1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
37 #define pr_fmt(fmt) "Memory failure: " fmt
39 #include <linux/kernel.h>
41 #include <linux/page-flags.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/dax.h>
45 #include <linux/ksm.h>
46 #include <linux/rmap.h>
47 #include <linux/export.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/backing-dev.h>
51 #include <linux/migrate.h>
52 #include <linux/slab.h>
53 #include <linux/swapops.h>
54 #include <linux/hugetlb.h>
55 #include <linux/memory_hotplug.h>
56 #include <linux/mm_inline.h>
57 #include <linux/memremap.h>
58 #include <linux/kfifo.h>
59 #include <linux/ratelimit.h>
60 #include <linux/pagewalk.h>
61 #include <linux/shmem_fs.h>
62 #include <linux/sysctl.h>
65 #include "ras/ras_event.h"
67 static int sysctl_memory_failure_early_kill __read_mostly
;
69 static int sysctl_memory_failure_recovery __read_mostly
= 1;
71 static int sysctl_enable_soft_offline __read_mostly
= 1;
73 atomic_long_t num_poisoned_pages __read_mostly
= ATOMIC_LONG_INIT(0);
75 static bool hw_memory_failure __read_mostly
= false;
77 static DEFINE_MUTEX(mf_mutex
);
79 void num_poisoned_pages_inc(unsigned long pfn
)
81 atomic_long_inc(&num_poisoned_pages
);
82 memblk_nr_poison_inc(pfn
);
85 void num_poisoned_pages_sub(unsigned long pfn
, long i
)
87 atomic_long_sub(i
, &num_poisoned_pages
);
89 memblk_nr_poison_sub(pfn
, i
);
93 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
94 * @_name: name of the file in the per NUMA sysfs directory.
96 #define MF_ATTR_RO(_name) \
97 static ssize_t _name##_show(struct device *dev, \
98 struct device_attribute *attr, \
101 struct memory_failure_stats *mf_stats = \
102 &NODE_DATA(dev->id)->mf_stats; \
103 return sysfs_emit(buf, "%lu\n", mf_stats->_name); \
105 static DEVICE_ATTR_RO(_name)
111 MF_ATTR_RO(recovered
);
113 static struct attribute
*memory_failure_attr
[] = {
114 &dev_attr_total
.attr
,
115 &dev_attr_ignored
.attr
,
116 &dev_attr_failed
.attr
,
117 &dev_attr_delayed
.attr
,
118 &dev_attr_recovered
.attr
,
122 const struct attribute_group memory_failure_attr_group
= {
123 .name
= "memory_failure",
124 .attrs
= memory_failure_attr
,
127 static struct ctl_table memory_failure_table
[] = {
129 .procname
= "memory_failure_early_kill",
130 .data
= &sysctl_memory_failure_early_kill
,
131 .maxlen
= sizeof(sysctl_memory_failure_early_kill
),
133 .proc_handler
= proc_dointvec_minmax
,
134 .extra1
= SYSCTL_ZERO
,
135 .extra2
= SYSCTL_ONE
,
138 .procname
= "memory_failure_recovery",
139 .data
= &sysctl_memory_failure_recovery
,
140 .maxlen
= sizeof(sysctl_memory_failure_recovery
),
142 .proc_handler
= proc_dointvec_minmax
,
143 .extra1
= SYSCTL_ZERO
,
144 .extra2
= SYSCTL_ONE
,
147 .procname
= "enable_soft_offline",
148 .data
= &sysctl_enable_soft_offline
,
149 .maxlen
= sizeof(sysctl_enable_soft_offline
),
151 .proc_handler
= proc_dointvec_minmax
,
152 .extra1
= SYSCTL_ZERO
,
153 .extra2
= SYSCTL_ONE
,
159 * 1: the page is dissolved (if needed) and taken off from buddy,
160 * 0: the page is dissolved (if needed) and not taken off from buddy,
161 * < 0: failed to dissolve.
163 static int __page_handle_poison(struct page
*page
)
168 * zone_pcp_disable() can't be used here. It will
169 * hold pcp_batch_high_lock and dissolve_free_hugetlb_folio() might hold
170 * cpu_hotplug_lock via static_key_slow_dec() when hugetlb vmemmap
171 * optimization is enabled. This will break current lock dependency
172 * chain and leads to deadlock.
173 * Disabling pcp before dissolving the page was a deterministic
174 * approach because we made sure that those pages cannot end up in any
175 * PCP list. Draining PCP lists expels those pages to the buddy system,
176 * but nothing guarantees that those pages do not get back to a PCP
177 * queue if we need to refill those.
179 ret
= dissolve_free_hugetlb_folio(page_folio(page
));
181 drain_all_pages(page_zone(page
));
182 ret
= take_page_off_buddy(page
);
188 static bool page_handle_poison(struct page
*page
, bool hugepage_or_freepage
, bool release
)
190 if (hugepage_or_freepage
) {
192 * Doing this check for free pages is also fine since
193 * dissolve_free_hugetlb_folio() returns 0 for non-hugetlb folios as well.
195 if (__page_handle_poison(page
) <= 0)
197 * We could fail to take off the target page from buddy
198 * for example due to racy page allocation, but that's
199 * acceptable because soft-offlined page is not broken
200 * and if someone really want to use it, they should
206 SetPageHWPoison(page
);
210 num_poisoned_pages_inc(page_to_pfn(page
));
215 #if IS_ENABLED(CONFIG_HWPOISON_INJECT)
217 u32 hwpoison_filter_enable
= 0;
218 u32 hwpoison_filter_dev_major
= ~0U;
219 u32 hwpoison_filter_dev_minor
= ~0U;
220 u64 hwpoison_filter_flags_mask
;
221 u64 hwpoison_filter_flags_value
;
222 EXPORT_SYMBOL_GPL(hwpoison_filter_enable
);
223 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major
);
224 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor
);
225 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask
);
226 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value
);
228 static int hwpoison_filter_dev(struct page
*p
)
230 struct folio
*folio
= page_folio(p
);
231 struct address_space
*mapping
;
234 if (hwpoison_filter_dev_major
== ~0U &&
235 hwpoison_filter_dev_minor
== ~0U)
238 mapping
= folio_mapping(folio
);
239 if (mapping
== NULL
|| mapping
->host
== NULL
)
242 dev
= mapping
->host
->i_sb
->s_dev
;
243 if (hwpoison_filter_dev_major
!= ~0U &&
244 hwpoison_filter_dev_major
!= MAJOR(dev
))
246 if (hwpoison_filter_dev_minor
!= ~0U &&
247 hwpoison_filter_dev_minor
!= MINOR(dev
))
253 static int hwpoison_filter_flags(struct page
*p
)
255 if (!hwpoison_filter_flags_mask
)
258 if ((stable_page_flags(p
) & hwpoison_filter_flags_mask
) ==
259 hwpoison_filter_flags_value
)
266 * This allows stress tests to limit test scope to a collection of tasks
267 * by putting them under some memcg. This prevents killing unrelated/important
268 * processes such as /sbin/init. Note that the target task may share clean
269 * pages with init (eg. libc text), which is harmless. If the target task
270 * share _dirty_ pages with another task B, the test scheme must make sure B
271 * is also included in the memcg. At last, due to race conditions this filter
272 * can only guarantee that the page either belongs to the memcg tasks, or is
276 u64 hwpoison_filter_memcg
;
277 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg
);
278 static int hwpoison_filter_task(struct page
*p
)
280 if (!hwpoison_filter_memcg
)
283 if (page_cgroup_ino(p
) != hwpoison_filter_memcg
)
289 static int hwpoison_filter_task(struct page
*p
) { return 0; }
292 int hwpoison_filter(struct page
*p
)
294 if (!hwpoison_filter_enable
)
297 if (hwpoison_filter_dev(p
))
300 if (hwpoison_filter_flags(p
))
303 if (hwpoison_filter_task(p
))
308 EXPORT_SYMBOL_GPL(hwpoison_filter
);
310 int hwpoison_filter(struct page
*p
)
317 * Kill all processes that have a poisoned page mapped and then isolate
321 * Find all processes having the page mapped and kill them.
322 * But we keep a page reference around so that the page is not
323 * actually freed yet.
324 * Then stash the page away
326 * There's no convenient way to get back to mapped processes
327 * from the VMAs. So do a brute-force search over all
330 * Remember that machine checks are not common (or rather
331 * if they are common you have other problems), so this shouldn't
332 * be a performance issue.
334 * Also there are some races possible while we get from the
335 * error detection to actually handle it.
340 struct task_struct
*tsk
;
346 * Send all the processes who have the page mapped a signal.
347 * ``action optional'' if they are not immediately affected by the error
348 * ``action required'' if error happened in current execution context
350 static int kill_proc(struct to_kill
*tk
, unsigned long pfn
, int flags
)
352 struct task_struct
*t
= tk
->tsk
;
353 short addr_lsb
= tk
->size_shift
;
356 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
357 pfn
, t
->comm
, task_pid_nr(t
));
359 if ((flags
& MF_ACTION_REQUIRED
) && (t
== current
))
360 ret
= force_sig_mceerr(BUS_MCEERR_AR
,
361 (void __user
*)tk
->addr
, addr_lsb
);
364 * Signal other processes sharing the page if they have
366 * Don't use force here, it's convenient if the signal
367 * can be temporarily blocked.
369 ret
= send_sig_mceerr(BUS_MCEERR_AO
, (void __user
*)tk
->addr
,
372 pr_info("Error sending signal to %s:%d: %d\n",
373 t
->comm
, task_pid_nr(t
), ret
);
378 * Unknown page type encountered. Try to check whether it can turn PageLRU by
381 void shake_folio(struct folio
*folio
)
383 if (folio_test_hugetlb(folio
))
386 * TODO: Could shrink slab caches here if a lightweight range-based
387 * shrinker will be available.
389 if (folio_test_slab(folio
))
394 EXPORT_SYMBOL_GPL(shake_folio
);
396 static void shake_page(struct page
*page
)
398 shake_folio(page_folio(page
));
401 static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct
*vma
,
402 unsigned long address
)
404 unsigned long ret
= 0;
412 VM_BUG_ON_VMA(address
== -EFAULT
, vma
);
413 pgd
= pgd_offset(vma
->vm_mm
, address
);
414 if (!pgd_present(*pgd
))
416 p4d
= p4d_offset(pgd
, address
);
417 if (!p4d_present(*p4d
))
419 pud
= pud_offset(p4d
, address
);
420 if (!pud_present(*pud
))
422 if (pud_devmap(*pud
))
424 pmd
= pmd_offset(pud
, address
);
425 if (!pmd_present(*pmd
))
427 if (pmd_devmap(*pmd
))
429 pte
= pte_offset_map(pmd
, address
);
432 ptent
= ptep_get(pte
);
433 if (pte_present(ptent
) && pte_devmap(ptent
))
440 * Failure handling: if we can't find or can't kill a process there's
441 * not much we can do. We just print a message and ignore otherwise.
445 * Schedule a process for later kill.
446 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
448 static void __add_to_kill(struct task_struct
*tsk
, const struct page
*p
,
449 struct vm_area_struct
*vma
, struct list_head
*to_kill
,
454 tk
= kmalloc(sizeof(struct to_kill
), GFP_ATOMIC
);
456 pr_err("Out of memory while machine check handling\n");
461 if (is_zone_device_page(p
))
462 tk
->size_shift
= dev_pagemap_mapping_shift(vma
, tk
->addr
);
464 tk
->size_shift
= folio_shift(page_folio(p
));
467 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
468 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
469 * so "tk->size_shift == 0" effectively checks no mapping on
470 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
471 * to a process' address space, it's possible not all N VMAs
472 * contain mappings for the page, but at least one VMA does.
473 * Only deliver SIGBUS with payload derived from the VMA that
474 * has a mapping for the page.
476 if (tk
->addr
== -EFAULT
) {
477 pr_info("Unable to find user space address %lx in %s\n",
478 page_to_pfn(p
), tsk
->comm
);
479 } else if (tk
->size_shift
== 0) {
484 get_task_struct(tsk
);
486 list_add_tail(&tk
->nd
, to_kill
);
489 static void add_to_kill_anon_file(struct task_struct
*tsk
, const struct page
*p
,
490 struct vm_area_struct
*vma
, struct list_head
*to_kill
,
495 __add_to_kill(tsk
, p
, vma
, to_kill
, addr
);
499 static bool task_in_to_kill_list(struct list_head
*to_kill
,
500 struct task_struct
*tsk
)
502 struct to_kill
*tk
, *next
;
504 list_for_each_entry_safe(tk
, next
, to_kill
, nd
) {
512 void add_to_kill_ksm(struct task_struct
*tsk
, const struct page
*p
,
513 struct vm_area_struct
*vma
, struct list_head
*to_kill
,
516 if (!task_in_to_kill_list(to_kill
, tsk
))
517 __add_to_kill(tsk
, p
, vma
, to_kill
, addr
);
521 * Kill the processes that have been collected earlier.
523 * Only do anything when FORCEKILL is set, otherwise just free the
524 * list (this is used for clean pages which do not need killing)
526 static void kill_procs(struct list_head
*to_kill
, int forcekill
,
527 unsigned long pfn
, int flags
)
529 struct to_kill
*tk
, *next
;
531 list_for_each_entry_safe(tk
, next
, to_kill
, nd
) {
533 if (tk
->addr
== -EFAULT
) {
534 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
535 pfn
, tk
->tsk
->comm
, task_pid_nr(tk
->tsk
));
536 do_send_sig_info(SIGKILL
, SEND_SIG_PRIV
,
537 tk
->tsk
, PIDTYPE_PID
);
541 * In theory the process could have mapped
542 * something else on the address in-between. We could
543 * check for that, but we need to tell the
546 else if (kill_proc(tk
, pfn
, flags
) < 0)
547 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
548 pfn
, tk
->tsk
->comm
, task_pid_nr(tk
->tsk
));
551 put_task_struct(tk
->tsk
);
557 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
558 * on behalf of the thread group. Return task_struct of the (first found)
559 * dedicated thread if found, and return NULL otherwise.
561 * We already hold rcu lock in the caller, so we don't have to call
562 * rcu_read_lock/unlock() in this function.
564 static struct task_struct
*find_early_kill_thread(struct task_struct
*tsk
)
566 struct task_struct
*t
;
568 for_each_thread(tsk
, t
) {
569 if (t
->flags
& PF_MCE_PROCESS
) {
570 if (t
->flags
& PF_MCE_EARLY
)
573 if (sysctl_memory_failure_early_kill
)
581 * Determine whether a given process is "early kill" process which expects
582 * to be signaled when some page under the process is hwpoisoned.
583 * Return task_struct of the dedicated thread (main thread unless explicitly
584 * specified) if the process is "early kill" and otherwise returns NULL.
586 * Note that the above is true for Action Optional case. For Action Required
587 * case, it's only meaningful to the current thread which need to be signaled
588 * with SIGBUS, this error is Action Optional for other non current
589 * processes sharing the same error page,if the process is "early kill", the
590 * task_struct of the dedicated thread will also be returned.
592 struct task_struct
*task_early_kill(struct task_struct
*tsk
, int force_early
)
597 * Comparing ->mm here because current task might represent
598 * a subthread, while tsk always points to the main thread.
600 if (force_early
&& tsk
->mm
== current
->mm
)
603 return find_early_kill_thread(tsk
);
607 * Collect processes when the error hit an anonymous page.
609 static void collect_procs_anon(const struct folio
*folio
,
610 const struct page
*page
, struct list_head
*to_kill
,
613 struct task_struct
*tsk
;
617 av
= folio_lock_anon_vma_read(folio
, NULL
);
618 if (av
== NULL
) /* Not actually mapped anymore */
621 pgoff
= page_pgoff(folio
, page
);
623 for_each_process(tsk
) {
624 struct vm_area_struct
*vma
;
625 struct anon_vma_chain
*vmac
;
626 struct task_struct
*t
= task_early_kill(tsk
, force_early
);
631 anon_vma_interval_tree_foreach(vmac
, &av
->rb_root
,
634 if (vma
->vm_mm
!= t
->mm
)
636 addr
= page_mapped_in_vma(page
, vma
);
637 add_to_kill_anon_file(t
, page
, vma
, to_kill
, addr
);
641 anon_vma_unlock_read(av
);
645 * Collect processes when the error hit a file mapped page.
647 static void collect_procs_file(const struct folio
*folio
,
648 const struct page
*page
, struct list_head
*to_kill
,
651 struct vm_area_struct
*vma
;
652 struct task_struct
*tsk
;
653 struct address_space
*mapping
= folio
->mapping
;
656 i_mmap_lock_read(mapping
);
658 pgoff
= page_pgoff(folio
, page
);
659 for_each_process(tsk
) {
660 struct task_struct
*t
= task_early_kill(tsk
, force_early
);
665 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
,
668 * Send early kill signal to tasks where a vma covers
669 * the page but the corrupted page is not necessarily
671 * Assume applications who requested early kill want
672 * to be informed of all such data corruptions.
674 if (vma
->vm_mm
!= t
->mm
)
676 addr
= page_address_in_vma(folio
, page
, vma
);
677 add_to_kill_anon_file(t
, page
, vma
, to_kill
, addr
);
681 i_mmap_unlock_read(mapping
);
685 static void add_to_kill_fsdax(struct task_struct
*tsk
, const struct page
*p
,
686 struct vm_area_struct
*vma
,
687 struct list_head
*to_kill
, pgoff_t pgoff
)
689 unsigned long addr
= vma_address(vma
, pgoff
, 1);
690 __add_to_kill(tsk
, p
, vma
, to_kill
, addr
);
694 * Collect processes when the error hit a fsdax page.
696 static void collect_procs_fsdax(const struct page
*page
,
697 struct address_space
*mapping
, pgoff_t pgoff
,
698 struct list_head
*to_kill
, bool pre_remove
)
700 struct vm_area_struct
*vma
;
701 struct task_struct
*tsk
;
703 i_mmap_lock_read(mapping
);
705 for_each_process(tsk
) {
706 struct task_struct
*t
= tsk
;
709 * Search for all tasks while MF_MEM_PRE_REMOVE is set, because
710 * the current may not be the one accessing the fsdax page.
711 * Otherwise, search for the current task.
714 t
= task_early_kill(tsk
, true);
717 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
718 if (vma
->vm_mm
== t
->mm
)
719 add_to_kill_fsdax(t
, page
, vma
, to_kill
, pgoff
);
723 i_mmap_unlock_read(mapping
);
725 #endif /* CONFIG_FS_DAX */
728 * Collect the processes who have the corrupted page mapped to kill.
730 static void collect_procs(const struct folio
*folio
, const struct page
*page
,
731 struct list_head
*tokill
, int force_early
)
735 if (unlikely(folio_test_ksm(folio
)))
736 collect_procs_ksm(folio
, page
, tokill
, force_early
);
737 else if (folio_test_anon(folio
))
738 collect_procs_anon(folio
, page
, tokill
, force_early
);
740 collect_procs_file(folio
, page
, tokill
, force_early
);
743 struct hwpoison_walk
{
749 static void set_to_kill(struct to_kill
*tk
, unsigned long addr
, short shift
)
752 tk
->size_shift
= shift
;
755 static int check_hwpoisoned_entry(pte_t pte
, unsigned long addr
, short shift
,
756 unsigned long poisoned_pfn
, struct to_kill
*tk
)
758 unsigned long pfn
= 0;
760 if (pte_present(pte
)) {
763 swp_entry_t swp
= pte_to_swp_entry(pte
);
765 if (is_hwpoison_entry(swp
))
766 pfn
= swp_offset_pfn(swp
);
769 if (!pfn
|| pfn
!= poisoned_pfn
)
772 set_to_kill(tk
, addr
, shift
);
776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
777 static int check_hwpoisoned_pmd_entry(pmd_t
*pmdp
, unsigned long addr
,
778 struct hwpoison_walk
*hwp
)
782 unsigned long hwpoison_vaddr
;
784 if (!pmd_present(pmd
))
787 if (pfn
<= hwp
->pfn
&& hwp
->pfn
< pfn
+ HPAGE_PMD_NR
) {
788 hwpoison_vaddr
= addr
+ ((hwp
->pfn
- pfn
) << PAGE_SHIFT
);
789 set_to_kill(&hwp
->tk
, hwpoison_vaddr
, PAGE_SHIFT
);
795 static int check_hwpoisoned_pmd_entry(pmd_t
*pmdp
, unsigned long addr
,
796 struct hwpoison_walk
*hwp
)
802 static int hwpoison_pte_range(pmd_t
*pmdp
, unsigned long addr
,
803 unsigned long end
, struct mm_walk
*walk
)
805 struct hwpoison_walk
*hwp
= walk
->private;
807 pte_t
*ptep
, *mapped_pte
;
810 ptl
= pmd_trans_huge_lock(pmdp
, walk
->vma
);
812 ret
= check_hwpoisoned_pmd_entry(pmdp
, addr
, hwp
);
817 mapped_pte
= ptep
= pte_offset_map_lock(walk
->vma
->vm_mm
, pmdp
,
822 for (; addr
!= end
; ptep
++, addr
+= PAGE_SIZE
) {
823 ret
= check_hwpoisoned_entry(ptep_get(ptep
), addr
, PAGE_SHIFT
,
828 pte_unmap_unlock(mapped_pte
, ptl
);
834 #ifdef CONFIG_HUGETLB_PAGE
835 static int hwpoison_hugetlb_range(pte_t
*ptep
, unsigned long hmask
,
836 unsigned long addr
, unsigned long end
,
837 struct mm_walk
*walk
)
839 struct hwpoison_walk
*hwp
= walk
->private;
840 pte_t pte
= huge_ptep_get(walk
->mm
, addr
, ptep
);
841 struct hstate
*h
= hstate_vma(walk
->vma
);
843 return check_hwpoisoned_entry(pte
, addr
, huge_page_shift(h
),
847 #define hwpoison_hugetlb_range NULL
850 static const struct mm_walk_ops hwpoison_walk_ops
= {
851 .pmd_entry
= hwpoison_pte_range
,
852 .hugetlb_entry
= hwpoison_hugetlb_range
,
853 .walk_lock
= PGWALK_RDLOCK
,
857 * Sends SIGBUS to the current process with error info.
859 * This function is intended to handle "Action Required" MCEs on already
860 * hardware poisoned pages. They could happen, for example, when
861 * memory_failure() failed to unmap the error page at the first call, or
862 * when multiple local machine checks happened on different CPUs.
864 * MCE handler currently has no easy access to the error virtual address,
865 * so this function walks page table to find it. The returned virtual address
866 * is proper in most cases, but it could be wrong when the application
867 * process has multiple entries mapping the error page.
869 static int kill_accessing_process(struct task_struct
*p
, unsigned long pfn
,
873 struct hwpoison_walk priv
= {
881 mmap_read_lock(p
->mm
);
882 ret
= walk_page_range(p
->mm
, 0, TASK_SIZE
, &hwpoison_walk_ops
,
884 if (ret
== 1 && priv
.tk
.addr
)
885 kill_proc(&priv
.tk
, pfn
, flags
);
888 mmap_read_unlock(p
->mm
);
889 return ret
> 0 ? -EHWPOISON
: -EFAULT
;
893 * MF_IGNORED - The m-f() handler marks the page as PG_hwpoisoned'ed.
894 * But it could not do more to isolate the page from being accessed again,
895 * nor does it kill the process. This is extremely rare and one of the
896 * potential causes is that the page state has been changed due to
897 * underlying race condition. This is the most severe outcomes.
899 * MF_FAILED - The m-f() handler marks the page as PG_hwpoisoned'ed.
900 * It should have killed the process, but it can't isolate the page,
901 * due to conditions such as extra pin, unmap failure, etc. Accessing
902 * the page again may trigger another MCE and the process will be killed
903 * by the m-f() handler immediately.
905 * MF_DELAYED - The m-f() handler marks the page as PG_hwpoisoned'ed.
906 * The page is unmapped, and is removed from the LRU or file mapping.
907 * An attempt to access the page again will trigger page fault and the
908 * PF handler will kill the process.
910 * MF_RECOVERED - The m-f() handler marks the page as PG_hwpoisoned'ed.
911 * The page has been completely isolated, that is, unmapped, taken out of
912 * the buddy system, or hole-punnched out of the file mapping.
914 static const char *action_name
[] = {
915 [MF_IGNORED
] = "Ignored",
916 [MF_FAILED
] = "Failed",
917 [MF_DELAYED
] = "Delayed",
918 [MF_RECOVERED
] = "Recovered",
921 static const char * const action_page_types
[] = {
922 [MF_MSG_KERNEL
] = "reserved kernel page",
923 [MF_MSG_KERNEL_HIGH_ORDER
] = "high-order kernel page",
924 [MF_MSG_HUGE
] = "huge page",
925 [MF_MSG_FREE_HUGE
] = "free huge page",
926 [MF_MSG_GET_HWPOISON
] = "get hwpoison page",
927 [MF_MSG_UNMAP_FAILED
] = "unmapping failed page",
928 [MF_MSG_DIRTY_SWAPCACHE
] = "dirty swapcache page",
929 [MF_MSG_CLEAN_SWAPCACHE
] = "clean swapcache page",
930 [MF_MSG_DIRTY_MLOCKED_LRU
] = "dirty mlocked LRU page",
931 [MF_MSG_CLEAN_MLOCKED_LRU
] = "clean mlocked LRU page",
932 [MF_MSG_DIRTY_UNEVICTABLE_LRU
] = "dirty unevictable LRU page",
933 [MF_MSG_CLEAN_UNEVICTABLE_LRU
] = "clean unevictable LRU page",
934 [MF_MSG_DIRTY_LRU
] = "dirty LRU page",
935 [MF_MSG_CLEAN_LRU
] = "clean LRU page",
936 [MF_MSG_TRUNCATED_LRU
] = "already truncated LRU page",
937 [MF_MSG_BUDDY
] = "free buddy page",
938 [MF_MSG_DAX
] = "dax page",
939 [MF_MSG_UNSPLIT_THP
] = "unsplit thp",
940 [MF_MSG_ALREADY_POISONED
] = "already poisoned",
941 [MF_MSG_UNKNOWN
] = "unknown page",
945 * XXX: It is possible that a page is isolated from LRU cache,
946 * and then kept in swap cache or failed to remove from page cache.
947 * The page count will stop it from being freed by unpoison.
948 * Stress tests should be aware of this memory leak problem.
950 static int delete_from_lru_cache(struct folio
*folio
)
952 if (folio_isolate_lru(folio
)) {
954 * Clear sensible page flags, so that the buddy system won't
955 * complain when the folio is unpoison-and-freed.
957 folio_clear_active(folio
);
958 folio_clear_unevictable(folio
);
961 * Poisoned page might never drop its ref count to 0 so we have
962 * to uncharge it manually from its memcg.
964 mem_cgroup_uncharge(folio
);
967 * drop the refcount elevated by folio_isolate_lru()
975 static int truncate_error_folio(struct folio
*folio
, unsigned long pfn
,
976 struct address_space
*mapping
)
980 if (mapping
->a_ops
->error_remove_folio
) {
981 int err
= mapping
->a_ops
->error_remove_folio(mapping
, folio
);
984 pr_info("%#lx: Failed to punch page: %d\n", pfn
, err
);
985 else if (!filemap_release_folio(folio
, GFP_NOIO
))
986 pr_info("%#lx: failed to release buffers\n", pfn
);
991 * If the file system doesn't support it just invalidate
992 * This fails on dirty or anything with private pages
994 if (mapping_evict_folio(mapping
, folio
))
997 pr_info("%#lx: Failed to invalidate\n", pfn
);
1006 enum mf_action_page_type type
;
1008 /* Callback ->action() has to unlock the relevant page inside it. */
1009 int (*action
)(struct page_state
*ps
, struct page
*p
);
1013 * Return true if page is still referenced by others, otherwise return
1016 * The extra_pins is true when one extra refcount is expected.
1018 static bool has_extra_refcount(struct page_state
*ps
, struct page
*p
,
1021 int count
= page_count(p
) - 1;
1024 count
-= folio_nr_pages(page_folio(p
));
1027 pr_err("%#lx: %s still referenced by %d users\n",
1028 page_to_pfn(p
), action_page_types
[ps
->type
], count
);
1036 * Error hit kernel page.
1037 * Do nothing, try to be lucky and not touch this instead. For a few cases we
1038 * could be more sophisticated.
1040 static int me_kernel(struct page_state
*ps
, struct page
*p
)
1047 * Page in unknown state. Do nothing.
1048 * This is a catch-all in case we fail to make sense of the page state.
1050 static int me_unknown(struct page_state
*ps
, struct page
*p
)
1052 pr_err("%#lx: Unknown page state\n", page_to_pfn(p
));
1058 * Clean (or cleaned) page cache page.
1060 static int me_pagecache_clean(struct page_state
*ps
, struct page
*p
)
1062 struct folio
*folio
= page_folio(p
);
1064 struct address_space
*mapping
;
1067 delete_from_lru_cache(folio
);
1070 * For anonymous folios the only reference left
1071 * should be the one m_f() holds.
1073 if (folio_test_anon(folio
)) {
1079 * Now truncate the page in the page cache. This is really
1080 * more like a "temporary hole punch"
1081 * Don't do this for block devices when someone else
1082 * has a reference, because it could be file system metadata
1083 * and that's not safe to truncate.
1085 mapping
= folio_mapping(folio
);
1087 /* Folio has been torn down in the meantime */
1093 * The shmem page is kept in page cache instead of truncating
1094 * so is expected to have an extra refcount after error-handling.
1096 extra_pins
= shmem_mapping(mapping
);
1099 * Truncation is a bit tricky. Enable it per file system for now.
1101 * Open: to take i_rwsem or not for this? Right now we don't.
1103 ret
= truncate_error_folio(folio
, page_to_pfn(p
), mapping
);
1104 if (has_extra_refcount(ps
, p
, extra_pins
))
1108 folio_unlock(folio
);
1114 * Dirty pagecache page
1115 * Issues: when the error hit a hole page the error is not properly
1118 static int me_pagecache_dirty(struct page_state
*ps
, struct page
*p
)
1120 struct folio
*folio
= page_folio(p
);
1121 struct address_space
*mapping
= folio_mapping(folio
);
1123 /* TBD: print more information about the file. */
1126 * IO error will be reported by write(), fsync(), etc.
1127 * who check the mapping.
1128 * This way the application knows that something went
1129 * wrong with its dirty file data.
1131 mapping_set_error(mapping
, -EIO
);
1134 return me_pagecache_clean(ps
, p
);
1138 * Clean and dirty swap cache.
1140 * Dirty swap cache page is tricky to handle. The page could live both in page
1141 * table and swap cache(ie. page is freshly swapped in). So it could be
1142 * referenced concurrently by 2 types of PTEs:
1143 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1144 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1146 * - clear dirty bit to prevent IO
1148 * - but keep in the swap cache, so that when we return to it on
1149 * a later page fault, we know the application is accessing
1150 * corrupted data and shall be killed (we installed simple
1151 * interception code in do_swap_page to catch it).
1153 * Clean swap cache pages can be directly isolated. A later page fault will
1154 * bring in the known good data from disk.
1156 static int me_swapcache_dirty(struct page_state
*ps
, struct page
*p
)
1158 struct folio
*folio
= page_folio(p
);
1160 bool extra_pins
= false;
1162 folio_clear_dirty(folio
);
1163 /* Trigger EIO in shmem: */
1164 folio_clear_uptodate(folio
);
1166 ret
= delete_from_lru_cache(folio
) ? MF_FAILED
: MF_DELAYED
;
1167 folio_unlock(folio
);
1169 if (ret
== MF_DELAYED
)
1172 if (has_extra_refcount(ps
, p
, extra_pins
))
1178 static int me_swapcache_clean(struct page_state
*ps
, struct page
*p
)
1180 struct folio
*folio
= page_folio(p
);
1183 delete_from_swap_cache(folio
);
1185 ret
= delete_from_lru_cache(folio
) ? MF_FAILED
: MF_RECOVERED
;
1186 folio_unlock(folio
);
1188 if (has_extra_refcount(ps
, p
, false))
1195 * Huge pages. Needs work.
1197 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1198 * To narrow down kill region to one page, we need to break up pmd.
1200 static int me_huge_page(struct page_state
*ps
, struct page
*p
)
1202 struct folio
*folio
= page_folio(p
);
1204 struct address_space
*mapping
;
1205 bool extra_pins
= false;
1207 mapping
= folio_mapping(folio
);
1209 res
= truncate_error_folio(folio
, page_to_pfn(p
), mapping
);
1210 /* The page is kept in page cache. */
1212 folio_unlock(folio
);
1214 folio_unlock(folio
);
1216 * migration entry prevents later access on error hugepage,
1217 * so we can free and dissolve it into buddy to save healthy
1221 if (__page_handle_poison(p
) > 0) {
1229 if (has_extra_refcount(ps
, p
, extra_pins
))
1236 * Various page states we can handle.
1238 * A page state is defined by its current page->flags bits.
1239 * The table matches them in order and calls the right handler.
1241 * This is quite tricky because we can access page at any time
1242 * in its live cycle, so all accesses have to be extremely careful.
1244 * This is not complete. More states could be added.
1245 * For any missing state don't attempt recovery.
1248 #define dirty (1UL << PG_dirty)
1249 #define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1250 #define unevict (1UL << PG_unevictable)
1251 #define mlock (1UL << PG_mlocked)
1252 #define lru (1UL << PG_lru)
1253 #define head (1UL << PG_head)
1254 #define reserved (1UL << PG_reserved)
1256 static struct page_state error_states
[] = {
1257 { reserved
, reserved
, MF_MSG_KERNEL
, me_kernel
},
1259 * free pages are specially detected outside this table:
1260 * PG_buddy pages only make a small fraction of all free pages.
1263 { head
, head
, MF_MSG_HUGE
, me_huge_page
},
1265 { sc
|dirty
, sc
|dirty
, MF_MSG_DIRTY_SWAPCACHE
, me_swapcache_dirty
},
1266 { sc
|dirty
, sc
, MF_MSG_CLEAN_SWAPCACHE
, me_swapcache_clean
},
1268 { mlock
|dirty
, mlock
|dirty
, MF_MSG_DIRTY_MLOCKED_LRU
, me_pagecache_dirty
},
1269 { mlock
|dirty
, mlock
, MF_MSG_CLEAN_MLOCKED_LRU
, me_pagecache_clean
},
1271 { unevict
|dirty
, unevict
|dirty
, MF_MSG_DIRTY_UNEVICTABLE_LRU
, me_pagecache_dirty
},
1272 { unevict
|dirty
, unevict
, MF_MSG_CLEAN_UNEVICTABLE_LRU
, me_pagecache_clean
},
1274 { lru
|dirty
, lru
|dirty
, MF_MSG_DIRTY_LRU
, me_pagecache_dirty
},
1275 { lru
|dirty
, lru
, MF_MSG_CLEAN_LRU
, me_pagecache_clean
},
1278 * Catchall entry: must be at end.
1280 { 0, 0, MF_MSG_UNKNOWN
, me_unknown
},
1291 static void update_per_node_mf_stats(unsigned long pfn
,
1292 enum mf_result result
)
1294 int nid
= MAX_NUMNODES
;
1295 struct memory_failure_stats
*mf_stats
= NULL
;
1297 nid
= pfn_to_nid(pfn
);
1298 if (unlikely(nid
< 0 || nid
>= MAX_NUMNODES
)) {
1299 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn
, nid
);
1303 mf_stats
= &NODE_DATA(nid
)->mf_stats
;
1306 ++mf_stats
->ignored
;
1312 ++mf_stats
->delayed
;
1315 ++mf_stats
->recovered
;
1318 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result
);
1325 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1326 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1328 static int action_result(unsigned long pfn
, enum mf_action_page_type type
,
1329 enum mf_result result
)
1331 trace_memory_failure_event(pfn
, type
, result
);
1333 num_poisoned_pages_inc(pfn
);
1335 update_per_node_mf_stats(pfn
, result
);
1337 pr_err("%#lx: recovery action for %s: %s\n",
1338 pfn
, action_page_types
[type
], action_name
[result
]);
1340 return (result
== MF_RECOVERED
|| result
== MF_DELAYED
) ? 0 : -EBUSY
;
1343 static int page_action(struct page_state
*ps
, struct page
*p
,
1348 /* page p should be unlocked after returning from ps->action(). */
1349 result
= ps
->action(ps
, p
);
1351 /* Could do more checks here if page looks ok */
1353 * Could adjust zone counters here to correct for the missing page.
1356 return action_result(pfn
, ps
->type
, result
);
1359 static inline bool PageHWPoisonTakenOff(struct page
*page
)
1361 return PageHWPoison(page
) && page_private(page
) == MAGIC_HWPOISON
;
1364 void SetPageHWPoisonTakenOff(struct page
*page
)
1366 set_page_private(page
, MAGIC_HWPOISON
);
1369 void ClearPageHWPoisonTakenOff(struct page
*page
)
1371 if (PageHWPoison(page
))
1372 set_page_private(page
, 0);
1376 * Return true if a page type of a given page is supported by hwpoison
1377 * mechanism (while handling could fail), otherwise false. This function
1378 * does not return true for hugetlb or device memory pages, so it's assumed
1379 * to be called only in the context where we never have such pages.
1381 static inline bool HWPoisonHandlable(struct page
*page
, unsigned long flags
)
1386 /* Soft offline could migrate non-LRU movable pages */
1387 if ((flags
& MF_SOFT_OFFLINE
) && __PageMovable(page
))
1390 return PageLRU(page
) || is_free_buddy_page(page
);
1393 static int __get_hwpoison_page(struct page
*page
, unsigned long flags
)
1395 struct folio
*folio
= page_folio(page
);
1397 bool hugetlb
= false;
1399 ret
= get_hwpoison_hugetlb_folio(folio
, &hugetlb
, false);
1401 /* Make sure hugetlb demotion did not happen from under us. */
1402 if (folio
== page_folio(page
))
1406 folio
= page_folio(page
);
1411 * This check prevents from calling folio_try_get() for any
1412 * unsupported type of folio in order to reduce the risk of unexpected
1413 * races caused by taking a folio refcount.
1415 if (!HWPoisonHandlable(&folio
->page
, flags
))
1418 if (folio_try_get(folio
)) {
1419 if (folio
== page_folio(page
))
1422 pr_info("%#lx cannot catch tail\n", page_to_pfn(page
));
1429 #define GET_PAGE_MAX_RETRY_NUM 3
1431 static int get_any_page(struct page
*p
, unsigned long flags
)
1433 int ret
= 0, pass
= 0;
1434 bool count_increased
= false;
1436 if (flags
& MF_COUNT_INCREASED
)
1437 count_increased
= true;
1440 if (!count_increased
) {
1441 ret
= __get_hwpoison_page(p
, flags
);
1443 if (page_count(p
)) {
1444 /* We raced with an allocation, retry. */
1445 if (pass
++ < GET_PAGE_MAX_RETRY_NUM
)
1448 } else if (!PageHuge(p
) && !is_free_buddy_page(p
)) {
1449 /* We raced with put_page, retry. */
1450 if (pass
++ < GET_PAGE_MAX_RETRY_NUM
)
1455 } else if (ret
== -EBUSY
) {
1457 * We raced with (possibly temporary) unhandlable
1469 if (PageHuge(p
) || HWPoisonHandlable(p
, flags
)) {
1473 * A page we cannot handle. Check whether we can turn
1474 * it into something we can handle.
1476 if (pass
++ < GET_PAGE_MAX_RETRY_NUM
) {
1479 count_increased
= false;
1487 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p
));
1492 static int __get_unpoison_page(struct page
*page
)
1494 struct folio
*folio
= page_folio(page
);
1496 bool hugetlb
= false;
1498 ret
= get_hwpoison_hugetlb_folio(folio
, &hugetlb
, true);
1500 /* Make sure hugetlb demotion did not happen from under us. */
1501 if (folio
== page_folio(page
))
1508 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1509 * but also isolated from buddy freelist, so need to identify the
1510 * state and have to cancel both operations to unpoison.
1512 if (PageHWPoisonTakenOff(page
))
1515 return get_page_unless_zero(page
) ? 1 : 0;
1519 * get_hwpoison_page() - Get refcount for memory error handling
1520 * @p: Raw error page (hit by memory error)
1521 * @flags: Flags controlling behavior of error handling
1523 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1524 * error on it, after checking that the error page is in a well-defined state
1525 * (defined as a page-type we can successfully handle the memory error on it,
1526 * such as LRU page and hugetlb page).
1528 * Memory error handling could be triggered at any time on any type of page,
1529 * so it's prone to race with typical memory management lifecycle (like
1530 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1531 * extra care for the error page's state (as done in __get_hwpoison_page()),
1532 * and has some retry logic in get_any_page().
1534 * When called from unpoison_memory(), the caller should already ensure that
1535 * the given page has PG_hwpoison. So it's never reused for other page
1536 * allocations, and __get_unpoison_page() never races with them.
1538 * Return: 0 on failure or free buddy (hugetlb) page,
1539 * 1 on success for in-use pages in a well-defined state,
1540 * -EIO for pages on which we can not handle memory errors,
1541 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1542 * operations like allocation and free,
1543 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1545 static int get_hwpoison_page(struct page
*p
, unsigned long flags
)
1549 zone_pcp_disable(page_zone(p
));
1550 if (flags
& MF_UNPOISON
)
1551 ret
= __get_unpoison_page(p
);
1553 ret
= get_any_page(p
, flags
);
1554 zone_pcp_enable(page_zone(p
));
1559 void unmap_poisoned_folio(struct folio
*folio
, enum ttu_flags ttu
)
1561 if (folio_test_hugetlb(folio
) && !folio_test_anon(folio
)) {
1562 struct address_space
*mapping
;
1565 * For hugetlb folios in shared mappings, try_to_unmap
1566 * could potentially call huge_pmd_unshare. Because of
1567 * this, take semaphore in write mode here and set
1568 * TTU_RMAP_LOCKED to indicate we have taken the lock
1569 * at this higher level.
1571 mapping
= hugetlb_folio_mapping_lock_write(folio
);
1573 pr_info("%#lx: could not lock mapping for mapped hugetlb folio\n",
1578 try_to_unmap(folio
, ttu
|TTU_RMAP_LOCKED
);
1579 i_mmap_unlock_write(mapping
);
1581 try_to_unmap(folio
, ttu
);
1586 * Do all that is necessary to remove user space mappings. Unmap
1587 * the pages and send SIGBUS to the processes if the data was dirty.
1589 static bool hwpoison_user_mappings(struct folio
*folio
, struct page
*p
,
1590 unsigned long pfn
, int flags
)
1592 enum ttu_flags ttu
= TTU_IGNORE_MLOCK
| TTU_SYNC
| TTU_HWPOISON
;
1593 struct address_space
*mapping
;
1597 bool mlocked
= folio_test_mlocked(folio
);
1600 * Here we are interested only in user-mapped pages, so skip any
1601 * other types of pages.
1603 if (folio_test_reserved(folio
) || folio_test_slab(folio
) ||
1604 folio_test_pgtable(folio
) || folio_test_offline(folio
))
1606 if (!(folio_test_lru(folio
) || folio_test_hugetlb(folio
)))
1610 * This check implies we don't kill processes if their pages
1611 * are in the swap cache early. Those are always late kills.
1613 if (!folio_mapped(folio
))
1616 if (folio_test_swapcache(folio
)) {
1617 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn
);
1618 ttu
&= ~TTU_HWPOISON
;
1622 * Propagate the dirty bit from PTEs to struct page first, because we
1623 * need this to decide if we should kill or just drop the page.
1624 * XXX: the dirty test could be racy: set_page_dirty() may not always
1625 * be called inside page lock (it's recommended but not enforced).
1627 mapping
= folio_mapping(folio
);
1628 if (!(flags
& MF_MUST_KILL
) && !folio_test_dirty(folio
) && mapping
&&
1629 mapping_can_writeback(mapping
)) {
1630 if (folio_mkclean(folio
)) {
1631 folio_set_dirty(folio
);
1633 ttu
&= ~TTU_HWPOISON
;
1634 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1640 * First collect all the processes that have the page
1641 * mapped in dirty form. This has to be done before try_to_unmap,
1642 * because ttu takes the rmap data structures down.
1644 collect_procs(folio
, p
, &tokill
, flags
& MF_ACTION_REQUIRED
);
1646 unmap_poisoned_folio(folio
, ttu
);
1648 unmap_success
= !folio_mapped(folio
);
1650 pr_err("%#lx: failed to unmap page (folio mapcount=%d)\n",
1651 pfn
, folio_mapcount(folio
));
1654 * try_to_unmap() might put mlocked page in lru cache, so call
1655 * shake_page() again to ensure that it's flushed.
1661 * Now that the dirty bit has been propagated to the
1662 * struct page and all unmaps done we can decide if
1663 * killing is needed or not. Only kill when the page
1664 * was dirty or the process is not restartable,
1665 * otherwise the tokill list is merely
1666 * freed. When there was a problem unmapping earlier
1667 * use a more force-full uncatchable kill to prevent
1668 * any accesses to the poisoned memory.
1670 forcekill
= folio_test_dirty(folio
) || (flags
& MF_MUST_KILL
) ||
1672 kill_procs(&tokill
, forcekill
, pfn
, flags
);
1674 return unmap_success
;
1677 static int identify_page_state(unsigned long pfn
, struct page
*p
,
1678 unsigned long page_flags
)
1680 struct page_state
*ps
;
1683 * The first check uses the current page flags which may not have any
1684 * relevant information. The second check with the saved page flags is
1685 * carried out only if the first check can't determine the page status.
1687 for (ps
= error_states
;; ps
++)
1688 if ((p
->flags
& ps
->mask
) == ps
->res
)
1691 page_flags
|= (p
->flags
& (1UL << PG_dirty
));
1694 for (ps
= error_states
;; ps
++)
1695 if ((page_flags
& ps
->mask
) == ps
->res
)
1697 return page_action(ps
, p
, pfn
);
1701 * When 'release' is 'false', it means that if thp split has failed,
1702 * there is still more to do, hence the page refcount we took earlier
1705 static int try_to_split_thp_page(struct page
*page
, bool release
)
1710 ret
= split_huge_page(page
);
1719 static void unmap_and_kill(struct list_head
*to_kill
, unsigned long pfn
,
1720 struct address_space
*mapping
, pgoff_t index
, int flags
)
1723 unsigned long size
= 0;
1725 list_for_each_entry(tk
, to_kill
, nd
)
1727 size
= max(size
, 1UL << tk
->size_shift
);
1731 * Unmap the largest mapping to avoid breaking up device-dax
1732 * mappings which are constant size. The actual size of the
1733 * mapping being torn down is communicated in siginfo, see
1736 loff_t start
= ((loff_t
)index
<< PAGE_SHIFT
) & ~(size
- 1);
1738 unmap_mapping_range(mapping
, start
, size
, 0);
1741 kill_procs(to_kill
, flags
& MF_MUST_KILL
, pfn
, flags
);
1745 * Only dev_pagemap pages get here, such as fsdax when the filesystem
1746 * either do not claim or fails to claim a hwpoison event, or devdax.
1747 * The fsdax pages are initialized per base page, and the devdax pages
1748 * could be initialized either as base pages, or as compound pages with
1749 * vmemmap optimization enabled. Devdax is simplistic in its dealing with
1750 * hwpoison, such that, if a subpage of a compound page is poisoned,
1751 * simply mark the compound head page is by far sufficient.
1753 static int mf_generic_kill_procs(unsigned long long pfn
, int flags
,
1754 struct dev_pagemap
*pgmap
)
1756 struct folio
*folio
= pfn_folio(pfn
);
1762 * Prevent the inode from being freed while we are interrogating
1763 * the address_space, typically this would be handled by
1764 * lock_page(), but dax pages do not use the page lock. This
1765 * also prevents changes to the mapping of this pfn until
1766 * poison signaling is complete.
1768 cookie
= dax_lock_folio(folio
);
1772 if (hwpoison_filter(&folio
->page
)) {
1777 switch (pgmap
->type
) {
1778 case MEMORY_DEVICE_PRIVATE
:
1779 case MEMORY_DEVICE_COHERENT
:
1781 * TODO: Handle device pages which may need coordination
1782 * with device-side memory.
1791 * Use this flag as an indication that the dax page has been
1792 * remapped UC to prevent speculative consumption of poison.
1794 SetPageHWPoison(&folio
->page
);
1797 * Unlike System-RAM there is no possibility to swap in a
1798 * different physical page at a given virtual address, so all
1799 * userspace consumption of ZONE_DEVICE memory necessitates
1800 * SIGBUS (i.e. MF_MUST_KILL)
1802 flags
|= MF_ACTION_REQUIRED
| MF_MUST_KILL
;
1803 collect_procs(folio
, &folio
->page
, &to_kill
, true);
1805 unmap_and_kill(&to_kill
, pfn
, folio
->mapping
, folio
->index
, flags
);
1807 dax_unlock_folio(folio
, cookie
);
1811 #ifdef CONFIG_FS_DAX
1813 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1814 * @mapping: address_space of the file in use
1815 * @index: start pgoff of the range within the file
1816 * @count: length of the range, in unit of PAGE_SIZE
1817 * @mf_flags: memory failure flags
1819 int mf_dax_kill_procs(struct address_space
*mapping
, pgoff_t index
,
1820 unsigned long count
, int mf_flags
)
1825 size_t end
= index
+ count
;
1826 bool pre_remove
= mf_flags
& MF_MEM_PRE_REMOVE
;
1828 mf_flags
|= MF_ACTION_REQUIRED
| MF_MUST_KILL
;
1830 for (; index
< end
; index
++) {
1832 cookie
= dax_lock_mapping_entry(mapping
, index
, &page
);
1839 SetPageHWPoison(page
);
1842 * The pre_remove case is revoking access, the memory is still
1843 * good and could theoretically be put back into service.
1845 collect_procs_fsdax(page
, mapping
, index
, &to_kill
, pre_remove
);
1846 unmap_and_kill(&to_kill
, page_to_pfn(page
), mapping
,
1849 dax_unlock_mapping_entry(mapping
, index
, cookie
);
1853 EXPORT_SYMBOL_GPL(mf_dax_kill_procs
);
1854 #endif /* CONFIG_FS_DAX */
1856 #ifdef CONFIG_HUGETLB_PAGE
1859 * Struct raw_hwp_page represents information about "raw error page",
1860 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1862 struct raw_hwp_page
{
1863 struct llist_node node
;
1867 static inline struct llist_head
*raw_hwp_list_head(struct folio
*folio
)
1869 return (struct llist_head
*)&folio
->_hugetlb_hwpoison
;
1872 bool is_raw_hwpoison_page_in_hugepage(struct page
*page
)
1874 struct llist_head
*raw_hwp_head
;
1875 struct raw_hwp_page
*p
;
1876 struct folio
*folio
= page_folio(page
);
1879 if (!folio_test_hwpoison(folio
))
1882 if (!folio_test_hugetlb(folio
))
1883 return PageHWPoison(page
);
1886 * When RawHwpUnreliable is set, kernel lost track of which subpages
1887 * are HWPOISON. So return as if ALL subpages are HWPOISONed.
1889 if (folio_test_hugetlb_raw_hwp_unreliable(folio
))
1892 mutex_lock(&mf_mutex
);
1894 raw_hwp_head
= raw_hwp_list_head(folio
);
1895 llist_for_each_entry(p
, raw_hwp_head
->first
, node
) {
1896 if (page
== p
->page
) {
1902 mutex_unlock(&mf_mutex
);
1907 static unsigned long __folio_free_raw_hwp(struct folio
*folio
, bool move_flag
)
1909 struct llist_node
*head
;
1910 struct raw_hwp_page
*p
, *next
;
1911 unsigned long count
= 0;
1913 head
= llist_del_all(raw_hwp_list_head(folio
));
1914 llist_for_each_entry_safe(p
, next
, head
, node
) {
1916 SetPageHWPoison(p
->page
);
1918 num_poisoned_pages_sub(page_to_pfn(p
->page
), 1);
1925 static int folio_set_hugetlb_hwpoison(struct folio
*folio
, struct page
*page
)
1927 struct llist_head
*head
;
1928 struct raw_hwp_page
*raw_hwp
;
1929 struct raw_hwp_page
*p
;
1930 int ret
= folio_test_set_hwpoison(folio
) ? -EHWPOISON
: 0;
1933 * Once the hwpoison hugepage has lost reliable raw error info,
1934 * there is little meaning to keep additional error info precisely,
1935 * so skip to add additional raw error info.
1937 if (folio_test_hugetlb_raw_hwp_unreliable(folio
))
1939 head
= raw_hwp_list_head(folio
);
1940 llist_for_each_entry(p
, head
->first
, node
) {
1941 if (p
->page
== page
)
1945 raw_hwp
= kmalloc(sizeof(struct raw_hwp_page
), GFP_ATOMIC
);
1947 raw_hwp
->page
= page
;
1948 llist_add(&raw_hwp
->node
, head
);
1949 /* the first error event will be counted in action_result(). */
1951 num_poisoned_pages_inc(page_to_pfn(page
));
1954 * Failed to save raw error info. We no longer trace all
1955 * hwpoisoned subpages, and we need refuse to free/dissolve
1956 * this hwpoisoned hugepage.
1958 folio_set_hugetlb_raw_hwp_unreliable(folio
);
1960 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1961 * used any more, so free it.
1963 __folio_free_raw_hwp(folio
, false);
1968 static unsigned long folio_free_raw_hwp(struct folio
*folio
, bool move_flag
)
1971 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1972 * pages for tail pages are required but they don't exist.
1974 if (move_flag
&& folio_test_hugetlb_vmemmap_optimized(folio
))
1978 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1981 if (folio_test_hugetlb_raw_hwp_unreliable(folio
))
1984 return __folio_free_raw_hwp(folio
, move_flag
);
1987 void folio_clear_hugetlb_hwpoison(struct folio
*folio
)
1989 if (folio_test_hugetlb_raw_hwp_unreliable(folio
))
1991 if (folio_test_hugetlb_vmemmap_optimized(folio
))
1993 folio_clear_hwpoison(folio
);
1994 folio_free_raw_hwp(folio
, true);
1998 * Called from hugetlb code with hugetlb_lock held.
2002 * 1 - in-use hugepage
2003 * 2 - not a hugepage
2004 * -EBUSY - the hugepage is busy (try to retry)
2005 * -EHWPOISON - the hugepage is already hwpoisoned
2007 int __get_huge_page_for_hwpoison(unsigned long pfn
, int flags
,
2008 bool *migratable_cleared
)
2010 struct page
*page
= pfn_to_page(pfn
);
2011 struct folio
*folio
= page_folio(page
);
2012 int ret
= 2; /* fallback to normal page handling */
2013 bool count_increased
= false;
2015 if (!folio_test_hugetlb(folio
))
2018 if (flags
& MF_COUNT_INCREASED
) {
2020 count_increased
= true;
2021 } else if (folio_test_hugetlb_freed(folio
)) {
2023 } else if (folio_test_hugetlb_migratable(folio
)) {
2024 ret
= folio_try_get(folio
);
2026 count_increased
= true;
2029 if (!(flags
& MF_NO_RETRY
))
2033 if (folio_set_hugetlb_hwpoison(folio
, page
)) {
2039 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
2040 * from being migrated by memory hotremove.
2042 if (count_increased
&& folio_test_hugetlb_migratable(folio
)) {
2043 folio_clear_hugetlb_migratable(folio
);
2044 *migratable_cleared
= true;
2049 if (count_increased
)
2055 * Taking refcount of hugetlb pages needs extra care about race conditions
2056 * with basic operations like hugepage allocation/free/demotion.
2057 * So some of prechecks for hwpoison (pinning, and testing/setting
2058 * PageHWPoison) should be done in single hugetlb_lock range.
2060 static int try_memory_failure_hugetlb(unsigned long pfn
, int flags
, int *hugetlb
)
2063 struct page
*p
= pfn_to_page(pfn
);
2064 struct folio
*folio
;
2065 unsigned long page_flags
;
2066 bool migratable_cleared
= false;
2070 res
= get_huge_page_for_hwpoison(pfn
, flags
, &migratable_cleared
);
2071 if (res
== 2) { /* fallback to normal page handling */
2074 } else if (res
== -EHWPOISON
) {
2075 pr_err("%#lx: already hardware poisoned\n", pfn
);
2076 if (flags
& MF_ACTION_REQUIRED
) {
2077 folio
= page_folio(p
);
2078 res
= kill_accessing_process(current
, folio_pfn(folio
), flags
);
2079 action_result(pfn
, MF_MSG_ALREADY_POISONED
, MF_FAILED
);
2082 } else if (res
== -EBUSY
) {
2083 if (!(flags
& MF_NO_RETRY
)) {
2084 flags
|= MF_NO_RETRY
;
2087 return action_result(pfn
, MF_MSG_GET_HWPOISON
, MF_IGNORED
);
2090 folio
= page_folio(p
);
2093 if (hwpoison_filter(p
)) {
2094 folio_clear_hugetlb_hwpoison(folio
);
2095 if (migratable_cleared
)
2096 folio_set_hugetlb_migratable(folio
);
2097 folio_unlock(folio
);
2104 * Handling free hugepage. The possible race with hugepage allocation
2105 * or demotion can be prevented by PageHWPoison flag.
2108 folio_unlock(folio
);
2109 if (__page_handle_poison(p
) > 0) {
2115 return action_result(pfn
, MF_MSG_FREE_HUGE
, res
);
2118 page_flags
= folio
->flags
;
2120 if (!hwpoison_user_mappings(folio
, p
, pfn
, flags
)) {
2121 folio_unlock(folio
);
2122 return action_result(pfn
, MF_MSG_UNMAP_FAILED
, MF_FAILED
);
2125 return identify_page_state(pfn
, p
, page_flags
);
2129 static inline int try_memory_failure_hugetlb(unsigned long pfn
, int flags
, int *hugetlb
)
2134 static inline unsigned long folio_free_raw_hwp(struct folio
*folio
, bool flag
)
2138 #endif /* CONFIG_HUGETLB_PAGE */
2140 /* Drop the extra refcount in case we come from madvise() */
2141 static void put_ref_page(unsigned long pfn
, int flags
)
2143 if (!(flags
& MF_COUNT_INCREASED
))
2146 put_page(pfn_to_page(pfn
));
2149 static int memory_failure_dev_pagemap(unsigned long pfn
, int flags
,
2150 struct dev_pagemap
*pgmap
)
2154 /* device metadata space is not recoverable */
2155 if (!pgmap_pfn_valid(pgmap
, pfn
))
2159 * Call driver's implementation to handle the memory failure, otherwise
2160 * fall back to generic handler.
2162 if (pgmap_has_memory_failure(pgmap
)) {
2163 rc
= pgmap
->ops
->memory_failure(pgmap
, pfn
, 1, flags
);
2165 * Fall back to generic handler too if operation is not
2166 * supported inside the driver/device/filesystem.
2168 if (rc
!= -EOPNOTSUPP
)
2172 rc
= mf_generic_kill_procs(pfn
, flags
, pgmap
);
2174 /* drop pgmap ref acquired in caller */
2175 put_dev_pagemap(pgmap
);
2176 if (rc
!= -EOPNOTSUPP
)
2177 action_result(pfn
, MF_MSG_DAX
, rc
? MF_FAILED
: MF_RECOVERED
);
2182 * The calling condition is as such: thp split failed, page might have
2183 * been RDMA pinned, not much can be done for recovery.
2184 * But a SIGBUS should be delivered with vaddr provided so that the user
2185 * application has a chance to recover. Also, application processes'
2186 * election for MCE early killed will be honored.
2188 static void kill_procs_now(struct page
*p
, unsigned long pfn
, int flags
,
2189 struct folio
*folio
)
2193 collect_procs(folio
, p
, &tokill
, flags
& MF_ACTION_REQUIRED
);
2194 kill_procs(&tokill
, true, pfn
, flags
);
2198 * memory_failure - Handle memory failure of a page.
2199 * @pfn: Page Number of the corrupted page
2200 * @flags: fine tune action taken
2202 * This function is called by the low level machine check code
2203 * of an architecture when it detects hardware memory corruption
2204 * of a page. It tries its best to recover, which includes
2205 * dropping pages, killing processes etc.
2207 * The function is primarily of use for corruptions that
2208 * happen outside the current execution context (e.g. when
2209 * detected by a background scrubber)
2211 * Must run in process context (e.g. a work queue) with interrupts
2212 * enabled and no spinlocks held.
2214 * Return: 0 for successfully handled the memory error,
2215 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2216 * < 0(except -EOPNOTSUPP) on failure.
2218 int memory_failure(unsigned long pfn
, int flags
)
2221 struct folio
*folio
;
2222 struct dev_pagemap
*pgmap
;
2224 unsigned long page_flags
;
2228 if (!sysctl_memory_failure_recovery
)
2229 panic("Memory failure on page %lx", pfn
);
2231 mutex_lock(&mf_mutex
);
2233 if (!(flags
& MF_SW_SIMULATED
))
2234 hw_memory_failure
= true;
2236 p
= pfn_to_online_page(pfn
);
2238 res
= arch_memory_failure(pfn
, flags
);
2242 if (pfn_valid(pfn
)) {
2243 pgmap
= get_dev_pagemap(pfn
, NULL
);
2244 put_ref_page(pfn
, flags
);
2246 res
= memory_failure_dev_pagemap(pfn
, flags
,
2251 pr_err("%#lx: memory outside kernel control\n", pfn
);
2257 res
= try_memory_failure_hugetlb(pfn
, flags
, &hugetlb
);
2261 if (TestSetPageHWPoison(p
)) {
2262 pr_err("%#lx: already hardware poisoned\n", pfn
);
2264 if (flags
& MF_ACTION_REQUIRED
)
2265 res
= kill_accessing_process(current
, pfn
, flags
);
2266 if (flags
& MF_COUNT_INCREASED
)
2268 action_result(pfn
, MF_MSG_ALREADY_POISONED
, MF_FAILED
);
2273 * We need/can do nothing about count=0 pages.
2274 * 1) it's a free page, and therefore in safe hand:
2275 * check_new_page() will be the gate keeper.
2276 * 2) it's part of a non-compound high order page.
2277 * Implies some kernel user: cannot stop them from
2278 * R/W the page; let's pray that the page has been
2279 * used and will be freed some time later.
2280 * In fact it's dangerous to directly bump up page count from 0,
2281 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2283 if (!(flags
& MF_COUNT_INCREASED
)) {
2284 res
= get_hwpoison_page(p
, flags
);
2286 if (is_free_buddy_page(p
)) {
2287 if (take_page_off_buddy(p
)) {
2291 /* We lost the race, try again */
2293 ClearPageHWPoison(p
);
2299 res
= action_result(pfn
, MF_MSG_BUDDY
, res
);
2301 res
= action_result(pfn
, MF_MSG_KERNEL_HIGH_ORDER
, MF_IGNORED
);
2304 } else if (res
< 0) {
2305 res
= action_result(pfn
, MF_MSG_GET_HWPOISON
, MF_IGNORED
);
2310 folio
= page_folio(p
);
2312 /* filter pages that are protected from hwpoison test by users */
2314 if (hwpoison_filter(p
)) {
2315 ClearPageHWPoison(p
);
2316 folio_unlock(folio
);
2321 folio_unlock(folio
);
2323 if (folio_test_large(folio
)) {
2325 * The flag must be set after the refcount is bumped
2326 * otherwise it may race with THP split.
2327 * And the flag can't be set in get_hwpoison_page() since
2328 * it is called by soft offline too and it is just called
2329 * for !MF_COUNT_INCREASED. So here seems to be the best
2332 * Don't need care about the above error handling paths for
2333 * get_hwpoison_page() since they handle either free page
2334 * or unhandlable page. The refcount is bumped iff the
2335 * page is a valid handlable page.
2337 folio_set_has_hwpoisoned(folio
);
2338 if (try_to_split_thp_page(p
, false) < 0) {
2340 kill_procs_now(p
, pfn
, flags
, folio
);
2342 action_result(pfn
, MF_MSG_UNSPLIT_THP
, MF_FAILED
);
2345 VM_BUG_ON_PAGE(!page_count(p
), p
);
2346 folio
= page_folio(p
);
2350 * We ignore non-LRU pages for good reasons.
2351 * - PG_locked is only well defined for LRU pages and a few others
2352 * - to avoid races with __SetPageLocked()
2353 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2354 * The check (unnecessarily) ignores LRU pages being isolated and
2355 * walked by the page reclaim code, however that's not a big loss.
2362 * We're only intended to deal with the non-Compound page here.
2363 * The page cannot become compound pages again as folio has been
2364 * splited and extra refcnt is held.
2366 WARN_ON(folio_test_large(folio
));
2369 * We use page flags to determine what action should be taken, but
2370 * the flags can be modified by the error containment action. One
2371 * example is an mlocked page, where PG_mlocked is cleared by
2372 * folio_remove_rmap_*() in try_to_unmap_one(). So to determine page
2373 * status correctly, we save a copy of the page flags at this time.
2375 page_flags
= folio
->flags
;
2378 * __munlock_folio() may clear a writeback folio's LRU flag without
2379 * the folio lock. We need to wait for writeback completion for this
2380 * folio or it may trigger a vfs BUG while evicting inode.
2382 if (!folio_test_lru(folio
) && !folio_test_writeback(folio
))
2383 goto identify_page_state
;
2386 * It's very difficult to mess with pages currently under IO
2387 * and in many cases impossible, so we just avoid it here.
2389 folio_wait_writeback(folio
);
2392 * Now take care of user space mappings.
2393 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2395 if (!hwpoison_user_mappings(folio
, p
, pfn
, flags
)) {
2396 res
= action_result(pfn
, MF_MSG_UNMAP_FAILED
, MF_FAILED
);
2401 * Torn down by someone else?
2403 if (folio_test_lru(folio
) && !folio_test_swapcache(folio
) &&
2404 folio
->mapping
== NULL
) {
2405 res
= action_result(pfn
, MF_MSG_TRUNCATED_LRU
, MF_IGNORED
);
2409 identify_page_state
:
2410 res
= identify_page_state(pfn
, p
, page_flags
);
2411 mutex_unlock(&mf_mutex
);
2414 folio_unlock(folio
);
2416 mutex_unlock(&mf_mutex
);
2419 EXPORT_SYMBOL_GPL(memory_failure
);
2421 #define MEMORY_FAILURE_FIFO_ORDER 4
2422 #define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2424 struct memory_failure_entry
{
2429 struct memory_failure_cpu
{
2430 DECLARE_KFIFO(fifo
, struct memory_failure_entry
,
2431 MEMORY_FAILURE_FIFO_SIZE
);
2432 raw_spinlock_t lock
;
2433 struct work_struct work
;
2436 static DEFINE_PER_CPU(struct memory_failure_cpu
, memory_failure_cpu
);
2439 * memory_failure_queue - Schedule handling memory failure of a page.
2440 * @pfn: Page Number of the corrupted page
2441 * @flags: Flags for memory failure handling
2443 * This function is called by the low level hardware error handler
2444 * when it detects hardware memory corruption of a page. It schedules
2445 * the recovering of error page, including dropping pages, killing
2448 * The function is primarily of use for corruptions that
2449 * happen outside the current execution context (e.g. when
2450 * detected by a background scrubber)
2452 * Can run in IRQ context.
2454 void memory_failure_queue(unsigned long pfn
, int flags
)
2456 struct memory_failure_cpu
*mf_cpu
;
2457 unsigned long proc_flags
;
2458 bool buffer_overflow
;
2459 struct memory_failure_entry entry
= {
2464 mf_cpu
= &get_cpu_var(memory_failure_cpu
);
2465 raw_spin_lock_irqsave(&mf_cpu
->lock
, proc_flags
);
2466 buffer_overflow
= !kfifo_put(&mf_cpu
->fifo
, entry
);
2467 if (!buffer_overflow
)
2468 schedule_work_on(smp_processor_id(), &mf_cpu
->work
);
2469 raw_spin_unlock_irqrestore(&mf_cpu
->lock
, proc_flags
);
2470 put_cpu_var(memory_failure_cpu
);
2471 if (buffer_overflow
)
2472 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2475 EXPORT_SYMBOL_GPL(memory_failure_queue
);
2477 static void memory_failure_work_func(struct work_struct
*work
)
2479 struct memory_failure_cpu
*mf_cpu
;
2480 struct memory_failure_entry entry
= { 0, };
2481 unsigned long proc_flags
;
2484 mf_cpu
= container_of(work
, struct memory_failure_cpu
, work
);
2486 raw_spin_lock_irqsave(&mf_cpu
->lock
, proc_flags
);
2487 gotten
= kfifo_get(&mf_cpu
->fifo
, &entry
);
2488 raw_spin_unlock_irqrestore(&mf_cpu
->lock
, proc_flags
);
2491 if (entry
.flags
& MF_SOFT_OFFLINE
)
2492 soft_offline_page(entry
.pfn
, entry
.flags
);
2494 memory_failure(entry
.pfn
, entry
.flags
);
2499 * Process memory_failure work queued on the specified CPU.
2500 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2502 void memory_failure_queue_kick(int cpu
)
2504 struct memory_failure_cpu
*mf_cpu
;
2506 mf_cpu
= &per_cpu(memory_failure_cpu
, cpu
);
2507 cancel_work_sync(&mf_cpu
->work
);
2508 memory_failure_work_func(&mf_cpu
->work
);
2511 static int __init
memory_failure_init(void)
2513 struct memory_failure_cpu
*mf_cpu
;
2516 for_each_possible_cpu(cpu
) {
2517 mf_cpu
= &per_cpu(memory_failure_cpu
, cpu
);
2518 raw_spin_lock_init(&mf_cpu
->lock
);
2519 INIT_KFIFO(mf_cpu
->fifo
);
2520 INIT_WORK(&mf_cpu
->work
, memory_failure_work_func
);
2523 register_sysctl_init("vm", memory_failure_table
);
2527 core_initcall(memory_failure_init
);
2530 #define pr_fmt(fmt) "Unpoison: " fmt
2531 #define unpoison_pr_info(fmt, pfn, rs) \
2533 if (__ratelimit(rs)) \
2534 pr_info(fmt, pfn); \
2538 * unpoison_memory - Unpoison a previously poisoned page
2539 * @pfn: Page number of the to be unpoisoned page
2541 * Software-unpoison a page that has been poisoned by
2542 * memory_failure() earlier.
2544 * This is only done on the software-level, so it only works
2545 * for linux injected failures, not real hardware failures
2547 * Returns 0 for success, otherwise -errno.
2549 int unpoison_memory(unsigned long pfn
)
2551 struct folio
*folio
;
2553 int ret
= -EBUSY
, ghp
;
2554 unsigned long count
;
2556 static DEFINE_RATELIMIT_STATE(unpoison_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2557 DEFAULT_RATELIMIT_BURST
);
2559 if (!pfn_valid(pfn
))
2562 p
= pfn_to_page(pfn
);
2563 folio
= page_folio(p
);
2565 mutex_lock(&mf_mutex
);
2567 if (hw_memory_failure
) {
2568 unpoison_pr_info("%#lx: disabled after HW memory failure\n",
2574 if (is_huge_zero_folio(folio
)) {
2575 unpoison_pr_info("%#lx: huge zero page is not supported\n",
2581 if (!PageHWPoison(p
)) {
2582 unpoison_pr_info("%#lx: page was already unpoisoned\n",
2587 if (folio_ref_count(folio
) > 1) {
2588 unpoison_pr_info("%#lx: someone grabs the hwpoison page\n",
2593 if (folio_test_slab(folio
) || folio_test_pgtable(folio
) ||
2594 folio_test_reserved(folio
) || folio_test_offline(folio
))
2597 if (folio_mapped(folio
)) {
2598 unpoison_pr_info("%#lx: someone maps the hwpoison page\n",
2603 if (folio_mapping(folio
)) {
2604 unpoison_pr_info("%#lx: the hwpoison page has non-NULL mapping\n",
2609 ghp
= get_hwpoison_page(p
, MF_UNPOISON
);
2611 if (folio_test_hugetlb(folio
)) {
2613 count
= folio_free_raw_hwp(folio
, false);
2617 ret
= folio_test_clear_hwpoison(folio
) ? 0 : -EBUSY
;
2618 } else if (ghp
< 0) {
2619 if (ghp
== -EHWPOISON
) {
2620 ret
= put_page_back_buddy(p
) ? 0 : -EBUSY
;
2623 unpoison_pr_info("%#lx: failed to grab page\n",
2627 if (folio_test_hugetlb(folio
)) {
2629 count
= folio_free_raw_hwp(folio
, false);
2637 if (TestClearPageHWPoison(p
)) {
2644 mutex_unlock(&mf_mutex
);
2647 num_poisoned_pages_sub(pfn
, 1);
2648 unpoison_pr_info("%#lx: software-unpoisoned page\n",
2649 page_to_pfn(p
), &unpoison_rs
);
2653 EXPORT_SYMBOL(unpoison_memory
);
2656 #define pr_fmt(fmt) "Soft offline: " fmt
2659 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2660 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2661 * If the page is mapped, it migrates the contents over.
2663 static int soft_offline_in_use_page(struct page
*page
)
2666 unsigned long pfn
= page_to_pfn(page
);
2667 struct folio
*folio
= page_folio(page
);
2668 char const *msg_page
[] = {"page", "hugepage"};
2669 bool huge
= folio_test_hugetlb(folio
);
2671 LIST_HEAD(pagelist
);
2672 struct migration_target_control mtc
= {
2673 .nid
= NUMA_NO_NODE
,
2674 .gfp_mask
= GFP_USER
| __GFP_MOVABLE
| __GFP_RETRY_MAYFAIL
,
2675 .reason
= MR_MEMORY_FAILURE
,
2678 if (!huge
&& folio_test_large(folio
)) {
2679 if (try_to_split_thp_page(page
, true)) {
2680 pr_info("%#lx: thp split failed\n", pfn
);
2683 folio
= page_folio(page
);
2688 folio_wait_writeback(folio
);
2689 if (PageHWPoison(page
)) {
2690 folio_unlock(folio
);
2692 pr_info("%#lx: page already poisoned\n", pfn
);
2696 if (!huge
&& folio_test_lru(folio
) && !folio_test_swapcache(folio
))
2698 * Try to invalidate first. This should work for
2699 * non dirty unmapped page cache pages.
2701 ret
= mapping_evict_folio(folio_mapping(folio
), folio
);
2702 folio_unlock(folio
);
2705 pr_info("%#lx: invalidated\n", pfn
);
2706 page_handle_poison(page
, false, true);
2710 isolated
= isolate_folio_to_list(folio
, &pagelist
);
2713 * If we succeed to isolate the folio, we grabbed another refcount on
2714 * the folio, so we can safely drop the one we got from get_any_page().
2715 * If we failed to isolate the folio, it means that we cannot go further
2716 * and we will return an error, so drop the reference we got from
2717 * get_any_page() as well.
2722 ret
= migrate_pages(&pagelist
, alloc_migration_target
, NULL
,
2723 (unsigned long)&mtc
, MIGRATE_SYNC
, MR_MEMORY_FAILURE
, NULL
);
2725 bool release
= !huge
;
2727 if (!page_handle_poison(page
, huge
, release
))
2730 if (!list_empty(&pagelist
))
2731 putback_movable_pages(&pagelist
);
2733 pr_info("%#lx: %s migration failed %ld, type %pGp\n",
2734 pfn
, msg_page
[huge
], ret
, &page
->flags
);
2739 pr_info("%#lx: %s isolation failed, page count %d, type %pGp\n",
2740 pfn
, msg_page
[huge
], page_count(page
), &page
->flags
);
2747 * soft_offline_page - Soft offline a page.
2748 * @pfn: pfn to soft-offline
2749 * @flags: flags. Same as memory_failure().
2751 * Returns 0 on success,
2752 * -EOPNOTSUPP for hwpoison_filter() filtered the error event, or
2753 * disabled by /proc/sys/vm/enable_soft_offline,
2754 * < 0 otherwise negated errno.
2756 * Soft offline a page, by migration or invalidation,
2757 * without killing anything. This is for the case when
2758 * a page is not corrupted yet (so it's still valid to access),
2759 * but has had a number of corrected errors and is better taken
2762 * The actual policy on when to do that is maintained by
2765 * This should never impact any application or cause data loss,
2766 * however it might take some time.
2768 * This is not a 100% solution for all memory, but tries to be
2769 * ``good enough'' for the majority of memory.
2771 int soft_offline_page(unsigned long pfn
, int flags
)
2774 bool try_again
= true;
2777 if (!pfn_valid(pfn
)) {
2778 WARN_ON_ONCE(flags
& MF_COUNT_INCREASED
);
2782 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2783 page
= pfn_to_online_page(pfn
);
2785 put_ref_page(pfn
, flags
);
2789 if (!sysctl_enable_soft_offline
) {
2790 pr_info_once("disabled by /proc/sys/vm/enable_soft_offline\n");
2791 put_ref_page(pfn
, flags
);
2795 mutex_lock(&mf_mutex
);
2797 if (PageHWPoison(page
)) {
2798 pr_info("%#lx: page already poisoned\n", pfn
);
2799 put_ref_page(pfn
, flags
);
2800 mutex_unlock(&mf_mutex
);
2806 ret
= get_hwpoison_page(page
, flags
| MF_SOFT_OFFLINE
);
2809 if (hwpoison_filter(page
)) {
2813 mutex_unlock(&mf_mutex
);
2818 ret
= soft_offline_in_use_page(page
);
2819 } else if (ret
== 0) {
2820 if (!page_handle_poison(page
, true, false)) {
2823 flags
&= ~MF_COUNT_INCREASED
;
2830 mutex_unlock(&mf_mutex
);