drm/ast: Only warn about unsupported TX chips on Gen4 and later
[drm/drm-misc.git] / mm / oom_kill.c
blob1c485beb0b934b00c031504d1d1c234abaf60854
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/oom_kill.c
4 *
5 * Copyright (C) 1998,2000 Rik van Riel
6 * Thanks go out to Claus Fischer for some serious inspiration and
7 * for goading me into coding this file...
8 * Copyright (C) 2010 Google, Inc.
9 * Rewritten by David Rientjes
11 * The routines in this file are used to kill a process when
12 * we're seriously out of memory. This gets called from __alloc_pages()
13 * in mm/page_alloc.c when we really run out of memory.
15 * Since we won't call these routines often (on a well-configured
16 * machine) this file will double as a 'coding guide' and a signpost
17 * for newbie kernel hackers. It features several pointers to major
18 * kernel subsystems and hints as to where to find out what things do.
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/task.h>
28 #include <linux/sched/debug.h>
29 #include <linux/swap.h>
30 #include <linux/syscalls.h>
31 #include <linux/timex.h>
32 #include <linux/jiffies.h>
33 #include <linux/cpuset.h>
34 #include <linux/export.h>
35 #include <linux/notifier.h>
36 #include <linux/memcontrol.h>
37 #include <linux/mempolicy.h>
38 #include <linux/security.h>
39 #include <linux/ptrace.h>
40 #include <linux/freezer.h>
41 #include <linux/ftrace.h>
42 #include <linux/ratelimit.h>
43 #include <linux/kthread.h>
44 #include <linux/init.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/cred.h>
48 #include <asm/tlb.h>
49 #include "internal.h"
50 #include "slab.h"
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/oom.h>
55 static int sysctl_panic_on_oom;
56 static int sysctl_oom_kill_allocating_task;
57 static int sysctl_oom_dump_tasks = 1;
60 * Serializes oom killer invocations (out_of_memory()) from all contexts to
61 * prevent from over eager oom killing (e.g. when the oom killer is invoked
62 * from different domains).
64 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
65 * and mark_oom_victim
67 DEFINE_MUTEX(oom_lock);
68 /* Serializes oom_score_adj and oom_score_adj_min updates */
69 DEFINE_MUTEX(oom_adj_mutex);
71 static inline bool is_memcg_oom(struct oom_control *oc)
73 return oc->memcg != NULL;
76 #ifdef CONFIG_NUMA
77 /**
78 * oom_cpuset_eligible() - check task eligibility for kill
79 * @start: task struct of which task to consider
80 * @oc: pointer to struct oom_control
82 * Task eligibility is determined by whether or not a candidate task, @tsk,
83 * shares the same mempolicy nodes as current if it is bound by such a policy
84 * and whether or not it has the same set of allowed cpuset nodes.
86 * This function is assuming oom-killer context and 'current' has triggered
87 * the oom-killer.
89 static bool oom_cpuset_eligible(struct task_struct *start,
90 struct oom_control *oc)
92 struct task_struct *tsk;
93 bool ret = false;
94 const nodemask_t *mask = oc->nodemask;
96 rcu_read_lock();
97 for_each_thread(start, tsk) {
98 if (mask) {
100 * If this is a mempolicy constrained oom, tsk's
101 * cpuset is irrelevant. Only return true if its
102 * mempolicy intersects current, otherwise it may be
103 * needlessly killed.
105 ret = mempolicy_in_oom_domain(tsk, mask);
106 } else {
108 * This is not a mempolicy constrained oom, so only
109 * check the mems of tsk's cpuset.
111 ret = cpuset_mems_allowed_intersects(current, tsk);
113 if (ret)
114 break;
116 rcu_read_unlock();
118 return ret;
120 #else
121 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
123 return true;
125 #endif /* CONFIG_NUMA */
128 * The process p may have detached its own ->mm while exiting or through
129 * kthread_use_mm(), but one or more of its subthreads may still have a valid
130 * pointer. Return p, or any of its subthreads with a valid ->mm, with
131 * task_lock() held.
133 struct task_struct *find_lock_task_mm(struct task_struct *p)
135 struct task_struct *t;
137 rcu_read_lock();
139 for_each_thread(p, t) {
140 task_lock(t);
141 if (likely(t->mm))
142 goto found;
143 task_unlock(t);
145 t = NULL;
146 found:
147 rcu_read_unlock();
149 return t;
153 * order == -1 means the oom kill is required by sysrq, otherwise only
154 * for display purposes.
156 static inline bool is_sysrq_oom(struct oom_control *oc)
158 return oc->order == -1;
161 /* return true if the task is not adequate as candidate victim task. */
162 static bool oom_unkillable_task(struct task_struct *p)
164 if (is_global_init(p))
165 return true;
166 if (p->flags & PF_KTHREAD)
167 return true;
168 return false;
172 * Check whether unreclaimable slab amount is greater than
173 * all user memory(LRU pages).
174 * dump_unreclaimable_slab() could help in the case that
175 * oom due to too much unreclaimable slab used by kernel.
177 static bool should_dump_unreclaim_slab(void)
179 unsigned long nr_lru;
181 nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
182 global_node_page_state(NR_INACTIVE_ANON) +
183 global_node_page_state(NR_ACTIVE_FILE) +
184 global_node_page_state(NR_INACTIVE_FILE) +
185 global_node_page_state(NR_ISOLATED_ANON) +
186 global_node_page_state(NR_ISOLATED_FILE) +
187 global_node_page_state(NR_UNEVICTABLE);
189 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru);
193 * oom_badness - heuristic function to determine which candidate task to kill
194 * @p: task struct of which task we should calculate
195 * @totalpages: total present RAM allowed for page allocation
197 * The heuristic for determining which task to kill is made to be as simple and
198 * predictable as possible. The goal is to return the highest value for the
199 * task consuming the most memory to avoid subsequent oom failures.
201 long oom_badness(struct task_struct *p, unsigned long totalpages)
203 long points;
204 long adj;
206 if (oom_unkillable_task(p))
207 return LONG_MIN;
209 p = find_lock_task_mm(p);
210 if (!p)
211 return LONG_MIN;
214 * Do not even consider tasks which are explicitly marked oom
215 * unkillable or have been already oom reaped or the are in
216 * the middle of vfork
218 adj = (long)p->signal->oom_score_adj;
219 if (adj == OOM_SCORE_ADJ_MIN ||
220 test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
221 in_vfork(p)) {
222 task_unlock(p);
223 return LONG_MIN;
227 * The baseline for the badness score is the proportion of RAM that each
228 * task's rss, pagetable and swap space use.
230 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
231 mm_pgtables_bytes(p->mm) / PAGE_SIZE;
232 task_unlock(p);
234 /* Normalize to oom_score_adj units */
235 adj *= totalpages / 1000;
236 points += adj;
238 return points;
241 static const char * const oom_constraint_text[] = {
242 [CONSTRAINT_NONE] = "CONSTRAINT_NONE",
243 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
244 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
245 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
249 * Determine the type of allocation constraint.
251 static enum oom_constraint constrained_alloc(struct oom_control *oc)
253 struct zone *zone;
254 struct zoneref *z;
255 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask);
256 bool cpuset_limited = false;
257 int nid;
259 if (is_memcg_oom(oc)) {
260 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
261 return CONSTRAINT_MEMCG;
264 /* Default to all available memory */
265 oc->totalpages = totalram_pages() + total_swap_pages;
267 if (!IS_ENABLED(CONFIG_NUMA))
268 return CONSTRAINT_NONE;
270 if (!oc->zonelist)
271 return CONSTRAINT_NONE;
273 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
274 * to kill current.We have to random task kill in this case.
275 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
277 if (oc->gfp_mask & __GFP_THISNODE)
278 return CONSTRAINT_NONE;
281 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
282 * the page allocator means a mempolicy is in effect. Cpuset policy
283 * is enforced in get_page_from_freelist().
285 if (oc->nodemask &&
286 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
287 oc->totalpages = total_swap_pages;
288 for_each_node_mask(nid, *oc->nodemask)
289 oc->totalpages += node_present_pages(nid);
290 return CONSTRAINT_MEMORY_POLICY;
293 /* Check this allocation failure is caused by cpuset's wall function */
294 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
295 highest_zoneidx, oc->nodemask)
296 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
297 cpuset_limited = true;
299 if (cpuset_limited) {
300 oc->totalpages = total_swap_pages;
301 for_each_node_mask(nid, cpuset_current_mems_allowed)
302 oc->totalpages += node_present_pages(nid);
303 return CONSTRAINT_CPUSET;
305 return CONSTRAINT_NONE;
308 static int oom_evaluate_task(struct task_struct *task, void *arg)
310 struct oom_control *oc = arg;
311 long points;
313 if (oom_unkillable_task(task))
314 goto next;
316 /* p may not have freeable memory in nodemask */
317 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
318 goto next;
321 * This task already has access to memory reserves and is being killed.
322 * Don't allow any other task to have access to the reserves unless
323 * the task has MMF_OOM_SKIP because chances that it would release
324 * any memory is quite low.
326 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
327 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
328 goto next;
329 goto abort;
333 * If task is allocating a lot of memory and has been marked to be
334 * killed first if it triggers an oom, then select it.
336 if (oom_task_origin(task)) {
337 points = LONG_MAX;
338 goto select;
341 points = oom_badness(task, oc->totalpages);
342 if (points == LONG_MIN || points < oc->chosen_points)
343 goto next;
345 select:
346 if (oc->chosen)
347 put_task_struct(oc->chosen);
348 get_task_struct(task);
349 oc->chosen = task;
350 oc->chosen_points = points;
351 next:
352 return 0;
353 abort:
354 if (oc->chosen)
355 put_task_struct(oc->chosen);
356 oc->chosen = (void *)-1UL;
357 return 1;
361 * Simple selection loop. We choose the process with the highest number of
362 * 'points'. In case scan was aborted, oc->chosen is set to -1.
364 static void select_bad_process(struct oom_control *oc)
366 oc->chosen_points = LONG_MIN;
368 if (is_memcg_oom(oc))
369 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
370 else {
371 struct task_struct *p;
373 rcu_read_lock();
374 for_each_process(p)
375 if (oom_evaluate_task(p, oc))
376 break;
377 rcu_read_unlock();
381 static int dump_task(struct task_struct *p, void *arg)
383 struct oom_control *oc = arg;
384 struct task_struct *task;
386 if (oom_unkillable_task(p))
387 return 0;
389 /* p may not have freeable memory in nodemask */
390 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
391 return 0;
393 task = find_lock_task_mm(p);
394 if (!task) {
396 * All of p's threads have already detached their mm's. There's
397 * no need to report them; they can't be oom killed anyway.
399 return 0;
402 pr_info("[%7d] %5d %5d %8lu %8lu %8lu %8lu %9lu %8ld %8lu %5hd %s\n",
403 task->pid, from_kuid(&init_user_ns, task_uid(task)),
404 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
405 get_mm_counter(task->mm, MM_ANONPAGES), get_mm_counter(task->mm, MM_FILEPAGES),
406 get_mm_counter(task->mm, MM_SHMEMPAGES), mm_pgtables_bytes(task->mm),
407 get_mm_counter(task->mm, MM_SWAPENTS),
408 task->signal->oom_score_adj, task->comm);
409 task_unlock(task);
411 return 0;
415 * dump_tasks - dump current memory state of all system tasks
416 * @oc: pointer to struct oom_control
418 * Dumps the current memory state of all eligible tasks. Tasks not in the same
419 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
420 * are not shown.
421 * State information includes task's pid, uid, tgid, vm size, rss,
422 * pgtables_bytes, swapents, oom_score_adj value, and name.
424 static void dump_tasks(struct oom_control *oc)
426 pr_info("Tasks state (memory values in pages):\n");
427 pr_info("[ pid ] uid tgid total_vm rss rss_anon rss_file rss_shmem pgtables_bytes swapents oom_score_adj name\n");
429 if (is_memcg_oom(oc))
430 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
431 else {
432 struct task_struct *p;
434 rcu_read_lock();
435 for_each_process(p)
436 dump_task(p, oc);
437 rcu_read_unlock();
441 static void dump_oom_victim(struct oom_control *oc, struct task_struct *victim)
443 /* one line summary of the oom killer context. */
444 pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
445 oom_constraint_text[oc->constraint],
446 nodemask_pr_args(oc->nodemask));
447 cpuset_print_current_mems_allowed();
448 mem_cgroup_print_oom_context(oc->memcg, victim);
449 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
450 from_kuid(&init_user_ns, task_uid(victim)));
453 static void dump_header(struct oom_control *oc)
455 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
456 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
457 current->signal->oom_score_adj);
458 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
459 pr_warn("COMPACTION is disabled!!!\n");
461 dump_stack();
462 if (is_memcg_oom(oc))
463 mem_cgroup_print_oom_meminfo(oc->memcg);
464 else {
465 __show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask, gfp_zone(oc->gfp_mask));
466 if (should_dump_unreclaim_slab())
467 dump_unreclaimable_slab();
469 if (sysctl_oom_dump_tasks)
470 dump_tasks(oc);
474 * Number of OOM victims in flight
476 static atomic_t oom_victims = ATOMIC_INIT(0);
477 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
479 static bool oom_killer_disabled __read_mostly;
482 * task->mm can be NULL if the task is the exited group leader. So to
483 * determine whether the task is using a particular mm, we examine all the
484 * task's threads: if one of those is using this mm then this task was also
485 * using it.
487 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
489 struct task_struct *t;
491 for_each_thread(p, t) {
492 struct mm_struct *t_mm = READ_ONCE(t->mm);
493 if (t_mm)
494 return t_mm == mm;
496 return false;
499 #ifdef CONFIG_MMU
501 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
502 * victim (if that is possible) to help the OOM killer to move on.
504 static struct task_struct *oom_reaper_th;
505 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
506 static struct task_struct *oom_reaper_list;
507 static DEFINE_SPINLOCK(oom_reaper_lock);
509 static bool __oom_reap_task_mm(struct mm_struct *mm)
511 struct vm_area_struct *vma;
512 bool ret = true;
513 VMA_ITERATOR(vmi, mm, 0);
516 * Tell all users of get_user/copy_from_user etc... that the content
517 * is no longer stable. No barriers really needed because unmapping
518 * should imply barriers already and the reader would hit a page fault
519 * if it stumbled over a reaped memory.
521 set_bit(MMF_UNSTABLE, &mm->flags);
523 for_each_vma(vmi, vma) {
524 if (vma->vm_flags & (VM_HUGETLB|VM_PFNMAP))
525 continue;
528 * Only anonymous pages have a good chance to be dropped
529 * without additional steps which we cannot afford as we
530 * are OOM already.
532 * We do not even care about fs backed pages because all
533 * which are reclaimable have already been reclaimed and
534 * we do not want to block exit_mmap by keeping mm ref
535 * count elevated without a good reason.
537 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
538 struct mmu_notifier_range range;
539 struct mmu_gather tlb;
541 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
542 mm, vma->vm_start,
543 vma->vm_end);
544 tlb_gather_mmu(&tlb, mm);
545 if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
546 tlb_finish_mmu(&tlb);
547 ret = false;
548 continue;
550 unmap_page_range(&tlb, vma, range.start, range.end, NULL);
551 mmu_notifier_invalidate_range_end(&range);
552 tlb_finish_mmu(&tlb);
556 return ret;
560 * Reaps the address space of the give task.
562 * Returns true on success and false if none or part of the address space
563 * has been reclaimed and the caller should retry later.
565 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
567 bool ret = true;
569 if (!mmap_read_trylock(mm)) {
570 trace_skip_task_reaping(tsk->pid);
571 return false;
575 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
576 * work on the mm anymore. The check for MMF_OOM_SKIP must run
577 * under mmap_lock for reading because it serializes against the
578 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap().
580 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
581 trace_skip_task_reaping(tsk->pid);
582 goto out_unlock;
585 trace_start_task_reaping(tsk->pid);
587 /* failed to reap part of the address space. Try again later */
588 ret = __oom_reap_task_mm(mm);
589 if (!ret)
590 goto out_finish;
592 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
593 task_pid_nr(tsk), tsk->comm,
594 K(get_mm_counter(mm, MM_ANONPAGES)),
595 K(get_mm_counter(mm, MM_FILEPAGES)),
596 K(get_mm_counter(mm, MM_SHMEMPAGES)));
597 out_finish:
598 trace_finish_task_reaping(tsk->pid);
599 out_unlock:
600 mmap_read_unlock(mm);
602 return ret;
605 #define MAX_OOM_REAP_RETRIES 10
606 static void oom_reap_task(struct task_struct *tsk)
608 int attempts = 0;
609 struct mm_struct *mm = tsk->signal->oom_mm;
611 /* Retry the mmap_read_trylock(mm) a few times */
612 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
613 schedule_timeout_idle(HZ/10);
615 if (attempts <= MAX_OOM_REAP_RETRIES ||
616 test_bit(MMF_OOM_SKIP, &mm->flags))
617 goto done;
619 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
620 task_pid_nr(tsk), tsk->comm);
621 sched_show_task(tsk);
622 debug_show_all_locks();
624 done:
625 tsk->oom_reaper_list = NULL;
628 * Hide this mm from OOM killer because it has been either reaped or
629 * somebody can't call mmap_write_unlock(mm).
631 set_bit(MMF_OOM_SKIP, &mm->flags);
633 /* Drop a reference taken by queue_oom_reaper */
634 put_task_struct(tsk);
637 static int oom_reaper(void *unused)
639 set_freezable();
641 while (true) {
642 struct task_struct *tsk = NULL;
644 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
645 spin_lock_irq(&oom_reaper_lock);
646 if (oom_reaper_list != NULL) {
647 tsk = oom_reaper_list;
648 oom_reaper_list = tsk->oom_reaper_list;
650 spin_unlock_irq(&oom_reaper_lock);
652 if (tsk)
653 oom_reap_task(tsk);
656 return 0;
659 static void wake_oom_reaper(struct timer_list *timer)
661 struct task_struct *tsk = container_of(timer, struct task_struct,
662 oom_reaper_timer);
663 struct mm_struct *mm = tsk->signal->oom_mm;
664 unsigned long flags;
666 /* The victim managed to terminate on its own - see exit_mmap */
667 if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
668 put_task_struct(tsk);
669 return;
672 spin_lock_irqsave(&oom_reaper_lock, flags);
673 tsk->oom_reaper_list = oom_reaper_list;
674 oom_reaper_list = tsk;
675 spin_unlock_irqrestore(&oom_reaper_lock, flags);
676 trace_wake_reaper(tsk->pid);
677 wake_up(&oom_reaper_wait);
681 * Give the OOM victim time to exit naturally before invoking the oom_reaping.
682 * The timers timeout is arbitrary... the longer it is, the longer the worst
683 * case scenario for the OOM can take. If it is too small, the oom_reaper can
684 * get in the way and release resources needed by the process exit path.
685 * e.g. The futex robust list can sit in Anon|Private memory that gets reaped
686 * before the exit path is able to wake the futex waiters.
688 #define OOM_REAPER_DELAY (2*HZ)
689 static void queue_oom_reaper(struct task_struct *tsk)
691 /* mm is already queued? */
692 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
693 return;
695 get_task_struct(tsk);
696 timer_setup(&tsk->oom_reaper_timer, wake_oom_reaper, 0);
697 tsk->oom_reaper_timer.expires = jiffies + OOM_REAPER_DELAY;
698 add_timer(&tsk->oom_reaper_timer);
701 #ifdef CONFIG_SYSCTL
702 static struct ctl_table vm_oom_kill_table[] = {
704 .procname = "panic_on_oom",
705 .data = &sysctl_panic_on_oom,
706 .maxlen = sizeof(sysctl_panic_on_oom),
707 .mode = 0644,
708 .proc_handler = proc_dointvec_minmax,
709 .extra1 = SYSCTL_ZERO,
710 .extra2 = SYSCTL_TWO,
713 .procname = "oom_kill_allocating_task",
714 .data = &sysctl_oom_kill_allocating_task,
715 .maxlen = sizeof(sysctl_oom_kill_allocating_task),
716 .mode = 0644,
717 .proc_handler = proc_dointvec,
720 .procname = "oom_dump_tasks",
721 .data = &sysctl_oom_dump_tasks,
722 .maxlen = sizeof(sysctl_oom_dump_tasks),
723 .mode = 0644,
724 .proc_handler = proc_dointvec,
727 #endif
729 static int __init oom_init(void)
731 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
732 #ifdef CONFIG_SYSCTL
733 register_sysctl_init("vm", vm_oom_kill_table);
734 #endif
735 return 0;
737 subsys_initcall(oom_init)
738 #else
739 static inline void queue_oom_reaper(struct task_struct *tsk)
742 #endif /* CONFIG_MMU */
745 * mark_oom_victim - mark the given task as OOM victim
746 * @tsk: task to mark
748 * Has to be called with oom_lock held and never after
749 * oom has been disabled already.
751 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
752 * under task_lock or operate on the current).
754 static void mark_oom_victim(struct task_struct *tsk)
756 const struct cred *cred;
757 struct mm_struct *mm = tsk->mm;
759 WARN_ON(oom_killer_disabled);
760 /* OOM killer might race with memcg OOM */
761 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
762 return;
764 /* oom_mm is bound to the signal struct life time. */
765 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm))
766 mmgrab(tsk->signal->oom_mm);
769 * Make sure that the task is woken up from uninterruptible sleep
770 * if it is frozen because OOM killer wouldn't be able to free
771 * any memory and livelock. freezing_slow_path will tell the freezer
772 * that TIF_MEMDIE tasks should be ignored.
774 __thaw_task(tsk);
775 atomic_inc(&oom_victims);
776 cred = get_task_cred(tsk);
777 trace_mark_victim(tsk, cred->uid.val);
778 put_cred(cred);
782 * exit_oom_victim - note the exit of an OOM victim
784 void exit_oom_victim(void)
786 clear_thread_flag(TIF_MEMDIE);
788 if (!atomic_dec_return(&oom_victims))
789 wake_up_all(&oom_victims_wait);
793 * oom_killer_enable - enable OOM killer
795 void oom_killer_enable(void)
797 oom_killer_disabled = false;
798 pr_info("OOM killer enabled.\n");
802 * oom_killer_disable - disable OOM killer
803 * @timeout: maximum timeout to wait for oom victims in jiffies
805 * Forces all page allocations to fail rather than trigger OOM killer.
806 * Will block and wait until all OOM victims are killed or the given
807 * timeout expires.
809 * The function cannot be called when there are runnable user tasks because
810 * the userspace would see unexpected allocation failures as a result. Any
811 * new usage of this function should be consulted with MM people.
813 * Returns true if successful and false if the OOM killer cannot be
814 * disabled.
816 bool oom_killer_disable(signed long timeout)
818 signed long ret;
821 * Make sure to not race with an ongoing OOM killer. Check that the
822 * current is not killed (possibly due to sharing the victim's memory).
824 if (mutex_lock_killable(&oom_lock))
825 return false;
826 oom_killer_disabled = true;
827 mutex_unlock(&oom_lock);
829 ret = wait_event_interruptible_timeout(oom_victims_wait,
830 !atomic_read(&oom_victims), timeout);
831 if (ret <= 0) {
832 oom_killer_enable();
833 return false;
835 pr_info("OOM killer disabled.\n");
837 return true;
840 static inline bool __task_will_free_mem(struct task_struct *task)
842 struct signal_struct *sig = task->signal;
845 * A coredumping process may sleep for an extended period in
846 * coredump_task_exit(), so the oom killer cannot assume that
847 * the process will promptly exit and release memory.
849 if (sig->core_state)
850 return false;
852 if (sig->flags & SIGNAL_GROUP_EXIT)
853 return true;
855 if (thread_group_empty(task) && (task->flags & PF_EXITING))
856 return true;
858 return false;
862 * Checks whether the given task is dying or exiting and likely to
863 * release its address space. This means that all threads and processes
864 * sharing the same mm have to be killed or exiting.
865 * Caller has to make sure that task->mm is stable (hold task_lock or
866 * it operates on the current).
868 static bool task_will_free_mem(struct task_struct *task)
870 struct mm_struct *mm = task->mm;
871 struct task_struct *p;
872 bool ret = true;
875 * Skip tasks without mm because it might have passed its exit_mm and
876 * exit_oom_victim. oom_reaper could have rescued that but do not rely
877 * on that for now. We can consider find_lock_task_mm in future.
879 if (!mm)
880 return false;
882 if (!__task_will_free_mem(task))
883 return false;
886 * This task has already been drained by the oom reaper so there are
887 * only small chances it will free some more
889 if (test_bit(MMF_OOM_SKIP, &mm->flags))
890 return false;
892 if (atomic_read(&mm->mm_users) <= 1)
893 return true;
896 * Make sure that all tasks which share the mm with the given tasks
897 * are dying as well to make sure that a) nobody pins its mm and
898 * b) the task is also reapable by the oom reaper.
900 rcu_read_lock();
901 for_each_process(p) {
902 if (!process_shares_mm(p, mm))
903 continue;
904 if (same_thread_group(task, p))
905 continue;
906 ret = __task_will_free_mem(p);
907 if (!ret)
908 break;
910 rcu_read_unlock();
912 return ret;
915 static void __oom_kill_process(struct task_struct *victim, const char *message)
917 struct task_struct *p;
918 struct mm_struct *mm;
919 bool can_oom_reap = true;
921 p = find_lock_task_mm(victim);
922 if (!p) {
923 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n",
924 message, task_pid_nr(victim), victim->comm);
925 put_task_struct(victim);
926 return;
927 } else if (victim != p) {
928 get_task_struct(p);
929 put_task_struct(victim);
930 victim = p;
933 /* Get a reference to safely compare mm after task_unlock(victim) */
934 mm = victim->mm;
935 mmgrab(mm);
937 /* Raise event before sending signal: task reaper must see this */
938 count_vm_event(OOM_KILL);
939 memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
942 * We should send SIGKILL before granting access to memory reserves
943 * in order to prevent the OOM victim from depleting the memory
944 * reserves from the user space under its control.
946 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
947 mark_oom_victim(victim);
948 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
949 message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
950 K(get_mm_counter(mm, MM_ANONPAGES)),
951 K(get_mm_counter(mm, MM_FILEPAGES)),
952 K(get_mm_counter(mm, MM_SHMEMPAGES)),
953 from_kuid(&init_user_ns, task_uid(victim)),
954 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj);
955 task_unlock(victim);
958 * Kill all user processes sharing victim->mm in other thread groups, if
959 * any. They don't get access to memory reserves, though, to avoid
960 * depletion of all memory. This prevents mm->mmap_lock livelock when an
961 * oom killed thread cannot exit because it requires the semaphore and
962 * its contended by another thread trying to allocate memory itself.
963 * That thread will now get access to memory reserves since it has a
964 * pending fatal signal.
966 rcu_read_lock();
967 for_each_process(p) {
968 if (!process_shares_mm(p, mm))
969 continue;
970 if (same_thread_group(p, victim))
971 continue;
972 if (is_global_init(p)) {
973 can_oom_reap = false;
974 set_bit(MMF_OOM_SKIP, &mm->flags);
975 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
976 task_pid_nr(victim), victim->comm,
977 task_pid_nr(p), p->comm);
978 continue;
981 * No kthread_use_mm() user needs to read from the userspace so
982 * we are ok to reap it.
984 if (unlikely(p->flags & PF_KTHREAD))
985 continue;
986 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
988 rcu_read_unlock();
990 if (can_oom_reap)
991 queue_oom_reaper(victim);
993 mmdrop(mm);
994 put_task_struct(victim);
998 * Kill provided task unless it's secured by setting
999 * oom_score_adj to OOM_SCORE_ADJ_MIN.
1001 static int oom_kill_memcg_member(struct task_struct *task, void *message)
1003 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
1004 !is_global_init(task)) {
1005 get_task_struct(task);
1006 __oom_kill_process(task, message);
1008 return 0;
1011 static void oom_kill_process(struct oom_control *oc, const char *message)
1013 struct task_struct *victim = oc->chosen;
1014 struct mem_cgroup *oom_group;
1015 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1016 DEFAULT_RATELIMIT_BURST);
1019 * If the task is already exiting, don't alarm the sysadmin or kill
1020 * its children or threads, just give it access to memory reserves
1021 * so it can die quickly
1023 task_lock(victim);
1024 if (task_will_free_mem(victim)) {
1025 mark_oom_victim(victim);
1026 queue_oom_reaper(victim);
1027 task_unlock(victim);
1028 put_task_struct(victim);
1029 return;
1031 task_unlock(victim);
1033 if (__ratelimit(&oom_rs)) {
1034 dump_header(oc);
1035 dump_oom_victim(oc, victim);
1039 * Do we need to kill the entire memory cgroup?
1040 * Or even one of the ancestor memory cgroups?
1041 * Check this out before killing the victim task.
1043 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
1045 __oom_kill_process(victim, message);
1048 * If necessary, kill all tasks in the selected memory cgroup.
1050 if (oom_group) {
1051 memcg_memory_event(oom_group, MEMCG_OOM_GROUP_KILL);
1052 mem_cgroup_print_oom_group(oom_group);
1053 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
1054 (void *)message);
1055 mem_cgroup_put(oom_group);
1060 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
1062 static void check_panic_on_oom(struct oom_control *oc)
1064 if (likely(!sysctl_panic_on_oom))
1065 return;
1066 if (sysctl_panic_on_oom != 2) {
1068 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1069 * does not panic for cpuset, mempolicy, or memcg allocation
1070 * failures.
1072 if (oc->constraint != CONSTRAINT_NONE)
1073 return;
1075 /* Do not panic for oom kills triggered by sysrq */
1076 if (is_sysrq_oom(oc))
1077 return;
1078 dump_header(oc);
1079 panic("Out of memory: %s panic_on_oom is enabled\n",
1080 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1083 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1085 int register_oom_notifier(struct notifier_block *nb)
1087 return blocking_notifier_chain_register(&oom_notify_list, nb);
1089 EXPORT_SYMBOL_GPL(register_oom_notifier);
1091 int unregister_oom_notifier(struct notifier_block *nb)
1093 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1095 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1098 * out_of_memory - kill the "best" process when we run out of memory
1099 * @oc: pointer to struct oom_control
1101 * If we run out of memory, we have the choice between either
1102 * killing a random task (bad), letting the system crash (worse)
1103 * OR try to be smart about which process to kill. Note that we
1104 * don't have to be perfect here, we just have to be good.
1106 bool out_of_memory(struct oom_control *oc)
1108 unsigned long freed = 0;
1110 if (oom_killer_disabled)
1111 return false;
1113 if (!is_memcg_oom(oc)) {
1114 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1115 if (freed > 0 && !is_sysrq_oom(oc))
1116 /* Got some memory back in the last second. */
1117 return true;
1121 * If current has a pending SIGKILL or is exiting, then automatically
1122 * select it. The goal is to allow it to allocate so that it may
1123 * quickly exit and free its memory.
1125 if (task_will_free_mem(current)) {
1126 mark_oom_victim(current);
1127 queue_oom_reaper(current);
1128 return true;
1132 * The OOM killer does not compensate for IO-less reclaim.
1133 * But mem_cgroup_oom() has to invoke the OOM killer even
1134 * if it is a GFP_NOFS allocation.
1136 if (!(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1137 return true;
1140 * Check if there were limitations on the allocation (only relevant for
1141 * NUMA and memcg) that may require different handling.
1143 oc->constraint = constrained_alloc(oc);
1144 if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1145 oc->nodemask = NULL;
1146 check_panic_on_oom(oc);
1148 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1149 current->mm && !oom_unkillable_task(current) &&
1150 oom_cpuset_eligible(current, oc) &&
1151 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1152 get_task_struct(current);
1153 oc->chosen = current;
1154 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1155 return true;
1158 select_bad_process(oc);
1159 /* Found nothing?!?! */
1160 if (!oc->chosen) {
1161 dump_header(oc);
1162 pr_warn("Out of memory and no killable processes...\n");
1164 * If we got here due to an actual allocation at the
1165 * system level, we cannot survive this and will enter
1166 * an endless loop in the allocator. Bail out now.
1168 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1169 panic("System is deadlocked on memory\n");
1171 if (oc->chosen && oc->chosen != (void *)-1UL)
1172 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1173 "Memory cgroup out of memory");
1174 return !!oc->chosen;
1178 * The pagefault handler calls here because some allocation has failed. We have
1179 * to take care of the memcg OOM here because this is the only safe context without
1180 * any locks held but let the oom killer triggered from the allocation context care
1181 * about the global OOM.
1183 void pagefault_out_of_memory(void)
1185 static DEFINE_RATELIMIT_STATE(pfoom_rs, DEFAULT_RATELIMIT_INTERVAL,
1186 DEFAULT_RATELIMIT_BURST);
1188 if (mem_cgroup_oom_synchronize(true))
1189 return;
1191 if (fatal_signal_pending(current))
1192 return;
1194 if (__ratelimit(&pfoom_rs))
1195 pr_warn("Huh VM_FAULT_OOM leaked out to the #PF handler. Retrying PF\n");
1198 SYSCALL_DEFINE2(process_mrelease, int, pidfd, unsigned int, flags)
1200 #ifdef CONFIG_MMU
1201 struct mm_struct *mm = NULL;
1202 struct task_struct *task;
1203 struct task_struct *p;
1204 unsigned int f_flags;
1205 bool reap = false;
1206 long ret = 0;
1208 if (flags)
1209 return -EINVAL;
1211 task = pidfd_get_task(pidfd, &f_flags);
1212 if (IS_ERR(task))
1213 return PTR_ERR(task);
1216 * Make sure to choose a thread which still has a reference to mm
1217 * during the group exit
1219 p = find_lock_task_mm(task);
1220 if (!p) {
1221 ret = -ESRCH;
1222 goto put_task;
1225 mm = p->mm;
1226 mmgrab(mm);
1228 if (task_will_free_mem(p))
1229 reap = true;
1230 else {
1231 /* Error only if the work has not been done already */
1232 if (!test_bit(MMF_OOM_SKIP, &mm->flags))
1233 ret = -EINVAL;
1235 task_unlock(p);
1237 if (!reap)
1238 goto drop_mm;
1240 if (mmap_read_lock_killable(mm)) {
1241 ret = -EINTR;
1242 goto drop_mm;
1245 * Check MMF_OOM_SKIP again under mmap_read_lock protection to ensure
1246 * possible change in exit_mmap is seen
1248 if (!test_bit(MMF_OOM_SKIP, &mm->flags) && !__oom_reap_task_mm(mm))
1249 ret = -EAGAIN;
1250 mmap_read_unlock(mm);
1252 drop_mm:
1253 mmdrop(mm);
1254 put_task:
1255 put_task_struct(task);
1256 return ret;
1257 #else
1258 return -ENOSYS;
1259 #endif /* CONFIG_MMU */