1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/slab.h>
3 #include <linux/lockdep.h>
4 #include <linux/sysfs.h>
5 #include <linux/kobject.h>
6 #include <linux/memory.h>
7 #include <linux/memory-tiers.h>
8 #include <linux/notifier.h>
9 #include <linux/sched/sysctl.h>
14 /* hierarchy of memory tiers */
15 struct list_head list
;
16 /* list of all memory types part of this tier */
17 struct list_head memory_types
;
19 * start value of abstract distance. memory tier maps
20 * an abstract distance range,
21 * adistance_start .. adistance_start + MEMTIER_CHUNK_SIZE
25 /* All the nodes that are part of all the lower memory tiers. */
26 nodemask_t lower_tier_mask
;
29 struct demotion_nodes
{
33 struct node_memory_type_map
{
34 struct memory_dev_type
*memtype
;
38 static DEFINE_MUTEX(memory_tier_lock
);
39 static LIST_HEAD(memory_tiers
);
41 * The list is used to store all memory types that are not created
44 static LIST_HEAD(default_memory_types
);
45 static struct node_memory_type_map node_memory_types
[MAX_NUMNODES
];
46 struct memory_dev_type
*default_dram_type
;
47 nodemask_t default_dram_nodes __initdata
= NODE_MASK_NONE
;
49 static const struct bus_type memory_tier_subsys
= {
50 .name
= "memory_tiering",
51 .dev_name
= "memory_tier",
54 #ifdef CONFIG_NUMA_BALANCING
56 * folio_use_access_time - check if a folio reuses cpupid for page access time
57 * @folio: folio to check
59 * folio's _last_cpupid field is repurposed by memory tiering. In memory
60 * tiering mode, cpupid of slow memory folio (not toptier memory) is used to
61 * record page access time.
63 * Return: the folio _last_cpupid is used to record page access time
65 bool folio_use_access_time(struct folio
*folio
)
67 return (sysctl_numa_balancing_mode
& NUMA_BALANCING_MEMORY_TIERING
) &&
68 !node_is_toptier(folio_nid(folio
));
72 #ifdef CONFIG_MIGRATION
73 static int top_tier_adistance
;
75 * node_demotion[] examples:
79 * Node 0 & 1 are CPU + DRAM nodes, node 2 & 3 are PMEM nodes.
91 * node_demotion[0].preferred = 2
92 * node_demotion[1].preferred = 3
93 * node_demotion[2].preferred = <empty>
94 * node_demotion[3].preferred = <empty>
98 * Node 0 & 1 are CPU + DRAM nodes, node 2 is memory-only DRAM node.
106 * memory_tiers0 = 0-2
108 * node_demotion[0].preferred = <empty>
109 * node_demotion[1].preferred = <empty>
110 * node_demotion[2].preferred = <empty>
114 * Node 0 is CPU + DRAM nodes, Node 1 is HBM node, node 2 is PMEM node.
126 * node_demotion[0].preferred = 2
127 * node_demotion[1].preferred = 0
128 * node_demotion[2].preferred = <empty>
131 static struct demotion_nodes
*node_demotion __read_mostly
;
132 #endif /* CONFIG_MIGRATION */
134 static BLOCKING_NOTIFIER_HEAD(mt_adistance_algorithms
);
136 /* The lock is used to protect `default_dram_perf*` info and nid. */
137 static DEFINE_MUTEX(default_dram_perf_lock
);
138 static bool default_dram_perf_error
;
139 static struct access_coordinate default_dram_perf
;
140 static int default_dram_perf_ref_nid
= NUMA_NO_NODE
;
141 static const char *default_dram_perf_ref_source
;
143 static inline struct memory_tier
*to_memory_tier(struct device
*device
)
145 return container_of(device
, struct memory_tier
, dev
);
148 static __always_inline nodemask_t
get_memtier_nodemask(struct memory_tier
*memtier
)
150 nodemask_t nodes
= NODE_MASK_NONE
;
151 struct memory_dev_type
*memtype
;
153 list_for_each_entry(memtype
, &memtier
->memory_types
, tier_sibling
)
154 nodes_or(nodes
, nodes
, memtype
->nodes
);
159 static void memory_tier_device_release(struct device
*dev
)
161 struct memory_tier
*tier
= to_memory_tier(dev
);
163 * synchronize_rcu in clear_node_memory_tier makes sure
164 * we don't have rcu access to this memory tier.
169 static ssize_t
nodelist_show(struct device
*dev
,
170 struct device_attribute
*attr
, char *buf
)
175 mutex_lock(&memory_tier_lock
);
176 nmask
= get_memtier_nodemask(to_memory_tier(dev
));
177 ret
= sysfs_emit(buf
, "%*pbl\n", nodemask_pr_args(&nmask
));
178 mutex_unlock(&memory_tier_lock
);
181 static DEVICE_ATTR_RO(nodelist
);
183 static struct attribute
*memtier_dev_attrs
[] = {
184 &dev_attr_nodelist
.attr
,
188 static const struct attribute_group memtier_dev_group
= {
189 .attrs
= memtier_dev_attrs
,
192 static const struct attribute_group
*memtier_dev_groups
[] = {
197 static struct memory_tier
*find_create_memory_tier(struct memory_dev_type
*memtype
)
200 bool found_slot
= false;
201 struct memory_tier
*memtier
, *new_memtier
;
202 int adistance
= memtype
->adistance
;
203 unsigned int memtier_adistance_chunk_size
= MEMTIER_CHUNK_SIZE
;
205 lockdep_assert_held_once(&memory_tier_lock
);
207 adistance
= round_down(adistance
, memtier_adistance_chunk_size
);
209 * If the memtype is already part of a memory tier,
212 if (!list_empty(&memtype
->tier_sibling
)) {
213 list_for_each_entry(memtier
, &memory_tiers
, list
) {
214 if (adistance
== memtier
->adistance_start
)
218 return ERR_PTR(-EINVAL
);
221 list_for_each_entry(memtier
, &memory_tiers
, list
) {
222 if (adistance
== memtier
->adistance_start
) {
224 } else if (adistance
< memtier
->adistance_start
) {
230 new_memtier
= kzalloc(sizeof(struct memory_tier
), GFP_KERNEL
);
232 return ERR_PTR(-ENOMEM
);
234 new_memtier
->adistance_start
= adistance
;
235 INIT_LIST_HEAD(&new_memtier
->list
);
236 INIT_LIST_HEAD(&new_memtier
->memory_types
);
238 list_add_tail(&new_memtier
->list
, &memtier
->list
);
240 list_add_tail(&new_memtier
->list
, &memory_tiers
);
242 new_memtier
->dev
.id
= adistance
>> MEMTIER_CHUNK_BITS
;
243 new_memtier
->dev
.bus
= &memory_tier_subsys
;
244 new_memtier
->dev
.release
= memory_tier_device_release
;
245 new_memtier
->dev
.groups
= memtier_dev_groups
;
247 ret
= device_register(&new_memtier
->dev
);
249 list_del(&new_memtier
->list
);
250 put_device(&new_memtier
->dev
);
253 memtier
= new_memtier
;
256 list_add(&memtype
->tier_sibling
, &memtier
->memory_types
);
260 static struct memory_tier
*__node_get_memory_tier(int node
)
264 pgdat
= NODE_DATA(node
);
268 * Since we hold memory_tier_lock, we can avoid
269 * RCU read locks when accessing the details. No
270 * parallel updates are possible here.
272 return rcu_dereference_check(pgdat
->memtier
,
273 lockdep_is_held(&memory_tier_lock
));
276 #ifdef CONFIG_MIGRATION
277 bool node_is_toptier(int node
)
281 struct memory_tier
*memtier
;
283 pgdat
= NODE_DATA(node
);
288 memtier
= rcu_dereference(pgdat
->memtier
);
293 if (memtier
->adistance_start
<= top_tier_adistance
)
302 void node_get_allowed_targets(pg_data_t
*pgdat
, nodemask_t
*targets
)
304 struct memory_tier
*memtier
;
307 * pg_data_t.memtier updates includes a synchronize_rcu()
308 * which ensures that we either find NULL or a valid memtier
309 * in NODE_DATA. protect the access via rcu_read_lock();
312 memtier
= rcu_dereference(pgdat
->memtier
);
314 *targets
= memtier
->lower_tier_mask
;
316 *targets
= NODE_MASK_NONE
;
321 * next_demotion_node() - Get the next node in the demotion path
322 * @node: The starting node to lookup the next node
324 * Return: node id for next memory node in the demotion path hierarchy
325 * from @node; NUMA_NO_NODE if @node is terminal. This does not keep
326 * @node online or guarantee that it *continues* to be the next demotion
329 int next_demotion_node(int node
)
331 struct demotion_nodes
*nd
;
337 nd
= &node_demotion
[node
];
340 * node_demotion[] is updated without excluding this
341 * function from running.
343 * Make sure to use RCU over entire code blocks if
344 * node_demotion[] reads need to be consistent.
348 * If there are multiple target nodes, just select one
349 * target node randomly.
351 * In addition, we can also use round-robin to select
352 * target node, but we should introduce another variable
353 * for node_demotion[] to record last selected target node,
354 * that may cause cache ping-pong due to the changing of
355 * last target node. Or introducing per-cpu data to avoid
356 * caching issue, which seems more complicated. So selecting
357 * target node randomly seems better until now.
359 target
= node_random(&nd
->preferred
);
365 static void disable_all_demotion_targets(void)
367 struct memory_tier
*memtier
;
370 for_each_node_state(node
, N_MEMORY
) {
371 node_demotion
[node
].preferred
= NODE_MASK_NONE
;
373 * We are holding memory_tier_lock, it is safe
374 * to access pgda->memtier.
376 memtier
= __node_get_memory_tier(node
);
378 memtier
->lower_tier_mask
= NODE_MASK_NONE
;
381 * Ensure that the "disable" is visible across the system.
382 * Readers will see either a combination of before+disable
383 * state or disable+after. They will never see before and
384 * after state together.
389 static void dump_demotion_targets(void)
393 for_each_node_state(node
, N_MEMORY
) {
394 struct memory_tier
*memtier
= __node_get_memory_tier(node
);
395 nodemask_t preferred
= node_demotion
[node
].preferred
;
400 if (nodes_empty(preferred
))
401 pr_info("Demotion targets for Node %d: null\n", node
);
403 pr_info("Demotion targets for Node %d: preferred: %*pbl, fallback: %*pbl\n",
404 node
, nodemask_pr_args(&preferred
),
405 nodemask_pr_args(&memtier
->lower_tier_mask
));
410 * Find an automatic demotion target for all memory
411 * nodes. Failing here is OK. It might just indicate
412 * being at the end of a chain.
414 static void establish_demotion_targets(void)
416 struct memory_tier
*memtier
;
417 struct demotion_nodes
*nd
;
418 int target
= NUMA_NO_NODE
, node
;
419 int distance
, best_distance
;
420 nodemask_t tier_nodes
, lower_tier
;
422 lockdep_assert_held_once(&memory_tier_lock
);
427 disable_all_demotion_targets();
429 for_each_node_state(node
, N_MEMORY
) {
431 nd
= &node_demotion
[node
];
433 memtier
= __node_get_memory_tier(node
);
434 if (!memtier
|| list_is_last(&memtier
->list
, &memory_tiers
))
437 * Get the lower memtier to find the demotion node list.
439 memtier
= list_next_entry(memtier
, list
);
440 tier_nodes
= get_memtier_nodemask(memtier
);
442 * find_next_best_node, use 'used' nodemask as a skip list.
443 * Add all memory nodes except the selected memory tier
444 * nodelist to skip list so that we find the best node from the
447 nodes_andnot(tier_nodes
, node_states
[N_MEMORY
], tier_nodes
);
450 * Find all the nodes in the memory tier node list of same best distance.
451 * add them to the preferred mask. We randomly select between nodes
452 * in the preferred mask when allocating pages during demotion.
455 target
= find_next_best_node(node
, &tier_nodes
);
456 if (target
== NUMA_NO_NODE
)
459 distance
= node_distance(node
, target
);
460 if (distance
== best_distance
|| best_distance
== -1) {
461 best_distance
= distance
;
462 node_set(target
, nd
->preferred
);
469 * Promotion is allowed from a memory tier to higher
470 * memory tier only if the memory tier doesn't include
471 * compute. We want to skip promotion from a memory tier,
472 * if any node that is part of the memory tier have CPUs.
473 * Once we detect such a memory tier, we consider that tier
474 * as top tiper from which promotion is not allowed.
476 list_for_each_entry_reverse(memtier
, &memory_tiers
, list
) {
477 tier_nodes
= get_memtier_nodemask(memtier
);
478 nodes_and(tier_nodes
, node_states
[N_CPU
], tier_nodes
);
479 if (!nodes_empty(tier_nodes
)) {
481 * abstract distance below the max value of this memtier
482 * is considered toptier.
484 top_tier_adistance
= memtier
->adistance_start
+
485 MEMTIER_CHUNK_SIZE
- 1;
490 * Now build the lower_tier mask for each node collecting node mask from
491 * all memory tier below it. This allows us to fallback demotion page
492 * allocation to a set of nodes that is closer the above selected
495 lower_tier
= node_states
[N_MEMORY
];
496 list_for_each_entry(memtier
, &memory_tiers
, list
) {
498 * Keep removing current tier from lower_tier nodes,
499 * This will remove all nodes in current and above
500 * memory tier from the lower_tier mask.
502 tier_nodes
= get_memtier_nodemask(memtier
);
503 nodes_andnot(lower_tier
, lower_tier
, tier_nodes
);
504 memtier
->lower_tier_mask
= lower_tier
;
507 dump_demotion_targets();
511 static inline void establish_demotion_targets(void) {}
512 #endif /* CONFIG_MIGRATION */
514 static inline void __init_node_memory_type(int node
, struct memory_dev_type
*memtype
)
516 if (!node_memory_types
[node
].memtype
)
517 node_memory_types
[node
].memtype
= memtype
;
519 * for each device getting added in the same NUMA node
520 * with this specific memtype, bump the map count. We
521 * Only take memtype device reference once, so that
522 * changing a node memtype can be done by droping the
523 * only reference count taken here.
526 if (node_memory_types
[node
].memtype
== memtype
) {
527 if (!node_memory_types
[node
].map_count
++)
528 kref_get(&memtype
->kref
);
532 static struct memory_tier
*set_node_memory_tier(int node
)
534 struct memory_tier
*memtier
;
535 struct memory_dev_type
*memtype
= default_dram_type
;
536 int adist
= MEMTIER_ADISTANCE_DRAM
;
537 pg_data_t
*pgdat
= NODE_DATA(node
);
540 lockdep_assert_held_once(&memory_tier_lock
);
542 if (!node_state(node
, N_MEMORY
))
543 return ERR_PTR(-EINVAL
);
545 mt_calc_adistance(node
, &adist
);
546 if (!node_memory_types
[node
].memtype
) {
547 memtype
= mt_find_alloc_memory_type(adist
, &default_memory_types
);
548 if (IS_ERR(memtype
)) {
549 memtype
= default_dram_type
;
550 pr_info("Failed to allocate a memory type. Fall back.\n");
554 __init_node_memory_type(node
, memtype
);
556 memtype
= node_memory_types
[node
].memtype
;
557 node_set(node
, memtype
->nodes
);
558 memtier
= find_create_memory_tier(memtype
);
559 if (!IS_ERR(memtier
))
560 rcu_assign_pointer(pgdat
->memtier
, memtier
);
564 static void destroy_memory_tier(struct memory_tier
*memtier
)
566 list_del(&memtier
->list
);
567 device_unregister(&memtier
->dev
);
570 static bool clear_node_memory_tier(int node
)
572 bool cleared
= false;
574 struct memory_tier
*memtier
;
576 pgdat
= NODE_DATA(node
);
581 * Make sure that anybody looking at NODE_DATA who finds
582 * a valid memtier finds memory_dev_types with nodes still
583 * linked to the memtier. We achieve this by waiting for
584 * rcu read section to finish using synchronize_rcu.
585 * This also enables us to free the destroyed memory tier
586 * with kfree instead of kfree_rcu
588 memtier
= __node_get_memory_tier(node
);
590 struct memory_dev_type
*memtype
;
592 rcu_assign_pointer(pgdat
->memtier
, NULL
);
594 memtype
= node_memory_types
[node
].memtype
;
595 node_clear(node
, memtype
->nodes
);
596 if (nodes_empty(memtype
->nodes
)) {
597 list_del_init(&memtype
->tier_sibling
);
598 if (list_empty(&memtier
->memory_types
))
599 destroy_memory_tier(memtier
);
606 static void release_memtype(struct kref
*kref
)
608 struct memory_dev_type
*memtype
;
610 memtype
= container_of(kref
, struct memory_dev_type
, kref
);
614 struct memory_dev_type
*alloc_memory_type(int adistance
)
616 struct memory_dev_type
*memtype
;
618 memtype
= kmalloc(sizeof(*memtype
), GFP_KERNEL
);
620 return ERR_PTR(-ENOMEM
);
622 memtype
->adistance
= adistance
;
623 INIT_LIST_HEAD(&memtype
->tier_sibling
);
624 memtype
->nodes
= NODE_MASK_NONE
;
625 kref_init(&memtype
->kref
);
628 EXPORT_SYMBOL_GPL(alloc_memory_type
);
630 void put_memory_type(struct memory_dev_type
*memtype
)
632 kref_put(&memtype
->kref
, release_memtype
);
634 EXPORT_SYMBOL_GPL(put_memory_type
);
636 void init_node_memory_type(int node
, struct memory_dev_type
*memtype
)
639 mutex_lock(&memory_tier_lock
);
640 __init_node_memory_type(node
, memtype
);
641 mutex_unlock(&memory_tier_lock
);
643 EXPORT_SYMBOL_GPL(init_node_memory_type
);
645 void clear_node_memory_type(int node
, struct memory_dev_type
*memtype
)
647 mutex_lock(&memory_tier_lock
);
648 if (node_memory_types
[node
].memtype
== memtype
|| !memtype
)
649 node_memory_types
[node
].map_count
--;
651 * If we umapped all the attached devices to this node,
652 * clear the node memory type.
654 if (!node_memory_types
[node
].map_count
) {
655 memtype
= node_memory_types
[node
].memtype
;
656 node_memory_types
[node
].memtype
= NULL
;
657 put_memory_type(memtype
);
659 mutex_unlock(&memory_tier_lock
);
661 EXPORT_SYMBOL_GPL(clear_node_memory_type
);
663 struct memory_dev_type
*mt_find_alloc_memory_type(int adist
, struct list_head
*memory_types
)
665 struct memory_dev_type
*mtype
;
667 list_for_each_entry(mtype
, memory_types
, list
)
668 if (mtype
->adistance
== adist
)
671 mtype
= alloc_memory_type(adist
);
675 list_add(&mtype
->list
, memory_types
);
679 EXPORT_SYMBOL_GPL(mt_find_alloc_memory_type
);
681 void mt_put_memory_types(struct list_head
*memory_types
)
683 struct memory_dev_type
*mtype
, *mtn
;
685 list_for_each_entry_safe(mtype
, mtn
, memory_types
, list
) {
686 list_del(&mtype
->list
);
687 put_memory_type(mtype
);
690 EXPORT_SYMBOL_GPL(mt_put_memory_types
);
693 * This is invoked via `late_initcall()` to initialize memory tiers for
694 * memory nodes, both with and without CPUs. After the initialization of
695 * firmware and devices, adistance algorithms are expected to be provided.
697 static int __init
memory_tier_late_init(void)
700 struct memory_tier
*memtier
;
703 guard(mutex
)(&memory_tier_lock
);
705 /* Assign each uninitialized N_MEMORY node to a memory tier. */
706 for_each_node_state(nid
, N_MEMORY
) {
708 * Some device drivers may have initialized
709 * memory tiers, potentially bringing memory nodes
710 * online and configuring memory tiers.
713 if (node_memory_types
[nid
].memtype
)
716 memtier
= set_node_memory_tier(nid
);
721 establish_demotion_targets();
726 late_initcall(memory_tier_late_init
);
728 static void dump_hmem_attrs(struct access_coordinate
*coord
, const char *prefix
)
731 "%sread_latency: %u, write_latency: %u, read_bandwidth: %u, write_bandwidth: %u\n",
732 prefix
, coord
->read_latency
, coord
->write_latency
,
733 coord
->read_bandwidth
, coord
->write_bandwidth
);
736 int mt_set_default_dram_perf(int nid
, struct access_coordinate
*perf
,
739 guard(mutex
)(&default_dram_perf_lock
);
740 if (default_dram_perf_error
)
743 if (perf
->read_latency
+ perf
->write_latency
== 0 ||
744 perf
->read_bandwidth
+ perf
->write_bandwidth
== 0)
747 if (default_dram_perf_ref_nid
== NUMA_NO_NODE
) {
748 default_dram_perf
= *perf
;
749 default_dram_perf_ref_nid
= nid
;
750 default_dram_perf_ref_source
= kstrdup(source
, GFP_KERNEL
);
755 * The performance of all default DRAM nodes is expected to be
756 * same (that is, the variation is less than 10%). And it
757 * will be used as base to calculate the abstract distance of
758 * other memory nodes.
760 if (abs(perf
->read_latency
- default_dram_perf
.read_latency
) * 10 >
761 default_dram_perf
.read_latency
||
762 abs(perf
->write_latency
- default_dram_perf
.write_latency
) * 10 >
763 default_dram_perf
.write_latency
||
764 abs(perf
->read_bandwidth
- default_dram_perf
.read_bandwidth
) * 10 >
765 default_dram_perf
.read_bandwidth
||
766 abs(perf
->write_bandwidth
- default_dram_perf
.write_bandwidth
) * 10 >
767 default_dram_perf
.write_bandwidth
) {
769 "memory-tiers: the performance of DRAM node %d mismatches that of the reference\n"
770 "DRAM node %d.\n", nid
, default_dram_perf_ref_nid
);
771 pr_info(" performance of reference DRAM node %d from %s:\n",
772 default_dram_perf_ref_nid
, default_dram_perf_ref_source
);
773 dump_hmem_attrs(&default_dram_perf
, " ");
774 pr_info(" performance of DRAM node %d from %s:\n", nid
, source
);
775 dump_hmem_attrs(perf
, " ");
777 " disable default DRAM node performance based abstract distance algorithm.\n");
778 default_dram_perf_error
= true;
785 int mt_perf_to_adistance(struct access_coordinate
*perf
, int *adist
)
787 guard(mutex
)(&default_dram_perf_lock
);
788 if (default_dram_perf_error
)
791 if (perf
->read_latency
+ perf
->write_latency
== 0 ||
792 perf
->read_bandwidth
+ perf
->write_bandwidth
== 0)
795 if (default_dram_perf_ref_nid
== NUMA_NO_NODE
)
799 * The abstract distance of a memory node is in direct proportion to
800 * its memory latency (read + write) and inversely proportional to its
801 * memory bandwidth (read + write). The abstract distance, memory
802 * latency, and memory bandwidth of the default DRAM nodes are used as
805 *adist
= MEMTIER_ADISTANCE_DRAM
*
806 (perf
->read_latency
+ perf
->write_latency
) /
807 (default_dram_perf
.read_latency
+ default_dram_perf
.write_latency
) *
808 (default_dram_perf
.read_bandwidth
+ default_dram_perf
.write_bandwidth
) /
809 (perf
->read_bandwidth
+ perf
->write_bandwidth
);
813 EXPORT_SYMBOL_GPL(mt_perf_to_adistance
);
816 * register_mt_adistance_algorithm() - Register memory tiering abstract distance algorithm
817 * @nb: The notifier block which describe the algorithm
819 * Return: 0 on success, errno on error.
821 * Every memory tiering abstract distance algorithm provider needs to
822 * register the algorithm with register_mt_adistance_algorithm(). To
823 * calculate the abstract distance for a specified memory node, the
824 * notifier function will be called unless some high priority
825 * algorithm has provided result. The prototype of the notifier
826 * function is as follows,
828 * int (*algorithm_notifier)(struct notifier_block *nb,
829 * unsigned long nid, void *data);
831 * Where "nid" specifies the memory node, "data" is the pointer to the
832 * returned abstract distance (that is, "int *adist"). If the
833 * algorithm provides the result, NOTIFY_STOP should be returned.
834 * Otherwise, return_value & %NOTIFY_STOP_MASK == 0 to allow the next
835 * algorithm in the chain to provide the result.
837 int register_mt_adistance_algorithm(struct notifier_block
*nb
)
839 return blocking_notifier_chain_register(&mt_adistance_algorithms
, nb
);
841 EXPORT_SYMBOL_GPL(register_mt_adistance_algorithm
);
844 * unregister_mt_adistance_algorithm() - Unregister memory tiering abstract distance algorithm
845 * @nb: the notifier block which describe the algorithm
847 * Return: 0 on success, errno on error.
849 int unregister_mt_adistance_algorithm(struct notifier_block
*nb
)
851 return blocking_notifier_chain_unregister(&mt_adistance_algorithms
, nb
);
853 EXPORT_SYMBOL_GPL(unregister_mt_adistance_algorithm
);
856 * mt_calc_adistance() - Calculate abstract distance with registered algorithms
857 * @node: the node to calculate abstract distance for
858 * @adist: the returned abstract distance
860 * Return: if return_value & %NOTIFY_STOP_MASK != 0, then some
861 * abstract distance algorithm provides the result, and return it via
862 * @adist. Otherwise, no algorithm can provide the result and @adist
863 * will be kept as it is.
865 int mt_calc_adistance(int node
, int *adist
)
867 return blocking_notifier_call_chain(&mt_adistance_algorithms
, node
, adist
);
869 EXPORT_SYMBOL_GPL(mt_calc_adistance
);
871 static int __meminit
memtier_hotplug_callback(struct notifier_block
*self
,
872 unsigned long action
, void *_arg
)
874 struct memory_tier
*memtier
;
875 struct memory_notify
*arg
= _arg
;
878 * Only update the node migration order when a node is
879 * changing status, like online->offline.
881 if (arg
->status_change_nid
< 0)
882 return notifier_from_errno(0);
886 mutex_lock(&memory_tier_lock
);
887 if (clear_node_memory_tier(arg
->status_change_nid
))
888 establish_demotion_targets();
889 mutex_unlock(&memory_tier_lock
);
892 mutex_lock(&memory_tier_lock
);
893 memtier
= set_node_memory_tier(arg
->status_change_nid
);
894 if (!IS_ERR(memtier
))
895 establish_demotion_targets();
896 mutex_unlock(&memory_tier_lock
);
900 return notifier_from_errno(0);
903 static int __init
memory_tier_init(void)
907 ret
= subsys_virtual_register(&memory_tier_subsys
, NULL
);
909 panic("%s() failed to register memory tier subsystem\n", __func__
);
911 #ifdef CONFIG_MIGRATION
912 node_demotion
= kcalloc(nr_node_ids
, sizeof(struct demotion_nodes
),
914 WARN_ON(!node_demotion
);
917 mutex_lock(&memory_tier_lock
);
919 * For now we can have 4 faster memory tiers with smaller adistance
920 * than default DRAM tier.
922 default_dram_type
= mt_find_alloc_memory_type(MEMTIER_ADISTANCE_DRAM
,
923 &default_memory_types
);
924 mutex_unlock(&memory_tier_lock
);
925 if (IS_ERR(default_dram_type
))
926 panic("%s() failed to allocate default DRAM tier\n", __func__
);
928 /* Record nodes with memory and CPU to set default DRAM performance. */
929 nodes_and(default_dram_nodes
, node_states
[N_MEMORY
],
932 hotplug_memory_notifier(memtier_hotplug_callback
, MEMTIER_HOTPLUG_PRI
);
935 subsys_initcall(memory_tier_init
);
937 bool numa_demotion_enabled
= false;
939 #ifdef CONFIG_MIGRATION
941 static ssize_t
demotion_enabled_show(struct kobject
*kobj
,
942 struct kobj_attribute
*attr
, char *buf
)
944 return sysfs_emit(buf
, "%s\n", str_true_false(numa_demotion_enabled
));
947 static ssize_t
demotion_enabled_store(struct kobject
*kobj
,
948 struct kobj_attribute
*attr
,
949 const char *buf
, size_t count
)
953 ret
= kstrtobool(buf
, &numa_demotion_enabled
);
960 static struct kobj_attribute numa_demotion_enabled_attr
=
961 __ATTR_RW(demotion_enabled
);
963 static struct attribute
*numa_attrs
[] = {
964 &numa_demotion_enabled_attr
.attr
,
968 static const struct attribute_group numa_attr_group
= {
972 static int __init
numa_init_sysfs(void)
975 struct kobject
*numa_kobj
;
977 numa_kobj
= kobject_create_and_add("numa", mm_kobj
);
979 pr_err("failed to create numa kobject\n");
982 err
= sysfs_create_group(numa_kobj
, &numa_attr_group
);
984 pr_err("failed to register numa group\n");
990 kobject_put(numa_kobj
);
993 subsys_initcall(numa_init_sysfs
);
994 #endif /* CONFIG_SYSFS */