpu
, nohz
.idle_cpus_mask
))
12517 if (!time_after(jiffies
, READ_ONCE(rq
->last_blocked_load_update_tick
)))
12520 sched_balance_update_blocked_averages(cpu
);
12522 return rq
->has_blocked_load
;
12526 * Internal function that runs load balance for all idle CPUs. The load balance
12527 * can be a simple update of blocked load or a complete load balance with
12528 * tasks movement depending of flags.
12530 static void _nohz_idle_balance(struct rq
*this_rq
, unsigned int flags
)
12532 /* Earliest time when we have to do rebalance again */
12533 unsigned long now
= jiffies
;
12534 unsigned long next_balance
= now
+ 60*HZ
;
12535 bool has_blocked_load
= false;
12536 int update_next_balance
= 0;
12537 int this_cpu
= this_rq
->cpu
;
12541 SCHED_WARN_ON((flags
& NOHZ_KICK_MASK
) == NOHZ_BALANCE_KICK
);
12544 * We assume there will be no idle load after this update and clear
12545 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12546 * set the has_blocked flag and trigger another update of idle load.
12547 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12548 * setting the flag, we are sure to not clear the state and not
12549 * check the load of an idle cpu.
12551 * Same applies to idle_cpus_mask vs needs_update.
12553 if (flags
& NOHZ_STATS_KICK
)
12554 WRITE_ONCE(nohz
.has_blocked
, 0);
12555 if (flags
& NOHZ_NEXT_KICK
)
12556 WRITE_ONCE(nohz
.needs_update
, 0);
12559 * Ensures that if we miss the CPU, we must see the has_blocked
12560 * store from nohz_balance_enter_idle().
12565 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12566 * chance for other idle cpu to pull load.
12568 for_each_cpu_wrap(balance_cpu
, nohz
.idle_cpus_mask
, this_cpu
+1) {
12569 if (!idle_cpu(balance_cpu
))
12573 * If this CPU gets work to do, stop the load balancing
12574 * work being done for other CPUs. Next load
12575 * balancing owner will pick it up.
12577 if (need_resched()) {
12578 if (flags
& NOHZ_STATS_KICK
)
12579 has_blocked_load
= true;
12580 if (flags
& NOHZ_NEXT_KICK
)
12581 WRITE_ONCE(nohz
.needs_update
, 1);
12585 rq
= cpu_rq(balance_cpu
);
12587 if (flags
& NOHZ_STATS_KICK
)
12588 has_blocked_load
|= update_nohz_stats(rq
);
12591 * If time for next balance is due,
12594 if (time_after_eq(jiffies
, rq
->next_balance
)) {
12595 struct rq_flags rf
;
12597 rq_lock_irqsave(rq
, &rf
);
12598 update_rq_clock(rq
);
12599 rq_unlock_irqrestore(rq
, &rf
);
12601 if (flags
& NOHZ_BALANCE_KICK
)
12602 sched_balance_domains(rq
, CPU_IDLE
);
12605 if (time_after(next_balance
, rq
->next_balance
)) {
12606 next_balance
= rq
->next_balance
;
12607 update_next_balance
= 1;
12612 * next_balance will be updated only when there is a need.
12613 * When the CPU is attached to null domain for ex, it will not be
12616 if (likely(update_next_balance
))
12617 nohz
.next_balance
= next_balance
;
12619 if (flags
& NOHZ_STATS_KICK
)
12620 WRITE_ONCE(nohz
.next_blocked
,
12621 now
+ msecs_to_jiffies(LOAD_AVG_PERIOD
));
12624 /* There is still blocked load, enable periodic update */
12625 if (has_blocked_load
)
12626 WRITE_ONCE(nohz
.has_blocked
, 1);
12630 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12631 * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12633 static bool nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
12635 unsigned int flags
= this_rq
->nohz_idle_balance
;
12640 this_rq
->nohz_idle_balance
= 0;
12642 if (idle
!= CPU_IDLE
)
12645 _nohz_idle_balance(this_rq
, flags
);
12651 * Check if we need to directly run the ILB for updating blocked load before
12652 * entering idle state. Here we run ILB directly without issuing IPIs.
12654 * Note that when this function is called, the tick may not yet be stopped on
12655 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12656 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12657 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12658 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12659 * called from this function on (this) CPU that's not yet in the mask. That's
12660 * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12661 * updating the blocked load of already idle CPUs without waking up one of
12662 * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12663 * cpu about to enter idle, because it can take a long time.
12665 void nohz_run_idle_balance(int cpu
)
12667 unsigned int flags
;
12669 flags
= atomic_fetch_andnot(NOHZ_NEWILB_KICK
, nohz_flags(cpu
));
12672 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12673 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12675 if ((flags
== NOHZ_NEWILB_KICK
) && !need_resched())
12676 _nohz_idle_balance(cpu_rq(cpu
), NOHZ_STATS_KICK
);
12679 static void nohz_newidle_balance(struct rq
*this_rq
)
12681 int this_cpu
= this_rq
->cpu
;
12684 * This CPU doesn't want to be disturbed by scheduler
12687 if (!housekeeping_cpu(this_cpu
, HK_TYPE_SCHED
))
12690 /* Will wake up very soon. No time for doing anything else*/
12691 if (this_rq
->avg_idle
< sysctl_sched_migration_cost
)
12694 /* Don't need to update blocked load of idle CPUs*/
12695 if (!READ_ONCE(nohz
.has_blocked
) ||
12696 time_before(jiffies
, READ_ONCE(nohz
.next_blocked
)))
12700 * Set the need to trigger ILB in order to update blocked load
12701 * before entering idle state.
12703 atomic_or(NOHZ_NEWILB_KICK
, nohz_flags(this_cpu
));
12706 #else /* !CONFIG_NO_HZ_COMMON */
12707 static inline void nohz_balancer_kick(struct rq
*rq
) { }
12709 static inline bool nohz_idle_balance(struct rq
*this_rq
, enum cpu_idle_type idle
)
12714 static inline void nohz_newidle_balance(struct rq
*this_rq
) { }
12715 #endif /* CONFIG_NO_HZ_COMMON */
12718 * sched_balance_newidle is called by schedule() if this_cpu is about to become
12719 * idle. Attempts to pull tasks from other CPUs.
12722 * < 0 - we released the lock and there are !fair tasks present
12723 * 0 - failed, no new tasks
12724 * > 0 - success, new (fair) tasks present
12726 static int sched_balance_newidle(struct rq
*this_rq
, struct rq_flags
*rf
)
12728 unsigned long next_balance
= jiffies
+ HZ
;
12729 int this_cpu
= this_rq
->cpu
;
12730 int continue_balancing
= 1;
12731 u64 t0
, t1
, curr_cost
= 0;
12732 struct sched_domain
*sd
;
12733 int pulled_task
= 0;
12735 update_misfit_status(NULL
, this_rq
);
12738 * There is a task waiting to run. No need to search for one.
12739 * Return 0; the task will be enqueued when switching to idle.
12741 if (this_rq
->ttwu_pending
)
12745 * We must set idle_stamp _before_ calling sched_balance_rq()
12746 * for CPU_NEWLY_IDLE, such that we measure the this duration
12749 this_rq
->idle_stamp
= rq_clock(this_rq
);
12752 * Do not pull tasks towards !active CPUs...
12754 if (!cpu_active(this_cpu
))
12758 * This is OK, because current is on_cpu, which avoids it being picked
12759 * for load-balance and preemption/IRQs are still disabled avoiding
12760 * further scheduler activity on it and we're being very careful to
12761 * re-start the picking loop.
12763 rq_unpin_lock(this_rq
, rf
);
12766 sd
= rcu_dereference_check_sched_domain(this_rq
->sd
);
12768 if (!get_rd_overloaded(this_rq
->rd
) ||
12769 (sd
&& this_rq
->avg_idle
< sd
->max_newidle_lb_cost
)) {
12772 update_next_balance(sd
, &next_balance
);
12779 raw_spin_rq_unlock(this_rq
);
12781 t0
= sched_clock_cpu(this_cpu
);
12782 sched_balance_update_blocked_averages(this_cpu
);
12785 for_each_domain(this_cpu
, sd
) {
12788 update_next_balance(sd
, &next_balance
);
12790 if (this_rq
->avg_idle
< curr_cost
+ sd
->max_newidle_lb_cost
)
12793 if (sd
->flags
& SD_BALANCE_NEWIDLE
) {
12795 pulled_task
= sched_balance_rq(this_cpu
, this_rq
,
12796 sd
, CPU_NEWLY_IDLE
,
12797 &continue_balancing
);
12799 t1
= sched_clock_cpu(this_cpu
);
12800 domain_cost
= t1
- t0
;
12801 update_newidle_cost(sd
, domain_cost
);
12803 curr_cost
+= domain_cost
;
12808 * Stop searching for tasks to pull if there are
12809 * now runnable tasks on this rq.
12811 if (pulled_task
|| !continue_balancing
)
12816 raw_spin_rq_lock(this_rq
);
12818 if (curr_cost
> this_rq
->max_idle_balance_cost
)
12819 this_rq
->max_idle_balance_cost
= curr_cost
;
12822 * While browsing the domains, we released the rq lock, a task could
12823 * have been enqueued in the meantime. Since we're not going idle,
12824 * pretend we pulled a task.
12826 if (this_rq
->cfs
.h_nr_running
&& !pulled_task
)
12829 /* Is there a task of a high priority class? */
12830 if (this_rq
->nr_running
!= this_rq
->cfs
.h_nr_running
)
12834 /* Move the next balance forward */
12835 if (time_after(this_rq
->next_balance
, next_balance
))
12836 this_rq
->next_balance
= next_balance
;
12839 this_rq
->idle_stamp
= 0;
12841 nohz_newidle_balance(this_rq
);
12843 rq_repin_lock(this_rq
, rf
);
12845 return pulled_task
;
12849 * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12851 * - directly from the local scheduler_tick() for periodic load balancing
12853 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
12854 * through the SMP cross-call nohz_csd_func()
12856 static __latent_entropy
void sched_balance_softirq(void)
12858 struct rq
*this_rq
= this_rq();
12859 enum cpu_idle_type idle
= this_rq
->idle_balance
;
12861 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12862 * balancing on behalf of the other idle CPUs whose ticks are
12863 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12864 * give the idle CPUs a chance to load balance. Else we may
12865 * load balance only within the local sched_domain hierarchy
12866 * and abort nohz_idle_balance altogether if we pull some load.
12868 if (nohz_idle_balance(this_rq
, idle
))
12871 /* normal load balance */
12872 sched_balance_update_blocked_averages(this_rq
->cpu
);
12873 sched_balance_domains(this_rq
, idle
);
12877 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12879 void sched_balance_trigger(struct rq
*rq
)
12882 * Don't need to rebalance while attached to NULL domain or
12883 * runqueue CPU is not active
12885 if (unlikely(on_null_domain(rq
) || !cpu_active(cpu_of(rq
))))
12888 if (time_after_eq(jiffies
, rq
->next_balance
))
12889 raise_softirq(SCHED_SOFTIRQ
);
12891 nohz_balancer_kick(rq
);
12894 static void rq_online_fair(struct rq
*rq
)
12898 update_runtime_enabled(rq
);
12901 static void rq_offline_fair(struct rq
*rq
)
12905 /* Ensure any throttled groups are reachable by pick_next_task */
12906 unthrottle_offline_cfs_rqs(rq
);
12908 /* Ensure that we remove rq contribution to group share: */
12909 clear_tg_offline_cfs_rqs(rq
);
12912 #endif /* CONFIG_SMP */
12914 #ifdef CONFIG_SCHED_CORE
12916 __entity_slice_used(struct sched_entity
*se
, int min_nr_tasks
)
12918 u64 rtime
= se
->sum_exec_runtime
- se
->prev_sum_exec_runtime
;
12919 u64 slice
= se
->slice
;
12921 return (rtime
* min_nr_tasks
> slice
);
12924 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
12925 static inline void task_tick_core(struct rq
*rq
, struct task_struct
*curr
)
12927 if (!sched_core_enabled(rq
))
12931 * If runqueue has only one task which used up its slice and
12932 * if the sibling is forced idle, then trigger schedule to
12933 * give forced idle task a chance.
12935 * sched_slice() considers only this active rq and it gets the
12936 * whole slice. But during force idle, we have siblings acting
12937 * like a single runqueue and hence we need to consider runnable
12938 * tasks on this CPU and the forced idle CPU. Ideally, we should
12939 * go through the forced idle rq, but that would be a perf hit.
12940 * We can assume that the forced idle CPU has at least
12941 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12942 * if we need to give up the CPU.
12944 if (rq
->core
->core_forceidle_count
&& rq
->cfs
.nr_running
== 1 &&
12945 __entity_slice_used(&curr
->se
, MIN_NR_TASKS_DURING_FORCEIDLE
))
12950 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12952 static void se_fi_update(const struct sched_entity
*se
, unsigned int fi_seq
,
12955 for_each_sched_entity(se
) {
12956 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
12959 if (cfs_rq
->forceidle_seq
== fi_seq
)
12961 cfs_rq
->forceidle_seq
= fi_seq
;
12964 cfs_rq
->min_vruntime_fi
= cfs_rq
->min_vruntime
;
12968 void task_vruntime_update(struct rq
*rq
, struct task_struct
*p
, bool in_fi
)
12970 struct sched_entity
*se
= &p
->se
;
12972 if (p
->sched_class
!= &fair_sched_class
)
12975 se_fi_update(se
, rq
->core
->core_forceidle_seq
, in_fi
);
12978 bool cfs_prio_less(const struct task_struct
*a
, const struct task_struct
*b
,
12981 struct rq
*rq
= task_rq(a
);
12982 const struct sched_entity
*sea
= &a
->se
;
12983 const struct sched_entity
*seb
= &b
->se
;
12984 struct cfs_rq
*cfs_rqa
;
12985 struct cfs_rq
*cfs_rqb
;
12988 SCHED_WARN_ON(task_rq(b
)->core
!= rq
->core
);
12990 #ifdef CONFIG_FAIR_GROUP_SCHED
12992 * Find an se in the hierarchy for tasks a and b, such that the se's
12993 * are immediate siblings.
12995 while (sea
->cfs_rq
->tg
!= seb
->cfs_rq
->tg
) {
12996 int sea_depth
= sea
->depth
;
12997 int seb_depth
= seb
->depth
;
12999 if (sea_depth
>= seb_depth
)
13000 sea
= parent_entity(sea
);
13001 if (sea_depth
<= seb_depth
)
13002 seb
= parent_entity(seb
);
13005 se_fi_update(sea
, rq
->core
->core_forceidle_seq
, in_fi
);
13006 se_fi_update(seb
, rq
->core
->core_forceidle_seq
, in_fi
);
13008 cfs_rqa
= sea
->cfs_rq
;
13009 cfs_rqb
= seb
->cfs_rq
;
13011 cfs_rqa
= &task_rq(a
)->cfs
;
13012 cfs_rqb
= &task_rq(b
)->cfs
;
13016 * Find delta after normalizing se's vruntime with its cfs_rq's
13017 * min_vruntime_fi, which would have been updated in prior calls
13018 * to se_fi_update().
13020 delta
= (s64
)(sea
->vruntime
- seb
->vruntime
) +
13021 (s64
)(cfs_rqb
->min_vruntime_fi
- cfs_rqa
->min_vruntime_fi
);
13026 static int task_is_throttled_fair(struct task_struct
*p
, int cpu
)
13028 struct cfs_rq
*cfs_rq
;
13030 #ifdef CONFIG_FAIR_GROUP_SCHED
13031 cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
13033 cfs_rq
= &cpu_rq(cpu
)->cfs
;
13035 return throttled_hierarchy(cfs_rq
);
13038 static inline void task_tick_core(struct rq
*rq
, struct task_struct
*curr
) {}
13042 * scheduler tick hitting a task of our scheduling class.
13044 * NOTE: This function can be called remotely by the tick offload that
13045 * goes along full dynticks. Therefore no local assumption can be made
13046 * and everything must be accessed through the @rq and @curr passed in
13049 static void task_tick_fair(struct rq
*rq
, struct task_struct
*curr
, int queued
)
13051 struct cfs_rq
*cfs_rq
;
13052 struct sched_entity
*se
= &curr
->se
;
13054 for_each_sched_entity(se
) {
13055 cfs_rq
= cfs_rq_of(se
);
13056 entity_tick(cfs_rq
, se
, queued
);
13059 if (static_branch_unlikely(&sched_numa_balancing
))
13060 task_tick_numa(rq
, curr
);
13062 update_misfit_status(curr
, rq
);
13063 check_update_overutilized_status(task_rq(curr
));
13065 task_tick_core(rq
, curr
);
13069 * called on fork with the child task as argument from the parent's context
13070 * - child not yet on the tasklist
13071 * - preemption disabled
13073 static void task_fork_fair(struct task_struct
*p
)
13075 set_task_max_allowed_capacity(p
);
13079 * Priority of the task has changed. Check to see if we preempt
13080 * the current task.
13083 prio_changed_fair(struct rq
*rq
, struct task_struct
*p
, int oldprio
)
13085 if (!task_on_rq_queued(p
))
13088 if (rq
->cfs
.nr_running
== 1)
13092 * Reschedule if we are currently running on this runqueue and
13093 * our priority decreased, or if we are not currently running on
13094 * this runqueue and our priority is higher than the current's
13096 if (task_current_donor(rq
, p
)) {
13097 if (p
->prio
> oldprio
)
13100 wakeup_preempt(rq
, p
, 0);
13103 #ifdef CONFIG_FAIR_GROUP_SCHED
13105 * Propagate the changes of the sched_entity across the tg tree to make it
13106 * visible to the root
13108 static void propagate_entity_cfs_rq(struct sched_entity
*se
)
13110 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
13112 if (cfs_rq_throttled(cfs_rq
))
13115 if (!throttled_hierarchy(cfs_rq
))
13116 list_add_leaf_cfs_rq(cfs_rq
);
13118 /* Start to propagate at parent */
13121 for_each_sched_entity(se
) {
13122 cfs_rq
= cfs_rq_of(se
);
13124 update_load_avg(cfs_rq
, se
, UPDATE_TG
);
13126 if (cfs_rq_throttled(cfs_rq
))
13129 if (!throttled_hierarchy(cfs_rq
))
13130 list_add_leaf_cfs_rq(cfs_rq
);
13134 static void propagate_entity_cfs_rq(struct sched_entity
*se
) { }
13137 static void detach_entity_cfs_rq(struct sched_entity
*se
)
13139 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
13143 * In case the task sched_avg hasn't been attached:
13144 * - A forked task which hasn't been woken up by wake_up_new_task().
13145 * - A task which has been woken up by try_to_wake_up() but is
13146 * waiting for actually being woken up by sched_ttwu_pending().
13148 if (!se
->avg
.last_update_time
)
13152 /* Catch up with the cfs_rq and remove our load when we leave */
13153 update_load_avg(cfs_rq
, se
, 0);
13154 detach_entity_load_avg(cfs_rq
, se
);
13155 update_tg_load_avg(cfs_rq
);
13156 propagate_entity_cfs_rq(se
);
13159 static void attach_entity_cfs_rq(struct sched_entity
*se
)
13161 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
13163 /* Synchronize entity with its cfs_rq */
13164 update_load_avg(cfs_rq
, se
, sched_feat(ATTACH_AGE_LOAD
) ? 0 : SKIP_AGE_LOAD
);
13165 attach_entity_load_avg(cfs_rq
, se
);
13166 update_tg_load_avg(cfs_rq
);
13167 propagate_entity_cfs_rq(se
);
13170 static void detach_task_cfs_rq(struct task_struct
*p
)
13172 struct sched_entity
*se
= &p
->se
;
13174 detach_entity_cfs_rq(se
);
13177 static void attach_task_cfs_rq(struct task_struct
*p
)
13179 struct sched_entity
*se
= &p
->se
;
13181 attach_entity_cfs_rq(se
);
13184 static void switched_from_fair(struct rq
*rq
, struct task_struct
*p
)
13186 detach_task_cfs_rq(p
);
13189 static void switched_to_fair(struct rq
*rq
, struct task_struct
*p
)
13191 SCHED_WARN_ON(p
->se
.sched_delayed
);
13193 attach_task_cfs_rq(p
);
13195 set_task_max_allowed_capacity(p
);
13197 if (task_on_rq_queued(p
)) {
13199 * We were most likely switched from sched_rt, so
13200 * kick off the schedule if running, otherwise just see
13201 * if we can still preempt the current task.
13203 if (task_current_donor(rq
, p
))
13206 wakeup_preempt(rq
, p
, 0);
13210 static void __set_next_task_fair(struct rq
*rq
, struct task_struct
*p
, bool first
)
13212 struct sched_entity
*se
= &p
->se
;
13215 if (task_on_rq_queued(p
)) {
13217 * Move the next running task to the front of the list, so our
13218 * cfs_tasks list becomes MRU one.
13220 list_move(&se
->group_node
, &rq
->cfs_tasks
);
13226 SCHED_WARN_ON(se
->sched_delayed
);
13228 if (hrtick_enabled_fair(rq
))
13229 hrtick_start_fair(rq
, p
);
13231 update_misfit_status(p
, rq
);
13232 sched_fair_update_stop_tick(rq
, p
);
13236 * Account for a task changing its policy or group.
13238 * This routine is mostly called to set cfs_rq->curr field when a task
13239 * migrates between groups/classes.
13241 static void set_next_task_fair(struct rq
*rq
, struct task_struct
*p
, bool first
)
13243 struct sched_entity
*se
= &p
->se
;
13245 for_each_sched_entity(se
) {
13246 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
13248 set_next_entity(cfs_rq
, se
);
13249 /* ensure bandwidth has been allocated on our new cfs_rq */
13250 account_cfs_rq_runtime(cfs_rq
, 0);
13253 __set_next_task_fair(rq
, p
, first
);
13256 void init_cfs_rq(struct cfs_rq
*cfs_rq
)
13258 cfs_rq
->tasks_timeline
= RB_ROOT_CACHED
;
13259 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
13261 raw_spin_lock_init(&cfs_rq
->removed
.lock
);
13265 #ifdef CONFIG_FAIR_GROUP_SCHED
13266 static void task_change_group_fair(struct task_struct
*p
)
13269 * We couldn't detach or attach a forked task which
13270 * hasn't been woken up by wake_up_new_task().
13272 if (READ_ONCE(p
->__state
) == TASK_NEW
)
13275 detach_task_cfs_rq(p
);
13278 /* Tell se's cfs_rq has been changed -- migrated */
13279 p
->se
.avg
.last_update_time
= 0;
13281 set_task_rq(p
, task_cpu(p
));
13282 attach_task_cfs_rq(p
);
13285 void free_fair_sched_group(struct task_group
*tg
)
13289 for_each_possible_cpu(i
) {
13291 kfree(tg
->cfs_rq
[i
]);
13300 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
13302 struct sched_entity
*se
;
13303 struct cfs_rq
*cfs_rq
;
13306 tg
->cfs_rq
= kcalloc(nr_cpu_ids
, sizeof(cfs_rq
), GFP_KERNEL
);
13309 tg
->se
= kcalloc(nr_cpu_ids
, sizeof(se
), GFP_KERNEL
);
13313 tg
->shares
= NICE_0_LOAD
;
13315 init_cfs_bandwidth(tg_cfs_bandwidth(tg
), tg_cfs_bandwidth(parent
));
13317 for_each_possible_cpu(i
) {
13318 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
13319 GFP_KERNEL
, cpu_to_node(i
));
13323 se
= kzalloc_node(sizeof(struct sched_entity_stats
),
13324 GFP_KERNEL
, cpu_to_node(i
));
13328 init_cfs_rq(cfs_rq
);
13329 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, parent
->se
[i
]);
13330 init_entity_runnable_average(se
);
13341 void online_fair_sched_group(struct task_group
*tg
)
13343 struct sched_entity
*se
;
13344 struct rq_flags rf
;
13348 for_each_possible_cpu(i
) {
13351 rq_lock_irq(rq
, &rf
);
13352 update_rq_clock(rq
);
13353 attach_entity_cfs_rq(se
);
13354 sync_throttle(tg
, i
);
13355 rq_unlock_irq(rq
, &rf
);
13359 void unregister_fair_sched_group(struct task_group
*tg
)
13363 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg
));
13365 for_each_possible_cpu(cpu
) {
13366 struct cfs_rq
*cfs_rq
= tg
->cfs_rq
[cpu
];
13367 struct sched_entity
*se
= tg
->se
[cpu
];
13368 struct rq
*rq
= cpu_rq(cpu
);
13371 if (se
->sched_delayed
) {
13372 guard(rq_lock_irqsave
)(rq
);
13373 if (se
->sched_delayed
) {
13374 update_rq_clock(rq
);
13375 dequeue_entities(rq
, se
, DEQUEUE_SLEEP
| DEQUEUE_DELAYED
);
13377 list_del_leaf_cfs_rq(cfs_rq
);
13379 remove_entity_load_avg(se
);
13383 * Only empty task groups can be destroyed; so we can speculatively
13384 * check on_list without danger of it being re-added.
13386 if (cfs_rq
->on_list
) {
13387 guard(rq_lock_irqsave
)(rq
);
13388 list_del_leaf_cfs_rq(cfs_rq
);
13393 void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
13394 struct sched_entity
*se
, int cpu
,
13395 struct sched_entity
*parent
)
13397 struct rq
*rq
= cpu_rq(cpu
);
13401 init_cfs_rq_runtime(cfs_rq
);
13403 tg
->cfs_rq
[cpu
] = cfs_rq
;
13406 /* se could be NULL for root_task_group */
13411 se
->cfs_rq
= &rq
->cfs
;
13414 se
->cfs_rq
= parent
->my_q
;
13415 se
->depth
= parent
->depth
+ 1;
13419 /* guarantee group entities always have weight */
13420 update_load_set(&se
->load
, NICE_0_LOAD
);
13421 se
->parent
= parent
;
13424 static DEFINE_MUTEX(shares_mutex
);
13426 static int __sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
13430 lockdep_assert_held(&shares_mutex
);
13433 * We can't change the weight of the root cgroup.
13438 shares
= clamp(shares
, scale_load(MIN_SHARES
), scale_load(MAX_SHARES
));
13440 if (tg
->shares
== shares
)
13443 tg
->shares
= shares
;
13444 for_each_possible_cpu(i
) {
13445 struct rq
*rq
= cpu_rq(i
);
13446 struct sched_entity
*se
= tg
->se
[i
];
13447 struct rq_flags rf
;
13449 /* Propagate contribution to hierarchy */
13450 rq_lock_irqsave(rq
, &rf
);
13451 update_rq_clock(rq
);
13452 for_each_sched_entity(se
) {
13453 update_load_avg(cfs_rq_of(se
), se
, UPDATE_TG
);
13454 update_cfs_group(se
);
13456 rq_unlock_irqrestore(rq
, &rf
);
13462 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
13466 mutex_lock(&shares_mutex
);
13467 if (tg_is_idle(tg
))
13470 ret
= __sched_group_set_shares(tg
, shares
);
13471 mutex_unlock(&shares_mutex
);
13476 int sched_group_set_idle(struct task_group
*tg
, long idle
)
13480 if (tg
== &root_task_group
)
13483 if (idle
< 0 || idle
> 1)
13486 mutex_lock(&shares_mutex
);
13488 if (tg
->idle
== idle
) {
13489 mutex_unlock(&shares_mutex
);
13495 for_each_possible_cpu(i
) {
13496 struct rq
*rq
= cpu_rq(i
);
13497 struct sched_entity
*se
= tg
->se
[i
];
13498 struct cfs_rq
*parent_cfs_rq
, *grp_cfs_rq
= tg
->cfs_rq
[i
];
13499 bool was_idle
= cfs_rq_is_idle(grp_cfs_rq
);
13500 long idle_task_delta
;
13501 struct rq_flags rf
;
13503 rq_lock_irqsave(rq
, &rf
);
13505 grp_cfs_rq
->idle
= idle
;
13506 if (WARN_ON_ONCE(was_idle
== cfs_rq_is_idle(grp_cfs_rq
)))
13510 parent_cfs_rq
= cfs_rq_of(se
);
13511 if (cfs_rq_is_idle(grp_cfs_rq
))
13512 parent_cfs_rq
->idle_nr_running
++;
13514 parent_cfs_rq
->idle_nr_running
--;
13517 idle_task_delta
= grp_cfs_rq
->h_nr_running
-
13518 grp_cfs_rq
->idle_h_nr_running
;
13519 if (!cfs_rq_is_idle(grp_cfs_rq
))
13520 idle_task_delta
*= -1;
13522 for_each_sched_entity(se
) {
13523 struct cfs_rq
*cfs_rq
= cfs_rq_of(se
);
13528 cfs_rq
->idle_h_nr_running
+= idle_task_delta
;
13530 /* Already accounted at parent level and above. */
13531 if (cfs_rq_is_idle(cfs_rq
))
13536 rq_unlock_irqrestore(rq
, &rf
);
13539 /* Idle groups have minimum weight. */
13540 if (tg_is_idle(tg
))
13541 __sched_group_set_shares(tg
, scale_load(WEIGHT_IDLEPRIO
));
13543 __sched_group_set_shares(tg
, NICE_0_LOAD
);
13545 mutex_unlock(&shares_mutex
);
13549 #endif /* CONFIG_FAIR_GROUP_SCHED */
13552 static unsigned int get_rr_interval_fair(struct rq
*rq
, struct task_struct
*task
)
13554 struct sched_entity
*se
= &task
->se
;
13555 unsigned int rr_interval
= 0;
13558 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13561 if (rq
->cfs
.load
.weight
)
13562 rr_interval
= NS_TO_JIFFIES(se
->slice
);
13564 return rr_interval
;
13568 * All the scheduling class methods:
13570 DEFINE_SCHED_CLASS(fair
) = {
13572 .enqueue_task
= enqueue_task_fair
,
13573 .dequeue_task
= dequeue_task_fair
,
13574 .yield_task
= yield_task_fair
,
13575 .yield_to_task
= yield_to_task_fair
,
13577 .wakeup_preempt
= check_preempt_wakeup_fair
,
13579 .pick_task
= pick_task_fair
,
13580 .pick_next_task
= __pick_next_task_fair
,
13581 .put_prev_task
= put_prev_task_fair
,
13582 .set_next_task
= set_next_task_fair
,
13585 .balance
= balance_fair
,
13586 .select_task_rq
= select_task_rq_fair
,
13587 .migrate_task_rq
= migrate_task_rq_fair
,
13589 .rq_online
= rq_online_fair
,
13590 .rq_offline
= rq_offline_fair
,
13592 .task_dead
= task_dead_fair
,
13593 .set_cpus_allowed
= set_cpus_allowed_fair
,
13596 .task_tick
= task_tick_fair
,
13597 .task_fork
= task_fork_fair
,
13599 .reweight_task
= reweight_task_fair
,
13600 .prio_changed
= prio_changed_fair
,
13601 .switched_from
= switched_from_fair
,
13602 .switched_to
= switched_to_fair
,
13604 .get_rr_interval
= get_rr_interval_fair
,
13606 .update_curr
= update_curr_fair
,
13608 #ifdef CONFIG_FAIR_GROUP_SCHED
13609 .task_change_group
= task_change_group_fair
,
13612 #ifdef CONFIG_SCHED_CORE
13613 .task_is_throttled
= task_is_throttled_fair
,
13616 #ifdef CONFIG_UCLAMP_TASK
13617 .uclamp_enabled
= 1,
13621 #ifdef CONFIG_SCHED_DEBUG
13622 void print_cfs_stats(struct seq_file
*m
, int cpu
)
13624 struct cfs_rq
*cfs_rq
, *pos
;
13627 for_each_leaf_cfs_rq_safe(cpu_rq(cpu
), cfs_rq
, pos
)
13628 print_cfs_rq(m
, cpu
, cfs_rq
);
13632 #ifdef CONFIG_NUMA_BALANCING
13633 void show_numa_stats(struct task_struct
*p
, struct seq_file
*m
)
13636 unsigned long tsf
= 0, tpf
= 0, gsf
= 0, gpf
= 0;
13637 struct numa_group
*ng
;
13640 ng
= rcu_dereference(p
->numa_group
);
13641 for_each_online_node(node
) {
13642 if (p
->numa_faults
) {
13643 tsf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 0)];
13644 tpf
= p
->numa_faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
13647 gsf
= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 0)],
13648 gpf
= ng
->faults
[task_faults_idx(NUMA_MEM
, node
, 1)];
13650 print_numa_stats(m
, node
, tsf
, tpf
, gsf
, gpf
);
13654 #endif /* CONFIG_NUMA_BALANCING */
13655 #endif /* CONFIG_SCHED_DEBUG */
13657 __init
void init_sched_fair_class(void)
13662 for_each_possible_cpu(i
) {
13663 zalloc_cpumask_var_node(&per_cpu(load_balance_mask
, i
), GFP_KERNEL
, cpu_to_node(i
));
13664 zalloc_cpumask_var_node(&per_cpu(select_rq_mask
, i
), GFP_KERNEL
, cpu_to_node(i
));
13665 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask
, i
),
13666 GFP_KERNEL
, cpu_to_node(i
));
13668 #ifdef CONFIG_CFS_BANDWIDTH
13669 INIT_CSD(&cpu_rq(i
)->cfsb_csd
, __cfsb_csd_unthrottle
, cpu_rq(i
));
13670 INIT_LIST_HEAD(&cpu_rq(i
)->cfsb_csd_list
);
13674 open_softirq(SCHED_SOFTIRQ
, sched_balance_softirq
);
13676 #ifdef CONFIG_NO_HZ_COMMON
13677 nohz
.next_balance
= jiffies
;
13678 nohz
.next_blocked
= jiffies
;
13679 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);