drm/modes: Fix drm_mode_vrefres() docs
[drm/drm-misc.git] / kernel / sched / fair.c
bloba59ae2e23dafaa91f3c11b2cc27ac447e0bcbc58
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
5 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7 * Interactivity improvements by Mike Galbraith
8 * (C) 2007 Mike Galbraith <efault@gmx.de>
10 * Various enhancements by Dmitry Adamushko.
11 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
13 * Group scheduling enhancements by Srivatsa Vaddagiri
14 * Copyright IBM Corporation, 2007
15 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
17 * Scaled math optimizations by Thomas Gleixner
18 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
20 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
21 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
23 #include <linux/energy_model.h>
24 #include <linux/mmap_lock.h>
25 #include <linux/hugetlb_inline.h>
26 #include <linux/jiffies.h>
27 #include <linux/mm_api.h>
28 #include <linux/highmem.h>
29 #include <linux/spinlock_api.h>
30 #include <linux/cpumask_api.h>
31 #include <linux/lockdep_api.h>
32 #include <linux/softirq.h>
33 #include <linux/refcount_api.h>
34 #include <linux/topology.h>
35 #include <linux/sched/clock.h>
36 #include <linux/sched/cond_resched.h>
37 #include <linux/sched/cputime.h>
38 #include <linux/sched/isolation.h>
39 #include <linux/sched/nohz.h>
41 #include <linux/cpuidle.h>
42 #include <linux/interrupt.h>
43 #include <linux/memory-tiers.h>
44 #include <linux/mempolicy.h>
45 #include <linux/mutex_api.h>
46 #include <linux/profile.h>
47 #include <linux/psi.h>
48 #include <linux/ratelimit.h>
49 #include <linux/task_work.h>
50 #include <linux/rbtree_augmented.h>
52 #include <asm/switch_to.h>
54 #include "sched.h"
55 #include "stats.h"
56 #include "autogroup.h"
59 * The initial- and re-scaling of tunables is configurable
61 * Options are:
63 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
64 * SCHED_TUNABLESCALING_LOG - scaled logarithmically, *1+ilog(ncpus)
65 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
67 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
69 unsigned int sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
72 * Minimal preemption granularity for CPU-bound tasks:
74 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
76 unsigned int sysctl_sched_base_slice = 750000ULL;
77 static unsigned int normalized_sysctl_sched_base_slice = 750000ULL;
79 const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
81 static int __init setup_sched_thermal_decay_shift(char *str)
83 pr_warn("Ignoring the deprecated sched_thermal_decay_shift= option\n");
84 return 1;
86 __setup("sched_thermal_decay_shift=", setup_sched_thermal_decay_shift);
88 #ifdef CONFIG_SMP
90 * For asym packing, by default the lower numbered CPU has higher priority.
92 int __weak arch_asym_cpu_priority(int cpu)
94 return -cpu;
98 * The margin used when comparing utilization with CPU capacity.
100 * (default: ~20%)
102 #define fits_capacity(cap, max) ((cap) * 1280 < (max) * 1024)
105 * The margin used when comparing CPU capacities.
106 * is 'cap1' noticeably greater than 'cap2'
108 * (default: ~5%)
110 #define capacity_greater(cap1, cap2) ((cap1) * 1024 > (cap2) * 1078)
111 #endif
113 #ifdef CONFIG_CFS_BANDWIDTH
115 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
116 * each time a cfs_rq requests quota.
118 * Note: in the case that the slice exceeds the runtime remaining (either due
119 * to consumption or the quota being specified to be smaller than the slice)
120 * we will always only issue the remaining available time.
122 * (default: 5 msec, units: microseconds)
124 static unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
125 #endif
127 #ifdef CONFIG_NUMA_BALANCING
128 /* Restrict the NUMA promotion throughput (MB/s) for each target node. */
129 static unsigned int sysctl_numa_balancing_promote_rate_limit = 65536;
130 #endif
132 #ifdef CONFIG_SYSCTL
133 static struct ctl_table sched_fair_sysctls[] = {
134 #ifdef CONFIG_CFS_BANDWIDTH
136 .procname = "sched_cfs_bandwidth_slice_us",
137 .data = &sysctl_sched_cfs_bandwidth_slice,
138 .maxlen = sizeof(unsigned int),
139 .mode = 0644,
140 .proc_handler = proc_dointvec_minmax,
141 .extra1 = SYSCTL_ONE,
143 #endif
144 #ifdef CONFIG_NUMA_BALANCING
146 .procname = "numa_balancing_promote_rate_limit_MBps",
147 .data = &sysctl_numa_balancing_promote_rate_limit,
148 .maxlen = sizeof(unsigned int),
149 .mode = 0644,
150 .proc_handler = proc_dointvec_minmax,
151 .extra1 = SYSCTL_ZERO,
153 #endif /* CONFIG_NUMA_BALANCING */
156 static int __init sched_fair_sysctl_init(void)
158 register_sysctl_init("kernel", sched_fair_sysctls);
159 return 0;
161 late_initcall(sched_fair_sysctl_init);
162 #endif
164 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
166 lw->weight += inc;
167 lw->inv_weight = 0;
170 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
172 lw->weight -= dec;
173 lw->inv_weight = 0;
176 static inline void update_load_set(struct load_weight *lw, unsigned long w)
178 lw->weight = w;
179 lw->inv_weight = 0;
183 * Increase the granularity value when there are more CPUs,
184 * because with more CPUs the 'effective latency' as visible
185 * to users decreases. But the relationship is not linear,
186 * so pick a second-best guess by going with the log2 of the
187 * number of CPUs.
189 * This idea comes from the SD scheduler of Con Kolivas:
191 static unsigned int get_update_sysctl_factor(void)
193 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
194 unsigned int factor;
196 switch (sysctl_sched_tunable_scaling) {
197 case SCHED_TUNABLESCALING_NONE:
198 factor = 1;
199 break;
200 case SCHED_TUNABLESCALING_LINEAR:
201 factor = cpus;
202 break;
203 case SCHED_TUNABLESCALING_LOG:
204 default:
205 factor = 1 + ilog2(cpus);
206 break;
209 return factor;
212 static void update_sysctl(void)
214 unsigned int factor = get_update_sysctl_factor();
216 #define SET_SYSCTL(name) \
217 (sysctl_##name = (factor) * normalized_sysctl_##name)
218 SET_SYSCTL(sched_base_slice);
219 #undef SET_SYSCTL
222 void __init sched_init_granularity(void)
224 update_sysctl();
227 #define WMULT_CONST (~0U)
228 #define WMULT_SHIFT 32
230 static void __update_inv_weight(struct load_weight *lw)
232 unsigned long w;
234 if (likely(lw->inv_weight))
235 return;
237 w = scale_load_down(lw->weight);
239 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
240 lw->inv_weight = 1;
241 else if (unlikely(!w))
242 lw->inv_weight = WMULT_CONST;
243 else
244 lw->inv_weight = WMULT_CONST / w;
248 * delta_exec * weight / lw.weight
249 * OR
250 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
252 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
253 * we're guaranteed shift stays positive because inv_weight is guaranteed to
254 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
256 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
257 * weight/lw.weight <= 1, and therefore our shift will also be positive.
259 static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
261 u64 fact = scale_load_down(weight);
262 u32 fact_hi = (u32)(fact >> 32);
263 int shift = WMULT_SHIFT;
264 int fs;
266 __update_inv_weight(lw);
268 if (unlikely(fact_hi)) {
269 fs = fls(fact_hi);
270 shift -= fs;
271 fact >>= fs;
274 fact = mul_u32_u32(fact, lw->inv_weight);
276 fact_hi = (u32)(fact >> 32);
277 if (fact_hi) {
278 fs = fls(fact_hi);
279 shift -= fs;
280 fact >>= fs;
283 return mul_u64_u32_shr(delta_exec, fact, shift);
287 * delta /= w
289 static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
291 if (unlikely(se->load.weight != NICE_0_LOAD))
292 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
294 return delta;
297 const struct sched_class fair_sched_class;
299 /**************************************************************
300 * CFS operations on generic schedulable entities:
303 #ifdef CONFIG_FAIR_GROUP_SCHED
305 /* Walk up scheduling entities hierarchy */
306 #define for_each_sched_entity(se) \
307 for (; se; se = se->parent)
309 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
311 struct rq *rq = rq_of(cfs_rq);
312 int cpu = cpu_of(rq);
314 if (cfs_rq->on_list)
315 return rq->tmp_alone_branch == &rq->leaf_cfs_rq_list;
317 cfs_rq->on_list = 1;
320 * Ensure we either appear before our parent (if already
321 * enqueued) or force our parent to appear after us when it is
322 * enqueued. The fact that we always enqueue bottom-up
323 * reduces this to two cases and a special case for the root
324 * cfs_rq. Furthermore, it also means that we will always reset
325 * tmp_alone_branch either when the branch is connected
326 * to a tree or when we reach the top of the tree
328 if (cfs_rq->tg->parent &&
329 cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
331 * If parent is already on the list, we add the child
332 * just before. Thanks to circular linked property of
333 * the list, this means to put the child at the tail
334 * of the list that starts by parent.
336 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
337 &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
339 * The branch is now connected to its tree so we can
340 * reset tmp_alone_branch to the beginning of the
341 * list.
343 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
344 return true;
347 if (!cfs_rq->tg->parent) {
349 * cfs rq without parent should be put
350 * at the tail of the list.
352 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
353 &rq->leaf_cfs_rq_list);
355 * We have reach the top of a tree so we can reset
356 * tmp_alone_branch to the beginning of the list.
358 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
359 return true;
363 * The parent has not already been added so we want to
364 * make sure that it will be put after us.
365 * tmp_alone_branch points to the begin of the branch
366 * where we will add parent.
368 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, rq->tmp_alone_branch);
370 * update tmp_alone_branch to points to the new begin
371 * of the branch
373 rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
374 return false;
377 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
379 if (cfs_rq->on_list) {
380 struct rq *rq = rq_of(cfs_rq);
383 * With cfs_rq being unthrottled/throttled during an enqueue,
384 * it can happen the tmp_alone_branch points to the leaf that
385 * we finally want to delete. In this case, tmp_alone_branch moves
386 * to the prev element but it will point to rq->leaf_cfs_rq_list
387 * at the end of the enqueue.
389 if (rq->tmp_alone_branch == &cfs_rq->leaf_cfs_rq_list)
390 rq->tmp_alone_branch = cfs_rq->leaf_cfs_rq_list.prev;
392 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
393 cfs_rq->on_list = 0;
397 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
399 SCHED_WARN_ON(rq->tmp_alone_branch != &rq->leaf_cfs_rq_list);
402 /* Iterate through all leaf cfs_rq's on a runqueue */
403 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
404 list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list, \
405 leaf_cfs_rq_list)
407 /* Do the two (enqueued) entities belong to the same group ? */
408 static inline struct cfs_rq *
409 is_same_group(struct sched_entity *se, struct sched_entity *pse)
411 if (se->cfs_rq == pse->cfs_rq)
412 return se->cfs_rq;
414 return NULL;
417 static inline struct sched_entity *parent_entity(const struct sched_entity *se)
419 return se->parent;
422 static void
423 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
425 int se_depth, pse_depth;
428 * preemption test can be made between sibling entities who are in the
429 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
430 * both tasks until we find their ancestors who are siblings of common
431 * parent.
434 /* First walk up until both entities are at same depth */
435 se_depth = (*se)->depth;
436 pse_depth = (*pse)->depth;
438 while (se_depth > pse_depth) {
439 se_depth--;
440 *se = parent_entity(*se);
443 while (pse_depth > se_depth) {
444 pse_depth--;
445 *pse = parent_entity(*pse);
448 while (!is_same_group(*se, *pse)) {
449 *se = parent_entity(*se);
450 *pse = parent_entity(*pse);
454 static int tg_is_idle(struct task_group *tg)
456 return tg->idle > 0;
459 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
461 return cfs_rq->idle > 0;
464 static int se_is_idle(struct sched_entity *se)
466 if (entity_is_task(se))
467 return task_has_idle_policy(task_of(se));
468 return cfs_rq_is_idle(group_cfs_rq(se));
471 #else /* !CONFIG_FAIR_GROUP_SCHED */
473 #define for_each_sched_entity(se) \
474 for (; se; se = NULL)
476 static inline bool list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
478 return true;
481 static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
485 static inline void assert_list_leaf_cfs_rq(struct rq *rq)
489 #define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) \
490 for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
492 static inline struct sched_entity *parent_entity(struct sched_entity *se)
494 return NULL;
497 static inline void
498 find_matching_se(struct sched_entity **se, struct sched_entity **pse)
502 static inline int tg_is_idle(struct task_group *tg)
504 return 0;
507 static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
509 return 0;
512 static int se_is_idle(struct sched_entity *se)
514 return task_has_idle_policy(task_of(se));
517 #endif /* CONFIG_FAIR_GROUP_SCHED */
519 static __always_inline
520 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
522 /**************************************************************
523 * Scheduling class tree data structure manipulation methods:
526 static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
528 s64 delta = (s64)(vruntime - max_vruntime);
529 if (delta > 0)
530 max_vruntime = vruntime;
532 return max_vruntime;
535 static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
537 s64 delta = (s64)(vruntime - min_vruntime);
538 if (delta < 0)
539 min_vruntime = vruntime;
541 return min_vruntime;
544 static inline bool entity_before(const struct sched_entity *a,
545 const struct sched_entity *b)
548 * Tiebreak on vruntime seems unnecessary since it can
549 * hardly happen.
551 return (s64)(a->deadline - b->deadline) < 0;
554 static inline s64 entity_key(struct cfs_rq *cfs_rq, struct sched_entity *se)
556 return (s64)(se->vruntime - cfs_rq->min_vruntime);
559 #define __node_2_se(node) \
560 rb_entry((node), struct sched_entity, run_node)
563 * Compute virtual time from the per-task service numbers:
565 * Fair schedulers conserve lag:
567 * \Sum lag_i = 0
569 * Where lag_i is given by:
571 * lag_i = S - s_i = w_i * (V - v_i)
573 * Where S is the ideal service time and V is it's virtual time counterpart.
574 * Therefore:
576 * \Sum lag_i = 0
577 * \Sum w_i * (V - v_i) = 0
578 * \Sum w_i * V - w_i * v_i = 0
580 * From which we can solve an expression for V in v_i (which we have in
581 * se->vruntime):
583 * \Sum v_i * w_i \Sum v_i * w_i
584 * V = -------------- = --------------
585 * \Sum w_i W
587 * Specifically, this is the weighted average of all entity virtual runtimes.
589 * [[ NOTE: this is only equal to the ideal scheduler under the condition
590 * that join/leave operations happen at lag_i = 0, otherwise the
591 * virtual time has non-contiguous motion equivalent to:
593 * V +-= lag_i / W
595 * Also see the comment in place_entity() that deals with this. ]]
597 * However, since v_i is u64, and the multiplication could easily overflow
598 * transform it into a relative form that uses smaller quantities:
600 * Substitute: v_i == (v_i - v0) + v0
602 * \Sum ((v_i - v0) + v0) * w_i \Sum (v_i - v0) * w_i
603 * V = ---------------------------- = --------------------- + v0
604 * W W
606 * Which we track using:
608 * v0 := cfs_rq->min_vruntime
609 * \Sum (v_i - v0) * w_i := cfs_rq->avg_vruntime
610 * \Sum w_i := cfs_rq->avg_load
612 * Since min_vruntime is a monotonic increasing variable that closely tracks
613 * the per-task service, these deltas: (v_i - v), will be in the order of the
614 * maximal (virtual) lag induced in the system due to quantisation.
616 * Also, we use scale_load_down() to reduce the size.
618 * As measured, the max (key * weight) value was ~44 bits for a kernel build.
620 static void
621 avg_vruntime_add(struct cfs_rq *cfs_rq, struct sched_entity *se)
623 unsigned long weight = scale_load_down(se->load.weight);
624 s64 key = entity_key(cfs_rq, se);
626 cfs_rq->avg_vruntime += key * weight;
627 cfs_rq->avg_load += weight;
630 static void
631 avg_vruntime_sub(struct cfs_rq *cfs_rq, struct sched_entity *se)
633 unsigned long weight = scale_load_down(se->load.weight);
634 s64 key = entity_key(cfs_rq, se);
636 cfs_rq->avg_vruntime -= key * weight;
637 cfs_rq->avg_load -= weight;
640 static inline
641 void avg_vruntime_update(struct cfs_rq *cfs_rq, s64 delta)
644 * v' = v + d ==> avg_vruntime' = avg_runtime - d*avg_load
646 cfs_rq->avg_vruntime -= cfs_rq->avg_load * delta;
650 * Specifically: avg_runtime() + 0 must result in entity_eligible() := true
651 * For this to be so, the result of this function must have a left bias.
653 u64 avg_vruntime(struct cfs_rq *cfs_rq)
655 struct sched_entity *curr = cfs_rq->curr;
656 s64 avg = cfs_rq->avg_vruntime;
657 long load = cfs_rq->avg_load;
659 if (curr && curr->on_rq) {
660 unsigned long weight = scale_load_down(curr->load.weight);
662 avg += entity_key(cfs_rq, curr) * weight;
663 load += weight;
666 if (load) {
667 /* sign flips effective floor / ceiling */
668 if (avg < 0)
669 avg -= (load - 1);
670 avg = div_s64(avg, load);
673 return cfs_rq->min_vruntime + avg;
677 * lag_i = S - s_i = w_i * (V - v_i)
679 * However, since V is approximated by the weighted average of all entities it
680 * is possible -- by addition/removal/reweight to the tree -- to move V around
681 * and end up with a larger lag than we started with.
683 * Limit this to either double the slice length with a minimum of TICK_NSEC
684 * since that is the timing granularity.
686 * EEVDF gives the following limit for a steady state system:
688 * -r_max < lag < max(r_max, q)
690 * XXX could add max_slice to the augmented data to track this.
692 static s64 entity_lag(u64 avruntime, struct sched_entity *se)
694 s64 vlag, limit;
696 vlag = avruntime - se->vruntime;
697 limit = calc_delta_fair(max_t(u64, 2*se->slice, TICK_NSEC), se);
699 return clamp(vlag, -limit, limit);
702 static void update_entity_lag(struct cfs_rq *cfs_rq, struct sched_entity *se)
704 SCHED_WARN_ON(!se->on_rq);
706 se->vlag = entity_lag(avg_vruntime(cfs_rq), se);
710 * Entity is eligible once it received less service than it ought to have,
711 * eg. lag >= 0.
713 * lag_i = S - s_i = w_i*(V - v_i)
715 * lag_i >= 0 -> V >= v_i
717 * \Sum (v_i - v)*w_i
718 * V = ------------------ + v
719 * \Sum w_i
721 * lag_i >= 0 -> \Sum (v_i - v)*w_i >= (v_i - v)*(\Sum w_i)
723 * Note: using 'avg_vruntime() > se->vruntime' is inaccurate due
724 * to the loss in precision caused by the division.
726 static int vruntime_eligible(struct cfs_rq *cfs_rq, u64 vruntime)
728 struct sched_entity *curr = cfs_rq->curr;
729 s64 avg = cfs_rq->avg_vruntime;
730 long load = cfs_rq->avg_load;
732 if (curr && curr->on_rq) {
733 unsigned long weight = scale_load_down(curr->load.weight);
735 avg += entity_key(cfs_rq, curr) * weight;
736 load += weight;
739 return avg >= (s64)(vruntime - cfs_rq->min_vruntime) * load;
742 int entity_eligible(struct cfs_rq *cfs_rq, struct sched_entity *se)
744 return vruntime_eligible(cfs_rq, se->vruntime);
747 static u64 __update_min_vruntime(struct cfs_rq *cfs_rq, u64 vruntime)
749 u64 min_vruntime = cfs_rq->min_vruntime;
751 * open coded max_vruntime() to allow updating avg_vruntime
753 s64 delta = (s64)(vruntime - min_vruntime);
754 if (delta > 0) {
755 avg_vruntime_update(cfs_rq, delta);
756 min_vruntime = vruntime;
758 return min_vruntime;
761 static void update_min_vruntime(struct cfs_rq *cfs_rq)
763 struct sched_entity *se = __pick_root_entity(cfs_rq);
764 struct sched_entity *curr = cfs_rq->curr;
765 u64 vruntime = cfs_rq->min_vruntime;
767 if (curr) {
768 if (curr->on_rq)
769 vruntime = curr->vruntime;
770 else
771 curr = NULL;
774 if (se) {
775 if (!curr)
776 vruntime = se->min_vruntime;
777 else
778 vruntime = min_vruntime(vruntime, se->min_vruntime);
781 /* ensure we never gain time by being placed backwards. */
782 cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
785 static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
787 struct sched_entity *root = __pick_root_entity(cfs_rq);
788 struct sched_entity *curr = cfs_rq->curr;
789 u64 min_slice = ~0ULL;
791 if (curr && curr->on_rq)
792 min_slice = curr->slice;
794 if (root)
795 min_slice = min(min_slice, root->min_slice);
797 return min_slice;
800 static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
802 return entity_before(__node_2_se(a), __node_2_se(b));
805 #define vruntime_gt(field, lse, rse) ({ (s64)((lse)->field - (rse)->field) > 0; })
807 static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node *node)
809 if (node) {
810 struct sched_entity *rse = __node_2_se(node);
811 if (vruntime_gt(min_vruntime, se, rse))
812 se->min_vruntime = rse->min_vruntime;
816 static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
818 if (node) {
819 struct sched_entity *rse = __node_2_se(node);
820 if (rse->min_slice < se->min_slice)
821 se->min_slice = rse->min_slice;
826 * se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
828 static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
830 u64 old_min_vruntime = se->min_vruntime;
831 u64 old_min_slice = se->min_slice;
832 struct rb_node *node = &se->run_node;
834 se->min_vruntime = se->vruntime;
835 __min_vruntime_update(se, node->rb_right);
836 __min_vruntime_update(se, node->rb_left);
838 se->min_slice = se->slice;
839 __min_slice_update(se, node->rb_right);
840 __min_slice_update(se, node->rb_left);
842 return se->min_vruntime == old_min_vruntime &&
843 se->min_slice == old_min_slice;
846 RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
847 run_node, min_vruntime, min_vruntime_update);
850 * Enqueue an entity into the rb-tree:
852 static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
854 avg_vruntime_add(cfs_rq, se);
855 se->min_vruntime = se->vruntime;
856 se->min_slice = se->slice;
857 rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
858 __entity_less, &min_vruntime_cb);
861 static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
863 rb_erase_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
864 &min_vruntime_cb);
865 avg_vruntime_sub(cfs_rq, se);
868 struct sched_entity *__pick_root_entity(struct cfs_rq *cfs_rq)
870 struct rb_node *root = cfs_rq->tasks_timeline.rb_root.rb_node;
872 if (!root)
873 return NULL;
875 return __node_2_se(root);
878 struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
880 struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
882 if (!left)
883 return NULL;
885 return __node_2_se(left);
889 * Earliest Eligible Virtual Deadline First
891 * In order to provide latency guarantees for different request sizes
892 * EEVDF selects the best runnable task from two criteria:
894 * 1) the task must be eligible (must be owed service)
896 * 2) from those tasks that meet 1), we select the one
897 * with the earliest virtual deadline.
899 * We can do this in O(log n) time due to an augmented RB-tree. The
900 * tree keeps the entries sorted on deadline, but also functions as a
901 * heap based on the vruntime by keeping:
903 * se->min_vruntime = min(se->vruntime, se->{left,right}->min_vruntime)
905 * Which allows tree pruning through eligibility.
907 static struct sched_entity *pick_eevdf(struct cfs_rq *cfs_rq)
909 struct rb_node *node = cfs_rq->tasks_timeline.rb_root.rb_node;
910 struct sched_entity *se = __pick_first_entity(cfs_rq);
911 struct sched_entity *curr = cfs_rq->curr;
912 struct sched_entity *best = NULL;
915 * We can safely skip eligibility check if there is only one entity
916 * in this cfs_rq, saving some cycles.
918 if (cfs_rq->nr_running == 1)
919 return curr && curr->on_rq ? curr : se;
921 if (curr && (!curr->on_rq || !entity_eligible(cfs_rq, curr)))
922 curr = NULL;
925 * Once selected, run a task until it either becomes non-eligible or
926 * until it gets a new slice. See the HACK in set_next_entity().
928 if (sched_feat(RUN_TO_PARITY) && curr && curr->vlag == curr->deadline)
929 return curr;
931 /* Pick the leftmost entity if it's eligible */
932 if (se && entity_eligible(cfs_rq, se)) {
933 best = se;
934 goto found;
937 /* Heap search for the EEVD entity */
938 while (node) {
939 struct rb_node *left = node->rb_left;
942 * Eligible entities in left subtree are always better
943 * choices, since they have earlier deadlines.
945 if (left && vruntime_eligible(cfs_rq,
946 __node_2_se(left)->min_vruntime)) {
947 node = left;
948 continue;
951 se = __node_2_se(node);
954 * The left subtree either is empty or has no eligible
955 * entity, so check the current node since it is the one
956 * with earliest deadline that might be eligible.
958 if (entity_eligible(cfs_rq, se)) {
959 best = se;
960 break;
963 node = node->rb_right;
965 found:
966 if (!best || (curr && entity_before(curr, best)))
967 best = curr;
969 return best;
972 #ifdef CONFIG_SCHED_DEBUG
973 struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
975 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
977 if (!last)
978 return NULL;
980 return __node_2_se(last);
983 /**************************************************************
984 * Scheduling class statistics methods:
986 #ifdef CONFIG_SMP
987 int sched_update_scaling(void)
989 unsigned int factor = get_update_sysctl_factor();
991 #define WRT_SYSCTL(name) \
992 (normalized_sysctl_##name = sysctl_##name / (factor))
993 WRT_SYSCTL(sched_base_slice);
994 #undef WRT_SYSCTL
996 return 0;
998 #endif
999 #endif
1001 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
1004 * XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
1005 * this is probably good enough.
1007 static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
1009 if ((s64)(se->vruntime - se->deadline) < 0)
1010 return false;
1013 * For EEVDF the virtual time slope is determined by w_i (iow.
1014 * nice) while the request time r_i is determined by
1015 * sysctl_sched_base_slice.
1017 if (!se->custom_slice)
1018 se->slice = sysctl_sched_base_slice;
1021 * EEVDF: vd_i = ve_i + r_i / w_i
1023 se->deadline = se->vruntime + calc_delta_fair(se->slice, se);
1026 * The task has consumed its request, reschedule.
1028 return true;
1031 #include "pelt.h"
1032 #ifdef CONFIG_SMP
1034 static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
1035 static unsigned long task_h_load(struct task_struct *p);
1036 static unsigned long capacity_of(int cpu);
1038 /* Give new sched_entity start runnable values to heavy its load in infant time */
1039 void init_entity_runnable_average(struct sched_entity *se)
1041 struct sched_avg *sa = &se->avg;
1043 memset(sa, 0, sizeof(*sa));
1046 * Tasks are initialized with full load to be seen as heavy tasks until
1047 * they get a chance to stabilize to their real load level.
1048 * Group entities are initialized with zero load to reflect the fact that
1049 * nothing has been attached to the task group yet.
1051 if (entity_is_task(se))
1052 sa->load_avg = scale_load_down(se->load.weight);
1054 /* when this task is enqueued, it will contribute to its cfs_rq's load_avg */
1058 * With new tasks being created, their initial util_avgs are extrapolated
1059 * based on the cfs_rq's current util_avg:
1061 * util_avg = cfs_rq->avg.util_avg / (cfs_rq->avg.load_avg + 1)
1062 * * se_weight(se)
1064 * However, in many cases, the above util_avg does not give a desired
1065 * value. Moreover, the sum of the util_avgs may be divergent, such
1066 * as when the series is a harmonic series.
1068 * To solve this problem, we also cap the util_avg of successive tasks to
1069 * only 1/2 of the left utilization budget:
1071 * util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
1073 * where n denotes the nth task and cpu_scale the CPU capacity.
1075 * For example, for a CPU with 1024 of capacity, a simplest series from
1076 * the beginning would be like:
1078 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
1079 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
1081 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
1082 * if util_avg > util_avg_cap.
1084 void post_init_entity_util_avg(struct task_struct *p)
1086 struct sched_entity *se = &p->se;
1087 struct cfs_rq *cfs_rq = cfs_rq_of(se);
1088 struct sched_avg *sa = &se->avg;
1089 long cpu_scale = arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq)));
1090 long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
1092 if (p->sched_class != &fair_sched_class) {
1094 * For !fair tasks do:
1096 update_cfs_rq_load_avg(now, cfs_rq);
1097 attach_entity_load_avg(cfs_rq, se);
1098 switched_from_fair(rq, p);
1100 * such that the next switched_to_fair() has the
1101 * expected state.
1103 se->avg.last_update_time = cfs_rq_clock_pelt(cfs_rq);
1104 return;
1107 if (cap > 0) {
1108 if (cfs_rq->avg.util_avg != 0) {
1109 sa->util_avg = cfs_rq->avg.util_avg * se_weight(se);
1110 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
1112 if (sa->util_avg > cap)
1113 sa->util_avg = cap;
1114 } else {
1115 sa->util_avg = cap;
1119 sa->runnable_avg = sa->util_avg;
1122 #else /* !CONFIG_SMP */
1123 void init_entity_runnable_average(struct sched_entity *se)
1126 void post_init_entity_util_avg(struct task_struct *p)
1129 static void update_tg_load_avg(struct cfs_rq *cfs_rq)
1132 #endif /* CONFIG_SMP */
1134 static s64 update_curr_se(struct rq *rq, struct sched_entity *curr)
1136 u64 now = rq_clock_task(rq);
1137 s64 delta_exec;
1139 delta_exec = now - curr->exec_start;
1140 if (unlikely(delta_exec <= 0))
1141 return delta_exec;
1143 curr->exec_start = now;
1144 curr->sum_exec_runtime += delta_exec;
1146 if (schedstat_enabled()) {
1147 struct sched_statistics *stats;
1149 stats = __schedstats_from_se(curr);
1150 __schedstat_set(stats->exec_max,
1151 max(delta_exec, stats->exec_max));
1154 return delta_exec;
1157 static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
1159 trace_sched_stat_runtime(p, delta_exec);
1160 account_group_exec_runtime(p, delta_exec);
1161 cgroup_account_cputime(p, delta_exec);
1162 if (p->dl_server)
1163 dl_server_update(p->dl_server, delta_exec);
1166 static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
1168 if (!sched_feat(PREEMPT_SHORT))
1169 return false;
1171 if (curr->vlag == curr->deadline)
1172 return false;
1174 return !entity_eligible(cfs_rq, curr);
1177 static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
1178 struct sched_entity *pse, struct sched_entity *se)
1180 if (!sched_feat(PREEMPT_SHORT))
1181 return false;
1183 if (pse->slice >= se->slice)
1184 return false;
1186 if (!entity_eligible(cfs_rq, pse))
1187 return false;
1189 if (entity_before(pse, se))
1190 return true;
1192 if (!entity_eligible(cfs_rq, se))
1193 return true;
1195 return false;
1199 * Used by other classes to account runtime.
1201 s64 update_curr_common(struct rq *rq)
1203 struct task_struct *donor = rq->donor;
1204 s64 delta_exec;
1206 delta_exec = update_curr_se(rq, &donor->se);
1207 if (likely(delta_exec > 0))
1208 update_curr_task(donor, delta_exec);
1210 return delta_exec;
1214 * Update the current task's runtime statistics.
1216 static void update_curr(struct cfs_rq *cfs_rq)
1218 struct sched_entity *curr = cfs_rq->curr;
1219 struct rq *rq = rq_of(cfs_rq);
1220 s64 delta_exec;
1221 bool resched;
1223 if (unlikely(!curr))
1224 return;
1226 delta_exec = update_curr_se(rq, curr);
1227 if (unlikely(delta_exec <= 0))
1228 return;
1230 curr->vruntime += calc_delta_fair(delta_exec, curr);
1231 resched = update_deadline(cfs_rq, curr);
1232 update_min_vruntime(cfs_rq);
1234 if (entity_is_task(curr)) {
1235 struct task_struct *p = task_of(curr);
1237 update_curr_task(p, delta_exec);
1240 * Any fair task that runs outside of fair_server should
1241 * account against fair_server such that it can account for
1242 * this time and possibly avoid running this period.
1244 if (p->dl_server != &rq->fair_server)
1245 dl_server_update(&rq->fair_server, delta_exec);
1248 account_cfs_rq_runtime(cfs_rq, delta_exec);
1250 if (cfs_rq->nr_running == 1)
1251 return;
1253 if (resched || did_preempt_short(cfs_rq, curr)) {
1254 resched_curr_lazy(rq);
1255 clear_buddies(cfs_rq, curr);
1259 static void update_curr_fair(struct rq *rq)
1261 update_curr(cfs_rq_of(&rq->donor->se));
1264 static inline void
1265 update_stats_wait_start_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1267 struct sched_statistics *stats;
1268 struct task_struct *p = NULL;
1270 if (!schedstat_enabled())
1271 return;
1273 stats = __schedstats_from_se(se);
1275 if (entity_is_task(se))
1276 p = task_of(se);
1278 __update_stats_wait_start(rq_of(cfs_rq), p, stats);
1281 static inline void
1282 update_stats_wait_end_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1284 struct sched_statistics *stats;
1285 struct task_struct *p = NULL;
1287 if (!schedstat_enabled())
1288 return;
1290 stats = __schedstats_from_se(se);
1293 * When the sched_schedstat changes from 0 to 1, some sched se
1294 * maybe already in the runqueue, the se->statistics.wait_start
1295 * will be 0.So it will let the delta wrong. We need to avoid this
1296 * scenario.
1298 if (unlikely(!schedstat_val(stats->wait_start)))
1299 return;
1301 if (entity_is_task(se))
1302 p = task_of(se);
1304 __update_stats_wait_end(rq_of(cfs_rq), p, stats);
1307 static inline void
1308 update_stats_enqueue_sleeper_fair(struct cfs_rq *cfs_rq, struct sched_entity *se)
1310 struct sched_statistics *stats;
1311 struct task_struct *tsk = NULL;
1313 if (!schedstat_enabled())
1314 return;
1316 stats = __schedstats_from_se(se);
1318 if (entity_is_task(se))
1319 tsk = task_of(se);
1321 __update_stats_enqueue_sleeper(rq_of(cfs_rq), tsk, stats);
1325 * Task is being enqueued - update stats:
1327 static inline void
1328 update_stats_enqueue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1330 if (!schedstat_enabled())
1331 return;
1334 * Are we enqueueing a waiting task? (for current tasks
1335 * a dequeue/enqueue event is a NOP)
1337 if (se != cfs_rq->curr)
1338 update_stats_wait_start_fair(cfs_rq, se);
1340 if (flags & ENQUEUE_WAKEUP)
1341 update_stats_enqueue_sleeper_fair(cfs_rq, se);
1344 static inline void
1345 update_stats_dequeue_fair(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
1348 if (!schedstat_enabled())
1349 return;
1352 * Mark the end of the wait period if dequeueing a
1353 * waiting task:
1355 if (se != cfs_rq->curr)
1356 update_stats_wait_end_fair(cfs_rq, se);
1358 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
1359 struct task_struct *tsk = task_of(se);
1360 unsigned int state;
1362 /* XXX racy against TTWU */
1363 state = READ_ONCE(tsk->__state);
1364 if (state & TASK_INTERRUPTIBLE)
1365 __schedstat_set(tsk->stats.sleep_start,
1366 rq_clock(rq_of(cfs_rq)));
1367 if (state & TASK_UNINTERRUPTIBLE)
1368 __schedstat_set(tsk->stats.block_start,
1369 rq_clock(rq_of(cfs_rq)));
1374 * We are picking a new current task - update its stats:
1376 static inline void
1377 update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1380 * We are starting a new run period:
1382 se->exec_start = rq_clock_task(rq_of(cfs_rq));
1385 /**************************************************
1386 * Scheduling class queueing methods:
1389 static inline bool is_core_idle(int cpu)
1391 #ifdef CONFIG_SCHED_SMT
1392 int sibling;
1394 for_each_cpu(sibling, cpu_smt_mask(cpu)) {
1395 if (cpu == sibling)
1396 continue;
1398 if (!idle_cpu(sibling))
1399 return false;
1401 #endif
1403 return true;
1406 #ifdef CONFIG_NUMA
1407 #define NUMA_IMBALANCE_MIN 2
1409 static inline long
1410 adjust_numa_imbalance(int imbalance, int dst_running, int imb_numa_nr)
1413 * Allow a NUMA imbalance if busy CPUs is less than the maximum
1414 * threshold. Above this threshold, individual tasks may be contending
1415 * for both memory bandwidth and any shared HT resources. This is an
1416 * approximation as the number of running tasks may not be related to
1417 * the number of busy CPUs due to sched_setaffinity.
1419 if (dst_running > imb_numa_nr)
1420 return imbalance;
1423 * Allow a small imbalance based on a simple pair of communicating
1424 * tasks that remain local when the destination is lightly loaded.
1426 if (imbalance <= NUMA_IMBALANCE_MIN)
1427 return 0;
1429 return imbalance;
1431 #endif /* CONFIG_NUMA */
1433 #ifdef CONFIG_NUMA_BALANCING
1435 * Approximate time to scan a full NUMA task in ms. The task scan period is
1436 * calculated based on the tasks virtual memory size and
1437 * numa_balancing_scan_size.
1439 unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1440 unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1442 /* Portion of address space to scan in MB */
1443 unsigned int sysctl_numa_balancing_scan_size = 256;
1445 /* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1446 unsigned int sysctl_numa_balancing_scan_delay = 1000;
1448 /* The page with hint page fault latency < threshold in ms is considered hot */
1449 unsigned int sysctl_numa_balancing_hot_threshold = MSEC_PER_SEC;
1451 struct numa_group {
1452 refcount_t refcount;
1454 spinlock_t lock; /* nr_tasks, tasks */
1455 int nr_tasks;
1456 pid_t gid;
1457 int active_nodes;
1459 struct rcu_head rcu;
1460 unsigned long total_faults;
1461 unsigned long max_faults_cpu;
1463 * faults[] array is split into two regions: faults_mem and faults_cpu.
1465 * Faults_cpu is used to decide whether memory should move
1466 * towards the CPU. As a consequence, these stats are weighted
1467 * more by CPU use than by memory faults.
1469 unsigned long faults[];
1473 * For functions that can be called in multiple contexts that permit reading
1474 * ->numa_group (see struct task_struct for locking rules).
1476 static struct numa_group *deref_task_numa_group(struct task_struct *p)
1478 return rcu_dereference_check(p->numa_group, p == current ||
1479 (lockdep_is_held(__rq_lockp(task_rq(p))) && !READ_ONCE(p->on_cpu)));
1482 static struct numa_group *deref_curr_numa_group(struct task_struct *p)
1484 return rcu_dereference_protected(p->numa_group, p == current);
1487 static inline unsigned long group_faults_priv(struct numa_group *ng);
1488 static inline unsigned long group_faults_shared(struct numa_group *ng);
1490 static unsigned int task_nr_scan_windows(struct task_struct *p)
1492 unsigned long rss = 0;
1493 unsigned long nr_scan_pages;
1496 * Calculations based on RSS as non-present and empty pages are skipped
1497 * by the PTE scanner and NUMA hinting faults should be trapped based
1498 * on resident pages
1500 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1501 rss = get_mm_rss(p->mm);
1502 if (!rss)
1503 rss = nr_scan_pages;
1505 rss = round_up(rss, nr_scan_pages);
1506 return rss / nr_scan_pages;
1509 /* For sanity's sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1510 #define MAX_SCAN_WINDOW 2560
1512 static unsigned int task_scan_min(struct task_struct *p)
1514 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1515 unsigned int scan, floor;
1516 unsigned int windows = 1;
1518 if (scan_size < MAX_SCAN_WINDOW)
1519 windows = MAX_SCAN_WINDOW / scan_size;
1520 floor = 1000 / windows;
1522 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1523 return max_t(unsigned int, floor, scan);
1526 static unsigned int task_scan_start(struct task_struct *p)
1528 unsigned long smin = task_scan_min(p);
1529 unsigned long period = smin;
1530 struct numa_group *ng;
1532 /* Scale the maximum scan period with the amount of shared memory. */
1533 rcu_read_lock();
1534 ng = rcu_dereference(p->numa_group);
1535 if (ng) {
1536 unsigned long shared = group_faults_shared(ng);
1537 unsigned long private = group_faults_priv(ng);
1539 period *= refcount_read(&ng->refcount);
1540 period *= shared + 1;
1541 period /= private + shared + 1;
1543 rcu_read_unlock();
1545 return max(smin, period);
1548 static unsigned int task_scan_max(struct task_struct *p)
1550 unsigned long smin = task_scan_min(p);
1551 unsigned long smax;
1552 struct numa_group *ng;
1554 /* Watch for min being lower than max due to floor calculations */
1555 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1557 /* Scale the maximum scan period with the amount of shared memory. */
1558 ng = deref_curr_numa_group(p);
1559 if (ng) {
1560 unsigned long shared = group_faults_shared(ng);
1561 unsigned long private = group_faults_priv(ng);
1562 unsigned long period = smax;
1564 period *= refcount_read(&ng->refcount);
1565 period *= shared + 1;
1566 period /= private + shared + 1;
1568 smax = max(smax, period);
1571 return max(smin, smax);
1574 static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1576 rq->nr_numa_running += (p->numa_preferred_nid != NUMA_NO_NODE);
1577 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1580 static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1582 rq->nr_numa_running -= (p->numa_preferred_nid != NUMA_NO_NODE);
1583 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1586 /* Shared or private faults. */
1587 #define NR_NUMA_HINT_FAULT_TYPES 2
1589 /* Memory and CPU locality */
1590 #define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1592 /* Averaged statistics, and temporary buffers. */
1593 #define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1595 pid_t task_numa_group_id(struct task_struct *p)
1597 struct numa_group *ng;
1598 pid_t gid = 0;
1600 rcu_read_lock();
1601 ng = rcu_dereference(p->numa_group);
1602 if (ng)
1603 gid = ng->gid;
1604 rcu_read_unlock();
1606 return gid;
1610 * The averaged statistics, shared & private, memory & CPU,
1611 * occupy the first half of the array. The second half of the
1612 * array is for current counters, which are averaged into the
1613 * first set by task_numa_placement.
1615 static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1617 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1620 static inline unsigned long task_faults(struct task_struct *p, int nid)
1622 if (!p->numa_faults)
1623 return 0;
1625 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1626 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1629 static inline unsigned long group_faults(struct task_struct *p, int nid)
1631 struct numa_group *ng = deref_task_numa_group(p);
1633 if (!ng)
1634 return 0;
1636 return ng->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1637 ng->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1640 static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1642 return group->faults[task_faults_idx(NUMA_CPU, nid, 0)] +
1643 group->faults[task_faults_idx(NUMA_CPU, nid, 1)];
1646 static inline unsigned long group_faults_priv(struct numa_group *ng)
1648 unsigned long faults = 0;
1649 int node;
1651 for_each_online_node(node) {
1652 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1655 return faults;
1658 static inline unsigned long group_faults_shared(struct numa_group *ng)
1660 unsigned long faults = 0;
1661 int node;
1663 for_each_online_node(node) {
1664 faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1667 return faults;
1671 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1672 * considered part of a numa group's pseudo-interleaving set. Migrations
1673 * between these nodes are slowed down, to allow things to settle down.
1675 #define ACTIVE_NODE_FRACTION 3
1677 static bool numa_is_active_node(int nid, struct numa_group *ng)
1679 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1682 /* Handle placement on systems where not all nodes are directly connected. */
1683 static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1684 int lim_dist, bool task)
1686 unsigned long score = 0;
1687 int node, max_dist;
1690 * All nodes are directly connected, and the same distance
1691 * from each other. No need for fancy placement algorithms.
1693 if (sched_numa_topology_type == NUMA_DIRECT)
1694 return 0;
1696 /* sched_max_numa_distance may be changed in parallel. */
1697 max_dist = READ_ONCE(sched_max_numa_distance);
1699 * This code is called for each node, introducing N^2 complexity,
1700 * which should be OK given the number of nodes rarely exceeds 8.
1702 for_each_online_node(node) {
1703 unsigned long faults;
1704 int dist = node_distance(nid, node);
1707 * The furthest away nodes in the system are not interesting
1708 * for placement; nid was already counted.
1710 if (dist >= max_dist || node == nid)
1711 continue;
1714 * On systems with a backplane NUMA topology, compare groups
1715 * of nodes, and move tasks towards the group with the most
1716 * memory accesses. When comparing two nodes at distance
1717 * "hoplimit", only nodes closer by than "hoplimit" are part
1718 * of each group. Skip other nodes.
1720 if (sched_numa_topology_type == NUMA_BACKPLANE && dist >= lim_dist)
1721 continue;
1723 /* Add up the faults from nearby nodes. */
1724 if (task)
1725 faults = task_faults(p, node);
1726 else
1727 faults = group_faults(p, node);
1730 * On systems with a glueless mesh NUMA topology, there are
1731 * no fixed "groups of nodes". Instead, nodes that are not
1732 * directly connected bounce traffic through intermediate
1733 * nodes; a numa_group can occupy any set of nodes.
1734 * The further away a node is, the less the faults count.
1735 * This seems to result in good task placement.
1737 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1738 faults *= (max_dist - dist);
1739 faults /= (max_dist - LOCAL_DISTANCE);
1742 score += faults;
1745 return score;
1749 * These return the fraction of accesses done by a particular task, or
1750 * task group, on a particular numa node. The group weight is given a
1751 * larger multiplier, in order to group tasks together that are almost
1752 * evenly spread out between numa nodes.
1754 static inline unsigned long task_weight(struct task_struct *p, int nid,
1755 int dist)
1757 unsigned long faults, total_faults;
1759 if (!p->numa_faults)
1760 return 0;
1762 total_faults = p->total_numa_faults;
1764 if (!total_faults)
1765 return 0;
1767 faults = task_faults(p, nid);
1768 faults += score_nearby_nodes(p, nid, dist, true);
1770 return 1000 * faults / total_faults;
1773 static inline unsigned long group_weight(struct task_struct *p, int nid,
1774 int dist)
1776 struct numa_group *ng = deref_task_numa_group(p);
1777 unsigned long faults, total_faults;
1779 if (!ng)
1780 return 0;
1782 total_faults = ng->total_faults;
1784 if (!total_faults)
1785 return 0;
1787 faults = group_faults(p, nid);
1788 faults += score_nearby_nodes(p, nid, dist, false);
1790 return 1000 * faults / total_faults;
1794 * If memory tiering mode is enabled, cpupid of slow memory page is
1795 * used to record scan time instead of CPU and PID. When tiering mode
1796 * is disabled at run time, the scan time (in cpupid) will be
1797 * interpreted as CPU and PID. So CPU needs to be checked to avoid to
1798 * access out of array bound.
1800 static inline bool cpupid_valid(int cpupid)
1802 return cpupid_to_cpu(cpupid) < nr_cpu_ids;
1806 * For memory tiering mode, if there are enough free pages (more than
1807 * enough watermark defined here) in fast memory node, to take full
1808 * advantage of fast memory capacity, all recently accessed slow
1809 * memory pages will be migrated to fast memory node without
1810 * considering hot threshold.
1812 static bool pgdat_free_space_enough(struct pglist_data *pgdat)
1814 int z;
1815 unsigned long enough_wmark;
1817 enough_wmark = max(1UL * 1024 * 1024 * 1024 >> PAGE_SHIFT,
1818 pgdat->node_present_pages >> 4);
1819 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1820 struct zone *zone = pgdat->node_zones + z;
1822 if (!populated_zone(zone))
1823 continue;
1825 if (zone_watermark_ok(zone, 0,
1826 promo_wmark_pages(zone) + enough_wmark,
1827 ZONE_MOVABLE, 0))
1828 return true;
1830 return false;
1834 * For memory tiering mode, when page tables are scanned, the scan
1835 * time will be recorded in struct page in addition to make page
1836 * PROT_NONE for slow memory page. So when the page is accessed, in
1837 * hint page fault handler, the hint page fault latency is calculated
1838 * via,
1840 * hint page fault latency = hint page fault time - scan time
1842 * The smaller the hint page fault latency, the higher the possibility
1843 * for the page to be hot.
1845 static int numa_hint_fault_latency(struct folio *folio)
1847 int last_time, time;
1849 time = jiffies_to_msecs(jiffies);
1850 last_time = folio_xchg_access_time(folio, time);
1852 return (time - last_time) & PAGE_ACCESS_TIME_MASK;
1856 * For memory tiering mode, too high promotion/demotion throughput may
1857 * hurt application latency. So we provide a mechanism to rate limit
1858 * the number of pages that are tried to be promoted.
1860 static bool numa_promotion_rate_limit(struct pglist_data *pgdat,
1861 unsigned long rate_limit, int nr)
1863 unsigned long nr_cand;
1864 unsigned int now, start;
1866 now = jiffies_to_msecs(jiffies);
1867 mod_node_page_state(pgdat, PGPROMOTE_CANDIDATE, nr);
1868 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1869 start = pgdat->nbp_rl_start;
1870 if (now - start > MSEC_PER_SEC &&
1871 cmpxchg(&pgdat->nbp_rl_start, start, now) == start)
1872 pgdat->nbp_rl_nr_cand = nr_cand;
1873 if (nr_cand - pgdat->nbp_rl_nr_cand >= rate_limit)
1874 return true;
1875 return false;
1878 #define NUMA_MIGRATION_ADJUST_STEPS 16
1880 static void numa_promotion_adjust_threshold(struct pglist_data *pgdat,
1881 unsigned long rate_limit,
1882 unsigned int ref_th)
1884 unsigned int now, start, th_period, unit_th, th;
1885 unsigned long nr_cand, ref_cand, diff_cand;
1887 now = jiffies_to_msecs(jiffies);
1888 th_period = sysctl_numa_balancing_scan_period_max;
1889 start = pgdat->nbp_th_start;
1890 if (now - start > th_period &&
1891 cmpxchg(&pgdat->nbp_th_start, start, now) == start) {
1892 ref_cand = rate_limit *
1893 sysctl_numa_balancing_scan_period_max / MSEC_PER_SEC;
1894 nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE);
1895 diff_cand = nr_cand - pgdat->nbp_th_nr_cand;
1896 unit_th = ref_th * 2 / NUMA_MIGRATION_ADJUST_STEPS;
1897 th = pgdat->nbp_threshold ? : ref_th;
1898 if (diff_cand > ref_cand * 11 / 10)
1899 th = max(th - unit_th, unit_th);
1900 else if (diff_cand < ref_cand * 9 / 10)
1901 th = min(th + unit_th, ref_th * 2);
1902 pgdat->nbp_th_nr_cand = nr_cand;
1903 pgdat->nbp_threshold = th;
1907 bool should_numa_migrate_memory(struct task_struct *p, struct folio *folio,
1908 int src_nid, int dst_cpu)
1910 struct numa_group *ng = deref_curr_numa_group(p);
1911 int dst_nid = cpu_to_node(dst_cpu);
1912 int last_cpupid, this_cpupid;
1915 * Cannot migrate to memoryless nodes.
1917 if (!node_state(dst_nid, N_MEMORY))
1918 return false;
1921 * The pages in slow memory node should be migrated according
1922 * to hot/cold instead of private/shared.
1924 if (folio_use_access_time(folio)) {
1925 struct pglist_data *pgdat;
1926 unsigned long rate_limit;
1927 unsigned int latency, th, def_th;
1929 pgdat = NODE_DATA(dst_nid);
1930 if (pgdat_free_space_enough(pgdat)) {
1931 /* workload changed, reset hot threshold */
1932 pgdat->nbp_threshold = 0;
1933 return true;
1936 def_th = sysctl_numa_balancing_hot_threshold;
1937 rate_limit = sysctl_numa_balancing_promote_rate_limit << \
1938 (20 - PAGE_SHIFT);
1939 numa_promotion_adjust_threshold(pgdat, rate_limit, def_th);
1941 th = pgdat->nbp_threshold ? : def_th;
1942 latency = numa_hint_fault_latency(folio);
1943 if (latency >= th)
1944 return false;
1946 return !numa_promotion_rate_limit(pgdat, rate_limit,
1947 folio_nr_pages(folio));
1950 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1951 last_cpupid = folio_xchg_last_cpupid(folio, this_cpupid);
1953 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
1954 !node_is_toptier(src_nid) && !cpupid_valid(last_cpupid))
1955 return false;
1958 * Allow first faults or private faults to migrate immediately early in
1959 * the lifetime of a task. The magic number 4 is based on waiting for
1960 * two full passes of the "multi-stage node selection" test that is
1961 * executed below.
1963 if ((p->numa_preferred_nid == NUMA_NO_NODE || p->numa_scan_seq <= 4) &&
1964 (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1965 return true;
1968 * Multi-stage node selection is used in conjunction with a periodic
1969 * migration fault to build a temporal task<->page relation. By using
1970 * a two-stage filter we remove short/unlikely relations.
1972 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1973 * a task's usage of a particular page (n_p) per total usage of this
1974 * page (n_t) (in a given time-span) to a probability.
1976 * Our periodic faults will sample this probability and getting the
1977 * same result twice in a row, given these samples are fully
1978 * independent, is then given by P(n)^2, provided our sample period
1979 * is sufficiently short compared to the usage pattern.
1981 * This quadric squishes small probabilities, making it less likely we
1982 * act on an unlikely task<->page relation.
1984 if (!cpupid_pid_unset(last_cpupid) &&
1985 cpupid_to_nid(last_cpupid) != dst_nid)
1986 return false;
1988 /* Always allow migrate on private faults */
1989 if (cpupid_match_pid(p, last_cpupid))
1990 return true;
1992 /* A shared fault, but p->numa_group has not been set up yet. */
1993 if (!ng)
1994 return true;
1997 * Destination node is much more heavily used than the source
1998 * node? Allow migration.
2000 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
2001 ACTIVE_NODE_FRACTION)
2002 return true;
2005 * Distribute memory according to CPU & memory use on each node,
2006 * with 3/4 hysteresis to avoid unnecessary memory migrations:
2008 * faults_cpu(dst) 3 faults_cpu(src)
2009 * --------------- * - > ---------------
2010 * faults_mem(dst) 4 faults_mem(src)
2012 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
2013 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
2017 * 'numa_type' describes the node at the moment of load balancing.
2019 enum numa_type {
2020 /* The node has spare capacity that can be used to run more tasks. */
2021 node_has_spare = 0,
2023 * The node is fully used and the tasks don't compete for more CPU
2024 * cycles. Nevertheless, some tasks might wait before running.
2026 node_fully_busy,
2028 * The node is overloaded and can't provide expected CPU cycles to all
2029 * tasks.
2031 node_overloaded
2034 /* Cached statistics for all CPUs within a node */
2035 struct numa_stats {
2036 unsigned long load;
2037 unsigned long runnable;
2038 unsigned long util;
2039 /* Total compute capacity of CPUs on a node */
2040 unsigned long compute_capacity;
2041 unsigned int nr_running;
2042 unsigned int weight;
2043 enum numa_type node_type;
2044 int idle_cpu;
2047 struct task_numa_env {
2048 struct task_struct *p;
2050 int src_cpu, src_nid;
2051 int dst_cpu, dst_nid;
2052 int imb_numa_nr;
2054 struct numa_stats src_stats, dst_stats;
2056 int imbalance_pct;
2057 int dist;
2059 struct task_struct *best_task;
2060 long best_imp;
2061 int best_cpu;
2064 static unsigned long cpu_load(struct rq *rq);
2065 static unsigned long cpu_runnable(struct rq *rq);
2067 static inline enum
2068 numa_type numa_classify(unsigned int imbalance_pct,
2069 struct numa_stats *ns)
2071 if ((ns->nr_running > ns->weight) &&
2072 (((ns->compute_capacity * 100) < (ns->util * imbalance_pct)) ||
2073 ((ns->compute_capacity * imbalance_pct) < (ns->runnable * 100))))
2074 return node_overloaded;
2076 if ((ns->nr_running < ns->weight) ||
2077 (((ns->compute_capacity * 100) > (ns->util * imbalance_pct)) &&
2078 ((ns->compute_capacity * imbalance_pct) > (ns->runnable * 100))))
2079 return node_has_spare;
2081 return node_fully_busy;
2084 #ifdef CONFIG_SCHED_SMT
2085 /* Forward declarations of select_idle_sibling helpers */
2086 static inline bool test_idle_cores(int cpu);
2087 static inline int numa_idle_core(int idle_core, int cpu)
2089 if (!static_branch_likely(&sched_smt_present) ||
2090 idle_core >= 0 || !test_idle_cores(cpu))
2091 return idle_core;
2094 * Prefer cores instead of packing HT siblings
2095 * and triggering future load balancing.
2097 if (is_core_idle(cpu))
2098 idle_core = cpu;
2100 return idle_core;
2102 #else
2103 static inline int numa_idle_core(int idle_core, int cpu)
2105 return idle_core;
2107 #endif
2110 * Gather all necessary information to make NUMA balancing placement
2111 * decisions that are compatible with standard load balancer. This
2112 * borrows code and logic from update_sg_lb_stats but sharing a
2113 * common implementation is impractical.
2115 static void update_numa_stats(struct task_numa_env *env,
2116 struct numa_stats *ns, int nid,
2117 bool find_idle)
2119 int cpu, idle_core = -1;
2121 memset(ns, 0, sizeof(*ns));
2122 ns->idle_cpu = -1;
2124 rcu_read_lock();
2125 for_each_cpu(cpu, cpumask_of_node(nid)) {
2126 struct rq *rq = cpu_rq(cpu);
2128 ns->load += cpu_load(rq);
2129 ns->runnable += cpu_runnable(rq);
2130 ns->util += cpu_util_cfs(cpu);
2131 ns->nr_running += rq->cfs.h_nr_running;
2132 ns->compute_capacity += capacity_of(cpu);
2134 if (find_idle && idle_core < 0 && !rq->nr_running && idle_cpu(cpu)) {
2135 if (READ_ONCE(rq->numa_migrate_on) ||
2136 !cpumask_test_cpu(cpu, env->p->cpus_ptr))
2137 continue;
2139 if (ns->idle_cpu == -1)
2140 ns->idle_cpu = cpu;
2142 idle_core = numa_idle_core(idle_core, cpu);
2145 rcu_read_unlock();
2147 ns->weight = cpumask_weight(cpumask_of_node(nid));
2149 ns->node_type = numa_classify(env->imbalance_pct, ns);
2151 if (idle_core >= 0)
2152 ns->idle_cpu = idle_core;
2155 static void task_numa_assign(struct task_numa_env *env,
2156 struct task_struct *p, long imp)
2158 struct rq *rq = cpu_rq(env->dst_cpu);
2160 /* Check if run-queue part of active NUMA balance. */
2161 if (env->best_cpu != env->dst_cpu && xchg(&rq->numa_migrate_on, 1)) {
2162 int cpu;
2163 int start = env->dst_cpu;
2165 /* Find alternative idle CPU. */
2166 for_each_cpu_wrap(cpu, cpumask_of_node(env->dst_nid), start + 1) {
2167 if (cpu == env->best_cpu || !idle_cpu(cpu) ||
2168 !cpumask_test_cpu(cpu, env->p->cpus_ptr)) {
2169 continue;
2172 env->dst_cpu = cpu;
2173 rq = cpu_rq(env->dst_cpu);
2174 if (!xchg(&rq->numa_migrate_on, 1))
2175 goto assign;
2178 /* Failed to find an alternative idle CPU */
2179 return;
2182 assign:
2184 * Clear previous best_cpu/rq numa-migrate flag, since task now
2185 * found a better CPU to move/swap.
2187 if (env->best_cpu != -1 && env->best_cpu != env->dst_cpu) {
2188 rq = cpu_rq(env->best_cpu);
2189 WRITE_ONCE(rq->numa_migrate_on, 0);
2192 if (env->best_task)
2193 put_task_struct(env->best_task);
2194 if (p)
2195 get_task_struct(p);
2197 env->best_task = p;
2198 env->best_imp = imp;
2199 env->best_cpu = env->dst_cpu;
2202 static bool load_too_imbalanced(long src_load, long dst_load,
2203 struct task_numa_env *env)
2205 long imb, old_imb;
2206 long orig_src_load, orig_dst_load;
2207 long src_capacity, dst_capacity;
2210 * The load is corrected for the CPU capacity available on each node.
2212 * src_load dst_load
2213 * ------------ vs ---------
2214 * src_capacity dst_capacity
2216 src_capacity = env->src_stats.compute_capacity;
2217 dst_capacity = env->dst_stats.compute_capacity;
2219 imb = abs(dst_load * src_capacity - src_load * dst_capacity);
2221 orig_src_load = env->src_stats.load;
2222 orig_dst_load = env->dst_stats.load;
2224 old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
2226 /* Would this change make things worse? */
2227 return (imb > old_imb);
2231 * Maximum NUMA importance can be 1998 (2*999);
2232 * SMALLIMP @ 30 would be close to 1998/64.
2233 * Used to deter task migration.
2235 #define SMALLIMP 30
2238 * This checks if the overall compute and NUMA accesses of the system would
2239 * be improved if the source tasks was migrated to the target dst_cpu taking
2240 * into account that it might be best if task running on the dst_cpu should
2241 * be exchanged with the source task
2243 static bool task_numa_compare(struct task_numa_env *env,
2244 long taskimp, long groupimp, bool maymove)
2246 struct numa_group *cur_ng, *p_ng = deref_curr_numa_group(env->p);
2247 struct rq *dst_rq = cpu_rq(env->dst_cpu);
2248 long imp = p_ng ? groupimp : taskimp;
2249 struct task_struct *cur;
2250 long src_load, dst_load;
2251 int dist = env->dist;
2252 long moveimp = imp;
2253 long load;
2254 bool stopsearch = false;
2256 if (READ_ONCE(dst_rq->numa_migrate_on))
2257 return false;
2259 rcu_read_lock();
2260 cur = rcu_dereference(dst_rq->curr);
2261 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
2262 cur = NULL;
2265 * Because we have preemption enabled we can get migrated around and
2266 * end try selecting ourselves (current == env->p) as a swap candidate.
2268 if (cur == env->p) {
2269 stopsearch = true;
2270 goto unlock;
2273 if (!cur) {
2274 if (maymove && moveimp >= env->best_imp)
2275 goto assign;
2276 else
2277 goto unlock;
2280 /* Skip this swap candidate if cannot move to the source cpu. */
2281 if (!cpumask_test_cpu(env->src_cpu, cur->cpus_ptr))
2282 goto unlock;
2285 * Skip this swap candidate if it is not moving to its preferred
2286 * node and the best task is.
2288 if (env->best_task &&
2289 env->best_task->numa_preferred_nid == env->src_nid &&
2290 cur->numa_preferred_nid != env->src_nid) {
2291 goto unlock;
2295 * "imp" is the fault differential for the source task between the
2296 * source and destination node. Calculate the total differential for
2297 * the source task and potential destination task. The more negative
2298 * the value is, the more remote accesses that would be expected to
2299 * be incurred if the tasks were swapped.
2301 * If dst and source tasks are in the same NUMA group, or not
2302 * in any group then look only at task weights.
2304 cur_ng = rcu_dereference(cur->numa_group);
2305 if (cur_ng == p_ng) {
2307 * Do not swap within a group or between tasks that have
2308 * no group if there is spare capacity. Swapping does
2309 * not address the load imbalance and helps one task at
2310 * the cost of punishing another.
2312 if (env->dst_stats.node_type == node_has_spare)
2313 goto unlock;
2315 imp = taskimp + task_weight(cur, env->src_nid, dist) -
2316 task_weight(cur, env->dst_nid, dist);
2318 * Add some hysteresis to prevent swapping the
2319 * tasks within a group over tiny differences.
2321 if (cur_ng)
2322 imp -= imp / 16;
2323 } else {
2325 * Compare the group weights. If a task is all by itself
2326 * (not part of a group), use the task weight instead.
2328 if (cur_ng && p_ng)
2329 imp += group_weight(cur, env->src_nid, dist) -
2330 group_weight(cur, env->dst_nid, dist);
2331 else
2332 imp += task_weight(cur, env->src_nid, dist) -
2333 task_weight(cur, env->dst_nid, dist);
2336 /* Discourage picking a task already on its preferred node */
2337 if (cur->numa_preferred_nid == env->dst_nid)
2338 imp -= imp / 16;
2341 * Encourage picking a task that moves to its preferred node.
2342 * This potentially makes imp larger than it's maximum of
2343 * 1998 (see SMALLIMP and task_weight for why) but in this
2344 * case, it does not matter.
2346 if (cur->numa_preferred_nid == env->src_nid)
2347 imp += imp / 8;
2349 if (maymove && moveimp > imp && moveimp > env->best_imp) {
2350 imp = moveimp;
2351 cur = NULL;
2352 goto assign;
2356 * Prefer swapping with a task moving to its preferred node over a
2357 * task that is not.
2359 if (env->best_task && cur->numa_preferred_nid == env->src_nid &&
2360 env->best_task->numa_preferred_nid != env->src_nid) {
2361 goto assign;
2365 * If the NUMA importance is less than SMALLIMP,
2366 * task migration might only result in ping pong
2367 * of tasks and also hurt performance due to cache
2368 * misses.
2370 if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
2371 goto unlock;
2374 * In the overloaded case, try and keep the load balanced.
2376 load = task_h_load(env->p) - task_h_load(cur);
2377 if (!load)
2378 goto assign;
2380 dst_load = env->dst_stats.load + load;
2381 src_load = env->src_stats.load - load;
2383 if (load_too_imbalanced(src_load, dst_load, env))
2384 goto unlock;
2386 assign:
2387 /* Evaluate an idle CPU for a task numa move. */
2388 if (!cur) {
2389 int cpu = env->dst_stats.idle_cpu;
2391 /* Nothing cached so current CPU went idle since the search. */
2392 if (cpu < 0)
2393 cpu = env->dst_cpu;
2396 * If the CPU is no longer truly idle and the previous best CPU
2397 * is, keep using it.
2399 if (!idle_cpu(cpu) && env->best_cpu >= 0 &&
2400 idle_cpu(env->best_cpu)) {
2401 cpu = env->best_cpu;
2404 env->dst_cpu = cpu;
2407 task_numa_assign(env, cur, imp);
2410 * If a move to idle is allowed because there is capacity or load
2411 * balance improves then stop the search. While a better swap
2412 * candidate may exist, a search is not free.
2414 if (maymove && !cur && env->best_cpu >= 0 && idle_cpu(env->best_cpu))
2415 stopsearch = true;
2418 * If a swap candidate must be identified and the current best task
2419 * moves its preferred node then stop the search.
2421 if (!maymove && env->best_task &&
2422 env->best_task->numa_preferred_nid == env->src_nid) {
2423 stopsearch = true;
2425 unlock:
2426 rcu_read_unlock();
2428 return stopsearch;
2431 static void task_numa_find_cpu(struct task_numa_env *env,
2432 long taskimp, long groupimp)
2434 bool maymove = false;
2435 int cpu;
2438 * If dst node has spare capacity, then check if there is an
2439 * imbalance that would be overruled by the load balancer.
2441 if (env->dst_stats.node_type == node_has_spare) {
2442 unsigned int imbalance;
2443 int src_running, dst_running;
2446 * Would movement cause an imbalance? Note that if src has
2447 * more running tasks that the imbalance is ignored as the
2448 * move improves the imbalance from the perspective of the
2449 * CPU load balancer.
2450 * */
2451 src_running = env->src_stats.nr_running - 1;
2452 dst_running = env->dst_stats.nr_running + 1;
2453 imbalance = max(0, dst_running - src_running);
2454 imbalance = adjust_numa_imbalance(imbalance, dst_running,
2455 env->imb_numa_nr);
2457 /* Use idle CPU if there is no imbalance */
2458 if (!imbalance) {
2459 maymove = true;
2460 if (env->dst_stats.idle_cpu >= 0) {
2461 env->dst_cpu = env->dst_stats.idle_cpu;
2462 task_numa_assign(env, NULL, 0);
2463 return;
2466 } else {
2467 long src_load, dst_load, load;
2469 * If the improvement from just moving env->p direction is better
2470 * than swapping tasks around, check if a move is possible.
2472 load = task_h_load(env->p);
2473 dst_load = env->dst_stats.load + load;
2474 src_load = env->src_stats.load - load;
2475 maymove = !load_too_imbalanced(src_load, dst_load, env);
2478 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
2479 /* Skip this CPU if the source task cannot migrate */
2480 if (!cpumask_test_cpu(cpu, env->p->cpus_ptr))
2481 continue;
2483 env->dst_cpu = cpu;
2484 if (task_numa_compare(env, taskimp, groupimp, maymove))
2485 break;
2489 static int task_numa_migrate(struct task_struct *p)
2491 struct task_numa_env env = {
2492 .p = p,
2494 .src_cpu = task_cpu(p),
2495 .src_nid = task_node(p),
2497 .imbalance_pct = 112,
2499 .best_task = NULL,
2500 .best_imp = 0,
2501 .best_cpu = -1,
2503 unsigned long taskweight, groupweight;
2504 struct sched_domain *sd;
2505 long taskimp, groupimp;
2506 struct numa_group *ng;
2507 struct rq *best_rq;
2508 int nid, ret, dist;
2511 * Pick the lowest SD_NUMA domain, as that would have the smallest
2512 * imbalance and would be the first to start moving tasks about.
2514 * And we want to avoid any moving of tasks about, as that would create
2515 * random movement of tasks -- counter the numa conditions we're trying
2516 * to satisfy here.
2518 rcu_read_lock();
2519 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
2520 if (sd) {
2521 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
2522 env.imb_numa_nr = sd->imb_numa_nr;
2524 rcu_read_unlock();
2527 * Cpusets can break the scheduler domain tree into smaller
2528 * balance domains, some of which do not cross NUMA boundaries.
2529 * Tasks that are "trapped" in such domains cannot be migrated
2530 * elsewhere, so there is no point in (re)trying.
2532 if (unlikely(!sd)) {
2533 sched_setnuma(p, task_node(p));
2534 return -EINVAL;
2537 env.dst_nid = p->numa_preferred_nid;
2538 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
2539 taskweight = task_weight(p, env.src_nid, dist);
2540 groupweight = group_weight(p, env.src_nid, dist);
2541 update_numa_stats(&env, &env.src_stats, env.src_nid, false);
2542 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
2543 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2544 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2546 /* Try to find a spot on the preferred nid. */
2547 task_numa_find_cpu(&env, taskimp, groupimp);
2550 * Look at other nodes in these cases:
2551 * - there is no space available on the preferred_nid
2552 * - the task is part of a numa_group that is interleaved across
2553 * multiple NUMA nodes; in order to better consolidate the group,
2554 * we need to check other locations.
2556 ng = deref_curr_numa_group(p);
2557 if (env.best_cpu == -1 || (ng && ng->active_nodes > 1)) {
2558 for_each_node_state(nid, N_CPU) {
2559 if (nid == env.src_nid || nid == p->numa_preferred_nid)
2560 continue;
2562 dist = node_distance(env.src_nid, env.dst_nid);
2563 if (sched_numa_topology_type == NUMA_BACKPLANE &&
2564 dist != env.dist) {
2565 taskweight = task_weight(p, env.src_nid, dist);
2566 groupweight = group_weight(p, env.src_nid, dist);
2569 /* Only consider nodes where both task and groups benefit */
2570 taskimp = task_weight(p, nid, dist) - taskweight;
2571 groupimp = group_weight(p, nid, dist) - groupweight;
2572 if (taskimp < 0 && groupimp < 0)
2573 continue;
2575 env.dist = dist;
2576 env.dst_nid = nid;
2577 update_numa_stats(&env, &env.dst_stats, env.dst_nid, true);
2578 task_numa_find_cpu(&env, taskimp, groupimp);
2583 * If the task is part of a workload that spans multiple NUMA nodes,
2584 * and is migrating into one of the workload's active nodes, remember
2585 * this node as the task's preferred numa node, so the workload can
2586 * settle down.
2587 * A task that migrated to a second choice node will be better off
2588 * trying for a better one later. Do not set the preferred node here.
2590 if (ng) {
2591 if (env.best_cpu == -1)
2592 nid = env.src_nid;
2593 else
2594 nid = cpu_to_node(env.best_cpu);
2596 if (nid != p->numa_preferred_nid)
2597 sched_setnuma(p, nid);
2600 /* No better CPU than the current one was found. */
2601 if (env.best_cpu == -1) {
2602 trace_sched_stick_numa(p, env.src_cpu, NULL, -1);
2603 return -EAGAIN;
2606 best_rq = cpu_rq(env.best_cpu);
2607 if (env.best_task == NULL) {
2608 ret = migrate_task_to(p, env.best_cpu);
2609 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2610 if (ret != 0)
2611 trace_sched_stick_numa(p, env.src_cpu, NULL, env.best_cpu);
2612 return ret;
2615 ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
2616 WRITE_ONCE(best_rq->numa_migrate_on, 0);
2618 if (ret != 0)
2619 trace_sched_stick_numa(p, env.src_cpu, env.best_task, env.best_cpu);
2620 put_task_struct(env.best_task);
2621 return ret;
2624 /* Attempt to migrate a task to a CPU on the preferred node. */
2625 static void numa_migrate_preferred(struct task_struct *p)
2627 unsigned long interval = HZ;
2629 /* This task has no NUMA fault statistics yet */
2630 if (unlikely(p->numa_preferred_nid == NUMA_NO_NODE || !p->numa_faults))
2631 return;
2633 /* Periodically retry migrating the task to the preferred node */
2634 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
2635 p->numa_migrate_retry = jiffies + interval;
2637 /* Success if task is already running on preferred CPU */
2638 if (task_node(p) == p->numa_preferred_nid)
2639 return;
2641 /* Otherwise, try migrate to a CPU on the preferred node */
2642 task_numa_migrate(p);
2646 * Find out how many nodes the workload is actively running on. Do this by
2647 * tracking the nodes from which NUMA hinting faults are triggered. This can
2648 * be different from the set of nodes where the workload's memory is currently
2649 * located.
2651 static void numa_group_count_active_nodes(struct numa_group *numa_group)
2653 unsigned long faults, max_faults = 0;
2654 int nid, active_nodes = 0;
2656 for_each_node_state(nid, N_CPU) {
2657 faults = group_faults_cpu(numa_group, nid);
2658 if (faults > max_faults)
2659 max_faults = faults;
2662 for_each_node_state(nid, N_CPU) {
2663 faults = group_faults_cpu(numa_group, nid);
2664 if (faults * ACTIVE_NODE_FRACTION > max_faults)
2665 active_nodes++;
2668 numa_group->max_faults_cpu = max_faults;
2669 numa_group->active_nodes = active_nodes;
2673 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
2674 * increments. The more local the fault statistics are, the higher the scan
2675 * period will be for the next scan window. If local/(local+remote) ratio is
2676 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
2677 * the scan period will decrease. Aim for 70% local accesses.
2679 #define NUMA_PERIOD_SLOTS 10
2680 #define NUMA_PERIOD_THRESHOLD 7
2683 * Increase the scan period (slow down scanning) if the majority of
2684 * our memory is already on our local node, or if the majority of
2685 * the page accesses are shared with other processes.
2686 * Otherwise, decrease the scan period.
2688 static void update_task_scan_period(struct task_struct *p,
2689 unsigned long shared, unsigned long private)
2691 unsigned int period_slot;
2692 int lr_ratio, ps_ratio;
2693 int diff;
2695 unsigned long remote = p->numa_faults_locality[0];
2696 unsigned long local = p->numa_faults_locality[1];
2699 * If there were no record hinting faults then either the task is
2700 * completely idle or all activity is in areas that are not of interest
2701 * to automatic numa balancing. Related to that, if there were failed
2702 * migration then it implies we are migrating too quickly or the local
2703 * node is overloaded. In either case, scan slower
2705 if (local + shared == 0 || p->numa_faults_locality[2]) {
2706 p->numa_scan_period = min(p->numa_scan_period_max,
2707 p->numa_scan_period << 1);
2709 p->mm->numa_next_scan = jiffies +
2710 msecs_to_jiffies(p->numa_scan_period);
2712 return;
2716 * Prepare to scale scan period relative to the current period.
2717 * == NUMA_PERIOD_THRESHOLD scan period stays the same
2718 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
2719 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
2721 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
2722 lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
2723 ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
2725 if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
2727 * Most memory accesses are local. There is no need to
2728 * do fast NUMA scanning, since memory is already local.
2730 int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
2731 if (!slot)
2732 slot = 1;
2733 diff = slot * period_slot;
2734 } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
2736 * Most memory accesses are shared with other tasks.
2737 * There is no point in continuing fast NUMA scanning,
2738 * since other tasks may just move the memory elsewhere.
2740 int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
2741 if (!slot)
2742 slot = 1;
2743 diff = slot * period_slot;
2744 } else {
2746 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
2747 * yet they are not on the local NUMA node. Speed up
2748 * NUMA scanning to get the memory moved over.
2750 int ratio = max(lr_ratio, ps_ratio);
2751 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
2754 p->numa_scan_period = clamp(p->numa_scan_period + diff,
2755 task_scan_min(p), task_scan_max(p));
2756 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2760 * Get the fraction of time the task has been running since the last
2761 * NUMA placement cycle. The scheduler keeps similar statistics, but
2762 * decays those on a 32ms period, which is orders of magnitude off
2763 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2764 * stats only if the task is so new there are no NUMA statistics yet.
2766 static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2768 u64 runtime, delta, now;
2769 /* Use the start of this time slice to avoid calculations. */
2770 now = p->se.exec_start;
2771 runtime = p->se.sum_exec_runtime;
2773 if (p->last_task_numa_placement) {
2774 delta = runtime - p->last_sum_exec_runtime;
2775 *period = now - p->last_task_numa_placement;
2777 /* Avoid time going backwards, prevent potential divide error: */
2778 if (unlikely((s64)*period < 0))
2779 *period = 0;
2780 } else {
2781 delta = p->se.avg.load_sum;
2782 *period = LOAD_AVG_MAX;
2785 p->last_sum_exec_runtime = runtime;
2786 p->last_task_numa_placement = now;
2788 return delta;
2792 * Determine the preferred nid for a task in a numa_group. This needs to
2793 * be done in a way that produces consistent results with group_weight,
2794 * otherwise workloads might not converge.
2796 static int preferred_group_nid(struct task_struct *p, int nid)
2798 nodemask_t nodes;
2799 int dist;
2801 /* Direct connections between all NUMA nodes. */
2802 if (sched_numa_topology_type == NUMA_DIRECT)
2803 return nid;
2806 * On a system with glueless mesh NUMA topology, group_weight
2807 * scores nodes according to the number of NUMA hinting faults on
2808 * both the node itself, and on nearby nodes.
2810 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2811 unsigned long score, max_score = 0;
2812 int node, max_node = nid;
2814 dist = sched_max_numa_distance;
2816 for_each_node_state(node, N_CPU) {
2817 score = group_weight(p, node, dist);
2818 if (score > max_score) {
2819 max_score = score;
2820 max_node = node;
2823 return max_node;
2827 * Finding the preferred nid in a system with NUMA backplane
2828 * interconnect topology is more involved. The goal is to locate
2829 * tasks from numa_groups near each other in the system, and
2830 * untangle workloads from different sides of the system. This requires
2831 * searching down the hierarchy of node groups, recursively searching
2832 * inside the highest scoring group of nodes. The nodemask tricks
2833 * keep the complexity of the search down.
2835 nodes = node_states[N_CPU];
2836 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2837 unsigned long max_faults = 0;
2838 nodemask_t max_group = NODE_MASK_NONE;
2839 int a, b;
2841 /* Are there nodes at this distance from each other? */
2842 if (!find_numa_distance(dist))
2843 continue;
2845 for_each_node_mask(a, nodes) {
2846 unsigned long faults = 0;
2847 nodemask_t this_group;
2848 nodes_clear(this_group);
2850 /* Sum group's NUMA faults; includes a==b case. */
2851 for_each_node_mask(b, nodes) {
2852 if (node_distance(a, b) < dist) {
2853 faults += group_faults(p, b);
2854 node_set(b, this_group);
2855 node_clear(b, nodes);
2859 /* Remember the top group. */
2860 if (faults > max_faults) {
2861 max_faults = faults;
2862 max_group = this_group;
2864 * subtle: at the smallest distance there is
2865 * just one node left in each "group", the
2866 * winner is the preferred nid.
2868 nid = a;
2871 /* Next round, evaluate the nodes within max_group. */
2872 if (!max_faults)
2873 break;
2874 nodes = max_group;
2876 return nid;
2879 static void task_numa_placement(struct task_struct *p)
2881 int seq, nid, max_nid = NUMA_NO_NODE;
2882 unsigned long max_faults = 0;
2883 unsigned long fault_types[2] = { 0, 0 };
2884 unsigned long total_faults;
2885 u64 runtime, period;
2886 spinlock_t *group_lock = NULL;
2887 struct numa_group *ng;
2890 * The p->mm->numa_scan_seq field gets updated without
2891 * exclusive access. Use READ_ONCE() here to ensure
2892 * that the field is read in a single access:
2894 seq = READ_ONCE(p->mm->numa_scan_seq);
2895 if (p->numa_scan_seq == seq)
2896 return;
2897 p->numa_scan_seq = seq;
2898 p->numa_scan_period_max = task_scan_max(p);
2900 total_faults = p->numa_faults_locality[0] +
2901 p->numa_faults_locality[1];
2902 runtime = numa_get_avg_runtime(p, &period);
2904 /* If the task is part of a group prevent parallel updates to group stats */
2905 ng = deref_curr_numa_group(p);
2906 if (ng) {
2907 group_lock = &ng->lock;
2908 spin_lock_irq(group_lock);
2911 /* Find the node with the highest number of faults */
2912 for_each_online_node(nid) {
2913 /* Keep track of the offsets in numa_faults array */
2914 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2915 unsigned long faults = 0, group_faults = 0;
2916 int priv;
2918 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2919 long diff, f_diff, f_weight;
2921 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2922 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2923 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2924 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2926 /* Decay existing window, copy faults since last scan */
2927 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2928 fault_types[priv] += p->numa_faults[membuf_idx];
2929 p->numa_faults[membuf_idx] = 0;
2932 * Normalize the faults_from, so all tasks in a group
2933 * count according to CPU use, instead of by the raw
2934 * number of faults. Tasks with little runtime have
2935 * little over-all impact on throughput, and thus their
2936 * faults are less important.
2938 f_weight = div64_u64(runtime << 16, period + 1);
2939 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2940 (total_faults + 1);
2941 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2942 p->numa_faults[cpubuf_idx] = 0;
2944 p->numa_faults[mem_idx] += diff;
2945 p->numa_faults[cpu_idx] += f_diff;
2946 faults += p->numa_faults[mem_idx];
2947 p->total_numa_faults += diff;
2948 if (ng) {
2950 * safe because we can only change our own group
2952 * mem_idx represents the offset for a given
2953 * nid and priv in a specific region because it
2954 * is at the beginning of the numa_faults array.
2956 ng->faults[mem_idx] += diff;
2957 ng->faults[cpu_idx] += f_diff;
2958 ng->total_faults += diff;
2959 group_faults += ng->faults[mem_idx];
2963 if (!ng) {
2964 if (faults > max_faults) {
2965 max_faults = faults;
2966 max_nid = nid;
2968 } else if (group_faults > max_faults) {
2969 max_faults = group_faults;
2970 max_nid = nid;
2974 /* Cannot migrate task to CPU-less node */
2975 max_nid = numa_nearest_node(max_nid, N_CPU);
2977 if (ng) {
2978 numa_group_count_active_nodes(ng);
2979 spin_unlock_irq(group_lock);
2980 max_nid = preferred_group_nid(p, max_nid);
2983 if (max_faults) {
2984 /* Set the new preferred node */
2985 if (max_nid != p->numa_preferred_nid)
2986 sched_setnuma(p, max_nid);
2989 update_task_scan_period(p, fault_types[0], fault_types[1]);
2992 static inline int get_numa_group(struct numa_group *grp)
2994 return refcount_inc_not_zero(&grp->refcount);
2997 static inline void put_numa_group(struct numa_group *grp)
2999 if (refcount_dec_and_test(&grp->refcount))
3000 kfree_rcu(grp, rcu);
3003 static void task_numa_group(struct task_struct *p, int cpupid, int flags,
3004 int *priv)
3006 struct numa_group *grp, *my_grp;
3007 struct task_struct *tsk;
3008 bool join = false;
3009 int cpu = cpupid_to_cpu(cpupid);
3010 int i;
3012 if (unlikely(!deref_curr_numa_group(p))) {
3013 unsigned int size = sizeof(struct numa_group) +
3014 NR_NUMA_HINT_FAULT_STATS *
3015 nr_node_ids * sizeof(unsigned long);
3017 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
3018 if (!grp)
3019 return;
3021 refcount_set(&grp->refcount, 1);
3022 grp->active_nodes = 1;
3023 grp->max_faults_cpu = 0;
3024 spin_lock_init(&grp->lock);
3025 grp->gid = p->pid;
3027 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3028 grp->faults[i] = p->numa_faults[i];
3030 grp->total_faults = p->total_numa_faults;
3032 grp->nr_tasks++;
3033 rcu_assign_pointer(p->numa_group, grp);
3036 rcu_read_lock();
3037 tsk = READ_ONCE(cpu_rq(cpu)->curr);
3039 if (!cpupid_match_pid(tsk, cpupid))
3040 goto no_join;
3042 grp = rcu_dereference(tsk->numa_group);
3043 if (!grp)
3044 goto no_join;
3046 my_grp = deref_curr_numa_group(p);
3047 if (grp == my_grp)
3048 goto no_join;
3051 * Only join the other group if its bigger; if we're the bigger group,
3052 * the other task will join us.
3054 if (my_grp->nr_tasks > grp->nr_tasks)
3055 goto no_join;
3058 * Tie-break on the grp address.
3060 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3061 goto no_join;
3063 /* Always join threads in the same process. */
3064 if (tsk->mm == current->mm)
3065 join = true;
3067 /* Simple filter to avoid false positives due to PID collisions */
3068 if (flags & TNF_SHARED)
3069 join = true;
3071 /* Update priv based on whether false sharing was detected */
3072 *priv = !join;
3074 if (join && !get_numa_group(grp))
3075 goto no_join;
3077 rcu_read_unlock();
3079 if (!join)
3080 return;
3082 WARN_ON_ONCE(irqs_disabled());
3083 double_lock_irq(&my_grp->lock, &grp->lock);
3085 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
3086 my_grp->faults[i] -= p->numa_faults[i];
3087 grp->faults[i] += p->numa_faults[i];
3089 my_grp->total_faults -= p->total_numa_faults;
3090 grp->total_faults += p->total_numa_faults;
3092 my_grp->nr_tasks--;
3093 grp->nr_tasks++;
3095 spin_unlock(&my_grp->lock);
3096 spin_unlock_irq(&grp->lock);
3098 rcu_assign_pointer(p->numa_group, grp);
3100 put_numa_group(my_grp);
3101 return;
3103 no_join:
3104 rcu_read_unlock();
3105 return;
3109 * Get rid of NUMA statistics associated with a task (either current or dead).
3110 * If @final is set, the task is dead and has reached refcount zero, so we can
3111 * safely free all relevant data structures. Otherwise, there might be
3112 * concurrent reads from places like load balancing and procfs, and we should
3113 * reset the data back to default state without freeing ->numa_faults.
3115 void task_numa_free(struct task_struct *p, bool final)
3117 /* safe: p either is current or is being freed by current */
3118 struct numa_group *grp = rcu_dereference_raw(p->numa_group);
3119 unsigned long *numa_faults = p->numa_faults;
3120 unsigned long flags;
3121 int i;
3123 if (!numa_faults)
3124 return;
3126 if (grp) {
3127 spin_lock_irqsave(&grp->lock, flags);
3128 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3129 grp->faults[i] -= p->numa_faults[i];
3130 grp->total_faults -= p->total_numa_faults;
3132 grp->nr_tasks--;
3133 spin_unlock_irqrestore(&grp->lock, flags);
3134 RCU_INIT_POINTER(p->numa_group, NULL);
3135 put_numa_group(grp);
3138 if (final) {
3139 p->numa_faults = NULL;
3140 kfree(numa_faults);
3141 } else {
3142 p->total_numa_faults = 0;
3143 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
3144 numa_faults[i] = 0;
3149 * Got a PROT_NONE fault for a page on @node.
3151 void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
3153 struct task_struct *p = current;
3154 bool migrated = flags & TNF_MIGRATED;
3155 int cpu_node = task_node(current);
3156 int local = !!(flags & TNF_FAULT_LOCAL);
3157 struct numa_group *ng;
3158 int priv;
3160 if (!static_branch_likely(&sched_numa_balancing))
3161 return;
3163 /* for example, ksmd faulting in a user's mm */
3164 if (!p->mm)
3165 return;
3168 * NUMA faults statistics are unnecessary for the slow memory
3169 * node for memory tiering mode.
3171 if (!node_is_toptier(mem_node) &&
3172 (sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING ||
3173 !cpupid_valid(last_cpupid)))
3174 return;
3176 /* Allocate buffer to track faults on a per-node basis */
3177 if (unlikely(!p->numa_faults)) {
3178 int size = sizeof(*p->numa_faults) *
3179 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
3181 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
3182 if (!p->numa_faults)
3183 return;
3185 p->total_numa_faults = 0;
3186 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
3190 * First accesses are treated as private, otherwise consider accesses
3191 * to be private if the accessing pid has not changed
3193 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
3194 priv = 1;
3195 } else {
3196 priv = cpupid_match_pid(p, last_cpupid);
3197 if (!priv && !(flags & TNF_NO_GROUP))
3198 task_numa_group(p, last_cpupid, flags, &priv);
3202 * If a workload spans multiple NUMA nodes, a shared fault that
3203 * occurs wholly within the set of nodes that the workload is
3204 * actively using should be counted as local. This allows the
3205 * scan rate to slow down when a workload has settled down.
3207 ng = deref_curr_numa_group(p);
3208 if (!priv && !local && ng && ng->active_nodes > 1 &&
3209 numa_is_active_node(cpu_node, ng) &&
3210 numa_is_active_node(mem_node, ng))
3211 local = 1;
3214 * Retry to migrate task to preferred node periodically, in case it
3215 * previously failed, or the scheduler moved us.
3217 if (time_after(jiffies, p->numa_migrate_retry)) {
3218 task_numa_placement(p);
3219 numa_migrate_preferred(p);
3222 if (migrated)
3223 p->numa_pages_migrated += pages;
3224 if (flags & TNF_MIGRATE_FAIL)
3225 p->numa_faults_locality[2] += pages;
3227 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
3228 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
3229 p->numa_faults_locality[local] += pages;
3232 static void reset_ptenuma_scan(struct task_struct *p)
3235 * We only did a read acquisition of the mmap sem, so
3236 * p->mm->numa_scan_seq is written to without exclusive access
3237 * and the update is not guaranteed to be atomic. That's not
3238 * much of an issue though, since this is just used for
3239 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
3240 * expensive, to avoid any form of compiler optimizations:
3242 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
3243 p->mm->numa_scan_offset = 0;
3246 static bool vma_is_accessed(struct mm_struct *mm, struct vm_area_struct *vma)
3248 unsigned long pids;
3250 * Allow unconditional access first two times, so that all the (pages)
3251 * of VMAs get prot_none fault introduced irrespective of accesses.
3252 * This is also done to avoid any side effect of task scanning
3253 * amplifying the unfairness of disjoint set of VMAs' access.
3255 if ((READ_ONCE(current->mm->numa_scan_seq) - vma->numab_state->start_scan_seq) < 2)
3256 return true;
3258 pids = vma->numab_state->pids_active[0] | vma->numab_state->pids_active[1];
3259 if (test_bit(hash_32(current->pid, ilog2(BITS_PER_LONG)), &pids))
3260 return true;
3263 * Complete a scan that has already started regardless of PID access, or
3264 * some VMAs may never be scanned in multi-threaded applications:
3266 if (mm->numa_scan_offset > vma->vm_start) {
3267 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_IGNORE_PID);
3268 return true;
3272 * This vma has not been accessed for a while, and if the number
3273 * the threads in the same process is low, which means no other
3274 * threads can help scan this vma, force a vma scan.
3276 if (READ_ONCE(mm->numa_scan_seq) >
3277 (vma->numab_state->prev_scan_seq + get_nr_threads(current)))
3278 return true;
3280 return false;
3283 #define VMA_PID_RESET_PERIOD (4 * sysctl_numa_balancing_scan_delay)
3286 * The expensive part of numa migration is done from task_work context.
3287 * Triggered from task_tick_numa().
3289 static void task_numa_work(struct callback_head *work)
3291 unsigned long migrate, next_scan, now = jiffies;
3292 struct task_struct *p = current;
3293 struct mm_struct *mm = p->mm;
3294 u64 runtime = p->se.sum_exec_runtime;
3295 struct vm_area_struct *vma;
3296 unsigned long start, end;
3297 unsigned long nr_pte_updates = 0;
3298 long pages, virtpages;
3299 struct vma_iterator vmi;
3300 bool vma_pids_skipped;
3301 bool vma_pids_forced = false;
3303 SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
3305 work->next = work;
3307 * Who cares about NUMA placement when they're dying.
3309 * NOTE: make sure not to dereference p->mm before this check,
3310 * exit_task_work() happens _after_ exit_mm() so we could be called
3311 * without p->mm even though we still had it when we enqueued this
3312 * work.
3314 if (p->flags & PF_EXITING)
3315 return;
3317 if (!mm->numa_next_scan) {
3318 mm->numa_next_scan = now +
3319 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3323 * Enforce maximal scan/migration frequency..
3325 migrate = mm->numa_next_scan;
3326 if (time_before(now, migrate))
3327 return;
3329 if (p->numa_scan_period == 0) {
3330 p->numa_scan_period_max = task_scan_max(p);
3331 p->numa_scan_period = task_scan_start(p);
3334 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
3335 if (!try_cmpxchg(&mm->numa_next_scan, &migrate, next_scan))
3336 return;
3339 * Delay this task enough that another task of this mm will likely win
3340 * the next time around.
3342 p->node_stamp += 2 * TICK_NSEC;
3344 pages = sysctl_numa_balancing_scan_size;
3345 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
3346 virtpages = pages * 8; /* Scan up to this much virtual space */
3347 if (!pages)
3348 return;
3351 if (!mmap_read_trylock(mm))
3352 return;
3355 * VMAs are skipped if the current PID has not trapped a fault within
3356 * the VMA recently. Allow scanning to be forced if there is no
3357 * suitable VMA remaining.
3359 vma_pids_skipped = false;
3361 retry_pids:
3362 start = mm->numa_scan_offset;
3363 vma_iter_init(&vmi, mm, start);
3364 vma = vma_next(&vmi);
3365 if (!vma) {
3366 reset_ptenuma_scan(p);
3367 start = 0;
3368 vma_iter_set(&vmi, start);
3369 vma = vma_next(&vmi);
3372 for (; vma; vma = vma_next(&vmi)) {
3373 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
3374 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
3375 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_UNSUITABLE);
3376 continue;
3380 * Shared library pages mapped by multiple processes are not
3381 * migrated as it is expected they are cache replicated. Avoid
3382 * hinting faults in read-only file-backed mappings or the vDSO
3383 * as migrating the pages will be of marginal benefit.
3385 if (!vma->vm_mm ||
3386 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ))) {
3387 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SHARED_RO);
3388 continue;
3392 * Skip inaccessible VMAs to avoid any confusion between
3393 * PROT_NONE and NUMA hinting PTEs
3395 if (!vma_is_accessible(vma)) {
3396 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_INACCESSIBLE);
3397 continue;
3400 /* Initialise new per-VMA NUMAB state. */
3401 if (!vma->numab_state) {
3402 struct vma_numab_state *ptr;
3404 ptr = kzalloc(sizeof(*ptr), GFP_KERNEL);
3405 if (!ptr)
3406 continue;
3408 if (cmpxchg(&vma->numab_state, NULL, ptr)) {
3409 kfree(ptr);
3410 continue;
3413 vma->numab_state->start_scan_seq = mm->numa_scan_seq;
3415 vma->numab_state->next_scan = now +
3416 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3418 /* Reset happens after 4 times scan delay of scan start */
3419 vma->numab_state->pids_active_reset = vma->numab_state->next_scan +
3420 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3423 * Ensure prev_scan_seq does not match numa_scan_seq,
3424 * to prevent VMAs being skipped prematurely on the
3425 * first scan:
3427 vma->numab_state->prev_scan_seq = mm->numa_scan_seq - 1;
3431 * Scanning the VMAs of short lived tasks add more overhead. So
3432 * delay the scan for new VMAs.
3434 if (mm->numa_scan_seq && time_before(jiffies,
3435 vma->numab_state->next_scan)) {
3436 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SCAN_DELAY);
3437 continue;
3440 /* RESET access PIDs regularly for old VMAs. */
3441 if (mm->numa_scan_seq &&
3442 time_after(jiffies, vma->numab_state->pids_active_reset)) {
3443 vma->numab_state->pids_active_reset = vma->numab_state->pids_active_reset +
3444 msecs_to_jiffies(VMA_PID_RESET_PERIOD);
3445 vma->numab_state->pids_active[0] = READ_ONCE(vma->numab_state->pids_active[1]);
3446 vma->numab_state->pids_active[1] = 0;
3449 /* Do not rescan VMAs twice within the same sequence. */
3450 if (vma->numab_state->prev_scan_seq == mm->numa_scan_seq) {
3451 mm->numa_scan_offset = vma->vm_end;
3452 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_SEQ_COMPLETED);
3453 continue;
3457 * Do not scan the VMA if task has not accessed it, unless no other
3458 * VMA candidate exists.
3460 if (!vma_pids_forced && !vma_is_accessed(mm, vma)) {
3461 vma_pids_skipped = true;
3462 trace_sched_skip_vma_numa(mm, vma, NUMAB_SKIP_PID_INACTIVE);
3463 continue;
3466 do {
3467 start = max(start, vma->vm_start);
3468 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
3469 end = min(end, vma->vm_end);
3470 nr_pte_updates = change_prot_numa(vma, start, end);
3473 * Try to scan sysctl_numa_balancing_size worth of
3474 * hpages that have at least one present PTE that
3475 * is not already PTE-numa. If the VMA contains
3476 * areas that are unused or already full of prot_numa
3477 * PTEs, scan up to virtpages, to skip through those
3478 * areas faster.
3480 if (nr_pte_updates)
3481 pages -= (end - start) >> PAGE_SHIFT;
3482 virtpages -= (end - start) >> PAGE_SHIFT;
3484 start = end;
3485 if (pages <= 0 || virtpages <= 0)
3486 goto out;
3488 cond_resched();
3489 } while (end != vma->vm_end);
3491 /* VMA scan is complete, do not scan until next sequence. */
3492 vma->numab_state->prev_scan_seq = mm->numa_scan_seq;
3495 * Only force scan within one VMA at a time, to limit the
3496 * cost of scanning a potentially uninteresting VMA.
3498 if (vma_pids_forced)
3499 break;
3503 * If no VMAs are remaining and VMAs were skipped due to the PID
3504 * not accessing the VMA previously, then force a scan to ensure
3505 * forward progress:
3507 if (!vma && !vma_pids_forced && vma_pids_skipped) {
3508 vma_pids_forced = true;
3509 goto retry_pids;
3512 out:
3514 * It is possible to reach the end of the VMA list but the last few
3515 * VMAs are not guaranteed to the vma_migratable. If they are not, we
3516 * would find the !migratable VMA on the next scan but not reset the
3517 * scanner to the start so check it now.
3519 if (vma)
3520 mm->numa_scan_offset = start;
3521 else
3522 reset_ptenuma_scan(p);
3523 mmap_read_unlock(mm);
3526 * Make sure tasks use at least 32x as much time to run other code
3527 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
3528 * Usually update_task_scan_period slows down scanning enough; on an
3529 * overloaded system we need to limit overhead on a per task basis.
3531 if (unlikely(p->se.sum_exec_runtime != runtime)) {
3532 u64 diff = p->se.sum_exec_runtime - runtime;
3533 p->node_stamp += 32 * diff;
3537 void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
3539 int mm_users = 0;
3540 struct mm_struct *mm = p->mm;
3542 if (mm) {
3543 mm_users = atomic_read(&mm->mm_users);
3544 if (mm_users == 1) {
3545 mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
3546 mm->numa_scan_seq = 0;
3549 p->node_stamp = 0;
3550 p->numa_scan_seq = mm ? mm->numa_scan_seq : 0;
3551 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
3552 p->numa_migrate_retry = 0;
3553 /* Protect against double add, see task_tick_numa and task_numa_work */
3554 p->numa_work.next = &p->numa_work;
3555 p->numa_faults = NULL;
3556 p->numa_pages_migrated = 0;
3557 p->total_numa_faults = 0;
3558 RCU_INIT_POINTER(p->numa_group, NULL);
3559 p->last_task_numa_placement = 0;
3560 p->last_sum_exec_runtime = 0;
3562 init_task_work(&p->numa_work, task_numa_work);
3564 /* New address space, reset the preferred nid */
3565 if (!(clone_flags & CLONE_VM)) {
3566 p->numa_preferred_nid = NUMA_NO_NODE;
3567 return;
3571 * New thread, keep existing numa_preferred_nid which should be copied
3572 * already by arch_dup_task_struct but stagger when scans start.
3574 if (mm) {
3575 unsigned int delay;
3577 delay = min_t(unsigned int, task_scan_max(current),
3578 current->numa_scan_period * mm_users * NSEC_PER_MSEC);
3579 delay += 2 * TICK_NSEC;
3580 p->node_stamp = delay;
3585 * Drive the periodic memory faults..
3587 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3589 struct callback_head *work = &curr->numa_work;
3590 u64 period, now;
3593 * We don't care about NUMA placement if we don't have memory.
3595 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || work->next != work)
3596 return;
3599 * Using runtime rather than walltime has the dual advantage that
3600 * we (mostly) drive the selection from busy threads and that the
3601 * task needs to have done some actual work before we bother with
3602 * NUMA placement.
3604 now = curr->se.sum_exec_runtime;
3605 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
3607 if (now > curr->node_stamp + period) {
3608 if (!curr->node_stamp)
3609 curr->numa_scan_period = task_scan_start(curr);
3610 curr->node_stamp += period;
3612 if (!time_before(jiffies, curr->mm->numa_next_scan))
3613 task_work_add(curr, work, TWA_RESUME);
3617 static void update_scan_period(struct task_struct *p, int new_cpu)
3619 int src_nid = cpu_to_node(task_cpu(p));
3620 int dst_nid = cpu_to_node(new_cpu);
3622 if (!static_branch_likely(&sched_numa_balancing))
3623 return;
3625 if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
3626 return;
3628 if (src_nid == dst_nid)
3629 return;
3632 * Allow resets if faults have been trapped before one scan
3633 * has completed. This is most likely due to a new task that
3634 * is pulled cross-node due to wakeups or load balancing.
3636 if (p->numa_scan_seq) {
3638 * Avoid scan adjustments if moving to the preferred
3639 * node or if the task was not previously running on
3640 * the preferred node.
3642 if (dst_nid == p->numa_preferred_nid ||
3643 (p->numa_preferred_nid != NUMA_NO_NODE &&
3644 src_nid != p->numa_preferred_nid))
3645 return;
3648 p->numa_scan_period = task_scan_start(p);
3651 #else
3652 static void task_tick_numa(struct rq *rq, struct task_struct *curr)
3656 static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
3660 static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
3664 static inline void update_scan_period(struct task_struct *p, int new_cpu)
3668 #endif /* CONFIG_NUMA_BALANCING */
3670 static void
3671 account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3673 update_load_add(&cfs_rq->load, se->load.weight);
3674 #ifdef CONFIG_SMP
3675 if (entity_is_task(se)) {
3676 struct rq *rq = rq_of(cfs_rq);
3678 account_numa_enqueue(rq, task_of(se));
3679 list_add(&se->group_node, &rq->cfs_tasks);
3681 #endif
3682 cfs_rq->nr_running++;
3683 if (se_is_idle(se))
3684 cfs_rq->idle_nr_running++;
3687 static void
3688 account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
3690 update_load_sub(&cfs_rq->load, se->load.weight);
3691 #ifdef CONFIG_SMP
3692 if (entity_is_task(se)) {
3693 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
3694 list_del_init(&se->group_node);
3696 #endif
3697 cfs_rq->nr_running--;
3698 if (se_is_idle(se))
3699 cfs_rq->idle_nr_running--;
3703 * Signed add and clamp on underflow.
3705 * Explicitly do a load-store to ensure the intermediate value never hits
3706 * memory. This allows lockless observations without ever seeing the negative
3707 * values.
3709 #define add_positive(_ptr, _val) do { \
3710 typeof(_ptr) ptr = (_ptr); \
3711 typeof(_val) val = (_val); \
3712 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3714 res = var + val; \
3716 if (val < 0 && res > var) \
3717 res = 0; \
3719 WRITE_ONCE(*ptr, res); \
3720 } while (0)
3723 * Unsigned subtract and clamp on underflow.
3725 * Explicitly do a load-store to ensure the intermediate value never hits
3726 * memory. This allows lockless observations without ever seeing the negative
3727 * values.
3729 #define sub_positive(_ptr, _val) do { \
3730 typeof(_ptr) ptr = (_ptr); \
3731 typeof(*ptr) val = (_val); \
3732 typeof(*ptr) res, var = READ_ONCE(*ptr); \
3733 res = var - val; \
3734 if (res > var) \
3735 res = 0; \
3736 WRITE_ONCE(*ptr, res); \
3737 } while (0)
3740 * Remove and clamp on negative, from a local variable.
3742 * A variant of sub_positive(), which does not use explicit load-store
3743 * and is thus optimized for local variable updates.
3745 #define lsub_positive(_ptr, _val) do { \
3746 typeof(_ptr) ptr = (_ptr); \
3747 *ptr -= min_t(typeof(*ptr), *ptr, _val); \
3748 } while (0)
3750 #ifdef CONFIG_SMP
3751 static inline void
3752 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3754 cfs_rq->avg.load_avg += se->avg.load_avg;
3755 cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
3758 static inline void
3759 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3761 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3762 sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
3763 /* See update_cfs_rq_load_avg() */
3764 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
3765 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
3767 #else
3768 static inline void
3769 enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3770 static inline void
3771 dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
3772 #endif
3774 static void reweight_eevdf(struct sched_entity *se, u64 avruntime,
3775 unsigned long weight)
3777 unsigned long old_weight = se->load.weight;
3778 s64 vlag, vslice;
3781 * VRUNTIME
3782 * --------
3784 * COROLLARY #1: The virtual runtime of the entity needs to be
3785 * adjusted if re-weight at !0-lag point.
3787 * Proof: For contradiction assume this is not true, so we can
3788 * re-weight without changing vruntime at !0-lag point.
3790 * Weight VRuntime Avg-VRuntime
3791 * before w v V
3792 * after w' v' V'
3794 * Since lag needs to be preserved through re-weight:
3796 * lag = (V - v)*w = (V'- v')*w', where v = v'
3797 * ==> V' = (V - v)*w/w' + v (1)
3799 * Let W be the total weight of the entities before reweight,
3800 * since V' is the new weighted average of entities:
3802 * V' = (WV + w'v - wv) / (W + w' - w) (2)
3804 * by using (1) & (2) we obtain:
3806 * (WV + w'v - wv) / (W + w' - w) = (V - v)*w/w' + v
3807 * ==> (WV-Wv+Wv+w'v-wv)/(W+w'-w) = (V - v)*w/w' + v
3808 * ==> (WV - Wv)/(W + w' - w) + v = (V - v)*w/w' + v
3809 * ==> (V - v)*W/(W + w' - w) = (V - v)*w/w' (3)
3811 * Since we are doing at !0-lag point which means V != v, we
3812 * can simplify (3):
3814 * ==> W / (W + w' - w) = w / w'
3815 * ==> Ww' = Ww + ww' - ww
3816 * ==> W * (w' - w) = w * (w' - w)
3817 * ==> W = w (re-weight indicates w' != w)
3819 * So the cfs_rq contains only one entity, hence vruntime of
3820 * the entity @v should always equal to the cfs_rq's weighted
3821 * average vruntime @V, which means we will always re-weight
3822 * at 0-lag point, thus breach assumption. Proof completed.
3825 * COROLLARY #2: Re-weight does NOT affect weighted average
3826 * vruntime of all the entities.
3828 * Proof: According to corollary #1, Eq. (1) should be:
3830 * (V - v)*w = (V' - v')*w'
3831 * ==> v' = V' - (V - v)*w/w' (4)
3833 * According to the weighted average formula, we have:
3835 * V' = (WV - wv + w'v') / (W - w + w')
3836 * = (WV - wv + w'(V' - (V - v)w/w')) / (W - w + w')
3837 * = (WV - wv + w'V' - Vw + wv) / (W - w + w')
3838 * = (WV + w'V' - Vw) / (W - w + w')
3840 * ==> V'*(W - w + w') = WV + w'V' - Vw
3841 * ==> V' * (W - w) = (W - w) * V (5)
3843 * If the entity is the only one in the cfs_rq, then reweight
3844 * always occurs at 0-lag point, so V won't change. Or else
3845 * there are other entities, hence W != w, then Eq. (5) turns
3846 * into V' = V. So V won't change in either case, proof done.
3849 * So according to corollary #1 & #2, the effect of re-weight
3850 * on vruntime should be:
3852 * v' = V' - (V - v) * w / w' (4)
3853 * = V - (V - v) * w / w'
3854 * = V - vl * w / w'
3855 * = V - vl'
3857 if (avruntime != se->vruntime) {
3858 vlag = entity_lag(avruntime, se);
3859 vlag = div_s64(vlag * old_weight, weight);
3860 se->vruntime = avruntime - vlag;
3864 * DEADLINE
3865 * --------
3867 * When the weight changes, the virtual time slope changes and
3868 * we should adjust the relative virtual deadline accordingly.
3870 * d' = v' + (d - v)*w/w'
3871 * = V' - (V - v)*w/w' + (d - v)*w/w'
3872 * = V - (V - v)*w/w' + (d - v)*w/w'
3873 * = V + (d - V)*w/w'
3875 vslice = (s64)(se->deadline - avruntime);
3876 vslice = div_s64(vslice * old_weight, weight);
3877 se->deadline = avruntime + vslice;
3880 static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
3881 unsigned long weight)
3883 bool curr = cfs_rq->curr == se;
3884 u64 avruntime;
3886 if (se->on_rq) {
3887 /* commit outstanding execution time */
3888 update_curr(cfs_rq);
3889 avruntime = avg_vruntime(cfs_rq);
3890 if (!curr)
3891 __dequeue_entity(cfs_rq, se);
3892 update_load_sub(&cfs_rq->load, se->load.weight);
3894 dequeue_load_avg(cfs_rq, se);
3896 if (se->on_rq) {
3897 reweight_eevdf(se, avruntime, weight);
3898 } else {
3900 * Because we keep se->vlag = V - v_i, while: lag_i = w_i*(V - v_i),
3901 * we need to scale se->vlag when w_i changes.
3903 se->vlag = div_s64(se->vlag * se->load.weight, weight);
3906 update_load_set(&se->load, weight);
3908 #ifdef CONFIG_SMP
3909 do {
3910 u32 divider = get_pelt_divider(&se->avg);
3912 se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
3913 } while (0);
3914 #endif
3916 enqueue_load_avg(cfs_rq, se);
3917 if (se->on_rq) {
3918 update_load_add(&cfs_rq->load, se->load.weight);
3919 if (!curr)
3920 __enqueue_entity(cfs_rq, se);
3923 * The entity's vruntime has been adjusted, so let's check
3924 * whether the rq-wide min_vruntime needs updated too. Since
3925 * the calculations above require stable min_vruntime rather
3926 * than up-to-date one, we do the update at the end of the
3927 * reweight process.
3929 update_min_vruntime(cfs_rq);
3933 static void reweight_task_fair(struct rq *rq, struct task_struct *p,
3934 const struct load_weight *lw)
3936 struct sched_entity *se = &p->se;
3937 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3938 struct load_weight *load = &se->load;
3940 reweight_entity(cfs_rq, se, lw->weight);
3941 load->inv_weight = lw->inv_weight;
3944 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3946 #ifdef CONFIG_FAIR_GROUP_SCHED
3947 #ifdef CONFIG_SMP
3949 * All this does is approximate the hierarchical proportion which includes that
3950 * global sum we all love to hate.
3952 * That is, the weight of a group entity, is the proportional share of the
3953 * group weight based on the group runqueue weights. That is:
3955 * tg->weight * grq->load.weight
3956 * ge->load.weight = ----------------------------- (1)
3957 * \Sum grq->load.weight
3959 * Now, because computing that sum is prohibitively expensive to compute (been
3960 * there, done that) we approximate it with this average stuff. The average
3961 * moves slower and therefore the approximation is cheaper and more stable.
3963 * So instead of the above, we substitute:
3965 * grq->load.weight -> grq->avg.load_avg (2)
3967 * which yields the following:
3969 * tg->weight * grq->avg.load_avg
3970 * ge->load.weight = ------------------------------ (3)
3971 * tg->load_avg
3973 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
3975 * That is shares_avg, and it is right (given the approximation (2)).
3977 * The problem with it is that because the average is slow -- it was designed
3978 * to be exactly that of course -- this leads to transients in boundary
3979 * conditions. In specific, the case where the group was idle and we start the
3980 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
3981 * yielding bad latency etc..
3983 * Now, in that special case (1) reduces to:
3985 * tg->weight * grq->load.weight
3986 * ge->load.weight = ----------------------------- = tg->weight (4)
3987 * grp->load.weight
3989 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
3991 * So what we do is modify our approximation (3) to approach (4) in the (near)
3992 * UP case, like:
3994 * ge->load.weight =
3996 * tg->weight * grq->load.weight
3997 * --------------------------------------------------- (5)
3998 * tg->load_avg - grq->avg.load_avg + grq->load.weight
4000 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
4001 * we need to use grq->avg.load_avg as its lower bound, which then gives:
4004 * tg->weight * grq->load.weight
4005 * ge->load.weight = ----------------------------- (6)
4006 * tg_load_avg'
4008 * Where:
4010 * tg_load_avg' = tg->load_avg - grq->avg.load_avg +
4011 * max(grq->load.weight, grq->avg.load_avg)
4013 * And that is shares_weight and is icky. In the (near) UP case it approaches
4014 * (4) while in the normal case it approaches (3). It consistently
4015 * overestimates the ge->load.weight and therefore:
4017 * \Sum ge->load.weight >= tg->weight
4019 * hence icky!
4021 static long calc_group_shares(struct cfs_rq *cfs_rq)
4023 long tg_weight, tg_shares, load, shares;
4024 struct task_group *tg = cfs_rq->tg;
4026 tg_shares = READ_ONCE(tg->shares);
4028 load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
4030 tg_weight = atomic_long_read(&tg->load_avg);
4032 /* Ensure tg_weight >= load */
4033 tg_weight -= cfs_rq->tg_load_avg_contrib;
4034 tg_weight += load;
4036 shares = (tg_shares * load);
4037 if (tg_weight)
4038 shares /= tg_weight;
4041 * MIN_SHARES has to be unscaled here to support per-CPU partitioning
4042 * of a group with small tg->shares value. It is a floor value which is
4043 * assigned as a minimum load.weight to the sched_entity representing
4044 * the group on a CPU.
4046 * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
4047 * on an 8-core system with 8 tasks each runnable on one CPU shares has
4048 * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
4049 * case no task is runnable on a CPU MIN_SHARES=2 should be returned
4050 * instead of 0.
4052 return clamp_t(long, shares, MIN_SHARES, tg_shares);
4054 #endif /* CONFIG_SMP */
4057 * Recomputes the group entity based on the current state of its group
4058 * runqueue.
4060 static void update_cfs_group(struct sched_entity *se)
4062 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4063 long shares;
4065 if (!gcfs_rq)
4066 return;
4068 if (throttled_hierarchy(gcfs_rq))
4069 return;
4071 #ifndef CONFIG_SMP
4072 shares = READ_ONCE(gcfs_rq->tg->shares);
4073 #else
4074 shares = calc_group_shares(gcfs_rq);
4075 #endif
4076 if (unlikely(se->load.weight != shares))
4077 reweight_entity(cfs_rq_of(se), se, shares);
4080 #else /* CONFIG_FAIR_GROUP_SCHED */
4081 static inline void update_cfs_group(struct sched_entity *se)
4084 #endif /* CONFIG_FAIR_GROUP_SCHED */
4086 static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
4088 struct rq *rq = rq_of(cfs_rq);
4090 if (&rq->cfs == cfs_rq) {
4092 * There are a few boundary cases this might miss but it should
4093 * get called often enough that that should (hopefully) not be
4094 * a real problem.
4096 * It will not get called when we go idle, because the idle
4097 * thread is a different class (!fair), nor will the utilization
4098 * number include things like RT tasks.
4100 * As is, the util number is not freq-invariant (we'd have to
4101 * implement arch_scale_freq_capacity() for that).
4103 * See cpu_util_cfs().
4105 cpufreq_update_util(rq, flags);
4109 #ifdef CONFIG_SMP
4110 static inline bool load_avg_is_decayed(struct sched_avg *sa)
4112 if (sa->load_sum)
4113 return false;
4115 if (sa->util_sum)
4116 return false;
4118 if (sa->runnable_sum)
4119 return false;
4122 * _avg must be null when _sum are null because _avg = _sum / divider
4123 * Make sure that rounding and/or propagation of PELT values never
4124 * break this.
4126 SCHED_WARN_ON(sa->load_avg ||
4127 sa->util_avg ||
4128 sa->runnable_avg);
4130 return true;
4133 static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
4135 return u64_u32_load_copy(cfs_rq->avg.last_update_time,
4136 cfs_rq->last_update_time_copy);
4138 #ifdef CONFIG_FAIR_GROUP_SCHED
4140 * Because list_add_leaf_cfs_rq always places a child cfs_rq on the list
4141 * immediately before a parent cfs_rq, and cfs_rqs are removed from the list
4142 * bottom-up, we only have to test whether the cfs_rq before us on the list
4143 * is our child.
4144 * If cfs_rq is not on the list, test whether a child needs its to be added to
4145 * connect a branch to the tree * (see list_add_leaf_cfs_rq() for details).
4147 static inline bool child_cfs_rq_on_list(struct cfs_rq *cfs_rq)
4149 struct cfs_rq *prev_cfs_rq;
4150 struct list_head *prev;
4152 if (cfs_rq->on_list) {
4153 prev = cfs_rq->leaf_cfs_rq_list.prev;
4154 } else {
4155 struct rq *rq = rq_of(cfs_rq);
4157 prev = rq->tmp_alone_branch;
4160 prev_cfs_rq = container_of(prev, struct cfs_rq, leaf_cfs_rq_list);
4162 return (prev_cfs_rq->tg->parent == cfs_rq->tg);
4165 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
4167 if (cfs_rq->load.weight)
4168 return false;
4170 if (!load_avg_is_decayed(&cfs_rq->avg))
4171 return false;
4173 if (child_cfs_rq_on_list(cfs_rq))
4174 return false;
4176 return true;
4180 * update_tg_load_avg - update the tg's load avg
4181 * @cfs_rq: the cfs_rq whose avg changed
4183 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
4184 * However, because tg->load_avg is a global value there are performance
4185 * considerations.
4187 * In order to avoid having to look at the other cfs_rq's, we use a
4188 * differential update where we store the last value we propagated. This in
4189 * turn allows skipping updates if the differential is 'small'.
4191 * Updating tg's load_avg is necessary before update_cfs_share().
4193 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq)
4195 long delta;
4196 u64 now;
4199 * No need to update load_avg for root_task_group as it is not used.
4201 if (cfs_rq->tg == &root_task_group)
4202 return;
4204 /* rq has been offline and doesn't contribute to the share anymore: */
4205 if (!cpu_active(cpu_of(rq_of(cfs_rq))))
4206 return;
4209 * For migration heavy workloads, access to tg->load_avg can be
4210 * unbound. Limit the update rate to at most once per ms.
4212 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4213 if (now - cfs_rq->last_update_tg_load_avg < NSEC_PER_MSEC)
4214 return;
4216 delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
4217 if (abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
4218 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4219 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
4220 cfs_rq->last_update_tg_load_avg = now;
4224 static inline void clear_tg_load_avg(struct cfs_rq *cfs_rq)
4226 long delta;
4227 u64 now;
4230 * No need to update load_avg for root_task_group, as it is not used.
4232 if (cfs_rq->tg == &root_task_group)
4233 return;
4235 now = sched_clock_cpu(cpu_of(rq_of(cfs_rq)));
4236 delta = 0 - cfs_rq->tg_load_avg_contrib;
4237 atomic_long_add(delta, &cfs_rq->tg->load_avg);
4238 cfs_rq->tg_load_avg_contrib = 0;
4239 cfs_rq->last_update_tg_load_avg = now;
4242 /* CPU offline callback: */
4243 static void __maybe_unused clear_tg_offline_cfs_rqs(struct rq *rq)
4245 struct task_group *tg;
4247 lockdep_assert_rq_held(rq);
4250 * The rq clock has already been updated in
4251 * set_rq_offline(), so we should skip updating
4252 * the rq clock again in unthrottle_cfs_rq().
4254 rq_clock_start_loop_update(rq);
4256 rcu_read_lock();
4257 list_for_each_entry_rcu(tg, &task_groups, list) {
4258 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4260 clear_tg_load_avg(cfs_rq);
4262 rcu_read_unlock();
4264 rq_clock_stop_loop_update(rq);
4268 * Called within set_task_rq() right before setting a task's CPU. The
4269 * caller only guarantees p->pi_lock is held; no other assumptions,
4270 * including the state of rq->lock, should be made.
4272 void set_task_rq_fair(struct sched_entity *se,
4273 struct cfs_rq *prev, struct cfs_rq *next)
4275 u64 p_last_update_time;
4276 u64 n_last_update_time;
4278 if (!sched_feat(ATTACH_AGE_LOAD))
4279 return;
4282 * We are supposed to update the task to "current" time, then its up to
4283 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
4284 * getting what current time is, so simply throw away the out-of-date
4285 * time. This will result in the wakee task is less decayed, but giving
4286 * the wakee more load sounds not bad.
4288 if (!(se->avg.last_update_time && prev))
4289 return;
4291 p_last_update_time = cfs_rq_last_update_time(prev);
4292 n_last_update_time = cfs_rq_last_update_time(next);
4294 __update_load_avg_blocked_se(p_last_update_time, se);
4295 se->avg.last_update_time = n_last_update_time;
4299 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
4300 * propagate its contribution. The key to this propagation is the invariant
4301 * that for each group:
4303 * ge->avg == grq->avg (1)
4305 * _IFF_ we look at the pure running and runnable sums. Because they
4306 * represent the very same entity, just at different points in the hierarchy.
4308 * Per the above update_tg_cfs_util() and update_tg_cfs_runnable() are trivial
4309 * and simply copies the running/runnable sum over (but still wrong, because
4310 * the group entity and group rq do not have their PELT windows aligned).
4312 * However, update_tg_cfs_load() is more complex. So we have:
4314 * ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg (2)
4316 * And since, like util, the runnable part should be directly transferable,
4317 * the following would _appear_ to be the straight forward approach:
4319 * grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg (3)
4321 * And per (1) we have:
4323 * ge->avg.runnable_avg == grq->avg.runnable_avg
4325 * Which gives:
4327 * ge->load.weight * grq->avg.load_avg
4328 * ge->avg.load_avg = ----------------------------------- (4)
4329 * grq->load.weight
4331 * Except that is wrong!
4333 * Because while for entities historical weight is not important and we
4334 * really only care about our future and therefore can consider a pure
4335 * runnable sum, runqueues can NOT do this.
4337 * We specifically want runqueues to have a load_avg that includes
4338 * historical weights. Those represent the blocked load, the load we expect
4339 * to (shortly) return to us. This only works by keeping the weights as
4340 * integral part of the sum. We therefore cannot decompose as per (3).
4342 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
4343 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
4344 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
4345 * runnable section of these tasks overlap (or not). If they were to perfectly
4346 * align the rq as a whole would be runnable 2/3 of the time. If however we
4347 * always have at least 1 runnable task, the rq as a whole is always runnable.
4349 * So we'll have to approximate.. :/
4351 * Given the constraint:
4353 * ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
4355 * We can construct a rule that adds runnable to a rq by assuming minimal
4356 * overlap.
4358 * On removal, we'll assume each task is equally runnable; which yields:
4360 * grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
4362 * XXX: only do this for the part of runnable > running ?
4365 static inline void
4366 update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4368 long delta_sum, delta_avg = gcfs_rq->avg.util_avg - se->avg.util_avg;
4369 u32 new_sum, divider;
4371 /* Nothing to update */
4372 if (!delta_avg)
4373 return;
4376 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4377 * See ___update_load_avg() for details.
4379 divider = get_pelt_divider(&cfs_rq->avg);
4382 /* Set new sched_entity's utilization */
4383 se->avg.util_avg = gcfs_rq->avg.util_avg;
4384 new_sum = se->avg.util_avg * divider;
4385 delta_sum = (long)new_sum - (long)se->avg.util_sum;
4386 se->avg.util_sum = new_sum;
4388 /* Update parent cfs_rq utilization */
4389 add_positive(&cfs_rq->avg.util_avg, delta_avg);
4390 add_positive(&cfs_rq->avg.util_sum, delta_sum);
4392 /* See update_cfs_rq_load_avg() */
4393 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4394 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4397 static inline void
4398 update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4400 long delta_sum, delta_avg = gcfs_rq->avg.runnable_avg - se->avg.runnable_avg;
4401 u32 new_sum, divider;
4403 /* Nothing to update */
4404 if (!delta_avg)
4405 return;
4408 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4409 * See ___update_load_avg() for details.
4411 divider = get_pelt_divider(&cfs_rq->avg);
4413 /* Set new sched_entity's runnable */
4414 se->avg.runnable_avg = gcfs_rq->avg.runnable_avg;
4415 new_sum = se->avg.runnable_avg * divider;
4416 delta_sum = (long)new_sum - (long)se->avg.runnable_sum;
4417 se->avg.runnable_sum = new_sum;
4419 /* Update parent cfs_rq runnable */
4420 add_positive(&cfs_rq->avg.runnable_avg, delta_avg);
4421 add_positive(&cfs_rq->avg.runnable_sum, delta_sum);
4422 /* See update_cfs_rq_load_avg() */
4423 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4424 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4427 static inline void
4428 update_tg_cfs_load(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
4430 long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
4431 unsigned long load_avg;
4432 u64 load_sum = 0;
4433 s64 delta_sum;
4434 u32 divider;
4436 if (!runnable_sum)
4437 return;
4439 gcfs_rq->prop_runnable_sum = 0;
4442 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4443 * See ___update_load_avg() for details.
4445 divider = get_pelt_divider(&cfs_rq->avg);
4447 if (runnable_sum >= 0) {
4449 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
4450 * the CPU is saturated running == runnable.
4452 runnable_sum += se->avg.load_sum;
4453 runnable_sum = min_t(long, runnable_sum, divider);
4454 } else {
4456 * Estimate the new unweighted runnable_sum of the gcfs_rq by
4457 * assuming all tasks are equally runnable.
4459 if (scale_load_down(gcfs_rq->load.weight)) {
4460 load_sum = div_u64(gcfs_rq->avg.load_sum,
4461 scale_load_down(gcfs_rq->load.weight));
4464 /* But make sure to not inflate se's runnable */
4465 runnable_sum = min(se->avg.load_sum, load_sum);
4469 * runnable_sum can't be lower than running_sum
4470 * Rescale running sum to be in the same range as runnable sum
4471 * running_sum is in [0 : LOAD_AVG_MAX << SCHED_CAPACITY_SHIFT]
4472 * runnable_sum is in [0 : LOAD_AVG_MAX]
4474 running_sum = se->avg.util_sum >> SCHED_CAPACITY_SHIFT;
4475 runnable_sum = max(runnable_sum, running_sum);
4477 load_sum = se_weight(se) * runnable_sum;
4478 load_avg = div_u64(load_sum, divider);
4480 delta_avg = load_avg - se->avg.load_avg;
4481 if (!delta_avg)
4482 return;
4484 delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
4486 se->avg.load_sum = runnable_sum;
4487 se->avg.load_avg = load_avg;
4488 add_positive(&cfs_rq->avg.load_avg, delta_avg);
4489 add_positive(&cfs_rq->avg.load_sum, delta_sum);
4490 /* See update_cfs_rq_load_avg() */
4491 cfs_rq->avg.load_sum = max_t(u32, cfs_rq->avg.load_sum,
4492 cfs_rq->avg.load_avg * PELT_MIN_DIVIDER);
4495 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
4497 cfs_rq->propagate = 1;
4498 cfs_rq->prop_runnable_sum += runnable_sum;
4501 /* Update task and its cfs_rq load average */
4502 static inline int propagate_entity_load_avg(struct sched_entity *se)
4504 struct cfs_rq *cfs_rq, *gcfs_rq;
4506 if (entity_is_task(se))
4507 return 0;
4509 gcfs_rq = group_cfs_rq(se);
4510 if (!gcfs_rq->propagate)
4511 return 0;
4513 gcfs_rq->propagate = 0;
4515 cfs_rq = cfs_rq_of(se);
4517 add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
4519 update_tg_cfs_util(cfs_rq, se, gcfs_rq);
4520 update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
4521 update_tg_cfs_load(cfs_rq, se, gcfs_rq);
4523 trace_pelt_cfs_tp(cfs_rq);
4524 trace_pelt_se_tp(se);
4526 return 1;
4530 * Check if we need to update the load and the utilization of a blocked
4531 * group_entity:
4533 static inline bool skip_blocked_update(struct sched_entity *se)
4535 struct cfs_rq *gcfs_rq = group_cfs_rq(se);
4538 * If sched_entity still have not zero load or utilization, we have to
4539 * decay it:
4541 if (se->avg.load_avg || se->avg.util_avg)
4542 return false;
4545 * If there is a pending propagation, we have to update the load and
4546 * the utilization of the sched_entity:
4548 if (gcfs_rq->propagate)
4549 return false;
4552 * Otherwise, the load and the utilization of the sched_entity is
4553 * already zero and there is no pending propagation, so it will be a
4554 * waste of time to try to decay it:
4556 return true;
4559 #else /* CONFIG_FAIR_GROUP_SCHED */
4561 static inline void update_tg_load_avg(struct cfs_rq *cfs_rq) {}
4563 static inline void clear_tg_offline_cfs_rqs(struct rq *rq) {}
4565 static inline int propagate_entity_load_avg(struct sched_entity *se)
4567 return 0;
4570 static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
4572 #endif /* CONFIG_FAIR_GROUP_SCHED */
4574 #ifdef CONFIG_NO_HZ_COMMON
4575 static inline void migrate_se_pelt_lag(struct sched_entity *se)
4577 u64 throttled = 0, now, lut;
4578 struct cfs_rq *cfs_rq;
4579 struct rq *rq;
4580 bool is_idle;
4582 if (load_avg_is_decayed(&se->avg))
4583 return;
4585 cfs_rq = cfs_rq_of(se);
4586 rq = rq_of(cfs_rq);
4588 rcu_read_lock();
4589 is_idle = is_idle_task(rcu_dereference(rq->curr));
4590 rcu_read_unlock();
4593 * The lag estimation comes with a cost we don't want to pay all the
4594 * time. Hence, limiting to the case where the source CPU is idle and
4595 * we know we are at the greatest risk to have an outdated clock.
4597 if (!is_idle)
4598 return;
4601 * Estimated "now" is: last_update_time + cfs_idle_lag + rq_idle_lag, where:
4603 * last_update_time (the cfs_rq's last_update_time)
4604 * = cfs_rq_clock_pelt()@cfs_rq_idle
4605 * = rq_clock_pelt()@cfs_rq_idle
4606 * - cfs->throttled_clock_pelt_time@cfs_rq_idle
4608 * cfs_idle_lag (delta between rq's update and cfs_rq's update)
4609 * = rq_clock_pelt()@rq_idle - rq_clock_pelt()@cfs_rq_idle
4611 * rq_idle_lag (delta between now and rq's update)
4612 * = sched_clock_cpu() - rq_clock()@rq_idle
4614 * We can then write:
4616 * now = rq_clock_pelt()@rq_idle - cfs->throttled_clock_pelt_time +
4617 * sched_clock_cpu() - rq_clock()@rq_idle
4618 * Where:
4619 * rq_clock_pelt()@rq_idle is rq->clock_pelt_idle
4620 * rq_clock()@rq_idle is rq->clock_idle
4621 * cfs->throttled_clock_pelt_time@cfs_rq_idle
4622 * is cfs_rq->throttled_pelt_idle
4625 #ifdef CONFIG_CFS_BANDWIDTH
4626 throttled = u64_u32_load(cfs_rq->throttled_pelt_idle);
4627 /* The clock has been stopped for throttling */
4628 if (throttled == U64_MAX)
4629 return;
4630 #endif
4631 now = u64_u32_load(rq->clock_pelt_idle);
4633 * Paired with _update_idle_rq_clock_pelt(). It ensures at the worst case
4634 * is observed the old clock_pelt_idle value and the new clock_idle,
4635 * which lead to an underestimation. The opposite would lead to an
4636 * overestimation.
4638 smp_rmb();
4639 lut = cfs_rq_last_update_time(cfs_rq);
4641 now -= throttled;
4642 if (now < lut)
4644 * cfs_rq->avg.last_update_time is more recent than our
4645 * estimation, let's use it.
4647 now = lut;
4648 else
4649 now += sched_clock_cpu(cpu_of(rq)) - u64_u32_load(rq->clock_idle);
4651 __update_load_avg_blocked_se(now, se);
4653 #else
4654 static void migrate_se_pelt_lag(struct sched_entity *se) {}
4655 #endif
4658 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
4659 * @now: current time, as per cfs_rq_clock_pelt()
4660 * @cfs_rq: cfs_rq to update
4662 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
4663 * avg. The immediate corollary is that all (fair) tasks must be attached.
4665 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
4667 * Return: true if the load decayed or we removed load.
4669 * Since both these conditions indicate a changed cfs_rq->avg.load we should
4670 * call update_tg_load_avg() when this function returns true.
4672 static inline int
4673 update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
4675 unsigned long removed_load = 0, removed_util = 0, removed_runnable = 0;
4676 struct sched_avg *sa = &cfs_rq->avg;
4677 int decayed = 0;
4679 if (cfs_rq->removed.nr) {
4680 unsigned long r;
4681 u32 divider = get_pelt_divider(&cfs_rq->avg);
4683 raw_spin_lock(&cfs_rq->removed.lock);
4684 swap(cfs_rq->removed.util_avg, removed_util);
4685 swap(cfs_rq->removed.load_avg, removed_load);
4686 swap(cfs_rq->removed.runnable_avg, removed_runnable);
4687 cfs_rq->removed.nr = 0;
4688 raw_spin_unlock(&cfs_rq->removed.lock);
4690 r = removed_load;
4691 sub_positive(&sa->load_avg, r);
4692 sub_positive(&sa->load_sum, r * divider);
4693 /* See sa->util_sum below */
4694 sa->load_sum = max_t(u32, sa->load_sum, sa->load_avg * PELT_MIN_DIVIDER);
4696 r = removed_util;
4697 sub_positive(&sa->util_avg, r);
4698 sub_positive(&sa->util_sum, r * divider);
4700 * Because of rounding, se->util_sum might ends up being +1 more than
4701 * cfs->util_sum. Although this is not a problem by itself, detaching
4702 * a lot of tasks with the rounding problem between 2 updates of
4703 * util_avg (~1ms) can make cfs->util_sum becoming null whereas
4704 * cfs_util_avg is not.
4705 * Check that util_sum is still above its lower bound for the new
4706 * util_avg. Given that period_contrib might have moved since the last
4707 * sync, we are only sure that util_sum must be above or equal to
4708 * util_avg * minimum possible divider
4710 sa->util_sum = max_t(u32, sa->util_sum, sa->util_avg * PELT_MIN_DIVIDER);
4712 r = removed_runnable;
4713 sub_positive(&sa->runnable_avg, r);
4714 sub_positive(&sa->runnable_sum, r * divider);
4715 /* See sa->util_sum above */
4716 sa->runnable_sum = max_t(u32, sa->runnable_sum,
4717 sa->runnable_avg * PELT_MIN_DIVIDER);
4720 * removed_runnable is the unweighted version of removed_load so we
4721 * can use it to estimate removed_load_sum.
4723 add_tg_cfs_propagate(cfs_rq,
4724 -(long)(removed_runnable * divider) >> SCHED_CAPACITY_SHIFT);
4726 decayed = 1;
4729 decayed |= __update_load_avg_cfs_rq(now, cfs_rq);
4730 u64_u32_store_copy(sa->last_update_time,
4731 cfs_rq->last_update_time_copy,
4732 sa->last_update_time);
4733 return decayed;
4737 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
4738 * @cfs_rq: cfs_rq to attach to
4739 * @se: sched_entity to attach
4741 * Must call update_cfs_rq_load_avg() before this, since we rely on
4742 * cfs_rq->avg.last_update_time being current.
4744 static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4747 * cfs_rq->avg.period_contrib can be used for both cfs_rq and se.
4748 * See ___update_load_avg() for details.
4750 u32 divider = get_pelt_divider(&cfs_rq->avg);
4753 * When we attach the @se to the @cfs_rq, we must align the decay
4754 * window because without that, really weird and wonderful things can
4755 * happen.
4757 * XXX illustrate
4759 se->avg.last_update_time = cfs_rq->avg.last_update_time;
4760 se->avg.period_contrib = cfs_rq->avg.period_contrib;
4763 * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
4764 * period_contrib. This isn't strictly correct, but since we're
4765 * entirely outside of the PELT hierarchy, nobody cares if we truncate
4766 * _sum a little.
4768 se->avg.util_sum = se->avg.util_avg * divider;
4770 se->avg.runnable_sum = se->avg.runnable_avg * divider;
4772 se->avg.load_sum = se->avg.load_avg * divider;
4773 if (se_weight(se) < se->avg.load_sum)
4774 se->avg.load_sum = div_u64(se->avg.load_sum, se_weight(se));
4775 else
4776 se->avg.load_sum = 1;
4778 enqueue_load_avg(cfs_rq, se);
4779 cfs_rq->avg.util_avg += se->avg.util_avg;
4780 cfs_rq->avg.util_sum += se->avg.util_sum;
4781 cfs_rq->avg.runnable_avg += se->avg.runnable_avg;
4782 cfs_rq->avg.runnable_sum += se->avg.runnable_sum;
4784 add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
4786 cfs_rq_util_change(cfs_rq, 0);
4788 trace_pelt_cfs_tp(cfs_rq);
4792 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
4793 * @cfs_rq: cfs_rq to detach from
4794 * @se: sched_entity to detach
4796 * Must call update_cfs_rq_load_avg() before this, since we rely on
4797 * cfs_rq->avg.last_update_time being current.
4799 static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
4801 dequeue_load_avg(cfs_rq, se);
4802 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
4803 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
4804 /* See update_cfs_rq_load_avg() */
4805 cfs_rq->avg.util_sum = max_t(u32, cfs_rq->avg.util_sum,
4806 cfs_rq->avg.util_avg * PELT_MIN_DIVIDER);
4808 sub_positive(&cfs_rq->avg.runnable_avg, se->avg.runnable_avg);
4809 sub_positive(&cfs_rq->avg.runnable_sum, se->avg.runnable_sum);
4810 /* See update_cfs_rq_load_avg() */
4811 cfs_rq->avg.runnable_sum = max_t(u32, cfs_rq->avg.runnable_sum,
4812 cfs_rq->avg.runnable_avg * PELT_MIN_DIVIDER);
4814 add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
4816 cfs_rq_util_change(cfs_rq, 0);
4818 trace_pelt_cfs_tp(cfs_rq);
4822 * Optional action to be done while updating the load average
4824 #define UPDATE_TG 0x1
4825 #define SKIP_AGE_LOAD 0x2
4826 #define DO_ATTACH 0x4
4827 #define DO_DETACH 0x8
4829 /* Update task and its cfs_rq load average */
4830 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
4832 u64 now = cfs_rq_clock_pelt(cfs_rq);
4833 int decayed;
4836 * Track task load average for carrying it to new CPU after migrated, and
4837 * track group sched_entity load average for task_h_load calculation in migration
4839 if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
4840 __update_load_avg_se(now, cfs_rq, se);
4842 decayed = update_cfs_rq_load_avg(now, cfs_rq);
4843 decayed |= propagate_entity_load_avg(se);
4845 if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
4848 * DO_ATTACH means we're here from enqueue_entity().
4849 * !last_update_time means we've passed through
4850 * migrate_task_rq_fair() indicating we migrated.
4852 * IOW we're enqueueing a task on a new CPU.
4854 attach_entity_load_avg(cfs_rq, se);
4855 update_tg_load_avg(cfs_rq);
4857 } else if (flags & DO_DETACH) {
4859 * DO_DETACH means we're here from dequeue_entity()
4860 * and we are migrating task out of the CPU.
4862 detach_entity_load_avg(cfs_rq, se);
4863 update_tg_load_avg(cfs_rq);
4864 } else if (decayed) {
4865 cfs_rq_util_change(cfs_rq, 0);
4867 if (flags & UPDATE_TG)
4868 update_tg_load_avg(cfs_rq);
4873 * Synchronize entity load avg of dequeued entity without locking
4874 * the previous rq.
4876 static void sync_entity_load_avg(struct sched_entity *se)
4878 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4879 u64 last_update_time;
4881 last_update_time = cfs_rq_last_update_time(cfs_rq);
4882 __update_load_avg_blocked_se(last_update_time, se);
4886 * Task first catches up with cfs_rq, and then subtract
4887 * itself from the cfs_rq (task must be off the queue now).
4889 static void remove_entity_load_avg(struct sched_entity *se)
4891 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4892 unsigned long flags;
4895 * tasks cannot exit without having gone through wake_up_new_task() ->
4896 * enqueue_task_fair() which will have added things to the cfs_rq,
4897 * so we can remove unconditionally.
4900 sync_entity_load_avg(se);
4902 raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
4903 ++cfs_rq->removed.nr;
4904 cfs_rq->removed.util_avg += se->avg.util_avg;
4905 cfs_rq->removed.load_avg += se->avg.load_avg;
4906 cfs_rq->removed.runnable_avg += se->avg.runnable_avg;
4907 raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
4910 static inline unsigned long cfs_rq_runnable_avg(struct cfs_rq *cfs_rq)
4912 return cfs_rq->avg.runnable_avg;
4915 static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
4917 return cfs_rq->avg.load_avg;
4920 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf);
4922 static inline unsigned long task_util(struct task_struct *p)
4924 return READ_ONCE(p->se.avg.util_avg);
4927 static inline unsigned long task_runnable(struct task_struct *p)
4929 return READ_ONCE(p->se.avg.runnable_avg);
4932 static inline unsigned long _task_util_est(struct task_struct *p)
4934 return READ_ONCE(p->se.avg.util_est) & ~UTIL_AVG_UNCHANGED;
4937 static inline unsigned long task_util_est(struct task_struct *p)
4939 return max(task_util(p), _task_util_est(p));
4942 static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
4943 struct task_struct *p)
4945 unsigned int enqueued;
4947 if (!sched_feat(UTIL_EST))
4948 return;
4950 /* Update root cfs_rq's estimated utilization */
4951 enqueued = cfs_rq->avg.util_est;
4952 enqueued += _task_util_est(p);
4953 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4955 trace_sched_util_est_cfs_tp(cfs_rq);
4958 static inline void util_est_dequeue(struct cfs_rq *cfs_rq,
4959 struct task_struct *p)
4961 unsigned int enqueued;
4963 if (!sched_feat(UTIL_EST))
4964 return;
4966 /* Update root cfs_rq's estimated utilization */
4967 enqueued = cfs_rq->avg.util_est;
4968 enqueued -= min_t(unsigned int, enqueued, _task_util_est(p));
4969 WRITE_ONCE(cfs_rq->avg.util_est, enqueued);
4971 trace_sched_util_est_cfs_tp(cfs_rq);
4974 #define UTIL_EST_MARGIN (SCHED_CAPACITY_SCALE / 100)
4976 static inline void util_est_update(struct cfs_rq *cfs_rq,
4977 struct task_struct *p,
4978 bool task_sleep)
4980 unsigned int ewma, dequeued, last_ewma_diff;
4982 if (!sched_feat(UTIL_EST))
4983 return;
4986 * Skip update of task's estimated utilization when the task has not
4987 * yet completed an activation, e.g. being migrated.
4989 if (!task_sleep)
4990 return;
4992 /* Get current estimate of utilization */
4993 ewma = READ_ONCE(p->se.avg.util_est);
4996 * If the PELT values haven't changed since enqueue time,
4997 * skip the util_est update.
4999 if (ewma & UTIL_AVG_UNCHANGED)
5000 return;
5002 /* Get utilization at dequeue */
5003 dequeued = task_util(p);
5006 * Reset EWMA on utilization increases, the moving average is used only
5007 * to smooth utilization decreases.
5009 if (ewma <= dequeued) {
5010 ewma = dequeued;
5011 goto done;
5015 * Skip update of task's estimated utilization when its members are
5016 * already ~1% close to its last activation value.
5018 last_ewma_diff = ewma - dequeued;
5019 if (last_ewma_diff < UTIL_EST_MARGIN)
5020 goto done;
5023 * To avoid overestimation of actual task utilization, skip updates if
5024 * we cannot grant there is idle time in this CPU.
5026 if (dequeued > arch_scale_cpu_capacity(cpu_of(rq_of(cfs_rq))))
5027 return;
5030 * To avoid underestimate of task utilization, skip updates of EWMA if
5031 * we cannot grant that thread got all CPU time it wanted.
5033 if ((dequeued + UTIL_EST_MARGIN) < task_runnable(p))
5034 goto done;
5038 * Update Task's estimated utilization
5040 * When *p completes an activation we can consolidate another sample
5041 * of the task size. This is done by using this value to update the
5042 * Exponential Weighted Moving Average (EWMA):
5044 * ewma(t) = w * task_util(p) + (1-w) * ewma(t-1)
5045 * = w * task_util(p) + ewma(t-1) - w * ewma(t-1)
5046 * = w * (task_util(p) - ewma(t-1)) + ewma(t-1)
5047 * = w * ( -last_ewma_diff ) + ewma(t-1)
5048 * = w * (-last_ewma_diff + ewma(t-1) / w)
5050 * Where 'w' is the weight of new samples, which is configured to be
5051 * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
5053 ewma <<= UTIL_EST_WEIGHT_SHIFT;
5054 ewma -= last_ewma_diff;
5055 ewma >>= UTIL_EST_WEIGHT_SHIFT;
5056 done:
5057 ewma |= UTIL_AVG_UNCHANGED;
5058 WRITE_ONCE(p->se.avg.util_est, ewma);
5060 trace_sched_util_est_se_tp(&p->se);
5063 static inline unsigned long get_actual_cpu_capacity(int cpu)
5065 unsigned long capacity = arch_scale_cpu_capacity(cpu);
5067 capacity -= max(hw_load_avg(cpu_rq(cpu)), cpufreq_get_pressure(cpu));
5069 return capacity;
5072 static inline int util_fits_cpu(unsigned long util,
5073 unsigned long uclamp_min,
5074 unsigned long uclamp_max,
5075 int cpu)
5077 unsigned long capacity = capacity_of(cpu);
5078 unsigned long capacity_orig;
5079 bool fits, uclamp_max_fits;
5082 * Check if the real util fits without any uclamp boost/cap applied.
5084 fits = fits_capacity(util, capacity);
5086 if (!uclamp_is_used())
5087 return fits;
5090 * We must use arch_scale_cpu_capacity() for comparing against uclamp_min and
5091 * uclamp_max. We only care about capacity pressure (by using
5092 * capacity_of()) for comparing against the real util.
5094 * If a task is boosted to 1024 for example, we don't want a tiny
5095 * pressure to skew the check whether it fits a CPU or not.
5097 * Similarly if a task is capped to arch_scale_cpu_capacity(little_cpu), it
5098 * should fit a little cpu even if there's some pressure.
5100 * Only exception is for HW or cpufreq pressure since it has a direct impact
5101 * on available OPP of the system.
5103 * We honour it for uclamp_min only as a drop in performance level
5104 * could result in not getting the requested minimum performance level.
5106 * For uclamp_max, we can tolerate a drop in performance level as the
5107 * goal is to cap the task. So it's okay if it's getting less.
5109 capacity_orig = arch_scale_cpu_capacity(cpu);
5112 * We want to force a task to fit a cpu as implied by uclamp_max.
5113 * But we do have some corner cases to cater for..
5116 * C=z
5117 * | ___
5118 * | C=y | |
5119 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5120 * | C=x | | | |
5121 * | ___ | | | |
5122 * | | | | | | | (util somewhere in this region)
5123 * | | | | | | |
5124 * | | | | | | |
5125 * +----------------------------------------
5126 * CPU0 CPU1 CPU2
5128 * In the above example if a task is capped to a specific performance
5129 * point, y, then when:
5131 * * util = 80% of x then it does not fit on CPU0 and should migrate
5132 * to CPU1
5133 * * util = 80% of y then it is forced to fit on CPU1 to honour
5134 * uclamp_max request.
5136 * which is what we're enforcing here. A task always fits if
5137 * uclamp_max <= capacity_orig. But when uclamp_max > capacity_orig,
5138 * the normal upmigration rules should withhold still.
5140 * Only exception is when we are on max capacity, then we need to be
5141 * careful not to block overutilized state. This is so because:
5143 * 1. There's no concept of capping at max_capacity! We can't go
5144 * beyond this performance level anyway.
5145 * 2. The system is being saturated when we're operating near
5146 * max capacity, it doesn't make sense to block overutilized.
5148 uclamp_max_fits = (capacity_orig == SCHED_CAPACITY_SCALE) && (uclamp_max == SCHED_CAPACITY_SCALE);
5149 uclamp_max_fits = !uclamp_max_fits && (uclamp_max <= capacity_orig);
5150 fits = fits || uclamp_max_fits;
5154 * C=z
5155 * | ___ (region a, capped, util >= uclamp_max)
5156 * | C=y | |
5157 * |_ _ _ _ _ _ _ _ _ ___ _ _ _ | _ | _ _ _ _ _ uclamp_max
5158 * | C=x | | | |
5159 * | ___ | | | | (region b, uclamp_min <= util <= uclamp_max)
5160 * |_ _ _|_ _|_ _ _ _| _ | _ _ _| _ | _ _ _ _ _ uclamp_min
5161 * | | | | | | |
5162 * | | | | | | | (region c, boosted, util < uclamp_min)
5163 * +----------------------------------------
5164 * CPU0 CPU1 CPU2
5166 * a) If util > uclamp_max, then we're capped, we don't care about
5167 * actual fitness value here. We only care if uclamp_max fits
5168 * capacity without taking margin/pressure into account.
5169 * See comment above.
5171 * b) If uclamp_min <= util <= uclamp_max, then the normal
5172 * fits_capacity() rules apply. Except we need to ensure that we
5173 * enforce we remain within uclamp_max, see comment above.
5175 * c) If util < uclamp_min, then we are boosted. Same as (b) but we
5176 * need to take into account the boosted value fits the CPU without
5177 * taking margin/pressure into account.
5179 * Cases (a) and (b) are handled in the 'fits' variable already. We
5180 * just need to consider an extra check for case (c) after ensuring we
5181 * handle the case uclamp_min > uclamp_max.
5183 uclamp_min = min(uclamp_min, uclamp_max);
5184 if (fits && (util < uclamp_min) &&
5185 (uclamp_min > get_actual_cpu_capacity(cpu)))
5186 return -1;
5188 return fits;
5191 static inline int task_fits_cpu(struct task_struct *p, int cpu)
5193 unsigned long uclamp_min = uclamp_eff_value(p, UCLAMP_MIN);
5194 unsigned long uclamp_max = uclamp_eff_value(p, UCLAMP_MAX);
5195 unsigned long util = task_util_est(p);
5197 * Return true only if the cpu fully fits the task requirements, which
5198 * include the utilization but also the performance hints.
5200 return (util_fits_cpu(util, uclamp_min, uclamp_max, cpu) > 0);
5203 static inline void update_misfit_status(struct task_struct *p, struct rq *rq)
5205 int cpu = cpu_of(rq);
5207 if (!sched_asym_cpucap_active())
5208 return;
5211 * Affinity allows us to go somewhere higher? Or are we on biggest
5212 * available CPU already? Or do we fit into this CPU ?
5214 if (!p || (p->nr_cpus_allowed == 1) ||
5215 (arch_scale_cpu_capacity(cpu) == p->max_allowed_capacity) ||
5216 task_fits_cpu(p, cpu)) {
5218 rq->misfit_task_load = 0;
5219 return;
5223 * Make sure that misfit_task_load will not be null even if
5224 * task_h_load() returns 0.
5226 rq->misfit_task_load = max_t(unsigned long, task_h_load(p), 1);
5229 #else /* CONFIG_SMP */
5231 static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
5233 return !cfs_rq->nr_running;
5236 #define UPDATE_TG 0x0
5237 #define SKIP_AGE_LOAD 0x0
5238 #define DO_ATTACH 0x0
5239 #define DO_DETACH 0x0
5241 static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
5243 cfs_rq_util_change(cfs_rq, 0);
5246 static inline void remove_entity_load_avg(struct sched_entity *se) {}
5248 static inline void
5249 attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5250 static inline void
5251 detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
5253 static inline int sched_balance_newidle(struct rq *rq, struct rq_flags *rf)
5255 return 0;
5258 static inline void
5259 util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5261 static inline void
5262 util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
5264 static inline void
5265 util_est_update(struct cfs_rq *cfs_rq, struct task_struct *p,
5266 bool task_sleep) {}
5267 static inline void update_misfit_status(struct task_struct *p, struct rq *rq) {}
5269 #endif /* CONFIG_SMP */
5271 static void
5272 place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5274 u64 vslice, vruntime = avg_vruntime(cfs_rq);
5275 s64 lag = 0;
5277 if (!se->custom_slice)
5278 se->slice = sysctl_sched_base_slice;
5279 vslice = calc_delta_fair(se->slice, se);
5282 * Due to how V is constructed as the weighted average of entities,
5283 * adding tasks with positive lag, or removing tasks with negative lag
5284 * will move 'time' backwards, this can screw around with the lag of
5285 * other tasks.
5287 * EEVDF: placement strategy #1 / #2
5289 if (sched_feat(PLACE_LAG) && cfs_rq->nr_running && se->vlag) {
5290 struct sched_entity *curr = cfs_rq->curr;
5291 unsigned long load;
5293 lag = se->vlag;
5296 * If we want to place a task and preserve lag, we have to
5297 * consider the effect of the new entity on the weighted
5298 * average and compensate for this, otherwise lag can quickly
5299 * evaporate.
5301 * Lag is defined as:
5303 * lag_i = S - s_i = w_i * (V - v_i)
5305 * To avoid the 'w_i' term all over the place, we only track
5306 * the virtual lag:
5308 * vl_i = V - v_i <=> v_i = V - vl_i
5310 * And we take V to be the weighted average of all v:
5312 * V = (\Sum w_j*v_j) / W
5314 * Where W is: \Sum w_j
5316 * Then, the weighted average after adding an entity with lag
5317 * vl_i is given by:
5319 * V' = (\Sum w_j*v_j + w_i*v_i) / (W + w_i)
5320 * = (W*V + w_i*(V - vl_i)) / (W + w_i)
5321 * = (W*V + w_i*V - w_i*vl_i) / (W + w_i)
5322 * = (V*(W + w_i) - w_i*l) / (W + w_i)
5323 * = V - w_i*vl_i / (W + w_i)
5325 * And the actual lag after adding an entity with vl_i is:
5327 * vl'_i = V' - v_i
5328 * = V - w_i*vl_i / (W + w_i) - (V - vl_i)
5329 * = vl_i - w_i*vl_i / (W + w_i)
5331 * Which is strictly less than vl_i. So in order to preserve lag
5332 * we should inflate the lag before placement such that the
5333 * effective lag after placement comes out right.
5335 * As such, invert the above relation for vl'_i to get the vl_i
5336 * we need to use such that the lag after placement is the lag
5337 * we computed before dequeue.
5339 * vl'_i = vl_i - w_i*vl_i / (W + w_i)
5340 * = ((W + w_i)*vl_i - w_i*vl_i) / (W + w_i)
5342 * (W + w_i)*vl'_i = (W + w_i)*vl_i - w_i*vl_i
5343 * = W*vl_i
5345 * vl_i = (W + w_i)*vl'_i / W
5347 load = cfs_rq->avg_load;
5348 if (curr && curr->on_rq)
5349 load += scale_load_down(curr->load.weight);
5351 lag *= load + scale_load_down(se->load.weight);
5352 if (WARN_ON_ONCE(!load))
5353 load = 1;
5354 lag = div_s64(lag, load);
5357 se->vruntime = vruntime - lag;
5359 if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) {
5360 se->deadline += se->vruntime;
5361 se->rel_deadline = 0;
5362 return;
5366 * When joining the competition; the existing tasks will be,
5367 * on average, halfway through their slice, as such start tasks
5368 * off with half a slice to ease into the competition.
5370 if (sched_feat(PLACE_DEADLINE_INITIAL) && (flags & ENQUEUE_INITIAL))
5371 vslice /= 2;
5374 * EEVDF: vd_i = ve_i + r_i/w_i
5376 se->deadline = se->vruntime + vslice;
5379 static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
5380 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
5382 static inline bool cfs_bandwidth_used(void);
5384 static void
5385 requeue_delayed_entity(struct sched_entity *se);
5387 static void
5388 enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5390 bool curr = cfs_rq->curr == se;
5393 * If we're the current task, we must renormalise before calling
5394 * update_curr().
5396 if (curr)
5397 place_entity(cfs_rq, se, flags);
5399 update_curr(cfs_rq);
5402 * When enqueuing a sched_entity, we must:
5403 * - Update loads to have both entity and cfs_rq synced with now.
5404 * - For group_entity, update its runnable_weight to reflect the new
5405 * h_nr_running of its group cfs_rq.
5406 * - For group_entity, update its weight to reflect the new share of
5407 * its group cfs_rq
5408 * - Add its new weight to cfs_rq->load.weight
5410 update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
5411 se_update_runnable(se);
5413 * XXX update_load_avg() above will have attached us to the pelt sum;
5414 * but update_cfs_group() here will re-adjust the weight and have to
5415 * undo/redo all that. Seems wasteful.
5417 update_cfs_group(se);
5420 * XXX now that the entity has been re-weighted, and it's lag adjusted,
5421 * we can place the entity.
5423 if (!curr)
5424 place_entity(cfs_rq, se, flags);
5426 account_entity_enqueue(cfs_rq, se);
5428 /* Entity has migrated, no longer consider this task hot */
5429 if (flags & ENQUEUE_MIGRATED)
5430 se->exec_start = 0;
5432 check_schedstat_required();
5433 update_stats_enqueue_fair(cfs_rq, se, flags);
5434 if (!curr)
5435 __enqueue_entity(cfs_rq, se);
5436 se->on_rq = 1;
5438 if (cfs_rq->nr_running == 1) {
5439 check_enqueue_throttle(cfs_rq);
5440 if (!throttled_hierarchy(cfs_rq)) {
5441 list_add_leaf_cfs_rq(cfs_rq);
5442 } else {
5443 #ifdef CONFIG_CFS_BANDWIDTH
5444 struct rq *rq = rq_of(cfs_rq);
5446 if (cfs_rq_throttled(cfs_rq) && !cfs_rq->throttled_clock)
5447 cfs_rq->throttled_clock = rq_clock(rq);
5448 if (!cfs_rq->throttled_clock_self)
5449 cfs_rq->throttled_clock_self = rq_clock(rq);
5450 #endif
5455 static void __clear_buddies_next(struct sched_entity *se)
5457 for_each_sched_entity(se) {
5458 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5459 if (cfs_rq->next != se)
5460 break;
5462 cfs_rq->next = NULL;
5466 static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
5468 if (cfs_rq->next == se)
5469 __clear_buddies_next(se);
5472 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5474 static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
5476 se->sched_delayed = 0;
5477 if (sched_feat(DELAY_ZERO) && se->vlag > 0)
5478 se->vlag = 0;
5481 static bool
5482 dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
5484 bool sleep = flags & DEQUEUE_SLEEP;
5486 update_curr(cfs_rq);
5488 if (flags & DEQUEUE_DELAYED) {
5489 SCHED_WARN_ON(!se->sched_delayed);
5490 } else {
5491 bool delay = sleep;
5493 * DELAY_DEQUEUE relies on spurious wakeups, special task
5494 * states must not suffer spurious wakeups, excempt them.
5496 if (flags & DEQUEUE_SPECIAL)
5497 delay = false;
5499 SCHED_WARN_ON(delay && se->sched_delayed);
5501 if (sched_feat(DELAY_DEQUEUE) && delay &&
5502 !entity_eligible(cfs_rq, se)) {
5503 if (cfs_rq->next == se)
5504 cfs_rq->next = NULL;
5505 update_load_avg(cfs_rq, se, 0);
5506 se->sched_delayed = 1;
5507 return false;
5511 int action = UPDATE_TG;
5512 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
5513 action |= DO_DETACH;
5516 * When dequeuing a sched_entity, we must:
5517 * - Update loads to have both entity and cfs_rq synced with now.
5518 * - For group_entity, update its runnable_weight to reflect the new
5519 * h_nr_running of its group cfs_rq.
5520 * - Subtract its previous weight from cfs_rq->load.weight.
5521 * - For group entity, update its weight to reflect the new share
5522 * of its group cfs_rq.
5524 update_load_avg(cfs_rq, se, action);
5525 se_update_runnable(se);
5527 update_stats_dequeue_fair(cfs_rq, se, flags);
5529 clear_buddies(cfs_rq, se);
5531 update_entity_lag(cfs_rq, se);
5532 if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
5533 se->deadline -= se->vruntime;
5534 se->rel_deadline = 1;
5537 if (se != cfs_rq->curr)
5538 __dequeue_entity(cfs_rq, se);
5539 se->on_rq = 0;
5540 account_entity_dequeue(cfs_rq, se);
5542 /* return excess runtime on last dequeue */
5543 return_cfs_rq_runtime(cfs_rq);
5545 update_cfs_group(se);
5548 * Now advance min_vruntime if @se was the entity holding it back,
5549 * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
5550 * put back on, and if we advance min_vruntime, we'll be placed back
5551 * further than we started -- i.e. we'll be penalized.
5553 if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
5554 update_min_vruntime(cfs_rq);
5556 if (flags & DEQUEUE_DELAYED)
5557 finish_delayed_dequeue_entity(se);
5559 if (cfs_rq->nr_running == 0)
5560 update_idle_cfs_rq_clock_pelt(cfs_rq);
5562 return true;
5565 static void
5566 set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
5568 clear_buddies(cfs_rq, se);
5570 /* 'current' is not kept within the tree. */
5571 if (se->on_rq) {
5573 * Any task has to be enqueued before it get to execute on
5574 * a CPU. So account for the time it spent waiting on the
5575 * runqueue.
5577 update_stats_wait_end_fair(cfs_rq, se);
5578 __dequeue_entity(cfs_rq, se);
5579 update_load_avg(cfs_rq, se, UPDATE_TG);
5581 * HACK, stash a copy of deadline at the point of pick in vlag,
5582 * which isn't used until dequeue.
5584 se->vlag = se->deadline;
5587 update_stats_curr_start(cfs_rq, se);
5588 SCHED_WARN_ON(cfs_rq->curr);
5589 cfs_rq->curr = se;
5592 * Track our maximum slice length, if the CPU's load is at
5593 * least twice that of our own weight (i.e. don't track it
5594 * when there are only lesser-weight tasks around):
5596 if (schedstat_enabled() &&
5597 rq_of(cfs_rq)->cfs.load.weight >= 2*se->load.weight) {
5598 struct sched_statistics *stats;
5600 stats = __schedstats_from_se(se);
5601 __schedstat_set(stats->slice_max,
5602 max((u64)stats->slice_max,
5603 se->sum_exec_runtime - se->prev_sum_exec_runtime));
5606 se->prev_sum_exec_runtime = se->sum_exec_runtime;
5609 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
5612 * Pick the next process, keeping these things in mind, in this order:
5613 * 1) keep things fair between processes/task groups
5614 * 2) pick the "next" process, since someone really wants that to run
5615 * 3) pick the "last" process, for cache locality
5616 * 4) do not run the "skip" process, if something else is available
5618 static struct sched_entity *
5619 pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
5622 * Enabling NEXT_BUDDY will affect latency but not fairness.
5624 if (sched_feat(NEXT_BUDDY) &&
5625 cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
5626 /* ->next will never be delayed */
5627 SCHED_WARN_ON(cfs_rq->next->sched_delayed);
5628 return cfs_rq->next;
5631 struct sched_entity *se = pick_eevdf(cfs_rq);
5632 if (se->sched_delayed) {
5633 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
5635 * Must not reference @se again, see __block_task().
5637 return NULL;
5639 return se;
5642 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
5644 static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
5647 * If still on the runqueue then deactivate_task()
5648 * was not called and update_curr() has to be done:
5650 if (prev->on_rq)
5651 update_curr(cfs_rq);
5653 /* throttle cfs_rqs exceeding runtime */
5654 check_cfs_rq_runtime(cfs_rq);
5656 if (prev->on_rq) {
5657 update_stats_wait_start_fair(cfs_rq, prev);
5658 /* Put 'current' back into the tree. */
5659 __enqueue_entity(cfs_rq, prev);
5660 /* in !on_rq case, update occurred at dequeue */
5661 update_load_avg(cfs_rq, prev, 0);
5663 SCHED_WARN_ON(cfs_rq->curr != prev);
5664 cfs_rq->curr = NULL;
5667 static void
5668 entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
5671 * Update run-time statistics of the 'current'.
5673 update_curr(cfs_rq);
5676 * Ensure that runnable average is periodically updated.
5678 update_load_avg(cfs_rq, curr, UPDATE_TG);
5679 update_cfs_group(curr);
5681 #ifdef CONFIG_SCHED_HRTICK
5683 * queued ticks are scheduled to match the slice, so don't bother
5684 * validating it and just reschedule.
5686 if (queued) {
5687 resched_curr_lazy(rq_of(cfs_rq));
5688 return;
5690 #endif
5694 /**************************************************
5695 * CFS bandwidth control machinery
5698 #ifdef CONFIG_CFS_BANDWIDTH
5700 #ifdef CONFIG_JUMP_LABEL
5701 static struct static_key __cfs_bandwidth_used;
5703 static inline bool cfs_bandwidth_used(void)
5705 return static_key_false(&__cfs_bandwidth_used);
5708 void cfs_bandwidth_usage_inc(void)
5710 static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
5713 void cfs_bandwidth_usage_dec(void)
5715 static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
5717 #else /* CONFIG_JUMP_LABEL */
5718 static bool cfs_bandwidth_used(void)
5720 return true;
5723 void cfs_bandwidth_usage_inc(void) {}
5724 void cfs_bandwidth_usage_dec(void) {}
5725 #endif /* CONFIG_JUMP_LABEL */
5728 * default period for cfs group bandwidth.
5729 * default: 0.1s, units: nanoseconds
5731 static inline u64 default_cfs_period(void)
5733 return 100000000ULL;
5736 static inline u64 sched_cfs_bandwidth_slice(void)
5738 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
5742 * Replenish runtime according to assigned quota. We use sched_clock_cpu
5743 * directly instead of rq->clock to avoid adding additional synchronization
5744 * around rq->lock.
5746 * requires cfs_b->lock
5748 void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
5750 s64 runtime;
5752 if (unlikely(cfs_b->quota == RUNTIME_INF))
5753 return;
5755 cfs_b->runtime += cfs_b->quota;
5756 runtime = cfs_b->runtime_snap - cfs_b->runtime;
5757 if (runtime > 0) {
5758 cfs_b->burst_time += runtime;
5759 cfs_b->nr_burst++;
5762 cfs_b->runtime = min(cfs_b->runtime, cfs_b->quota + cfs_b->burst);
5763 cfs_b->runtime_snap = cfs_b->runtime;
5766 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5768 return &tg->cfs_bandwidth;
5771 /* returns 0 on failure to allocate runtime */
5772 static int __assign_cfs_rq_runtime(struct cfs_bandwidth *cfs_b,
5773 struct cfs_rq *cfs_rq, u64 target_runtime)
5775 u64 min_amount, amount = 0;
5777 lockdep_assert_held(&cfs_b->lock);
5779 /* note: this is a positive sum as runtime_remaining <= 0 */
5780 min_amount = target_runtime - cfs_rq->runtime_remaining;
5782 if (cfs_b->quota == RUNTIME_INF)
5783 amount = min_amount;
5784 else {
5785 start_cfs_bandwidth(cfs_b);
5787 if (cfs_b->runtime > 0) {
5788 amount = min(cfs_b->runtime, min_amount);
5789 cfs_b->runtime -= amount;
5790 cfs_b->idle = 0;
5794 cfs_rq->runtime_remaining += amount;
5796 return cfs_rq->runtime_remaining > 0;
5799 /* returns 0 on failure to allocate runtime */
5800 static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
5802 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5803 int ret;
5805 raw_spin_lock(&cfs_b->lock);
5806 ret = __assign_cfs_rq_runtime(cfs_b, cfs_rq, sched_cfs_bandwidth_slice());
5807 raw_spin_unlock(&cfs_b->lock);
5809 return ret;
5812 static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5814 /* dock delta_exec before expiring quota (as it could span periods) */
5815 cfs_rq->runtime_remaining -= delta_exec;
5817 if (likely(cfs_rq->runtime_remaining > 0))
5818 return;
5820 if (cfs_rq->throttled)
5821 return;
5823 * if we're unable to extend our runtime we resched so that the active
5824 * hierarchy can be throttled
5826 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
5827 resched_curr(rq_of(cfs_rq));
5830 static __always_inline
5831 void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
5833 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
5834 return;
5836 __account_cfs_rq_runtime(cfs_rq, delta_exec);
5839 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
5841 return cfs_bandwidth_used() && cfs_rq->throttled;
5844 /* check whether cfs_rq, or any parent, is throttled */
5845 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
5847 return cfs_bandwidth_used() && cfs_rq->throttle_count;
5851 * Ensure that neither of the group entities corresponding to src_cpu or
5852 * dest_cpu are members of a throttled hierarchy when performing group
5853 * load-balance operations.
5855 static inline int throttled_lb_pair(struct task_group *tg,
5856 int src_cpu, int dest_cpu)
5858 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
5860 src_cfs_rq = tg->cfs_rq[src_cpu];
5861 dest_cfs_rq = tg->cfs_rq[dest_cpu];
5863 return throttled_hierarchy(src_cfs_rq) ||
5864 throttled_hierarchy(dest_cfs_rq);
5867 static int tg_unthrottle_up(struct task_group *tg, void *data)
5869 struct rq *rq = data;
5870 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5872 cfs_rq->throttle_count--;
5873 if (!cfs_rq->throttle_count) {
5874 cfs_rq->throttled_clock_pelt_time += rq_clock_pelt(rq) -
5875 cfs_rq->throttled_clock_pelt;
5877 /* Add cfs_rq with load or one or more already running entities to the list */
5878 if (!cfs_rq_is_decayed(cfs_rq))
5879 list_add_leaf_cfs_rq(cfs_rq);
5881 if (cfs_rq->throttled_clock_self) {
5882 u64 delta = rq_clock(rq) - cfs_rq->throttled_clock_self;
5884 cfs_rq->throttled_clock_self = 0;
5886 if (SCHED_WARN_ON((s64)delta < 0))
5887 delta = 0;
5889 cfs_rq->throttled_clock_self_time += delta;
5893 return 0;
5896 static int tg_throttle_down(struct task_group *tg, void *data)
5898 struct rq *rq = data;
5899 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
5901 /* group is entering throttled state, stop time */
5902 if (!cfs_rq->throttle_count) {
5903 cfs_rq->throttled_clock_pelt = rq_clock_pelt(rq);
5904 list_del_leaf_cfs_rq(cfs_rq);
5906 SCHED_WARN_ON(cfs_rq->throttled_clock_self);
5907 if (cfs_rq->nr_running)
5908 cfs_rq->throttled_clock_self = rq_clock(rq);
5910 cfs_rq->throttle_count++;
5912 return 0;
5915 static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
5917 struct rq *rq = rq_of(cfs_rq);
5918 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
5919 struct sched_entity *se;
5920 long task_delta, idle_task_delta, dequeue = 1;
5921 long rq_h_nr_running = rq->cfs.h_nr_running;
5923 raw_spin_lock(&cfs_b->lock);
5924 /* This will start the period timer if necessary */
5925 if (__assign_cfs_rq_runtime(cfs_b, cfs_rq, 1)) {
5927 * We have raced with bandwidth becoming available, and if we
5928 * actually throttled the timer might not unthrottle us for an
5929 * entire period. We additionally needed to make sure that any
5930 * subsequent check_cfs_rq_runtime calls agree not to throttle
5931 * us, as we may commit to do cfs put_prev+pick_next, so we ask
5932 * for 1ns of runtime rather than just check cfs_b.
5934 dequeue = 0;
5935 } else {
5936 list_add_tail_rcu(&cfs_rq->throttled_list,
5937 &cfs_b->throttled_cfs_rq);
5939 raw_spin_unlock(&cfs_b->lock);
5941 if (!dequeue)
5942 return false; /* Throttle no longer required. */
5944 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
5946 /* freeze hierarchy runnable averages while throttled */
5947 rcu_read_lock();
5948 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
5949 rcu_read_unlock();
5951 task_delta = cfs_rq->h_nr_running;
5952 idle_task_delta = cfs_rq->idle_h_nr_running;
5953 for_each_sched_entity(se) {
5954 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5955 int flags;
5957 /* throttled entity or throttle-on-deactivate */
5958 if (!se->on_rq)
5959 goto done;
5962 * Abuse SPECIAL to avoid delayed dequeue in this instance.
5963 * This avoids teaching dequeue_entities() about throttled
5964 * entities and keeps things relatively simple.
5966 flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
5967 if (se->sched_delayed)
5968 flags |= DEQUEUE_DELAYED;
5969 dequeue_entity(qcfs_rq, se, flags);
5971 if (cfs_rq_is_idle(group_cfs_rq(se)))
5972 idle_task_delta = cfs_rq->h_nr_running;
5974 qcfs_rq->h_nr_running -= task_delta;
5975 qcfs_rq->idle_h_nr_running -= idle_task_delta;
5977 if (qcfs_rq->load.weight) {
5978 /* Avoid re-evaluating load for this entity: */
5979 se = parent_entity(se);
5980 break;
5984 for_each_sched_entity(se) {
5985 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
5986 /* throttled entity or throttle-on-deactivate */
5987 if (!se->on_rq)
5988 goto done;
5990 update_load_avg(qcfs_rq, se, 0);
5991 se_update_runnable(se);
5993 if (cfs_rq_is_idle(group_cfs_rq(se)))
5994 idle_task_delta = cfs_rq->h_nr_running;
5996 qcfs_rq->h_nr_running -= task_delta;
5997 qcfs_rq->idle_h_nr_running -= idle_task_delta;
6000 /* At this point se is NULL and we are at root level*/
6001 sub_nr_running(rq, task_delta);
6003 /* Stop the fair server if throttling resulted in no runnable tasks */
6004 if (rq_h_nr_running && !rq->cfs.h_nr_running)
6005 dl_server_stop(&rq->fair_server);
6006 done:
6008 * Note: distribution will already see us throttled via the
6009 * throttled-list. rq->lock protects completion.
6011 cfs_rq->throttled = 1;
6012 SCHED_WARN_ON(cfs_rq->throttled_clock);
6013 if (cfs_rq->nr_running)
6014 cfs_rq->throttled_clock = rq_clock(rq);
6015 return true;
6018 void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
6020 struct rq *rq = rq_of(cfs_rq);
6021 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6022 struct sched_entity *se;
6023 long task_delta, idle_task_delta;
6024 long rq_h_nr_running = rq->cfs.h_nr_running;
6026 se = cfs_rq->tg->se[cpu_of(rq)];
6028 cfs_rq->throttled = 0;
6030 update_rq_clock(rq);
6032 raw_spin_lock(&cfs_b->lock);
6033 if (cfs_rq->throttled_clock) {
6034 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
6035 cfs_rq->throttled_clock = 0;
6037 list_del_rcu(&cfs_rq->throttled_list);
6038 raw_spin_unlock(&cfs_b->lock);
6040 /* update hierarchical throttle state */
6041 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
6043 if (!cfs_rq->load.weight) {
6044 if (!cfs_rq->on_list)
6045 return;
6047 * Nothing to run but something to decay (on_list)?
6048 * Complete the branch.
6050 for_each_sched_entity(se) {
6051 if (list_add_leaf_cfs_rq(cfs_rq_of(se)))
6052 break;
6054 goto unthrottle_throttle;
6057 task_delta = cfs_rq->h_nr_running;
6058 idle_task_delta = cfs_rq->idle_h_nr_running;
6059 for_each_sched_entity(se) {
6060 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6062 /* Handle any unfinished DELAY_DEQUEUE business first. */
6063 if (se->sched_delayed) {
6064 int flags = DEQUEUE_SLEEP | DEQUEUE_DELAYED;
6066 dequeue_entity(qcfs_rq, se, flags);
6067 } else if (se->on_rq)
6068 break;
6069 enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
6071 if (cfs_rq_is_idle(group_cfs_rq(se)))
6072 idle_task_delta = cfs_rq->h_nr_running;
6074 qcfs_rq->h_nr_running += task_delta;
6075 qcfs_rq->idle_h_nr_running += idle_task_delta;
6077 /* end evaluation on encountering a throttled cfs_rq */
6078 if (cfs_rq_throttled(qcfs_rq))
6079 goto unthrottle_throttle;
6082 for_each_sched_entity(se) {
6083 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
6085 update_load_avg(qcfs_rq, se, UPDATE_TG);
6086 se_update_runnable(se);
6088 if (cfs_rq_is_idle(group_cfs_rq(se)))
6089 idle_task_delta = cfs_rq->h_nr_running;
6091 qcfs_rq->h_nr_running += task_delta;
6092 qcfs_rq->idle_h_nr_running += idle_task_delta;
6094 /* end evaluation on encountering a throttled cfs_rq */
6095 if (cfs_rq_throttled(qcfs_rq))
6096 goto unthrottle_throttle;
6099 /* Start the fair server if un-throttling resulted in new runnable tasks */
6100 if (!rq_h_nr_running && rq->cfs.h_nr_running)
6101 dl_server_start(&rq->fair_server);
6103 /* At this point se is NULL and we are at root level*/
6104 add_nr_running(rq, task_delta);
6106 unthrottle_throttle:
6107 assert_list_leaf_cfs_rq(rq);
6109 /* Determine whether we need to wake up potentially idle CPU: */
6110 if (rq->curr == rq->idle && rq->cfs.nr_running)
6111 resched_curr(rq);
6114 #ifdef CONFIG_SMP
6115 static void __cfsb_csd_unthrottle(void *arg)
6117 struct cfs_rq *cursor, *tmp;
6118 struct rq *rq = arg;
6119 struct rq_flags rf;
6121 rq_lock(rq, &rf);
6124 * Iterating over the list can trigger several call to
6125 * update_rq_clock() in unthrottle_cfs_rq().
6126 * Do it once and skip the potential next ones.
6128 update_rq_clock(rq);
6129 rq_clock_start_loop_update(rq);
6132 * Since we hold rq lock we're safe from concurrent manipulation of
6133 * the CSD list. However, this RCU critical section annotates the
6134 * fact that we pair with sched_free_group_rcu(), so that we cannot
6135 * race with group being freed in the window between removing it
6136 * from the list and advancing to the next entry in the list.
6138 rcu_read_lock();
6140 list_for_each_entry_safe(cursor, tmp, &rq->cfsb_csd_list,
6141 throttled_csd_list) {
6142 list_del_init(&cursor->throttled_csd_list);
6144 if (cfs_rq_throttled(cursor))
6145 unthrottle_cfs_rq(cursor);
6148 rcu_read_unlock();
6150 rq_clock_stop_loop_update(rq);
6151 rq_unlock(rq, &rf);
6154 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6156 struct rq *rq = rq_of(cfs_rq);
6157 bool first;
6159 if (rq == this_rq()) {
6160 unthrottle_cfs_rq(cfs_rq);
6161 return;
6164 /* Already enqueued */
6165 if (SCHED_WARN_ON(!list_empty(&cfs_rq->throttled_csd_list)))
6166 return;
6168 first = list_empty(&rq->cfsb_csd_list);
6169 list_add_tail(&cfs_rq->throttled_csd_list, &rq->cfsb_csd_list);
6170 if (first)
6171 smp_call_function_single_async(cpu_of(rq), &rq->cfsb_csd);
6173 #else
6174 static inline void __unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6176 unthrottle_cfs_rq(cfs_rq);
6178 #endif
6180 static void unthrottle_cfs_rq_async(struct cfs_rq *cfs_rq)
6182 lockdep_assert_rq_held(rq_of(cfs_rq));
6184 if (SCHED_WARN_ON(!cfs_rq_throttled(cfs_rq) ||
6185 cfs_rq->runtime_remaining <= 0))
6186 return;
6188 __unthrottle_cfs_rq_async(cfs_rq);
6191 static bool distribute_cfs_runtime(struct cfs_bandwidth *cfs_b)
6193 int this_cpu = smp_processor_id();
6194 u64 runtime, remaining = 1;
6195 bool throttled = false;
6196 struct cfs_rq *cfs_rq, *tmp;
6197 struct rq_flags rf;
6198 struct rq *rq;
6199 LIST_HEAD(local_unthrottle);
6201 rcu_read_lock();
6202 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
6203 throttled_list) {
6204 rq = rq_of(cfs_rq);
6206 if (!remaining) {
6207 throttled = true;
6208 break;
6211 rq_lock_irqsave(rq, &rf);
6212 if (!cfs_rq_throttled(cfs_rq))
6213 goto next;
6215 /* Already queued for async unthrottle */
6216 if (!list_empty(&cfs_rq->throttled_csd_list))
6217 goto next;
6219 /* By the above checks, this should never be true */
6220 SCHED_WARN_ON(cfs_rq->runtime_remaining > 0);
6222 raw_spin_lock(&cfs_b->lock);
6223 runtime = -cfs_rq->runtime_remaining + 1;
6224 if (runtime > cfs_b->runtime)
6225 runtime = cfs_b->runtime;
6226 cfs_b->runtime -= runtime;
6227 remaining = cfs_b->runtime;
6228 raw_spin_unlock(&cfs_b->lock);
6230 cfs_rq->runtime_remaining += runtime;
6232 /* we check whether we're throttled above */
6233 if (cfs_rq->runtime_remaining > 0) {
6234 if (cpu_of(rq) != this_cpu) {
6235 unthrottle_cfs_rq_async(cfs_rq);
6236 } else {
6238 * We currently only expect to be unthrottling
6239 * a single cfs_rq locally.
6241 SCHED_WARN_ON(!list_empty(&local_unthrottle));
6242 list_add_tail(&cfs_rq->throttled_csd_list,
6243 &local_unthrottle);
6245 } else {
6246 throttled = true;
6249 next:
6250 rq_unlock_irqrestore(rq, &rf);
6253 list_for_each_entry_safe(cfs_rq, tmp, &local_unthrottle,
6254 throttled_csd_list) {
6255 struct rq *rq = rq_of(cfs_rq);
6257 rq_lock_irqsave(rq, &rf);
6259 list_del_init(&cfs_rq->throttled_csd_list);
6261 if (cfs_rq_throttled(cfs_rq))
6262 unthrottle_cfs_rq(cfs_rq);
6264 rq_unlock_irqrestore(rq, &rf);
6266 SCHED_WARN_ON(!list_empty(&local_unthrottle));
6268 rcu_read_unlock();
6270 return throttled;
6274 * Responsible for refilling a task_group's bandwidth and unthrottling its
6275 * cfs_rqs as appropriate. If there has been no activity within the last
6276 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
6277 * used to track this state.
6279 static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun, unsigned long flags)
6281 int throttled;
6283 /* no need to continue the timer with no bandwidth constraint */
6284 if (cfs_b->quota == RUNTIME_INF)
6285 goto out_deactivate;
6287 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
6288 cfs_b->nr_periods += overrun;
6290 /* Refill extra burst quota even if cfs_b->idle */
6291 __refill_cfs_bandwidth_runtime(cfs_b);
6294 * idle depends on !throttled (for the case of a large deficit), and if
6295 * we're going inactive then everything else can be deferred
6297 if (cfs_b->idle && !throttled)
6298 goto out_deactivate;
6300 if (!throttled) {
6301 /* mark as potentially idle for the upcoming period */
6302 cfs_b->idle = 1;
6303 return 0;
6306 /* account preceding periods in which throttling occurred */
6307 cfs_b->nr_throttled += overrun;
6310 * This check is repeated as we release cfs_b->lock while we unthrottle.
6312 while (throttled && cfs_b->runtime > 0) {
6313 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6314 /* we can't nest cfs_b->lock while distributing bandwidth */
6315 throttled = distribute_cfs_runtime(cfs_b);
6316 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6320 * While we are ensured activity in the period following an
6321 * unthrottle, this also covers the case in which the new bandwidth is
6322 * insufficient to cover the existing bandwidth deficit. (Forcing the
6323 * timer to remain active while there are any throttled entities.)
6325 cfs_b->idle = 0;
6327 return 0;
6329 out_deactivate:
6330 return 1;
6333 /* a cfs_rq won't donate quota below this amount */
6334 static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
6335 /* minimum remaining period time to redistribute slack quota */
6336 static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
6337 /* how long we wait to gather additional slack before distributing */
6338 static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
6341 * Are we near the end of the current quota period?
6343 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
6344 * hrtimer base being cleared by hrtimer_start. In the case of
6345 * migrate_hrtimers, base is never cleared, so we are fine.
6347 static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
6349 struct hrtimer *refresh_timer = &cfs_b->period_timer;
6350 s64 remaining;
6352 /* if the call-back is running a quota refresh is already occurring */
6353 if (hrtimer_callback_running(refresh_timer))
6354 return 1;
6356 /* is a quota refresh about to occur? */
6357 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
6358 if (remaining < (s64)min_expire)
6359 return 1;
6361 return 0;
6364 static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
6366 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
6368 /* if there's a quota refresh soon don't bother with slack */
6369 if (runtime_refresh_within(cfs_b, min_left))
6370 return;
6372 /* don't push forwards an existing deferred unthrottle */
6373 if (cfs_b->slack_started)
6374 return;
6375 cfs_b->slack_started = true;
6377 hrtimer_start(&cfs_b->slack_timer,
6378 ns_to_ktime(cfs_bandwidth_slack_period),
6379 HRTIMER_MODE_REL);
6382 /* we know any runtime found here is valid as update_curr() precedes return */
6383 static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6385 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
6386 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
6388 if (slack_runtime <= 0)
6389 return;
6391 raw_spin_lock(&cfs_b->lock);
6392 if (cfs_b->quota != RUNTIME_INF) {
6393 cfs_b->runtime += slack_runtime;
6395 /* we are under rq->lock, defer unthrottling using a timer */
6396 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
6397 !list_empty(&cfs_b->throttled_cfs_rq))
6398 start_cfs_slack_bandwidth(cfs_b);
6400 raw_spin_unlock(&cfs_b->lock);
6402 /* even if it's not valid for return we don't want to try again */
6403 cfs_rq->runtime_remaining -= slack_runtime;
6406 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6408 if (!cfs_bandwidth_used())
6409 return;
6411 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
6412 return;
6414 __return_cfs_rq_runtime(cfs_rq);
6418 * This is done with a timer (instead of inline with bandwidth return) since
6419 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
6421 static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
6423 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
6424 unsigned long flags;
6426 /* confirm we're still not at a refresh boundary */
6427 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6428 cfs_b->slack_started = false;
6430 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
6431 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6432 return;
6435 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
6436 runtime = cfs_b->runtime;
6438 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6440 if (!runtime)
6441 return;
6443 distribute_cfs_runtime(cfs_b);
6447 * When a group wakes up we want to make sure that its quota is not already
6448 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
6449 * runtime as update_curr() throttling can not trigger until it's on-rq.
6451 static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
6453 if (!cfs_bandwidth_used())
6454 return;
6456 /* an active group must be handled by the update_curr()->put() path */
6457 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
6458 return;
6460 /* ensure the group is not already throttled */
6461 if (cfs_rq_throttled(cfs_rq))
6462 return;
6464 /* update runtime allocation */
6465 account_cfs_rq_runtime(cfs_rq, 0);
6466 if (cfs_rq->runtime_remaining <= 0)
6467 throttle_cfs_rq(cfs_rq);
6470 static void sync_throttle(struct task_group *tg, int cpu)
6472 struct cfs_rq *pcfs_rq, *cfs_rq;
6474 if (!cfs_bandwidth_used())
6475 return;
6477 if (!tg->parent)
6478 return;
6480 cfs_rq = tg->cfs_rq[cpu];
6481 pcfs_rq = tg->parent->cfs_rq[cpu];
6483 cfs_rq->throttle_count = pcfs_rq->throttle_count;
6484 cfs_rq->throttled_clock_pelt = rq_clock_pelt(cpu_rq(cpu));
6487 /* conditionally throttle active cfs_rq's from put_prev_entity() */
6488 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6490 if (!cfs_bandwidth_used())
6491 return false;
6493 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
6494 return false;
6497 * it's possible for a throttled entity to be forced into a running
6498 * state (e.g. set_curr_task), in this case we're finished.
6500 if (cfs_rq_throttled(cfs_rq))
6501 return true;
6503 return throttle_cfs_rq(cfs_rq);
6506 static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
6508 struct cfs_bandwidth *cfs_b =
6509 container_of(timer, struct cfs_bandwidth, slack_timer);
6511 do_sched_cfs_slack_timer(cfs_b);
6513 return HRTIMER_NORESTART;
6516 extern const u64 max_cfs_quota_period;
6518 static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
6520 struct cfs_bandwidth *cfs_b =
6521 container_of(timer, struct cfs_bandwidth, period_timer);
6522 unsigned long flags;
6523 int overrun;
6524 int idle = 0;
6525 int count = 0;
6527 raw_spin_lock_irqsave(&cfs_b->lock, flags);
6528 for (;;) {
6529 overrun = hrtimer_forward_now(timer, cfs_b->period);
6530 if (!overrun)
6531 break;
6533 idle = do_sched_cfs_period_timer(cfs_b, overrun, flags);
6535 if (++count > 3) {
6536 u64 new, old = ktime_to_ns(cfs_b->period);
6539 * Grow period by a factor of 2 to avoid losing precision.
6540 * Precision loss in the quota/period ratio can cause __cfs_schedulable
6541 * to fail.
6543 new = old * 2;
6544 if (new < max_cfs_quota_period) {
6545 cfs_b->period = ns_to_ktime(new);
6546 cfs_b->quota *= 2;
6547 cfs_b->burst *= 2;
6549 pr_warn_ratelimited(
6550 "cfs_period_timer[cpu%d]: period too short, scaling up (new cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6551 smp_processor_id(),
6552 div_u64(new, NSEC_PER_USEC),
6553 div_u64(cfs_b->quota, NSEC_PER_USEC));
6554 } else {
6555 pr_warn_ratelimited(
6556 "cfs_period_timer[cpu%d]: period too short, but cannot scale up without losing precision (cfs_period_us = %lld, cfs_quota_us = %lld)\n",
6557 smp_processor_id(),
6558 div_u64(old, NSEC_PER_USEC),
6559 div_u64(cfs_b->quota, NSEC_PER_USEC));
6562 /* reset count so we don't come right back in here */
6563 count = 0;
6566 if (idle)
6567 cfs_b->period_active = 0;
6568 raw_spin_unlock_irqrestore(&cfs_b->lock, flags);
6570 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
6573 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent)
6575 raw_spin_lock_init(&cfs_b->lock);
6576 cfs_b->runtime = 0;
6577 cfs_b->quota = RUNTIME_INF;
6578 cfs_b->period = ns_to_ktime(default_cfs_period());
6579 cfs_b->burst = 0;
6580 cfs_b->hierarchical_quota = parent ? parent->hierarchical_quota : RUNTIME_INF;
6582 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
6583 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
6584 cfs_b->period_timer.function = sched_cfs_period_timer;
6586 /* Add a random offset so that timers interleave */
6587 hrtimer_set_expires(&cfs_b->period_timer,
6588 get_random_u32_below(cfs_b->period));
6589 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
6590 cfs_b->slack_timer.function = sched_cfs_slack_timer;
6591 cfs_b->slack_started = false;
6594 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
6596 cfs_rq->runtime_enabled = 0;
6597 INIT_LIST_HEAD(&cfs_rq->throttled_list);
6598 INIT_LIST_HEAD(&cfs_rq->throttled_csd_list);
6601 void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6603 lockdep_assert_held(&cfs_b->lock);
6605 if (cfs_b->period_active)
6606 return;
6608 cfs_b->period_active = 1;
6609 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
6610 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
6613 static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
6615 int __maybe_unused i;
6617 /* init_cfs_bandwidth() was not called */
6618 if (!cfs_b->throttled_cfs_rq.next)
6619 return;
6621 hrtimer_cancel(&cfs_b->period_timer);
6622 hrtimer_cancel(&cfs_b->slack_timer);
6625 * It is possible that we still have some cfs_rq's pending on a CSD
6626 * list, though this race is very rare. In order for this to occur, we
6627 * must have raced with the last task leaving the group while there
6628 * exist throttled cfs_rq(s), and the period_timer must have queued the
6629 * CSD item but the remote cpu has not yet processed it. To handle this,
6630 * we can simply flush all pending CSD work inline here. We're
6631 * guaranteed at this point that no additional cfs_rq of this group can
6632 * join a CSD list.
6634 #ifdef CONFIG_SMP
6635 for_each_possible_cpu(i) {
6636 struct rq *rq = cpu_rq(i);
6637 unsigned long flags;
6639 if (list_empty(&rq->cfsb_csd_list))
6640 continue;
6642 local_irq_save(flags);
6643 __cfsb_csd_unthrottle(rq);
6644 local_irq_restore(flags);
6646 #endif
6650 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
6652 * The race is harmless, since modifying bandwidth settings of unhooked group
6653 * bits doesn't do much.
6656 /* cpu online callback */
6657 static void __maybe_unused update_runtime_enabled(struct rq *rq)
6659 struct task_group *tg;
6661 lockdep_assert_rq_held(rq);
6663 rcu_read_lock();
6664 list_for_each_entry_rcu(tg, &task_groups, list) {
6665 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
6666 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6668 raw_spin_lock(&cfs_b->lock);
6669 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
6670 raw_spin_unlock(&cfs_b->lock);
6672 rcu_read_unlock();
6675 /* cpu offline callback */
6676 static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
6678 struct task_group *tg;
6680 lockdep_assert_rq_held(rq);
6683 * The rq clock has already been updated in the
6684 * set_rq_offline(), so we should skip updating
6685 * the rq clock again in unthrottle_cfs_rq().
6687 rq_clock_start_loop_update(rq);
6689 rcu_read_lock();
6690 list_for_each_entry_rcu(tg, &task_groups, list) {
6691 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
6693 if (!cfs_rq->runtime_enabled)
6694 continue;
6697 * clock_task is not advancing so we just need to make sure
6698 * there's some valid quota amount
6700 cfs_rq->runtime_remaining = 1;
6702 * Offline rq is schedulable till CPU is completely disabled
6703 * in take_cpu_down(), so we prevent new cfs throttling here.
6705 cfs_rq->runtime_enabled = 0;
6707 if (cfs_rq_throttled(cfs_rq))
6708 unthrottle_cfs_rq(cfs_rq);
6710 rcu_read_unlock();
6712 rq_clock_stop_loop_update(rq);
6715 bool cfs_task_bw_constrained(struct task_struct *p)
6717 struct cfs_rq *cfs_rq = task_cfs_rq(p);
6719 if (!cfs_bandwidth_used())
6720 return false;
6722 if (cfs_rq->runtime_enabled ||
6723 tg_cfs_bandwidth(cfs_rq->tg)->hierarchical_quota != RUNTIME_INF)
6724 return true;
6726 return false;
6729 #ifdef CONFIG_NO_HZ_FULL
6730 /* called from pick_next_task_fair() */
6731 static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
6733 int cpu = cpu_of(rq);
6735 if (!cfs_bandwidth_used())
6736 return;
6738 if (!tick_nohz_full_cpu(cpu))
6739 return;
6741 if (rq->nr_running != 1)
6742 return;
6745 * We know there is only one task runnable and we've just picked it. The
6746 * normal enqueue path will have cleared TICK_DEP_BIT_SCHED if we will
6747 * be otherwise able to stop the tick. Just need to check if we are using
6748 * bandwidth control.
6750 if (cfs_task_bw_constrained(p))
6751 tick_nohz_dep_set_cpu(cpu, TICK_DEP_BIT_SCHED);
6753 #endif
6755 #else /* CONFIG_CFS_BANDWIDTH */
6757 static inline bool cfs_bandwidth_used(void)
6759 return false;
6762 static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
6763 static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
6764 static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
6765 static inline void sync_throttle(struct task_group *tg, int cpu) {}
6766 static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6768 static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
6770 return 0;
6773 static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
6775 return 0;
6778 static inline int throttled_lb_pair(struct task_group *tg,
6779 int src_cpu, int dest_cpu)
6781 return 0;
6784 #ifdef CONFIG_FAIR_GROUP_SCHED
6785 void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b, struct cfs_bandwidth *parent) {}
6786 static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
6787 #endif
6789 static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
6791 return NULL;
6793 static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
6794 static inline void update_runtime_enabled(struct rq *rq) {}
6795 static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
6796 #ifdef CONFIG_CGROUP_SCHED
6797 bool cfs_task_bw_constrained(struct task_struct *p)
6799 return false;
6801 #endif
6802 #endif /* CONFIG_CFS_BANDWIDTH */
6804 #if !defined(CONFIG_CFS_BANDWIDTH) || !defined(CONFIG_NO_HZ_FULL)
6805 static inline void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p) {}
6806 #endif
6808 /**************************************************
6809 * CFS operations on tasks:
6812 #ifdef CONFIG_SCHED_HRTICK
6813 static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
6815 struct sched_entity *se = &p->se;
6817 SCHED_WARN_ON(task_rq(p) != rq);
6819 if (rq->cfs.h_nr_running > 1) {
6820 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
6821 u64 slice = se->slice;
6822 s64 delta = slice - ran;
6824 if (delta < 0) {
6825 if (task_current_donor(rq, p))
6826 resched_curr(rq);
6827 return;
6829 hrtick_start(rq, delta);
6834 * called from enqueue/dequeue and updates the hrtick when the
6835 * current task is from our class and nr_running is low enough
6836 * to matter.
6838 static void hrtick_update(struct rq *rq)
6840 struct task_struct *donor = rq->donor;
6842 if (!hrtick_enabled_fair(rq) || donor->sched_class != &fair_sched_class)
6843 return;
6845 hrtick_start_fair(rq, donor);
6847 #else /* !CONFIG_SCHED_HRTICK */
6848 static inline void
6849 hrtick_start_fair(struct rq *rq, struct task_struct *p)
6853 static inline void hrtick_update(struct rq *rq)
6856 #endif
6858 #ifdef CONFIG_SMP
6859 static inline bool cpu_overutilized(int cpu)
6861 unsigned long rq_util_min, rq_util_max;
6863 if (!sched_energy_enabled())
6864 return false;
6866 rq_util_min = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MIN);
6867 rq_util_max = uclamp_rq_get(cpu_rq(cpu), UCLAMP_MAX);
6869 /* Return true only if the utilization doesn't fit CPU's capacity */
6870 return !util_fits_cpu(cpu_util_cfs(cpu), rq_util_min, rq_util_max, cpu);
6874 * overutilized value make sense only if EAS is enabled
6876 static inline bool is_rd_overutilized(struct root_domain *rd)
6878 return !sched_energy_enabled() || READ_ONCE(rd->overutilized);
6881 static inline void set_rd_overutilized(struct root_domain *rd, bool flag)
6883 if (!sched_energy_enabled())
6884 return;
6886 WRITE_ONCE(rd->overutilized, flag);
6887 trace_sched_overutilized_tp(rd, flag);
6890 static inline void check_update_overutilized_status(struct rq *rq)
6893 * overutilized field is used for load balancing decisions only
6894 * if energy aware scheduler is being used
6897 if (!is_rd_overutilized(rq->rd) && cpu_overutilized(rq->cpu))
6898 set_rd_overutilized(rq->rd, 1);
6900 #else
6901 static inline void check_update_overutilized_status(struct rq *rq) { }
6902 #endif
6904 /* Runqueue only has SCHED_IDLE tasks enqueued */
6905 static int sched_idle_rq(struct rq *rq)
6907 return unlikely(rq->nr_running == rq->cfs.idle_h_nr_running &&
6908 rq->nr_running);
6911 #ifdef CONFIG_SMP
6912 static int sched_idle_cpu(int cpu)
6914 return sched_idle_rq(cpu_rq(cpu));
6916 #endif
6918 static void
6919 requeue_delayed_entity(struct sched_entity *se)
6921 struct cfs_rq *cfs_rq = cfs_rq_of(se);
6924 * se->sched_delayed should imply: se->on_rq == 1.
6925 * Because a delayed entity is one that is still on
6926 * the runqueue competing until elegibility.
6928 SCHED_WARN_ON(!se->sched_delayed);
6929 SCHED_WARN_ON(!se->on_rq);
6931 if (sched_feat(DELAY_ZERO)) {
6932 update_entity_lag(cfs_rq, se);
6933 if (se->vlag > 0) {
6934 cfs_rq->nr_running--;
6935 if (se != cfs_rq->curr)
6936 __dequeue_entity(cfs_rq, se);
6937 se->vlag = 0;
6938 place_entity(cfs_rq, se, 0);
6939 if (se != cfs_rq->curr)
6940 __enqueue_entity(cfs_rq, se);
6941 cfs_rq->nr_running++;
6945 update_load_avg(cfs_rq, se, 0);
6946 se->sched_delayed = 0;
6950 * The enqueue_task method is called before nr_running is
6951 * increased. Here we update the fair scheduling stats and
6952 * then put the task into the rbtree:
6954 static void
6955 enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
6957 struct cfs_rq *cfs_rq;
6958 struct sched_entity *se = &p->se;
6959 int idle_h_nr_running = task_has_idle_policy(p);
6960 int task_new = !(flags & ENQUEUE_WAKEUP);
6961 int rq_h_nr_running = rq->cfs.h_nr_running;
6962 u64 slice = 0;
6965 * The code below (indirectly) updates schedutil which looks at
6966 * the cfs_rq utilization to select a frequency.
6967 * Let's add the task's estimated utilization to the cfs_rq's
6968 * estimated utilization, before we update schedutil.
6970 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
6971 util_est_enqueue(&rq->cfs, p);
6973 if (flags & ENQUEUE_DELAYED) {
6974 requeue_delayed_entity(se);
6975 return;
6979 * If in_iowait is set, the code below may not trigger any cpufreq
6980 * utilization updates, so do it here explicitly with the IOWAIT flag
6981 * passed.
6983 if (p->in_iowait)
6984 cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
6986 for_each_sched_entity(se) {
6987 if (se->on_rq) {
6988 if (se->sched_delayed)
6989 requeue_delayed_entity(se);
6990 break;
6992 cfs_rq = cfs_rq_of(se);
6995 * Basically set the slice of group entries to the min_slice of
6996 * their respective cfs_rq. This ensures the group can service
6997 * its entities in the desired time-frame.
6999 if (slice) {
7000 se->slice = slice;
7001 se->custom_slice = 1;
7003 enqueue_entity(cfs_rq, se, flags);
7004 slice = cfs_rq_min_slice(cfs_rq);
7006 cfs_rq->h_nr_running++;
7007 cfs_rq->idle_h_nr_running += idle_h_nr_running;
7009 if (cfs_rq_is_idle(cfs_rq))
7010 idle_h_nr_running = 1;
7012 /* end evaluation on encountering a throttled cfs_rq */
7013 if (cfs_rq_throttled(cfs_rq))
7014 goto enqueue_throttle;
7016 flags = ENQUEUE_WAKEUP;
7019 for_each_sched_entity(se) {
7020 cfs_rq = cfs_rq_of(se);
7022 update_load_avg(cfs_rq, se, UPDATE_TG);
7023 se_update_runnable(se);
7024 update_cfs_group(se);
7026 se->slice = slice;
7027 slice = cfs_rq_min_slice(cfs_rq);
7029 cfs_rq->h_nr_running++;
7030 cfs_rq->idle_h_nr_running += idle_h_nr_running;
7032 if (cfs_rq_is_idle(cfs_rq))
7033 idle_h_nr_running = 1;
7035 /* end evaluation on encountering a throttled cfs_rq */
7036 if (cfs_rq_throttled(cfs_rq))
7037 goto enqueue_throttle;
7040 if (!rq_h_nr_running && rq->cfs.h_nr_running) {
7041 /* Account for idle runtime */
7042 if (!rq->nr_running)
7043 dl_server_update_idle_time(rq, rq->curr);
7044 dl_server_start(&rq->fair_server);
7047 /* At this point se is NULL and we are at root level*/
7048 add_nr_running(rq, 1);
7051 * Since new tasks are assigned an initial util_avg equal to
7052 * half of the spare capacity of their CPU, tiny tasks have the
7053 * ability to cross the overutilized threshold, which will
7054 * result in the load balancer ruining all the task placement
7055 * done by EAS. As a way to mitigate that effect, do not account
7056 * for the first enqueue operation of new tasks during the
7057 * overutilized flag detection.
7059 * A better way of solving this problem would be to wait for
7060 * the PELT signals of tasks to converge before taking them
7061 * into account, but that is not straightforward to implement,
7062 * and the following generally works well enough in practice.
7064 if (!task_new)
7065 check_update_overutilized_status(rq);
7067 enqueue_throttle:
7068 assert_list_leaf_cfs_rq(rq);
7070 hrtick_update(rq);
7073 static void set_next_buddy(struct sched_entity *se);
7076 * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
7077 * failing half-way through and resume the dequeue later.
7079 * Returns:
7080 * -1 - dequeue delayed
7081 * 0 - dequeue throttled
7082 * 1 - dequeue complete
7084 static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
7086 bool was_sched_idle = sched_idle_rq(rq);
7087 int rq_h_nr_running = rq->cfs.h_nr_running;
7088 bool task_sleep = flags & DEQUEUE_SLEEP;
7089 bool task_delayed = flags & DEQUEUE_DELAYED;
7090 struct task_struct *p = NULL;
7091 int idle_h_nr_running = 0;
7092 int h_nr_running = 0;
7093 struct cfs_rq *cfs_rq;
7094 u64 slice = 0;
7096 if (entity_is_task(se)) {
7097 p = task_of(se);
7098 h_nr_running = 1;
7099 idle_h_nr_running = task_has_idle_policy(p);
7100 } else {
7101 cfs_rq = group_cfs_rq(se);
7102 slice = cfs_rq_min_slice(cfs_rq);
7105 for_each_sched_entity(se) {
7106 cfs_rq = cfs_rq_of(se);
7108 if (!dequeue_entity(cfs_rq, se, flags)) {
7109 if (p && &p->se == se)
7110 return -1;
7112 break;
7115 cfs_rq->h_nr_running -= h_nr_running;
7116 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7118 if (cfs_rq_is_idle(cfs_rq))
7119 idle_h_nr_running = h_nr_running;
7121 /* end evaluation on encountering a throttled cfs_rq */
7122 if (cfs_rq_throttled(cfs_rq))
7123 return 0;
7125 /* Don't dequeue parent if it has other entities besides us */
7126 if (cfs_rq->load.weight) {
7127 slice = cfs_rq_min_slice(cfs_rq);
7129 /* Avoid re-evaluating load for this entity: */
7130 se = parent_entity(se);
7132 * Bias pick_next to pick a task from this cfs_rq, as
7133 * p is sleeping when it is within its sched_slice.
7135 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
7136 set_next_buddy(se);
7137 break;
7139 flags |= DEQUEUE_SLEEP;
7140 flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
7143 for_each_sched_entity(se) {
7144 cfs_rq = cfs_rq_of(se);
7146 update_load_avg(cfs_rq, se, UPDATE_TG);
7147 se_update_runnable(se);
7148 update_cfs_group(se);
7150 se->slice = slice;
7151 slice = cfs_rq_min_slice(cfs_rq);
7153 cfs_rq->h_nr_running -= h_nr_running;
7154 cfs_rq->idle_h_nr_running -= idle_h_nr_running;
7156 if (cfs_rq_is_idle(cfs_rq))
7157 idle_h_nr_running = h_nr_running;
7159 /* end evaluation on encountering a throttled cfs_rq */
7160 if (cfs_rq_throttled(cfs_rq))
7161 return 0;
7164 sub_nr_running(rq, h_nr_running);
7166 if (rq_h_nr_running && !rq->cfs.h_nr_running)
7167 dl_server_stop(&rq->fair_server);
7169 /* balance early to pull high priority tasks */
7170 if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
7171 rq->next_balance = jiffies;
7173 if (p && task_delayed) {
7174 SCHED_WARN_ON(!task_sleep);
7175 SCHED_WARN_ON(p->on_rq != 1);
7177 /* Fix-up what dequeue_task_fair() skipped */
7178 hrtick_update(rq);
7181 * Fix-up what block_task() skipped.
7183 * Must be last, @p might not be valid after this.
7185 __block_task(rq, p);
7188 return 1;
7192 * The dequeue_task method is called before nr_running is
7193 * decreased. We remove the task from the rbtree and
7194 * update the fair scheduling stats:
7196 static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
7198 if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
7199 util_est_dequeue(&rq->cfs, p);
7201 util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
7202 if (dequeue_entities(rq, &p->se, flags) < 0)
7203 return false;
7206 * Must not reference @p after dequeue_entities(DEQUEUE_DELAYED).
7209 hrtick_update(rq);
7210 return true;
7213 #ifdef CONFIG_SMP
7215 /* Working cpumask for: sched_balance_rq(), sched_balance_newidle(). */
7216 static DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
7217 static DEFINE_PER_CPU(cpumask_var_t, select_rq_mask);
7218 static DEFINE_PER_CPU(cpumask_var_t, should_we_balance_tmpmask);
7220 #ifdef CONFIG_NO_HZ_COMMON
7222 static struct {
7223 cpumask_var_t idle_cpus_mask;
7224 atomic_t nr_cpus;
7225 int has_blocked; /* Idle CPUS has blocked load */
7226 int needs_update; /* Newly idle CPUs need their next_balance collated */
7227 unsigned long next_balance; /* in jiffy units */
7228 unsigned long next_blocked; /* Next update of blocked load in jiffies */
7229 } nohz ____cacheline_aligned;
7231 #endif /* CONFIG_NO_HZ_COMMON */
7233 static unsigned long cpu_load(struct rq *rq)
7235 return cfs_rq_load_avg(&rq->cfs);
7239 * cpu_load_without - compute CPU load without any contributions from *p
7240 * @cpu: the CPU which load is requested
7241 * @p: the task which load should be discounted
7243 * The load of a CPU is defined by the load of tasks currently enqueued on that
7244 * CPU as well as tasks which are currently sleeping after an execution on that
7245 * CPU.
7247 * This method returns the load of the specified CPU by discounting the load of
7248 * the specified task, whenever the task is currently contributing to the CPU
7249 * load.
7251 static unsigned long cpu_load_without(struct rq *rq, struct task_struct *p)
7253 struct cfs_rq *cfs_rq;
7254 unsigned int load;
7256 /* Task has no contribution or is new */
7257 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7258 return cpu_load(rq);
7260 cfs_rq = &rq->cfs;
7261 load = READ_ONCE(cfs_rq->avg.load_avg);
7263 /* Discount task's util from CPU's util */
7264 lsub_positive(&load, task_h_load(p));
7266 return load;
7269 static unsigned long cpu_runnable(struct rq *rq)
7271 return cfs_rq_runnable_avg(&rq->cfs);
7274 static unsigned long cpu_runnable_without(struct rq *rq, struct task_struct *p)
7276 struct cfs_rq *cfs_rq;
7277 unsigned int runnable;
7279 /* Task has no contribution or is new */
7280 if (cpu_of(rq) != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
7281 return cpu_runnable(rq);
7283 cfs_rq = &rq->cfs;
7284 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
7286 /* Discount task's runnable from CPU's runnable */
7287 lsub_positive(&runnable, p->se.avg.runnable_avg);
7289 return runnable;
7292 static unsigned long capacity_of(int cpu)
7294 return cpu_rq(cpu)->cpu_capacity;
7297 static void record_wakee(struct task_struct *p)
7300 * Only decay a single time; tasks that have less then 1 wakeup per
7301 * jiffy will not have built up many flips.
7303 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
7304 current->wakee_flips >>= 1;
7305 current->wakee_flip_decay_ts = jiffies;
7308 if (current->last_wakee != p) {
7309 current->last_wakee = p;
7310 current->wakee_flips++;
7315 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
7317 * A waker of many should wake a different task than the one last awakened
7318 * at a frequency roughly N times higher than one of its wakees.
7320 * In order to determine whether we should let the load spread vs consolidating
7321 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
7322 * partner, and a factor of lls_size higher frequency in the other.
7324 * With both conditions met, we can be relatively sure that the relationship is
7325 * non-monogamous, with partner count exceeding socket size.
7327 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
7328 * whatever is irrelevant, spread criteria is apparent partner count exceeds
7329 * socket size.
7331 static int wake_wide(struct task_struct *p)
7333 unsigned int master = current->wakee_flips;
7334 unsigned int slave = p->wakee_flips;
7335 int factor = __this_cpu_read(sd_llc_size);
7337 if (master < slave)
7338 swap(master, slave);
7339 if (slave < factor || master < slave * factor)
7340 return 0;
7341 return 1;
7345 * The purpose of wake_affine() is to quickly determine on which CPU we can run
7346 * soonest. For the purpose of speed we only consider the waking and previous
7347 * CPU.
7349 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
7350 * cache-affine and is (or will be) idle.
7352 * wake_affine_weight() - considers the weight to reflect the average
7353 * scheduling latency of the CPUs. This seems to work
7354 * for the overloaded case.
7356 static int
7357 wake_affine_idle(int this_cpu, int prev_cpu, int sync)
7360 * If this_cpu is idle, it implies the wakeup is from interrupt
7361 * context. Only allow the move if cache is shared. Otherwise an
7362 * interrupt intensive workload could force all tasks onto one
7363 * node depending on the IO topology or IRQ affinity settings.
7365 * If the prev_cpu is idle and cache affine then avoid a migration.
7366 * There is no guarantee that the cache hot data from an interrupt
7367 * is more important than cache hot data on the prev_cpu and from
7368 * a cpufreq perspective, it's better to have higher utilisation
7369 * on one CPU.
7371 if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
7372 return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
7374 if (sync && cpu_rq(this_cpu)->nr_running == 1)
7375 return this_cpu;
7377 if (available_idle_cpu(prev_cpu))
7378 return prev_cpu;
7380 return nr_cpumask_bits;
7383 static int
7384 wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
7385 int this_cpu, int prev_cpu, int sync)
7387 s64 this_eff_load, prev_eff_load;
7388 unsigned long task_load;
7390 this_eff_load = cpu_load(cpu_rq(this_cpu));
7392 if (sync) {
7393 unsigned long current_load = task_h_load(current);
7395 if (current_load > this_eff_load)
7396 return this_cpu;
7398 this_eff_load -= current_load;
7401 task_load = task_h_load(p);
7403 this_eff_load += task_load;
7404 if (sched_feat(WA_BIAS))
7405 this_eff_load *= 100;
7406 this_eff_load *= capacity_of(prev_cpu);
7408 prev_eff_load = cpu_load(cpu_rq(prev_cpu));
7409 prev_eff_load -= task_load;
7410 if (sched_feat(WA_BIAS))
7411 prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
7412 prev_eff_load *= capacity_of(this_cpu);
7415 * If sync, adjust the weight of prev_eff_load such that if
7416 * prev_eff == this_eff that select_idle_sibling() will consider
7417 * stacking the wakee on top of the waker if no other CPU is
7418 * idle.
7420 if (sync)
7421 prev_eff_load += 1;
7423 return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
7426 static int wake_affine(struct sched_domain *sd, struct task_struct *p,
7427 int this_cpu, int prev_cpu, int sync)
7429 int target = nr_cpumask_bits;
7431 if (sched_feat(WA_IDLE))
7432 target = wake_affine_idle(this_cpu, prev_cpu, sync);
7434 if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
7435 target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
7437 schedstat_inc(p->stats.nr_wakeups_affine_attempts);
7438 if (target != this_cpu)
7439 return prev_cpu;
7441 schedstat_inc(sd->ttwu_move_affine);
7442 schedstat_inc(p->stats.nr_wakeups_affine);
7443 return target;
7446 static struct sched_group *
7447 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu);
7450 * sched_balance_find_dst_group_cpu - find the idlest CPU among the CPUs in the group.
7452 static int
7453 sched_balance_find_dst_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
7455 unsigned long load, min_load = ULONG_MAX;
7456 unsigned int min_exit_latency = UINT_MAX;
7457 u64 latest_idle_timestamp = 0;
7458 int least_loaded_cpu = this_cpu;
7459 int shallowest_idle_cpu = -1;
7460 int i;
7462 /* Check if we have any choice: */
7463 if (group->group_weight == 1)
7464 return cpumask_first(sched_group_span(group));
7466 /* Traverse only the allowed CPUs */
7467 for_each_cpu_and(i, sched_group_span(group), p->cpus_ptr) {
7468 struct rq *rq = cpu_rq(i);
7470 if (!sched_core_cookie_match(rq, p))
7471 continue;
7473 if (sched_idle_cpu(i))
7474 return i;
7476 if (available_idle_cpu(i)) {
7477 struct cpuidle_state *idle = idle_get_state(rq);
7478 if (idle && idle->exit_latency < min_exit_latency) {
7480 * We give priority to a CPU whose idle state
7481 * has the smallest exit latency irrespective
7482 * of any idle timestamp.
7484 min_exit_latency = idle->exit_latency;
7485 latest_idle_timestamp = rq->idle_stamp;
7486 shallowest_idle_cpu = i;
7487 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
7488 rq->idle_stamp > latest_idle_timestamp) {
7490 * If equal or no active idle state, then
7491 * the most recently idled CPU might have
7492 * a warmer cache.
7494 latest_idle_timestamp = rq->idle_stamp;
7495 shallowest_idle_cpu = i;
7497 } else if (shallowest_idle_cpu == -1) {
7498 load = cpu_load(cpu_rq(i));
7499 if (load < min_load) {
7500 min_load = load;
7501 least_loaded_cpu = i;
7506 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
7509 static inline int sched_balance_find_dst_cpu(struct sched_domain *sd, struct task_struct *p,
7510 int cpu, int prev_cpu, int sd_flag)
7512 int new_cpu = cpu;
7514 if (!cpumask_intersects(sched_domain_span(sd), p->cpus_ptr))
7515 return prev_cpu;
7518 * We need task's util for cpu_util_without, sync it up to
7519 * prev_cpu's last_update_time.
7521 if (!(sd_flag & SD_BALANCE_FORK))
7522 sync_entity_load_avg(&p->se);
7524 while (sd) {
7525 struct sched_group *group;
7526 struct sched_domain *tmp;
7527 int weight;
7529 if (!(sd->flags & sd_flag)) {
7530 sd = sd->child;
7531 continue;
7534 group = sched_balance_find_dst_group(sd, p, cpu);
7535 if (!group) {
7536 sd = sd->child;
7537 continue;
7540 new_cpu = sched_balance_find_dst_group_cpu(group, p, cpu);
7541 if (new_cpu == cpu) {
7542 /* Now try balancing at a lower domain level of 'cpu': */
7543 sd = sd->child;
7544 continue;
7547 /* Now try balancing at a lower domain level of 'new_cpu': */
7548 cpu = new_cpu;
7549 weight = sd->span_weight;
7550 sd = NULL;
7551 for_each_domain(cpu, tmp) {
7552 if (weight <= tmp->span_weight)
7553 break;
7554 if (tmp->flags & sd_flag)
7555 sd = tmp;
7559 return new_cpu;
7562 static inline int __select_idle_cpu(int cpu, struct task_struct *p)
7564 if ((available_idle_cpu(cpu) || sched_idle_cpu(cpu)) &&
7565 sched_cpu_cookie_match(cpu_rq(cpu), p))
7566 return cpu;
7568 return -1;
7571 #ifdef CONFIG_SCHED_SMT
7572 DEFINE_STATIC_KEY_FALSE(sched_smt_present);
7573 EXPORT_SYMBOL_GPL(sched_smt_present);
7575 static inline void set_idle_cores(int cpu, int val)
7577 struct sched_domain_shared *sds;
7579 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7580 if (sds)
7581 WRITE_ONCE(sds->has_idle_cores, val);
7584 static inline bool test_idle_cores(int cpu)
7586 struct sched_domain_shared *sds;
7588 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
7589 if (sds)
7590 return READ_ONCE(sds->has_idle_cores);
7592 return false;
7596 * Scans the local SMT mask to see if the entire core is idle, and records this
7597 * information in sd_llc_shared->has_idle_cores.
7599 * Since SMT siblings share all cache levels, inspecting this limited remote
7600 * state should be fairly cheap.
7602 void __update_idle_core(struct rq *rq)
7604 int core = cpu_of(rq);
7605 int cpu;
7607 rcu_read_lock();
7608 if (test_idle_cores(core))
7609 goto unlock;
7611 for_each_cpu(cpu, cpu_smt_mask(core)) {
7612 if (cpu == core)
7613 continue;
7615 if (!available_idle_cpu(cpu))
7616 goto unlock;
7619 set_idle_cores(core, 1);
7620 unlock:
7621 rcu_read_unlock();
7625 * Scan the entire LLC domain for idle cores; this dynamically switches off if
7626 * there are no idle cores left in the system; tracked through
7627 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
7629 static int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7631 bool idle = true;
7632 int cpu;
7634 for_each_cpu(cpu, cpu_smt_mask(core)) {
7635 if (!available_idle_cpu(cpu)) {
7636 idle = false;
7637 if (*idle_cpu == -1) {
7638 if (sched_idle_cpu(cpu) && cpumask_test_cpu(cpu, cpus)) {
7639 *idle_cpu = cpu;
7640 break;
7642 continue;
7644 break;
7646 if (*idle_cpu == -1 && cpumask_test_cpu(cpu, cpus))
7647 *idle_cpu = cpu;
7650 if (idle)
7651 return core;
7653 cpumask_andnot(cpus, cpus, cpu_smt_mask(core));
7654 return -1;
7658 * Scan the local SMT mask for idle CPUs.
7660 static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7662 int cpu;
7664 for_each_cpu_and(cpu, cpu_smt_mask(target), p->cpus_ptr) {
7665 if (cpu == target)
7666 continue;
7668 * Check if the CPU is in the LLC scheduling domain of @target.
7669 * Due to isolcpus, there is no guarantee that all the siblings are in the domain.
7671 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
7672 continue;
7673 if (available_idle_cpu(cpu) || sched_idle_cpu(cpu))
7674 return cpu;
7677 return -1;
7680 #else /* CONFIG_SCHED_SMT */
7682 static inline void set_idle_cores(int cpu, int val)
7686 static inline bool test_idle_cores(int cpu)
7688 return false;
7691 static inline int select_idle_core(struct task_struct *p, int core, struct cpumask *cpus, int *idle_cpu)
7693 return __select_idle_cpu(core, p);
7696 static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
7698 return -1;
7701 #endif /* CONFIG_SCHED_SMT */
7704 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
7705 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
7706 * average idle time for this rq (as found in rq->avg_idle).
7708 static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, bool has_idle_core, int target)
7710 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7711 int i, cpu, idle_cpu = -1, nr = INT_MAX;
7712 struct sched_domain_shared *sd_share;
7714 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7716 if (sched_feat(SIS_UTIL)) {
7717 sd_share = rcu_dereference(per_cpu(sd_llc_shared, target));
7718 if (sd_share) {
7719 /* because !--nr is the condition to stop scan */
7720 nr = READ_ONCE(sd_share->nr_idle_scan) + 1;
7721 /* overloaded LLC is unlikely to have idle cpu/core */
7722 if (nr == 1)
7723 return -1;
7727 if (static_branch_unlikely(&sched_cluster_active)) {
7728 struct sched_group *sg = sd->groups;
7730 if (sg->flags & SD_CLUSTER) {
7731 for_each_cpu_wrap(cpu, sched_group_span(sg), target + 1) {
7732 if (!cpumask_test_cpu(cpu, cpus))
7733 continue;
7735 if (has_idle_core) {
7736 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7737 if ((unsigned int)i < nr_cpumask_bits)
7738 return i;
7739 } else {
7740 if (--nr <= 0)
7741 return -1;
7742 idle_cpu = __select_idle_cpu(cpu, p);
7743 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7744 return idle_cpu;
7747 cpumask_andnot(cpus, cpus, sched_group_span(sg));
7751 for_each_cpu_wrap(cpu, cpus, target + 1) {
7752 if (has_idle_core) {
7753 i = select_idle_core(p, cpu, cpus, &idle_cpu);
7754 if ((unsigned int)i < nr_cpumask_bits)
7755 return i;
7757 } else {
7758 if (--nr <= 0)
7759 return -1;
7760 idle_cpu = __select_idle_cpu(cpu, p);
7761 if ((unsigned int)idle_cpu < nr_cpumask_bits)
7762 break;
7766 if (has_idle_core)
7767 set_idle_cores(target, false);
7769 return idle_cpu;
7773 * Scan the asym_capacity domain for idle CPUs; pick the first idle one on which
7774 * the task fits. If no CPU is big enough, but there are idle ones, try to
7775 * maximize capacity.
7777 static int
7778 select_idle_capacity(struct task_struct *p, struct sched_domain *sd, int target)
7780 unsigned long task_util, util_min, util_max, best_cap = 0;
7781 int fits, best_fits = 0;
7782 int cpu, best_cpu = -1;
7783 struct cpumask *cpus;
7785 cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
7786 cpumask_and(cpus, sched_domain_span(sd), p->cpus_ptr);
7788 task_util = task_util_est(p);
7789 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7790 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7792 for_each_cpu_wrap(cpu, cpus, target) {
7793 unsigned long cpu_cap = capacity_of(cpu);
7795 if (!available_idle_cpu(cpu) && !sched_idle_cpu(cpu))
7796 continue;
7798 fits = util_fits_cpu(task_util, util_min, util_max, cpu);
7800 /* This CPU fits with all requirements */
7801 if (fits > 0)
7802 return cpu;
7804 * Only the min performance hint (i.e. uclamp_min) doesn't fit.
7805 * Look for the CPU with best capacity.
7807 else if (fits < 0)
7808 cpu_cap = get_actual_cpu_capacity(cpu);
7811 * First, select CPU which fits better (-1 being better than 0).
7812 * Then, select the one with best capacity at same level.
7814 if ((fits < best_fits) ||
7815 ((fits == best_fits) && (cpu_cap > best_cap))) {
7816 best_cap = cpu_cap;
7817 best_cpu = cpu;
7818 best_fits = fits;
7822 return best_cpu;
7825 static inline bool asym_fits_cpu(unsigned long util,
7826 unsigned long util_min,
7827 unsigned long util_max,
7828 int cpu)
7830 if (sched_asym_cpucap_active())
7832 * Return true only if the cpu fully fits the task requirements
7833 * which include the utilization and the performance hints.
7835 return (util_fits_cpu(util, util_min, util_max, cpu) > 0);
7837 return true;
7841 * Try and locate an idle core/thread in the LLC cache domain.
7843 static int select_idle_sibling(struct task_struct *p, int prev, int target)
7845 bool has_idle_core = false;
7846 struct sched_domain *sd;
7847 unsigned long task_util, util_min, util_max;
7848 int i, recent_used_cpu, prev_aff = -1;
7851 * On asymmetric system, update task utilization because we will check
7852 * that the task fits with CPU's capacity.
7854 if (sched_asym_cpucap_active()) {
7855 sync_entity_load_avg(&p->se);
7856 task_util = task_util_est(p);
7857 util_min = uclamp_eff_value(p, UCLAMP_MIN);
7858 util_max = uclamp_eff_value(p, UCLAMP_MAX);
7862 * per-cpu select_rq_mask usage
7864 lockdep_assert_irqs_disabled();
7866 if ((available_idle_cpu(target) || sched_idle_cpu(target)) &&
7867 asym_fits_cpu(task_util, util_min, util_max, target))
7868 return target;
7871 * If the previous CPU is cache affine and idle, don't be stupid:
7873 if (prev != target && cpus_share_cache(prev, target) &&
7874 (available_idle_cpu(prev) || sched_idle_cpu(prev)) &&
7875 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7877 if (!static_branch_unlikely(&sched_cluster_active) ||
7878 cpus_share_resources(prev, target))
7879 return prev;
7881 prev_aff = prev;
7885 * Allow a per-cpu kthread to stack with the wakee if the
7886 * kworker thread and the tasks previous CPUs are the same.
7887 * The assumption is that the wakee queued work for the
7888 * per-cpu kthread that is now complete and the wakeup is
7889 * essentially a sync wakeup. An obvious example of this
7890 * pattern is IO completions.
7892 if (is_per_cpu_kthread(current) &&
7893 in_task() &&
7894 prev == smp_processor_id() &&
7895 this_rq()->nr_running <= 1 &&
7896 asym_fits_cpu(task_util, util_min, util_max, prev)) {
7897 return prev;
7900 /* Check a recently used CPU as a potential idle candidate: */
7901 recent_used_cpu = p->recent_used_cpu;
7902 p->recent_used_cpu = prev;
7903 if (recent_used_cpu != prev &&
7904 recent_used_cpu != target &&
7905 cpus_share_cache(recent_used_cpu, target) &&
7906 (available_idle_cpu(recent_used_cpu) || sched_idle_cpu(recent_used_cpu)) &&
7907 cpumask_test_cpu(recent_used_cpu, p->cpus_ptr) &&
7908 asym_fits_cpu(task_util, util_min, util_max, recent_used_cpu)) {
7910 if (!static_branch_unlikely(&sched_cluster_active) ||
7911 cpus_share_resources(recent_used_cpu, target))
7912 return recent_used_cpu;
7914 } else {
7915 recent_used_cpu = -1;
7919 * For asymmetric CPU capacity systems, our domain of interest is
7920 * sd_asym_cpucapacity rather than sd_llc.
7922 if (sched_asym_cpucap_active()) {
7923 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, target));
7925 * On an asymmetric CPU capacity system where an exclusive
7926 * cpuset defines a symmetric island (i.e. one unique
7927 * capacity_orig value through the cpuset), the key will be set
7928 * but the CPUs within that cpuset will not have a domain with
7929 * SD_ASYM_CPUCAPACITY. These should follow the usual symmetric
7930 * capacity path.
7932 if (sd) {
7933 i = select_idle_capacity(p, sd, target);
7934 return ((unsigned)i < nr_cpumask_bits) ? i : target;
7938 sd = rcu_dereference(per_cpu(sd_llc, target));
7939 if (!sd)
7940 return target;
7942 if (sched_smt_active()) {
7943 has_idle_core = test_idle_cores(target);
7945 if (!has_idle_core && cpus_share_cache(prev, target)) {
7946 i = select_idle_smt(p, sd, prev);
7947 if ((unsigned int)i < nr_cpumask_bits)
7948 return i;
7952 i = select_idle_cpu(p, sd, has_idle_core, target);
7953 if ((unsigned)i < nr_cpumask_bits)
7954 return i;
7957 * For cluster machines which have lower sharing cache like L2 or
7958 * LLC Tag, we tend to find an idle CPU in the target's cluster
7959 * first. But prev_cpu or recent_used_cpu may also be a good candidate,
7960 * use them if possible when no idle CPU found in select_idle_cpu().
7962 if ((unsigned int)prev_aff < nr_cpumask_bits)
7963 return prev_aff;
7964 if ((unsigned int)recent_used_cpu < nr_cpumask_bits)
7965 return recent_used_cpu;
7967 return target;
7971 * cpu_util() - Estimates the amount of CPU capacity used by CFS tasks.
7972 * @cpu: the CPU to get the utilization for
7973 * @p: task for which the CPU utilization should be predicted or NULL
7974 * @dst_cpu: CPU @p migrates to, -1 if @p moves from @cpu or @p == NULL
7975 * @boost: 1 to enable boosting, otherwise 0
7977 * The unit of the return value must be the same as the one of CPU capacity
7978 * so that CPU utilization can be compared with CPU capacity.
7980 * CPU utilization is the sum of running time of runnable tasks plus the
7981 * recent utilization of currently non-runnable tasks on that CPU.
7982 * It represents the amount of CPU capacity currently used by CFS tasks in
7983 * the range [0..max CPU capacity] with max CPU capacity being the CPU
7984 * capacity at f_max.
7986 * The estimated CPU utilization is defined as the maximum between CPU
7987 * utilization and sum of the estimated utilization of the currently
7988 * runnable tasks on that CPU. It preserves a utilization "snapshot" of
7989 * previously-executed tasks, which helps better deduce how busy a CPU will
7990 * be when a long-sleeping task wakes up. The contribution to CPU utilization
7991 * of such a task would be significantly decayed at this point of time.
7993 * Boosted CPU utilization is defined as max(CPU runnable, CPU utilization).
7994 * CPU contention for CFS tasks can be detected by CPU runnable > CPU
7995 * utilization. Boosting is implemented in cpu_util() so that internal
7996 * users (e.g. EAS) can use it next to external users (e.g. schedutil),
7997 * latter via cpu_util_cfs_boost().
7999 * CPU utilization can be higher than the current CPU capacity
8000 * (f_curr/f_max * max CPU capacity) or even the max CPU capacity because
8001 * of rounding errors as well as task migrations or wakeups of new tasks.
8002 * CPU utilization has to be capped to fit into the [0..max CPU capacity]
8003 * range. Otherwise a group of CPUs (CPU0 util = 121% + CPU1 util = 80%)
8004 * could be seen as over-utilized even though CPU1 has 20% of spare CPU
8005 * capacity. CPU utilization is allowed to overshoot current CPU capacity
8006 * though since this is useful for predicting the CPU capacity required
8007 * after task migrations (scheduler-driven DVFS).
8009 * Return: (Boosted) (estimated) utilization for the specified CPU.
8011 static unsigned long
8012 cpu_util(int cpu, struct task_struct *p, int dst_cpu, int boost)
8014 struct cfs_rq *cfs_rq = &cpu_rq(cpu)->cfs;
8015 unsigned long util = READ_ONCE(cfs_rq->avg.util_avg);
8016 unsigned long runnable;
8018 if (boost) {
8019 runnable = READ_ONCE(cfs_rq->avg.runnable_avg);
8020 util = max(util, runnable);
8024 * If @dst_cpu is -1 or @p migrates from @cpu to @dst_cpu remove its
8025 * contribution. If @p migrates from another CPU to @cpu add its
8026 * contribution. In all the other cases @cpu is not impacted by the
8027 * migration so its util_avg is already correct.
8029 if (p && task_cpu(p) == cpu && dst_cpu != cpu)
8030 lsub_positive(&util, task_util(p));
8031 else if (p && task_cpu(p) != cpu && dst_cpu == cpu)
8032 util += task_util(p);
8034 if (sched_feat(UTIL_EST)) {
8035 unsigned long util_est;
8037 util_est = READ_ONCE(cfs_rq->avg.util_est);
8040 * During wake-up @p isn't enqueued yet and doesn't contribute
8041 * to any cpu_rq(cpu)->cfs.avg.util_est.
8042 * If @dst_cpu == @cpu add it to "simulate" cpu_util after @p
8043 * has been enqueued.
8045 * During exec (@dst_cpu = -1) @p is enqueued and does
8046 * contribute to cpu_rq(cpu)->cfs.util_est.
8047 * Remove it to "simulate" cpu_util without @p's contribution.
8049 * Despite the task_on_rq_queued(@p) check there is still a
8050 * small window for a possible race when an exec
8051 * select_task_rq_fair() races with LB's detach_task().
8053 * detach_task()
8054 * deactivate_task()
8055 * p->on_rq = TASK_ON_RQ_MIGRATING;
8056 * -------------------------------- A
8057 * dequeue_task() \
8058 * dequeue_task_fair() + Race Time
8059 * util_est_dequeue() /
8060 * -------------------------------- B
8062 * The additional check "current == p" is required to further
8063 * reduce the race window.
8065 if (dst_cpu == cpu)
8066 util_est += _task_util_est(p);
8067 else if (p && unlikely(task_on_rq_queued(p) || current == p))
8068 lsub_positive(&util_est, _task_util_est(p));
8070 util = max(util, util_est);
8073 return min(util, arch_scale_cpu_capacity(cpu));
8076 unsigned long cpu_util_cfs(int cpu)
8078 return cpu_util(cpu, NULL, -1, 0);
8081 unsigned long cpu_util_cfs_boost(int cpu)
8083 return cpu_util(cpu, NULL, -1, 1);
8087 * cpu_util_without: compute cpu utilization without any contributions from *p
8088 * @cpu: the CPU which utilization is requested
8089 * @p: the task which utilization should be discounted
8091 * The utilization of a CPU is defined by the utilization of tasks currently
8092 * enqueued on that CPU as well as tasks which are currently sleeping after an
8093 * execution on that CPU.
8095 * This method returns the utilization of the specified CPU by discounting the
8096 * utilization of the specified task, whenever the task is currently
8097 * contributing to the CPU utilization.
8099 static unsigned long cpu_util_without(int cpu, struct task_struct *p)
8101 /* Task has no contribution or is new */
8102 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
8103 p = NULL;
8105 return cpu_util(cpu, p, -1, 0);
8109 * This function computes an effective utilization for the given CPU, to be
8110 * used for frequency selection given the linear relation: f = u * f_max.
8112 * The scheduler tracks the following metrics:
8114 * cpu_util_{cfs,rt,dl,irq}()
8115 * cpu_bw_dl()
8117 * Where the cfs,rt and dl util numbers are tracked with the same metric and
8118 * synchronized windows and are thus directly comparable.
8120 * The cfs,rt,dl utilization are the running times measured with rq->clock_task
8121 * which excludes things like IRQ and steal-time. These latter are then accrued
8122 * in the IRQ utilization.
8124 * The DL bandwidth number OTOH is not a measured metric but a value computed
8125 * based on the task model parameters and gives the minimal utilization
8126 * required to meet deadlines.
8128 unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
8129 unsigned long *min,
8130 unsigned long *max)
8132 unsigned long util, irq, scale;
8133 struct rq *rq = cpu_rq(cpu);
8135 scale = arch_scale_cpu_capacity(cpu);
8138 * Early check to see if IRQ/steal time saturates the CPU, can be
8139 * because of inaccuracies in how we track these -- see
8140 * update_irq_load_avg().
8142 irq = cpu_util_irq(rq);
8143 if (unlikely(irq >= scale)) {
8144 if (min)
8145 *min = scale;
8146 if (max)
8147 *max = scale;
8148 return scale;
8151 if (min) {
8153 * The minimum utilization returns the highest level between:
8154 * - the computed DL bandwidth needed with the IRQ pressure which
8155 * steals time to the deadline task.
8156 * - The minimum performance requirement for CFS and/or RT.
8158 *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
8161 * When an RT task is runnable and uclamp is not used, we must
8162 * ensure that the task will run at maximum compute capacity.
8164 if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
8165 *min = max(*min, scale);
8169 * Because the time spend on RT/DL tasks is visible as 'lost' time to
8170 * CFS tasks and we use the same metric to track the effective
8171 * utilization (PELT windows are synchronized) we can directly add them
8172 * to obtain the CPU's actual utilization.
8174 util = util_cfs + cpu_util_rt(rq);
8175 util += cpu_util_dl(rq);
8178 * The maximum hint is a soft bandwidth requirement, which can be lower
8179 * than the actual utilization because of uclamp_max requirements.
8181 if (max)
8182 *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
8184 if (util >= scale)
8185 return scale;
8188 * There is still idle time; further improve the number by using the
8189 * IRQ metric. Because IRQ/steal time is hidden from the task clock we
8190 * need to scale the task numbers:
8192 * max - irq
8193 * U' = irq + --------- * U
8194 * max
8196 util = scale_irq_capacity(util, irq, scale);
8197 util += irq;
8199 return min(scale, util);
8202 unsigned long sched_cpu_util(int cpu)
8204 return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
8208 * energy_env - Utilization landscape for energy estimation.
8209 * @task_busy_time: Utilization contribution by the task for which we test the
8210 * placement. Given by eenv_task_busy_time().
8211 * @pd_busy_time: Utilization of the whole perf domain without the task
8212 * contribution. Given by eenv_pd_busy_time().
8213 * @cpu_cap: Maximum CPU capacity for the perf domain.
8214 * @pd_cap: Entire perf domain capacity. (pd->nr_cpus * cpu_cap).
8216 struct energy_env {
8217 unsigned long task_busy_time;
8218 unsigned long pd_busy_time;
8219 unsigned long cpu_cap;
8220 unsigned long pd_cap;
8224 * Compute the task busy time for compute_energy(). This time cannot be
8225 * injected directly into effective_cpu_util() because of the IRQ scaling.
8226 * The latter only makes sense with the most recent CPUs where the task has
8227 * run.
8229 static inline void eenv_task_busy_time(struct energy_env *eenv,
8230 struct task_struct *p, int prev_cpu)
8232 unsigned long busy_time, max_cap = arch_scale_cpu_capacity(prev_cpu);
8233 unsigned long irq = cpu_util_irq(cpu_rq(prev_cpu));
8235 if (unlikely(irq >= max_cap))
8236 busy_time = max_cap;
8237 else
8238 busy_time = scale_irq_capacity(task_util_est(p), irq, max_cap);
8240 eenv->task_busy_time = busy_time;
8244 * Compute the perf_domain (PD) busy time for compute_energy(). Based on the
8245 * utilization for each @pd_cpus, it however doesn't take into account
8246 * clamping since the ratio (utilization / cpu_capacity) is already enough to
8247 * scale the EM reported power consumption at the (eventually clamped)
8248 * cpu_capacity.
8250 * The contribution of the task @p for which we want to estimate the
8251 * energy cost is removed (by cpu_util()) and must be calculated
8252 * separately (see eenv_task_busy_time). This ensures:
8254 * - A stable PD utilization, no matter which CPU of that PD we want to place
8255 * the task on.
8257 * - A fair comparison between CPUs as the task contribution (task_util())
8258 * will always be the same no matter which CPU utilization we rely on
8259 * (util_avg or util_est).
8261 * Set @eenv busy time for the PD that spans @pd_cpus. This busy time can't
8262 * exceed @eenv->pd_cap.
8264 static inline void eenv_pd_busy_time(struct energy_env *eenv,
8265 struct cpumask *pd_cpus,
8266 struct task_struct *p)
8268 unsigned long busy_time = 0;
8269 int cpu;
8271 for_each_cpu(cpu, pd_cpus) {
8272 unsigned long util = cpu_util(cpu, p, -1, 0);
8274 busy_time += effective_cpu_util(cpu, util, NULL, NULL);
8277 eenv->pd_busy_time = min(eenv->pd_cap, busy_time);
8281 * Compute the maximum utilization for compute_energy() when the task @p
8282 * is placed on the cpu @dst_cpu.
8284 * Returns the maximum utilization among @eenv->cpus. This utilization can't
8285 * exceed @eenv->cpu_cap.
8287 static inline unsigned long
8288 eenv_pd_max_util(struct energy_env *eenv, struct cpumask *pd_cpus,
8289 struct task_struct *p, int dst_cpu)
8291 unsigned long max_util = 0;
8292 int cpu;
8294 for_each_cpu(cpu, pd_cpus) {
8295 struct task_struct *tsk = (cpu == dst_cpu) ? p : NULL;
8296 unsigned long util = cpu_util(cpu, p, dst_cpu, 1);
8297 unsigned long eff_util, min, max;
8300 * Performance domain frequency: utilization clamping
8301 * must be considered since it affects the selection
8302 * of the performance domain frequency.
8303 * NOTE: in case RT tasks are running, by default the min
8304 * utilization can be max OPP.
8306 eff_util = effective_cpu_util(cpu, util, &min, &max);
8308 /* Task's uclamp can modify min and max value */
8309 if (tsk && uclamp_is_used()) {
8310 min = max(min, uclamp_eff_value(p, UCLAMP_MIN));
8313 * If there is no active max uclamp constraint,
8314 * directly use task's one, otherwise keep max.
8316 if (uclamp_rq_is_idle(cpu_rq(cpu)))
8317 max = uclamp_eff_value(p, UCLAMP_MAX);
8318 else
8319 max = max(max, uclamp_eff_value(p, UCLAMP_MAX));
8322 eff_util = sugov_effective_cpu_perf(cpu, eff_util, min, max);
8323 max_util = max(max_util, eff_util);
8326 return min(max_util, eenv->cpu_cap);
8330 * compute_energy(): Use the Energy Model to estimate the energy that @pd would
8331 * consume for a given utilization landscape @eenv. When @dst_cpu < 0, the task
8332 * contribution is ignored.
8334 static inline unsigned long
8335 compute_energy(struct energy_env *eenv, struct perf_domain *pd,
8336 struct cpumask *pd_cpus, struct task_struct *p, int dst_cpu)
8338 unsigned long max_util = eenv_pd_max_util(eenv, pd_cpus, p, dst_cpu);
8339 unsigned long busy_time = eenv->pd_busy_time;
8340 unsigned long energy;
8342 if (dst_cpu >= 0)
8343 busy_time = min(eenv->pd_cap, busy_time + eenv->task_busy_time);
8345 energy = em_cpu_energy(pd->em_pd, max_util, busy_time, eenv->cpu_cap);
8347 trace_sched_compute_energy_tp(p, dst_cpu, energy, max_util, busy_time);
8349 return energy;
8353 * find_energy_efficient_cpu(): Find most energy-efficient target CPU for the
8354 * waking task. find_energy_efficient_cpu() looks for the CPU with maximum
8355 * spare capacity in each performance domain and uses it as a potential
8356 * candidate to execute the task. Then, it uses the Energy Model to figure
8357 * out which of the CPU candidates is the most energy-efficient.
8359 * The rationale for this heuristic is as follows. In a performance domain,
8360 * all the most energy efficient CPU candidates (according to the Energy
8361 * Model) are those for which we'll request a low frequency. When there are
8362 * several CPUs for which the frequency request will be the same, we don't
8363 * have enough data to break the tie between them, because the Energy Model
8364 * only includes active power costs. With this model, if we assume that
8365 * frequency requests follow utilization (e.g. using schedutil), the CPU with
8366 * the maximum spare capacity in a performance domain is guaranteed to be among
8367 * the best candidates of the performance domain.
8369 * In practice, it could be preferable from an energy standpoint to pack
8370 * small tasks on a CPU in order to let other CPUs go in deeper idle states,
8371 * but that could also hurt our chances to go cluster idle, and we have no
8372 * ways to tell with the current Energy Model if this is actually a good
8373 * idea or not. So, find_energy_efficient_cpu() basically favors
8374 * cluster-packing, and spreading inside a cluster. That should at least be
8375 * a good thing for latency, and this is consistent with the idea that most
8376 * of the energy savings of EAS come from the asymmetry of the system, and
8377 * not so much from breaking the tie between identical CPUs. That's also the
8378 * reason why EAS is enabled in the topology code only for systems where
8379 * SD_ASYM_CPUCAPACITY is set.
8381 * NOTE: Forkees are not accepted in the energy-aware wake-up path because
8382 * they don't have any useful utilization data yet and it's not possible to
8383 * forecast their impact on energy consumption. Consequently, they will be
8384 * placed by sched_balance_find_dst_cpu() on the least loaded CPU, which might turn out
8385 * to be energy-inefficient in some use-cases. The alternative would be to
8386 * bias new tasks towards specific types of CPUs first, or to try to infer
8387 * their util_avg from the parent task, but those heuristics could hurt
8388 * other use-cases too. So, until someone finds a better way to solve this,
8389 * let's keep things simple by re-using the existing slow path.
8391 static int find_energy_efficient_cpu(struct task_struct *p, int prev_cpu)
8393 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
8394 unsigned long prev_delta = ULONG_MAX, best_delta = ULONG_MAX;
8395 unsigned long p_util_min = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MIN) : 0;
8396 unsigned long p_util_max = uclamp_is_used() ? uclamp_eff_value(p, UCLAMP_MAX) : 1024;
8397 struct root_domain *rd = this_rq()->rd;
8398 int cpu, best_energy_cpu, target = -1;
8399 int prev_fits = -1, best_fits = -1;
8400 unsigned long best_actual_cap = 0;
8401 unsigned long prev_actual_cap = 0;
8402 struct sched_domain *sd;
8403 struct perf_domain *pd;
8404 struct energy_env eenv;
8406 rcu_read_lock();
8407 pd = rcu_dereference(rd->pd);
8408 if (!pd)
8409 goto unlock;
8412 * Energy-aware wake-up happens on the lowest sched_domain starting
8413 * from sd_asym_cpucapacity spanning over this_cpu and prev_cpu.
8415 sd = rcu_dereference(*this_cpu_ptr(&sd_asym_cpucapacity));
8416 while (sd && !cpumask_test_cpu(prev_cpu, sched_domain_span(sd)))
8417 sd = sd->parent;
8418 if (!sd)
8419 goto unlock;
8421 target = prev_cpu;
8423 sync_entity_load_avg(&p->se);
8424 if (!task_util_est(p) && p_util_min == 0)
8425 goto unlock;
8427 eenv_task_busy_time(&eenv, p, prev_cpu);
8429 for (; pd; pd = pd->next) {
8430 unsigned long util_min = p_util_min, util_max = p_util_max;
8431 unsigned long cpu_cap, cpu_actual_cap, util;
8432 long prev_spare_cap = -1, max_spare_cap = -1;
8433 unsigned long rq_util_min, rq_util_max;
8434 unsigned long cur_delta, base_energy;
8435 int max_spare_cap_cpu = -1;
8436 int fits, max_fits = -1;
8438 cpumask_and(cpus, perf_domain_span(pd), cpu_online_mask);
8440 if (cpumask_empty(cpus))
8441 continue;
8443 /* Account external pressure for the energy estimation */
8444 cpu = cpumask_first(cpus);
8445 cpu_actual_cap = get_actual_cpu_capacity(cpu);
8447 eenv.cpu_cap = cpu_actual_cap;
8448 eenv.pd_cap = 0;
8450 for_each_cpu(cpu, cpus) {
8451 struct rq *rq = cpu_rq(cpu);
8453 eenv.pd_cap += cpu_actual_cap;
8455 if (!cpumask_test_cpu(cpu, sched_domain_span(sd)))
8456 continue;
8458 if (!cpumask_test_cpu(cpu, p->cpus_ptr))
8459 continue;
8461 util = cpu_util(cpu, p, cpu, 0);
8462 cpu_cap = capacity_of(cpu);
8465 * Skip CPUs that cannot satisfy the capacity request.
8466 * IOW, placing the task there would make the CPU
8467 * overutilized. Take uclamp into account to see how
8468 * much capacity we can get out of the CPU; this is
8469 * aligned with sched_cpu_util().
8471 if (uclamp_is_used() && !uclamp_rq_is_idle(rq)) {
8473 * Open code uclamp_rq_util_with() except for
8474 * the clamp() part. I.e.: apply max aggregation
8475 * only. util_fits_cpu() logic requires to
8476 * operate on non clamped util but must use the
8477 * max-aggregated uclamp_{min, max}.
8479 rq_util_min = uclamp_rq_get(rq, UCLAMP_MIN);
8480 rq_util_max = uclamp_rq_get(rq, UCLAMP_MAX);
8482 util_min = max(rq_util_min, p_util_min);
8483 util_max = max(rq_util_max, p_util_max);
8486 fits = util_fits_cpu(util, util_min, util_max, cpu);
8487 if (!fits)
8488 continue;
8490 lsub_positive(&cpu_cap, util);
8492 if (cpu == prev_cpu) {
8493 /* Always use prev_cpu as a candidate. */
8494 prev_spare_cap = cpu_cap;
8495 prev_fits = fits;
8496 } else if ((fits > max_fits) ||
8497 ((fits == max_fits) && ((long)cpu_cap > max_spare_cap))) {
8499 * Find the CPU with the maximum spare capacity
8500 * among the remaining CPUs in the performance
8501 * domain.
8503 max_spare_cap = cpu_cap;
8504 max_spare_cap_cpu = cpu;
8505 max_fits = fits;
8509 if (max_spare_cap_cpu < 0 && prev_spare_cap < 0)
8510 continue;
8512 eenv_pd_busy_time(&eenv, cpus, p);
8513 /* Compute the 'base' energy of the pd, without @p */
8514 base_energy = compute_energy(&eenv, pd, cpus, p, -1);
8516 /* Evaluate the energy impact of using prev_cpu. */
8517 if (prev_spare_cap > -1) {
8518 prev_delta = compute_energy(&eenv, pd, cpus, p,
8519 prev_cpu);
8520 /* CPU utilization has changed */
8521 if (prev_delta < base_energy)
8522 goto unlock;
8523 prev_delta -= base_energy;
8524 prev_actual_cap = cpu_actual_cap;
8525 best_delta = min(best_delta, prev_delta);
8528 /* Evaluate the energy impact of using max_spare_cap_cpu. */
8529 if (max_spare_cap_cpu >= 0 && max_spare_cap > prev_spare_cap) {
8530 /* Current best energy cpu fits better */
8531 if (max_fits < best_fits)
8532 continue;
8535 * Both don't fit performance hint (i.e. uclamp_min)
8536 * but best energy cpu has better capacity.
8538 if ((max_fits < 0) &&
8539 (cpu_actual_cap <= best_actual_cap))
8540 continue;
8542 cur_delta = compute_energy(&eenv, pd, cpus, p,
8543 max_spare_cap_cpu);
8544 /* CPU utilization has changed */
8545 if (cur_delta < base_energy)
8546 goto unlock;
8547 cur_delta -= base_energy;
8550 * Both fit for the task but best energy cpu has lower
8551 * energy impact.
8553 if ((max_fits > 0) && (best_fits > 0) &&
8554 (cur_delta >= best_delta))
8555 continue;
8557 best_delta = cur_delta;
8558 best_energy_cpu = max_spare_cap_cpu;
8559 best_fits = max_fits;
8560 best_actual_cap = cpu_actual_cap;
8563 rcu_read_unlock();
8565 if ((best_fits > prev_fits) ||
8566 ((best_fits > 0) && (best_delta < prev_delta)) ||
8567 ((best_fits < 0) && (best_actual_cap > prev_actual_cap)))
8568 target = best_energy_cpu;
8570 return target;
8572 unlock:
8573 rcu_read_unlock();
8575 return target;
8579 * select_task_rq_fair: Select target runqueue for the waking task in domains
8580 * that have the relevant SD flag set. In practice, this is SD_BALANCE_WAKE,
8581 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
8583 * Balances load by selecting the idlest CPU in the idlest group, or under
8584 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
8586 * Returns the target CPU number.
8588 static int
8589 select_task_rq_fair(struct task_struct *p, int prev_cpu, int wake_flags)
8591 int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
8592 struct sched_domain *tmp, *sd = NULL;
8593 int cpu = smp_processor_id();
8594 int new_cpu = prev_cpu;
8595 int want_affine = 0;
8596 /* SD_flags and WF_flags share the first nibble */
8597 int sd_flag = wake_flags & 0xF;
8600 * required for stable ->cpus_allowed
8602 lockdep_assert_held(&p->pi_lock);
8603 if (wake_flags & WF_TTWU) {
8604 record_wakee(p);
8606 if ((wake_flags & WF_CURRENT_CPU) &&
8607 cpumask_test_cpu(cpu, p->cpus_ptr))
8608 return cpu;
8610 if (!is_rd_overutilized(this_rq()->rd)) {
8611 new_cpu = find_energy_efficient_cpu(p, prev_cpu);
8612 if (new_cpu >= 0)
8613 return new_cpu;
8614 new_cpu = prev_cpu;
8617 want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, p->cpus_ptr);
8620 rcu_read_lock();
8621 for_each_domain(cpu, tmp) {
8623 * If both 'cpu' and 'prev_cpu' are part of this domain,
8624 * cpu is a valid SD_WAKE_AFFINE target.
8626 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
8627 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
8628 if (cpu != prev_cpu)
8629 new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
8631 sd = NULL; /* Prefer wake_affine over balance flags */
8632 break;
8636 * Usually only true for WF_EXEC and WF_FORK, as sched_domains
8637 * usually do not have SD_BALANCE_WAKE set. That means wakeup
8638 * will usually go to the fast path.
8640 if (tmp->flags & sd_flag)
8641 sd = tmp;
8642 else if (!want_affine)
8643 break;
8646 if (unlikely(sd)) {
8647 /* Slow path */
8648 new_cpu = sched_balance_find_dst_cpu(sd, p, cpu, prev_cpu, sd_flag);
8649 } else if (wake_flags & WF_TTWU) { /* XXX always ? */
8650 /* Fast path */
8651 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
8653 rcu_read_unlock();
8655 return new_cpu;
8659 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
8660 * cfs_rq_of(p) references at time of call are still valid and identify the
8661 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
8663 static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
8665 struct sched_entity *se = &p->se;
8667 if (!task_on_rq_migrating(p)) {
8668 remove_entity_load_avg(se);
8671 * Here, the task's PELT values have been updated according to
8672 * the current rq's clock. But if that clock hasn't been
8673 * updated in a while, a substantial idle time will be missed,
8674 * leading to an inflation after wake-up on the new rq.
8676 * Estimate the missing time from the cfs_rq last_update_time
8677 * and update sched_avg to improve the PELT continuity after
8678 * migration.
8680 migrate_se_pelt_lag(se);
8683 /* Tell new CPU we are migrated */
8684 se->avg.last_update_time = 0;
8686 update_scan_period(p, new_cpu);
8689 static void task_dead_fair(struct task_struct *p)
8691 struct sched_entity *se = &p->se;
8693 if (se->sched_delayed) {
8694 struct rq_flags rf;
8695 struct rq *rq;
8697 rq = task_rq_lock(p, &rf);
8698 if (se->sched_delayed) {
8699 update_rq_clock(rq);
8700 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
8702 task_rq_unlock(rq, p, &rf);
8705 remove_entity_load_avg(se);
8709 * Set the max capacity the task is allowed to run at for misfit detection.
8711 static void set_task_max_allowed_capacity(struct task_struct *p)
8713 struct asym_cap_data *entry;
8715 if (!sched_asym_cpucap_active())
8716 return;
8718 rcu_read_lock();
8719 list_for_each_entry_rcu(entry, &asym_cap_list, link) {
8720 cpumask_t *cpumask;
8722 cpumask = cpu_capacity_span(entry);
8723 if (!cpumask_intersects(p->cpus_ptr, cpumask))
8724 continue;
8726 p->max_allowed_capacity = entry->capacity;
8727 break;
8729 rcu_read_unlock();
8732 static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context *ctx)
8734 set_cpus_allowed_common(p, ctx);
8735 set_task_max_allowed_capacity(p);
8738 static int
8739 balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8741 if (sched_fair_runnable(rq))
8742 return 1;
8744 return sched_balance_newidle(rq, rf) != 0;
8746 #else
8747 static inline void set_task_max_allowed_capacity(struct task_struct *p) {}
8748 #endif /* CONFIG_SMP */
8750 static void set_next_buddy(struct sched_entity *se)
8752 for_each_sched_entity(se) {
8753 if (SCHED_WARN_ON(!se->on_rq))
8754 return;
8755 if (se_is_idle(se))
8756 return;
8757 cfs_rq_of(se)->next = se;
8762 * Preempt the current task with a newly woken task if needed:
8764 static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int wake_flags)
8766 struct task_struct *donor = rq->donor;
8767 struct sched_entity *se = &donor->se, *pse = &p->se;
8768 struct cfs_rq *cfs_rq = task_cfs_rq(donor);
8769 int cse_is_idle, pse_is_idle;
8771 if (unlikely(se == pse))
8772 return;
8775 * This is possible from callers such as attach_tasks(), in which we
8776 * unconditionally wakeup_preempt() after an enqueue (which may have
8777 * lead to a throttle). This both saves work and prevents false
8778 * next-buddy nomination below.
8780 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
8781 return;
8783 if (sched_feat(NEXT_BUDDY) && !(wake_flags & WF_FORK)) {
8784 set_next_buddy(pse);
8788 * We can come here with TIF_NEED_RESCHED already set from new task
8789 * wake up path.
8791 * Note: this also catches the edge-case of curr being in a throttled
8792 * group (e.g. via set_curr_task), since update_curr() (in the
8793 * enqueue of curr) will have resulted in resched being set. This
8794 * prevents us from potentially nominating it as a false LAST_BUDDY
8795 * below.
8797 if (test_tsk_need_resched(rq->curr))
8798 return;
8800 if (!sched_feat(WAKEUP_PREEMPTION))
8801 return;
8803 find_matching_se(&se, &pse);
8804 WARN_ON_ONCE(!pse);
8806 cse_is_idle = se_is_idle(se);
8807 pse_is_idle = se_is_idle(pse);
8810 * Preempt an idle entity in favor of a non-idle entity (and don't preempt
8811 * in the inverse case).
8813 if (cse_is_idle && !pse_is_idle)
8814 goto preempt;
8815 if (cse_is_idle != pse_is_idle)
8816 return;
8819 * BATCH and IDLE tasks do not preempt others.
8821 if (unlikely(!normal_policy(p->policy)))
8822 return;
8824 cfs_rq = cfs_rq_of(se);
8825 update_curr(cfs_rq);
8827 * If @p has a shorter slice than current and @p is eligible, override
8828 * current's slice protection in order to allow preemption.
8830 * Note that even if @p does not turn out to be the most eligible
8831 * task at this moment, current's slice protection will be lost.
8833 if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
8834 se->vlag = se->deadline + 1;
8837 * If @p has become the most eligible task, force preemption.
8839 if (pick_eevdf(cfs_rq) == pse)
8840 goto preempt;
8842 return;
8844 preempt:
8845 resched_curr_lazy(rq);
8848 static struct task_struct *pick_task_fair(struct rq *rq)
8850 struct sched_entity *se;
8851 struct cfs_rq *cfs_rq;
8853 again:
8854 cfs_rq = &rq->cfs;
8855 if (!cfs_rq->nr_running)
8856 return NULL;
8858 do {
8859 /* Might not have done put_prev_entity() */
8860 if (cfs_rq->curr && cfs_rq->curr->on_rq)
8861 update_curr(cfs_rq);
8863 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
8864 goto again;
8866 se = pick_next_entity(rq, cfs_rq);
8867 if (!se)
8868 goto again;
8869 cfs_rq = group_cfs_rq(se);
8870 } while (cfs_rq);
8872 return task_of(se);
8875 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8876 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
8878 struct task_struct *
8879 pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
8881 struct sched_entity *se;
8882 struct task_struct *p;
8883 int new_tasks;
8885 again:
8886 p = pick_task_fair(rq);
8887 if (!p)
8888 goto idle;
8889 se = &p->se;
8891 #ifdef CONFIG_FAIR_GROUP_SCHED
8892 if (prev->sched_class != &fair_sched_class)
8893 goto simple;
8895 __put_prev_set_next_dl_server(rq, prev, p);
8898 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
8899 * likely that a next task is from the same cgroup as the current.
8901 * Therefore attempt to avoid putting and setting the entire cgroup
8902 * hierarchy, only change the part that actually changes.
8904 * Since we haven't yet done put_prev_entity and if the selected task
8905 * is a different task than we started out with, try and touch the
8906 * least amount of cfs_rqs.
8908 if (prev != p) {
8909 struct sched_entity *pse = &prev->se;
8910 struct cfs_rq *cfs_rq;
8912 while (!(cfs_rq = is_same_group(se, pse))) {
8913 int se_depth = se->depth;
8914 int pse_depth = pse->depth;
8916 if (se_depth <= pse_depth) {
8917 put_prev_entity(cfs_rq_of(pse), pse);
8918 pse = parent_entity(pse);
8920 if (se_depth >= pse_depth) {
8921 set_next_entity(cfs_rq_of(se), se);
8922 se = parent_entity(se);
8926 put_prev_entity(cfs_rq, pse);
8927 set_next_entity(cfs_rq, se);
8929 __set_next_task_fair(rq, p, true);
8932 return p;
8934 simple:
8935 #endif
8936 put_prev_set_next_task(rq, prev, p);
8937 return p;
8939 idle:
8940 if (!rf)
8941 return NULL;
8943 new_tasks = sched_balance_newidle(rq, rf);
8946 * Because sched_balance_newidle() releases (and re-acquires) rq->lock, it is
8947 * possible for any higher priority task to appear. In that case we
8948 * must re-start the pick_next_entity() loop.
8950 if (new_tasks < 0)
8951 return RETRY_TASK;
8953 if (new_tasks > 0)
8954 goto again;
8957 * rq is about to be idle, check if we need to update the
8958 * lost_idle_time of clock_pelt
8960 update_idle_rq_clock_pelt(rq);
8962 return NULL;
8965 static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
8967 return pick_next_task_fair(rq, prev, NULL);
8970 static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
8972 return !!dl_se->rq->cfs.nr_running;
8975 static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
8977 return pick_task_fair(dl_se->rq);
8980 void fair_server_init(struct rq *rq)
8982 struct sched_dl_entity *dl_se = &rq->fair_server;
8984 init_dl_entity(dl_se);
8986 dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
8990 * Account for a descheduled task:
8992 static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
8994 struct sched_entity *se = &prev->se;
8995 struct cfs_rq *cfs_rq;
8997 for_each_sched_entity(se) {
8998 cfs_rq = cfs_rq_of(se);
8999 put_prev_entity(cfs_rq, se);
9004 * sched_yield() is very simple
9006 static void yield_task_fair(struct rq *rq)
9008 struct task_struct *curr = rq->curr;
9009 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
9010 struct sched_entity *se = &curr->se;
9013 * Are we the only task in the tree?
9015 if (unlikely(rq->nr_running == 1))
9016 return;
9018 clear_buddies(cfs_rq, se);
9020 update_rq_clock(rq);
9022 * Update run-time statistics of the 'current'.
9024 update_curr(cfs_rq);
9026 * Tell update_rq_clock() that we've just updated,
9027 * so we don't do microscopic update in schedule()
9028 * and double the fastpath cost.
9030 rq_clock_skip_update(rq);
9032 se->deadline += calc_delta_fair(se->slice, se);
9035 static bool yield_to_task_fair(struct rq *rq, struct task_struct *p)
9037 struct sched_entity *se = &p->se;
9039 /* throttled hierarchies are not runnable */
9040 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
9041 return false;
9043 /* Tell the scheduler that we'd really like se to run next. */
9044 set_next_buddy(se);
9046 yield_task_fair(rq);
9048 return true;
9051 #ifdef CONFIG_SMP
9052 /**************************************************
9053 * Fair scheduling class load-balancing methods.
9055 * BASICS
9057 * The purpose of load-balancing is to achieve the same basic fairness the
9058 * per-CPU scheduler provides, namely provide a proportional amount of compute
9059 * time to each task. This is expressed in the following equation:
9061 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
9063 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
9064 * W_i,0 is defined as:
9066 * W_i,0 = \Sum_j w_i,j (2)
9068 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
9069 * is derived from the nice value as per sched_prio_to_weight[].
9071 * The weight average is an exponential decay average of the instantaneous
9072 * weight:
9074 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
9076 * C_i is the compute capacity of CPU i, typically it is the
9077 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
9078 * can also include other factors [XXX].
9080 * To achieve this balance we define a measure of imbalance which follows
9081 * directly from (1):
9083 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
9085 * We them move tasks around to minimize the imbalance. In the continuous
9086 * function space it is obvious this converges, in the discrete case we get
9087 * a few fun cases generally called infeasible weight scenarios.
9089 * [XXX expand on:
9090 * - infeasible weights;
9091 * - local vs global optima in the discrete case. ]
9094 * SCHED DOMAINS
9096 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
9097 * for all i,j solution, we create a tree of CPUs that follows the hardware
9098 * topology where each level pairs two lower groups (or better). This results
9099 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
9100 * tree to only the first of the previous level and we decrease the frequency
9101 * of load-balance at each level inversely proportional to the number of CPUs in
9102 * the groups.
9104 * This yields:
9106 * log_2 n 1 n
9107 * \Sum { --- * --- * 2^i } = O(n) (5)
9108 * i = 0 2^i 2^i
9109 * `- size of each group
9110 * | | `- number of CPUs doing load-balance
9111 * | `- freq
9112 * `- sum over all levels
9114 * Coupled with a limit on how many tasks we can migrate every balance pass,
9115 * this makes (5) the runtime complexity of the balancer.
9117 * An important property here is that each CPU is still (indirectly) connected
9118 * to every other CPU in at most O(log n) steps:
9120 * The adjacency matrix of the resulting graph is given by:
9122 * log_2 n
9123 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
9124 * k = 0
9126 * And you'll find that:
9128 * A^(log_2 n)_i,j != 0 for all i,j (7)
9130 * Showing there's indeed a path between every CPU in at most O(log n) steps.
9131 * The task movement gives a factor of O(m), giving a convergence complexity
9132 * of:
9134 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
9137 * WORK CONSERVING
9139 * In order to avoid CPUs going idle while there's still work to do, new idle
9140 * balancing is more aggressive and has the newly idle CPU iterate up the domain
9141 * tree itself instead of relying on other CPUs to bring it work.
9143 * This adds some complexity to both (5) and (8) but it reduces the total idle
9144 * time.
9146 * [XXX more?]
9149 * CGROUPS
9151 * Cgroups make a horror show out of (2), instead of a simple sum we get:
9153 * s_k,i
9154 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
9155 * S_k
9157 * Where
9159 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
9161 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
9163 * The big problem is S_k, its a global sum needed to compute a local (W_i)
9164 * property.
9166 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
9167 * rewrite all of this once again.]
9170 static unsigned long __read_mostly max_load_balance_interval = HZ/10;
9172 enum fbq_type { regular, remote, all };
9175 * 'group_type' describes the group of CPUs at the moment of load balancing.
9177 * The enum is ordered by pulling priority, with the group with lowest priority
9178 * first so the group_type can simply be compared when selecting the busiest
9179 * group. See update_sd_pick_busiest().
9181 enum group_type {
9182 /* The group has spare capacity that can be used to run more tasks. */
9183 group_has_spare = 0,
9185 * The group is fully used and the tasks don't compete for more CPU
9186 * cycles. Nevertheless, some tasks might wait before running.
9188 group_fully_busy,
9190 * One task doesn't fit with CPU's capacity and must be migrated to a
9191 * more powerful CPU.
9193 group_misfit_task,
9195 * Balance SMT group that's fully busy. Can benefit from migration
9196 * a task on SMT with busy sibling to another CPU on idle core.
9198 group_smt_balance,
9200 * SD_ASYM_PACKING only: One local CPU with higher capacity is available,
9201 * and the task should be migrated to it instead of running on the
9202 * current CPU.
9204 group_asym_packing,
9206 * The tasks' affinity constraints previously prevented the scheduler
9207 * from balancing the load across the system.
9209 group_imbalanced,
9211 * The CPU is overloaded and can't provide expected CPU cycles to all
9212 * tasks.
9214 group_overloaded
9217 enum migration_type {
9218 migrate_load = 0,
9219 migrate_util,
9220 migrate_task,
9221 migrate_misfit
9224 #define LBF_ALL_PINNED 0x01
9225 #define LBF_NEED_BREAK 0x02
9226 #define LBF_DST_PINNED 0x04
9227 #define LBF_SOME_PINNED 0x08
9228 #define LBF_ACTIVE_LB 0x10
9230 struct lb_env {
9231 struct sched_domain *sd;
9233 struct rq *src_rq;
9234 int src_cpu;
9236 int dst_cpu;
9237 struct rq *dst_rq;
9239 struct cpumask *dst_grpmask;
9240 int new_dst_cpu;
9241 enum cpu_idle_type idle;
9242 long imbalance;
9243 /* The set of CPUs under consideration for load-balancing */
9244 struct cpumask *cpus;
9246 unsigned int flags;
9248 unsigned int loop;
9249 unsigned int loop_break;
9250 unsigned int loop_max;
9252 enum fbq_type fbq_type;
9253 enum migration_type migration_type;
9254 struct list_head tasks;
9258 * Is this task likely cache-hot:
9260 static int task_hot(struct task_struct *p, struct lb_env *env)
9262 s64 delta;
9264 lockdep_assert_rq_held(env->src_rq);
9266 if (p->sched_class != &fair_sched_class)
9267 return 0;
9269 if (unlikely(task_has_idle_policy(p)))
9270 return 0;
9272 /* SMT siblings share cache */
9273 if (env->sd->flags & SD_SHARE_CPUCAPACITY)
9274 return 0;
9277 * Buddy candidates are cache hot:
9279 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
9280 (&p->se == cfs_rq_of(&p->se)->next))
9281 return 1;
9283 if (sysctl_sched_migration_cost == -1)
9284 return 1;
9287 * Don't migrate task if the task's cookie does not match
9288 * with the destination CPU's core cookie.
9290 if (!sched_core_cookie_match(cpu_rq(env->dst_cpu), p))
9291 return 1;
9293 if (sysctl_sched_migration_cost == 0)
9294 return 0;
9296 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
9298 return delta < (s64)sysctl_sched_migration_cost;
9301 #ifdef CONFIG_NUMA_BALANCING
9303 * Returns 1, if task migration degrades locality
9304 * Returns 0, if task migration improves locality i.e migration preferred.
9305 * Returns -1, if task migration is not affected by locality.
9307 static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
9309 struct numa_group *numa_group = rcu_dereference(p->numa_group);
9310 unsigned long src_weight, dst_weight;
9311 int src_nid, dst_nid, dist;
9313 if (!static_branch_likely(&sched_numa_balancing))
9314 return -1;
9316 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
9317 return -1;
9319 src_nid = cpu_to_node(env->src_cpu);
9320 dst_nid = cpu_to_node(env->dst_cpu);
9322 if (src_nid == dst_nid)
9323 return -1;
9325 /* Migrating away from the preferred node is always bad. */
9326 if (src_nid == p->numa_preferred_nid) {
9327 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
9328 return 1;
9329 else
9330 return -1;
9333 /* Encourage migration to the preferred node. */
9334 if (dst_nid == p->numa_preferred_nid)
9335 return 0;
9337 /* Leaving a core idle is often worse than degrading locality. */
9338 if (env->idle == CPU_IDLE)
9339 return -1;
9341 dist = node_distance(src_nid, dst_nid);
9342 if (numa_group) {
9343 src_weight = group_weight(p, src_nid, dist);
9344 dst_weight = group_weight(p, dst_nid, dist);
9345 } else {
9346 src_weight = task_weight(p, src_nid, dist);
9347 dst_weight = task_weight(p, dst_nid, dist);
9350 return dst_weight < src_weight;
9353 #else
9354 static inline int migrate_degrades_locality(struct task_struct *p,
9355 struct lb_env *env)
9357 return -1;
9359 #endif
9362 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
9364 static
9365 int can_migrate_task(struct task_struct *p, struct lb_env *env)
9367 int tsk_cache_hot;
9369 lockdep_assert_rq_held(env->src_rq);
9372 * We do not migrate tasks that are:
9373 * 1) throttled_lb_pair, or
9374 * 2) cannot be migrated to this CPU due to cpus_ptr, or
9375 * 3) running (obviously), or
9376 * 4) are cache-hot on their current CPU.
9378 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
9379 return 0;
9381 /* Disregard percpu kthreads; they are where they need to be. */
9382 if (kthread_is_per_cpu(p))
9383 return 0;
9385 if (!cpumask_test_cpu(env->dst_cpu, p->cpus_ptr)) {
9386 int cpu;
9388 schedstat_inc(p->stats.nr_failed_migrations_affine);
9390 env->flags |= LBF_SOME_PINNED;
9393 * Remember if this task can be migrated to any other CPU in
9394 * our sched_group. We may want to revisit it if we couldn't
9395 * meet load balance goals by pulling other tasks on src_cpu.
9397 * Avoid computing new_dst_cpu
9398 * - for NEWLY_IDLE
9399 * - if we have already computed one in current iteration
9400 * - if it's an active balance
9402 if (env->idle == CPU_NEWLY_IDLE ||
9403 env->flags & (LBF_DST_PINNED | LBF_ACTIVE_LB))
9404 return 0;
9406 /* Prevent to re-select dst_cpu via env's CPUs: */
9407 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
9408 if (cpumask_test_cpu(cpu, p->cpus_ptr)) {
9409 env->flags |= LBF_DST_PINNED;
9410 env->new_dst_cpu = cpu;
9411 break;
9415 return 0;
9418 /* Record that we found at least one task that could run on dst_cpu */
9419 env->flags &= ~LBF_ALL_PINNED;
9421 if (task_on_cpu(env->src_rq, p)) {
9422 schedstat_inc(p->stats.nr_failed_migrations_running);
9423 return 0;
9427 * Aggressive migration if:
9428 * 1) active balance
9429 * 2) destination numa is preferred
9430 * 3) task is cache cold, or
9431 * 4) too many balance attempts have failed.
9433 if (env->flags & LBF_ACTIVE_LB)
9434 return 1;
9436 tsk_cache_hot = migrate_degrades_locality(p, env);
9437 if (tsk_cache_hot == -1)
9438 tsk_cache_hot = task_hot(p, env);
9440 if (tsk_cache_hot <= 0 ||
9441 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
9442 if (tsk_cache_hot == 1) {
9443 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
9444 schedstat_inc(p->stats.nr_forced_migrations);
9446 return 1;
9449 schedstat_inc(p->stats.nr_failed_migrations_hot);
9450 return 0;
9454 * detach_task() -- detach the task for the migration specified in env
9456 static void detach_task(struct task_struct *p, struct lb_env *env)
9458 lockdep_assert_rq_held(env->src_rq);
9460 deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
9461 set_task_cpu(p, env->dst_cpu);
9465 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
9466 * part of active balancing operations within "domain".
9468 * Returns a task if successful and NULL otherwise.
9470 static struct task_struct *detach_one_task(struct lb_env *env)
9472 struct task_struct *p;
9474 lockdep_assert_rq_held(env->src_rq);
9476 list_for_each_entry_reverse(p,
9477 &env->src_rq->cfs_tasks, se.group_node) {
9478 if (!can_migrate_task(p, env))
9479 continue;
9481 detach_task(p, env);
9484 * Right now, this is only the second place where
9485 * lb_gained[env->idle] is updated (other is detach_tasks)
9486 * so we can safely collect stats here rather than
9487 * inside detach_tasks().
9489 schedstat_inc(env->sd->lb_gained[env->idle]);
9490 return p;
9492 return NULL;
9496 * detach_tasks() -- tries to detach up to imbalance load/util/tasks from
9497 * busiest_rq, as part of a balancing operation within domain "sd".
9499 * Returns number of detached tasks if successful and 0 otherwise.
9501 static int detach_tasks(struct lb_env *env)
9503 struct list_head *tasks = &env->src_rq->cfs_tasks;
9504 unsigned long util, load;
9505 struct task_struct *p;
9506 int detached = 0;
9508 lockdep_assert_rq_held(env->src_rq);
9511 * Source run queue has been emptied by another CPU, clear
9512 * LBF_ALL_PINNED flag as we will not test any task.
9514 if (env->src_rq->nr_running <= 1) {
9515 env->flags &= ~LBF_ALL_PINNED;
9516 return 0;
9519 if (env->imbalance <= 0)
9520 return 0;
9522 while (!list_empty(tasks)) {
9524 * We don't want to steal all, otherwise we may be treated likewise,
9525 * which could at worst lead to a livelock crash.
9527 if (env->idle && env->src_rq->nr_running <= 1)
9528 break;
9530 env->loop++;
9531 /* We've more or less seen every task there is, call it quits */
9532 if (env->loop > env->loop_max)
9533 break;
9535 /* take a breather every nr_migrate tasks */
9536 if (env->loop > env->loop_break) {
9537 env->loop_break += SCHED_NR_MIGRATE_BREAK;
9538 env->flags |= LBF_NEED_BREAK;
9539 break;
9542 p = list_last_entry(tasks, struct task_struct, se.group_node);
9544 if (!can_migrate_task(p, env))
9545 goto next;
9547 switch (env->migration_type) {
9548 case migrate_load:
9550 * Depending of the number of CPUs and tasks and the
9551 * cgroup hierarchy, task_h_load() can return a null
9552 * value. Make sure that env->imbalance decreases
9553 * otherwise detach_tasks() will stop only after
9554 * detaching up to loop_max tasks.
9556 load = max_t(unsigned long, task_h_load(p), 1);
9558 if (sched_feat(LB_MIN) &&
9559 load < 16 && !env->sd->nr_balance_failed)
9560 goto next;
9563 * Make sure that we don't migrate too much load.
9564 * Nevertheless, let relax the constraint if
9565 * scheduler fails to find a good waiting task to
9566 * migrate.
9568 if (shr_bound(load, env->sd->nr_balance_failed) > env->imbalance)
9569 goto next;
9571 env->imbalance -= load;
9572 break;
9574 case migrate_util:
9575 util = task_util_est(p);
9577 if (shr_bound(util, env->sd->nr_balance_failed) > env->imbalance)
9578 goto next;
9580 env->imbalance -= util;
9581 break;
9583 case migrate_task:
9584 env->imbalance--;
9585 break;
9587 case migrate_misfit:
9588 /* This is not a misfit task */
9589 if (task_fits_cpu(p, env->src_cpu))
9590 goto next;
9592 env->imbalance = 0;
9593 break;
9596 detach_task(p, env);
9597 list_add(&p->se.group_node, &env->tasks);
9599 detached++;
9601 #ifdef CONFIG_PREEMPTION
9603 * NEWIDLE balancing is a source of latency, so preemptible
9604 * kernels will stop after the first task is detached to minimize
9605 * the critical section.
9607 if (env->idle == CPU_NEWLY_IDLE)
9608 break;
9609 #endif
9612 * We only want to steal up to the prescribed amount of
9613 * load/util/tasks.
9615 if (env->imbalance <= 0)
9616 break;
9618 continue;
9619 next:
9620 list_move(&p->se.group_node, tasks);
9624 * Right now, this is one of only two places we collect this stat
9625 * so we can safely collect detach_one_task() stats here rather
9626 * than inside detach_one_task().
9628 schedstat_add(env->sd->lb_gained[env->idle], detached);
9630 return detached;
9634 * attach_task() -- attach the task detached by detach_task() to its new rq.
9636 static void attach_task(struct rq *rq, struct task_struct *p)
9638 lockdep_assert_rq_held(rq);
9640 WARN_ON_ONCE(task_rq(p) != rq);
9641 activate_task(rq, p, ENQUEUE_NOCLOCK);
9642 wakeup_preempt(rq, p, 0);
9646 * attach_one_task() -- attaches the task returned from detach_one_task() to
9647 * its new rq.
9649 static void attach_one_task(struct rq *rq, struct task_struct *p)
9651 struct rq_flags rf;
9653 rq_lock(rq, &rf);
9654 update_rq_clock(rq);
9655 attach_task(rq, p);
9656 rq_unlock(rq, &rf);
9660 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
9661 * new rq.
9663 static void attach_tasks(struct lb_env *env)
9665 struct list_head *tasks = &env->tasks;
9666 struct task_struct *p;
9667 struct rq_flags rf;
9669 rq_lock(env->dst_rq, &rf);
9670 update_rq_clock(env->dst_rq);
9672 while (!list_empty(tasks)) {
9673 p = list_first_entry(tasks, struct task_struct, se.group_node);
9674 list_del_init(&p->se.group_node);
9676 attach_task(env->dst_rq, p);
9679 rq_unlock(env->dst_rq, &rf);
9682 #ifdef CONFIG_NO_HZ_COMMON
9683 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
9685 if (cfs_rq->avg.load_avg)
9686 return true;
9688 if (cfs_rq->avg.util_avg)
9689 return true;
9691 return false;
9694 static inline bool others_have_blocked(struct rq *rq)
9696 if (cpu_util_rt(rq))
9697 return true;
9699 if (cpu_util_dl(rq))
9700 return true;
9702 if (hw_load_avg(rq))
9703 return true;
9705 if (cpu_util_irq(rq))
9706 return true;
9708 return false;
9711 static inline void update_blocked_load_tick(struct rq *rq)
9713 WRITE_ONCE(rq->last_blocked_load_update_tick, jiffies);
9716 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked)
9718 if (!has_blocked)
9719 rq->has_blocked_load = 0;
9721 #else
9722 static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq) { return false; }
9723 static inline bool others_have_blocked(struct rq *rq) { return false; }
9724 static inline void update_blocked_load_tick(struct rq *rq) {}
9725 static inline void update_blocked_load_status(struct rq *rq, bool has_blocked) {}
9726 #endif
9728 static bool __update_blocked_others(struct rq *rq, bool *done)
9730 bool updated;
9733 * update_load_avg() can call cpufreq_update_util(). Make sure that RT,
9734 * DL and IRQ signals have been updated before updating CFS.
9736 updated = update_other_load_avgs(rq);
9738 if (others_have_blocked(rq))
9739 *done = false;
9741 return updated;
9744 #ifdef CONFIG_FAIR_GROUP_SCHED
9746 static bool __update_blocked_fair(struct rq *rq, bool *done)
9748 struct cfs_rq *cfs_rq, *pos;
9749 bool decayed = false;
9750 int cpu = cpu_of(rq);
9753 * Iterates the task_group tree in a bottom up fashion, see
9754 * list_add_leaf_cfs_rq() for details.
9756 for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
9757 struct sched_entity *se;
9759 if (update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq)) {
9760 update_tg_load_avg(cfs_rq);
9762 if (cfs_rq->nr_running == 0)
9763 update_idle_cfs_rq_clock_pelt(cfs_rq);
9765 if (cfs_rq == &rq->cfs)
9766 decayed = true;
9769 /* Propagate pending load changes to the parent, if any: */
9770 se = cfs_rq->tg->se[cpu];
9771 if (se && !skip_blocked_update(se))
9772 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
9775 * There can be a lot of idle CPU cgroups. Don't let fully
9776 * decayed cfs_rqs linger on the list.
9778 if (cfs_rq_is_decayed(cfs_rq))
9779 list_del_leaf_cfs_rq(cfs_rq);
9781 /* Don't need periodic decay once load/util_avg are null */
9782 if (cfs_rq_has_blocked(cfs_rq))
9783 *done = false;
9786 return decayed;
9790 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9791 * This needs to be done in a top-down fashion because the load of a child
9792 * group is a fraction of its parents load.
9794 static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9796 struct rq *rq = rq_of(cfs_rq);
9797 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
9798 unsigned long now = jiffies;
9799 unsigned long load;
9801 if (cfs_rq->last_h_load_update == now)
9802 return;
9804 WRITE_ONCE(cfs_rq->h_load_next, NULL);
9805 for_each_sched_entity(se) {
9806 cfs_rq = cfs_rq_of(se);
9807 WRITE_ONCE(cfs_rq->h_load_next, se);
9808 if (cfs_rq->last_h_load_update == now)
9809 break;
9812 if (!se) {
9813 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
9814 cfs_rq->last_h_load_update = now;
9817 while ((se = READ_ONCE(cfs_rq->h_load_next)) != NULL) {
9818 load = cfs_rq->h_load;
9819 load = div64_ul(load * se->avg.load_avg,
9820 cfs_rq_load_avg(cfs_rq) + 1);
9821 cfs_rq = group_cfs_rq(se);
9822 cfs_rq->h_load = load;
9823 cfs_rq->last_h_load_update = now;
9827 static unsigned long task_h_load(struct task_struct *p)
9829 struct cfs_rq *cfs_rq = task_cfs_rq(p);
9831 update_cfs_rq_h_load(cfs_rq);
9832 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
9833 cfs_rq_load_avg(cfs_rq) + 1);
9835 #else
9836 static bool __update_blocked_fair(struct rq *rq, bool *done)
9838 struct cfs_rq *cfs_rq = &rq->cfs;
9839 bool decayed;
9841 decayed = update_cfs_rq_load_avg(cfs_rq_clock_pelt(cfs_rq), cfs_rq);
9842 if (cfs_rq_has_blocked(cfs_rq))
9843 *done = false;
9845 return decayed;
9848 static unsigned long task_h_load(struct task_struct *p)
9850 return p->se.avg.load_avg;
9852 #endif
9854 static void sched_balance_update_blocked_averages(int cpu)
9856 bool decayed = false, done = true;
9857 struct rq *rq = cpu_rq(cpu);
9858 struct rq_flags rf;
9860 rq_lock_irqsave(rq, &rf);
9861 update_blocked_load_tick(rq);
9862 update_rq_clock(rq);
9864 decayed |= __update_blocked_others(rq, &done);
9865 decayed |= __update_blocked_fair(rq, &done);
9867 update_blocked_load_status(rq, !done);
9868 if (decayed)
9869 cpufreq_update_util(rq, 0);
9870 rq_unlock_irqrestore(rq, &rf);
9873 /********** Helpers for sched_balance_find_src_group ************************/
9876 * sg_lb_stats - stats of a sched_group required for load-balancing:
9878 struct sg_lb_stats {
9879 unsigned long avg_load; /* Avg load over the CPUs of the group */
9880 unsigned long group_load; /* Total load over the CPUs of the group */
9881 unsigned long group_capacity; /* Capacity over the CPUs of the group */
9882 unsigned long group_util; /* Total utilization over the CPUs of the group */
9883 unsigned long group_runnable; /* Total runnable time over the CPUs of the group */
9884 unsigned int sum_nr_running; /* Nr of all tasks running in the group */
9885 unsigned int sum_h_nr_running; /* Nr of CFS tasks running in the group */
9886 unsigned int idle_cpus; /* Nr of idle CPUs in the group */
9887 unsigned int group_weight;
9888 enum group_type group_type;
9889 unsigned int group_asym_packing; /* Tasks should be moved to preferred CPU */
9890 unsigned int group_smt_balance; /* Task on busy SMT be moved */
9891 unsigned long group_misfit_task_load; /* A CPU has a task too big for its capacity */
9892 #ifdef CONFIG_NUMA_BALANCING
9893 unsigned int nr_numa_running;
9894 unsigned int nr_preferred_running;
9895 #endif
9899 * sd_lb_stats - stats of a sched_domain required for load-balancing:
9901 struct sd_lb_stats {
9902 struct sched_group *busiest; /* Busiest group in this sd */
9903 struct sched_group *local; /* Local group in this sd */
9904 unsigned long total_load; /* Total load of all groups in sd */
9905 unsigned long total_capacity; /* Total capacity of all groups in sd */
9906 unsigned long avg_load; /* Average load across all groups in sd */
9907 unsigned int prefer_sibling; /* Tasks should go to sibling first */
9909 struct sg_lb_stats busiest_stat; /* Statistics of the busiest group */
9910 struct sg_lb_stats local_stat; /* Statistics of the local group */
9913 static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
9916 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
9917 * local_stat because update_sg_lb_stats() does a full clear/assignment.
9918 * We must however set busiest_stat::group_type and
9919 * busiest_stat::idle_cpus to the worst busiest group because
9920 * update_sd_pick_busiest() reads these before assignment.
9922 *sds = (struct sd_lb_stats){
9923 .busiest = NULL,
9924 .local = NULL,
9925 .total_load = 0UL,
9926 .total_capacity = 0UL,
9927 .busiest_stat = {
9928 .idle_cpus = UINT_MAX,
9929 .group_type = group_has_spare,
9934 static unsigned long scale_rt_capacity(int cpu)
9936 unsigned long max = get_actual_cpu_capacity(cpu);
9937 struct rq *rq = cpu_rq(cpu);
9938 unsigned long used, free;
9939 unsigned long irq;
9941 irq = cpu_util_irq(rq);
9943 if (unlikely(irq >= max))
9944 return 1;
9947 * avg_rt.util_avg and avg_dl.util_avg track binary signals
9948 * (running and not running) with weights 0 and 1024 respectively.
9950 used = cpu_util_rt(rq);
9951 used += cpu_util_dl(rq);
9953 if (unlikely(used >= max))
9954 return 1;
9956 free = max - used;
9958 return scale_irq_capacity(free, irq, max);
9961 static void update_cpu_capacity(struct sched_domain *sd, int cpu)
9963 unsigned long capacity = scale_rt_capacity(cpu);
9964 struct sched_group *sdg = sd->groups;
9966 if (!capacity)
9967 capacity = 1;
9969 cpu_rq(cpu)->cpu_capacity = capacity;
9970 trace_sched_cpu_capacity_tp(cpu_rq(cpu));
9972 sdg->sgc->capacity = capacity;
9973 sdg->sgc->min_capacity = capacity;
9974 sdg->sgc->max_capacity = capacity;
9977 void update_group_capacity(struct sched_domain *sd, int cpu)
9979 struct sched_domain *child = sd->child;
9980 struct sched_group *group, *sdg = sd->groups;
9981 unsigned long capacity, min_capacity, max_capacity;
9982 unsigned long interval;
9984 interval = msecs_to_jiffies(sd->balance_interval);
9985 interval = clamp(interval, 1UL, max_load_balance_interval);
9986 sdg->sgc->next_update = jiffies + interval;
9988 if (!child) {
9989 update_cpu_capacity(sd, cpu);
9990 return;
9993 capacity = 0;
9994 min_capacity = ULONG_MAX;
9995 max_capacity = 0;
9997 if (child->flags & SD_OVERLAP) {
9999 * SD_OVERLAP domains cannot assume that child groups
10000 * span the current group.
10003 for_each_cpu(cpu, sched_group_span(sdg)) {
10004 unsigned long cpu_cap = capacity_of(cpu);
10006 capacity += cpu_cap;
10007 min_capacity = min(cpu_cap, min_capacity);
10008 max_capacity = max(cpu_cap, max_capacity);
10010 } else {
10012 * !SD_OVERLAP domains can assume that child groups
10013 * span the current group.
10016 group = child->groups;
10017 do {
10018 struct sched_group_capacity *sgc = group->sgc;
10020 capacity += sgc->capacity;
10021 min_capacity = min(sgc->min_capacity, min_capacity);
10022 max_capacity = max(sgc->max_capacity, max_capacity);
10023 group = group->next;
10024 } while (group != child->groups);
10027 sdg->sgc->capacity = capacity;
10028 sdg->sgc->min_capacity = min_capacity;
10029 sdg->sgc->max_capacity = max_capacity;
10033 * Check whether the capacity of the rq has been noticeably reduced by side
10034 * activity. The imbalance_pct is used for the threshold.
10035 * Return true is the capacity is reduced
10037 static inline int
10038 check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
10040 return ((rq->cpu_capacity * sd->imbalance_pct) <
10041 (arch_scale_cpu_capacity(cpu_of(rq)) * 100));
10044 /* Check if the rq has a misfit task */
10045 static inline bool check_misfit_status(struct rq *rq)
10047 return rq->misfit_task_load;
10051 * Group imbalance indicates (and tries to solve) the problem where balancing
10052 * groups is inadequate due to ->cpus_ptr constraints.
10054 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
10055 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
10056 * Something like:
10058 * { 0 1 2 3 } { 4 5 6 7 }
10059 * * * * *
10061 * If we were to balance group-wise we'd place two tasks in the first group and
10062 * two tasks in the second group. Clearly this is undesired as it will overload
10063 * cpu 3 and leave one of the CPUs in the second group unused.
10065 * The current solution to this issue is detecting the skew in the first group
10066 * by noticing the lower domain failed to reach balance and had difficulty
10067 * moving tasks due to affinity constraints.
10069 * When this is so detected; this group becomes a candidate for busiest; see
10070 * update_sd_pick_busiest(). And calculate_imbalance() and
10071 * sched_balance_find_src_group() avoid some of the usual balance conditions to allow it
10072 * to create an effective group imbalance.
10074 * This is a somewhat tricky proposition since the next run might not find the
10075 * group imbalance and decide the groups need to be balanced again. A most
10076 * subtle and fragile situation.
10079 static inline int sg_imbalanced(struct sched_group *group)
10081 return group->sgc->imbalance;
10085 * group_has_capacity returns true if the group has spare capacity that could
10086 * be used by some tasks.
10087 * We consider that a group has spare capacity if the number of task is
10088 * smaller than the number of CPUs or if the utilization is lower than the
10089 * available capacity for CFS tasks.
10090 * For the latter, we use a threshold to stabilize the state, to take into
10091 * account the variance of the tasks' load and to return true if the available
10092 * capacity in meaningful for the load balancer.
10093 * As an example, an available capacity of 1% can appear but it doesn't make
10094 * any benefit for the load balance.
10096 static inline bool
10097 group_has_capacity(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10099 if (sgs->sum_nr_running < sgs->group_weight)
10100 return true;
10102 if ((sgs->group_capacity * imbalance_pct) <
10103 (sgs->group_runnable * 100))
10104 return false;
10106 if ((sgs->group_capacity * 100) >
10107 (sgs->group_util * imbalance_pct))
10108 return true;
10110 return false;
10114 * group_is_overloaded returns true if the group has more tasks than it can
10115 * handle.
10116 * group_is_overloaded is not equals to !group_has_capacity because a group
10117 * with the exact right number of tasks, has no more spare capacity but is not
10118 * overloaded so both group_has_capacity and group_is_overloaded return
10119 * false.
10121 static inline bool
10122 group_is_overloaded(unsigned int imbalance_pct, struct sg_lb_stats *sgs)
10124 if (sgs->sum_nr_running <= sgs->group_weight)
10125 return false;
10127 if ((sgs->group_capacity * 100) <
10128 (sgs->group_util * imbalance_pct))
10129 return true;
10131 if ((sgs->group_capacity * imbalance_pct) <
10132 (sgs->group_runnable * 100))
10133 return true;
10135 return false;
10138 static inline enum
10139 group_type group_classify(unsigned int imbalance_pct,
10140 struct sched_group *group,
10141 struct sg_lb_stats *sgs)
10143 if (group_is_overloaded(imbalance_pct, sgs))
10144 return group_overloaded;
10146 if (sg_imbalanced(group))
10147 return group_imbalanced;
10149 if (sgs->group_asym_packing)
10150 return group_asym_packing;
10152 if (sgs->group_smt_balance)
10153 return group_smt_balance;
10155 if (sgs->group_misfit_task_load)
10156 return group_misfit_task;
10158 if (!group_has_capacity(imbalance_pct, sgs))
10159 return group_fully_busy;
10161 return group_has_spare;
10165 * sched_use_asym_prio - Check whether asym_packing priority must be used
10166 * @sd: The scheduling domain of the load balancing
10167 * @cpu: A CPU
10169 * Always use CPU priority when balancing load between SMT siblings. When
10170 * balancing load between cores, it is not sufficient that @cpu is idle. Only
10171 * use CPU priority if the whole core is idle.
10173 * Returns: True if the priority of @cpu must be followed. False otherwise.
10175 static bool sched_use_asym_prio(struct sched_domain *sd, int cpu)
10177 if (!(sd->flags & SD_ASYM_PACKING))
10178 return false;
10180 if (!sched_smt_active())
10181 return true;
10183 return sd->flags & SD_SHARE_CPUCAPACITY || is_core_idle(cpu);
10186 static inline bool sched_asym(struct sched_domain *sd, int dst_cpu, int src_cpu)
10189 * First check if @dst_cpu can do asym_packing load balance. Only do it
10190 * if it has higher priority than @src_cpu.
10192 return sched_use_asym_prio(sd, dst_cpu) &&
10193 sched_asym_prefer(dst_cpu, src_cpu);
10197 * sched_group_asym - Check if the destination CPU can do asym_packing balance
10198 * @env: The load balancing environment
10199 * @sgs: Load-balancing statistics of the candidate busiest group
10200 * @group: The candidate busiest group
10202 * @env::dst_cpu can do asym_packing if it has higher priority than the
10203 * preferred CPU of @group.
10205 * Return: true if @env::dst_cpu can do with asym_packing load balance. False
10206 * otherwise.
10208 static inline bool
10209 sched_group_asym(struct lb_env *env, struct sg_lb_stats *sgs, struct sched_group *group)
10212 * CPU priorities do not make sense for SMT cores with more than one
10213 * busy sibling.
10215 if ((group->flags & SD_SHARE_CPUCAPACITY) &&
10216 (sgs->group_weight - sgs->idle_cpus != 1))
10217 return false;
10219 return sched_asym(env->sd, env->dst_cpu, group->asym_prefer_cpu);
10222 /* One group has more than one SMT CPU while the other group does not */
10223 static inline bool smt_vs_nonsmt_groups(struct sched_group *sg1,
10224 struct sched_group *sg2)
10226 if (!sg1 || !sg2)
10227 return false;
10229 return (sg1->flags & SD_SHARE_CPUCAPACITY) !=
10230 (sg2->flags & SD_SHARE_CPUCAPACITY);
10233 static inline bool smt_balance(struct lb_env *env, struct sg_lb_stats *sgs,
10234 struct sched_group *group)
10236 if (!env->idle)
10237 return false;
10240 * For SMT source group, it is better to move a task
10241 * to a CPU that doesn't have multiple tasks sharing its CPU capacity.
10242 * Note that if a group has a single SMT, SD_SHARE_CPUCAPACITY
10243 * will not be on.
10245 if (group->flags & SD_SHARE_CPUCAPACITY &&
10246 sgs->sum_h_nr_running > 1)
10247 return true;
10249 return false;
10252 static inline long sibling_imbalance(struct lb_env *env,
10253 struct sd_lb_stats *sds,
10254 struct sg_lb_stats *busiest,
10255 struct sg_lb_stats *local)
10257 int ncores_busiest, ncores_local;
10258 long imbalance;
10260 if (!env->idle || !busiest->sum_nr_running)
10261 return 0;
10263 ncores_busiest = sds->busiest->cores;
10264 ncores_local = sds->local->cores;
10266 if (ncores_busiest == ncores_local) {
10267 imbalance = busiest->sum_nr_running;
10268 lsub_positive(&imbalance, local->sum_nr_running);
10269 return imbalance;
10272 /* Balance such that nr_running/ncores ratio are same on both groups */
10273 imbalance = ncores_local * busiest->sum_nr_running;
10274 lsub_positive(&imbalance, ncores_busiest * local->sum_nr_running);
10275 /* Normalize imbalance and do rounding on normalization */
10276 imbalance = 2 * imbalance + ncores_local + ncores_busiest;
10277 imbalance /= ncores_local + ncores_busiest;
10279 /* Take advantage of resource in an empty sched group */
10280 if (imbalance <= 1 && local->sum_nr_running == 0 &&
10281 busiest->sum_nr_running > 1)
10282 imbalance = 2;
10284 return imbalance;
10287 static inline bool
10288 sched_reduced_capacity(struct rq *rq, struct sched_domain *sd)
10291 * When there is more than 1 task, the group_overloaded case already
10292 * takes care of cpu with reduced capacity
10294 if (rq->cfs.h_nr_running != 1)
10295 return false;
10297 return check_cpu_capacity(rq, sd);
10301 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
10302 * @env: The load balancing environment.
10303 * @sds: Load-balancing data with statistics of the local group.
10304 * @group: sched_group whose statistics are to be updated.
10305 * @sgs: variable to hold the statistics for this group.
10306 * @sg_overloaded: sched_group is overloaded
10307 * @sg_overutilized: sched_group is overutilized
10309 static inline void update_sg_lb_stats(struct lb_env *env,
10310 struct sd_lb_stats *sds,
10311 struct sched_group *group,
10312 struct sg_lb_stats *sgs,
10313 bool *sg_overloaded,
10314 bool *sg_overutilized)
10316 int i, nr_running, local_group;
10318 memset(sgs, 0, sizeof(*sgs));
10320 local_group = group == sds->local;
10322 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
10323 struct rq *rq = cpu_rq(i);
10324 unsigned long load = cpu_load(rq);
10326 sgs->group_load += load;
10327 sgs->group_util += cpu_util_cfs(i);
10328 sgs->group_runnable += cpu_runnable(rq);
10329 sgs->sum_h_nr_running += rq->cfs.h_nr_running;
10331 nr_running = rq->nr_running;
10332 sgs->sum_nr_running += nr_running;
10334 if (nr_running > 1)
10335 *sg_overloaded = 1;
10337 if (cpu_overutilized(i))
10338 *sg_overutilized = 1;
10340 #ifdef CONFIG_NUMA_BALANCING
10341 sgs->nr_numa_running += rq->nr_numa_running;
10342 sgs->nr_preferred_running += rq->nr_preferred_running;
10343 #endif
10345 * No need to call idle_cpu() if nr_running is not 0
10347 if (!nr_running && idle_cpu(i)) {
10348 sgs->idle_cpus++;
10349 /* Idle cpu can't have misfit task */
10350 continue;
10353 if (local_group)
10354 continue;
10356 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
10357 /* Check for a misfit task on the cpu */
10358 if (sgs->group_misfit_task_load < rq->misfit_task_load) {
10359 sgs->group_misfit_task_load = rq->misfit_task_load;
10360 *sg_overloaded = 1;
10362 } else if (env->idle && sched_reduced_capacity(rq, env->sd)) {
10363 /* Check for a task running on a CPU with reduced capacity */
10364 if (sgs->group_misfit_task_load < load)
10365 sgs->group_misfit_task_load = load;
10369 sgs->group_capacity = group->sgc->capacity;
10371 sgs->group_weight = group->group_weight;
10373 /* Check if dst CPU is idle and preferred to this group */
10374 if (!local_group && env->idle && sgs->sum_h_nr_running &&
10375 sched_group_asym(env, sgs, group))
10376 sgs->group_asym_packing = 1;
10378 /* Check for loaded SMT group to be balanced to dst CPU */
10379 if (!local_group && smt_balance(env, sgs, group))
10380 sgs->group_smt_balance = 1;
10382 sgs->group_type = group_classify(env->sd->imbalance_pct, group, sgs);
10384 /* Computing avg_load makes sense only when group is overloaded */
10385 if (sgs->group_type == group_overloaded)
10386 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10387 sgs->group_capacity;
10391 * update_sd_pick_busiest - return 1 on busiest group
10392 * @env: The load balancing environment.
10393 * @sds: sched_domain statistics
10394 * @sg: sched_group candidate to be checked for being the busiest
10395 * @sgs: sched_group statistics
10397 * Determine if @sg is a busier group than the previously selected
10398 * busiest group.
10400 * Return: %true if @sg is a busier group than the previously selected
10401 * busiest group. %false otherwise.
10403 static bool update_sd_pick_busiest(struct lb_env *env,
10404 struct sd_lb_stats *sds,
10405 struct sched_group *sg,
10406 struct sg_lb_stats *sgs)
10408 struct sg_lb_stats *busiest = &sds->busiest_stat;
10410 /* Make sure that there is at least one task to pull */
10411 if (!sgs->sum_h_nr_running)
10412 return false;
10415 * Don't try to pull misfit tasks we can't help.
10416 * We can use max_capacity here as reduction in capacity on some
10417 * CPUs in the group should either be possible to resolve
10418 * internally or be covered by avg_load imbalance (eventually).
10420 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10421 (sgs->group_type == group_misfit_task) &&
10422 (!capacity_greater(capacity_of(env->dst_cpu), sg->sgc->max_capacity) ||
10423 sds->local_stat.group_type != group_has_spare))
10424 return false;
10426 if (sgs->group_type > busiest->group_type)
10427 return true;
10429 if (sgs->group_type < busiest->group_type)
10430 return false;
10433 * The candidate and the current busiest group are the same type of
10434 * group. Let check which one is the busiest according to the type.
10437 switch (sgs->group_type) {
10438 case group_overloaded:
10439 /* Select the overloaded group with highest avg_load. */
10440 return sgs->avg_load > busiest->avg_load;
10442 case group_imbalanced:
10444 * Select the 1st imbalanced group as we don't have any way to
10445 * choose one more than another.
10447 return false;
10449 case group_asym_packing:
10450 /* Prefer to move from lowest priority CPU's work */
10451 return sched_asym_prefer(sds->busiest->asym_prefer_cpu, sg->asym_prefer_cpu);
10453 case group_misfit_task:
10455 * If we have more than one misfit sg go with the biggest
10456 * misfit.
10458 return sgs->group_misfit_task_load > busiest->group_misfit_task_load;
10460 case group_smt_balance:
10462 * Check if we have spare CPUs on either SMT group to
10463 * choose has spare or fully busy handling.
10465 if (sgs->idle_cpus != 0 || busiest->idle_cpus != 0)
10466 goto has_spare;
10468 fallthrough;
10470 case group_fully_busy:
10472 * Select the fully busy group with highest avg_load. In
10473 * theory, there is no need to pull task from such kind of
10474 * group because tasks have all compute capacity that they need
10475 * but we can still improve the overall throughput by reducing
10476 * contention when accessing shared HW resources.
10478 * XXX for now avg_load is not computed and always 0 so we
10479 * select the 1st one, except if @sg is composed of SMT
10480 * siblings.
10483 if (sgs->avg_load < busiest->avg_load)
10484 return false;
10486 if (sgs->avg_load == busiest->avg_load) {
10488 * SMT sched groups need more help than non-SMT groups.
10489 * If @sg happens to also be SMT, either choice is good.
10491 if (sds->busiest->flags & SD_SHARE_CPUCAPACITY)
10492 return false;
10495 break;
10497 case group_has_spare:
10499 * Do not pick sg with SMT CPUs over sg with pure CPUs,
10500 * as we do not want to pull task off SMT core with one task
10501 * and make the core idle.
10503 if (smt_vs_nonsmt_groups(sds->busiest, sg)) {
10504 if (sg->flags & SD_SHARE_CPUCAPACITY && sgs->sum_h_nr_running <= 1)
10505 return false;
10506 else
10507 return true;
10509 has_spare:
10512 * Select not overloaded group with lowest number of idle CPUs
10513 * and highest number of running tasks. We could also compare
10514 * the spare capacity which is more stable but it can end up
10515 * that the group has less spare capacity but finally more idle
10516 * CPUs which means less opportunity to pull tasks.
10518 if (sgs->idle_cpus > busiest->idle_cpus)
10519 return false;
10520 else if ((sgs->idle_cpus == busiest->idle_cpus) &&
10521 (sgs->sum_nr_running <= busiest->sum_nr_running))
10522 return false;
10524 break;
10528 * Candidate sg has no more than one task per CPU and has higher
10529 * per-CPU capacity. Migrating tasks to less capable CPUs may harm
10530 * throughput. Maximize throughput, power/energy consequences are not
10531 * considered.
10533 if ((env->sd->flags & SD_ASYM_CPUCAPACITY) &&
10534 (sgs->group_type <= group_fully_busy) &&
10535 (capacity_greater(sg->sgc->min_capacity, capacity_of(env->dst_cpu))))
10536 return false;
10538 return true;
10541 #ifdef CONFIG_NUMA_BALANCING
10542 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10544 if (sgs->sum_h_nr_running > sgs->nr_numa_running)
10545 return regular;
10546 if (sgs->sum_h_nr_running > sgs->nr_preferred_running)
10547 return remote;
10548 return all;
10551 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10553 if (rq->nr_running > rq->nr_numa_running)
10554 return regular;
10555 if (rq->nr_running > rq->nr_preferred_running)
10556 return remote;
10557 return all;
10559 #else
10560 static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
10562 return all;
10565 static inline enum fbq_type fbq_classify_rq(struct rq *rq)
10567 return regular;
10569 #endif /* CONFIG_NUMA_BALANCING */
10572 struct sg_lb_stats;
10575 * task_running_on_cpu - return 1 if @p is running on @cpu.
10578 static unsigned int task_running_on_cpu(int cpu, struct task_struct *p)
10580 /* Task has no contribution or is new */
10581 if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
10582 return 0;
10584 if (task_on_rq_queued(p))
10585 return 1;
10587 return 0;
10591 * idle_cpu_without - would a given CPU be idle without p ?
10592 * @cpu: the processor on which idleness is tested.
10593 * @p: task which should be ignored.
10595 * Return: 1 if the CPU would be idle. 0 otherwise.
10597 static int idle_cpu_without(int cpu, struct task_struct *p)
10599 struct rq *rq = cpu_rq(cpu);
10601 if (rq->curr != rq->idle && rq->curr != p)
10602 return 0;
10605 * rq->nr_running can't be used but an updated version without the
10606 * impact of p on cpu must be used instead. The updated nr_running
10607 * be computed and tested before calling idle_cpu_without().
10610 if (rq->ttwu_pending)
10611 return 0;
10613 return 1;
10617 * update_sg_wakeup_stats - Update sched_group's statistics for wakeup.
10618 * @sd: The sched_domain level to look for idlest group.
10619 * @group: sched_group whose statistics are to be updated.
10620 * @sgs: variable to hold the statistics for this group.
10621 * @p: The task for which we look for the idlest group/CPU.
10623 static inline void update_sg_wakeup_stats(struct sched_domain *sd,
10624 struct sched_group *group,
10625 struct sg_lb_stats *sgs,
10626 struct task_struct *p)
10628 int i, nr_running;
10630 memset(sgs, 0, sizeof(*sgs));
10632 /* Assume that task can't fit any CPU of the group */
10633 if (sd->flags & SD_ASYM_CPUCAPACITY)
10634 sgs->group_misfit_task_load = 1;
10636 for_each_cpu(i, sched_group_span(group)) {
10637 struct rq *rq = cpu_rq(i);
10638 unsigned int local;
10640 sgs->group_load += cpu_load_without(rq, p);
10641 sgs->group_util += cpu_util_without(i, p);
10642 sgs->group_runnable += cpu_runnable_without(rq, p);
10643 local = task_running_on_cpu(i, p);
10644 sgs->sum_h_nr_running += rq->cfs.h_nr_running - local;
10646 nr_running = rq->nr_running - local;
10647 sgs->sum_nr_running += nr_running;
10650 * No need to call idle_cpu_without() if nr_running is not 0
10652 if (!nr_running && idle_cpu_without(i, p))
10653 sgs->idle_cpus++;
10655 /* Check if task fits in the CPU */
10656 if (sd->flags & SD_ASYM_CPUCAPACITY &&
10657 sgs->group_misfit_task_load &&
10658 task_fits_cpu(p, i))
10659 sgs->group_misfit_task_load = 0;
10663 sgs->group_capacity = group->sgc->capacity;
10665 sgs->group_weight = group->group_weight;
10667 sgs->group_type = group_classify(sd->imbalance_pct, group, sgs);
10670 * Computing avg_load makes sense only when group is fully busy or
10671 * overloaded
10673 if (sgs->group_type == group_fully_busy ||
10674 sgs->group_type == group_overloaded)
10675 sgs->avg_load = (sgs->group_load * SCHED_CAPACITY_SCALE) /
10676 sgs->group_capacity;
10679 static bool update_pick_idlest(struct sched_group *idlest,
10680 struct sg_lb_stats *idlest_sgs,
10681 struct sched_group *group,
10682 struct sg_lb_stats *sgs)
10684 if (sgs->group_type < idlest_sgs->group_type)
10685 return true;
10687 if (sgs->group_type > idlest_sgs->group_type)
10688 return false;
10691 * The candidate and the current idlest group are the same type of
10692 * group. Let check which one is the idlest according to the type.
10695 switch (sgs->group_type) {
10696 case group_overloaded:
10697 case group_fully_busy:
10698 /* Select the group with lowest avg_load. */
10699 if (idlest_sgs->avg_load <= sgs->avg_load)
10700 return false;
10701 break;
10703 case group_imbalanced:
10704 case group_asym_packing:
10705 case group_smt_balance:
10706 /* Those types are not used in the slow wakeup path */
10707 return false;
10709 case group_misfit_task:
10710 /* Select group with the highest max capacity */
10711 if (idlest->sgc->max_capacity >= group->sgc->max_capacity)
10712 return false;
10713 break;
10715 case group_has_spare:
10716 /* Select group with most idle CPUs */
10717 if (idlest_sgs->idle_cpus > sgs->idle_cpus)
10718 return false;
10720 /* Select group with lowest group_util */
10721 if (idlest_sgs->idle_cpus == sgs->idle_cpus &&
10722 idlest_sgs->group_util <= sgs->group_util)
10723 return false;
10725 break;
10728 return true;
10732 * sched_balance_find_dst_group() finds and returns the least busy CPU group within the
10733 * domain.
10735 * Assumes p is allowed on at least one CPU in sd.
10737 static struct sched_group *
10738 sched_balance_find_dst_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
10740 struct sched_group *idlest = NULL, *local = NULL, *group = sd->groups;
10741 struct sg_lb_stats local_sgs, tmp_sgs;
10742 struct sg_lb_stats *sgs;
10743 unsigned long imbalance;
10744 struct sg_lb_stats idlest_sgs = {
10745 .avg_load = UINT_MAX,
10746 .group_type = group_overloaded,
10749 do {
10750 int local_group;
10752 /* Skip over this group if it has no CPUs allowed */
10753 if (!cpumask_intersects(sched_group_span(group),
10754 p->cpus_ptr))
10755 continue;
10757 /* Skip over this group if no cookie matched */
10758 if (!sched_group_cookie_match(cpu_rq(this_cpu), p, group))
10759 continue;
10761 local_group = cpumask_test_cpu(this_cpu,
10762 sched_group_span(group));
10764 if (local_group) {
10765 sgs = &local_sgs;
10766 local = group;
10767 } else {
10768 sgs = &tmp_sgs;
10771 update_sg_wakeup_stats(sd, group, sgs, p);
10773 if (!local_group && update_pick_idlest(idlest, &idlest_sgs, group, sgs)) {
10774 idlest = group;
10775 idlest_sgs = *sgs;
10778 } while (group = group->next, group != sd->groups);
10781 /* There is no idlest group to push tasks to */
10782 if (!idlest)
10783 return NULL;
10785 /* The local group has been skipped because of CPU affinity */
10786 if (!local)
10787 return idlest;
10790 * If the local group is idler than the selected idlest group
10791 * don't try and push the task.
10793 if (local_sgs.group_type < idlest_sgs.group_type)
10794 return NULL;
10797 * If the local group is busier than the selected idlest group
10798 * try and push the task.
10800 if (local_sgs.group_type > idlest_sgs.group_type)
10801 return idlest;
10803 switch (local_sgs.group_type) {
10804 case group_overloaded:
10805 case group_fully_busy:
10807 /* Calculate allowed imbalance based on load */
10808 imbalance = scale_load_down(NICE_0_LOAD) *
10809 (sd->imbalance_pct-100) / 100;
10812 * When comparing groups across NUMA domains, it's possible for
10813 * the local domain to be very lightly loaded relative to the
10814 * remote domains but "imbalance" skews the comparison making
10815 * remote CPUs look much more favourable. When considering
10816 * cross-domain, add imbalance to the load on the remote node
10817 * and consider staying local.
10820 if ((sd->flags & SD_NUMA) &&
10821 ((idlest_sgs.avg_load + imbalance) >= local_sgs.avg_load))
10822 return NULL;
10825 * If the local group is less loaded than the selected
10826 * idlest group don't try and push any tasks.
10828 if (idlest_sgs.avg_load >= (local_sgs.avg_load + imbalance))
10829 return NULL;
10831 if (100 * local_sgs.avg_load <= sd->imbalance_pct * idlest_sgs.avg_load)
10832 return NULL;
10833 break;
10835 case group_imbalanced:
10836 case group_asym_packing:
10837 case group_smt_balance:
10838 /* Those type are not used in the slow wakeup path */
10839 return NULL;
10841 case group_misfit_task:
10842 /* Select group with the highest max capacity */
10843 if (local->sgc->max_capacity >= idlest->sgc->max_capacity)
10844 return NULL;
10845 break;
10847 case group_has_spare:
10848 #ifdef CONFIG_NUMA
10849 if (sd->flags & SD_NUMA) {
10850 int imb_numa_nr = sd->imb_numa_nr;
10851 #ifdef CONFIG_NUMA_BALANCING
10852 int idlest_cpu;
10854 * If there is spare capacity at NUMA, try to select
10855 * the preferred node
10857 if (cpu_to_node(this_cpu) == p->numa_preferred_nid)
10858 return NULL;
10860 idlest_cpu = cpumask_first(sched_group_span(idlest));
10861 if (cpu_to_node(idlest_cpu) == p->numa_preferred_nid)
10862 return idlest;
10863 #endif /* CONFIG_NUMA_BALANCING */
10865 * Otherwise, keep the task close to the wakeup source
10866 * and improve locality if the number of running tasks
10867 * would remain below threshold where an imbalance is
10868 * allowed while accounting for the possibility the
10869 * task is pinned to a subset of CPUs. If there is a
10870 * real need of migration, periodic load balance will
10871 * take care of it.
10873 if (p->nr_cpus_allowed != NR_CPUS) {
10874 struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_rq_mask);
10876 cpumask_and(cpus, sched_group_span(local), p->cpus_ptr);
10877 imb_numa_nr = min(cpumask_weight(cpus), sd->imb_numa_nr);
10880 imbalance = abs(local_sgs.idle_cpus - idlest_sgs.idle_cpus);
10881 if (!adjust_numa_imbalance(imbalance,
10882 local_sgs.sum_nr_running + 1,
10883 imb_numa_nr)) {
10884 return NULL;
10887 #endif /* CONFIG_NUMA */
10890 * Select group with highest number of idle CPUs. We could also
10891 * compare the utilization which is more stable but it can end
10892 * up that the group has less spare capacity but finally more
10893 * idle CPUs which means more opportunity to run task.
10895 if (local_sgs.idle_cpus >= idlest_sgs.idle_cpus)
10896 return NULL;
10897 break;
10900 return idlest;
10903 static void update_idle_cpu_scan(struct lb_env *env,
10904 unsigned long sum_util)
10906 struct sched_domain_shared *sd_share;
10907 int llc_weight, pct;
10908 u64 x, y, tmp;
10910 * Update the number of CPUs to scan in LLC domain, which could
10911 * be used as a hint in select_idle_cpu(). The update of sd_share
10912 * could be expensive because it is within a shared cache line.
10913 * So the write of this hint only occurs during periodic load
10914 * balancing, rather than CPU_NEWLY_IDLE, because the latter
10915 * can fire way more frequently than the former.
10917 if (!sched_feat(SIS_UTIL) || env->idle == CPU_NEWLY_IDLE)
10918 return;
10920 llc_weight = per_cpu(sd_llc_size, env->dst_cpu);
10921 if (env->sd->span_weight != llc_weight)
10922 return;
10924 sd_share = rcu_dereference(per_cpu(sd_llc_shared, env->dst_cpu));
10925 if (!sd_share)
10926 return;
10929 * The number of CPUs to search drops as sum_util increases, when
10930 * sum_util hits 85% or above, the scan stops.
10931 * The reason to choose 85% as the threshold is because this is the
10932 * imbalance_pct(117) when a LLC sched group is overloaded.
10934 * let y = SCHED_CAPACITY_SCALE - p * x^2 [1]
10935 * and y'= y / SCHED_CAPACITY_SCALE
10937 * x is the ratio of sum_util compared to the CPU capacity:
10938 * x = sum_util / (llc_weight * SCHED_CAPACITY_SCALE)
10939 * y' is the ratio of CPUs to be scanned in the LLC domain,
10940 * and the number of CPUs to scan is calculated by:
10942 * nr_scan = llc_weight * y' [2]
10944 * When x hits the threshold of overloaded, AKA, when
10945 * x = 100 / pct, y drops to 0. According to [1],
10946 * p should be SCHED_CAPACITY_SCALE * pct^2 / 10000
10948 * Scale x by SCHED_CAPACITY_SCALE:
10949 * x' = sum_util / llc_weight; [3]
10951 * and finally [1] becomes:
10952 * y = SCHED_CAPACITY_SCALE -
10953 * x'^2 * pct^2 / (10000 * SCHED_CAPACITY_SCALE) [4]
10956 /* equation [3] */
10957 x = sum_util;
10958 do_div(x, llc_weight);
10960 /* equation [4] */
10961 pct = env->sd->imbalance_pct;
10962 tmp = x * x * pct * pct;
10963 do_div(tmp, 10000 * SCHED_CAPACITY_SCALE);
10964 tmp = min_t(long, tmp, SCHED_CAPACITY_SCALE);
10965 y = SCHED_CAPACITY_SCALE - tmp;
10967 /* equation [2] */
10968 y *= llc_weight;
10969 do_div(y, SCHED_CAPACITY_SCALE);
10970 if ((int)y != sd_share->nr_idle_scan)
10971 WRITE_ONCE(sd_share->nr_idle_scan, (int)y);
10975 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
10976 * @env: The load balancing environment.
10977 * @sds: variable to hold the statistics for this sched_domain.
10980 static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
10982 struct sched_group *sg = env->sd->groups;
10983 struct sg_lb_stats *local = &sds->local_stat;
10984 struct sg_lb_stats tmp_sgs;
10985 unsigned long sum_util = 0;
10986 bool sg_overloaded = 0, sg_overutilized = 0;
10988 do {
10989 struct sg_lb_stats *sgs = &tmp_sgs;
10990 int local_group;
10992 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
10993 if (local_group) {
10994 sds->local = sg;
10995 sgs = local;
10997 if (env->idle != CPU_NEWLY_IDLE ||
10998 time_after_eq(jiffies, sg->sgc->next_update))
10999 update_group_capacity(env->sd, env->dst_cpu);
11002 update_sg_lb_stats(env, sds, sg, sgs, &sg_overloaded, &sg_overutilized);
11004 if (!local_group && update_sd_pick_busiest(env, sds, sg, sgs)) {
11005 sds->busiest = sg;
11006 sds->busiest_stat = *sgs;
11009 /* Now, start updating sd_lb_stats */
11010 sds->total_load += sgs->group_load;
11011 sds->total_capacity += sgs->group_capacity;
11013 sum_util += sgs->group_util;
11014 sg = sg->next;
11015 } while (sg != env->sd->groups);
11018 * Indicate that the child domain of the busiest group prefers tasks
11019 * go to a child's sibling domains first. NB the flags of a sched group
11020 * are those of the child domain.
11022 if (sds->busiest)
11023 sds->prefer_sibling = !!(sds->busiest->flags & SD_PREFER_SIBLING);
11026 if (env->sd->flags & SD_NUMA)
11027 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
11029 if (!env->sd->parent) {
11030 /* update overload indicator if we are at root domain */
11031 set_rd_overloaded(env->dst_rq->rd, sg_overloaded);
11033 /* Update over-utilization (tipping point, U >= 0) indicator */
11034 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11035 } else if (sg_overutilized) {
11036 set_rd_overutilized(env->dst_rq->rd, sg_overutilized);
11039 update_idle_cpu_scan(env, sum_util);
11043 * calculate_imbalance - Calculate the amount of imbalance present within the
11044 * groups of a given sched_domain during load balance.
11045 * @env: load balance environment
11046 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
11048 static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
11050 struct sg_lb_stats *local, *busiest;
11052 local = &sds->local_stat;
11053 busiest = &sds->busiest_stat;
11055 if (busiest->group_type == group_misfit_task) {
11056 if (env->sd->flags & SD_ASYM_CPUCAPACITY) {
11057 /* Set imbalance to allow misfit tasks to be balanced. */
11058 env->migration_type = migrate_misfit;
11059 env->imbalance = 1;
11060 } else {
11062 * Set load imbalance to allow moving task from cpu
11063 * with reduced capacity.
11065 env->migration_type = migrate_load;
11066 env->imbalance = busiest->group_misfit_task_load;
11068 return;
11071 if (busiest->group_type == group_asym_packing) {
11073 * In case of asym capacity, we will try to migrate all load to
11074 * the preferred CPU.
11076 env->migration_type = migrate_task;
11077 env->imbalance = busiest->sum_h_nr_running;
11078 return;
11081 if (busiest->group_type == group_smt_balance) {
11082 /* Reduce number of tasks sharing CPU capacity */
11083 env->migration_type = migrate_task;
11084 env->imbalance = 1;
11085 return;
11088 if (busiest->group_type == group_imbalanced) {
11090 * In the group_imb case we cannot rely on group-wide averages
11091 * to ensure CPU-load equilibrium, try to move any task to fix
11092 * the imbalance. The next load balance will take care of
11093 * balancing back the system.
11095 env->migration_type = migrate_task;
11096 env->imbalance = 1;
11097 return;
11101 * Try to use spare capacity of local group without overloading it or
11102 * emptying busiest.
11104 if (local->group_type == group_has_spare) {
11105 if ((busiest->group_type > group_fully_busy) &&
11106 !(env->sd->flags & SD_SHARE_LLC)) {
11108 * If busiest is overloaded, try to fill spare
11109 * capacity. This might end up creating spare capacity
11110 * in busiest or busiest still being overloaded but
11111 * there is no simple way to directly compute the
11112 * amount of load to migrate in order to balance the
11113 * system.
11115 env->migration_type = migrate_util;
11116 env->imbalance = max(local->group_capacity, local->group_util) -
11117 local->group_util;
11120 * In some cases, the group's utilization is max or even
11121 * higher than capacity because of migrations but the
11122 * local CPU is (newly) idle. There is at least one
11123 * waiting task in this overloaded busiest group. Let's
11124 * try to pull it.
11126 if (env->idle && env->imbalance == 0) {
11127 env->migration_type = migrate_task;
11128 env->imbalance = 1;
11131 return;
11134 if (busiest->group_weight == 1 || sds->prefer_sibling) {
11136 * When prefer sibling, evenly spread running tasks on
11137 * groups.
11139 env->migration_type = migrate_task;
11140 env->imbalance = sibling_imbalance(env, sds, busiest, local);
11141 } else {
11144 * If there is no overload, we just want to even the number of
11145 * idle CPUs.
11147 env->migration_type = migrate_task;
11148 env->imbalance = max_t(long, 0,
11149 (local->idle_cpus - busiest->idle_cpus));
11152 #ifdef CONFIG_NUMA
11153 /* Consider allowing a small imbalance between NUMA groups */
11154 if (env->sd->flags & SD_NUMA) {
11155 env->imbalance = adjust_numa_imbalance(env->imbalance,
11156 local->sum_nr_running + 1,
11157 env->sd->imb_numa_nr);
11159 #endif
11161 /* Number of tasks to move to restore balance */
11162 env->imbalance >>= 1;
11164 return;
11168 * Local is fully busy but has to take more load to relieve the
11169 * busiest group
11171 if (local->group_type < group_overloaded) {
11173 * Local will become overloaded so the avg_load metrics are
11174 * finally needed.
11177 local->avg_load = (local->group_load * SCHED_CAPACITY_SCALE) /
11178 local->group_capacity;
11181 * If the local group is more loaded than the selected
11182 * busiest group don't try to pull any tasks.
11184 if (local->avg_load >= busiest->avg_load) {
11185 env->imbalance = 0;
11186 return;
11189 sds->avg_load = (sds->total_load * SCHED_CAPACITY_SCALE) /
11190 sds->total_capacity;
11193 * If the local group is more loaded than the average system
11194 * load, don't try to pull any tasks.
11196 if (local->avg_load >= sds->avg_load) {
11197 env->imbalance = 0;
11198 return;
11204 * Both group are or will become overloaded and we're trying to get all
11205 * the CPUs to the average_load, so we don't want to push ourselves
11206 * above the average load, nor do we wish to reduce the max loaded CPU
11207 * below the average load. At the same time, we also don't want to
11208 * reduce the group load below the group capacity. Thus we look for
11209 * the minimum possible imbalance.
11211 env->migration_type = migrate_load;
11212 env->imbalance = min(
11213 (busiest->avg_load - sds->avg_load) * busiest->group_capacity,
11214 (sds->avg_load - local->avg_load) * local->group_capacity
11215 ) / SCHED_CAPACITY_SCALE;
11218 /******* sched_balance_find_src_group() helpers end here *********************/
11221 * Decision matrix according to the local and busiest group type:
11223 * busiest \ local has_spare fully_busy misfit asym imbalanced overloaded
11224 * has_spare nr_idle balanced N/A N/A balanced balanced
11225 * fully_busy nr_idle nr_idle N/A N/A balanced balanced
11226 * misfit_task force N/A N/A N/A N/A N/A
11227 * asym_packing force force N/A N/A force force
11228 * imbalanced force force N/A N/A force force
11229 * overloaded force force N/A N/A force avg_load
11231 * N/A : Not Applicable because already filtered while updating
11232 * statistics.
11233 * balanced : The system is balanced for these 2 groups.
11234 * force : Calculate the imbalance as load migration is probably needed.
11235 * avg_load : Only if imbalance is significant enough.
11236 * nr_idle : dst_cpu is not busy and the number of idle CPUs is quite
11237 * different in groups.
11241 * sched_balance_find_src_group - Returns the busiest group within the sched_domain
11242 * if there is an imbalance.
11243 * @env: The load balancing environment.
11245 * Also calculates the amount of runnable load which should be moved
11246 * to restore balance.
11248 * Return: - The busiest group if imbalance exists.
11250 static struct sched_group *sched_balance_find_src_group(struct lb_env *env)
11252 struct sg_lb_stats *local, *busiest;
11253 struct sd_lb_stats sds;
11255 init_sd_lb_stats(&sds);
11258 * Compute the various statistics relevant for load balancing at
11259 * this level.
11261 update_sd_lb_stats(env, &sds);
11263 /* There is no busy sibling group to pull tasks from */
11264 if (!sds.busiest)
11265 goto out_balanced;
11267 busiest = &sds.busiest_stat;
11269 /* Misfit tasks should be dealt with regardless of the avg load */
11270 if (busiest->group_type == group_misfit_task)
11271 goto force_balance;
11273 if (!is_rd_overutilized(env->dst_rq->rd) &&
11274 rcu_dereference(env->dst_rq->rd->pd))
11275 goto out_balanced;
11277 /* ASYM feature bypasses nice load balance check */
11278 if (busiest->group_type == group_asym_packing)
11279 goto force_balance;
11282 * If the busiest group is imbalanced the below checks don't
11283 * work because they assume all things are equal, which typically
11284 * isn't true due to cpus_ptr constraints and the like.
11286 if (busiest->group_type == group_imbalanced)
11287 goto force_balance;
11289 local = &sds.local_stat;
11291 * If the local group is busier than the selected busiest group
11292 * don't try and pull any tasks.
11294 if (local->group_type > busiest->group_type)
11295 goto out_balanced;
11298 * When groups are overloaded, use the avg_load to ensure fairness
11299 * between tasks.
11301 if (local->group_type == group_overloaded) {
11303 * If the local group is more loaded than the selected
11304 * busiest group don't try to pull any tasks.
11306 if (local->avg_load >= busiest->avg_load)
11307 goto out_balanced;
11309 /* XXX broken for overlapping NUMA groups */
11310 sds.avg_load = (sds.total_load * SCHED_CAPACITY_SCALE) /
11311 sds.total_capacity;
11314 * Don't pull any tasks if this group is already above the
11315 * domain average load.
11317 if (local->avg_load >= sds.avg_load)
11318 goto out_balanced;
11321 * If the busiest group is more loaded, use imbalance_pct to be
11322 * conservative.
11324 if (100 * busiest->avg_load <=
11325 env->sd->imbalance_pct * local->avg_load)
11326 goto out_balanced;
11330 * Try to move all excess tasks to a sibling domain of the busiest
11331 * group's child domain.
11333 if (sds.prefer_sibling && local->group_type == group_has_spare &&
11334 sibling_imbalance(env, &sds, busiest, local) > 1)
11335 goto force_balance;
11337 if (busiest->group_type != group_overloaded) {
11338 if (!env->idle) {
11340 * If the busiest group is not overloaded (and as a
11341 * result the local one too) but this CPU is already
11342 * busy, let another idle CPU try to pull task.
11344 goto out_balanced;
11347 if (busiest->group_type == group_smt_balance &&
11348 smt_vs_nonsmt_groups(sds.local, sds.busiest)) {
11349 /* Let non SMT CPU pull from SMT CPU sharing with sibling */
11350 goto force_balance;
11353 if (busiest->group_weight > 1 &&
11354 local->idle_cpus <= (busiest->idle_cpus + 1)) {
11356 * If the busiest group is not overloaded
11357 * and there is no imbalance between this and busiest
11358 * group wrt idle CPUs, it is balanced. The imbalance
11359 * becomes significant if the diff is greater than 1
11360 * otherwise we might end up to just move the imbalance
11361 * on another group. Of course this applies only if
11362 * there is more than 1 CPU per group.
11364 goto out_balanced;
11367 if (busiest->sum_h_nr_running == 1) {
11369 * busiest doesn't have any tasks waiting to run
11371 goto out_balanced;
11375 force_balance:
11376 /* Looks like there is an imbalance. Compute it */
11377 calculate_imbalance(env, &sds);
11378 return env->imbalance ? sds.busiest : NULL;
11380 out_balanced:
11381 env->imbalance = 0;
11382 return NULL;
11386 * sched_balance_find_src_rq - find the busiest runqueue among the CPUs in the group.
11388 static struct rq *sched_balance_find_src_rq(struct lb_env *env,
11389 struct sched_group *group)
11391 struct rq *busiest = NULL, *rq;
11392 unsigned long busiest_util = 0, busiest_load = 0, busiest_capacity = 1;
11393 unsigned int busiest_nr = 0;
11394 int i;
11396 for_each_cpu_and(i, sched_group_span(group), env->cpus) {
11397 unsigned long capacity, load, util;
11398 unsigned int nr_running;
11399 enum fbq_type rt;
11401 rq = cpu_rq(i);
11402 rt = fbq_classify_rq(rq);
11405 * We classify groups/runqueues into three groups:
11406 * - regular: there are !numa tasks
11407 * - remote: there are numa tasks that run on the 'wrong' node
11408 * - all: there is no distinction
11410 * In order to avoid migrating ideally placed numa tasks,
11411 * ignore those when there's better options.
11413 * If we ignore the actual busiest queue to migrate another
11414 * task, the next balance pass can still reduce the busiest
11415 * queue by moving tasks around inside the node.
11417 * If we cannot move enough load due to this classification
11418 * the next pass will adjust the group classification and
11419 * allow migration of more tasks.
11421 * Both cases only affect the total convergence complexity.
11423 if (rt > env->fbq_type)
11424 continue;
11426 nr_running = rq->cfs.h_nr_running;
11427 if (!nr_running)
11428 continue;
11430 capacity = capacity_of(i);
11433 * For ASYM_CPUCAPACITY domains, don't pick a CPU that could
11434 * eventually lead to active_balancing high->low capacity.
11435 * Higher per-CPU capacity is considered better than balancing
11436 * average load.
11438 if (env->sd->flags & SD_ASYM_CPUCAPACITY &&
11439 !capacity_greater(capacity_of(env->dst_cpu), capacity) &&
11440 nr_running == 1)
11441 continue;
11444 * Make sure we only pull tasks from a CPU of lower priority
11445 * when balancing between SMT siblings.
11447 * If balancing between cores, let lower priority CPUs help
11448 * SMT cores with more than one busy sibling.
11450 if (sched_asym(env->sd, i, env->dst_cpu) && nr_running == 1)
11451 continue;
11453 switch (env->migration_type) {
11454 case migrate_load:
11456 * When comparing with load imbalance, use cpu_load()
11457 * which is not scaled with the CPU capacity.
11459 load = cpu_load(rq);
11461 if (nr_running == 1 && load > env->imbalance &&
11462 !check_cpu_capacity(rq, env->sd))
11463 break;
11466 * For the load comparisons with the other CPUs,
11467 * consider the cpu_load() scaled with the CPU
11468 * capacity, so that the load can be moved away
11469 * from the CPU that is potentially running at a
11470 * lower capacity.
11472 * Thus we're looking for max(load_i / capacity_i),
11473 * crosswise multiplication to rid ourselves of the
11474 * division works out to:
11475 * load_i * capacity_j > load_j * capacity_i;
11476 * where j is our previous maximum.
11478 if (load * busiest_capacity > busiest_load * capacity) {
11479 busiest_load = load;
11480 busiest_capacity = capacity;
11481 busiest = rq;
11483 break;
11485 case migrate_util:
11486 util = cpu_util_cfs_boost(i);
11489 * Don't try to pull utilization from a CPU with one
11490 * running task. Whatever its utilization, we will fail
11491 * detach the task.
11493 if (nr_running <= 1)
11494 continue;
11496 if (busiest_util < util) {
11497 busiest_util = util;
11498 busiest = rq;
11500 break;
11502 case migrate_task:
11503 if (busiest_nr < nr_running) {
11504 busiest_nr = nr_running;
11505 busiest = rq;
11507 break;
11509 case migrate_misfit:
11511 * For ASYM_CPUCAPACITY domains with misfit tasks we
11512 * simply seek the "biggest" misfit task.
11514 if (rq->misfit_task_load > busiest_load) {
11515 busiest_load = rq->misfit_task_load;
11516 busiest = rq;
11519 break;
11524 return busiest;
11528 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
11529 * so long as it is large enough.
11531 #define MAX_PINNED_INTERVAL 512
11533 static inline bool
11534 asym_active_balance(struct lb_env *env)
11537 * ASYM_PACKING needs to force migrate tasks from busy but lower
11538 * priority CPUs in order to pack all tasks in the highest priority
11539 * CPUs. When done between cores, do it only if the whole core if the
11540 * whole core is idle.
11542 * If @env::src_cpu is an SMT core with busy siblings, let
11543 * the lower priority @env::dst_cpu help it. Do not follow
11544 * CPU priority.
11546 return env->idle && sched_use_asym_prio(env->sd, env->dst_cpu) &&
11547 (sched_asym_prefer(env->dst_cpu, env->src_cpu) ||
11548 !sched_use_asym_prio(env->sd, env->src_cpu));
11551 static inline bool
11552 imbalanced_active_balance(struct lb_env *env)
11554 struct sched_domain *sd = env->sd;
11557 * The imbalanced case includes the case of pinned tasks preventing a fair
11558 * distribution of the load on the system but also the even distribution of the
11559 * threads on a system with spare capacity
11561 if ((env->migration_type == migrate_task) &&
11562 (sd->nr_balance_failed > sd->cache_nice_tries+2))
11563 return 1;
11565 return 0;
11568 static int need_active_balance(struct lb_env *env)
11570 struct sched_domain *sd = env->sd;
11572 if (asym_active_balance(env))
11573 return 1;
11575 if (imbalanced_active_balance(env))
11576 return 1;
11579 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
11580 * It's worth migrating the task if the src_cpu's capacity is reduced
11581 * because of other sched_class or IRQs if more capacity stays
11582 * available on dst_cpu.
11584 if (env->idle &&
11585 (env->src_rq->cfs.h_nr_running == 1)) {
11586 if ((check_cpu_capacity(env->src_rq, sd)) &&
11587 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
11588 return 1;
11591 if (env->migration_type == migrate_misfit)
11592 return 1;
11594 return 0;
11597 static int active_load_balance_cpu_stop(void *data);
11599 static int should_we_balance(struct lb_env *env)
11601 struct cpumask *swb_cpus = this_cpu_cpumask_var_ptr(should_we_balance_tmpmask);
11602 struct sched_group *sg = env->sd->groups;
11603 int cpu, idle_smt = -1;
11606 * Ensure the balancing environment is consistent; can happen
11607 * when the softirq triggers 'during' hotplug.
11609 if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
11610 return 0;
11613 * In the newly idle case, we will allow all the CPUs
11614 * to do the newly idle load balance.
11616 * However, we bail out if we already have tasks or a wakeup pending,
11617 * to optimize wakeup latency.
11619 if (env->idle == CPU_NEWLY_IDLE) {
11620 if (env->dst_rq->nr_running > 0 || env->dst_rq->ttwu_pending)
11621 return 0;
11622 return 1;
11625 cpumask_copy(swb_cpus, group_balance_mask(sg));
11626 /* Try to find first idle CPU */
11627 for_each_cpu_and(cpu, swb_cpus, env->cpus) {
11628 if (!idle_cpu(cpu))
11629 continue;
11632 * Don't balance to idle SMT in busy core right away when
11633 * balancing cores, but remember the first idle SMT CPU for
11634 * later consideration. Find CPU on an idle core first.
11636 if (!(env->sd->flags & SD_SHARE_CPUCAPACITY) && !is_core_idle(cpu)) {
11637 if (idle_smt == -1)
11638 idle_smt = cpu;
11640 * If the core is not idle, and first SMT sibling which is
11641 * idle has been found, then its not needed to check other
11642 * SMT siblings for idleness:
11644 #ifdef CONFIG_SCHED_SMT
11645 cpumask_andnot(swb_cpus, swb_cpus, cpu_smt_mask(cpu));
11646 #endif
11647 continue;
11651 * Are we the first idle core in a non-SMT domain or higher,
11652 * or the first idle CPU in a SMT domain?
11654 return cpu == env->dst_cpu;
11657 /* Are we the first idle CPU with busy siblings? */
11658 if (idle_smt != -1)
11659 return idle_smt == env->dst_cpu;
11661 /* Are we the first CPU of this group ? */
11662 return group_balance_cpu(sg) == env->dst_cpu;
11666 * Check this_cpu to ensure it is balanced within domain. Attempt to move
11667 * tasks if there is an imbalance.
11669 static int sched_balance_rq(int this_cpu, struct rq *this_rq,
11670 struct sched_domain *sd, enum cpu_idle_type idle,
11671 int *continue_balancing)
11673 int ld_moved, cur_ld_moved, active_balance = 0;
11674 struct sched_domain *sd_parent = sd->parent;
11675 struct sched_group *group;
11676 struct rq *busiest;
11677 struct rq_flags rf;
11678 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
11679 struct lb_env env = {
11680 .sd = sd,
11681 .dst_cpu = this_cpu,
11682 .dst_rq = this_rq,
11683 .dst_grpmask = group_balance_mask(sd->groups),
11684 .idle = idle,
11685 .loop_break = SCHED_NR_MIGRATE_BREAK,
11686 .cpus = cpus,
11687 .fbq_type = all,
11688 .tasks = LIST_HEAD_INIT(env.tasks),
11691 cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
11693 schedstat_inc(sd->lb_count[idle]);
11695 redo:
11696 if (!should_we_balance(&env)) {
11697 *continue_balancing = 0;
11698 goto out_balanced;
11701 group = sched_balance_find_src_group(&env);
11702 if (!group) {
11703 schedstat_inc(sd->lb_nobusyg[idle]);
11704 goto out_balanced;
11707 busiest = sched_balance_find_src_rq(&env, group);
11708 if (!busiest) {
11709 schedstat_inc(sd->lb_nobusyq[idle]);
11710 goto out_balanced;
11713 WARN_ON_ONCE(busiest == env.dst_rq);
11715 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
11717 env.src_cpu = busiest->cpu;
11718 env.src_rq = busiest;
11720 ld_moved = 0;
11721 /* Clear this flag as soon as we find a pullable task */
11722 env.flags |= LBF_ALL_PINNED;
11723 if (busiest->nr_running > 1) {
11725 * Attempt to move tasks. If sched_balance_find_src_group has found
11726 * an imbalance but busiest->nr_running <= 1, the group is
11727 * still unbalanced. ld_moved simply stays zero, so it is
11728 * correctly treated as an imbalance.
11730 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
11732 more_balance:
11733 rq_lock_irqsave(busiest, &rf);
11734 update_rq_clock(busiest);
11737 * cur_ld_moved - load moved in current iteration
11738 * ld_moved - cumulative load moved across iterations
11740 cur_ld_moved = detach_tasks(&env);
11743 * We've detached some tasks from busiest_rq. Every
11744 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
11745 * unlock busiest->lock, and we are able to be sure
11746 * that nobody can manipulate the tasks in parallel.
11747 * See task_rq_lock() family for the details.
11750 rq_unlock(busiest, &rf);
11752 if (cur_ld_moved) {
11753 attach_tasks(&env);
11754 ld_moved += cur_ld_moved;
11757 local_irq_restore(rf.flags);
11759 if (env.flags & LBF_NEED_BREAK) {
11760 env.flags &= ~LBF_NEED_BREAK;
11761 goto more_balance;
11765 * Revisit (affine) tasks on src_cpu that couldn't be moved to
11766 * us and move them to an alternate dst_cpu in our sched_group
11767 * where they can run. The upper limit on how many times we
11768 * iterate on same src_cpu is dependent on number of CPUs in our
11769 * sched_group.
11771 * This changes load balance semantics a bit on who can move
11772 * load to a given_cpu. In addition to the given_cpu itself
11773 * (or a ilb_cpu acting on its behalf where given_cpu is
11774 * nohz-idle), we now have balance_cpu in a position to move
11775 * load to given_cpu. In rare situations, this may cause
11776 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
11777 * _independently_ and at _same_ time to move some load to
11778 * given_cpu) causing excess load to be moved to given_cpu.
11779 * This however should not happen so much in practice and
11780 * moreover subsequent load balance cycles should correct the
11781 * excess load moved.
11783 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
11785 /* Prevent to re-select dst_cpu via env's CPUs */
11786 __cpumask_clear_cpu(env.dst_cpu, env.cpus);
11788 env.dst_rq = cpu_rq(env.new_dst_cpu);
11789 env.dst_cpu = env.new_dst_cpu;
11790 env.flags &= ~LBF_DST_PINNED;
11791 env.loop = 0;
11792 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11795 * Go back to "more_balance" rather than "redo" since we
11796 * need to continue with same src_cpu.
11798 goto more_balance;
11802 * We failed to reach balance because of affinity.
11804 if (sd_parent) {
11805 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11807 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
11808 *group_imbalance = 1;
11811 /* All tasks on this runqueue were pinned by CPU affinity */
11812 if (unlikely(env.flags & LBF_ALL_PINNED)) {
11813 __cpumask_clear_cpu(cpu_of(busiest), cpus);
11815 * Attempting to continue load balancing at the current
11816 * sched_domain level only makes sense if there are
11817 * active CPUs remaining as possible busiest CPUs to
11818 * pull load from which are not contained within the
11819 * destination group that is receiving any migrated
11820 * load.
11822 if (!cpumask_subset(cpus, env.dst_grpmask)) {
11823 env.loop = 0;
11824 env.loop_break = SCHED_NR_MIGRATE_BREAK;
11825 goto redo;
11827 goto out_all_pinned;
11831 if (!ld_moved) {
11832 schedstat_inc(sd->lb_failed[idle]);
11834 * Increment the failure counter only on periodic balance.
11835 * We do not want newidle balance, which can be very
11836 * frequent, pollute the failure counter causing
11837 * excessive cache_hot migrations and active balances.
11839 * Similarly for migration_misfit which is not related to
11840 * load/util migration, don't pollute nr_balance_failed.
11842 if (idle != CPU_NEWLY_IDLE &&
11843 env.migration_type != migrate_misfit)
11844 sd->nr_balance_failed++;
11846 if (need_active_balance(&env)) {
11847 unsigned long flags;
11849 raw_spin_rq_lock_irqsave(busiest, flags);
11852 * Don't kick the active_load_balance_cpu_stop,
11853 * if the curr task on busiest CPU can't be
11854 * moved to this_cpu:
11856 if (!cpumask_test_cpu(this_cpu, busiest->curr->cpus_ptr)) {
11857 raw_spin_rq_unlock_irqrestore(busiest, flags);
11858 goto out_one_pinned;
11861 /* Record that we found at least one task that could run on this_cpu */
11862 env.flags &= ~LBF_ALL_PINNED;
11865 * ->active_balance synchronizes accesses to
11866 * ->active_balance_work. Once set, it's cleared
11867 * only after active load balance is finished.
11869 if (!busiest->active_balance) {
11870 busiest->active_balance = 1;
11871 busiest->push_cpu = this_cpu;
11872 active_balance = 1;
11875 preempt_disable();
11876 raw_spin_rq_unlock_irqrestore(busiest, flags);
11877 if (active_balance) {
11878 stop_one_cpu_nowait(cpu_of(busiest),
11879 active_load_balance_cpu_stop, busiest,
11880 &busiest->active_balance_work);
11882 preempt_enable();
11884 } else {
11885 sd->nr_balance_failed = 0;
11888 if (likely(!active_balance) || need_active_balance(&env)) {
11889 /* We were unbalanced, so reset the balancing interval */
11890 sd->balance_interval = sd->min_interval;
11893 goto out;
11895 out_balanced:
11897 * We reach balance although we may have faced some affinity
11898 * constraints. Clear the imbalance flag only if other tasks got
11899 * a chance to move and fix the imbalance.
11901 if (sd_parent && !(env.flags & LBF_ALL_PINNED)) {
11902 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
11904 if (*group_imbalance)
11905 *group_imbalance = 0;
11908 out_all_pinned:
11910 * We reach balance because all tasks are pinned at this level so
11911 * we can't migrate them. Let the imbalance flag set so parent level
11912 * can try to migrate them.
11914 schedstat_inc(sd->lb_balanced[idle]);
11916 sd->nr_balance_failed = 0;
11918 out_one_pinned:
11919 ld_moved = 0;
11922 * sched_balance_newidle() disregards balance intervals, so we could
11923 * repeatedly reach this code, which would lead to balance_interval
11924 * skyrocketing in a short amount of time. Skip the balance_interval
11925 * increase logic to avoid that.
11927 * Similarly misfit migration which is not necessarily an indication of
11928 * the system being busy and requires lb to backoff to let it settle
11929 * down.
11931 if (env.idle == CPU_NEWLY_IDLE ||
11932 env.migration_type == migrate_misfit)
11933 goto out;
11935 /* tune up the balancing interval */
11936 if ((env.flags & LBF_ALL_PINNED &&
11937 sd->balance_interval < MAX_PINNED_INTERVAL) ||
11938 sd->balance_interval < sd->max_interval)
11939 sd->balance_interval *= 2;
11940 out:
11941 return ld_moved;
11944 static inline unsigned long
11945 get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
11947 unsigned long interval = sd->balance_interval;
11949 if (cpu_busy)
11950 interval *= sd->busy_factor;
11952 /* scale ms to jiffies */
11953 interval = msecs_to_jiffies(interval);
11956 * Reduce likelihood of busy balancing at higher domains racing with
11957 * balancing at lower domains by preventing their balancing periods
11958 * from being multiples of each other.
11960 if (cpu_busy)
11961 interval -= 1;
11963 interval = clamp(interval, 1UL, max_load_balance_interval);
11965 return interval;
11968 static inline void
11969 update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
11971 unsigned long interval, next;
11973 /* used by idle balance, so cpu_busy = 0 */
11974 interval = get_sd_balance_interval(sd, 0);
11975 next = sd->last_balance + interval;
11977 if (time_after(*next_balance, next))
11978 *next_balance = next;
11982 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
11983 * running tasks off the busiest CPU onto idle CPUs. It requires at
11984 * least 1 task to be running on each physical CPU where possible, and
11985 * avoids physical / logical imbalances.
11987 static int active_load_balance_cpu_stop(void *data)
11989 struct rq *busiest_rq = data;
11990 int busiest_cpu = cpu_of(busiest_rq);
11991 int target_cpu = busiest_rq->push_cpu;
11992 struct rq *target_rq = cpu_rq(target_cpu);
11993 struct sched_domain *sd;
11994 struct task_struct *p = NULL;
11995 struct rq_flags rf;
11997 rq_lock_irq(busiest_rq, &rf);
11999 * Between queueing the stop-work and running it is a hole in which
12000 * CPUs can become inactive. We should not move tasks from or to
12001 * inactive CPUs.
12003 if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
12004 goto out_unlock;
12006 /* Make sure the requested CPU hasn't gone down in the meantime: */
12007 if (unlikely(busiest_cpu != smp_processor_id() ||
12008 !busiest_rq->active_balance))
12009 goto out_unlock;
12011 /* Is there any task to move? */
12012 if (busiest_rq->nr_running <= 1)
12013 goto out_unlock;
12016 * This condition is "impossible", if it occurs
12017 * we need to fix it. Originally reported by
12018 * Bjorn Helgaas on a 128-CPU setup.
12020 WARN_ON_ONCE(busiest_rq == target_rq);
12022 /* Search for an sd spanning us and the target CPU. */
12023 rcu_read_lock();
12024 for_each_domain(target_cpu, sd) {
12025 if (cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
12026 break;
12029 if (likely(sd)) {
12030 struct lb_env env = {
12031 .sd = sd,
12032 .dst_cpu = target_cpu,
12033 .dst_rq = target_rq,
12034 .src_cpu = busiest_rq->cpu,
12035 .src_rq = busiest_rq,
12036 .idle = CPU_IDLE,
12037 .flags = LBF_ACTIVE_LB,
12040 schedstat_inc(sd->alb_count);
12041 update_rq_clock(busiest_rq);
12043 p = detach_one_task(&env);
12044 if (p) {
12045 schedstat_inc(sd->alb_pushed);
12046 /* Active balancing done, reset the failure counter. */
12047 sd->nr_balance_failed = 0;
12048 } else {
12049 schedstat_inc(sd->alb_failed);
12052 rcu_read_unlock();
12053 out_unlock:
12054 busiest_rq->active_balance = 0;
12055 rq_unlock(busiest_rq, &rf);
12057 if (p)
12058 attach_one_task(target_rq, p);
12060 local_irq_enable();
12062 return 0;
12066 * This flag serializes load-balancing passes over large domains
12067 * (above the NODE topology level) - only one load-balancing instance
12068 * may run at a time, to reduce overhead on very large systems with
12069 * lots of CPUs and large NUMA distances.
12071 * - Note that load-balancing passes triggered while another one
12072 * is executing are skipped and not re-tried.
12074 * - Also note that this does not serialize rebalance_domains()
12075 * execution, as non-SD_SERIALIZE domains will still be
12076 * load-balanced in parallel.
12078 static atomic_t sched_balance_running = ATOMIC_INIT(0);
12081 * Scale the max sched_balance_rq interval with the number of CPUs in the system.
12082 * This trades load-balance latency on larger machines for less cross talk.
12084 void update_max_interval(void)
12086 max_load_balance_interval = HZ*num_online_cpus()/10;
12089 static inline bool update_newidle_cost(struct sched_domain *sd, u64 cost)
12091 if (cost > sd->max_newidle_lb_cost) {
12093 * Track max cost of a domain to make sure to not delay the
12094 * next wakeup on the CPU.
12096 sd->max_newidle_lb_cost = cost;
12097 sd->last_decay_max_lb_cost = jiffies;
12098 } else if (time_after(jiffies, sd->last_decay_max_lb_cost + HZ)) {
12100 * Decay the newidle max times by ~1% per second to ensure that
12101 * it is not outdated and the current max cost is actually
12102 * shorter.
12104 sd->max_newidle_lb_cost = (sd->max_newidle_lb_cost * 253) / 256;
12105 sd->last_decay_max_lb_cost = jiffies;
12107 return true;
12110 return false;
12114 * It checks each scheduling domain to see if it is due to be balanced,
12115 * and initiates a balancing operation if so.
12117 * Balancing parameters are set up in init_sched_domains.
12119 static void sched_balance_domains(struct rq *rq, enum cpu_idle_type idle)
12121 int continue_balancing = 1;
12122 int cpu = rq->cpu;
12123 int busy = idle != CPU_IDLE && !sched_idle_cpu(cpu);
12124 unsigned long interval;
12125 struct sched_domain *sd;
12126 /* Earliest time when we have to do rebalance again */
12127 unsigned long next_balance = jiffies + 60*HZ;
12128 int update_next_balance = 0;
12129 int need_serialize, need_decay = 0;
12130 u64 max_cost = 0;
12132 rcu_read_lock();
12133 for_each_domain(cpu, sd) {
12135 * Decay the newidle max times here because this is a regular
12136 * visit to all the domains.
12138 need_decay = update_newidle_cost(sd, 0);
12139 max_cost += sd->max_newidle_lb_cost;
12142 * Stop the load balance at this level. There is another
12143 * CPU in our sched group which is doing load balancing more
12144 * actively.
12146 if (!continue_balancing) {
12147 if (need_decay)
12148 continue;
12149 break;
12152 interval = get_sd_balance_interval(sd, busy);
12154 need_serialize = sd->flags & SD_SERIALIZE;
12155 if (need_serialize) {
12156 if (atomic_cmpxchg_acquire(&sched_balance_running, 0, 1))
12157 goto out;
12160 if (time_after_eq(jiffies, sd->last_balance + interval)) {
12161 if (sched_balance_rq(cpu, rq, sd, idle, &continue_balancing)) {
12163 * The LBF_DST_PINNED logic could have changed
12164 * env->dst_cpu, so we can't know our idle
12165 * state even if we migrated tasks. Update it.
12167 idle = idle_cpu(cpu);
12168 busy = !idle && !sched_idle_cpu(cpu);
12170 sd->last_balance = jiffies;
12171 interval = get_sd_balance_interval(sd, busy);
12173 if (need_serialize)
12174 atomic_set_release(&sched_balance_running, 0);
12175 out:
12176 if (time_after(next_balance, sd->last_balance + interval)) {
12177 next_balance = sd->last_balance + interval;
12178 update_next_balance = 1;
12181 if (need_decay) {
12183 * Ensure the rq-wide value also decays but keep it at a
12184 * reasonable floor to avoid funnies with rq->avg_idle.
12186 rq->max_idle_balance_cost =
12187 max((u64)sysctl_sched_migration_cost, max_cost);
12189 rcu_read_unlock();
12192 * next_balance will be updated only when there is a need.
12193 * When the cpu is attached to null domain for ex, it will not be
12194 * updated.
12196 if (likely(update_next_balance))
12197 rq->next_balance = next_balance;
12201 static inline int on_null_domain(struct rq *rq)
12203 return unlikely(!rcu_dereference_sched(rq->sd));
12206 #ifdef CONFIG_NO_HZ_COMMON
12208 * NOHZ idle load balancing (ILB) details:
12210 * - When one of the busy CPUs notices that there may be an idle rebalancing
12211 * needed, they will kick the idle load balancer, which then does idle
12212 * load balancing for all the idle CPUs.
12214 * - HK_TYPE_MISC CPUs are used for this task, because HK_TYPE_SCHED is not set
12215 * anywhere yet.
12217 static inline int find_new_ilb(void)
12219 const struct cpumask *hk_mask;
12220 int ilb_cpu;
12222 hk_mask = housekeeping_cpumask(HK_TYPE_MISC);
12224 for_each_cpu_and(ilb_cpu, nohz.idle_cpus_mask, hk_mask) {
12226 if (ilb_cpu == smp_processor_id())
12227 continue;
12229 if (idle_cpu(ilb_cpu))
12230 return ilb_cpu;
12233 return -1;
12237 * Kick a CPU to do the NOHZ balancing, if it is time for it, via a cross-CPU
12238 * SMP function call (IPI).
12240 * We pick the first idle CPU in the HK_TYPE_MISC housekeeping set (if there is one).
12242 static void kick_ilb(unsigned int flags)
12244 int ilb_cpu;
12247 * Increase nohz.next_balance only when if full ilb is triggered but
12248 * not if we only update stats.
12250 if (flags & NOHZ_BALANCE_KICK)
12251 nohz.next_balance = jiffies+1;
12253 ilb_cpu = find_new_ilb();
12254 if (ilb_cpu < 0)
12255 return;
12258 * Don't bother if no new NOHZ balance work items for ilb_cpu,
12259 * i.e. all bits in flags are already set in ilb_cpu.
12261 if ((atomic_read(nohz_flags(ilb_cpu)) & flags) == flags)
12262 return;
12265 * Access to rq::nohz_csd is serialized by NOHZ_KICK_MASK; he who sets
12266 * the first flag owns it; cleared by nohz_csd_func().
12268 flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
12269 if (flags & NOHZ_KICK_MASK)
12270 return;
12273 * This way we generate an IPI on the target CPU which
12274 * is idle, and the softirq performing NOHZ idle load balancing
12275 * will be run before returning from the IPI.
12277 smp_call_function_single_async(ilb_cpu, &cpu_rq(ilb_cpu)->nohz_csd);
12281 * Current decision point for kicking the idle load balancer in the presence
12282 * of idle CPUs in the system.
12284 static void nohz_balancer_kick(struct rq *rq)
12286 unsigned long now = jiffies;
12287 struct sched_domain_shared *sds;
12288 struct sched_domain *sd;
12289 int nr_busy, i, cpu = rq->cpu;
12290 unsigned int flags = 0;
12292 if (unlikely(rq->idle_balance))
12293 return;
12296 * We may be recently in ticked or tickless idle mode. At the first
12297 * busy tick after returning from idle, we will update the busy stats.
12299 nohz_balance_exit_idle(rq);
12302 * None are in tickless mode and hence no need for NOHZ idle load
12303 * balancing:
12305 if (likely(!atomic_read(&nohz.nr_cpus)))
12306 return;
12308 if (READ_ONCE(nohz.has_blocked) &&
12309 time_after(now, READ_ONCE(nohz.next_blocked)))
12310 flags = NOHZ_STATS_KICK;
12312 if (time_before(now, nohz.next_balance))
12313 goto out;
12315 if (rq->nr_running >= 2) {
12316 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12317 goto out;
12320 rcu_read_lock();
12322 sd = rcu_dereference(rq->sd);
12323 if (sd) {
12325 * If there's a runnable CFS task and the current CPU has reduced
12326 * capacity, kick the ILB to see if there's a better CPU to run on:
12328 if (rq->cfs.h_nr_running >= 1 && check_cpu_capacity(rq, sd)) {
12329 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12330 goto unlock;
12334 sd = rcu_dereference(per_cpu(sd_asym_packing, cpu));
12335 if (sd) {
12337 * When ASYM_PACKING; see if there's a more preferred CPU
12338 * currently idle; in which case, kick the ILB to move tasks
12339 * around.
12341 * When balancing between cores, all the SMT siblings of the
12342 * preferred CPU must be idle.
12344 for_each_cpu_and(i, sched_domain_span(sd), nohz.idle_cpus_mask) {
12345 if (sched_asym(sd, i, cpu)) {
12346 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12347 goto unlock;
12352 sd = rcu_dereference(per_cpu(sd_asym_cpucapacity, cpu));
12353 if (sd) {
12355 * When ASYM_CPUCAPACITY; see if there's a higher capacity CPU
12356 * to run the misfit task on.
12358 if (check_misfit_status(rq)) {
12359 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12360 goto unlock;
12364 * For asymmetric systems, we do not want to nicely balance
12365 * cache use, instead we want to embrace asymmetry and only
12366 * ensure tasks have enough CPU capacity.
12368 * Skip the LLC logic because it's not relevant in that case.
12370 goto unlock;
12373 sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
12374 if (sds) {
12376 * If there is an imbalance between LLC domains (IOW we could
12377 * increase the overall cache utilization), we need a less-loaded LLC
12378 * domain to pull some load from. Likewise, we may need to spread
12379 * load within the current LLC domain (e.g. packed SMT cores but
12380 * other CPUs are idle). We can't really know from here how busy
12381 * the others are - so just get a NOHZ balance going if it looks
12382 * like this LLC domain has tasks we could move.
12384 nr_busy = atomic_read(&sds->nr_busy_cpus);
12385 if (nr_busy > 1) {
12386 flags = NOHZ_STATS_KICK | NOHZ_BALANCE_KICK;
12387 goto unlock;
12390 unlock:
12391 rcu_read_unlock();
12392 out:
12393 if (READ_ONCE(nohz.needs_update))
12394 flags |= NOHZ_NEXT_KICK;
12396 if (flags)
12397 kick_ilb(flags);
12400 static void set_cpu_sd_state_busy(int cpu)
12402 struct sched_domain *sd;
12404 rcu_read_lock();
12405 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12407 if (!sd || !sd->nohz_idle)
12408 goto unlock;
12409 sd->nohz_idle = 0;
12411 atomic_inc(&sd->shared->nr_busy_cpus);
12412 unlock:
12413 rcu_read_unlock();
12416 void nohz_balance_exit_idle(struct rq *rq)
12418 SCHED_WARN_ON(rq != this_rq());
12420 if (likely(!rq->nohz_tick_stopped))
12421 return;
12423 rq->nohz_tick_stopped = 0;
12424 cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
12425 atomic_dec(&nohz.nr_cpus);
12427 set_cpu_sd_state_busy(rq->cpu);
12430 static void set_cpu_sd_state_idle(int cpu)
12432 struct sched_domain *sd;
12434 rcu_read_lock();
12435 sd = rcu_dereference(per_cpu(sd_llc, cpu));
12437 if (!sd || sd->nohz_idle)
12438 goto unlock;
12439 sd->nohz_idle = 1;
12441 atomic_dec(&sd->shared->nr_busy_cpus);
12442 unlock:
12443 rcu_read_unlock();
12447 * This routine will record that the CPU is going idle with tick stopped.
12448 * This info will be used in performing idle load balancing in the future.
12450 void nohz_balance_enter_idle(int cpu)
12452 struct rq *rq = cpu_rq(cpu);
12454 SCHED_WARN_ON(cpu != smp_processor_id());
12456 /* If this CPU is going down, then nothing needs to be done: */
12457 if (!cpu_active(cpu))
12458 return;
12460 /* Spare idle load balancing on CPUs that don't want to be disturbed: */
12461 if (!housekeeping_cpu(cpu, HK_TYPE_SCHED))
12462 return;
12465 * Can be set safely without rq->lock held
12466 * If a clear happens, it will have evaluated last additions because
12467 * rq->lock is held during the check and the clear
12469 rq->has_blocked_load = 1;
12472 * The tick is still stopped but load could have been added in the
12473 * meantime. We set the nohz.has_blocked flag to trig a check of the
12474 * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
12475 * of nohz.has_blocked can only happen after checking the new load
12477 if (rq->nohz_tick_stopped)
12478 goto out;
12480 /* If we're a completely isolated CPU, we don't play: */
12481 if (on_null_domain(rq))
12482 return;
12484 rq->nohz_tick_stopped = 1;
12486 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
12487 atomic_inc(&nohz.nr_cpus);
12490 * Ensures that if nohz_idle_balance() fails to observe our
12491 * @idle_cpus_mask store, it must observe the @has_blocked
12492 * and @needs_update stores.
12494 smp_mb__after_atomic();
12496 set_cpu_sd_state_idle(cpu);
12498 WRITE_ONCE(nohz.needs_update, 1);
12499 out:
12501 * Each time a cpu enter idle, we assume that it has blocked load and
12502 * enable the periodic update of the load of idle CPUs
12504 WRITE_ONCE(nohz.has_blocked, 1);
12507 static bool update_nohz_stats(struct rq *rq)
12509 unsigned int cpu = rq->cpu;
12511 if (!rq->has_blocked_load)
12512 return false;
12514 if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
12515 return false;
12517 if (!time_after(jiffies, READ_ONCE(rq->last_blocked_load_update_tick)))
12518 return true;
12520 sched_balance_update_blocked_averages(cpu);
12522 return rq->has_blocked_load;
12526 * Internal function that runs load balance for all idle CPUs. The load balance
12527 * can be a simple update of blocked load or a complete load balance with
12528 * tasks movement depending of flags.
12530 static void _nohz_idle_balance(struct rq *this_rq, unsigned int flags)
12532 /* Earliest time when we have to do rebalance again */
12533 unsigned long now = jiffies;
12534 unsigned long next_balance = now + 60*HZ;
12535 bool has_blocked_load = false;
12536 int update_next_balance = 0;
12537 int this_cpu = this_rq->cpu;
12538 int balance_cpu;
12539 struct rq *rq;
12541 SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
12544 * We assume there will be no idle load after this update and clear
12545 * the has_blocked flag. If a cpu enters idle in the mean time, it will
12546 * set the has_blocked flag and trigger another update of idle load.
12547 * Because a cpu that becomes idle, is added to idle_cpus_mask before
12548 * setting the flag, we are sure to not clear the state and not
12549 * check the load of an idle cpu.
12551 * Same applies to idle_cpus_mask vs needs_update.
12553 if (flags & NOHZ_STATS_KICK)
12554 WRITE_ONCE(nohz.has_blocked, 0);
12555 if (flags & NOHZ_NEXT_KICK)
12556 WRITE_ONCE(nohz.needs_update, 0);
12559 * Ensures that if we miss the CPU, we must see the has_blocked
12560 * store from nohz_balance_enter_idle().
12562 smp_mb();
12565 * Start with the next CPU after this_cpu so we will end with this_cpu and let a
12566 * chance for other idle cpu to pull load.
12568 for_each_cpu_wrap(balance_cpu, nohz.idle_cpus_mask, this_cpu+1) {
12569 if (!idle_cpu(balance_cpu))
12570 continue;
12573 * If this CPU gets work to do, stop the load balancing
12574 * work being done for other CPUs. Next load
12575 * balancing owner will pick it up.
12577 if (need_resched()) {
12578 if (flags & NOHZ_STATS_KICK)
12579 has_blocked_load = true;
12580 if (flags & NOHZ_NEXT_KICK)
12581 WRITE_ONCE(nohz.needs_update, 1);
12582 goto abort;
12585 rq = cpu_rq(balance_cpu);
12587 if (flags & NOHZ_STATS_KICK)
12588 has_blocked_load |= update_nohz_stats(rq);
12591 * If time for next balance is due,
12592 * do the balance.
12594 if (time_after_eq(jiffies, rq->next_balance)) {
12595 struct rq_flags rf;
12597 rq_lock_irqsave(rq, &rf);
12598 update_rq_clock(rq);
12599 rq_unlock_irqrestore(rq, &rf);
12601 if (flags & NOHZ_BALANCE_KICK)
12602 sched_balance_domains(rq, CPU_IDLE);
12605 if (time_after(next_balance, rq->next_balance)) {
12606 next_balance = rq->next_balance;
12607 update_next_balance = 1;
12612 * next_balance will be updated only when there is a need.
12613 * When the CPU is attached to null domain for ex, it will not be
12614 * updated.
12616 if (likely(update_next_balance))
12617 nohz.next_balance = next_balance;
12619 if (flags & NOHZ_STATS_KICK)
12620 WRITE_ONCE(nohz.next_blocked,
12621 now + msecs_to_jiffies(LOAD_AVG_PERIOD));
12623 abort:
12624 /* There is still blocked load, enable periodic update */
12625 if (has_blocked_load)
12626 WRITE_ONCE(nohz.has_blocked, 1);
12630 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
12631 * rebalancing for all the CPUs for whom scheduler ticks are stopped.
12633 static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12635 unsigned int flags = this_rq->nohz_idle_balance;
12637 if (!flags)
12638 return false;
12640 this_rq->nohz_idle_balance = 0;
12642 if (idle != CPU_IDLE)
12643 return false;
12645 _nohz_idle_balance(this_rq, flags);
12647 return true;
12651 * Check if we need to directly run the ILB for updating blocked load before
12652 * entering idle state. Here we run ILB directly without issuing IPIs.
12654 * Note that when this function is called, the tick may not yet be stopped on
12655 * this CPU yet. nohz.idle_cpus_mask is updated only when tick is stopped and
12656 * cleared on the next busy tick. In other words, nohz.idle_cpus_mask updates
12657 * don't align with CPUs enter/exit idle to avoid bottlenecks due to high idle
12658 * entry/exit rate (usec). So it is possible that _nohz_idle_balance() is
12659 * called from this function on (this) CPU that's not yet in the mask. That's
12660 * OK because the goal of nohz_run_idle_balance() is to run ILB only for
12661 * updating the blocked load of already idle CPUs without waking up one of
12662 * those idle CPUs and outside the preempt disable / IRQ off phase of the local
12663 * cpu about to enter idle, because it can take a long time.
12665 void nohz_run_idle_balance(int cpu)
12667 unsigned int flags;
12669 flags = atomic_fetch_andnot(NOHZ_NEWILB_KICK, nohz_flags(cpu));
12672 * Update the blocked load only if no SCHED_SOFTIRQ is about to happen
12673 * (i.e. NOHZ_STATS_KICK set) and will do the same.
12675 if ((flags == NOHZ_NEWILB_KICK) && !need_resched())
12676 _nohz_idle_balance(cpu_rq(cpu), NOHZ_STATS_KICK);
12679 static void nohz_newidle_balance(struct rq *this_rq)
12681 int this_cpu = this_rq->cpu;
12684 * This CPU doesn't want to be disturbed by scheduler
12685 * housekeeping
12687 if (!housekeeping_cpu(this_cpu, HK_TYPE_SCHED))
12688 return;
12690 /* Will wake up very soon. No time for doing anything else*/
12691 if (this_rq->avg_idle < sysctl_sched_migration_cost)
12692 return;
12694 /* Don't need to update blocked load of idle CPUs*/
12695 if (!READ_ONCE(nohz.has_blocked) ||
12696 time_before(jiffies, READ_ONCE(nohz.next_blocked)))
12697 return;
12700 * Set the need to trigger ILB in order to update blocked load
12701 * before entering idle state.
12703 atomic_or(NOHZ_NEWILB_KICK, nohz_flags(this_cpu));
12706 #else /* !CONFIG_NO_HZ_COMMON */
12707 static inline void nohz_balancer_kick(struct rq *rq) { }
12709 static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
12711 return false;
12714 static inline void nohz_newidle_balance(struct rq *this_rq) { }
12715 #endif /* CONFIG_NO_HZ_COMMON */
12718 * sched_balance_newidle is called by schedule() if this_cpu is about to become
12719 * idle. Attempts to pull tasks from other CPUs.
12721 * Returns:
12722 * < 0 - we released the lock and there are !fair tasks present
12723 * 0 - failed, no new tasks
12724 * > 0 - success, new (fair) tasks present
12726 static int sched_balance_newidle(struct rq *this_rq, struct rq_flags *rf)
12728 unsigned long next_balance = jiffies + HZ;
12729 int this_cpu = this_rq->cpu;
12730 int continue_balancing = 1;
12731 u64 t0, t1, curr_cost = 0;
12732 struct sched_domain *sd;
12733 int pulled_task = 0;
12735 update_misfit_status(NULL, this_rq);
12738 * There is a task waiting to run. No need to search for one.
12739 * Return 0; the task will be enqueued when switching to idle.
12741 if (this_rq->ttwu_pending)
12742 return 0;
12745 * We must set idle_stamp _before_ calling sched_balance_rq()
12746 * for CPU_NEWLY_IDLE, such that we measure the this duration
12747 * as idle time.
12749 this_rq->idle_stamp = rq_clock(this_rq);
12752 * Do not pull tasks towards !active CPUs...
12754 if (!cpu_active(this_cpu))
12755 return 0;
12758 * This is OK, because current is on_cpu, which avoids it being picked
12759 * for load-balance and preemption/IRQs are still disabled avoiding
12760 * further scheduler activity on it and we're being very careful to
12761 * re-start the picking loop.
12763 rq_unpin_lock(this_rq, rf);
12765 rcu_read_lock();
12766 sd = rcu_dereference_check_sched_domain(this_rq->sd);
12768 if (!get_rd_overloaded(this_rq->rd) ||
12769 (sd && this_rq->avg_idle < sd->max_newidle_lb_cost)) {
12771 if (sd)
12772 update_next_balance(sd, &next_balance);
12773 rcu_read_unlock();
12775 goto out;
12777 rcu_read_unlock();
12779 raw_spin_rq_unlock(this_rq);
12781 t0 = sched_clock_cpu(this_cpu);
12782 sched_balance_update_blocked_averages(this_cpu);
12784 rcu_read_lock();
12785 for_each_domain(this_cpu, sd) {
12786 u64 domain_cost;
12788 update_next_balance(sd, &next_balance);
12790 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost)
12791 break;
12793 if (sd->flags & SD_BALANCE_NEWIDLE) {
12795 pulled_task = sched_balance_rq(this_cpu, this_rq,
12796 sd, CPU_NEWLY_IDLE,
12797 &continue_balancing);
12799 t1 = sched_clock_cpu(this_cpu);
12800 domain_cost = t1 - t0;
12801 update_newidle_cost(sd, domain_cost);
12803 curr_cost += domain_cost;
12804 t0 = t1;
12808 * Stop searching for tasks to pull if there are
12809 * now runnable tasks on this rq.
12811 if (pulled_task || !continue_balancing)
12812 break;
12814 rcu_read_unlock();
12816 raw_spin_rq_lock(this_rq);
12818 if (curr_cost > this_rq->max_idle_balance_cost)
12819 this_rq->max_idle_balance_cost = curr_cost;
12822 * While browsing the domains, we released the rq lock, a task could
12823 * have been enqueued in the meantime. Since we're not going idle,
12824 * pretend we pulled a task.
12826 if (this_rq->cfs.h_nr_running && !pulled_task)
12827 pulled_task = 1;
12829 /* Is there a task of a high priority class? */
12830 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
12831 pulled_task = -1;
12833 out:
12834 /* Move the next balance forward */
12835 if (time_after(this_rq->next_balance, next_balance))
12836 this_rq->next_balance = next_balance;
12838 if (pulled_task)
12839 this_rq->idle_stamp = 0;
12840 else
12841 nohz_newidle_balance(this_rq);
12843 rq_repin_lock(this_rq, rf);
12845 return pulled_task;
12849 * This softirq handler is triggered via SCHED_SOFTIRQ from two places:
12851 * - directly from the local scheduler_tick() for periodic load balancing
12853 * - indirectly from a remote scheduler_tick() for NOHZ idle balancing
12854 * through the SMP cross-call nohz_csd_func()
12856 static __latent_entropy void sched_balance_softirq(void)
12858 struct rq *this_rq = this_rq();
12859 enum cpu_idle_type idle = this_rq->idle_balance;
12861 * If this CPU has a pending NOHZ_BALANCE_KICK, then do the
12862 * balancing on behalf of the other idle CPUs whose ticks are
12863 * stopped. Do nohz_idle_balance *before* sched_balance_domains to
12864 * give the idle CPUs a chance to load balance. Else we may
12865 * load balance only within the local sched_domain hierarchy
12866 * and abort nohz_idle_balance altogether if we pull some load.
12868 if (nohz_idle_balance(this_rq, idle))
12869 return;
12871 /* normal load balance */
12872 sched_balance_update_blocked_averages(this_rq->cpu);
12873 sched_balance_domains(this_rq, idle);
12877 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
12879 void sched_balance_trigger(struct rq *rq)
12882 * Don't need to rebalance while attached to NULL domain or
12883 * runqueue CPU is not active
12885 if (unlikely(on_null_domain(rq) || !cpu_active(cpu_of(rq))))
12886 return;
12888 if (time_after_eq(jiffies, rq->next_balance))
12889 raise_softirq(SCHED_SOFTIRQ);
12891 nohz_balancer_kick(rq);
12894 static void rq_online_fair(struct rq *rq)
12896 update_sysctl();
12898 update_runtime_enabled(rq);
12901 static void rq_offline_fair(struct rq *rq)
12903 update_sysctl();
12905 /* Ensure any throttled groups are reachable by pick_next_task */
12906 unthrottle_offline_cfs_rqs(rq);
12908 /* Ensure that we remove rq contribution to group share: */
12909 clear_tg_offline_cfs_rqs(rq);
12912 #endif /* CONFIG_SMP */
12914 #ifdef CONFIG_SCHED_CORE
12915 static inline bool
12916 __entity_slice_used(struct sched_entity *se, int min_nr_tasks)
12918 u64 rtime = se->sum_exec_runtime - se->prev_sum_exec_runtime;
12919 u64 slice = se->slice;
12921 return (rtime * min_nr_tasks > slice);
12924 #define MIN_NR_TASKS_DURING_FORCEIDLE 2
12925 static inline void task_tick_core(struct rq *rq, struct task_struct *curr)
12927 if (!sched_core_enabled(rq))
12928 return;
12931 * If runqueue has only one task which used up its slice and
12932 * if the sibling is forced idle, then trigger schedule to
12933 * give forced idle task a chance.
12935 * sched_slice() considers only this active rq and it gets the
12936 * whole slice. But during force idle, we have siblings acting
12937 * like a single runqueue and hence we need to consider runnable
12938 * tasks on this CPU and the forced idle CPU. Ideally, we should
12939 * go through the forced idle rq, but that would be a perf hit.
12940 * We can assume that the forced idle CPU has at least
12941 * MIN_NR_TASKS_DURING_FORCEIDLE - 1 tasks and use that to check
12942 * if we need to give up the CPU.
12944 if (rq->core->core_forceidle_count && rq->cfs.nr_running == 1 &&
12945 __entity_slice_used(&curr->se, MIN_NR_TASKS_DURING_FORCEIDLE))
12946 resched_curr(rq);
12950 * se_fi_update - Update the cfs_rq->min_vruntime_fi in a CFS hierarchy if needed.
12952 static void se_fi_update(const struct sched_entity *se, unsigned int fi_seq,
12953 bool forceidle)
12955 for_each_sched_entity(se) {
12956 struct cfs_rq *cfs_rq = cfs_rq_of(se);
12958 if (forceidle) {
12959 if (cfs_rq->forceidle_seq == fi_seq)
12960 break;
12961 cfs_rq->forceidle_seq = fi_seq;
12964 cfs_rq->min_vruntime_fi = cfs_rq->min_vruntime;
12968 void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi)
12970 struct sched_entity *se = &p->se;
12972 if (p->sched_class != &fair_sched_class)
12973 return;
12975 se_fi_update(se, rq->core->core_forceidle_seq, in_fi);
12978 bool cfs_prio_less(const struct task_struct *a, const struct task_struct *b,
12979 bool in_fi)
12981 struct rq *rq = task_rq(a);
12982 const struct sched_entity *sea = &a->se;
12983 const struct sched_entity *seb = &b->se;
12984 struct cfs_rq *cfs_rqa;
12985 struct cfs_rq *cfs_rqb;
12986 s64 delta;
12988 SCHED_WARN_ON(task_rq(b)->core != rq->core);
12990 #ifdef CONFIG_FAIR_GROUP_SCHED
12992 * Find an se in the hierarchy for tasks a and b, such that the se's
12993 * are immediate siblings.
12995 while (sea->cfs_rq->tg != seb->cfs_rq->tg) {
12996 int sea_depth = sea->depth;
12997 int seb_depth = seb->depth;
12999 if (sea_depth >= seb_depth)
13000 sea = parent_entity(sea);
13001 if (sea_depth <= seb_depth)
13002 seb = parent_entity(seb);
13005 se_fi_update(sea, rq->core->core_forceidle_seq, in_fi);
13006 se_fi_update(seb, rq->core->core_forceidle_seq, in_fi);
13008 cfs_rqa = sea->cfs_rq;
13009 cfs_rqb = seb->cfs_rq;
13010 #else
13011 cfs_rqa = &task_rq(a)->cfs;
13012 cfs_rqb = &task_rq(b)->cfs;
13013 #endif
13016 * Find delta after normalizing se's vruntime with its cfs_rq's
13017 * min_vruntime_fi, which would have been updated in prior calls
13018 * to se_fi_update().
13020 delta = (s64)(sea->vruntime - seb->vruntime) +
13021 (s64)(cfs_rqb->min_vruntime_fi - cfs_rqa->min_vruntime_fi);
13023 return delta > 0;
13026 static int task_is_throttled_fair(struct task_struct *p, int cpu)
13028 struct cfs_rq *cfs_rq;
13030 #ifdef CONFIG_FAIR_GROUP_SCHED
13031 cfs_rq = task_group(p)->cfs_rq[cpu];
13032 #else
13033 cfs_rq = &cpu_rq(cpu)->cfs;
13034 #endif
13035 return throttled_hierarchy(cfs_rq);
13037 #else
13038 static inline void task_tick_core(struct rq *rq, struct task_struct *curr) {}
13039 #endif
13042 * scheduler tick hitting a task of our scheduling class.
13044 * NOTE: This function can be called remotely by the tick offload that
13045 * goes along full dynticks. Therefore no local assumption can be made
13046 * and everything must be accessed through the @rq and @curr passed in
13047 * parameters.
13049 static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
13051 struct cfs_rq *cfs_rq;
13052 struct sched_entity *se = &curr->se;
13054 for_each_sched_entity(se) {
13055 cfs_rq = cfs_rq_of(se);
13056 entity_tick(cfs_rq, se, queued);
13059 if (static_branch_unlikely(&sched_numa_balancing))
13060 task_tick_numa(rq, curr);
13062 update_misfit_status(curr, rq);
13063 check_update_overutilized_status(task_rq(curr));
13065 task_tick_core(rq, curr);
13069 * called on fork with the child task as argument from the parent's context
13070 * - child not yet on the tasklist
13071 * - preemption disabled
13073 static void task_fork_fair(struct task_struct *p)
13075 set_task_max_allowed_capacity(p);
13079 * Priority of the task has changed. Check to see if we preempt
13080 * the current task.
13082 static void
13083 prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
13085 if (!task_on_rq_queued(p))
13086 return;
13088 if (rq->cfs.nr_running == 1)
13089 return;
13092 * Reschedule if we are currently running on this runqueue and
13093 * our priority decreased, or if we are not currently running on
13094 * this runqueue and our priority is higher than the current's
13096 if (task_current_donor(rq, p)) {
13097 if (p->prio > oldprio)
13098 resched_curr(rq);
13099 } else
13100 wakeup_preempt(rq, p, 0);
13103 #ifdef CONFIG_FAIR_GROUP_SCHED
13105 * Propagate the changes of the sched_entity across the tg tree to make it
13106 * visible to the root
13108 static void propagate_entity_cfs_rq(struct sched_entity *se)
13110 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13112 if (cfs_rq_throttled(cfs_rq))
13113 return;
13115 if (!throttled_hierarchy(cfs_rq))
13116 list_add_leaf_cfs_rq(cfs_rq);
13118 /* Start to propagate at parent */
13119 se = se->parent;
13121 for_each_sched_entity(se) {
13122 cfs_rq = cfs_rq_of(se);
13124 update_load_avg(cfs_rq, se, UPDATE_TG);
13126 if (cfs_rq_throttled(cfs_rq))
13127 break;
13129 if (!throttled_hierarchy(cfs_rq))
13130 list_add_leaf_cfs_rq(cfs_rq);
13133 #else
13134 static void propagate_entity_cfs_rq(struct sched_entity *se) { }
13135 #endif
13137 static void detach_entity_cfs_rq(struct sched_entity *se)
13139 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13141 #ifdef CONFIG_SMP
13143 * In case the task sched_avg hasn't been attached:
13144 * - A forked task which hasn't been woken up by wake_up_new_task().
13145 * - A task which has been woken up by try_to_wake_up() but is
13146 * waiting for actually being woken up by sched_ttwu_pending().
13148 if (!se->avg.last_update_time)
13149 return;
13150 #endif
13152 /* Catch up with the cfs_rq and remove our load when we leave */
13153 update_load_avg(cfs_rq, se, 0);
13154 detach_entity_load_avg(cfs_rq, se);
13155 update_tg_load_avg(cfs_rq);
13156 propagate_entity_cfs_rq(se);
13159 static void attach_entity_cfs_rq(struct sched_entity *se)
13161 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13163 /* Synchronize entity with its cfs_rq */
13164 update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
13165 attach_entity_load_avg(cfs_rq, se);
13166 update_tg_load_avg(cfs_rq);
13167 propagate_entity_cfs_rq(se);
13170 static void detach_task_cfs_rq(struct task_struct *p)
13172 struct sched_entity *se = &p->se;
13174 detach_entity_cfs_rq(se);
13177 static void attach_task_cfs_rq(struct task_struct *p)
13179 struct sched_entity *se = &p->se;
13181 attach_entity_cfs_rq(se);
13184 static void switched_from_fair(struct rq *rq, struct task_struct *p)
13186 detach_task_cfs_rq(p);
13189 static void switched_to_fair(struct rq *rq, struct task_struct *p)
13191 SCHED_WARN_ON(p->se.sched_delayed);
13193 attach_task_cfs_rq(p);
13195 set_task_max_allowed_capacity(p);
13197 if (task_on_rq_queued(p)) {
13199 * We were most likely switched from sched_rt, so
13200 * kick off the schedule if running, otherwise just see
13201 * if we can still preempt the current task.
13203 if (task_current_donor(rq, p))
13204 resched_curr(rq);
13205 else
13206 wakeup_preempt(rq, p, 0);
13210 static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13212 struct sched_entity *se = &p->se;
13214 #ifdef CONFIG_SMP
13215 if (task_on_rq_queued(p)) {
13217 * Move the next running task to the front of the list, so our
13218 * cfs_tasks list becomes MRU one.
13220 list_move(&se->group_node, &rq->cfs_tasks);
13222 #endif
13223 if (!first)
13224 return;
13226 SCHED_WARN_ON(se->sched_delayed);
13228 if (hrtick_enabled_fair(rq))
13229 hrtick_start_fair(rq, p);
13231 update_misfit_status(p, rq);
13232 sched_fair_update_stop_tick(rq, p);
13236 * Account for a task changing its policy or group.
13238 * This routine is mostly called to set cfs_rq->curr field when a task
13239 * migrates between groups/classes.
13241 static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
13243 struct sched_entity *se = &p->se;
13245 for_each_sched_entity(se) {
13246 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13248 set_next_entity(cfs_rq, se);
13249 /* ensure bandwidth has been allocated on our new cfs_rq */
13250 account_cfs_rq_runtime(cfs_rq, 0);
13253 __set_next_task_fair(rq, p, first);
13256 void init_cfs_rq(struct cfs_rq *cfs_rq)
13258 cfs_rq->tasks_timeline = RB_ROOT_CACHED;
13259 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
13260 #ifdef CONFIG_SMP
13261 raw_spin_lock_init(&cfs_rq->removed.lock);
13262 #endif
13265 #ifdef CONFIG_FAIR_GROUP_SCHED
13266 static void task_change_group_fair(struct task_struct *p)
13269 * We couldn't detach or attach a forked task which
13270 * hasn't been woken up by wake_up_new_task().
13272 if (READ_ONCE(p->__state) == TASK_NEW)
13273 return;
13275 detach_task_cfs_rq(p);
13277 #ifdef CONFIG_SMP
13278 /* Tell se's cfs_rq has been changed -- migrated */
13279 p->se.avg.last_update_time = 0;
13280 #endif
13281 set_task_rq(p, task_cpu(p));
13282 attach_task_cfs_rq(p);
13285 void free_fair_sched_group(struct task_group *tg)
13287 int i;
13289 for_each_possible_cpu(i) {
13290 if (tg->cfs_rq)
13291 kfree(tg->cfs_rq[i]);
13292 if (tg->se)
13293 kfree(tg->se[i]);
13296 kfree(tg->cfs_rq);
13297 kfree(tg->se);
13300 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
13302 struct sched_entity *se;
13303 struct cfs_rq *cfs_rq;
13304 int i;
13306 tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
13307 if (!tg->cfs_rq)
13308 goto err;
13309 tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
13310 if (!tg->se)
13311 goto err;
13313 tg->shares = NICE_0_LOAD;
13315 init_cfs_bandwidth(tg_cfs_bandwidth(tg), tg_cfs_bandwidth(parent));
13317 for_each_possible_cpu(i) {
13318 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
13319 GFP_KERNEL, cpu_to_node(i));
13320 if (!cfs_rq)
13321 goto err;
13323 se = kzalloc_node(sizeof(struct sched_entity_stats),
13324 GFP_KERNEL, cpu_to_node(i));
13325 if (!se)
13326 goto err_free_rq;
13328 init_cfs_rq(cfs_rq);
13329 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
13330 init_entity_runnable_average(se);
13333 return 1;
13335 err_free_rq:
13336 kfree(cfs_rq);
13337 err:
13338 return 0;
13341 void online_fair_sched_group(struct task_group *tg)
13343 struct sched_entity *se;
13344 struct rq_flags rf;
13345 struct rq *rq;
13346 int i;
13348 for_each_possible_cpu(i) {
13349 rq = cpu_rq(i);
13350 se = tg->se[i];
13351 rq_lock_irq(rq, &rf);
13352 update_rq_clock(rq);
13353 attach_entity_cfs_rq(se);
13354 sync_throttle(tg, i);
13355 rq_unlock_irq(rq, &rf);
13359 void unregister_fair_sched_group(struct task_group *tg)
13361 int cpu;
13363 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
13365 for_each_possible_cpu(cpu) {
13366 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
13367 struct sched_entity *se = tg->se[cpu];
13368 struct rq *rq = cpu_rq(cpu);
13370 if (se) {
13371 if (se->sched_delayed) {
13372 guard(rq_lock_irqsave)(rq);
13373 if (se->sched_delayed) {
13374 update_rq_clock(rq);
13375 dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
13377 list_del_leaf_cfs_rq(cfs_rq);
13379 remove_entity_load_avg(se);
13383 * Only empty task groups can be destroyed; so we can speculatively
13384 * check on_list without danger of it being re-added.
13386 if (cfs_rq->on_list) {
13387 guard(rq_lock_irqsave)(rq);
13388 list_del_leaf_cfs_rq(cfs_rq);
13393 void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
13394 struct sched_entity *se, int cpu,
13395 struct sched_entity *parent)
13397 struct rq *rq = cpu_rq(cpu);
13399 cfs_rq->tg = tg;
13400 cfs_rq->rq = rq;
13401 init_cfs_rq_runtime(cfs_rq);
13403 tg->cfs_rq[cpu] = cfs_rq;
13404 tg->se[cpu] = se;
13406 /* se could be NULL for root_task_group */
13407 if (!se)
13408 return;
13410 if (!parent) {
13411 se->cfs_rq = &rq->cfs;
13412 se->depth = 0;
13413 } else {
13414 se->cfs_rq = parent->my_q;
13415 se->depth = parent->depth + 1;
13418 se->my_q = cfs_rq;
13419 /* guarantee group entities always have weight */
13420 update_load_set(&se->load, NICE_0_LOAD);
13421 se->parent = parent;
13424 static DEFINE_MUTEX(shares_mutex);
13426 static int __sched_group_set_shares(struct task_group *tg, unsigned long shares)
13428 int i;
13430 lockdep_assert_held(&shares_mutex);
13433 * We can't change the weight of the root cgroup.
13435 if (!tg->se[0])
13436 return -EINVAL;
13438 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
13440 if (tg->shares == shares)
13441 return 0;
13443 tg->shares = shares;
13444 for_each_possible_cpu(i) {
13445 struct rq *rq = cpu_rq(i);
13446 struct sched_entity *se = tg->se[i];
13447 struct rq_flags rf;
13449 /* Propagate contribution to hierarchy */
13450 rq_lock_irqsave(rq, &rf);
13451 update_rq_clock(rq);
13452 for_each_sched_entity(se) {
13453 update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
13454 update_cfs_group(se);
13456 rq_unlock_irqrestore(rq, &rf);
13459 return 0;
13462 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
13464 int ret;
13466 mutex_lock(&shares_mutex);
13467 if (tg_is_idle(tg))
13468 ret = -EINVAL;
13469 else
13470 ret = __sched_group_set_shares(tg, shares);
13471 mutex_unlock(&shares_mutex);
13473 return ret;
13476 int sched_group_set_idle(struct task_group *tg, long idle)
13478 int i;
13480 if (tg == &root_task_group)
13481 return -EINVAL;
13483 if (idle < 0 || idle > 1)
13484 return -EINVAL;
13486 mutex_lock(&shares_mutex);
13488 if (tg->idle == idle) {
13489 mutex_unlock(&shares_mutex);
13490 return 0;
13493 tg->idle = idle;
13495 for_each_possible_cpu(i) {
13496 struct rq *rq = cpu_rq(i);
13497 struct sched_entity *se = tg->se[i];
13498 struct cfs_rq *parent_cfs_rq, *grp_cfs_rq = tg->cfs_rq[i];
13499 bool was_idle = cfs_rq_is_idle(grp_cfs_rq);
13500 long idle_task_delta;
13501 struct rq_flags rf;
13503 rq_lock_irqsave(rq, &rf);
13505 grp_cfs_rq->idle = idle;
13506 if (WARN_ON_ONCE(was_idle == cfs_rq_is_idle(grp_cfs_rq)))
13507 goto next_cpu;
13509 if (se->on_rq) {
13510 parent_cfs_rq = cfs_rq_of(se);
13511 if (cfs_rq_is_idle(grp_cfs_rq))
13512 parent_cfs_rq->idle_nr_running++;
13513 else
13514 parent_cfs_rq->idle_nr_running--;
13517 idle_task_delta = grp_cfs_rq->h_nr_running -
13518 grp_cfs_rq->idle_h_nr_running;
13519 if (!cfs_rq_is_idle(grp_cfs_rq))
13520 idle_task_delta *= -1;
13522 for_each_sched_entity(se) {
13523 struct cfs_rq *cfs_rq = cfs_rq_of(se);
13525 if (!se->on_rq)
13526 break;
13528 cfs_rq->idle_h_nr_running += idle_task_delta;
13530 /* Already accounted at parent level and above. */
13531 if (cfs_rq_is_idle(cfs_rq))
13532 break;
13535 next_cpu:
13536 rq_unlock_irqrestore(rq, &rf);
13539 /* Idle groups have minimum weight. */
13540 if (tg_is_idle(tg))
13541 __sched_group_set_shares(tg, scale_load(WEIGHT_IDLEPRIO));
13542 else
13543 __sched_group_set_shares(tg, NICE_0_LOAD);
13545 mutex_unlock(&shares_mutex);
13546 return 0;
13549 #endif /* CONFIG_FAIR_GROUP_SCHED */
13552 static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
13554 struct sched_entity *se = &task->se;
13555 unsigned int rr_interval = 0;
13558 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
13559 * idle runqueue:
13561 if (rq->cfs.load.weight)
13562 rr_interval = NS_TO_JIFFIES(se->slice);
13564 return rr_interval;
13568 * All the scheduling class methods:
13570 DEFINE_SCHED_CLASS(fair) = {
13572 .enqueue_task = enqueue_task_fair,
13573 .dequeue_task = dequeue_task_fair,
13574 .yield_task = yield_task_fair,
13575 .yield_to_task = yield_to_task_fair,
13577 .wakeup_preempt = check_preempt_wakeup_fair,
13579 .pick_task = pick_task_fair,
13580 .pick_next_task = __pick_next_task_fair,
13581 .put_prev_task = put_prev_task_fair,
13582 .set_next_task = set_next_task_fair,
13584 #ifdef CONFIG_SMP
13585 .balance = balance_fair,
13586 .select_task_rq = select_task_rq_fair,
13587 .migrate_task_rq = migrate_task_rq_fair,
13589 .rq_online = rq_online_fair,
13590 .rq_offline = rq_offline_fair,
13592 .task_dead = task_dead_fair,
13593 .set_cpus_allowed = set_cpus_allowed_fair,
13594 #endif
13596 .task_tick = task_tick_fair,
13597 .task_fork = task_fork_fair,
13599 .reweight_task = reweight_task_fair,
13600 .prio_changed = prio_changed_fair,
13601 .switched_from = switched_from_fair,
13602 .switched_to = switched_to_fair,
13604 .get_rr_interval = get_rr_interval_fair,
13606 .update_curr = update_curr_fair,
13608 #ifdef CONFIG_FAIR_GROUP_SCHED
13609 .task_change_group = task_change_group_fair,
13610 #endif
13612 #ifdef CONFIG_SCHED_CORE
13613 .task_is_throttled = task_is_throttled_fair,
13614 #endif
13616 #ifdef CONFIG_UCLAMP_TASK
13617 .uclamp_enabled = 1,
13618 #endif
13621 #ifdef CONFIG_SCHED_DEBUG
13622 void print_cfs_stats(struct seq_file *m, int cpu)
13624 struct cfs_rq *cfs_rq, *pos;
13626 rcu_read_lock();
13627 for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
13628 print_cfs_rq(m, cpu, cfs_rq);
13629 rcu_read_unlock();
13632 #ifdef CONFIG_NUMA_BALANCING
13633 void show_numa_stats(struct task_struct *p, struct seq_file *m)
13635 int node;
13636 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
13637 struct numa_group *ng;
13639 rcu_read_lock();
13640 ng = rcu_dereference(p->numa_group);
13641 for_each_online_node(node) {
13642 if (p->numa_faults) {
13643 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
13644 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
13646 if (ng) {
13647 gsf = ng->faults[task_faults_idx(NUMA_MEM, node, 0)],
13648 gpf = ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
13650 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
13652 rcu_read_unlock();
13654 #endif /* CONFIG_NUMA_BALANCING */
13655 #endif /* CONFIG_SCHED_DEBUG */
13657 __init void init_sched_fair_class(void)
13659 #ifdef CONFIG_SMP
13660 int i;
13662 for_each_possible_cpu(i) {
13663 zalloc_cpumask_var_node(&per_cpu(load_balance_mask, i), GFP_KERNEL, cpu_to_node(i));
13664 zalloc_cpumask_var_node(&per_cpu(select_rq_mask, i), GFP_KERNEL, cpu_to_node(i));
13665 zalloc_cpumask_var_node(&per_cpu(should_we_balance_tmpmask, i),
13666 GFP_KERNEL, cpu_to_node(i));
13668 #ifdef CONFIG_CFS_BANDWIDTH
13669 INIT_CSD(&cpu_rq(i)->cfsb_csd, __cfsb_csd_unthrottle, cpu_rq(i));
13670 INIT_LIST_HEAD(&cpu_rq(i)->cfsb_csd_list);
13671 #endif
13674 open_softirq(SCHED_SOFTIRQ, sched_balance_softirq);
13676 #ifdef CONFIG_NO_HZ_COMMON
13677 nohz.next_balance = jiffies;
13678 nohz.next_blocked = jiffies;
13679 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
13680 #endif
13681 #endif /* SMP */