1 // SPDX-License-Identifier: GPL-2.0
3 * Implement CPU time clocks for the POSIX clock interface.
6 #include <linux/sched/signal.h>
7 #include <linux/sched/cputime.h>
8 #include <linux/posix-timers.h>
9 #include <linux/errno.h>
10 #include <linux/math64.h>
11 #include <linux/uaccess.h>
12 #include <linux/kernel_stat.h>
13 #include <trace/events/timer.h>
14 #include <linux/tick.h>
15 #include <linux/workqueue.h>
16 #include <linux/compat.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/task_work.h>
20 #include "posix-timers.h"
22 static void posix_cpu_timer_rearm(struct k_itimer
*timer
);
24 void posix_cputimers_group_init(struct posix_cputimers
*pct
, u64 cpu_limit
)
26 posix_cputimers_init(pct
);
27 if (cpu_limit
!= RLIM_INFINITY
) {
28 pct
->bases
[CPUCLOCK_PROF
].nextevt
= cpu_limit
* NSEC_PER_SEC
;
29 pct
->timers_active
= true;
34 * Called after updating RLIMIT_CPU to run cpu timer and update
35 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
36 * necessary. Needs siglock protection since other code may update the
37 * expiration cache as well.
39 * Returns 0 on success, -ESRCH on failure. Can fail if the task is exiting and
40 * we cannot lock_task_sighand. Cannot fail if task is current.
42 int update_rlimit_cpu(struct task_struct
*task
, unsigned long rlim_new
)
44 u64 nsecs
= rlim_new
* NSEC_PER_SEC
;
47 if (!lock_task_sighand(task
, &irq_fl
))
49 set_process_cpu_timer(task
, CPUCLOCK_PROF
, &nsecs
, NULL
);
50 unlock_task_sighand(task
, &irq_fl
);
55 * Functions for validating access to tasks.
57 static struct pid
*pid_for_clock(const clockid_t clock
, bool gettime
)
59 const bool thread
= !!CPUCLOCK_PERTHREAD(clock
);
60 const pid_t upid
= CPUCLOCK_PID(clock
);
63 if (CPUCLOCK_WHICH(clock
) >= CPUCLOCK_MAX
)
67 * If the encoded PID is 0, then the timer is targeted at current
68 * or the process to which current belongs.
71 return thread
? task_pid(current
) : task_tgid(current
);
73 pid
= find_vpid(upid
);
78 struct task_struct
*tsk
= pid_task(pid
, PIDTYPE_PID
);
79 return (tsk
&& same_thread_group(tsk
, current
)) ? pid
: NULL
;
83 * For clock_gettime(PROCESS) allow finding the process by
84 * with the pid of the current task. The code needs the tgid
85 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
86 * used to find the process.
88 if (gettime
&& (pid
== task_pid(current
)))
89 return task_tgid(current
);
92 * For processes require that pid identifies a process.
94 return pid_has_task(pid
, PIDTYPE_TGID
) ? pid
: NULL
;
97 static inline int validate_clock_permissions(const clockid_t clock
)
102 ret
= pid_for_clock(clock
, false) ? 0 : -EINVAL
;
108 static inline enum pid_type
clock_pid_type(const clockid_t clock
)
110 return CPUCLOCK_PERTHREAD(clock
) ? PIDTYPE_PID
: PIDTYPE_TGID
;
113 static inline struct task_struct
*cpu_timer_task_rcu(struct k_itimer
*timer
)
115 return pid_task(timer
->it
.cpu
.pid
, clock_pid_type(timer
->it_clock
));
119 * Update expiry time from increment, and increase overrun count,
120 * given the current clock sample.
122 static u64
bump_cpu_timer(struct k_itimer
*timer
, u64 now
)
124 u64 delta
, incr
, expires
= timer
->it
.cpu
.node
.expires
;
127 if (!timer
->it_interval
)
133 incr
= timer
->it_interval
;
134 delta
= now
+ incr
- expires
;
136 /* Don't use (incr*2 < delta), incr*2 might overflow. */
137 for (i
= 0; incr
< delta
- incr
; i
++)
140 for (; i
>= 0; incr
>>= 1, i
--) {
144 timer
->it
.cpu
.node
.expires
+= incr
;
145 timer
->it_overrun
+= 1LL << i
;
148 return timer
->it
.cpu
.node
.expires
;
151 /* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
152 static inline bool expiry_cache_is_inactive(const struct posix_cputimers
*pct
)
154 return !(~pct
->bases
[CPUCLOCK_PROF
].nextevt
|
155 ~pct
->bases
[CPUCLOCK_VIRT
].nextevt
|
156 ~pct
->bases
[CPUCLOCK_SCHED
].nextevt
);
160 posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec64
*tp
)
162 int error
= validate_clock_permissions(which_clock
);
166 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
167 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
169 * If sched_clock is using a cycle counter, we
170 * don't have any idea of its true resolution
171 * exported, but it is much more than 1s/HZ.
180 posix_cpu_clock_set(const clockid_t clock
, const struct timespec64
*tp
)
182 int error
= validate_clock_permissions(clock
);
185 * You can never reset a CPU clock, but we check for other errors
186 * in the call before failing with EPERM.
188 return error
? : -EPERM
;
192 * Sample a per-thread clock for the given task. clkid is validated.
194 static u64
cpu_clock_sample(const clockid_t clkid
, struct task_struct
*p
)
198 if (clkid
== CPUCLOCK_SCHED
)
199 return task_sched_runtime(p
);
201 task_cputime(p
, &utime
, &stime
);
205 return utime
+ stime
;
214 static inline void store_samples(u64
*samples
, u64 stime
, u64 utime
, u64 rtime
)
216 samples
[CPUCLOCK_PROF
] = stime
+ utime
;
217 samples
[CPUCLOCK_VIRT
] = utime
;
218 samples
[CPUCLOCK_SCHED
] = rtime
;
221 static void task_sample_cputime(struct task_struct
*p
, u64
*samples
)
225 task_cputime(p
, &utime
, &stime
);
226 store_samples(samples
, stime
, utime
, p
->se
.sum_exec_runtime
);
229 static void proc_sample_cputime_atomic(struct task_cputime_atomic
*at
,
232 u64 stime
, utime
, rtime
;
234 utime
= atomic64_read(&at
->utime
);
235 stime
= atomic64_read(&at
->stime
);
236 rtime
= atomic64_read(&at
->sum_exec_runtime
);
237 store_samples(samples
, stime
, utime
, rtime
);
241 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
242 * to avoid race conditions with concurrent updates to cputime.
244 static inline void __update_gt_cputime(atomic64_t
*cputime
, u64 sum_cputime
)
246 u64 curr_cputime
= atomic64_read(cputime
);
249 if (sum_cputime
<= curr_cputime
)
251 } while (!atomic64_try_cmpxchg(cputime
, &curr_cputime
, sum_cputime
));
254 static void update_gt_cputime(struct task_cputime_atomic
*cputime_atomic
,
255 struct task_cputime
*sum
)
257 __update_gt_cputime(&cputime_atomic
->utime
, sum
->utime
);
258 __update_gt_cputime(&cputime_atomic
->stime
, sum
->stime
);
259 __update_gt_cputime(&cputime_atomic
->sum_exec_runtime
, sum
->sum_exec_runtime
);
263 * thread_group_sample_cputime - Sample cputime for a given task
264 * @tsk: Task for which cputime needs to be started
265 * @samples: Storage for time samples
267 * Called from sys_getitimer() to calculate the expiry time of an active
268 * timer. That means group cputime accounting is already active. Called
269 * with task sighand lock held.
271 * Updates @times with an uptodate sample of the thread group cputimes.
273 void thread_group_sample_cputime(struct task_struct
*tsk
, u64
*samples
)
275 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
276 struct posix_cputimers
*pct
= &tsk
->signal
->posix_cputimers
;
278 WARN_ON_ONCE(!pct
->timers_active
);
280 proc_sample_cputime_atomic(&cputimer
->cputime_atomic
, samples
);
284 * thread_group_start_cputime - Start cputime and return a sample
285 * @tsk: Task for which cputime needs to be started
286 * @samples: Storage for time samples
288 * The thread group cputime accounting is avoided when there are no posix
289 * CPU timers armed. Before starting a timer it's required to check whether
290 * the time accounting is active. If not, a full update of the atomic
291 * accounting store needs to be done and the accounting enabled.
293 * Updates @times with an uptodate sample of the thread group cputimes.
295 static void thread_group_start_cputime(struct task_struct
*tsk
, u64
*samples
)
297 struct thread_group_cputimer
*cputimer
= &tsk
->signal
->cputimer
;
298 struct posix_cputimers
*pct
= &tsk
->signal
->posix_cputimers
;
300 lockdep_assert_task_sighand_held(tsk
);
302 /* Check if cputimer isn't running. This is accessed without locking. */
303 if (!READ_ONCE(pct
->timers_active
)) {
304 struct task_cputime sum
;
307 * The POSIX timer interface allows for absolute time expiry
308 * values through the TIMER_ABSTIME flag, therefore we have
309 * to synchronize the timer to the clock every time we start it.
311 thread_group_cputime(tsk
, &sum
);
312 update_gt_cputime(&cputimer
->cputime_atomic
, &sum
);
315 * We're setting timers_active without a lock. Ensure this
316 * only gets written to in one operation. We set it after
317 * update_gt_cputime() as a small optimization, but
318 * barriers are not required because update_gt_cputime()
319 * can handle concurrent updates.
321 WRITE_ONCE(pct
->timers_active
, true);
323 proc_sample_cputime_atomic(&cputimer
->cputime_atomic
, samples
);
326 static void __thread_group_cputime(struct task_struct
*tsk
, u64
*samples
)
328 struct task_cputime ct
;
330 thread_group_cputime(tsk
, &ct
);
331 store_samples(samples
, ct
.stime
, ct
.utime
, ct
.sum_exec_runtime
);
335 * Sample a process (thread group) clock for the given task clkid. If the
336 * group's cputime accounting is already enabled, read the atomic
337 * store. Otherwise a full update is required. clkid is already validated.
339 static u64
cpu_clock_sample_group(const clockid_t clkid
, struct task_struct
*p
,
342 struct thread_group_cputimer
*cputimer
= &p
->signal
->cputimer
;
343 struct posix_cputimers
*pct
= &p
->signal
->posix_cputimers
;
344 u64 samples
[CPUCLOCK_MAX
];
346 if (!READ_ONCE(pct
->timers_active
)) {
348 thread_group_start_cputime(p
, samples
);
350 __thread_group_cputime(p
, samples
);
352 proc_sample_cputime_atomic(&cputimer
->cputime_atomic
, samples
);
355 return samples
[clkid
];
358 static int posix_cpu_clock_get(const clockid_t clock
, struct timespec64
*tp
)
360 const clockid_t clkid
= CPUCLOCK_WHICH(clock
);
361 struct task_struct
*tsk
;
365 tsk
= pid_task(pid_for_clock(clock
, true), clock_pid_type(clock
));
371 if (CPUCLOCK_PERTHREAD(clock
))
372 t
= cpu_clock_sample(clkid
, tsk
);
374 t
= cpu_clock_sample_group(clkid
, tsk
, false);
377 *tp
= ns_to_timespec64(t
);
382 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
383 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
384 * new timer already all-zeros initialized.
386 static int posix_cpu_timer_create(struct k_itimer
*new_timer
)
388 static struct lock_class_key posix_cpu_timers_key
;
392 pid
= pid_for_clock(new_timer
->it_clock
, false);
399 * If posix timer expiry is handled in task work context then
400 * timer::it_lock can be taken without disabling interrupts as all
401 * other locking happens in task context. This requires a separate
402 * lock class key otherwise regular posix timer expiry would record
403 * the lock class being taken in interrupt context and generate a
404 * false positive warning.
406 if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK
))
407 lockdep_set_class(&new_timer
->it_lock
, &posix_cpu_timers_key
);
409 new_timer
->kclock
= &clock_posix_cpu
;
410 timerqueue_init(&new_timer
->it
.cpu
.node
);
411 new_timer
->it
.cpu
.pid
= get_pid(pid
);
416 static struct posix_cputimer_base
*timer_base(struct k_itimer
*timer
,
417 struct task_struct
*tsk
)
419 int clkidx
= CPUCLOCK_WHICH(timer
->it_clock
);
421 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
422 return tsk
->posix_cputimers
.bases
+ clkidx
;
424 return tsk
->signal
->posix_cputimers
.bases
+ clkidx
;
428 * Force recalculating the base earliest expiration on the next tick.
429 * This will also re-evaluate the need to keep around the process wide
430 * cputime counter and tick dependency and eventually shut these down
433 static void trigger_base_recalc_expires(struct k_itimer
*timer
,
434 struct task_struct
*tsk
)
436 struct posix_cputimer_base
*base
= timer_base(timer
, tsk
);
442 * Dequeue the timer and reset the base if it was its earliest expiration.
443 * It makes sure the next tick recalculates the base next expiration so we
444 * don't keep the costly process wide cputime counter around for a random
445 * amount of time, along with the tick dependency.
447 * If another timer gets queued between this and the next tick, its
448 * expiration will update the base next event if necessary on the next
451 static void disarm_timer(struct k_itimer
*timer
, struct task_struct
*p
)
453 struct cpu_timer
*ctmr
= &timer
->it
.cpu
;
454 struct posix_cputimer_base
*base
;
456 if (!cpu_timer_dequeue(ctmr
))
459 base
= timer_base(timer
, p
);
460 if (cpu_timer_getexpires(ctmr
) == base
->nextevt
)
461 trigger_base_recalc_expires(timer
, p
);
466 * Clean up a CPU-clock timer that is about to be destroyed.
467 * This is called from timer deletion with the timer already locked.
468 * If we return TIMER_RETRY, it's necessary to release the timer's lock
469 * and try again. (This happens when the timer is in the middle of firing.)
471 static int posix_cpu_timer_del(struct k_itimer
*timer
)
473 struct cpu_timer
*ctmr
= &timer
->it
.cpu
;
474 struct sighand_struct
*sighand
;
475 struct task_struct
*p
;
480 p
= cpu_timer_task_rcu(timer
);
485 * Protect against sighand release/switch in exit/exec and process/
486 * thread timer list entry concurrent read/writes.
488 sighand
= lock_task_sighand(p
, &flags
);
489 if (unlikely(sighand
== NULL
)) {
491 * This raced with the reaping of the task. The exit cleanup
492 * should have removed this timer from the timer queue.
494 WARN_ON_ONCE(ctmr
->head
|| timerqueue_node_queued(&ctmr
->node
));
496 if (timer
->it
.cpu
.firing
) {
498 * Prevent signal delivery. The timer cannot be dequeued
499 * because it is on the firing list which is not protected
500 * by sighand->lock. The delivery path is waiting for
501 * the timer lock. So go back, unlock and retry.
503 timer
->it
.cpu
.firing
= false;
506 disarm_timer(timer
, p
);
508 unlock_task_sighand(p
, &flags
);
516 timer
->it_status
= POSIX_TIMER_DISARMED
;
521 static void cleanup_timerqueue(struct timerqueue_head
*head
)
523 struct timerqueue_node
*node
;
524 struct cpu_timer
*ctmr
;
526 while ((node
= timerqueue_getnext(head
))) {
527 timerqueue_del(head
, node
);
528 ctmr
= container_of(node
, struct cpu_timer
, node
);
534 * Clean out CPU timers which are still armed when a thread exits. The
535 * timers are only removed from the list. No other updates are done. The
536 * corresponding posix timers are still accessible, but cannot be rearmed.
538 * This must be called with the siglock held.
540 static void cleanup_timers(struct posix_cputimers
*pct
)
542 cleanup_timerqueue(&pct
->bases
[CPUCLOCK_PROF
].tqhead
);
543 cleanup_timerqueue(&pct
->bases
[CPUCLOCK_VIRT
].tqhead
);
544 cleanup_timerqueue(&pct
->bases
[CPUCLOCK_SCHED
].tqhead
);
548 * These are both called with the siglock held, when the current thread
549 * is being reaped. When the final (leader) thread in the group is reaped,
550 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
552 void posix_cpu_timers_exit(struct task_struct
*tsk
)
554 cleanup_timers(&tsk
->posix_cputimers
);
556 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
558 cleanup_timers(&tsk
->signal
->posix_cputimers
);
562 * Insert the timer on the appropriate list before any timers that
563 * expire later. This must be called with the sighand lock held.
565 static void arm_timer(struct k_itimer
*timer
, struct task_struct
*p
)
567 struct posix_cputimer_base
*base
= timer_base(timer
, p
);
568 struct cpu_timer
*ctmr
= &timer
->it
.cpu
;
569 u64 newexp
= cpu_timer_getexpires(ctmr
);
571 timer
->it_status
= POSIX_TIMER_ARMED
;
572 if (!cpu_timer_enqueue(&base
->tqhead
, ctmr
))
576 * We are the new earliest-expiring POSIX 1.b timer, hence
577 * need to update expiration cache. Take into account that
578 * for process timers we share expiration cache with itimers
579 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
581 if (newexp
< base
->nextevt
)
582 base
->nextevt
= newexp
;
584 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
585 tick_dep_set_task(p
, TICK_DEP_BIT_POSIX_TIMER
);
587 tick_dep_set_signal(p
, TICK_DEP_BIT_POSIX_TIMER
);
591 * The timer is locked, fire it and arrange for its reload.
593 static void cpu_timer_fire(struct k_itimer
*timer
)
595 struct cpu_timer
*ctmr
= &timer
->it
.cpu
;
597 timer
->it_status
= POSIX_TIMER_DISARMED
;
599 if (unlikely(ctmr
->nanosleep
)) {
601 * This a special case for clock_nanosleep,
602 * not a normal timer from sys_timer_create.
604 wake_up_process(timer
->it_process
);
605 cpu_timer_setexpires(ctmr
, 0);
607 posix_timer_queue_signal(timer
);
608 /* Disable oneshot timers */
609 if (!timer
->it_interval
)
610 cpu_timer_setexpires(ctmr
, 0);
614 static void __posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec64
*itp
, u64 now
);
617 * Guts of sys_timer_settime for CPU timers.
618 * This is called with the timer locked and interrupts disabled.
619 * If we return TIMER_RETRY, it's necessary to release the timer's lock
620 * and try again. (This happens when the timer is in the middle of firing.)
622 static int posix_cpu_timer_set(struct k_itimer
*timer
, int timer_flags
,
623 struct itimerspec64
*new, struct itimerspec64
*old
)
625 bool sigev_none
= timer
->it_sigev_notify
== SIGEV_NONE
;
626 clockid_t clkid
= CPUCLOCK_WHICH(timer
->it_clock
);
627 struct cpu_timer
*ctmr
= &timer
->it
.cpu
;
628 u64 old_expires
, new_expires
, now
;
629 struct sighand_struct
*sighand
;
630 struct task_struct
*p
;
635 p
= cpu_timer_task_rcu(timer
);
638 * If p has just been reaped, we can no
639 * longer get any information about it at all.
646 * Use the to_ktime conversion because that clamps the maximum
647 * value to KTIME_MAX and avoid multiplication overflows.
649 new_expires
= ktime_to_ns(timespec64_to_ktime(new->it_value
));
652 * Protect against sighand release/switch in exit/exec and p->cpu_timers
653 * and p->signal->cpu_timers read/write in arm_timer()
655 sighand
= lock_task_sighand(p
, &flags
);
657 * If p has just been reaped, we can no
658 * longer get any information about it at all.
660 if (unlikely(sighand
== NULL
)) {
665 /* Retrieve the current expiry time before disarming the timer */
666 old_expires
= cpu_timer_getexpires(ctmr
);
668 if (unlikely(timer
->it
.cpu
.firing
)) {
670 * Prevent signal delivery. The timer cannot be dequeued
671 * because it is on the firing list which is not protected
672 * by sighand->lock. The delivery path is waiting for
673 * the timer lock. So go back, unlock and retry.
675 timer
->it
.cpu
.firing
= false;
678 cpu_timer_dequeue(ctmr
);
679 timer
->it_status
= POSIX_TIMER_DISARMED
;
683 * Sample the current clock for saving the previous setting
684 * and for rearming the timer.
686 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
687 now
= cpu_clock_sample(clkid
, p
);
689 now
= cpu_clock_sample_group(clkid
, p
, !sigev_none
);
691 /* Retrieve the previous expiry value if requested. */
693 old
->it_value
= (struct timespec64
){ };
695 __posix_cpu_timer_get(timer
, old
, now
);
698 /* Retry if the timer expiry is running concurrently */
700 unlock_task_sighand(p
, &flags
);
704 /* Convert relative expiry time to absolute */
705 if (new_expires
&& !(timer_flags
& TIMER_ABSTIME
))
708 /* Set the new expiry time (might be 0) */
709 cpu_timer_setexpires(ctmr
, new_expires
);
712 * Arm the timer if it is not disabled, the new expiry value has
713 * not yet expired and the timer requires signal delivery.
714 * SIGEV_NONE timers are never armed. In case the timer is not
715 * armed, enforce the reevaluation of the timer base so that the
716 * process wide cputime counter can be disabled eventually.
718 if (likely(!sigev_none
)) {
719 if (new_expires
&& now
< new_expires
)
722 trigger_base_recalc_expires(timer
, p
);
725 unlock_task_sighand(p
, &flags
);
727 posix_timer_set_common(timer
, new);
730 * If the new expiry time was already in the past the timer was not
731 * queued. Fire it immediately even if the thread never runs to
732 * accumulate more time on this clock.
734 if (!sigev_none
&& new_expires
&& now
>= new_expires
)
735 cpu_timer_fire(timer
);
741 static void __posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec64
*itp
, u64 now
)
743 bool sigev_none
= timer
->it_sigev_notify
== SIGEV_NONE
;
744 u64 expires
, iv
= timer
->it_interval
;
747 * Make sure that interval timers are moved forward for the
749 * - SIGEV_NONE timers which are never armed
750 * - Timers which expired, but the signal has not yet been
753 if (iv
&& timer
->it_status
!= POSIX_TIMER_ARMED
)
754 expires
= bump_cpu_timer(timer
, now
);
756 expires
= cpu_timer_getexpires(&timer
->it
.cpu
);
759 * Expired interval timers cannot have a remaining time <= 0.
760 * The kernel has to move them forward so that the next
761 * timer expiry is > @now.
764 itp
->it_value
= ns_to_timespec64(expires
- now
);
767 * A single shot SIGEV_NONE timer must return 0, when it is
768 * expired! Timers which have a real signal delivery mode
769 * must return a remaining time greater than 0 because the
770 * signal has not yet been delivered.
773 itp
->it_value
.tv_nsec
= 1;
777 static void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec64
*itp
)
779 clockid_t clkid
= CPUCLOCK_WHICH(timer
->it_clock
);
780 struct task_struct
*p
;
784 p
= cpu_timer_task_rcu(timer
);
785 if (p
&& cpu_timer_getexpires(&timer
->it
.cpu
)) {
786 itp
->it_interval
= ktime_to_timespec64(timer
->it_interval
);
788 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
789 now
= cpu_clock_sample(clkid
, p
);
791 now
= cpu_clock_sample_group(clkid
, p
, false);
793 __posix_cpu_timer_get(timer
, itp
, now
);
798 #define MAX_COLLECTED 20
800 static u64
collect_timerqueue(struct timerqueue_head
*head
,
801 struct list_head
*firing
, u64 now
)
803 struct timerqueue_node
*next
;
806 while ((next
= timerqueue_getnext(head
))) {
807 struct cpu_timer
*ctmr
;
810 ctmr
= container_of(next
, struct cpu_timer
, node
);
811 expires
= cpu_timer_getexpires(ctmr
);
812 /* Limit the number of timers to expire at once */
813 if (++i
== MAX_COLLECTED
|| now
< expires
)
817 /* See posix_cpu_timer_wait_running() */
818 rcu_assign_pointer(ctmr
->handling
, current
);
819 cpu_timer_dequeue(ctmr
);
820 list_add_tail(&ctmr
->elist
, firing
);
826 static void collect_posix_cputimers(struct posix_cputimers
*pct
, u64
*samples
,
827 struct list_head
*firing
)
829 struct posix_cputimer_base
*base
= pct
->bases
;
832 for (i
= 0; i
< CPUCLOCK_MAX
; i
++, base
++) {
833 base
->nextevt
= collect_timerqueue(&base
->tqhead
, firing
,
838 static inline void check_dl_overrun(struct task_struct
*tsk
)
840 if (tsk
->dl
.dl_overrun
) {
841 tsk
->dl
.dl_overrun
= 0;
842 send_signal_locked(SIGXCPU
, SEND_SIG_PRIV
, tsk
, PIDTYPE_TGID
);
846 static bool check_rlimit(u64 time
, u64 limit
, int signo
, bool rt
, bool hard
)
851 if (print_fatal_signals
) {
852 pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
853 rt
? "RT" : "CPU", hard
? "hard" : "soft",
854 current
->comm
, task_pid_nr(current
));
856 send_signal_locked(signo
, SEND_SIG_PRIV
, current
, PIDTYPE_TGID
);
861 * Check for any per-thread CPU timers that have fired and move them off
862 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
863 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
865 static void check_thread_timers(struct task_struct
*tsk
,
866 struct list_head
*firing
)
868 struct posix_cputimers
*pct
= &tsk
->posix_cputimers
;
869 u64 samples
[CPUCLOCK_MAX
];
873 check_dl_overrun(tsk
);
875 if (expiry_cache_is_inactive(pct
))
878 task_sample_cputime(tsk
, samples
);
879 collect_posix_cputimers(pct
, samples
, firing
);
882 * Check for the special case thread timers.
884 soft
= task_rlimit(tsk
, RLIMIT_RTTIME
);
885 if (soft
!= RLIM_INFINITY
) {
886 /* Task RT timeout is accounted in jiffies. RTTIME is usec */
887 unsigned long rttime
= tsk
->rt
.timeout
* (USEC_PER_SEC
/ HZ
);
888 unsigned long hard
= task_rlimit_max(tsk
, RLIMIT_RTTIME
);
890 /* At the hard limit, send SIGKILL. No further action. */
891 if (hard
!= RLIM_INFINITY
&&
892 check_rlimit(rttime
, hard
, SIGKILL
, true, true))
895 /* At the soft limit, send a SIGXCPU every second */
896 if (check_rlimit(rttime
, soft
, SIGXCPU
, true, false)) {
897 soft
+= USEC_PER_SEC
;
898 tsk
->signal
->rlim
[RLIMIT_RTTIME
].rlim_cur
= soft
;
902 if (expiry_cache_is_inactive(pct
))
903 tick_dep_clear_task(tsk
, TICK_DEP_BIT_POSIX_TIMER
);
906 static inline void stop_process_timers(struct signal_struct
*sig
)
908 struct posix_cputimers
*pct
= &sig
->posix_cputimers
;
910 /* Turn off the active flag. This is done without locking. */
911 WRITE_ONCE(pct
->timers_active
, false);
912 tick_dep_clear_signal(sig
, TICK_DEP_BIT_POSIX_TIMER
);
915 static void check_cpu_itimer(struct task_struct
*tsk
, struct cpu_itimer
*it
,
916 u64
*expires
, u64 cur_time
, int signo
)
921 if (cur_time
>= it
->expires
) {
923 it
->expires
+= it
->incr
;
927 trace_itimer_expire(signo
== SIGPROF
?
928 ITIMER_PROF
: ITIMER_VIRTUAL
,
929 task_tgid(tsk
), cur_time
);
930 send_signal_locked(signo
, SEND_SIG_PRIV
, tsk
, PIDTYPE_TGID
);
933 if (it
->expires
&& it
->expires
< *expires
)
934 *expires
= it
->expires
;
938 * Check for any per-thread CPU timers that have fired and move them
939 * off the tsk->*_timers list onto the firing list. Per-thread timers
940 * have already been taken off.
942 static void check_process_timers(struct task_struct
*tsk
,
943 struct list_head
*firing
)
945 struct signal_struct
*const sig
= tsk
->signal
;
946 struct posix_cputimers
*pct
= &sig
->posix_cputimers
;
947 u64 samples
[CPUCLOCK_MAX
];
951 * If there are no active process wide timers (POSIX 1.b, itimers,
952 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
953 * processing when there is already another task handling them.
955 if (!READ_ONCE(pct
->timers_active
) || pct
->expiry_active
)
959 * Signify that a thread is checking for process timers.
960 * Write access to this field is protected by the sighand lock.
962 pct
->expiry_active
= true;
965 * Collect the current process totals. Group accounting is active
966 * so the sample can be taken directly.
968 proc_sample_cputime_atomic(&sig
->cputimer
.cputime_atomic
, samples
);
969 collect_posix_cputimers(pct
, samples
, firing
);
972 * Check for the special case process timers.
974 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_PROF
],
975 &pct
->bases
[CPUCLOCK_PROF
].nextevt
,
976 samples
[CPUCLOCK_PROF
], SIGPROF
);
977 check_cpu_itimer(tsk
, &sig
->it
[CPUCLOCK_VIRT
],
978 &pct
->bases
[CPUCLOCK_VIRT
].nextevt
,
979 samples
[CPUCLOCK_VIRT
], SIGVTALRM
);
981 soft
= task_rlimit(tsk
, RLIMIT_CPU
);
982 if (soft
!= RLIM_INFINITY
) {
983 /* RLIMIT_CPU is in seconds. Samples are nanoseconds */
984 unsigned long hard
= task_rlimit_max(tsk
, RLIMIT_CPU
);
985 u64 ptime
= samples
[CPUCLOCK_PROF
];
986 u64 softns
= (u64
)soft
* NSEC_PER_SEC
;
987 u64 hardns
= (u64
)hard
* NSEC_PER_SEC
;
989 /* At the hard limit, send SIGKILL. No further action. */
990 if (hard
!= RLIM_INFINITY
&&
991 check_rlimit(ptime
, hardns
, SIGKILL
, false, true))
994 /* At the soft limit, send a SIGXCPU every second */
995 if (check_rlimit(ptime
, softns
, SIGXCPU
, false, false)) {
996 sig
->rlim
[RLIMIT_CPU
].rlim_cur
= soft
+ 1;
997 softns
+= NSEC_PER_SEC
;
1000 /* Update the expiry cache */
1001 if (softns
< pct
->bases
[CPUCLOCK_PROF
].nextevt
)
1002 pct
->bases
[CPUCLOCK_PROF
].nextevt
= softns
;
1005 if (expiry_cache_is_inactive(pct
))
1006 stop_process_timers(sig
);
1008 pct
->expiry_active
= false;
1012 * This is called from the signal code (via posixtimer_rearm)
1013 * when the last timer signal was delivered and we have to reload the timer.
1015 static void posix_cpu_timer_rearm(struct k_itimer
*timer
)
1017 clockid_t clkid
= CPUCLOCK_WHICH(timer
->it_clock
);
1018 struct task_struct
*p
;
1019 struct sighand_struct
*sighand
;
1020 unsigned long flags
;
1024 p
= cpu_timer_task_rcu(timer
);
1028 /* Protect timer list r/w in arm_timer() */
1029 sighand
= lock_task_sighand(p
, &flags
);
1030 if (unlikely(sighand
== NULL
))
1034 * Fetch the current sample and update the timer's expiry time.
1036 if (CPUCLOCK_PERTHREAD(timer
->it_clock
))
1037 now
= cpu_clock_sample(clkid
, p
);
1039 now
= cpu_clock_sample_group(clkid
, p
, true);
1041 bump_cpu_timer(timer
, now
);
1044 * Now re-arm for the new expiry time.
1046 arm_timer(timer
, p
);
1047 unlock_task_sighand(p
, &flags
);
1053 * task_cputimers_expired - Check whether posix CPU timers are expired
1055 * @samples: Array of current samples for the CPUCLOCK clocks
1056 * @pct: Pointer to a posix_cputimers container
1058 * Returns true if any member of @samples is greater than the corresponding
1059 * member of @pct->bases[CLK].nextevt. False otherwise
1062 task_cputimers_expired(const u64
*samples
, struct posix_cputimers
*pct
)
1066 for (i
= 0; i
< CPUCLOCK_MAX
; i
++) {
1067 if (samples
[i
] >= pct
->bases
[i
].nextevt
)
1074 * fastpath_timer_check - POSIX CPU timers fast path.
1076 * @tsk: The task (thread) being checked.
1078 * Check the task and thread group timers. If both are zero (there are no
1079 * timers set) return false. Otherwise snapshot the task and thread group
1080 * timers and compare them with the corresponding expiration times. Return
1081 * true if a timer has expired, else return false.
1083 static inline bool fastpath_timer_check(struct task_struct
*tsk
)
1085 struct posix_cputimers
*pct
= &tsk
->posix_cputimers
;
1086 struct signal_struct
*sig
;
1088 if (!expiry_cache_is_inactive(pct
)) {
1089 u64 samples
[CPUCLOCK_MAX
];
1091 task_sample_cputime(tsk
, samples
);
1092 if (task_cputimers_expired(samples
, pct
))
1097 pct
= &sig
->posix_cputimers
;
1099 * Check if thread group timers expired when timers are active and
1100 * no other thread in the group is already handling expiry for
1101 * thread group cputimers. These fields are read without the
1102 * sighand lock. However, this is fine because this is meant to be
1103 * a fastpath heuristic to determine whether we should try to
1104 * acquire the sighand lock to handle timer expiry.
1106 * In the worst case scenario, if concurrently timers_active is set
1107 * or expiry_active is cleared, but the current thread doesn't see
1108 * the change yet, the timer checks are delayed until the next
1109 * thread in the group gets a scheduler interrupt to handle the
1110 * timer. This isn't an issue in practice because these types of
1111 * delays with signals actually getting sent are expected.
1113 if (READ_ONCE(pct
->timers_active
) && !READ_ONCE(pct
->expiry_active
)) {
1114 u64 samples
[CPUCLOCK_MAX
];
1116 proc_sample_cputime_atomic(&sig
->cputimer
.cputime_atomic
,
1119 if (task_cputimers_expired(samples
, pct
))
1123 if (dl_task(tsk
) && tsk
->dl
.dl_overrun
)
1129 static void handle_posix_cpu_timers(struct task_struct
*tsk
);
1131 #ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1132 static void posix_cpu_timers_work(struct callback_head
*work
)
1134 struct posix_cputimers_work
*cw
= container_of(work
, typeof(*cw
), work
);
1136 mutex_lock(&cw
->mutex
);
1137 handle_posix_cpu_timers(current
);
1138 mutex_unlock(&cw
->mutex
);
1142 * Invoked from the posix-timer core when a cancel operation failed because
1143 * the timer is marked firing. The caller holds rcu_read_lock(), which
1144 * protects the timer and the task which is expiring it from being freed.
1146 static void posix_cpu_timer_wait_running(struct k_itimer
*timr
)
1148 struct task_struct
*tsk
= rcu_dereference(timr
->it
.cpu
.handling
);
1150 /* Has the handling task completed expiry already? */
1154 /* Ensure that the task cannot go away */
1155 get_task_struct(tsk
);
1156 /* Now drop the RCU protection so the mutex can be locked */
1158 /* Wait on the expiry mutex */
1159 mutex_lock(&tsk
->posix_cputimers_work
.mutex
);
1160 /* Release it immediately again. */
1161 mutex_unlock(&tsk
->posix_cputimers_work
.mutex
);
1162 /* Drop the task reference. */
1163 put_task_struct(tsk
);
1164 /* Relock RCU so the callsite is balanced */
1168 static void posix_cpu_timer_wait_running_nsleep(struct k_itimer
*timr
)
1170 /* Ensure that timr->it.cpu.handling task cannot go away */
1172 spin_unlock_irq(&timr
->it_lock
);
1173 posix_cpu_timer_wait_running(timr
);
1175 /* @timr is on stack and is valid */
1176 spin_lock_irq(&timr
->it_lock
);
1180 * Clear existing posix CPU timers task work.
1182 void clear_posix_cputimers_work(struct task_struct
*p
)
1185 * A copied work entry from the old task is not meaningful, clear it.
1186 * N.B. init_task_work will not do this.
1188 memset(&p
->posix_cputimers_work
.work
, 0,
1189 sizeof(p
->posix_cputimers_work
.work
));
1190 init_task_work(&p
->posix_cputimers_work
.work
,
1191 posix_cpu_timers_work
);
1192 mutex_init(&p
->posix_cputimers_work
.mutex
);
1193 p
->posix_cputimers_work
.scheduled
= false;
1197 * Initialize posix CPU timers task work in init task. Out of line to
1198 * keep the callback static and to avoid header recursion hell.
1200 void __init
posix_cputimers_init_work(void)
1202 clear_posix_cputimers_work(current
);
1206 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
1207 * in hard interrupt context or in task context with interrupts
1208 * disabled. Aside of that the writer/reader interaction is always in the
1209 * context of the current task, which means they are strict per CPU.
1211 static inline bool posix_cpu_timers_work_scheduled(struct task_struct
*tsk
)
1213 return tsk
->posix_cputimers_work
.scheduled
;
1216 static inline void __run_posix_cpu_timers(struct task_struct
*tsk
)
1218 if (WARN_ON_ONCE(tsk
->posix_cputimers_work
.scheduled
))
1221 /* Schedule task work to actually expire the timers */
1222 tsk
->posix_cputimers_work
.scheduled
= true;
1223 task_work_add(tsk
, &tsk
->posix_cputimers_work
.work
, TWA_RESUME
);
1226 static inline bool posix_cpu_timers_enable_work(struct task_struct
*tsk
,
1227 unsigned long start
)
1232 * On !RT kernels interrupts are disabled while collecting expired
1233 * timers, so no tick can happen and the fast path check can be
1234 * reenabled without further checks.
1236 if (!IS_ENABLED(CONFIG_PREEMPT_RT
)) {
1237 tsk
->posix_cputimers_work
.scheduled
= false;
1242 * On RT enabled kernels ticks can happen while the expired timers
1243 * are collected under sighand lock. But any tick which observes
1244 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
1245 * checks. So reenabling the tick work has do be done carefully:
1247 * Disable interrupts and run the fast path check if jiffies have
1248 * advanced since the collecting of expired timers started. If
1249 * jiffies have not advanced or the fast path check did not find
1250 * newly expired timers, reenable the fast path check in the timer
1251 * interrupt. If there are newly expired timers, return false and
1252 * let the collection loop repeat.
1254 local_irq_disable();
1255 if (start
!= jiffies
&& fastpath_timer_check(tsk
))
1258 tsk
->posix_cputimers_work
.scheduled
= false;
1263 #else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1264 static inline void __run_posix_cpu_timers(struct task_struct
*tsk
)
1266 lockdep_posixtimer_enter();
1267 handle_posix_cpu_timers(tsk
);
1268 lockdep_posixtimer_exit();
1271 static void posix_cpu_timer_wait_running(struct k_itimer
*timr
)
1276 static void posix_cpu_timer_wait_running_nsleep(struct k_itimer
*timr
)
1278 spin_unlock_irq(&timr
->it_lock
);
1280 spin_lock_irq(&timr
->it_lock
);
1283 static inline bool posix_cpu_timers_work_scheduled(struct task_struct
*tsk
)
1288 static inline bool posix_cpu_timers_enable_work(struct task_struct
*tsk
,
1289 unsigned long start
)
1293 #endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1295 static void handle_posix_cpu_timers(struct task_struct
*tsk
)
1297 struct k_itimer
*timer
, *next
;
1298 unsigned long flags
, start
;
1301 if (!lock_task_sighand(tsk
, &flags
))
1306 * On RT locking sighand lock does not disable interrupts,
1307 * so this needs to be careful vs. ticks. Store the current
1310 start
= READ_ONCE(jiffies
);
1314 * Here we take off tsk->signal->cpu_timers[N] and
1315 * tsk->cpu_timers[N] all the timers that are firing, and
1316 * put them on the firing list.
1318 check_thread_timers(tsk
, &firing
);
1320 check_process_timers(tsk
, &firing
);
1323 * The above timer checks have updated the expiry cache and
1324 * because nothing can have queued or modified timers after
1325 * sighand lock was taken above it is guaranteed to be
1326 * consistent. So the next timer interrupt fastpath check
1327 * will find valid data.
1329 * If timer expiry runs in the timer interrupt context then
1330 * the loop is not relevant as timers will be directly
1331 * expired in interrupt context. The stub function below
1332 * returns always true which allows the compiler to
1333 * optimize the loop out.
1335 * If timer expiry is deferred to task work context then
1336 * the following rules apply:
1338 * - On !RT kernels no tick can have happened on this CPU
1339 * after sighand lock was acquired because interrupts are
1340 * disabled. So reenabling task work before dropping
1341 * sighand lock and reenabling interrupts is race free.
1343 * - On RT kernels ticks might have happened but the tick
1344 * work ignored posix CPU timer handling because the
1345 * CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
1346 * must be done very carefully including a check whether
1347 * ticks have happened since the start of the timer
1348 * expiry checks. posix_cpu_timers_enable_work() takes
1349 * care of that and eventually lets the expiry checks
1352 } while (!posix_cpu_timers_enable_work(tsk
, start
));
1355 * We must release sighand lock before taking any timer's lock.
1356 * There is a potential race with timer deletion here, as the
1357 * siglock now protects our private firing list. We have set
1358 * the firing flag in each timer, so that a deletion attempt
1359 * that gets the timer lock before we do will give it up and
1360 * spin until we've taken care of that timer below.
1362 unlock_task_sighand(tsk
, &flags
);
1365 * Now that all the timers on our list have the firing flag,
1366 * no one will touch their list entries but us. We'll take
1367 * each timer's lock before clearing its firing flag, so no
1368 * timer call will interfere.
1370 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.elist
) {
1374 * spin_lock() is sufficient here even independent of the
1375 * expiry context. If expiry happens in hard interrupt
1376 * context it's obvious. For task work context it's safe
1377 * because all other operations on timer::it_lock happen in
1378 * task context (syscall or exit).
1380 spin_lock(&timer
->it_lock
);
1381 list_del_init(&timer
->it
.cpu
.elist
);
1382 cpu_firing
= timer
->it
.cpu
.firing
;
1383 timer
->it
.cpu
.firing
= false;
1385 * If the firing flag is cleared then this raced with a
1386 * timer rearm/delete operation. So don't generate an
1389 if (likely(cpu_firing
))
1390 cpu_timer_fire(timer
);
1391 /* See posix_cpu_timer_wait_running() */
1392 rcu_assign_pointer(timer
->it
.cpu
.handling
, NULL
);
1393 spin_unlock(&timer
->it_lock
);
1398 * This is called from the timer interrupt handler. The irq handler has
1399 * already updated our counts. We need to check if any timers fire now.
1400 * Interrupts are disabled.
1402 void run_posix_cpu_timers(void)
1404 struct task_struct
*tsk
= current
;
1406 lockdep_assert_irqs_disabled();
1409 * If the actual expiry is deferred to task work context and the
1410 * work is already scheduled there is no point to do anything here.
1412 if (posix_cpu_timers_work_scheduled(tsk
))
1416 * The fast path checks that there are no expired thread or thread
1417 * group timers. If that's so, just return.
1419 if (!fastpath_timer_check(tsk
))
1422 __run_posix_cpu_timers(tsk
);
1426 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1427 * The tsk->sighand->siglock must be held by the caller.
1429 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clkid
,
1430 u64
*newval
, u64
*oldval
)
1434 if (WARN_ON_ONCE(clkid
>= CPUCLOCK_SCHED
))
1437 nextevt
= &tsk
->signal
->posix_cputimers
.bases
[clkid
].nextevt
;
1438 now
= cpu_clock_sample_group(clkid
, tsk
, true);
1442 * We are setting itimer. The *oldval is absolute and we update
1443 * it to be relative, *newval argument is relative and we update
1444 * it to be absolute.
1447 if (*oldval
<= now
) {
1448 /* Just about to fire. */
1449 *oldval
= TICK_NSEC
;
1460 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1461 * expiry cache is also used by RLIMIT_CPU!.
1463 if (*newval
< *nextevt
)
1466 tick_dep_set_signal(tsk
, TICK_DEP_BIT_POSIX_TIMER
);
1469 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1470 const struct timespec64
*rqtp
)
1472 struct itimerspec64 it
;
1473 struct k_itimer timer
;
1478 * Set up a temporary timer and then wait for it to go off.
1480 memset(&timer
, 0, sizeof timer
);
1481 spin_lock_init(&timer
.it_lock
);
1482 timer
.it_clock
= which_clock
;
1483 timer
.it_overrun
= -1;
1484 error
= posix_cpu_timer_create(&timer
);
1485 timer
.it_process
= current
;
1486 timer
.it
.cpu
.nanosleep
= true;
1489 static struct itimerspec64 zero_it
;
1490 struct restart_block
*restart
;
1492 memset(&it
, 0, sizeof(it
));
1493 it
.it_value
= *rqtp
;
1495 spin_lock_irq(&timer
.it_lock
);
1496 error
= posix_cpu_timer_set(&timer
, flags
, &it
, NULL
);
1498 spin_unlock_irq(&timer
.it_lock
);
1502 while (!signal_pending(current
)) {
1503 if (!cpu_timer_getexpires(&timer
.it
.cpu
)) {
1505 * Our timer fired and was reset, below
1506 * deletion can not fail.
1508 posix_cpu_timer_del(&timer
);
1509 spin_unlock_irq(&timer
.it_lock
);
1514 * Block until cpu_timer_fire (or a signal) wakes us.
1516 __set_current_state(TASK_INTERRUPTIBLE
);
1517 spin_unlock_irq(&timer
.it_lock
);
1519 spin_lock_irq(&timer
.it_lock
);
1523 * We were interrupted by a signal.
1525 expires
= cpu_timer_getexpires(&timer
.it
.cpu
);
1526 error
= posix_cpu_timer_set(&timer
, 0, &zero_it
, &it
);
1528 /* Timer is now unarmed, deletion can not fail. */
1529 posix_cpu_timer_del(&timer
);
1531 while (error
== TIMER_RETRY
) {
1532 posix_cpu_timer_wait_running_nsleep(&timer
);
1533 error
= posix_cpu_timer_del(&timer
);
1537 spin_unlock_irq(&timer
.it_lock
);
1539 if ((it
.it_value
.tv_sec
| it
.it_value
.tv_nsec
) == 0) {
1541 * It actually did fire already.
1546 error
= -ERESTART_RESTARTBLOCK
;
1548 * Report back to the user the time still remaining.
1550 restart
= ¤t
->restart_block
;
1551 restart
->nanosleep
.expires
= expires
;
1552 if (restart
->nanosleep
.type
!= TT_NONE
)
1553 error
= nanosleep_copyout(restart
, &it
.it_value
);
1559 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
);
1561 static int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1562 const struct timespec64
*rqtp
)
1564 struct restart_block
*restart_block
= ¤t
->restart_block
;
1568 * Diagnose required errors first.
1570 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1571 (CPUCLOCK_PID(which_clock
) == 0 ||
1572 CPUCLOCK_PID(which_clock
) == task_pid_vnr(current
)))
1575 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
);
1577 if (error
== -ERESTART_RESTARTBLOCK
) {
1579 if (flags
& TIMER_ABSTIME
)
1580 return -ERESTARTNOHAND
;
1582 restart_block
->nanosleep
.clockid
= which_clock
;
1583 set_restart_fn(restart_block
, posix_cpu_nsleep_restart
);
1588 static long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1590 clockid_t which_clock
= restart_block
->nanosleep
.clockid
;
1591 struct timespec64 t
;
1593 t
= ns_to_timespec64(restart_block
->nanosleep
.expires
);
1595 return do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
);
1598 #define PROCESS_CLOCK make_process_cpuclock(0, CPUCLOCK_SCHED)
1599 #define THREAD_CLOCK make_thread_cpuclock(0, CPUCLOCK_SCHED)
1601 static int process_cpu_clock_getres(const clockid_t which_clock
,
1602 struct timespec64
*tp
)
1604 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1606 static int process_cpu_clock_get(const clockid_t which_clock
,
1607 struct timespec64
*tp
)
1609 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1611 static int process_cpu_timer_create(struct k_itimer
*timer
)
1613 timer
->it_clock
= PROCESS_CLOCK
;
1614 return posix_cpu_timer_create(timer
);
1616 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1617 const struct timespec64
*rqtp
)
1619 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
);
1621 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1622 struct timespec64
*tp
)
1624 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1626 static int thread_cpu_clock_get(const clockid_t which_clock
,
1627 struct timespec64
*tp
)
1629 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1631 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1633 timer
->it_clock
= THREAD_CLOCK
;
1634 return posix_cpu_timer_create(timer
);
1637 const struct k_clock clock_posix_cpu
= {
1638 .clock_getres
= posix_cpu_clock_getres
,
1639 .clock_set
= posix_cpu_clock_set
,
1640 .clock_get_timespec
= posix_cpu_clock_get
,
1641 .timer_create
= posix_cpu_timer_create
,
1642 .nsleep
= posix_cpu_nsleep
,
1643 .timer_set
= posix_cpu_timer_set
,
1644 .timer_del
= posix_cpu_timer_del
,
1645 .timer_get
= posix_cpu_timer_get
,
1646 .timer_rearm
= posix_cpu_timer_rearm
,
1647 .timer_wait_running
= posix_cpu_timer_wait_running
,
1650 const struct k_clock clock_process
= {
1651 .clock_getres
= process_cpu_clock_getres
,
1652 .clock_get_timespec
= process_cpu_clock_get
,
1653 .timer_create
= process_cpu_timer_create
,
1654 .nsleep
= process_cpu_nsleep
,
1657 const struct k_clock clock_thread
= {
1658 .clock_getres
= thread_cpu_clock_getres
,
1659 .clock_get_timespec
= thread_cpu_clock_get
,
1660 .timer_create
= thread_cpu_timer_create
,