drm/ast: Only warn about unsupported TX chips on Gen4 and later
[drm/drm-misc.git] / mm / memory-failure.c
bloba7b8ccd29b6f52d5e946051300d3f40820e94dee
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
37 #define pr_fmt(fmt) "Memory failure: " fmt
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
63 #include "swap.h"
64 #include "internal.h"
65 #include "ras/ras_event.h"
67 static int sysctl_memory_failure_early_kill __read_mostly;
69 static int sysctl_memory_failure_recovery __read_mostly = 1;
71 static int sysctl_enable_soft_offline __read_mostly = 1;
73 atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
75 static bool hw_memory_failure __read_mostly = false;
77 static DEFINE_MUTEX(mf_mutex);
79 void num_poisoned_pages_inc(unsigned long pfn)
81 atomic_long_inc(&num_poisoned_pages);
82 memblk_nr_poison_inc(pfn);
85 void num_poisoned_pages_sub(unsigned long pfn, long i)
87 atomic_long_sub(i, &num_poisoned_pages);
88 if (pfn != -1UL)
89 memblk_nr_poison_sub(pfn, i);
92 /**
93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94 * @_name: name of the file in the per NUMA sysfs directory.
96 #define MF_ATTR_RO(_name) \
97 static ssize_t _name##_show(struct device *dev, \
98 struct device_attribute *attr, \
99 char *buf) \
101 struct memory_failure_stats *mf_stats = \
102 &NODE_DATA(dev->id)->mf_stats; \
103 return sysfs_emit(buf, "%lu\n", mf_stats->_name); \
105 static DEVICE_ATTR_RO(_name)
107 MF_ATTR_RO(total);
108 MF_ATTR_RO(ignored);
109 MF_ATTR_RO(failed);
110 MF_ATTR_RO(delayed);
111 MF_ATTR_RO(recovered);
113 static struct attribute *memory_failure_attr[] = {
114 &dev_attr_total.attr,
115 &dev_attr_ignored.attr,
116 &dev_attr_failed.attr,
117 &dev_attr_delayed.attr,
118 &dev_attr_recovered.attr,
119 NULL,
122 const struct attribute_group memory_failure_attr_group = {
123 .name = "memory_failure",
124 .attrs = memory_failure_attr,
127 static struct ctl_table memory_failure_table[] = {
129 .procname = "memory_failure_early_kill",
130 .data = &sysctl_memory_failure_early_kill,
131 .maxlen = sizeof(sysctl_memory_failure_early_kill),
132 .mode = 0644,
133 .proc_handler = proc_dointvec_minmax,
134 .extra1 = SYSCTL_ZERO,
135 .extra2 = SYSCTL_ONE,
138 .procname = "memory_failure_recovery",
139 .data = &sysctl_memory_failure_recovery,
140 .maxlen = sizeof(sysctl_memory_failure_recovery),
141 .mode = 0644,
142 .proc_handler = proc_dointvec_minmax,
143 .extra1 = SYSCTL_ZERO,
144 .extra2 = SYSCTL_ONE,
147 .procname = "enable_soft_offline",
148 .data = &sysctl_enable_soft_offline,
149 .maxlen = sizeof(sysctl_enable_soft_offline),
150 .mode = 0644,
151 .proc_handler = proc_dointvec_minmax,
152 .extra1 = SYSCTL_ZERO,
153 .extra2 = SYSCTL_ONE,
158 * Return values:
159 * 1: the page is dissolved (if needed) and taken off from buddy,
160 * 0: the page is dissolved (if needed) and not taken off from buddy,
161 * < 0: failed to dissolve.
163 static int __page_handle_poison(struct page *page)
165 int ret;
168 * zone_pcp_disable() can't be used here. It will
169 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 * optimization is enabled. This will break current lock dependency
172 * chain and leads to deadlock.
173 * Disabling pcp before dissolving the page was a deterministic
174 * approach because we made sure that those pages cannot end up in any
175 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 * but nothing guarantees that those pages do not get back to a PCP
177 * queue if we need to refill those.
179 ret = dissolve_free_hugetlb_folio(page_folio(page));
180 if (!ret) {
181 drain_all_pages(page_zone(page));
182 ret = take_page_off_buddy(page);
185 return ret;
188 static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
190 if (hugepage_or_freepage) {
192 * Doing this check for free pages is also fine since
193 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
195 if (__page_handle_poison(page) <= 0)
197 * We could fail to take off the target page from buddy
198 * for example due to racy page allocation, but that's
199 * acceptable because soft-offlined page is not broken
200 * and if someone really want to use it, they should
201 * take it.
203 return false;
206 SetPageHWPoison(page);
207 if (release)
208 put_page(page);
209 page_ref_inc(page);
210 num_poisoned_pages_inc(page_to_pfn(page));
212 return true;
215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
217 u32 hwpoison_filter_enable = 0;
218 u32 hwpoison_filter_dev_major = ~0U;
219 u32 hwpoison_filter_dev_minor = ~0U;
220 u64 hwpoison_filter_flags_mask;
221 u64 hwpoison_filter_flags_value;
222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
228 static int hwpoison_filter_dev(struct page *p)
230 struct folio *folio = page_folio(p);
231 struct address_space *mapping;
232 dev_t dev;
234 if (hwpoison_filter_dev_major == ~0U &&
235 hwpoison_filter_dev_minor == ~0U)
236 return 0;
238 mapping = folio_mapping(folio);
239 if (mapping == NULL || mapping->host == NULL)
240 return -EINVAL;
242 dev = mapping->host->i_sb->s_dev;
243 if (hwpoison_filter_dev_major != ~0U &&
244 hwpoison_filter_dev_major != MAJOR(dev))
245 return -EINVAL;
246 if (hwpoison_filter_dev_minor != ~0U &&
247 hwpoison_filter_dev_minor != MINOR(dev))
248 return -EINVAL;
250 return 0;
253 static int hwpoison_filter_flags(struct page *p)
255 if (!hwpoison_filter_flags_mask)
256 return 0;
258 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
259 hwpoison_filter_flags_value)
260 return 0;
261 else
262 return -EINVAL;
266 * This allows stress tests to limit test scope to a collection of tasks
267 * by putting them under some memcg. This prevents killing unrelated/important
268 * processes such as /sbin/init. Note that the target task may share clean
269 * pages with init (eg. libc text), which is harmless. If the target task
270 * share _dirty_ pages with another task B, the test scheme must make sure B
271 * is also included in the memcg. At last, due to race conditions this filter
272 * can only guarantee that the page either belongs to the memcg tasks, or is
273 * a freed page.
275 #ifdef CONFIG_MEMCG
276 u64 hwpoison_filter_memcg;
277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
278 static int hwpoison_filter_task(struct page *p)
280 if (!hwpoison_filter_memcg)
281 return 0;
283 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
284 return -EINVAL;
286 return 0;
288 #else
289 static int hwpoison_filter_task(struct page *p) { return 0; }
290 #endif
292 int hwpoison_filter(struct page *p)
294 if (!hwpoison_filter_enable)
295 return 0;
297 if (hwpoison_filter_dev(p))
298 return -EINVAL;
300 if (hwpoison_filter_flags(p))
301 return -EINVAL;
303 if (hwpoison_filter_task(p))
304 return -EINVAL;
306 return 0;
308 EXPORT_SYMBOL_GPL(hwpoison_filter);
309 #else
310 int hwpoison_filter(struct page *p)
312 return 0;
314 #endif
317 * Kill all processes that have a poisoned page mapped and then isolate
318 * the page.
320 * General strategy:
321 * Find all processes having the page mapped and kill them.
322 * But we keep a page reference around so that the page is not
323 * actually freed yet.
324 * Then stash the page away
326 * There's no convenient way to get back to mapped processes
327 * from the VMAs. So do a brute-force search over all
328 * running processes.
330 * Remember that machine checks are not common (or rather
331 * if they are common you have other problems), so this shouldn't
332 * be a performance issue.
334 * Also there are some races possible while we get from the
335 * error detection to actually handle it.
338 struct to_kill {
339 struct list_head nd;
340 struct task_struct *tsk;
341 unsigned long addr;
342 short size_shift;
346 * Send all the processes who have the page mapped a signal.
347 * ``action optional'' if they are not immediately affected by the error
348 * ``action required'' if error happened in current execution context
350 static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
352 struct task_struct *t = tk->tsk;
353 short addr_lsb = tk->size_shift;
354 int ret = 0;
356 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357 pfn, t->comm, task_pid_nr(t));
359 if ((flags & MF_ACTION_REQUIRED) && (t == current))
360 ret = force_sig_mceerr(BUS_MCEERR_AR,
361 (void __user *)tk->addr, addr_lsb);
362 else
364 * Signal other processes sharing the page if they have
365 * PF_MCE_EARLY set.
366 * Don't use force here, it's convenient if the signal
367 * can be temporarily blocked.
369 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
370 addr_lsb, t);
371 if (ret < 0)
372 pr_info("Error sending signal to %s:%d: %d\n",
373 t->comm, task_pid_nr(t), ret);
374 return ret;
378 * Unknown page type encountered. Try to check whether it can turn PageLRU by
379 * lru_add_drain_all.
381 void shake_folio(struct folio *folio)
383 if (folio_test_hugetlb(folio))
384 return;
386 * TODO: Could shrink slab caches here if a lightweight range-based
387 * shrinker will be available.
389 if (folio_test_slab(folio))
390 return;
392 lru_add_drain_all();
394 EXPORT_SYMBOL_GPL(shake_folio);
396 static void shake_page(struct page *page)
398 shake_folio(page_folio(page));
401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
402 unsigned long address)
404 unsigned long ret = 0;
405 pgd_t *pgd;
406 p4d_t *p4d;
407 pud_t *pud;
408 pmd_t *pmd;
409 pte_t *pte;
410 pte_t ptent;
412 VM_BUG_ON_VMA(address == -EFAULT, vma);
413 pgd = pgd_offset(vma->vm_mm, address);
414 if (!pgd_present(*pgd))
415 return 0;
416 p4d = p4d_offset(pgd, address);
417 if (!p4d_present(*p4d))
418 return 0;
419 pud = pud_offset(p4d, address);
420 if (!pud_present(*pud))
421 return 0;
422 if (pud_devmap(*pud))
423 return PUD_SHIFT;
424 pmd = pmd_offset(pud, address);
425 if (!pmd_present(*pmd))
426 return 0;
427 if (pmd_devmap(*pmd))
428 return PMD_SHIFT;
429 pte = pte_offset_map(pmd, address);
430 if (!pte)
431 return 0;
432 ptent = ptep_get(pte);
433 if (pte_present(ptent) && pte_devmap(ptent))
434 ret = PAGE_SHIFT;
435 pte_unmap(pte);
436 return ret;
440 * Failure handling: if we can't find or can't kill a process there's
441 * not much we can do. We just print a message and ignore otherwise.
445 * Schedule a process for later kill.
446 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
448 static void __add_to_kill(struct task_struct *tsk, const struct page *p,
449 struct vm_area_struct *vma, struct list_head *to_kill,
450 unsigned long addr)
452 struct to_kill *tk;
454 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
455 if (!tk) {
456 pr_err("Out of memory while machine check handling\n");
457 return;
460 tk->addr = addr;
461 if (is_zone_device_page(p))
462 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
463 else
464 tk->size_shift = folio_shift(page_folio(p));
467 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 * so "tk->size_shift == 0" effectively checks no mapping on
470 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 * to a process' address space, it's possible not all N VMAs
472 * contain mappings for the page, but at least one VMA does.
473 * Only deliver SIGBUS with payload derived from the VMA that
474 * has a mapping for the page.
476 if (tk->addr == -EFAULT) {
477 pr_info("Unable to find user space address %lx in %s\n",
478 page_to_pfn(p), tsk->comm);
479 } else if (tk->size_shift == 0) {
480 kfree(tk);
481 return;
484 get_task_struct(tsk);
485 tk->tsk = tsk;
486 list_add_tail(&tk->nd, to_kill);
489 static void add_to_kill_anon_file(struct task_struct *tsk, const struct page *p,
490 struct vm_area_struct *vma, struct list_head *to_kill,
491 unsigned long addr)
493 if (addr == -EFAULT)
494 return;
495 __add_to_kill(tsk, p, vma, to_kill, addr);
498 #ifdef CONFIG_KSM
499 static bool task_in_to_kill_list(struct list_head *to_kill,
500 struct task_struct *tsk)
502 struct to_kill *tk, *next;
504 list_for_each_entry_safe(tk, next, to_kill, nd) {
505 if (tk->tsk == tsk)
506 return true;
509 return false;
512 void add_to_kill_ksm(struct task_struct *tsk, const struct page *p,
513 struct vm_area_struct *vma, struct list_head *to_kill,
514 unsigned long addr)
516 if (!task_in_to_kill_list(to_kill, tsk))
517 __add_to_kill(tsk, p, vma, to_kill, addr);
519 #endif
521 * Kill the processes that have been collected earlier.
523 * Only do anything when FORCEKILL is set, otherwise just free the
524 * list (this is used for clean pages which do not need killing)
526 static void kill_procs(struct list_head *to_kill, int forcekill,
527 unsigned long pfn, int flags)
529 struct to_kill *tk, *next;
531 list_for_each_entry_safe(tk, next, to_kill, nd) {
532 if (forcekill) {
533 if (tk->addr == -EFAULT) {
534 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
536 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
537 tk->tsk, PIDTYPE_PID);
541 * In theory the process could have mapped
542 * something else on the address in-between. We could
543 * check for that, but we need to tell the
544 * process anyways.
546 else if (kill_proc(tk, pfn, flags) < 0)
547 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548 pfn, tk->tsk->comm, task_pid_nr(tk->tsk));
550 list_del(&tk->nd);
551 put_task_struct(tk->tsk);
552 kfree(tk);
557 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558 * on behalf of the thread group. Return task_struct of the (first found)
559 * dedicated thread if found, and return NULL otherwise.
561 * We already hold rcu lock in the caller, so we don't have to call
562 * rcu_read_lock/unlock() in this function.
564 static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
566 struct task_struct *t;
568 for_each_thread(tsk, t) {
569 if (t->flags & PF_MCE_PROCESS) {
570 if (t->flags & PF_MCE_EARLY)
571 return t;
572 } else {
573 if (sysctl_memory_failure_early_kill)
574 return t;
577 return NULL;
581 * Determine whether a given process is "early kill" process which expects
582 * to be signaled when some page under the process is hwpoisoned.
583 * Return task_struct of the dedicated thread (main thread unless explicitly
584 * specified) if the process is "early kill" and otherwise returns NULL.
586 * Note that the above is true for Action Optional case. For Action Required
587 * case, it's only meaningful to the current thread which need to be signaled
588 * with SIGBUS, this error is Action Optional for other non current
589 * processes sharing the same error page,if the process is "early kill", the
590 * task_struct of the dedicated thread will also be returned.
592 struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
594 if (!tsk->mm)
595 return NULL;
597 * Comparing ->mm here because current task might represent
598 * a subthread, while tsk always points to the main thread.
600 if (force_early && tsk->mm == current->mm)
601 return current;
603 return find_early_kill_thread(tsk);
607 * Collect processes when the error hit an anonymous page.
609 static void collect_procs_anon(const struct folio *folio,
610 const struct page *page, struct list_head *to_kill,
611 int force_early)
613 struct task_struct *tsk;
614 struct anon_vma *av;
615 pgoff_t pgoff;
617 av = folio_lock_anon_vma_read(folio, NULL);
618 if (av == NULL) /* Not actually mapped anymore */
619 return;
621 pgoff = page_pgoff(folio, page);
622 rcu_read_lock();
623 for_each_process(tsk) {
624 struct vm_area_struct *vma;
625 struct anon_vma_chain *vmac;
626 struct task_struct *t = task_early_kill(tsk, force_early);
627 unsigned long addr;
629 if (!t)
630 continue;
631 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
632 pgoff, pgoff) {
633 vma = vmac->vma;
634 if (vma->vm_mm != t->mm)
635 continue;
636 addr = page_mapped_in_vma(page, vma);
637 add_to_kill_anon_file(t, page, vma, to_kill, addr);
640 rcu_read_unlock();
641 anon_vma_unlock_read(av);
645 * Collect processes when the error hit a file mapped page.
647 static void collect_procs_file(const struct folio *folio,
648 const struct page *page, struct list_head *to_kill,
649 int force_early)
651 struct vm_area_struct *vma;
652 struct task_struct *tsk;
653 struct address_space *mapping = folio->mapping;
654 pgoff_t pgoff;
656 i_mmap_lock_read(mapping);
657 rcu_read_lock();
658 pgoff = page_pgoff(folio, page);
659 for_each_process(tsk) {
660 struct task_struct *t = task_early_kill(tsk, force_early);
661 unsigned long addr;
663 if (!t)
664 continue;
665 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
666 pgoff) {
668 * Send early kill signal to tasks where a vma covers
669 * the page but the corrupted page is not necessarily
670 * mapped in its pte.
671 * Assume applications who requested early kill want
672 * to be informed of all such data corruptions.
674 if (vma->vm_mm != t->mm)
675 continue;
676 addr = page_address_in_vma(folio, page, vma);
677 add_to_kill_anon_file(t, page, vma, to_kill, addr);
680 rcu_read_unlock();
681 i_mmap_unlock_read(mapping);
684 #ifdef CONFIG_FS_DAX
685 static void add_to_kill_fsdax(struct task_struct *tsk, const struct page *p,
686 struct vm_area_struct *vma,
687 struct list_head *to_kill, pgoff_t pgoff)
689 unsigned long addr = vma_address(vma, pgoff, 1);
690 __add_to_kill(tsk, p, vma, to_kill, addr);
694 * Collect processes when the error hit a fsdax page.
696 static void collect_procs_fsdax(const struct page *page,
697 struct address_space *mapping, pgoff_t pgoff,
698 struct list_head *to_kill, bool pre_remove)
700 struct vm_area_struct *vma;
701 struct task_struct *tsk;
703 i_mmap_lock_read(mapping);
704 rcu_read_lock();
705 for_each_process(tsk) {
706 struct task_struct *t = tsk;
709 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
710 * the current may not be the one accessing the fsdax page.
711 * Otherwise, search for the current task.
713 if (!pre_remove)
714 t = task_early_kill(tsk, true);
715 if (!t)
716 continue;
717 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
718 if (vma->vm_mm == t->mm)
719 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
722 rcu_read_unlock();
723 i_mmap_unlock_read(mapping);
725 #endif /* CONFIG_FS_DAX */
728 * Collect the processes who have the corrupted page mapped to kill.
730 static void collect_procs(const struct folio *folio, const struct page *page,
731 struct list_head *tokill, int force_early)
733 if (!folio->mapping)
734 return;
735 if (unlikely(folio_test_ksm(folio)))
736 collect_procs_ksm(folio, page, tokill, force_early);
737 else if (folio_test_anon(folio))
738 collect_procs_anon(folio, page, tokill, force_early);
739 else
740 collect_procs_file(folio, page, tokill, force_early);
743 struct hwpoison_walk {
744 struct to_kill tk;
745 unsigned long pfn;
746 int flags;
749 static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
751 tk->addr = addr;
752 tk->size_shift = shift;
755 static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
756 unsigned long poisoned_pfn, struct to_kill *tk)
758 unsigned long pfn = 0;
760 if (pte_present(pte)) {
761 pfn = pte_pfn(pte);
762 } else {
763 swp_entry_t swp = pte_to_swp_entry(pte);
765 if (is_hwpoison_entry(swp))
766 pfn = swp_offset_pfn(swp);
769 if (!pfn || pfn != poisoned_pfn)
770 return 0;
772 set_to_kill(tk, addr, shift);
773 return 1;
776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
777 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
778 struct hwpoison_walk *hwp)
780 pmd_t pmd = *pmdp;
781 unsigned long pfn;
782 unsigned long hwpoison_vaddr;
784 if (!pmd_present(pmd))
785 return 0;
786 pfn = pmd_pfn(pmd);
787 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
788 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
789 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
790 return 1;
792 return 0;
794 #else
795 static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
796 struct hwpoison_walk *hwp)
798 return 0;
800 #endif
802 static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
803 unsigned long end, struct mm_walk *walk)
805 struct hwpoison_walk *hwp = walk->private;
806 int ret = 0;
807 pte_t *ptep, *mapped_pte;
808 spinlock_t *ptl;
810 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
811 if (ptl) {
812 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
813 spin_unlock(ptl);
814 goto out;
817 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
818 addr, &ptl);
819 if (!ptep)
820 goto out;
822 for (; addr != end; ptep++, addr += PAGE_SIZE) {
823 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
824 hwp->pfn, &hwp->tk);
825 if (ret == 1)
826 break;
828 pte_unmap_unlock(mapped_pte, ptl);
829 out:
830 cond_resched();
831 return ret;
834 #ifdef CONFIG_HUGETLB_PAGE
835 static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
836 unsigned long addr, unsigned long end,
837 struct mm_walk *walk)
839 struct hwpoison_walk *hwp = walk->private;
840 pte_t pte = huge_ptep_get(walk->mm, addr, ptep);
841 struct hstate *h = hstate_vma(walk->vma);
843 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
844 hwp->pfn, &hwp->tk);
846 #else
847 #define hwpoison_hugetlb_range NULL
848 #endif
850 static const struct mm_walk_ops hwpoison_walk_ops = {
851 .pmd_entry = hwpoison_pte_range,
852 .hugetlb_entry = hwpoison_hugetlb_range,
853 .walk_lock = PGWALK_RDLOCK,
857 * Sends SIGBUS to the current process with error info.
859 * This function is intended to handle "Action Required" MCEs on already
860 * hardware poisoned pages. They could happen, for example, when
861 * memory_failure() failed to unmap the error page at the first call, or
862 * when multiple local machine checks happened on different CPUs.
864 * MCE handler currently has no easy access to the error virtual address,
865 * so this function walks page table to find it. The returned virtual address
866 * is proper in most cases, but it could be wrong when the application
867 * process has multiple entries mapping the error page.
869 static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
870 int flags)
872 int ret;
873 struct hwpoison_walk priv = {
874 .pfn = pfn,
876 priv.tk.tsk = p;
878 if (!p->mm)
879 return -EFAULT;
881 mmap_read_lock(p->mm);
882 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwpoison_walk_ops,
883 (void *)&priv);
884 if (ret == 1 && priv.tk.addr)
885 kill_proc(&priv.tk, pfn, flags);
886 else
887 ret = 0;
888 mmap_read_unlock(p->mm);
889 return ret > 0 ? -EHWPOISON : -EFAULT;
893 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
894 * But it could not do more to isolate the page from being accessed again,
895 * nor does it kill the process. This is extremely rare and one of the
896 * potential causes is that the page state has been changed due to
897 * underlying race condition. This is the most severe outcomes.
899 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
900 * It should have killed the process, but it can't isolate the page,
901 * due to conditions such as extra pin, unmap failure, etc. Accessing
902 * the page again may trigger another MCE and the process will be killed
903 * by the m-f() handler immediately.
905 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
906 * The page is unmapped, and is removed from the LRU or file mapping.
907 * An attempt to access the page again will trigger page fault and the
908 * PF handler will kill the process.
910 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
911 * The page has been completely isolated, that is, unmapped, taken out of
912 * the buddy system, or hole-punnched out of the file mapping.
914 static const char *action_name[] = {
915 [MF_IGNORED] = "Ignored",
916 [MF_FAILED] = "Failed",
917 [MF_DELAYED] = "Delayed",
918 [MF_RECOVERED] = "Recovered",
921 static const char * const action_page_types[] = {
922 [MF_MSG_KERNEL] = "reserved kernel page",
923 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
924 [MF_MSG_HUGE] = "huge page",
925 [MF_MSG_FREE_HUGE] = "free huge page",
926 [MF_MSG_GET_HWPOISON] = "get hwpoison page",
927 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
928 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
929 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
930 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
931 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
932 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
933 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
934 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
935 [MF_MSG_CLEAN_LRU] = "clean LRU page",
936 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
937 [MF_MSG_BUDDY] = "free buddy page",
938 [MF_MSG_DAX] = "dax page",
939 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
940 [MF_MSG_ALREADY_POISONED] = "already poisoned",
941 [MF_MSG_UNKNOWN] = "unknown page",
945 * XXX: It is possible that a page is isolated from LRU cache,
946 * and then kept in swap cache or failed to remove from page cache.
947 * The page count will stop it from being freed by unpoison.
948 * Stress tests should be aware of this memory leak problem.
950 static int delete_from_lru_cache(struct folio *folio)
952 if (folio_isolate_lru(folio)) {
954 * Clear sensible page flags, so that the buddy system won't
955 * complain when the folio is unpoison-and-freed.
957 folio_clear_active(folio);
958 folio_clear_unevictable(folio);
961 * Poisoned page might never drop its ref count to 0 so we have
962 * to uncharge it manually from its memcg.
964 mem_cgroup_uncharge(folio);
967 * drop the refcount elevated by folio_isolate_lru()
969 folio_put(folio);
970 return 0;
972 return -EIO;
975 static int truncate_error_folio(struct folio *folio, unsigned long pfn,
976 struct address_space *mapping)
978 int ret = MF_FAILED;
980 if (mapping->a_ops->error_remove_folio) {
981 int err = mapping->a_ops->error_remove_folio(mapping, folio);
983 if (err != 0)
984 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
985 else if (!filemap_release_folio(folio, GFP_NOIO))
986 pr_info("%#lx: failed to release buffers\n", pfn);
987 else
988 ret = MF_RECOVERED;
989 } else {
991 * If the file system doesn't support it just invalidate
992 * This fails on dirty or anything with private pages
994 if (mapping_evict_folio(mapping, folio))
995 ret = MF_RECOVERED;
996 else
997 pr_info("%#lx: Failed to invalidate\n", pfn);
1000 return ret;
1003 struct page_state {
1004 unsigned long mask;
1005 unsigned long res;
1006 enum mf_action_page_type type;
1008 /* Callback ->action() has to unlock the relevant page inside it. */
1009 int (*action)(struct page_state *ps, struct page *p);
1013 * Return true if page is still referenced by others, otherwise return
1014 * false.
1016 * The extra_pins is true when one extra refcount is expected.
1018 static bool has_extra_refcount(struct page_state *ps, struct page *p,
1019 bool extra_pins)
1021 int count = page_count(p) - 1;
1023 if (extra_pins)
1024 count -= folio_nr_pages(page_folio(p));
1026 if (count > 0) {
1027 pr_err("%#lx: %s still referenced by %d users\n",
1028 page_to_pfn(p), action_page_types[ps->type], count);
1029 return true;
1032 return false;
1036 * Error hit kernel page.
1037 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1038 * could be more sophisticated.
1040 static int me_kernel(struct page_state *ps, struct page *p)
1042 unlock_page(p);
1043 return MF_IGNORED;
1047 * Page in unknown state. Do nothing.
1048 * This is a catch-all in case we fail to make sense of the page state.
1050 static int me_unknown(struct page_state *ps, struct page *p)
1052 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1053 unlock_page(p);
1054 return MF_IGNORED;
1058 * Clean (or cleaned) page cache page.
1060 static int me_pagecache_clean(struct page_state *ps, struct page *p)
1062 struct folio *folio = page_folio(p);
1063 int ret;
1064 struct address_space *mapping;
1065 bool extra_pins;
1067 delete_from_lru_cache(folio);
1070 * For anonymous folios the only reference left
1071 * should be the one m_f() holds.
1073 if (folio_test_anon(folio)) {
1074 ret = MF_RECOVERED;
1075 goto out;
1079 * Now truncate the page in the page cache. This is really
1080 * more like a "temporary hole punch"
1081 * Don't do this for block devices when someone else
1082 * has a reference, because it could be file system metadata
1083 * and that's not safe to truncate.
1085 mapping = folio_mapping(folio);
1086 if (!mapping) {
1087 /* Folio has been torn down in the meantime */
1088 ret = MF_FAILED;
1089 goto out;
1093 * The shmem page is kept in page cache instead of truncating
1094 * so is expected to have an extra refcount after error-handling.
1096 extra_pins = shmem_mapping(mapping);
1099 * Truncation is a bit tricky. Enable it per file system for now.
1101 * Open: to take i_rwsem or not for this? Right now we don't.
1103 ret = truncate_error_folio(folio, page_to_pfn(p), mapping);
1104 if (has_extra_refcount(ps, p, extra_pins))
1105 ret = MF_FAILED;
1107 out:
1108 folio_unlock(folio);
1110 return ret;
1114 * Dirty pagecache page
1115 * Issues: when the error hit a hole page the error is not properly
1116 * propagated.
1118 static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1120 struct folio *folio = page_folio(p);
1121 struct address_space *mapping = folio_mapping(folio);
1123 /* TBD: print more information about the file. */
1124 if (mapping) {
1126 * IO error will be reported by write(), fsync(), etc.
1127 * who check the mapping.
1128 * This way the application knows that something went
1129 * wrong with its dirty file data.
1131 mapping_set_error(mapping, -EIO);
1134 return me_pagecache_clean(ps, p);
1138 * Clean and dirty swap cache.
1140 * Dirty swap cache page is tricky to handle. The page could live both in page
1141 * table and swap cache(ie. page is freshly swapped in). So it could be
1142 * referenced concurrently by 2 types of PTEs:
1143 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1144 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1145 * and then
1146 * - clear dirty bit to prevent IO
1147 * - remove from LRU
1148 * - but keep in the swap cache, so that when we return to it on
1149 * a later page fault, we know the application is accessing
1150 * corrupted data and shall be killed (we installed simple
1151 * interception code in do_swap_page to catch it).
1153 * Clean swap cache pages can be directly isolated. A later page fault will
1154 * bring in the known good data from disk.
1156 static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1158 struct folio *folio = page_folio(p);
1159 int ret;
1160 bool extra_pins = false;
1162 folio_clear_dirty(folio);
1163 /* Trigger EIO in shmem: */
1164 folio_clear_uptodate(folio);
1166 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_DELAYED;
1167 folio_unlock(folio);
1169 if (ret == MF_DELAYED)
1170 extra_pins = true;
1172 if (has_extra_refcount(ps, p, extra_pins))
1173 ret = MF_FAILED;
1175 return ret;
1178 static int me_swapcache_clean(struct page_state *ps, struct page *p)
1180 struct folio *folio = page_folio(p);
1181 int ret;
1183 delete_from_swap_cache(folio);
1185 ret = delete_from_lru_cache(folio) ? MF_FAILED : MF_RECOVERED;
1186 folio_unlock(folio);
1188 if (has_extra_refcount(ps, p, false))
1189 ret = MF_FAILED;
1191 return ret;
1195 * Huge pages. Needs work.
1196 * Issues:
1197 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1198 * To narrow down kill region to one page, we need to break up pmd.
1200 static int me_huge_page(struct page_state *ps, struct page *p)
1202 struct folio *folio = page_folio(p);
1203 int res;
1204 struct address_space *mapping;
1205 bool extra_pins = false;
1207 mapping = folio_mapping(folio);
1208 if (mapping) {
1209 res = truncate_error_folio(folio, page_to_pfn(p), mapping);
1210 /* The page is kept in page cache. */
1211 extra_pins = true;
1212 folio_unlock(folio);
1213 } else {
1214 folio_unlock(folio);
1216 * migration entry prevents later access on error hugepage,
1217 * so we can free and dissolve it into buddy to save healthy
1218 * subpages.
1220 folio_put(folio);
1221 if (__page_handle_poison(p) > 0) {
1222 page_ref_inc(p);
1223 res = MF_RECOVERED;
1224 } else {
1225 res = MF_FAILED;
1229 if (has_extra_refcount(ps, p, extra_pins))
1230 res = MF_FAILED;
1232 return res;
1236 * Various page states we can handle.
1238 * A page state is defined by its current page->flags bits.
1239 * The table matches them in order and calls the right handler.
1241 * This is quite tricky because we can access page at any time
1242 * in its live cycle, so all accesses have to be extremely careful.
1244 * This is not complete. More states could be added.
1245 * For any missing state don't attempt recovery.
1248 #define dirty (1UL << PG_dirty)
1249 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1250 #define unevict (1UL << PG_unevictable)
1251 #define mlock (1UL << PG_mlocked)
1252 #define lru (1UL << PG_lru)
1253 #define head (1UL << PG_head)
1254 #define reserved (1UL << PG_reserved)
1256 static struct page_state error_states[] = {
1257 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1259 * free pages are specially detected outside this table:
1260 * PG_buddy pages only make a small fraction of all free pages.
1263 { head, head, MF_MSG_HUGE, me_huge_page },
1265 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1266 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1268 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1269 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1271 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1272 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1274 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1275 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1278 * Catchall entry: must be at end.
1280 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1283 #undef dirty
1284 #undef sc
1285 #undef unevict
1286 #undef mlock
1287 #undef lru
1288 #undef head
1289 #undef reserved
1291 static void update_per_node_mf_stats(unsigned long pfn,
1292 enum mf_result result)
1294 int nid = MAX_NUMNODES;
1295 struct memory_failure_stats *mf_stats = NULL;
1297 nid = pfn_to_nid(pfn);
1298 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1299 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1300 return;
1303 mf_stats = &NODE_DATA(nid)->mf_stats;
1304 switch (result) {
1305 case MF_IGNORED:
1306 ++mf_stats->ignored;
1307 break;
1308 case MF_FAILED:
1309 ++mf_stats->failed;
1310 break;
1311 case MF_DELAYED:
1312 ++mf_stats->delayed;
1313 break;
1314 case MF_RECOVERED:
1315 ++mf_stats->recovered;
1316 break;
1317 default:
1318 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1319 break;
1321 ++mf_stats->total;
1325 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1326 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1328 static int action_result(unsigned long pfn, enum mf_action_page_type type,
1329 enum mf_result result)
1331 trace_memory_failure_event(pfn, type, result);
1333 num_poisoned_pages_inc(pfn);
1335 update_per_node_mf_stats(pfn, result);
1337 pr_err("%#lx: recovery action for %s: %s\n",
1338 pfn, action_page_types[type], action_name[result]);
1340 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1343 static int page_action(struct page_state *ps, struct page *p,
1344 unsigned long pfn)
1346 int result;
1348 /* page p should be unlocked after returning from ps->action(). */
1349 result = ps->action(ps, p);
1351 /* Could do more checks here if page looks ok */
1353 * Could adjust zone counters here to correct for the missing page.
1356 return action_result(pfn, ps->type, result);
1359 static inline bool PageHWPoisonTakenOff(struct page *page)
1361 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1364 void SetPageHWPoisonTakenOff(struct page *page)
1366 set_page_private(page, MAGIC_HWPOISON);
1369 void ClearPageHWPoisonTakenOff(struct page *page)
1371 if (PageHWPoison(page))
1372 set_page_private(page, 0);
1376 * Return true if a page type of a given page is supported by hwpoison
1377 * mechanism (while handling could fail), otherwise false. This function
1378 * does not return true for hugetlb or device memory pages, so it's assumed
1379 * to be called only in the context where we never have such pages.
1381 static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1383 if (PageSlab(page))
1384 return false;
1386 /* Soft offline could migrate non-LRU movable pages */
1387 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1388 return true;
1390 return PageLRU(page) || is_free_buddy_page(page);
1393 static int __get_hwpoison_page(struct page *page, unsigned long flags)
1395 struct folio *folio = page_folio(page);
1396 int ret = 0;
1397 bool hugetlb = false;
1399 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1400 if (hugetlb) {
1401 /* Make sure hugetlb demotion did not happen from under us. */
1402 if (folio == page_folio(page))
1403 return ret;
1404 if (ret > 0) {
1405 folio_put(folio);
1406 folio = page_folio(page);
1411 * This check prevents from calling folio_try_get() for any
1412 * unsupported type of folio in order to reduce the risk of unexpected
1413 * races caused by taking a folio refcount.
1415 if (!HWPoisonHandlable(&folio->page, flags))
1416 return -EBUSY;
1418 if (folio_try_get(folio)) {
1419 if (folio == page_folio(page))
1420 return 1;
1422 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1423 folio_put(folio);
1426 return 0;
1429 #define GET_PAGE_MAX_RETRY_NUM 3
1431 static int get_any_page(struct page *p, unsigned long flags)
1433 int ret = 0, pass = 0;
1434 bool count_increased = false;
1436 if (flags & MF_COUNT_INCREASED)
1437 count_increased = true;
1439 try_again:
1440 if (!count_increased) {
1441 ret = __get_hwpoison_page(p, flags);
1442 if (!ret) {
1443 if (page_count(p)) {
1444 /* We raced with an allocation, retry. */
1445 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1446 goto try_again;
1447 ret = -EBUSY;
1448 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1449 /* We raced with put_page, retry. */
1450 if (pass++ < GET_PAGE_MAX_RETRY_NUM)
1451 goto try_again;
1452 ret = -EIO;
1454 goto out;
1455 } else if (ret == -EBUSY) {
1457 * We raced with (possibly temporary) unhandlable
1458 * page, retry.
1460 if (pass++ < 3) {
1461 shake_page(p);
1462 goto try_again;
1464 ret = -EIO;
1465 goto out;
1469 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1470 ret = 1;
1471 } else {
1473 * A page we cannot handle. Check whether we can turn
1474 * it into something we can handle.
1476 if (pass++ < GET_PAGE_MAX_RETRY_NUM) {
1477 put_page(p);
1478 shake_page(p);
1479 count_increased = false;
1480 goto try_again;
1482 put_page(p);
1483 ret = -EIO;
1485 out:
1486 if (ret == -EIO)
1487 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1489 return ret;
1492 static int __get_unpoison_page(struct page *page)
1494 struct folio *folio = page_folio(page);
1495 int ret = 0;
1496 bool hugetlb = false;
1498 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1499 if (hugetlb) {
1500 /* Make sure hugetlb demotion did not happen from under us. */
1501 if (folio == page_folio(page))
1502 return ret;
1503 if (ret > 0)
1504 folio_put(folio);
1508 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1509 * but also isolated from buddy freelist, so need to identify the
1510 * state and have to cancel both operations to unpoison.
1512 if (PageHWPoisonTakenOff(page))
1513 return -EHWPOISON;
1515 return get_page_unless_zero(page) ? 1 : 0;
1519 * get_hwpoison_page() - Get refcount for memory error handling
1520 * @p: Raw error page (hit by memory error)
1521 * @flags: Flags controlling behavior of error handling
1523 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1524 * error on it, after checking that the error page is in a well-defined state
1525 * (defined as a page-type we can successfully handle the memory error on it,
1526 * such as LRU page and hugetlb page).
1528 * Memory error handling could be triggered at any time on any type of page,
1529 * so it's prone to race with typical memory management lifecycle (like
1530 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1531 * extra care for the error page's state (as done in __get_hwpoison_page()),
1532 * and has some retry logic in get_any_page().
1534 * When called from unpoison_memory(), the caller should already ensure that
1535 * the given page has PG_hwpoison. So it's never reused for other page
1536 * allocations, and __get_unpoison_page() never races with them.
1538 * Return: 0 on failure or free buddy (hugetlb) page,
1539 * 1 on success for in-use pages in a well-defined state,
1540 * -EIO for pages on which we can not handle memory errors,
1541 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1542 * operations like allocation and free,
1543 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1545 static int get_hwpoison_page(struct page *p, unsigned long flags)
1547 int ret;
1549 zone_pcp_disable(page_zone(p));
1550 if (flags & MF_UNPOISON)
1551 ret = __get_unpoison_page(p);
1552 else
1553 ret = get_any_page(p, flags);
1554 zone_pcp_enable(page_zone(p));
1556 return ret;
1559 void unmap_poisoned_folio(struct folio *folio, enum ttu_flags ttu)
1561 if (folio_test_hugetlb(folio) && !folio_test_anon(folio)) {
1562 struct address_space *mapping;
1565 * For hugetlb folios in shared mappings, try_to_unmap
1566 * could potentially call huge_pmd_unshare. Because of
1567 * this, take semaphore in write mode here and set
1568 * TTU_RMAP_LOCKED to indicate we have taken the lock
1569 * at this higher level.
1571 mapping = hugetlb_folio_mapping_lock_write(folio);
1572 if (!mapping) {
1573 pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1574 folio_pfn(folio));
1575 return;
1578 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1579 i_mmap_unlock_write(mapping);
1580 } else {
1581 try_to_unmap(folio, ttu);
1586 * Do all that is necessary to remove user space mappings. Unmap
1587 * the pages and send SIGBUS to the processes if the data was dirty.
1589 static bool hwpoison_user_mappings(struct folio *folio, struct page *p,
1590 unsigned long pfn, int flags)
1592 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1593 struct address_space *mapping;
1594 LIST_HEAD(tokill);
1595 bool unmap_success;
1596 int forcekill;
1597 bool mlocked = folio_test_mlocked(folio);
1600 * Here we are interested only in user-mapped pages, so skip any
1601 * other types of pages.
1603 if (folio_test_reserved(folio) || folio_test_slab(folio) ||
1604 folio_test_pgtable(folio) || folio_test_offline(folio))
1605 return true;
1606 if (!(folio_test_lru(folio) || folio_test_hugetlb(folio)))
1607 return true;
1610 * This check implies we don't kill processes if their pages
1611 * are in the swap cache early. Those are always late kills.
1613 if (!folio_mapped(folio))
1614 return true;
1616 if (folio_test_swapcache(folio)) {
1617 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1618 ttu &= ~TTU_HWPOISON;
1622 * Propagate the dirty bit from PTEs to struct page first, because we
1623 * need this to decide if we should kill or just drop the page.
1624 * XXX: the dirty test could be racy: set_page_dirty() may not always
1625 * be called inside page lock (it's recommended but not enforced).
1627 mapping = folio_mapping(folio);
1628 if (!(flags & MF_MUST_KILL) && !folio_test_dirty(folio) && mapping &&
1629 mapping_can_writeback(mapping)) {
1630 if (folio_mkclean(folio)) {
1631 folio_set_dirty(folio);
1632 } else {
1633 ttu &= ~TTU_HWPOISON;
1634 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1635 pfn);
1640 * First collect all the processes that have the page
1641 * mapped in dirty form. This has to be done before try_to_unmap,
1642 * because ttu takes the rmap data structures down.
1644 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
1646 unmap_poisoned_folio(folio, ttu);
1648 unmap_success = !folio_mapped(folio);
1649 if (!unmap_success)
1650 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1651 pfn, folio_mapcount(folio));
1654 * try_to_unmap() might put mlocked page in lru cache, so call
1655 * shake_page() again to ensure that it's flushed.
1657 if (mlocked)
1658 shake_folio(folio);
1661 * Now that the dirty bit has been propagated to the
1662 * struct page and all unmaps done we can decide if
1663 * killing is needed or not. Only kill when the page
1664 * was dirty or the process is not restartable,
1665 * otherwise the tokill list is merely
1666 * freed. When there was a problem unmapping earlier
1667 * use a more force-full uncatchable kill to prevent
1668 * any accesses to the poisoned memory.
1670 forcekill = folio_test_dirty(folio) || (flags & MF_MUST_KILL) ||
1671 !unmap_success;
1672 kill_procs(&tokill, forcekill, pfn, flags);
1674 return unmap_success;
1677 static int identify_page_state(unsigned long pfn, struct page *p,
1678 unsigned long page_flags)
1680 struct page_state *ps;
1683 * The first check uses the current page flags which may not have any
1684 * relevant information. The second check with the saved page flags is
1685 * carried out only if the first check can't determine the page status.
1687 for (ps = error_states;; ps++)
1688 if ((p->flags & ps->mask) == ps->res)
1689 break;
1691 page_flags |= (p->flags & (1UL << PG_dirty));
1693 if (!ps->mask)
1694 for (ps = error_states;; ps++)
1695 if ((page_flags & ps->mask) == ps->res)
1696 break;
1697 return page_action(ps, p, pfn);
1701 * When 'release' is 'false', it means that if thp split has failed,
1702 * there is still more to do, hence the page refcount we took earlier
1703 * is still needed.
1705 static int try_to_split_thp_page(struct page *page, bool release)
1707 int ret;
1709 lock_page(page);
1710 ret = split_huge_page(page);
1711 unlock_page(page);
1713 if (ret && release)
1714 put_page(page);
1716 return ret;
1719 static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1720 struct address_space *mapping, pgoff_t index, int flags)
1722 struct to_kill *tk;
1723 unsigned long size = 0;
1725 list_for_each_entry(tk, to_kill, nd)
1726 if (tk->size_shift)
1727 size = max(size, 1UL << tk->size_shift);
1729 if (size) {
1731 * Unmap the largest mapping to avoid breaking up device-dax
1732 * mappings which are constant size. The actual size of the
1733 * mapping being torn down is communicated in siginfo, see
1734 * kill_proc()
1736 loff_t start = ((loff_t)index << PAGE_SHIFT) & ~(size - 1);
1738 unmap_mapping_range(mapping, start, size, 0);
1741 kill_procs(to_kill, flags & MF_MUST_KILL, pfn, flags);
1745 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1746 * either do not claim or fails to claim a hwpoison event, or devdax.
1747 * The fsdax pages are initialized per base page, and the devdax pages
1748 * could be initialized either as base pages, or as compound pages with
1749 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1750 * hwpoison, such that, if a subpage of a compound page is poisoned,
1751 * simply mark the compound head page is by far sufficient.
1753 static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1754 struct dev_pagemap *pgmap)
1756 struct folio *folio = pfn_folio(pfn);
1757 LIST_HEAD(to_kill);
1758 dax_entry_t cookie;
1759 int rc = 0;
1762 * Prevent the inode from being freed while we are interrogating
1763 * the address_space, typically this would be handled by
1764 * lock_page(), but dax pages do not use the page lock. This
1765 * also prevents changes to the mapping of this pfn until
1766 * poison signaling is complete.
1768 cookie = dax_lock_folio(folio);
1769 if (!cookie)
1770 return -EBUSY;
1772 if (hwpoison_filter(&folio->page)) {
1773 rc = -EOPNOTSUPP;
1774 goto unlock;
1777 switch (pgmap->type) {
1778 case MEMORY_DEVICE_PRIVATE:
1779 case MEMORY_DEVICE_COHERENT:
1781 * TODO: Handle device pages which may need coordination
1782 * with device-side memory.
1784 rc = -ENXIO;
1785 goto unlock;
1786 default:
1787 break;
1791 * Use this flag as an indication that the dax page has been
1792 * remapped UC to prevent speculative consumption of poison.
1794 SetPageHWPoison(&folio->page);
1797 * Unlike System-RAM there is no possibility to swap in a
1798 * different physical page at a given virtual address, so all
1799 * userspace consumption of ZONE_DEVICE memory necessitates
1800 * SIGBUS (i.e. MF_MUST_KILL)
1802 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1803 collect_procs(folio, &folio->page, &to_kill, true);
1805 unmap_and_kill(&to_kill, pfn, folio->mapping, folio->index, flags);
1806 unlock:
1807 dax_unlock_folio(folio, cookie);
1808 return rc;
1811 #ifdef CONFIG_FS_DAX
1813 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1814 * @mapping: address_space of the file in use
1815 * @index: start pgoff of the range within the file
1816 * @count: length of the range, in unit of PAGE_SIZE
1817 * @mf_flags: memory failure flags
1819 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1820 unsigned long count, int mf_flags)
1822 LIST_HEAD(to_kill);
1823 dax_entry_t cookie;
1824 struct page *page;
1825 size_t end = index + count;
1826 bool pre_remove = mf_flags & MF_MEM_PRE_REMOVE;
1828 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1830 for (; index < end; index++) {
1831 page = NULL;
1832 cookie = dax_lock_mapping_entry(mapping, index, &page);
1833 if (!cookie)
1834 return -EBUSY;
1835 if (!page)
1836 goto unlock;
1838 if (!pre_remove)
1839 SetPageHWPoison(page);
1842 * The pre_remove case is revoking access, the memory is still
1843 * good and could theoretically be put back into service.
1845 collect_procs_fsdax(page, mapping, index, &to_kill, pre_remove);
1846 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1847 index, mf_flags);
1848 unlock:
1849 dax_unlock_mapping_entry(mapping, index, cookie);
1851 return 0;
1853 EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1854 #endif /* CONFIG_FS_DAX */
1856 #ifdef CONFIG_HUGETLB_PAGE
1859 * Struct raw_hwp_page represents information about "raw error page",
1860 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1862 struct raw_hwp_page {
1863 struct llist_node node;
1864 struct page *page;
1867 static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1869 return (struct llist_head *)&folio->_hugetlb_hwpoison;
1872 bool is_raw_hwpoison_page_in_hugepage(struct page *page)
1874 struct llist_head *raw_hwp_head;
1875 struct raw_hwp_page *p;
1876 struct folio *folio = page_folio(page);
1877 bool ret = false;
1879 if (!folio_test_hwpoison(folio))
1880 return false;
1882 if (!folio_test_hugetlb(folio))
1883 return PageHWPoison(page);
1886 * When RawHwpUnreliable is set, kernel lost track of which subpages
1887 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1889 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1890 return true;
1892 mutex_lock(&mf_mutex);
1894 raw_hwp_head = raw_hwp_list_head(folio);
1895 llist_for_each_entry(p, raw_hwp_head->first, node) {
1896 if (page == p->page) {
1897 ret = true;
1898 break;
1902 mutex_unlock(&mf_mutex);
1904 return ret;
1907 static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1909 struct llist_node *head;
1910 struct raw_hwp_page *p, *next;
1911 unsigned long count = 0;
1913 head = llist_del_all(raw_hwp_list_head(folio));
1914 llist_for_each_entry_safe(p, next, head, node) {
1915 if (move_flag)
1916 SetPageHWPoison(p->page);
1917 else
1918 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1919 kfree(p);
1920 count++;
1922 return count;
1925 static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1927 struct llist_head *head;
1928 struct raw_hwp_page *raw_hwp;
1929 struct raw_hwp_page *p;
1930 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1933 * Once the hwpoison hugepage has lost reliable raw error info,
1934 * there is little meaning to keep additional error info precisely,
1935 * so skip to add additional raw error info.
1937 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1938 return -EHWPOISON;
1939 head = raw_hwp_list_head(folio);
1940 llist_for_each_entry(p, head->first, node) {
1941 if (p->page == page)
1942 return -EHWPOISON;
1945 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1946 if (raw_hwp) {
1947 raw_hwp->page = page;
1948 llist_add(&raw_hwp->node, head);
1949 /* the first error event will be counted in action_result(). */
1950 if (ret)
1951 num_poisoned_pages_inc(page_to_pfn(page));
1952 } else {
1954 * Failed to save raw error info. We no longer trace all
1955 * hwpoisoned subpages, and we need refuse to free/dissolve
1956 * this hwpoisoned hugepage.
1958 folio_set_hugetlb_raw_hwp_unreliable(folio);
1960 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1961 * used any more, so free it.
1963 __folio_free_raw_hwp(folio, false);
1965 return ret;
1968 static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1971 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1972 * pages for tail pages are required but they don't exist.
1974 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1975 return 0;
1978 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1979 * definition.
1981 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1982 return 0;
1984 return __folio_free_raw_hwp(folio, move_flag);
1987 void folio_clear_hugetlb_hwpoison(struct folio *folio)
1989 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1990 return;
1991 if (folio_test_hugetlb_vmemmap_optimized(folio))
1992 return;
1993 folio_clear_hwpoison(folio);
1994 folio_free_raw_hwp(folio, true);
1998 * Called from hugetlb code with hugetlb_lock held.
2000 * Return values:
2001 * 0 - free hugepage
2002 * 1 - in-use hugepage
2003 * 2 - not a hugepage
2004 * -EBUSY - the hugepage is busy (try to retry)
2005 * -EHWPOISON - the hugepage is already hwpoisoned
2007 int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
2008 bool *migratable_cleared)
2010 struct page *page = pfn_to_page(pfn);
2011 struct folio *folio = page_folio(page);
2012 int ret = 2; /* fallback to normal page handling */
2013 bool count_increased = false;
2015 if (!folio_test_hugetlb(folio))
2016 goto out;
2018 if (flags & MF_COUNT_INCREASED) {
2019 ret = 1;
2020 count_increased = true;
2021 } else if (folio_test_hugetlb_freed(folio)) {
2022 ret = 0;
2023 } else if (folio_test_hugetlb_migratable(folio)) {
2024 ret = folio_try_get(folio);
2025 if (ret)
2026 count_increased = true;
2027 } else {
2028 ret = -EBUSY;
2029 if (!(flags & MF_NO_RETRY))
2030 goto out;
2033 if (folio_set_hugetlb_hwpoison(folio, page)) {
2034 ret = -EHWPOISON;
2035 goto out;
2039 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2040 * from being migrated by memory hotremove.
2042 if (count_increased && folio_test_hugetlb_migratable(folio)) {
2043 folio_clear_hugetlb_migratable(folio);
2044 *migratable_cleared = true;
2047 return ret;
2048 out:
2049 if (count_increased)
2050 folio_put(folio);
2051 return ret;
2055 * Taking refcount of hugetlb pages needs extra care about race conditions
2056 * with basic operations like hugepage allocation/free/demotion.
2057 * So some of prechecks for hwpoison (pinning, and testing/setting
2058 * PageHWPoison) should be done in single hugetlb_lock range.
2060 static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2062 int res;
2063 struct page *p = pfn_to_page(pfn);
2064 struct folio *folio;
2065 unsigned long page_flags;
2066 bool migratable_cleared = false;
2068 *hugetlb = 1;
2069 retry:
2070 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
2071 if (res == 2) { /* fallback to normal page handling */
2072 *hugetlb = 0;
2073 return 0;
2074 } else if (res == -EHWPOISON) {
2075 pr_err("%#lx: already hardware poisoned\n", pfn);
2076 if (flags & MF_ACTION_REQUIRED) {
2077 folio = page_folio(p);
2078 res = kill_accessing_process(current, folio_pfn(folio), flags);
2079 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2081 return res;
2082 } else if (res == -EBUSY) {
2083 if (!(flags & MF_NO_RETRY)) {
2084 flags |= MF_NO_RETRY;
2085 goto retry;
2087 return action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2090 folio = page_folio(p);
2091 folio_lock(folio);
2093 if (hwpoison_filter(p)) {
2094 folio_clear_hugetlb_hwpoison(folio);
2095 if (migratable_cleared)
2096 folio_set_hugetlb_migratable(folio);
2097 folio_unlock(folio);
2098 if (res == 1)
2099 folio_put(folio);
2100 return -EOPNOTSUPP;
2104 * Handling free hugepage. The possible race with hugepage allocation
2105 * or demotion can be prevented by PageHWPoison flag.
2107 if (res == 0) {
2108 folio_unlock(folio);
2109 if (__page_handle_poison(p) > 0) {
2110 page_ref_inc(p);
2111 res = MF_RECOVERED;
2112 } else {
2113 res = MF_FAILED;
2115 return action_result(pfn, MF_MSG_FREE_HUGE, res);
2118 page_flags = folio->flags;
2120 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2121 folio_unlock(folio);
2122 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2125 return identify_page_state(pfn, p, page_flags);
2128 #else
2129 static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2131 return 0;
2134 static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2136 return 0;
2138 #endif /* CONFIG_HUGETLB_PAGE */
2140 /* Drop the extra refcount in case we come from madvise() */
2141 static void put_ref_page(unsigned long pfn, int flags)
2143 if (!(flags & MF_COUNT_INCREASED))
2144 return;
2146 put_page(pfn_to_page(pfn));
2149 static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2150 struct dev_pagemap *pgmap)
2152 int rc = -ENXIO;
2154 /* device metadata space is not recoverable */
2155 if (!pgmap_pfn_valid(pgmap, pfn))
2156 goto out;
2159 * Call driver's implementation to handle the memory failure, otherwise
2160 * fall back to generic handler.
2162 if (pgmap_has_memory_failure(pgmap)) {
2163 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2165 * Fall back to generic handler too if operation is not
2166 * supported inside the driver/device/filesystem.
2168 if (rc != -EOPNOTSUPP)
2169 goto out;
2172 rc = mf_generic_kill_procs(pfn, flags, pgmap);
2173 out:
2174 /* drop pgmap ref acquired in caller */
2175 put_dev_pagemap(pgmap);
2176 if (rc != -EOPNOTSUPP)
2177 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2178 return rc;
2182 * The calling condition is as such: thp split failed, page might have
2183 * been RDMA pinned, not much can be done for recovery.
2184 * But a SIGBUS should be delivered with vaddr provided so that the user
2185 * application has a chance to recover. Also, application processes'
2186 * election for MCE early killed will be honored.
2188 static void kill_procs_now(struct page *p, unsigned long pfn, int flags,
2189 struct folio *folio)
2191 LIST_HEAD(tokill);
2193 collect_procs(folio, p, &tokill, flags & MF_ACTION_REQUIRED);
2194 kill_procs(&tokill, true, pfn, flags);
2198 * memory_failure - Handle memory failure of a page.
2199 * @pfn: Page Number of the corrupted page
2200 * @flags: fine tune action taken
2202 * This function is called by the low level machine check code
2203 * of an architecture when it detects hardware memory corruption
2204 * of a page. It tries its best to recover, which includes
2205 * dropping pages, killing processes etc.
2207 * The function is primarily of use for corruptions that
2208 * happen outside the current execution context (e.g. when
2209 * detected by a background scrubber)
2211 * Must run in process context (e.g. a work queue) with interrupts
2212 * enabled and no spinlocks held.
2214 * Return: 0 for successfully handled the memory error,
2215 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2216 * < 0(except -EOPNOTSUPP) on failure.
2218 int memory_failure(unsigned long pfn, int flags)
2220 struct page *p;
2221 struct folio *folio;
2222 struct dev_pagemap *pgmap;
2223 int res = 0;
2224 unsigned long page_flags;
2225 bool retry = true;
2226 int hugetlb = 0;
2228 if (!sysctl_memory_failure_recovery)
2229 panic("Memory failure on page %lx", pfn);
2231 mutex_lock(&mf_mutex);
2233 if (!(flags & MF_SW_SIMULATED))
2234 hw_memory_failure = true;
2236 p = pfn_to_online_page(pfn);
2237 if (!p) {
2238 res = arch_memory_failure(pfn, flags);
2239 if (res == 0)
2240 goto unlock_mutex;
2242 if (pfn_valid(pfn)) {
2243 pgmap = get_dev_pagemap(pfn, NULL);
2244 put_ref_page(pfn, flags);
2245 if (pgmap) {
2246 res = memory_failure_dev_pagemap(pfn, flags,
2247 pgmap);
2248 goto unlock_mutex;
2251 pr_err("%#lx: memory outside kernel control\n", pfn);
2252 res = -ENXIO;
2253 goto unlock_mutex;
2256 try_again:
2257 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2258 if (hugetlb)
2259 goto unlock_mutex;
2261 if (TestSetPageHWPoison(p)) {
2262 pr_err("%#lx: already hardware poisoned\n", pfn);
2263 res = -EHWPOISON;
2264 if (flags & MF_ACTION_REQUIRED)
2265 res = kill_accessing_process(current, pfn, flags);
2266 if (flags & MF_COUNT_INCREASED)
2267 put_page(p);
2268 action_result(pfn, MF_MSG_ALREADY_POISONED, MF_FAILED);
2269 goto unlock_mutex;
2273 * We need/can do nothing about count=0 pages.
2274 * 1) it's a free page, and therefore in safe hand:
2275 * check_new_page() will be the gate keeper.
2276 * 2) it's part of a non-compound high order page.
2277 * Implies some kernel user: cannot stop them from
2278 * R/W the page; let's pray that the page has been
2279 * used and will be freed some time later.
2280 * In fact it's dangerous to directly bump up page count from 0,
2281 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2283 if (!(flags & MF_COUNT_INCREASED)) {
2284 res = get_hwpoison_page(p, flags);
2285 if (!res) {
2286 if (is_free_buddy_page(p)) {
2287 if (take_page_off_buddy(p)) {
2288 page_ref_inc(p);
2289 res = MF_RECOVERED;
2290 } else {
2291 /* We lost the race, try again */
2292 if (retry) {
2293 ClearPageHWPoison(p);
2294 retry = false;
2295 goto try_again;
2297 res = MF_FAILED;
2299 res = action_result(pfn, MF_MSG_BUDDY, res);
2300 } else {
2301 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2303 goto unlock_mutex;
2304 } else if (res < 0) {
2305 res = action_result(pfn, MF_MSG_GET_HWPOISON, MF_IGNORED);
2306 goto unlock_mutex;
2310 folio = page_folio(p);
2312 /* filter pages that are protected from hwpoison test by users */
2313 folio_lock(folio);
2314 if (hwpoison_filter(p)) {
2315 ClearPageHWPoison(p);
2316 folio_unlock(folio);
2317 folio_put(folio);
2318 res = -EOPNOTSUPP;
2319 goto unlock_mutex;
2321 folio_unlock(folio);
2323 if (folio_test_large(folio)) {
2325 * The flag must be set after the refcount is bumped
2326 * otherwise it may race with THP split.
2327 * And the flag can't be set in get_hwpoison_page() since
2328 * it is called by soft offline too and it is just called
2329 * for !MF_COUNT_INCREASED. So here seems to be the best
2330 * place.
2332 * Don't need care about the above error handling paths for
2333 * get_hwpoison_page() since they handle either free page
2334 * or unhandlable page. The refcount is bumped iff the
2335 * page is a valid handlable page.
2337 folio_set_has_hwpoisoned(folio);
2338 if (try_to_split_thp_page(p, false) < 0) {
2339 res = -EHWPOISON;
2340 kill_procs_now(p, pfn, flags, folio);
2341 put_page(p);
2342 action_result(pfn, MF_MSG_UNSPLIT_THP, MF_FAILED);
2343 goto unlock_mutex;
2345 VM_BUG_ON_PAGE(!page_count(p), p);
2346 folio = page_folio(p);
2350 * We ignore non-LRU pages for good reasons.
2351 * - PG_locked is only well defined for LRU pages and a few others
2352 * - to avoid races with __SetPageLocked()
2353 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2354 * The check (unnecessarily) ignores LRU pages being isolated and
2355 * walked by the page reclaim code, however that's not a big loss.
2357 shake_folio(folio);
2359 folio_lock(folio);
2362 * We're only intended to deal with the non-Compound page here.
2363 * The page cannot become compound pages again as folio has been
2364 * splited and extra refcnt is held.
2366 WARN_ON(folio_test_large(folio));
2369 * We use page flags to determine what action should be taken, but
2370 * the flags can be modified by the error containment action. One
2371 * example is an mlocked page, where PG_mlocked is cleared by
2372 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2373 * status correctly, we save a copy of the page flags at this time.
2375 page_flags = folio->flags;
2378 * __munlock_folio() may clear a writeback folio's LRU flag without
2379 * the folio lock. We need to wait for writeback completion for this
2380 * folio or it may trigger a vfs BUG while evicting inode.
2382 if (!folio_test_lru(folio) && !folio_test_writeback(folio))
2383 goto identify_page_state;
2386 * It's very difficult to mess with pages currently under IO
2387 * and in many cases impossible, so we just avoid it here.
2389 folio_wait_writeback(folio);
2392 * Now take care of user space mappings.
2393 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2395 if (!hwpoison_user_mappings(folio, p, pfn, flags)) {
2396 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_FAILED);
2397 goto unlock_page;
2401 * Torn down by someone else?
2403 if (folio_test_lru(folio) && !folio_test_swapcache(folio) &&
2404 folio->mapping == NULL) {
2405 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2406 goto unlock_page;
2409 identify_page_state:
2410 res = identify_page_state(pfn, p, page_flags);
2411 mutex_unlock(&mf_mutex);
2412 return res;
2413 unlock_page:
2414 folio_unlock(folio);
2415 unlock_mutex:
2416 mutex_unlock(&mf_mutex);
2417 return res;
2419 EXPORT_SYMBOL_GPL(memory_failure);
2421 #define MEMORY_FAILURE_FIFO_ORDER 4
2422 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2424 struct memory_failure_entry {
2425 unsigned long pfn;
2426 int flags;
2429 struct memory_failure_cpu {
2430 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2431 MEMORY_FAILURE_FIFO_SIZE);
2432 raw_spinlock_t lock;
2433 struct work_struct work;
2436 static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2439 * memory_failure_queue - Schedule handling memory failure of a page.
2440 * @pfn: Page Number of the corrupted page
2441 * @flags: Flags for memory failure handling
2443 * This function is called by the low level hardware error handler
2444 * when it detects hardware memory corruption of a page. It schedules
2445 * the recovering of error page, including dropping pages, killing
2446 * processes etc.
2448 * The function is primarily of use for corruptions that
2449 * happen outside the current execution context (e.g. when
2450 * detected by a background scrubber)
2452 * Can run in IRQ context.
2454 void memory_failure_queue(unsigned long pfn, int flags)
2456 struct memory_failure_cpu *mf_cpu;
2457 unsigned long proc_flags;
2458 bool buffer_overflow;
2459 struct memory_failure_entry entry = {
2460 .pfn = pfn,
2461 .flags = flags,
2464 mf_cpu = &get_cpu_var(memory_failure_cpu);
2465 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2466 buffer_overflow = !kfifo_put(&mf_cpu->fifo, entry);
2467 if (!buffer_overflow)
2468 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2469 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2470 put_cpu_var(memory_failure_cpu);
2471 if (buffer_overflow)
2472 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2473 pfn);
2475 EXPORT_SYMBOL_GPL(memory_failure_queue);
2477 static void memory_failure_work_func(struct work_struct *work)
2479 struct memory_failure_cpu *mf_cpu;
2480 struct memory_failure_entry entry = { 0, };
2481 unsigned long proc_flags;
2482 int gotten;
2484 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2485 for (;;) {
2486 raw_spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2487 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2488 raw_spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2489 if (!gotten)
2490 break;
2491 if (entry.flags & MF_SOFT_OFFLINE)
2492 soft_offline_page(entry.pfn, entry.flags);
2493 else
2494 memory_failure(entry.pfn, entry.flags);
2499 * Process memory_failure work queued on the specified CPU.
2500 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2502 void memory_failure_queue_kick(int cpu)
2504 struct memory_failure_cpu *mf_cpu;
2506 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2507 cancel_work_sync(&mf_cpu->work);
2508 memory_failure_work_func(&mf_cpu->work);
2511 static int __init memory_failure_init(void)
2513 struct memory_failure_cpu *mf_cpu;
2514 int cpu;
2516 for_each_possible_cpu(cpu) {
2517 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2518 raw_spin_lock_init(&mf_cpu->lock);
2519 INIT_KFIFO(mf_cpu->fifo);
2520 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2523 register_sysctl_init("vm", memory_failure_table);
2525 return 0;
2527 core_initcall(memory_failure_init);
2529 #undef pr_fmt
2530 #define pr_fmt(fmt) "Unpoison: " fmt
2531 #define unpoison_pr_info(fmt, pfn, rs) \
2532 ({ \
2533 if (__ratelimit(rs)) \
2534 pr_info(fmt, pfn); \
2538 * unpoison_memory - Unpoison a previously poisoned page
2539 * @pfn: Page number of the to be unpoisoned page
2541 * Software-unpoison a page that has been poisoned by
2542 * memory_failure() earlier.
2544 * This is only done on the software-level, so it only works
2545 * for linux injected failures, not real hardware failures
2547 * Returns 0 for success, otherwise -errno.
2549 int unpoison_memory(unsigned long pfn)
2551 struct folio *folio;
2552 struct page *p;
2553 int ret = -EBUSY, ghp;
2554 unsigned long count;
2555 bool huge = false;
2556 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2557 DEFAULT_RATELIMIT_BURST);
2559 if (!pfn_valid(pfn))
2560 return -ENXIO;
2562 p = pfn_to_page(pfn);
2563 folio = page_folio(p);
2565 mutex_lock(&mf_mutex);
2567 if (hw_memory_failure) {
2568 unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2569 pfn, &unpoison_rs);
2570 ret = -EOPNOTSUPP;
2571 goto unlock_mutex;
2574 if (is_huge_zero_folio(folio)) {
2575 unpoison_pr_info("%#lx: huge zero page is not supported\n",
2576 pfn, &unpoison_rs);
2577 ret = -EOPNOTSUPP;
2578 goto unlock_mutex;
2581 if (!PageHWPoison(p)) {
2582 unpoison_pr_info("%#lx: page was already unpoisoned\n",
2583 pfn, &unpoison_rs);
2584 goto unlock_mutex;
2587 if (folio_ref_count(folio) > 1) {
2588 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2589 pfn, &unpoison_rs);
2590 goto unlock_mutex;
2593 if (folio_test_slab(folio) || folio_test_pgtable(folio) ||
2594 folio_test_reserved(folio) || folio_test_offline(folio))
2595 goto unlock_mutex;
2597 if (folio_mapped(folio)) {
2598 unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2599 pfn, &unpoison_rs);
2600 goto unlock_mutex;
2603 if (folio_mapping(folio)) {
2604 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2605 pfn, &unpoison_rs);
2606 goto unlock_mutex;
2609 ghp = get_hwpoison_page(p, MF_UNPOISON);
2610 if (!ghp) {
2611 if (folio_test_hugetlb(folio)) {
2612 huge = true;
2613 count = folio_free_raw_hwp(folio, false);
2614 if (count == 0)
2615 goto unlock_mutex;
2617 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2618 } else if (ghp < 0) {
2619 if (ghp == -EHWPOISON) {
2620 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2621 } else {
2622 ret = ghp;
2623 unpoison_pr_info("%#lx: failed to grab page\n",
2624 pfn, &unpoison_rs);
2626 } else {
2627 if (folio_test_hugetlb(folio)) {
2628 huge = true;
2629 count = folio_free_raw_hwp(folio, false);
2630 if (count == 0) {
2631 folio_put(folio);
2632 goto unlock_mutex;
2636 folio_put(folio);
2637 if (TestClearPageHWPoison(p)) {
2638 folio_put(folio);
2639 ret = 0;
2643 unlock_mutex:
2644 mutex_unlock(&mf_mutex);
2645 if (!ret) {
2646 if (!huge)
2647 num_poisoned_pages_sub(pfn, 1);
2648 unpoison_pr_info("%#lx: software-unpoisoned page\n",
2649 page_to_pfn(p), &unpoison_rs);
2651 return ret;
2653 EXPORT_SYMBOL(unpoison_memory);
2655 #undef pr_fmt
2656 #define pr_fmt(fmt) "Soft offline: " fmt
2659 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2660 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2661 * If the page is mapped, it migrates the contents over.
2663 static int soft_offline_in_use_page(struct page *page)
2665 long ret = 0;
2666 unsigned long pfn = page_to_pfn(page);
2667 struct folio *folio = page_folio(page);
2668 char const *msg_page[] = {"page", "hugepage"};
2669 bool huge = folio_test_hugetlb(folio);
2670 bool isolated;
2671 LIST_HEAD(pagelist);
2672 struct migration_target_control mtc = {
2673 .nid = NUMA_NO_NODE,
2674 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2675 .reason = MR_MEMORY_FAILURE,
2678 if (!huge && folio_test_large(folio)) {
2679 if (try_to_split_thp_page(page, true)) {
2680 pr_info("%#lx: thp split failed\n", pfn);
2681 return -EBUSY;
2683 folio = page_folio(page);
2686 folio_lock(folio);
2687 if (!huge)
2688 folio_wait_writeback(folio);
2689 if (PageHWPoison(page)) {
2690 folio_unlock(folio);
2691 folio_put(folio);
2692 pr_info("%#lx: page already poisoned\n", pfn);
2693 return 0;
2696 if (!huge && folio_test_lru(folio) && !folio_test_swapcache(folio))
2698 * Try to invalidate first. This should work for
2699 * non dirty unmapped page cache pages.
2701 ret = mapping_evict_folio(folio_mapping(folio), folio);
2702 folio_unlock(folio);
2704 if (ret) {
2705 pr_info("%#lx: invalidated\n", pfn);
2706 page_handle_poison(page, false, true);
2707 return 0;
2710 isolated = isolate_folio_to_list(folio, &pagelist);
2713 * If we succeed to isolate the folio, we grabbed another refcount on
2714 * the folio, so we can safely drop the one we got from get_any_page().
2715 * If we failed to isolate the folio, it means that we cannot go further
2716 * and we will return an error, so drop the reference we got from
2717 * get_any_page() as well.
2719 folio_put(folio);
2721 if (isolated) {
2722 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2723 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2724 if (!ret) {
2725 bool release = !huge;
2727 if (!page_handle_poison(page, huge, release))
2728 ret = -EBUSY;
2729 } else {
2730 if (!list_empty(&pagelist))
2731 putback_movable_pages(&pagelist);
2733 pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2734 pfn, msg_page[huge], ret, &page->flags);
2735 if (ret > 0)
2736 ret = -EBUSY;
2738 } else {
2739 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2740 pfn, msg_page[huge], page_count(page), &page->flags);
2741 ret = -EBUSY;
2743 return ret;
2747 * soft_offline_page - Soft offline a page.
2748 * @pfn: pfn to soft-offline
2749 * @flags: flags. Same as memory_failure().
2751 * Returns 0 on success,
2752 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2753 * disabled by /proc/sys/vm/enable_soft_offline,
2754 * < 0 otherwise negated errno.
2756 * Soft offline a page, by migration or invalidation,
2757 * without killing anything. This is for the case when
2758 * a page is not corrupted yet (so it's still valid to access),
2759 * but has had a number of corrected errors and is better taken
2760 * out.
2762 * The actual policy on when to do that is maintained by
2763 * user space.
2765 * This should never impact any application or cause data loss,
2766 * however it might take some time.
2768 * This is not a 100% solution for all memory, but tries to be
2769 * ``good enough'' for the majority of memory.
2771 int soft_offline_page(unsigned long pfn, int flags)
2773 int ret;
2774 bool try_again = true;
2775 struct page *page;
2777 if (!pfn_valid(pfn)) {
2778 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2779 return -ENXIO;
2782 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2783 page = pfn_to_online_page(pfn);
2784 if (!page) {
2785 put_ref_page(pfn, flags);
2786 return -EIO;
2789 if (!sysctl_enable_soft_offline) {
2790 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2791 put_ref_page(pfn, flags);
2792 return -EOPNOTSUPP;
2795 mutex_lock(&mf_mutex);
2797 if (PageHWPoison(page)) {
2798 pr_info("%#lx: page already poisoned\n", pfn);
2799 put_ref_page(pfn, flags);
2800 mutex_unlock(&mf_mutex);
2801 return 0;
2804 retry:
2805 get_online_mems();
2806 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2807 put_online_mems();
2809 if (hwpoison_filter(page)) {
2810 if (ret > 0)
2811 put_page(page);
2813 mutex_unlock(&mf_mutex);
2814 return -EOPNOTSUPP;
2817 if (ret > 0) {
2818 ret = soft_offline_in_use_page(page);
2819 } else if (ret == 0) {
2820 if (!page_handle_poison(page, true, false)) {
2821 if (try_again) {
2822 try_again = false;
2823 flags &= ~MF_COUNT_INCREASED;
2824 goto retry;
2826 ret = -EBUSY;
2830 mutex_unlock(&mf_mutex);
2832 return ret;