1 // SPDX-License-Identifier: GPL-2.0
3 * Kernel timekeeping code and accessor functions. Based on code from
4 * timer.c, moved in commit 8524070b7982.
6 #include <linux/timekeeper_internal.h>
7 #include <linux/module.h>
8 #include <linux/interrupt.h>
9 #include <linux/percpu.h>
10 #include <linux/init.h>
12 #include <linux/nmi.h>
13 #include <linux/sched.h>
14 #include <linux/sched/loadavg.h>
15 #include <linux/sched/clock.h>
16 #include <linux/syscore_ops.h>
17 #include <linux/clocksource.h>
18 #include <linux/jiffies.h>
19 #include <linux/time.h>
20 #include <linux/timex.h>
21 #include <linux/tick.h>
22 #include <linux/stop_machine.h>
23 #include <linux/pvclock_gtod.h>
24 #include <linux/compiler.h>
25 #include <linux/audit.h>
26 #include <linux/random.h>
28 #include "tick-internal.h"
29 #include "ntp_internal.h"
30 #include "timekeeping_internal.h"
32 #define TK_CLEAR_NTP (1 << 0)
33 #define TK_CLOCK_WAS_SET (1 << 1)
35 #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET)
37 enum timekeeping_adv_mode
{
38 /* Update timekeeper when a tick has passed */
41 /* Update timekeeper on a direct frequency change */
46 * The most important data for readout fits into a single 64 byte
50 seqcount_raw_spinlock_t seq
;
51 struct timekeeper timekeeper
;
52 struct timekeeper shadow_timekeeper
;
54 } ____cacheline_aligned
;
56 static struct tk_data tk_core
;
58 /* flag for if timekeeping is suspended */
59 int __read_mostly timekeeping_suspended
;
62 * struct tk_fast - NMI safe timekeeper
63 * @seq: Sequence counter for protecting updates. The lowest bit
64 * is the index for the tk_read_base array
65 * @base: tk_read_base array. Access is indexed by the lowest bit of
68 * See @update_fast_timekeeper() below.
72 struct tk_read_base base
[2];
75 /* Suspend-time cycles value for halted fast timekeeper. */
76 static u64 cycles_at_suspend
;
78 static u64
dummy_clock_read(struct clocksource
*cs
)
80 if (timekeeping_suspended
)
81 return cycles_at_suspend
;
85 static struct clocksource dummy_clock
= {
86 .read
= dummy_clock_read
,
90 * Boot time initialization which allows local_clock() to be utilized
91 * during early boot when clocksources are not available. local_clock()
92 * returns nanoseconds already so no conversion is required, hence mult=1
93 * and shift=0. When the first proper clocksource is installed then
94 * the fast time keepers are updated with the correct values.
96 #define FAST_TK_INIT \
98 .clock = &dummy_clock, \
99 .mask = CLOCKSOURCE_MASK(64), \
104 static struct tk_fast tk_fast_mono ____cacheline_aligned
= {
105 .seq
= SEQCNT_LATCH_ZERO(tk_fast_mono
.seq
),
106 .base
[0] = FAST_TK_INIT
,
107 .base
[1] = FAST_TK_INIT
,
110 static struct tk_fast tk_fast_raw ____cacheline_aligned
= {
111 .seq
= SEQCNT_LATCH_ZERO(tk_fast_raw
.seq
),
112 .base
[0] = FAST_TK_INIT
,
113 .base
[1] = FAST_TK_INIT
,
116 unsigned long timekeeper_lock_irqsave(void)
120 raw_spin_lock_irqsave(&tk_core
.lock
, flags
);
124 void timekeeper_unlock_irqrestore(unsigned long flags
)
126 raw_spin_unlock_irqrestore(&tk_core
.lock
, flags
);
130 * Multigrain timestamps require tracking the latest fine-grained timestamp
131 * that has been issued, and never returning a coarse-grained timestamp that is
132 * earlier than that value.
134 * mg_floor represents the latest fine-grained time that has been handed out as
135 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and
136 * converted to a realtime clock value on an as-needed basis.
138 * Maintaining mg_floor ensures the multigrain interfaces never issue a
139 * timestamp earlier than one that has been previously issued.
141 * The exception to this rule is when there is a backward realtime clock jump. If
142 * such an event occurs, a timestamp can appear to be earlier than a previous one.
144 static __cacheline_aligned_in_smp atomic64_t mg_floor
;
146 static inline void tk_normalize_xtime(struct timekeeper
*tk
)
148 while (tk
->tkr_mono
.xtime_nsec
>= ((u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
)) {
149 tk
->tkr_mono
.xtime_nsec
-= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
152 while (tk
->tkr_raw
.xtime_nsec
>= ((u64
)NSEC_PER_SEC
<< tk
->tkr_raw
.shift
)) {
153 tk
->tkr_raw
.xtime_nsec
-= (u64
)NSEC_PER_SEC
<< tk
->tkr_raw
.shift
;
158 static inline struct timespec64
tk_xtime(const struct timekeeper
*tk
)
160 struct timespec64 ts
;
162 ts
.tv_sec
= tk
->xtime_sec
;
163 ts
.tv_nsec
= (long)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
167 static void tk_set_xtime(struct timekeeper
*tk
, const struct timespec64
*ts
)
169 tk
->xtime_sec
= ts
->tv_sec
;
170 tk
->tkr_mono
.xtime_nsec
= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
173 static void tk_xtime_add(struct timekeeper
*tk
, const struct timespec64
*ts
)
175 tk
->xtime_sec
+= ts
->tv_sec
;
176 tk
->tkr_mono
.xtime_nsec
+= (u64
)ts
->tv_nsec
<< tk
->tkr_mono
.shift
;
177 tk_normalize_xtime(tk
);
180 static void tk_set_wall_to_mono(struct timekeeper
*tk
, struct timespec64 wtm
)
182 struct timespec64 tmp
;
185 * Verify consistency of: offset_real = -wall_to_monotonic
186 * before modifying anything
188 set_normalized_timespec64(&tmp
, -tk
->wall_to_monotonic
.tv_sec
,
189 -tk
->wall_to_monotonic
.tv_nsec
);
190 WARN_ON_ONCE(tk
->offs_real
!= timespec64_to_ktime(tmp
));
191 tk
->wall_to_monotonic
= wtm
;
192 set_normalized_timespec64(&tmp
, -wtm
.tv_sec
, -wtm
.tv_nsec
);
193 /* Paired with READ_ONCE() in ktime_mono_to_any() */
194 WRITE_ONCE(tk
->offs_real
, timespec64_to_ktime(tmp
));
195 WRITE_ONCE(tk
->offs_tai
, ktime_add(tk
->offs_real
, ktime_set(tk
->tai_offset
, 0)));
198 static inline void tk_update_sleep_time(struct timekeeper
*tk
, ktime_t delta
)
200 /* Paired with READ_ONCE() in ktime_mono_to_any() */
201 WRITE_ONCE(tk
->offs_boot
, ktime_add(tk
->offs_boot
, delta
));
203 * Timespec representation for VDSO update to avoid 64bit division
206 tk
->monotonic_to_boot
= ktime_to_timespec64(tk
->offs_boot
);
210 * tk_clock_read - atomic clocksource read() helper
212 * This helper is necessary to use in the read paths because, while the
213 * seqcount ensures we don't return a bad value while structures are updated,
214 * it doesn't protect from potential crashes. There is the possibility that
215 * the tkr's clocksource may change between the read reference, and the
216 * clock reference passed to the read function. This can cause crashes if
217 * the wrong clocksource is passed to the wrong read function.
218 * This isn't necessary to use when holding the tk_core.lock or doing
219 * a read of the fast-timekeeper tkrs (which is protected by its own locking
222 static inline u64
tk_clock_read(const struct tk_read_base
*tkr
)
224 struct clocksource
*clock
= READ_ONCE(tkr
->clock
);
226 return clock
->read(clock
);
230 * tk_setup_internals - Set up internals to use clocksource clock.
232 * @tk: The target timekeeper to setup.
233 * @clock: Pointer to clocksource.
235 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
236 * pair and interval request.
238 * Unless you're the timekeeping code, you should not be using this!
240 static void tk_setup_internals(struct timekeeper
*tk
, struct clocksource
*clock
)
243 u64 tmp
, ntpinterval
;
244 struct clocksource
*old_clock
;
246 ++tk
->cs_was_changed_seq
;
247 old_clock
= tk
->tkr_mono
.clock
;
248 tk
->tkr_mono
.clock
= clock
;
249 tk
->tkr_mono
.mask
= clock
->mask
;
250 tk
->tkr_mono
.cycle_last
= tk_clock_read(&tk
->tkr_mono
);
252 tk
->tkr_raw
.clock
= clock
;
253 tk
->tkr_raw
.mask
= clock
->mask
;
254 tk
->tkr_raw
.cycle_last
= tk
->tkr_mono
.cycle_last
;
256 /* Do the ns -> cycle conversion first, using original mult */
257 tmp
= NTP_INTERVAL_LENGTH
;
258 tmp
<<= clock
->shift
;
260 tmp
+= clock
->mult
/2;
261 do_div(tmp
, clock
->mult
);
265 interval
= (u64
) tmp
;
266 tk
->cycle_interval
= interval
;
268 /* Go back from cycles -> shifted ns */
269 tk
->xtime_interval
= interval
* clock
->mult
;
270 tk
->xtime_remainder
= ntpinterval
- tk
->xtime_interval
;
271 tk
->raw_interval
= interval
* clock
->mult
;
273 /* if changing clocks, convert xtime_nsec shift units */
275 int shift_change
= clock
->shift
- old_clock
->shift
;
276 if (shift_change
< 0) {
277 tk
->tkr_mono
.xtime_nsec
>>= -shift_change
;
278 tk
->tkr_raw
.xtime_nsec
>>= -shift_change
;
280 tk
->tkr_mono
.xtime_nsec
<<= shift_change
;
281 tk
->tkr_raw
.xtime_nsec
<<= shift_change
;
285 tk
->tkr_mono
.shift
= clock
->shift
;
286 tk
->tkr_raw
.shift
= clock
->shift
;
289 tk
->ntp_error_shift
= NTP_SCALE_SHIFT
- clock
->shift
;
290 tk
->ntp_tick
= ntpinterval
<< tk
->ntp_error_shift
;
293 * The timekeeper keeps its own mult values for the currently
294 * active clocksource. These value will be adjusted via NTP
295 * to counteract clock drifting.
297 tk
->tkr_mono
.mult
= clock
->mult
;
298 tk
->tkr_raw
.mult
= clock
->mult
;
299 tk
->ntp_err_mult
= 0;
300 tk
->skip_second_overflow
= 0;
303 /* Timekeeper helper functions. */
304 static noinline u64
delta_to_ns_safe(const struct tk_read_base
*tkr
, u64 delta
)
306 return mul_u64_u32_add_u64_shr(delta
, tkr
->mult
, tkr
->xtime_nsec
, tkr
->shift
);
309 static inline u64
timekeeping_cycles_to_ns(const struct tk_read_base
*tkr
, u64 cycles
)
311 /* Calculate the delta since the last update_wall_time() */
312 u64 mask
= tkr
->mask
, delta
= (cycles
- tkr
->cycle_last
) & mask
;
315 * This detects both negative motion and the case where the delta
316 * overflows the multiplication with tkr->mult.
318 if (unlikely(delta
> tkr
->clock
->max_cycles
)) {
320 * Handle clocksource inconsistency between CPUs to prevent
321 * time from going backwards by checking for the MSB of the
322 * mask being set in the delta.
324 if (delta
& ~(mask
>> 1))
325 return tkr
->xtime_nsec
>> tkr
->shift
;
327 return delta_to_ns_safe(tkr
, delta
);
330 return ((delta
* tkr
->mult
) + tkr
->xtime_nsec
) >> tkr
->shift
;
333 static __always_inline u64
timekeeping_get_ns(const struct tk_read_base
*tkr
)
335 return timekeeping_cycles_to_ns(tkr
, tk_clock_read(tkr
));
339 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
340 * @tkr: Timekeeping readout base from which we take the update
341 * @tkf: Pointer to NMI safe timekeeper
343 * We want to use this from any context including NMI and tracing /
344 * instrumenting the timekeeping code itself.
346 * Employ the latch technique; see @write_seqcount_latch.
348 * So if a NMI hits the update of base[0] then it will use base[1]
349 * which is still consistent. In the worst case this can result is a
350 * slightly wrong timestamp (a few nanoseconds). See
351 * @ktime_get_mono_fast_ns.
353 static void update_fast_timekeeper(const struct tk_read_base
*tkr
,
356 struct tk_read_base
*base
= tkf
->base
;
358 /* Force readers off to base[1] */
359 write_seqcount_latch_begin(&tkf
->seq
);
362 memcpy(base
, tkr
, sizeof(*base
));
364 /* Force readers back to base[0] */
365 write_seqcount_latch(&tkf
->seq
);
368 memcpy(base
+ 1, base
, sizeof(*base
));
370 write_seqcount_latch_end(&tkf
->seq
);
373 static __always_inline u64
__ktime_get_fast_ns(struct tk_fast
*tkf
)
375 struct tk_read_base
*tkr
;
380 seq
= read_seqcount_latch(&tkf
->seq
);
381 tkr
= tkf
->base
+ (seq
& 0x01);
382 now
= ktime_to_ns(tkr
->base
);
383 now
+= timekeeping_get_ns(tkr
);
384 } while (read_seqcount_latch_retry(&tkf
->seq
, seq
));
390 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
392 * This timestamp is not guaranteed to be monotonic across an update.
393 * The timestamp is calculated by:
395 * now = base_mono + clock_delta * slope
397 * So if the update lowers the slope, readers who are forced to the
398 * not yet updated second array are still using the old steeper slope.
407 * |12345678---> reader order
413 * So reader 6 will observe time going backwards versus reader 5.
415 * While other CPUs are likely to be able to observe that, the only way
416 * for a CPU local observation is when an NMI hits in the middle of
417 * the update. Timestamps taken from that NMI context might be ahead
418 * of the following timestamps. Callers need to be aware of that and
421 u64 notrace
ktime_get_mono_fast_ns(void)
423 return __ktime_get_fast_ns(&tk_fast_mono
);
425 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns
);
428 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw
430 * Contrary to ktime_get_mono_fast_ns() this is always correct because the
431 * conversion factor is not affected by NTP/PTP correction.
433 u64 notrace
ktime_get_raw_fast_ns(void)
435 return __ktime_get_fast_ns(&tk_fast_raw
);
437 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns
);
440 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
442 * To keep it NMI safe since we're accessing from tracing, we're not using a
443 * separate timekeeper with updates to monotonic clock and boot offset
444 * protected with seqcounts. This has the following minor side effects:
446 * (1) Its possible that a timestamp be taken after the boot offset is updated
447 * but before the timekeeper is updated. If this happens, the new boot offset
448 * is added to the old timekeeping making the clock appear to update slightly
451 * timekeeping_inject_sleeptime64()
452 * __timekeeping_inject_sleeptime(tk, delta);
454 * timekeeping_update_staged(tkd, TK_CLEAR_NTP...);
456 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
457 * partially updated. Since the tk->offs_boot update is a rare event, this
458 * should be a rare occurrence which postprocessing should be able to handle.
460 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns()
463 u64 notrace
ktime_get_boot_fast_ns(void)
465 struct timekeeper
*tk
= &tk_core
.timekeeper
;
467 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk
->offs_boot
)));
469 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns
);
472 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock.
474 * The same limitations as described for ktime_get_boot_fast_ns() apply. The
475 * mono time and the TAI offset are not read atomically which may yield wrong
476 * readouts. However, an update of the TAI offset is an rare event e.g., caused
477 * by settime or adjtimex with an offset. The user of this function has to deal
478 * with the possibility of wrong timestamps in post processing.
480 u64 notrace
ktime_get_tai_fast_ns(void)
482 struct timekeeper
*tk
= &tk_core
.timekeeper
;
484 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk
->offs_tai
)));
486 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns
);
488 static __always_inline u64
__ktime_get_real_fast(struct tk_fast
*tkf
, u64
*mono
)
490 struct tk_read_base
*tkr
;
491 u64 basem
, baser
, delta
;
495 seq
= raw_read_seqcount_latch(&tkf
->seq
);
496 tkr
= tkf
->base
+ (seq
& 0x01);
497 basem
= ktime_to_ns(tkr
->base
);
498 baser
= ktime_to_ns(tkr
->base_real
);
499 delta
= timekeeping_get_ns(tkr
);
500 } while (raw_read_seqcount_latch_retry(&tkf
->seq
, seq
));
503 *mono
= basem
+ delta
;
504 return baser
+ delta
;
508 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
510 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering.
512 u64
ktime_get_real_fast_ns(void)
514 return __ktime_get_real_fast(&tk_fast_mono
, NULL
);
516 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns
);
519 * ktime_get_fast_timestamps: - NMI safe timestamps
520 * @snapshot: Pointer to timestamp storage
522 * Stores clock monotonic, boottime and realtime timestamps.
524 * Boot time is a racy access on 32bit systems if the sleep time injection
525 * happens late during resume and not in timekeeping_resume(). That could
526 * be avoided by expanding struct tk_read_base with boot offset for 32bit
527 * and adding more overhead to the update. As this is a hard to observe
528 * once per resume event which can be filtered with reasonable effort using
529 * the accurate mono/real timestamps, it's probably not worth the trouble.
531 * Aside of that it might be possible on 32 and 64 bit to observe the
532 * following when the sleep time injection happens late:
535 * timekeeping_resume()
536 * ktime_get_fast_timestamps()
537 * mono, real = __ktime_get_real_fast()
538 * inject_sleep_time()
540 * boot = mono + bootoffset;
542 * That means that boot time already has the sleep time adjustment, but
543 * real time does not. On the next readout both are in sync again.
545 * Preventing this for 64bit is not really feasible without destroying the
546 * careful cache layout of the timekeeper because the sequence count and
547 * struct tk_read_base would then need two cache lines instead of one.
549 * Access to the time keeper clock source is disabled across the innermost
550 * steps of suspend/resume. The accessors still work, but the timestamps
551 * are frozen until time keeping is resumed which happens very early.
553 * For regular suspend/resume there is no observable difference vs. sched
554 * clock, but it might affect some of the nasty low level debug printks.
556 * OTOH, access to sched clock is not guaranteed across suspend/resume on
557 * all systems either so it depends on the hardware in use.
559 * If that turns out to be a real problem then this could be mitigated by
560 * using sched clock in a similar way as during early boot. But it's not as
561 * trivial as on early boot because it needs some careful protection
562 * against the clock monotonic timestamp jumping backwards on resume.
564 void ktime_get_fast_timestamps(struct ktime_timestamps
*snapshot
)
566 struct timekeeper
*tk
= &tk_core
.timekeeper
;
568 snapshot
->real
= __ktime_get_real_fast(&tk_fast_mono
, &snapshot
->mono
);
569 snapshot
->boot
= snapshot
->mono
+ ktime_to_ns(data_race(tk
->offs_boot
));
573 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
574 * @tk: Timekeeper to snapshot.
576 * It generally is unsafe to access the clocksource after timekeeping has been
577 * suspended, so take a snapshot of the readout base of @tk and use it as the
578 * fast timekeeper's readout base while suspended. It will return the same
579 * number of cycles every time until timekeeping is resumed at which time the
580 * proper readout base for the fast timekeeper will be restored automatically.
582 static void halt_fast_timekeeper(const struct timekeeper
*tk
)
584 static struct tk_read_base tkr_dummy
;
585 const struct tk_read_base
*tkr
= &tk
->tkr_mono
;
587 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
588 cycles_at_suspend
= tk_clock_read(tkr
);
589 tkr_dummy
.clock
= &dummy_clock
;
590 tkr_dummy
.base_real
= tkr
->base
+ tk
->offs_real
;
591 update_fast_timekeeper(&tkr_dummy
, &tk_fast_mono
);
594 memcpy(&tkr_dummy
, tkr
, sizeof(tkr_dummy
));
595 tkr_dummy
.clock
= &dummy_clock
;
596 update_fast_timekeeper(&tkr_dummy
, &tk_fast_raw
);
599 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain
);
601 static void update_pvclock_gtod(struct timekeeper
*tk
, bool was_set
)
603 raw_notifier_call_chain(&pvclock_gtod_chain
, was_set
, tk
);
607 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
608 * @nb: Pointer to the notifier block to register
610 int pvclock_gtod_register_notifier(struct notifier_block
*nb
)
612 struct timekeeper
*tk
= &tk_core
.timekeeper
;
615 guard(raw_spinlock_irqsave
)(&tk_core
.lock
);
616 ret
= raw_notifier_chain_register(&pvclock_gtod_chain
, nb
);
617 update_pvclock_gtod(tk
, true);
621 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier
);
624 * pvclock_gtod_unregister_notifier - unregister a pvclock
625 * timedata update listener
626 * @nb: Pointer to the notifier block to unregister
628 int pvclock_gtod_unregister_notifier(struct notifier_block
*nb
)
630 guard(raw_spinlock_irqsave
)(&tk_core
.lock
);
631 return raw_notifier_chain_unregister(&pvclock_gtod_chain
, nb
);
633 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier
);
636 * tk_update_leap_state - helper to update the next_leap_ktime
638 static inline void tk_update_leap_state(struct timekeeper
*tk
)
640 tk
->next_leap_ktime
= ntp_get_next_leap();
641 if (tk
->next_leap_ktime
!= KTIME_MAX
)
642 /* Convert to monotonic time */
643 tk
->next_leap_ktime
= ktime_sub(tk
->next_leap_ktime
, tk
->offs_real
);
647 * Leap state update for both shadow and the real timekeeper
648 * Separate to spare a full memcpy() of the timekeeper.
650 static void tk_update_leap_state_all(struct tk_data
*tkd
)
652 write_seqcount_begin(&tkd
->seq
);
653 tk_update_leap_state(&tkd
->shadow_timekeeper
);
654 tkd
->timekeeper
.next_leap_ktime
= tkd
->shadow_timekeeper
.next_leap_ktime
;
655 write_seqcount_end(&tkd
->seq
);
659 * Update the ktime_t based scalar nsec members of the timekeeper
661 static inline void tk_update_ktime_data(struct timekeeper
*tk
)
667 * The xtime based monotonic readout is:
668 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
669 * The ktime based monotonic readout is:
670 * nsec = base_mono + now();
671 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
673 seconds
= (u64
)(tk
->xtime_sec
+ tk
->wall_to_monotonic
.tv_sec
);
674 nsec
= (u32
) tk
->wall_to_monotonic
.tv_nsec
;
675 tk
->tkr_mono
.base
= ns_to_ktime(seconds
* NSEC_PER_SEC
+ nsec
);
678 * The sum of the nanoseconds portions of xtime and
679 * wall_to_monotonic can be greater/equal one second. Take
680 * this into account before updating tk->ktime_sec.
682 nsec
+= (u32
)(tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
);
683 if (nsec
>= NSEC_PER_SEC
)
685 tk
->ktime_sec
= seconds
;
687 /* Update the monotonic raw base */
688 tk
->tkr_raw
.base
= ns_to_ktime(tk
->raw_sec
* NSEC_PER_SEC
);
692 * Restore the shadow timekeeper from the real timekeeper.
694 static void timekeeping_restore_shadow(struct tk_data
*tkd
)
696 lockdep_assert_held(&tkd
->lock
);
697 memcpy(&tkd
->shadow_timekeeper
, &tkd
->timekeeper
, sizeof(tkd
->timekeeper
));
700 static void timekeeping_update_from_shadow(struct tk_data
*tkd
, unsigned int action
)
702 struct timekeeper
*tk
= &tk_core
.shadow_timekeeper
;
704 lockdep_assert_held(&tkd
->lock
);
707 * Block out readers before running the updates below because that
708 * updates VDSO and other time related infrastructure. Not blocking
709 * the readers might let a reader see time going backwards when
710 * reading from the VDSO after the VDSO update and then reading in
711 * the kernel from the timekeeper before that got updated.
713 write_seqcount_begin(&tkd
->seq
);
715 if (action
& TK_CLEAR_NTP
) {
720 tk_update_leap_state(tk
);
721 tk_update_ktime_data(tk
);
724 update_pvclock_gtod(tk
, action
& TK_CLOCK_WAS_SET
);
726 tk
->tkr_mono
.base_real
= tk
->tkr_mono
.base
+ tk
->offs_real
;
727 update_fast_timekeeper(&tk
->tkr_mono
, &tk_fast_mono
);
728 update_fast_timekeeper(&tk
->tkr_raw
, &tk_fast_raw
);
730 if (action
& TK_CLOCK_WAS_SET
)
731 tk
->clock_was_set_seq
++;
734 * Update the real timekeeper.
736 * We could avoid this memcpy() by switching pointers, but that has
737 * the downside that the reader side does not longer benefit from
738 * the cacheline optimized data layout of the timekeeper and requires
739 * another indirection.
741 memcpy(&tkd
->timekeeper
, tk
, sizeof(*tk
));
742 write_seqcount_end(&tkd
->seq
);
746 * timekeeping_forward_now - update clock to the current time
747 * @tk: Pointer to the timekeeper to update
749 * Forward the current clock to update its state since the last call to
750 * update_wall_time(). This is useful before significant clock changes,
751 * as it avoids having to deal with this time offset explicitly.
753 static void timekeeping_forward_now(struct timekeeper
*tk
)
755 u64 cycle_now
, delta
;
757 cycle_now
= tk_clock_read(&tk
->tkr_mono
);
758 delta
= clocksource_delta(cycle_now
, tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
,
759 tk
->tkr_mono
.clock
->max_raw_delta
);
760 tk
->tkr_mono
.cycle_last
= cycle_now
;
761 tk
->tkr_raw
.cycle_last
= cycle_now
;
764 u64 max
= tk
->tkr_mono
.clock
->max_cycles
;
765 u64 incr
= delta
< max
? delta
: max
;
767 tk
->tkr_mono
.xtime_nsec
+= incr
* tk
->tkr_mono
.mult
;
768 tk
->tkr_raw
.xtime_nsec
+= incr
* tk
->tkr_raw
.mult
;
769 tk_normalize_xtime(tk
);
775 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
776 * @ts: pointer to the timespec to be set
778 * Returns the time of day in a timespec64 (WARN if suspended).
780 void ktime_get_real_ts64(struct timespec64
*ts
)
782 struct timekeeper
*tk
= &tk_core
.timekeeper
;
786 WARN_ON(timekeeping_suspended
);
789 seq
= read_seqcount_begin(&tk_core
.seq
);
791 ts
->tv_sec
= tk
->xtime_sec
;
792 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
794 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
797 timespec64_add_ns(ts
, nsecs
);
799 EXPORT_SYMBOL(ktime_get_real_ts64
);
801 ktime_t
ktime_get(void)
803 struct timekeeper
*tk
= &tk_core
.timekeeper
;
808 WARN_ON(timekeeping_suspended
);
811 seq
= read_seqcount_begin(&tk_core
.seq
);
812 base
= tk
->tkr_mono
.base
;
813 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
815 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
817 return ktime_add_ns(base
, nsecs
);
819 EXPORT_SYMBOL_GPL(ktime_get
);
821 u32
ktime_get_resolution_ns(void)
823 struct timekeeper
*tk
= &tk_core
.timekeeper
;
827 WARN_ON(timekeeping_suspended
);
830 seq
= read_seqcount_begin(&tk_core
.seq
);
831 nsecs
= tk
->tkr_mono
.mult
>> tk
->tkr_mono
.shift
;
832 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
836 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns
);
838 static ktime_t
*offsets
[TK_OFFS_MAX
] = {
839 [TK_OFFS_REAL
] = &tk_core
.timekeeper
.offs_real
,
840 [TK_OFFS_BOOT
] = &tk_core
.timekeeper
.offs_boot
,
841 [TK_OFFS_TAI
] = &tk_core
.timekeeper
.offs_tai
,
844 ktime_t
ktime_get_with_offset(enum tk_offsets offs
)
846 struct timekeeper
*tk
= &tk_core
.timekeeper
;
848 ktime_t base
, *offset
= offsets
[offs
];
851 WARN_ON(timekeeping_suspended
);
854 seq
= read_seqcount_begin(&tk_core
.seq
);
855 base
= ktime_add(tk
->tkr_mono
.base
, *offset
);
856 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
858 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
860 return ktime_add_ns(base
, nsecs
);
863 EXPORT_SYMBOL_GPL(ktime_get_with_offset
);
865 ktime_t
ktime_get_coarse_with_offset(enum tk_offsets offs
)
867 struct timekeeper
*tk
= &tk_core
.timekeeper
;
869 ktime_t base
, *offset
= offsets
[offs
];
872 WARN_ON(timekeeping_suspended
);
875 seq
= read_seqcount_begin(&tk_core
.seq
);
876 base
= ktime_add(tk
->tkr_mono
.base
, *offset
);
877 nsecs
= tk
->tkr_mono
.xtime_nsec
>> tk
->tkr_mono
.shift
;
879 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
881 return ktime_add_ns(base
, nsecs
);
883 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset
);
886 * ktime_mono_to_any() - convert monotonic time to any other time
887 * @tmono: time to convert.
888 * @offs: which offset to use
890 ktime_t
ktime_mono_to_any(ktime_t tmono
, enum tk_offsets offs
)
892 ktime_t
*offset
= offsets
[offs
];
896 if (IS_ENABLED(CONFIG_64BIT
)) {
898 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and
899 * tk_update_sleep_time().
901 return ktime_add(tmono
, READ_ONCE(*offset
));
905 seq
= read_seqcount_begin(&tk_core
.seq
);
906 tconv
= ktime_add(tmono
, *offset
);
907 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
911 EXPORT_SYMBOL_GPL(ktime_mono_to_any
);
914 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
916 ktime_t
ktime_get_raw(void)
918 struct timekeeper
*tk
= &tk_core
.timekeeper
;
924 seq
= read_seqcount_begin(&tk_core
.seq
);
925 base
= tk
->tkr_raw
.base
;
926 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
928 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
930 return ktime_add_ns(base
, nsecs
);
932 EXPORT_SYMBOL_GPL(ktime_get_raw
);
935 * ktime_get_ts64 - get the monotonic clock in timespec64 format
936 * @ts: pointer to timespec variable
938 * The function calculates the monotonic clock from the realtime
939 * clock and the wall_to_monotonic offset and stores the result
940 * in normalized timespec64 format in the variable pointed to by @ts.
942 void ktime_get_ts64(struct timespec64
*ts
)
944 struct timekeeper
*tk
= &tk_core
.timekeeper
;
945 struct timespec64 tomono
;
949 WARN_ON(timekeeping_suspended
);
952 seq
= read_seqcount_begin(&tk_core
.seq
);
953 ts
->tv_sec
= tk
->xtime_sec
;
954 nsec
= timekeeping_get_ns(&tk
->tkr_mono
);
955 tomono
= tk
->wall_to_monotonic
;
957 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
959 ts
->tv_sec
+= tomono
.tv_sec
;
961 timespec64_add_ns(ts
, nsec
+ tomono
.tv_nsec
);
963 EXPORT_SYMBOL_GPL(ktime_get_ts64
);
966 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
968 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
969 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
970 * works on both 32 and 64 bit systems. On 32 bit systems the readout
971 * covers ~136 years of uptime which should be enough to prevent
972 * premature wrap arounds.
974 time64_t
ktime_get_seconds(void)
976 struct timekeeper
*tk
= &tk_core
.timekeeper
;
978 WARN_ON(timekeeping_suspended
);
979 return tk
->ktime_sec
;
981 EXPORT_SYMBOL_GPL(ktime_get_seconds
);
984 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
986 * Returns the wall clock seconds since 1970.
988 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
989 * 32bit systems the access must be protected with the sequence
990 * counter to provide "atomic" access to the 64bit tk->xtime_sec
993 time64_t
ktime_get_real_seconds(void)
995 struct timekeeper
*tk
= &tk_core
.timekeeper
;
999 if (IS_ENABLED(CONFIG_64BIT
))
1000 return tk
->xtime_sec
;
1003 seq
= read_seqcount_begin(&tk_core
.seq
);
1004 seconds
= tk
->xtime_sec
;
1006 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1010 EXPORT_SYMBOL_GPL(ktime_get_real_seconds
);
1013 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
1014 * but without the sequence counter protect. This internal function
1015 * is called just when timekeeping lock is already held.
1017 noinstr time64_t
__ktime_get_real_seconds(void)
1019 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1021 return tk
->xtime_sec
;
1025 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
1026 * @systime_snapshot: pointer to struct receiving the system time snapshot
1028 void ktime_get_snapshot(struct system_time_snapshot
*systime_snapshot
)
1030 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1039 WARN_ON_ONCE(timekeeping_suspended
);
1042 seq
= read_seqcount_begin(&tk_core
.seq
);
1043 now
= tk_clock_read(&tk
->tkr_mono
);
1044 systime_snapshot
->cs_id
= tk
->tkr_mono
.clock
->id
;
1045 systime_snapshot
->cs_was_changed_seq
= tk
->cs_was_changed_seq
;
1046 systime_snapshot
->clock_was_set_seq
= tk
->clock_was_set_seq
;
1047 base_real
= ktime_add(tk
->tkr_mono
.base
,
1048 tk_core
.timekeeper
.offs_real
);
1049 base_boot
= ktime_add(tk
->tkr_mono
.base
,
1050 tk_core
.timekeeper
.offs_boot
);
1051 base_raw
= tk
->tkr_raw
.base
;
1052 nsec_real
= timekeeping_cycles_to_ns(&tk
->tkr_mono
, now
);
1053 nsec_raw
= timekeeping_cycles_to_ns(&tk
->tkr_raw
, now
);
1054 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1056 systime_snapshot
->cycles
= now
;
1057 systime_snapshot
->real
= ktime_add_ns(base_real
, nsec_real
);
1058 systime_snapshot
->boot
= ktime_add_ns(base_boot
, nsec_real
);
1059 systime_snapshot
->raw
= ktime_add_ns(base_raw
, nsec_raw
);
1061 EXPORT_SYMBOL_GPL(ktime_get_snapshot
);
1063 /* Scale base by mult/div checking for overflow */
1064 static int scale64_check_overflow(u64 mult
, u64 div
, u64
*base
)
1068 tmp
= div64_u64_rem(*base
, div
, &rem
);
1070 if (((int)sizeof(u64
)*8 - fls64(mult
) < fls64(tmp
)) ||
1071 ((int)sizeof(u64
)*8 - fls64(mult
) < fls64(rem
)))
1075 rem
= div64_u64(rem
* mult
, div
);
1081 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1082 * @history: Snapshot representing start of history
1083 * @partial_history_cycles: Cycle offset into history (fractional part)
1084 * @total_history_cycles: Total history length in cycles
1085 * @discontinuity: True indicates clock was set on history period
1086 * @ts: Cross timestamp that should be adjusted using
1087 * partial/total ratio
1089 * Helper function used by get_device_system_crosststamp() to correct the
1090 * crosstimestamp corresponding to the start of the current interval to the
1091 * system counter value (timestamp point) provided by the driver. The
1092 * total_history_* quantities are the total history starting at the provided
1093 * reference point and ending at the start of the current interval. The cycle
1094 * count between the driver timestamp point and the start of the current
1095 * interval is partial_history_cycles.
1097 static int adjust_historical_crosststamp(struct system_time_snapshot
*history
,
1098 u64 partial_history_cycles
,
1099 u64 total_history_cycles
,
1101 struct system_device_crosststamp
*ts
)
1103 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1104 u64 corr_raw
, corr_real
;
1105 bool interp_forward
;
1108 if (total_history_cycles
== 0 || partial_history_cycles
== 0)
1111 /* Interpolate shortest distance from beginning or end of history */
1112 interp_forward
= partial_history_cycles
> total_history_cycles
/ 2;
1113 partial_history_cycles
= interp_forward
?
1114 total_history_cycles
- partial_history_cycles
:
1115 partial_history_cycles
;
1118 * Scale the monotonic raw time delta by:
1119 * partial_history_cycles / total_history_cycles
1121 corr_raw
= (u64
)ktime_to_ns(
1122 ktime_sub(ts
->sys_monoraw
, history
->raw
));
1123 ret
= scale64_check_overflow(partial_history_cycles
,
1124 total_history_cycles
, &corr_raw
);
1129 * If there is a discontinuity in the history, scale monotonic raw
1131 * mult(real)/mult(raw) yielding the realtime correction
1132 * Otherwise, calculate the realtime correction similar to monotonic
1135 if (discontinuity
) {
1136 corr_real
= mul_u64_u32_div
1137 (corr_raw
, tk
->tkr_mono
.mult
, tk
->tkr_raw
.mult
);
1139 corr_real
= (u64
)ktime_to_ns(
1140 ktime_sub(ts
->sys_realtime
, history
->real
));
1141 ret
= scale64_check_overflow(partial_history_cycles
,
1142 total_history_cycles
, &corr_real
);
1147 /* Fixup monotonic raw and real time time values */
1148 if (interp_forward
) {
1149 ts
->sys_monoraw
= ktime_add_ns(history
->raw
, corr_raw
);
1150 ts
->sys_realtime
= ktime_add_ns(history
->real
, corr_real
);
1152 ts
->sys_monoraw
= ktime_sub_ns(ts
->sys_monoraw
, corr_raw
);
1153 ts
->sys_realtime
= ktime_sub_ns(ts
->sys_realtime
, corr_real
);
1160 * timestamp_in_interval - true if ts is chronologically in [start, end]
1162 * True if ts occurs chronologically at or after start, and before or at end.
1164 static bool timestamp_in_interval(u64 start
, u64 end
, u64 ts
)
1166 if (ts
>= start
&& ts
<= end
)
1168 if (start
> end
&& (ts
>= start
|| ts
<= end
))
1173 static bool convert_clock(u64
*val
, u32 numerator
, u32 denominator
)
1177 if (!numerator
|| !denominator
)
1180 res
= div64_u64_rem(*val
, denominator
, &rem
) * numerator
;
1181 *val
= res
+ div_u64(rem
* numerator
, denominator
);
1185 static bool convert_base_to_cs(struct system_counterval_t
*scv
)
1187 struct clocksource
*cs
= tk_core
.timekeeper
.tkr_mono
.clock
;
1188 struct clocksource_base
*base
;
1191 /* The timestamp was taken from the time keeper clock source */
1192 if (cs
->id
== scv
->cs_id
)
1196 * Check whether cs_id matches the base clock. Prevent the compiler from
1197 * re-evaluating @base as the clocksource might change concurrently.
1199 base
= READ_ONCE(cs
->base
);
1200 if (!base
|| base
->id
!= scv
->cs_id
)
1203 num
= scv
->use_nsecs
? cs
->freq_khz
: base
->numerator
;
1204 den
= scv
->use_nsecs
? USEC_PER_SEC
: base
->denominator
;
1206 if (!convert_clock(&scv
->cycles
, num
, den
))
1209 scv
->cycles
+= base
->offset
;
1213 static bool convert_cs_to_base(u64
*cycles
, enum clocksource_ids base_id
)
1215 struct clocksource
*cs
= tk_core
.timekeeper
.tkr_mono
.clock
;
1216 struct clocksource_base
*base
;
1219 * Check whether base_id matches the base clock. Prevent the compiler from
1220 * re-evaluating @base as the clocksource might change concurrently.
1222 base
= READ_ONCE(cs
->base
);
1223 if (!base
|| base
->id
!= base_id
)
1226 *cycles
-= base
->offset
;
1227 if (!convert_clock(cycles
, base
->denominator
, base
->numerator
))
1232 static bool convert_ns_to_cs(u64
*delta
)
1234 struct tk_read_base
*tkr
= &tk_core
.timekeeper
.tkr_mono
;
1236 if (BITS_TO_BYTES(fls64(*delta
) + tkr
->shift
) >= sizeof(*delta
))
1239 *delta
= div_u64((*delta
<< tkr
->shift
) - tkr
->xtime_nsec
, tkr
->mult
);
1244 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp
1245 * @treal: CLOCK_REALTIME timestamp to convert
1246 * @base_id: base clocksource id
1247 * @cycles: pointer to store the converted base clock timestamp
1249 * Converts a supplied, future realtime clock value to the corresponding base clock value.
1251 * Return: true if the conversion is successful, false otherwise.
1253 bool ktime_real_to_base_clock(ktime_t treal
, enum clocksource_ids base_id
, u64
*cycles
)
1255 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1260 seq
= read_seqcount_begin(&tk_core
.seq
);
1261 if ((u64
)treal
< tk
->tkr_mono
.base_real
)
1263 delta
= (u64
)treal
- tk
->tkr_mono
.base_real
;
1264 if (!convert_ns_to_cs(&delta
))
1266 *cycles
= tk
->tkr_mono
.cycle_last
+ delta
;
1267 if (!convert_cs_to_base(cycles
, base_id
))
1269 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1273 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock
);
1276 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1277 * @get_time_fn: Callback to get simultaneous device time and
1278 * system counter from the device driver
1279 * @ctx: Context passed to get_time_fn()
1280 * @history_begin: Historical reference point used to interpolate system
1281 * time when counter provided by the driver is before the current interval
1282 * @xtstamp: Receives simultaneously captured system and device time
1284 * Reads a timestamp from a device and correlates it to system time
1286 int get_device_system_crosststamp(int (*get_time_fn
)
1287 (ktime_t
*device_time
,
1288 struct system_counterval_t
*sys_counterval
,
1291 struct system_time_snapshot
*history_begin
,
1292 struct system_device_crosststamp
*xtstamp
)
1294 struct system_counterval_t system_counterval
;
1295 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1296 u64 cycles
, now
, interval_start
;
1297 unsigned int clock_was_set_seq
= 0;
1298 ktime_t base_real
, base_raw
;
1299 u64 nsec_real
, nsec_raw
;
1300 u8 cs_was_changed_seq
;
1306 seq
= read_seqcount_begin(&tk_core
.seq
);
1308 * Try to synchronously capture device time and a system
1309 * counter value calling back into the device driver
1311 ret
= get_time_fn(&xtstamp
->device
, &system_counterval
, ctx
);
1316 * Verify that the clocksource ID associated with the captured
1317 * system counter value is the same as for the currently
1318 * installed timekeeper clocksource
1320 if (system_counterval
.cs_id
== CSID_GENERIC
||
1321 !convert_base_to_cs(&system_counterval
))
1323 cycles
= system_counterval
.cycles
;
1326 * Check whether the system counter value provided by the
1327 * device driver is on the current timekeeping interval.
1329 now
= tk_clock_read(&tk
->tkr_mono
);
1330 interval_start
= tk
->tkr_mono
.cycle_last
;
1331 if (!timestamp_in_interval(interval_start
, now
, cycles
)) {
1332 clock_was_set_seq
= tk
->clock_was_set_seq
;
1333 cs_was_changed_seq
= tk
->cs_was_changed_seq
;
1334 cycles
= interval_start
;
1340 base_real
= ktime_add(tk
->tkr_mono
.base
,
1341 tk_core
.timekeeper
.offs_real
);
1342 base_raw
= tk
->tkr_raw
.base
;
1344 nsec_real
= timekeeping_cycles_to_ns(&tk
->tkr_mono
, cycles
);
1345 nsec_raw
= timekeeping_cycles_to_ns(&tk
->tkr_raw
, cycles
);
1346 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1348 xtstamp
->sys_realtime
= ktime_add_ns(base_real
, nsec_real
);
1349 xtstamp
->sys_monoraw
= ktime_add_ns(base_raw
, nsec_raw
);
1352 * Interpolate if necessary, adjusting back from the start of the
1356 u64 partial_history_cycles
, total_history_cycles
;
1360 * Check that the counter value is not before the provided
1361 * history reference and that the history doesn't cross a
1362 * clocksource change
1364 if (!history_begin
||
1365 !timestamp_in_interval(history_begin
->cycles
,
1366 cycles
, system_counterval
.cycles
) ||
1367 history_begin
->cs_was_changed_seq
!= cs_was_changed_seq
)
1369 partial_history_cycles
= cycles
- system_counterval
.cycles
;
1370 total_history_cycles
= cycles
- history_begin
->cycles
;
1372 history_begin
->clock_was_set_seq
!= clock_was_set_seq
;
1374 ret
= adjust_historical_crosststamp(history_begin
,
1375 partial_history_cycles
,
1376 total_history_cycles
,
1377 discontinuity
, xtstamp
);
1384 EXPORT_SYMBOL_GPL(get_device_system_crosststamp
);
1387 * timekeeping_clocksource_has_base - Check whether the current clocksource
1388 * is based on given a base clock
1389 * @id: base clocksource ID
1391 * Note: The return value is a snapshot which can become invalid right
1392 * after the function returns.
1394 * Return: true if the timekeeper clocksource has a base clock with @id,
1397 bool timekeeping_clocksource_has_base(enum clocksource_ids id
)
1400 * This is a snapshot, so no point in using the sequence
1401 * count. Just prevent the compiler from re-evaluating @base as the
1402 * clocksource might change concurrently.
1404 struct clocksource_base
*base
= READ_ONCE(tk_core
.timekeeper
.tkr_mono
.clock
->base
);
1406 return base
? base
->id
== id
: false;
1408 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base
);
1411 * do_settimeofday64 - Sets the time of day.
1412 * @ts: pointer to the timespec64 variable containing the new time
1414 * Sets the time of day to the new time and update NTP and notify hrtimers
1416 int do_settimeofday64(const struct timespec64
*ts
)
1418 struct timespec64 ts_delta
, xt
;
1420 if (!timespec64_valid_settod(ts
))
1423 scoped_guard (raw_spinlock_irqsave
, &tk_core
.lock
) {
1424 struct timekeeper
*tks
= &tk_core
.shadow_timekeeper
;
1426 timekeeping_forward_now(tks
);
1429 ts_delta
= timespec64_sub(*ts
, xt
);
1431 if (timespec64_compare(&tks
->wall_to_monotonic
, &ts_delta
) > 0) {
1432 timekeeping_restore_shadow(&tk_core
);
1436 tk_set_wall_to_mono(tks
, timespec64_sub(tks
->wall_to_monotonic
, ts_delta
));
1437 tk_set_xtime(tks
, ts
);
1438 timekeeping_update_from_shadow(&tk_core
, TK_UPDATE_ALL
);
1441 /* Signal hrtimers about time change */
1442 clock_was_set(CLOCK_SET_WALL
);
1444 audit_tk_injoffset(ts_delta
);
1445 add_device_randomness(ts
, sizeof(*ts
));
1448 EXPORT_SYMBOL(do_settimeofday64
);
1451 * timekeeping_inject_offset - Adds or subtracts from the current time.
1452 * @ts: Pointer to the timespec variable containing the offset
1454 * Adds or subtracts an offset value from the current time.
1456 static int timekeeping_inject_offset(const struct timespec64
*ts
)
1458 if (ts
->tv_nsec
< 0 || ts
->tv_nsec
>= NSEC_PER_SEC
)
1461 scoped_guard (raw_spinlock_irqsave
, &tk_core
.lock
) {
1462 struct timekeeper
*tks
= &tk_core
.shadow_timekeeper
;
1463 struct timespec64 tmp
;
1465 timekeeping_forward_now(tks
);
1467 /* Make sure the proposed value is valid */
1468 tmp
= timespec64_add(tk_xtime(tks
), *ts
);
1469 if (timespec64_compare(&tks
->wall_to_monotonic
, ts
) > 0 ||
1470 !timespec64_valid_settod(&tmp
)) {
1471 timekeeping_restore_shadow(&tk_core
);
1475 tk_xtime_add(tks
, ts
);
1476 tk_set_wall_to_mono(tks
, timespec64_sub(tks
->wall_to_monotonic
, *ts
));
1477 timekeeping_update_from_shadow(&tk_core
, TK_UPDATE_ALL
);
1480 /* Signal hrtimers about time change */
1481 clock_was_set(CLOCK_SET_WALL
);
1486 * Indicates if there is an offset between the system clock and the hardware
1487 * clock/persistent clock/rtc.
1489 int persistent_clock_is_local
;
1492 * Adjust the time obtained from the CMOS to be UTC time instead of
1495 * This is ugly, but preferable to the alternatives. Otherwise we
1496 * would either need to write a program to do it in /etc/rc (and risk
1497 * confusion if the program gets run more than once; it would also be
1498 * hard to make the program warp the clock precisely n hours) or
1499 * compile in the timezone information into the kernel. Bad, bad....
1503 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1504 * as real UNIX machines always do it. This avoids all headaches about
1505 * daylight saving times and warping kernel clocks.
1507 void timekeeping_warp_clock(void)
1509 if (sys_tz
.tz_minuteswest
!= 0) {
1510 struct timespec64 adjust
;
1512 persistent_clock_is_local
= 1;
1513 adjust
.tv_sec
= sys_tz
.tz_minuteswest
* 60;
1515 timekeeping_inject_offset(&adjust
);
1520 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1522 static void __timekeeping_set_tai_offset(struct timekeeper
*tk
, s32 tai_offset
)
1524 tk
->tai_offset
= tai_offset
;
1525 tk
->offs_tai
= ktime_add(tk
->offs_real
, ktime_set(tai_offset
, 0));
1529 * change_clocksource - Swaps clocksources if a new one is available
1531 * Accumulates current time interval and initializes new clocksource
1533 static int change_clocksource(void *data
)
1535 struct clocksource
*new = data
, *old
= NULL
;
1538 * If the clocksource is in a module, get a module reference.
1539 * Succeeds for built-in code (owner == NULL) as well. Abort if the
1540 * reference can't be acquired.
1542 if (!try_module_get(new->owner
))
1545 /* Abort if the device can't be enabled */
1546 if (new->enable
&& new->enable(new) != 0) {
1547 module_put(new->owner
);
1551 scoped_guard (raw_spinlock_irqsave
, &tk_core
.lock
) {
1552 struct timekeeper
*tks
= &tk_core
.shadow_timekeeper
;
1554 timekeeping_forward_now(tks
);
1555 old
= tks
->tkr_mono
.clock
;
1556 tk_setup_internals(tks
, new);
1557 timekeeping_update_from_shadow(&tk_core
, TK_UPDATE_ALL
);
1563 module_put(old
->owner
);
1570 * timekeeping_notify - Install a new clock source
1571 * @clock: pointer to the clock source
1573 * This function is called from clocksource.c after a new, better clock
1574 * source has been registered. The caller holds the clocksource_mutex.
1576 int timekeeping_notify(struct clocksource
*clock
)
1578 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1580 if (tk
->tkr_mono
.clock
== clock
)
1582 stop_machine(change_clocksource
, clock
, NULL
);
1583 tick_clock_notify();
1584 return tk
->tkr_mono
.clock
== clock
? 0 : -1;
1588 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1589 * @ts: pointer to the timespec64 to be set
1591 * Returns the raw monotonic time (completely un-modified by ntp)
1593 void ktime_get_raw_ts64(struct timespec64
*ts
)
1595 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1600 seq
= read_seqcount_begin(&tk_core
.seq
);
1601 ts
->tv_sec
= tk
->raw_sec
;
1602 nsecs
= timekeeping_get_ns(&tk
->tkr_raw
);
1604 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1607 timespec64_add_ns(ts
, nsecs
);
1609 EXPORT_SYMBOL(ktime_get_raw_ts64
);
1613 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1615 int timekeeping_valid_for_hres(void)
1617 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1622 seq
= read_seqcount_begin(&tk_core
.seq
);
1624 ret
= tk
->tkr_mono
.clock
->flags
& CLOCK_SOURCE_VALID_FOR_HRES
;
1626 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1632 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1634 u64
timekeeping_max_deferment(void)
1636 struct timekeeper
*tk
= &tk_core
.timekeeper
;
1641 seq
= read_seqcount_begin(&tk_core
.seq
);
1643 ret
= tk
->tkr_mono
.clock
->max_idle_ns
;
1645 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
1651 * read_persistent_clock64 - Return time from the persistent clock.
1652 * @ts: Pointer to the storage for the readout value
1654 * Weak dummy function for arches that do not yet support it.
1655 * Reads the time from the battery backed persistent clock.
1656 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1658 * XXX - Do be sure to remove it once all arches implement it.
1660 void __weak
read_persistent_clock64(struct timespec64
*ts
)
1667 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1669 * @wall_time: current time as returned by persistent clock
1670 * @boot_offset: offset that is defined as wall_time - boot_time
1672 * Weak dummy function for arches that do not yet support it.
1674 * The default function calculates offset based on the current value of
1675 * local_clock(). This way architectures that support sched_clock() but don't
1676 * support dedicated boot time clock will provide the best estimate of the
1680 read_persistent_wall_and_boot_offset(struct timespec64
*wall_time
,
1681 struct timespec64
*boot_offset
)
1683 read_persistent_clock64(wall_time
);
1684 *boot_offset
= ns_to_timespec64(local_clock());
1687 static __init
void tkd_basic_setup(struct tk_data
*tkd
)
1689 raw_spin_lock_init(&tkd
->lock
);
1690 seqcount_raw_spinlock_init(&tkd
->seq
, &tkd
->lock
);
1694 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1696 * The flag starts of false and is only set when a suspend reaches
1697 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1698 * timekeeper clocksource is not stopping across suspend and has been
1699 * used to update sleep time. If the timekeeper clocksource has stopped
1700 * then the flag stays true and is used by the RTC resume code to decide
1701 * whether sleeptime must be injected and if so the flag gets false then.
1703 * If a suspend fails before reaching timekeeping_resume() then the flag
1704 * stays false and prevents erroneous sleeptime injection.
1706 static bool suspend_timing_needed
;
1708 /* Flag for if there is a persistent clock on this platform */
1709 static bool persistent_clock_exists
;
1712 * timekeeping_init - Initializes the clocksource and common timekeeping values
1714 void __init
timekeeping_init(void)
1716 struct timespec64 wall_time
, boot_offset
, wall_to_mono
;
1717 struct timekeeper
*tks
= &tk_core
.shadow_timekeeper
;
1718 struct clocksource
*clock
;
1720 tkd_basic_setup(&tk_core
);
1722 read_persistent_wall_and_boot_offset(&wall_time
, &boot_offset
);
1723 if (timespec64_valid_settod(&wall_time
) &&
1724 timespec64_to_ns(&wall_time
) > 0) {
1725 persistent_clock_exists
= true;
1726 } else if (timespec64_to_ns(&wall_time
) != 0) {
1727 pr_warn("Persistent clock returned invalid value");
1728 wall_time
= (struct timespec64
){0};
1731 if (timespec64_compare(&wall_time
, &boot_offset
) < 0)
1732 boot_offset
= (struct timespec64
){0};
1735 * We want set wall_to_mono, so the following is true:
1736 * wall time + wall_to_mono = boot time
1738 wall_to_mono
= timespec64_sub(boot_offset
, wall_time
);
1740 guard(raw_spinlock_irqsave
)(&tk_core
.lock
);
1744 clock
= clocksource_default_clock();
1746 clock
->enable(clock
);
1747 tk_setup_internals(tks
, clock
);
1749 tk_set_xtime(tks
, &wall_time
);
1752 tk_set_wall_to_mono(tks
, wall_to_mono
);
1754 timekeeping_update_from_shadow(&tk_core
, TK_CLOCK_WAS_SET
);
1757 /* time in seconds when suspend began for persistent clock */
1758 static struct timespec64 timekeeping_suspend_time
;
1761 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1762 * @tk: Pointer to the timekeeper to be updated
1763 * @delta: Pointer to the delta value in timespec64 format
1765 * Takes a timespec offset measuring a suspend interval and properly
1766 * adds the sleep offset to the timekeeping variables.
1768 static void __timekeeping_inject_sleeptime(struct timekeeper
*tk
,
1769 const struct timespec64
*delta
)
1771 if (!timespec64_valid_strict(delta
)) {
1772 printk_deferred(KERN_WARNING
1773 "__timekeeping_inject_sleeptime: Invalid "
1774 "sleep delta value!\n");
1777 tk_xtime_add(tk
, delta
);
1778 tk_set_wall_to_mono(tk
, timespec64_sub(tk
->wall_to_monotonic
, *delta
));
1779 tk_update_sleep_time(tk
, timespec64_to_ktime(*delta
));
1780 tk_debug_account_sleep_time(delta
);
1783 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1785 * We have three kinds of time sources to use for sleep time
1786 * injection, the preference order is:
1787 * 1) non-stop clocksource
1788 * 2) persistent clock (ie: RTC accessible when irqs are off)
1791 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1792 * If system has neither 1) nor 2), 3) will be used finally.
1795 * If timekeeping has injected sleeptime via either 1) or 2),
1796 * 3) becomes needless, so in this case we don't need to call
1797 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1800 bool timekeeping_rtc_skipresume(void)
1802 return !suspend_timing_needed
;
1806 * 1) can be determined whether to use or not only when doing
1807 * timekeeping_resume() which is invoked after rtc_suspend(),
1808 * so we can't skip rtc_suspend() surely if system has 1).
1810 * But if system has 2), 2) will definitely be used, so in this
1811 * case we don't need to call rtc_suspend(), and this is what
1812 * timekeeping_rtc_skipsuspend() means.
1814 bool timekeeping_rtc_skipsuspend(void)
1816 return persistent_clock_exists
;
1820 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1821 * @delta: pointer to a timespec64 delta value
1823 * This hook is for architectures that cannot support read_persistent_clock64
1824 * because their RTC/persistent clock is only accessible when irqs are enabled.
1825 * and also don't have an effective nonstop clocksource.
1827 * This function should only be called by rtc_resume(), and allows
1828 * a suspend offset to be injected into the timekeeping values.
1830 void timekeeping_inject_sleeptime64(const struct timespec64
*delta
)
1832 scoped_guard(raw_spinlock_irqsave
, &tk_core
.lock
) {
1833 struct timekeeper
*tks
= &tk_core
.shadow_timekeeper
;
1835 suspend_timing_needed
= false;
1836 timekeeping_forward_now(tks
);
1837 __timekeeping_inject_sleeptime(tks
, delta
);
1838 timekeeping_update_from_shadow(&tk_core
, TK_UPDATE_ALL
);
1841 /* Signal hrtimers about time change */
1842 clock_was_set(CLOCK_SET_WALL
| CLOCK_SET_BOOT
);
1847 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1849 void timekeeping_resume(void)
1851 struct timekeeper
*tks
= &tk_core
.shadow_timekeeper
;
1852 struct clocksource
*clock
= tks
->tkr_mono
.clock
;
1853 struct timespec64 ts_new
, ts_delta
;
1854 bool inject_sleeptime
= false;
1855 u64 cycle_now
, nsec
;
1856 unsigned long flags
;
1858 read_persistent_clock64(&ts_new
);
1860 clockevents_resume();
1861 clocksource_resume();
1863 raw_spin_lock_irqsave(&tk_core
.lock
, flags
);
1866 * After system resumes, we need to calculate the suspended time and
1867 * compensate it for the OS time. There are 3 sources that could be
1868 * used: Nonstop clocksource during suspend, persistent clock and rtc
1871 * One specific platform may have 1 or 2 or all of them, and the
1872 * preference will be:
1873 * suspend-nonstop clocksource -> persistent clock -> rtc
1874 * The less preferred source will only be tried if there is no better
1875 * usable source. The rtc part is handled separately in rtc core code.
1877 cycle_now
= tk_clock_read(&tks
->tkr_mono
);
1878 nsec
= clocksource_stop_suspend_timing(clock
, cycle_now
);
1880 ts_delta
= ns_to_timespec64(nsec
);
1881 inject_sleeptime
= true;
1882 } else if (timespec64_compare(&ts_new
, &timekeeping_suspend_time
) > 0) {
1883 ts_delta
= timespec64_sub(ts_new
, timekeeping_suspend_time
);
1884 inject_sleeptime
= true;
1887 if (inject_sleeptime
) {
1888 suspend_timing_needed
= false;
1889 __timekeeping_inject_sleeptime(tks
, &ts_delta
);
1892 /* Re-base the last cycle value */
1893 tks
->tkr_mono
.cycle_last
= cycle_now
;
1894 tks
->tkr_raw
.cycle_last
= cycle_now
;
1897 timekeeping_suspended
= 0;
1898 timekeeping_update_from_shadow(&tk_core
, TK_CLOCK_WAS_SET
);
1899 raw_spin_unlock_irqrestore(&tk_core
.lock
, flags
);
1901 touch_softlockup_watchdog();
1903 /* Resume the clockevent device(s) and hrtimers */
1905 /* Notify timerfd as resume is equivalent to clock_was_set() */
1909 int timekeeping_suspend(void)
1911 struct timekeeper
*tks
= &tk_core
.shadow_timekeeper
;
1912 struct timespec64 delta
, delta_delta
;
1913 static struct timespec64 old_delta
;
1914 struct clocksource
*curr_clock
;
1915 unsigned long flags
;
1918 read_persistent_clock64(&timekeeping_suspend_time
);
1921 * On some systems the persistent_clock can not be detected at
1922 * timekeeping_init by its return value, so if we see a valid
1923 * value returned, update the persistent_clock_exists flag.
1925 if (timekeeping_suspend_time
.tv_sec
|| timekeeping_suspend_time
.tv_nsec
)
1926 persistent_clock_exists
= true;
1928 suspend_timing_needed
= true;
1930 raw_spin_lock_irqsave(&tk_core
.lock
, flags
);
1931 timekeeping_forward_now(tks
);
1932 timekeeping_suspended
= 1;
1935 * Since we've called forward_now, cycle_last stores the value
1936 * just read from the current clocksource. Save this to potentially
1937 * use in suspend timing.
1939 curr_clock
= tks
->tkr_mono
.clock
;
1940 cycle_now
= tks
->tkr_mono
.cycle_last
;
1941 clocksource_start_suspend_timing(curr_clock
, cycle_now
);
1943 if (persistent_clock_exists
) {
1945 * To avoid drift caused by repeated suspend/resumes,
1946 * which each can add ~1 second drift error,
1947 * try to compensate so the difference in system time
1948 * and persistent_clock time stays close to constant.
1950 delta
= timespec64_sub(tk_xtime(tks
), timekeeping_suspend_time
);
1951 delta_delta
= timespec64_sub(delta
, old_delta
);
1952 if (abs(delta_delta
.tv_sec
) >= 2) {
1954 * if delta_delta is too large, assume time correction
1955 * has occurred and set old_delta to the current delta.
1959 /* Otherwise try to adjust old_system to compensate */
1960 timekeeping_suspend_time
=
1961 timespec64_add(timekeeping_suspend_time
, delta_delta
);
1965 timekeeping_update_from_shadow(&tk_core
, 0);
1966 halt_fast_timekeeper(tks
);
1967 raw_spin_unlock_irqrestore(&tk_core
.lock
, flags
);
1970 clocksource_suspend();
1971 clockevents_suspend();
1976 /* sysfs resume/suspend bits for timekeeping */
1977 static struct syscore_ops timekeeping_syscore_ops
= {
1978 .resume
= timekeeping_resume
,
1979 .suspend
= timekeeping_suspend
,
1982 static int __init
timekeeping_init_ops(void)
1984 register_syscore_ops(&timekeeping_syscore_ops
);
1987 device_initcall(timekeeping_init_ops
);
1990 * Apply a multiplier adjustment to the timekeeper
1992 static __always_inline
void timekeeping_apply_adjustment(struct timekeeper
*tk
,
1996 s64 interval
= tk
->cycle_interval
;
1998 if (mult_adj
== 0) {
2000 } else if (mult_adj
== -1) {
2001 interval
= -interval
;
2003 } else if (mult_adj
!= 1) {
2004 interval
*= mult_adj
;
2009 * So the following can be confusing.
2011 * To keep things simple, lets assume mult_adj == 1 for now.
2013 * When mult_adj != 1, remember that the interval and offset values
2014 * have been appropriately scaled so the math is the same.
2016 * The basic idea here is that we're increasing the multiplier
2017 * by one, this causes the xtime_interval to be incremented by
2018 * one cycle_interval. This is because:
2019 * xtime_interval = cycle_interval * mult
2020 * So if mult is being incremented by one:
2021 * xtime_interval = cycle_interval * (mult + 1)
2023 * xtime_interval = (cycle_interval * mult) + cycle_interval
2024 * Which can be shortened to:
2025 * xtime_interval += cycle_interval
2027 * So offset stores the non-accumulated cycles. Thus the current
2028 * time (in shifted nanoseconds) is:
2029 * now = (offset * adj) + xtime_nsec
2030 * Now, even though we're adjusting the clock frequency, we have
2031 * to keep time consistent. In other words, we can't jump back
2032 * in time, and we also want to avoid jumping forward in time.
2034 * So given the same offset value, we need the time to be the same
2035 * both before and after the freq adjustment.
2036 * now = (offset * adj_1) + xtime_nsec_1
2037 * now = (offset * adj_2) + xtime_nsec_2
2039 * (offset * adj_1) + xtime_nsec_1 =
2040 * (offset * adj_2) + xtime_nsec_2
2044 * (offset * adj_1) + xtime_nsec_1 =
2045 * (offset * (adj_1+1)) + xtime_nsec_2
2046 * (offset * adj_1) + xtime_nsec_1 =
2047 * (offset * adj_1) + offset + xtime_nsec_2
2048 * Canceling the sides:
2049 * xtime_nsec_1 = offset + xtime_nsec_2
2051 * xtime_nsec_2 = xtime_nsec_1 - offset
2052 * Which simplifies to:
2053 * xtime_nsec -= offset
2055 if ((mult_adj
> 0) && (tk
->tkr_mono
.mult
+ mult_adj
< mult_adj
)) {
2056 /* NTP adjustment caused clocksource mult overflow */
2061 tk
->tkr_mono
.mult
+= mult_adj
;
2062 tk
->xtime_interval
+= interval
;
2063 tk
->tkr_mono
.xtime_nsec
-= offset
;
2067 * Adjust the timekeeper's multiplier to the correct frequency
2068 * and also to reduce the accumulated error value.
2070 static void timekeeping_adjust(struct timekeeper
*tk
, s64 offset
)
2072 u64 ntp_tl
= ntp_tick_length();
2076 * Determine the multiplier from the current NTP tick length.
2077 * Avoid expensive division when the tick length doesn't change.
2079 if (likely(tk
->ntp_tick
== ntp_tl
)) {
2080 mult
= tk
->tkr_mono
.mult
- tk
->ntp_err_mult
;
2082 tk
->ntp_tick
= ntp_tl
;
2083 mult
= div64_u64((tk
->ntp_tick
>> tk
->ntp_error_shift
) -
2084 tk
->xtime_remainder
, tk
->cycle_interval
);
2088 * If the clock is behind the NTP time, increase the multiplier by 1
2089 * to catch up with it. If it's ahead and there was a remainder in the
2090 * tick division, the clock will slow down. Otherwise it will stay
2091 * ahead until the tick length changes to a non-divisible value.
2093 tk
->ntp_err_mult
= tk
->ntp_error
> 0 ? 1 : 0;
2094 mult
+= tk
->ntp_err_mult
;
2096 timekeeping_apply_adjustment(tk
, offset
, mult
- tk
->tkr_mono
.mult
);
2098 if (unlikely(tk
->tkr_mono
.clock
->maxadj
&&
2099 (abs(tk
->tkr_mono
.mult
- tk
->tkr_mono
.clock
->mult
)
2100 > tk
->tkr_mono
.clock
->maxadj
))) {
2101 printk_once(KERN_WARNING
2102 "Adjusting %s more than 11%% (%ld vs %ld)\n",
2103 tk
->tkr_mono
.clock
->name
, (long)tk
->tkr_mono
.mult
,
2104 (long)tk
->tkr_mono
.clock
->mult
+ tk
->tkr_mono
.clock
->maxadj
);
2108 * It may be possible that when we entered this function, xtime_nsec
2109 * was very small. Further, if we're slightly speeding the clocksource
2110 * in the code above, its possible the required corrective factor to
2111 * xtime_nsec could cause it to underflow.
2113 * Now, since we have already accumulated the second and the NTP
2114 * subsystem has been notified via second_overflow(), we need to skip
2117 if (unlikely((s64
)tk
->tkr_mono
.xtime_nsec
< 0)) {
2118 tk
->tkr_mono
.xtime_nsec
+= (u64
)NSEC_PER_SEC
<<
2121 tk
->skip_second_overflow
= 1;
2126 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
2128 * Helper function that accumulates the nsecs greater than a second
2129 * from the xtime_nsec field to the xtime_secs field.
2130 * It also calls into the NTP code to handle leapsecond processing.
2132 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper
*tk
)
2134 u64 nsecps
= (u64
)NSEC_PER_SEC
<< tk
->tkr_mono
.shift
;
2135 unsigned int clock_set
= 0;
2137 while (tk
->tkr_mono
.xtime_nsec
>= nsecps
) {
2140 tk
->tkr_mono
.xtime_nsec
-= nsecps
;
2144 * Skip NTP update if this second was accumulated before,
2145 * i.e. xtime_nsec underflowed in timekeeping_adjust()
2147 if (unlikely(tk
->skip_second_overflow
)) {
2148 tk
->skip_second_overflow
= 0;
2152 /* Figure out if its a leap sec and apply if needed */
2153 leap
= second_overflow(tk
->xtime_sec
);
2154 if (unlikely(leap
)) {
2155 struct timespec64 ts
;
2157 tk
->xtime_sec
+= leap
;
2161 tk_set_wall_to_mono(tk
,
2162 timespec64_sub(tk
->wall_to_monotonic
, ts
));
2164 __timekeeping_set_tai_offset(tk
, tk
->tai_offset
- leap
);
2166 clock_set
= TK_CLOCK_WAS_SET
;
2173 * logarithmic_accumulation - shifted accumulation of cycles
2175 * This functions accumulates a shifted interval of cycles into
2176 * a shifted interval nanoseconds. Allows for O(log) accumulation
2179 * Returns the unconsumed cycles.
2181 static u64
logarithmic_accumulation(struct timekeeper
*tk
, u64 offset
,
2182 u32 shift
, unsigned int *clock_set
)
2184 u64 interval
= tk
->cycle_interval
<< shift
;
2187 /* If the offset is smaller than a shifted interval, do nothing */
2188 if (offset
< interval
)
2191 /* Accumulate one shifted interval */
2193 tk
->tkr_mono
.cycle_last
+= interval
;
2194 tk
->tkr_raw
.cycle_last
+= interval
;
2196 tk
->tkr_mono
.xtime_nsec
+= tk
->xtime_interval
<< shift
;
2197 *clock_set
|= accumulate_nsecs_to_secs(tk
);
2199 /* Accumulate raw time */
2200 tk
->tkr_raw
.xtime_nsec
+= tk
->raw_interval
<< shift
;
2201 snsec_per_sec
= (u64
)NSEC_PER_SEC
<< tk
->tkr_raw
.shift
;
2202 while (tk
->tkr_raw
.xtime_nsec
>= snsec_per_sec
) {
2203 tk
->tkr_raw
.xtime_nsec
-= snsec_per_sec
;
2207 /* Accumulate error between NTP and clock interval */
2208 tk
->ntp_error
+= tk
->ntp_tick
<< shift
;
2209 tk
->ntp_error
-= (tk
->xtime_interval
+ tk
->xtime_remainder
) <<
2210 (tk
->ntp_error_shift
+ shift
);
2216 * timekeeping_advance - Updates the timekeeper to the current time and
2217 * current NTP tick length
2219 static bool timekeeping_advance(enum timekeeping_adv_mode mode
)
2221 struct timekeeper
*tk
= &tk_core
.shadow_timekeeper
;
2222 struct timekeeper
*real_tk
= &tk_core
.timekeeper
;
2223 unsigned int clock_set
= 0;
2224 int shift
= 0, maxshift
;
2227 guard(raw_spinlock_irqsave
)(&tk_core
.lock
);
2229 /* Make sure we're fully resumed: */
2230 if (unlikely(timekeeping_suspended
))
2233 offset
= clocksource_delta(tk_clock_read(&tk
->tkr_mono
),
2234 tk
->tkr_mono
.cycle_last
, tk
->tkr_mono
.mask
,
2235 tk
->tkr_mono
.clock
->max_raw_delta
);
2237 /* Check if there's really nothing to do */
2238 if (offset
< real_tk
->cycle_interval
&& mode
== TK_ADV_TICK
)
2242 * With NO_HZ we may have to accumulate many cycle_intervals
2243 * (think "ticks") worth of time at once. To do this efficiently,
2244 * we calculate the largest doubling multiple of cycle_intervals
2245 * that is smaller than the offset. We then accumulate that
2246 * chunk in one go, and then try to consume the next smaller
2249 shift
= ilog2(offset
) - ilog2(tk
->cycle_interval
);
2250 shift
= max(0, shift
);
2251 /* Bound shift to one less than what overflows tick_length */
2252 maxshift
= (64 - (ilog2(ntp_tick_length())+1)) - 1;
2253 shift
= min(shift
, maxshift
);
2254 while (offset
>= tk
->cycle_interval
) {
2255 offset
= logarithmic_accumulation(tk
, offset
, shift
, &clock_set
);
2256 if (offset
< tk
->cycle_interval
<<shift
)
2260 /* Adjust the multiplier to correct NTP error */
2261 timekeeping_adjust(tk
, offset
);
2264 * Finally, make sure that after the rounding
2265 * xtime_nsec isn't larger than NSEC_PER_SEC
2267 clock_set
|= accumulate_nsecs_to_secs(tk
);
2269 timekeeping_update_from_shadow(&tk_core
, clock_set
);
2275 * update_wall_time - Uses the current clocksource to increment the wall time
2278 void update_wall_time(void)
2280 if (timekeeping_advance(TK_ADV_TICK
))
2281 clock_was_set_delayed();
2285 * getboottime64 - Return the real time of system boot.
2286 * @ts: pointer to the timespec64 to be set
2288 * Returns the wall-time of boot in a timespec64.
2290 * This is based on the wall_to_monotonic offset and the total suspend
2291 * time. Calls to settimeofday will affect the value returned (which
2292 * basically means that however wrong your real time clock is at boot time,
2293 * you get the right time here).
2295 void getboottime64(struct timespec64
*ts
)
2297 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2298 ktime_t t
= ktime_sub(tk
->offs_real
, tk
->offs_boot
);
2300 *ts
= ktime_to_timespec64(t
);
2302 EXPORT_SYMBOL_GPL(getboottime64
);
2304 void ktime_get_coarse_real_ts64(struct timespec64
*ts
)
2306 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2310 seq
= read_seqcount_begin(&tk_core
.seq
);
2313 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2315 EXPORT_SYMBOL(ktime_get_coarse_real_ts64
);
2318 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor
2319 * @ts: timespec64 to be filled
2321 * Fetch the global mg_floor value, convert it to realtime and compare it
2322 * to the current coarse-grained time. Fill @ts with whichever is
2323 * latest. Note that this is a filesystem-specific interface and should be
2324 * avoided outside of that context.
2326 void ktime_get_coarse_real_ts64_mg(struct timespec64
*ts
)
2328 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2329 u64 floor
= atomic64_read(&mg_floor
);
2330 ktime_t f_real
, offset
, coarse
;
2334 seq
= read_seqcount_begin(&tk_core
.seq
);
2336 offset
= tk_core
.timekeeper
.offs_real
;
2337 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2339 coarse
= timespec64_to_ktime(*ts
);
2340 f_real
= ktime_add(floor
, offset
);
2341 if (ktime_after(f_real
, coarse
))
2342 *ts
= ktime_to_timespec64(f_real
);
2346 * ktime_get_real_ts64_mg - attempt to update floor value and return result
2347 * @ts: pointer to the timespec to be set
2349 * Get a monotonic fine-grained time value and attempt to swap it into
2350 * mg_floor. If that succeeds then accept the new floor value. If it fails
2351 * then another task raced in during the interim time and updated the
2352 * floor. Since any update to the floor must be later than the previous
2353 * floor, either outcome is acceptable.
2355 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(),
2356 * and determining that the resulting coarse-grained timestamp did not effect
2357 * a change in ctime. Any more recent floor value would effect a change to
2358 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure.
2360 * @ts will be filled with the latest floor value, regardless of the outcome of
2361 * the cmpxchg. Note that this is a filesystem specific interface and should be
2362 * avoided outside of that context.
2364 void ktime_get_real_ts64_mg(struct timespec64
*ts
)
2366 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2367 ktime_t old
= atomic64_read(&mg_floor
);
2368 ktime_t offset
, mono
;
2373 seq
= read_seqcount_begin(&tk_core
.seq
);
2375 ts
->tv_sec
= tk
->xtime_sec
;
2376 mono
= tk
->tkr_mono
.base
;
2377 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
2378 offset
= tk_core
.timekeeper
.offs_real
;
2379 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2381 mono
= ktime_add_ns(mono
, nsecs
);
2384 * Attempt to update the floor with the new time value. As any
2385 * update must be later then the existing floor, and would effect
2386 * a change to ctime from the perspective of the current task,
2387 * accept the resulting floor value regardless of the outcome of
2390 if (atomic64_try_cmpxchg(&mg_floor
, &old
, mono
)) {
2392 timespec64_add_ns(ts
, nsecs
);
2393 timekeeping_inc_mg_floor_swaps();
2396 * Another task changed mg_floor since "old" was fetched.
2397 * "old" has been updated with the latest value of "mg_floor".
2398 * That value is newer than the previous floor value, which
2399 * is enough to effect a change to ctime. Accept it.
2401 *ts
= ktime_to_timespec64(ktime_add(old
, offset
));
2405 void ktime_get_coarse_ts64(struct timespec64
*ts
)
2407 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2408 struct timespec64 now
, mono
;
2412 seq
= read_seqcount_begin(&tk_core
.seq
);
2415 mono
= tk
->wall_to_monotonic
;
2416 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2418 set_normalized_timespec64(ts
, now
.tv_sec
+ mono
.tv_sec
,
2419 now
.tv_nsec
+ mono
.tv_nsec
);
2421 EXPORT_SYMBOL(ktime_get_coarse_ts64
);
2424 * Must hold jiffies_lock
2426 void do_timer(unsigned long ticks
)
2428 jiffies_64
+= ticks
;
2433 * ktime_get_update_offsets_now - hrtimer helper
2434 * @cwsseq: pointer to check and store the clock was set sequence number
2435 * @offs_real: pointer to storage for monotonic -> realtime offset
2436 * @offs_boot: pointer to storage for monotonic -> boottime offset
2437 * @offs_tai: pointer to storage for monotonic -> clock tai offset
2439 * Returns current monotonic time and updates the offsets if the
2440 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2443 * Called from hrtimer_interrupt() or retrigger_next_event()
2445 ktime_t
ktime_get_update_offsets_now(unsigned int *cwsseq
, ktime_t
*offs_real
,
2446 ktime_t
*offs_boot
, ktime_t
*offs_tai
)
2448 struct timekeeper
*tk
= &tk_core
.timekeeper
;
2454 seq
= read_seqcount_begin(&tk_core
.seq
);
2456 base
= tk
->tkr_mono
.base
;
2457 nsecs
= timekeeping_get_ns(&tk
->tkr_mono
);
2458 base
= ktime_add_ns(base
, nsecs
);
2460 if (*cwsseq
!= tk
->clock_was_set_seq
) {
2461 *cwsseq
= tk
->clock_was_set_seq
;
2462 *offs_real
= tk
->offs_real
;
2463 *offs_boot
= tk
->offs_boot
;
2464 *offs_tai
= tk
->offs_tai
;
2467 /* Handle leapsecond insertion adjustments */
2468 if (unlikely(base
>= tk
->next_leap_ktime
))
2469 *offs_real
= ktime_sub(tk
->offs_real
, ktime_set(1, 0));
2471 } while (read_seqcount_retry(&tk_core
.seq
, seq
));
2477 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2479 static int timekeeping_validate_timex(const struct __kernel_timex
*txc
)
2481 if (txc
->modes
& ADJ_ADJTIME
) {
2482 /* singleshot must not be used with any other mode bits */
2483 if (!(txc
->modes
& ADJ_OFFSET_SINGLESHOT
))
2485 if (!(txc
->modes
& ADJ_OFFSET_READONLY
) &&
2486 !capable(CAP_SYS_TIME
))
2489 /* In order to modify anything, you gotta be super-user! */
2490 if (txc
->modes
&& !capable(CAP_SYS_TIME
))
2493 * if the quartz is off by more than 10% then
2494 * something is VERY wrong!
2496 if (txc
->modes
& ADJ_TICK
&&
2497 (txc
->tick
< 900000/USER_HZ
||
2498 txc
->tick
> 1100000/USER_HZ
))
2502 if (txc
->modes
& ADJ_SETOFFSET
) {
2503 /* In order to inject time, you gotta be super-user! */
2504 if (!capable(CAP_SYS_TIME
))
2508 * Validate if a timespec/timeval used to inject a time
2509 * offset is valid. Offsets can be positive or negative, so
2510 * we don't check tv_sec. The value of the timeval/timespec
2511 * is the sum of its fields,but *NOTE*:
2512 * The field tv_usec/tv_nsec must always be non-negative and
2513 * we can't have more nanoseconds/microseconds than a second.
2515 if (txc
->time
.tv_usec
< 0)
2518 if (txc
->modes
& ADJ_NANO
) {
2519 if (txc
->time
.tv_usec
>= NSEC_PER_SEC
)
2522 if (txc
->time
.tv_usec
>= USEC_PER_SEC
)
2528 * Check for potential multiplication overflows that can
2529 * only happen on 64-bit systems:
2531 if ((txc
->modes
& ADJ_FREQUENCY
) && (BITS_PER_LONG
== 64)) {
2532 if (LLONG_MIN
/ PPM_SCALE
> txc
->freq
)
2534 if (LLONG_MAX
/ PPM_SCALE
< txc
->freq
)
2542 * random_get_entropy_fallback - Returns the raw clock source value,
2543 * used by random.c for platforms with no valid random_get_entropy().
2545 unsigned long random_get_entropy_fallback(void)
2547 struct tk_read_base
*tkr
= &tk_core
.timekeeper
.tkr_mono
;
2548 struct clocksource
*clock
= READ_ONCE(tkr
->clock
);
2550 if (unlikely(timekeeping_suspended
|| !clock
))
2552 return clock
->read(clock
);
2554 EXPORT_SYMBOL_GPL(random_get_entropy_fallback
);
2557 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2558 * @txc: Pointer to kernel_timex structure containing NTP parameters
2560 int do_adjtimex(struct __kernel_timex
*txc
)
2562 struct audit_ntp_data ad
;
2563 bool offset_set
= false;
2564 bool clock_set
= false;
2565 struct timespec64 ts
;
2568 /* Validate the data before disabling interrupts */
2569 ret
= timekeeping_validate_timex(txc
);
2572 add_device_randomness(txc
, sizeof(*txc
));
2574 if (txc
->modes
& ADJ_SETOFFSET
) {
2575 struct timespec64 delta
;
2577 delta
.tv_sec
= txc
->time
.tv_sec
;
2578 delta
.tv_nsec
= txc
->time
.tv_usec
;
2579 if (!(txc
->modes
& ADJ_NANO
))
2580 delta
.tv_nsec
*= 1000;
2581 ret
= timekeeping_inject_offset(&delta
);
2585 offset_set
= delta
.tv_sec
!= 0;
2586 audit_tk_injoffset(delta
);
2589 audit_ntp_init(&ad
);
2591 ktime_get_real_ts64(&ts
);
2592 add_device_randomness(&ts
, sizeof(ts
));
2594 scoped_guard (raw_spinlock_irqsave
, &tk_core
.lock
) {
2595 struct timekeeper
*tks
= &tk_core
.shadow_timekeeper
;
2598 orig_tai
= tai
= tks
->tai_offset
;
2599 ret
= __do_adjtimex(txc
, &ts
, &tai
, &ad
);
2601 if (tai
!= orig_tai
) {
2602 __timekeeping_set_tai_offset(tks
, tai
);
2603 timekeeping_update_from_shadow(&tk_core
, TK_CLOCK_WAS_SET
);
2606 tk_update_leap_state_all(&tk_core
);
2612 /* Update the multiplier immediately if frequency was set directly */
2613 if (txc
->modes
& (ADJ_FREQUENCY
| ADJ_TICK
))
2614 clock_set
|= timekeeping_advance(TK_ADV_FREQ
);
2617 clock_was_set(CLOCK_SET_WALL
);
2619 ntp_notify_cmos_timer(offset_set
);
2624 #ifdef CONFIG_NTP_PPS
2626 * hardpps() - Accessor function to NTP __hardpps function
2627 * @phase_ts: Pointer to timespec64 structure representing phase timestamp
2628 * @raw_ts: Pointer to timespec64 structure representing raw timestamp
2630 void hardpps(const struct timespec64
*phase_ts
, const struct timespec64
*raw_ts
)
2632 guard(raw_spinlock_irqsave
)(&tk_core
.lock
);
2633 __hardpps(phase_ts
, raw_ts
);
2635 EXPORT_SYMBOL(hardpps
);
2636 #endif /* CONFIG_NTP_PPS */