drm/ast: Only warn about unsupported TX chips on Gen4 and later
[drm/drm-misc.git] / mm / page-writeback.c
blobd213ead9567509bb8aad36ac0bb0a8a5d2fbc153
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/page-writeback.c
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
11 * 10Apr2002 Andrew Morton
12 * Initial version
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
43 #include "internal.h"
46 * Sleep at most 200ms at a time in balance_dirty_pages().
48 #define MAX_PAUSE max(HZ/5, 1)
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
57 * Estimate write bandwidth or update dirty limit at 200ms intervals.
59 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
61 #define RATELIMIT_CALC_SHIFT 10
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
67 static long ratelimit_pages = 32;
69 /* The following parameters are exported via /proc/sys/vm */
72 * Start background writeback (via writeback threads) at this percentage
74 static int dirty_background_ratio = 10;
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
80 static unsigned long dirty_background_bytes;
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
86 static int vm_highmem_is_dirtyable;
89 * The generator of dirty data starts writeback at this percentage
91 static int vm_dirty_ratio = 20;
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
97 static unsigned long vm_dirty_bytes;
100 * The interval between `kupdate'-style writebacks
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
107 * The longest time for which data is allowed to remain dirty
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113 * a full sync is triggered after this time elapses without any disk activity.
115 int laptop_mode;
117 EXPORT_SYMBOL(laptop_mode);
119 /* End of sysctl-exported parameters */
121 struct wb_domain global_wb_domain;
123 /* consolidated parameters for balance_dirty_pages() and its subroutines */
124 struct dirty_throttle_control {
125 #ifdef CONFIG_CGROUP_WRITEBACK
126 struct wb_domain *dom;
127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
128 #endif
129 struct bdi_writeback *wb;
130 struct fprop_local_percpu *wb_completions;
132 unsigned long avail; /* dirtyable */
133 unsigned long dirty; /* file_dirty + write + nfs */
134 unsigned long thresh; /* dirty threshold */
135 unsigned long bg_thresh; /* dirty background threshold */
137 unsigned long wb_dirty; /* per-wb counterparts */
138 unsigned long wb_thresh;
139 unsigned long wb_bg_thresh;
141 unsigned long pos_ratio;
142 bool freerun;
143 bool dirty_exceeded;
147 * Length of period for aging writeout fractions of bdis. This is an
148 * arbitrarily chosen number. The longer the period, the slower fractions will
149 * reflect changes in current writeout rate.
151 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
153 #ifdef CONFIG_CGROUP_WRITEBACK
155 #define GDTC_INIT(__wb) .wb = (__wb), \
156 .dom = &global_wb_domain, \
157 .wb_completions = &(__wb)->completions
159 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
161 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
162 .dom = mem_cgroup_wb_domain(__wb), \
163 .wb_completions = &(__wb)->memcg_completions, \
164 .gdtc = __gdtc
166 static bool mdtc_valid(struct dirty_throttle_control *dtc)
168 return dtc->dom;
171 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
173 return dtc->dom;
176 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
178 return mdtc->gdtc;
181 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
183 return &wb->memcg_completions;
186 static void wb_min_max_ratio(struct bdi_writeback *wb,
187 unsigned long *minp, unsigned long *maxp)
189 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
190 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
191 unsigned long long min = wb->bdi->min_ratio;
192 unsigned long long max = wb->bdi->max_ratio;
195 * @wb may already be clean by the time control reaches here and
196 * the total may not include its bw.
198 if (this_bw < tot_bw) {
199 if (min) {
200 min *= this_bw;
201 min = div64_ul(min, tot_bw);
203 if (max < 100 * BDI_RATIO_SCALE) {
204 max *= this_bw;
205 max = div64_ul(max, tot_bw);
209 *minp = min;
210 *maxp = max;
213 #else /* CONFIG_CGROUP_WRITEBACK */
215 #define GDTC_INIT(__wb) .wb = (__wb), \
216 .wb_completions = &(__wb)->completions
217 #define GDTC_INIT_NO_WB
218 #define MDTC_INIT(__wb, __gdtc)
220 static bool mdtc_valid(struct dirty_throttle_control *dtc)
222 return false;
225 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
227 return &global_wb_domain;
230 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
232 return NULL;
235 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
237 return NULL;
240 static void wb_min_max_ratio(struct bdi_writeback *wb,
241 unsigned long *minp, unsigned long *maxp)
243 *minp = wb->bdi->min_ratio;
244 *maxp = wb->bdi->max_ratio;
247 #endif /* CONFIG_CGROUP_WRITEBACK */
250 * In a memory zone, there is a certain amount of pages we consider
251 * available for the page cache, which is essentially the number of
252 * free and reclaimable pages, minus some zone reserves to protect
253 * lowmem and the ability to uphold the zone's watermarks without
254 * requiring writeback.
256 * This number of dirtyable pages is the base value of which the
257 * user-configurable dirty ratio is the effective number of pages that
258 * are allowed to be actually dirtied. Per individual zone, or
259 * globally by using the sum of dirtyable pages over all zones.
261 * Because the user is allowed to specify the dirty limit globally as
262 * absolute number of bytes, calculating the per-zone dirty limit can
263 * require translating the configured limit into a percentage of
264 * global dirtyable memory first.
268 * node_dirtyable_memory - number of dirtyable pages in a node
269 * @pgdat: the node
271 * Return: the node's number of pages potentially available for dirty
272 * page cache. This is the base value for the per-node dirty limits.
274 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
276 unsigned long nr_pages = 0;
277 int z;
279 for (z = 0; z < MAX_NR_ZONES; z++) {
280 struct zone *zone = pgdat->node_zones + z;
282 if (!populated_zone(zone))
283 continue;
285 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
289 * Pages reserved for the kernel should not be considered
290 * dirtyable, to prevent a situation where reclaim has to
291 * clean pages in order to balance the zones.
293 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
295 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
296 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
298 return nr_pages;
301 static unsigned long highmem_dirtyable_memory(unsigned long total)
303 #ifdef CONFIG_HIGHMEM
304 int node;
305 unsigned long x = 0;
306 int i;
308 for_each_node_state(node, N_HIGH_MEMORY) {
309 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
310 struct zone *z;
311 unsigned long nr_pages;
313 if (!is_highmem_idx(i))
314 continue;
316 z = &NODE_DATA(node)->node_zones[i];
317 if (!populated_zone(z))
318 continue;
320 nr_pages = zone_page_state(z, NR_FREE_PAGES);
321 /* watch for underflows */
322 nr_pages -= min(nr_pages, high_wmark_pages(z));
323 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
324 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
325 x += nr_pages;
330 * Make sure that the number of highmem pages is never larger
331 * than the number of the total dirtyable memory. This can only
332 * occur in very strange VM situations but we want to make sure
333 * that this does not occur.
335 return min(x, total);
336 #else
337 return 0;
338 #endif
342 * global_dirtyable_memory - number of globally dirtyable pages
344 * Return: the global number of pages potentially available for dirty
345 * page cache. This is the base value for the global dirty limits.
347 static unsigned long global_dirtyable_memory(void)
349 unsigned long x;
351 x = global_zone_page_state(NR_FREE_PAGES);
353 * Pages reserved for the kernel should not be considered
354 * dirtyable, to prevent a situation where reclaim has to
355 * clean pages in order to balance the zones.
357 x -= min(x, totalreserve_pages);
359 x += global_node_page_state(NR_INACTIVE_FILE);
360 x += global_node_page_state(NR_ACTIVE_FILE);
362 if (!vm_highmem_is_dirtyable)
363 x -= highmem_dirtyable_memory(x);
365 return x + 1; /* Ensure that we never return 0 */
369 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
370 * @dtc: dirty_throttle_control of interest
372 * Calculate @dtc->thresh and ->bg_thresh considering
373 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
374 * must ensure that @dtc->avail is set before calling this function. The
375 * dirty limits will be lifted by 1/4 for real-time tasks.
377 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
379 const unsigned long available_memory = dtc->avail;
380 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
381 unsigned long bytes = vm_dirty_bytes;
382 unsigned long bg_bytes = dirty_background_bytes;
383 /* convert ratios to per-PAGE_SIZE for higher precision */
384 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
385 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
386 unsigned long thresh;
387 unsigned long bg_thresh;
388 struct task_struct *tsk;
390 /* gdtc is !NULL iff @dtc is for memcg domain */
391 if (gdtc) {
392 unsigned long global_avail = gdtc->avail;
395 * The byte settings can't be applied directly to memcg
396 * domains. Convert them to ratios by scaling against
397 * globally available memory. As the ratios are in
398 * per-PAGE_SIZE, they can be obtained by dividing bytes by
399 * number of pages.
401 if (bytes)
402 ratio = min(DIV_ROUND_UP(bytes, global_avail),
403 PAGE_SIZE);
404 if (bg_bytes)
405 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
406 PAGE_SIZE);
407 bytes = bg_bytes = 0;
410 if (bytes)
411 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
412 else
413 thresh = (ratio * available_memory) / PAGE_SIZE;
415 if (bg_bytes)
416 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
417 else
418 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
420 tsk = current;
421 if (rt_or_dl_task(tsk)) {
422 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
423 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
426 * Dirty throttling logic assumes the limits in page units fit into
427 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
429 if (thresh > UINT_MAX)
430 thresh = UINT_MAX;
431 /* This makes sure bg_thresh is within 32-bits as well */
432 if (bg_thresh >= thresh)
433 bg_thresh = thresh / 2;
434 dtc->thresh = thresh;
435 dtc->bg_thresh = bg_thresh;
437 /* we should eventually report the domain in the TP */
438 if (!gdtc)
439 trace_global_dirty_state(bg_thresh, thresh);
443 * global_dirty_limits - background-writeback and dirty-throttling thresholds
444 * @pbackground: out parameter for bg_thresh
445 * @pdirty: out parameter for thresh
447 * Calculate bg_thresh and thresh for global_wb_domain. See
448 * domain_dirty_limits() for details.
450 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
452 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
454 gdtc.avail = global_dirtyable_memory();
455 domain_dirty_limits(&gdtc);
457 *pbackground = gdtc.bg_thresh;
458 *pdirty = gdtc.thresh;
462 * node_dirty_limit - maximum number of dirty pages allowed in a node
463 * @pgdat: the node
465 * Return: the maximum number of dirty pages allowed in a node, based
466 * on the node's dirtyable memory.
468 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
470 unsigned long node_memory = node_dirtyable_memory(pgdat);
471 struct task_struct *tsk = current;
472 unsigned long dirty;
474 if (vm_dirty_bytes)
475 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
476 node_memory / global_dirtyable_memory();
477 else
478 dirty = vm_dirty_ratio * node_memory / 100;
480 if (rt_or_dl_task(tsk))
481 dirty += dirty / 4;
484 * Dirty throttling logic assumes the limits in page units fit into
485 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
487 return min_t(unsigned long, dirty, UINT_MAX);
491 * node_dirty_ok - tells whether a node is within its dirty limits
492 * @pgdat: the node to check
494 * Return: %true when the dirty pages in @pgdat are within the node's
495 * dirty limit, %false if the limit is exceeded.
497 bool node_dirty_ok(struct pglist_data *pgdat)
499 unsigned long limit = node_dirty_limit(pgdat);
500 unsigned long nr_pages = 0;
502 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
503 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
505 return nr_pages <= limit;
508 #ifdef CONFIG_SYSCTL
509 static int dirty_background_ratio_handler(const struct ctl_table *table, int write,
510 void *buffer, size_t *lenp, loff_t *ppos)
512 int ret;
514 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
515 if (ret == 0 && write)
516 dirty_background_bytes = 0;
517 return ret;
520 static int dirty_background_bytes_handler(const struct ctl_table *table, int write,
521 void *buffer, size_t *lenp, loff_t *ppos)
523 int ret;
524 unsigned long old_bytes = dirty_background_bytes;
526 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
527 if (ret == 0 && write) {
528 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
529 UINT_MAX) {
530 dirty_background_bytes = old_bytes;
531 return -ERANGE;
533 dirty_background_ratio = 0;
535 return ret;
538 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer,
539 size_t *lenp, loff_t *ppos)
541 int old_ratio = vm_dirty_ratio;
542 int ret;
544 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
545 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
546 writeback_set_ratelimit();
547 vm_dirty_bytes = 0;
549 return ret;
552 static int dirty_bytes_handler(const struct ctl_table *table, int write,
553 void *buffer, size_t *lenp, loff_t *ppos)
555 unsigned long old_bytes = vm_dirty_bytes;
556 int ret;
558 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
559 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
560 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
561 vm_dirty_bytes = old_bytes;
562 return -ERANGE;
564 writeback_set_ratelimit();
565 vm_dirty_ratio = 0;
567 return ret;
569 #endif
571 static unsigned long wp_next_time(unsigned long cur_time)
573 cur_time += VM_COMPLETIONS_PERIOD_LEN;
574 /* 0 has a special meaning... */
575 if (!cur_time)
576 return 1;
577 return cur_time;
580 static void wb_domain_writeout_add(struct wb_domain *dom,
581 struct fprop_local_percpu *completions,
582 unsigned int max_prop_frac, long nr)
584 __fprop_add_percpu_max(&dom->completions, completions,
585 max_prop_frac, nr);
586 /* First event after period switching was turned off? */
587 if (unlikely(!dom->period_time)) {
589 * We can race with other wb_domain_writeout_add calls here but
590 * it does not cause any harm since the resulting time when
591 * timer will fire and what is in writeout_period_time will be
592 * roughly the same.
594 dom->period_time = wp_next_time(jiffies);
595 mod_timer(&dom->period_timer, dom->period_time);
600 * Increment @wb's writeout completion count and the global writeout
601 * completion count. Called from __folio_end_writeback().
603 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
605 struct wb_domain *cgdom;
607 wb_stat_mod(wb, WB_WRITTEN, nr);
608 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
609 wb->bdi->max_prop_frac, nr);
611 cgdom = mem_cgroup_wb_domain(wb);
612 if (cgdom)
613 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
614 wb->bdi->max_prop_frac, nr);
617 void wb_writeout_inc(struct bdi_writeback *wb)
619 unsigned long flags;
621 local_irq_save(flags);
622 __wb_writeout_add(wb, 1);
623 local_irq_restore(flags);
625 EXPORT_SYMBOL_GPL(wb_writeout_inc);
628 * On idle system, we can be called long after we scheduled because we use
629 * deferred timers so count with missed periods.
631 static void writeout_period(struct timer_list *t)
633 struct wb_domain *dom = from_timer(dom, t, period_timer);
634 int miss_periods = (jiffies - dom->period_time) /
635 VM_COMPLETIONS_PERIOD_LEN;
637 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
638 dom->period_time = wp_next_time(dom->period_time +
639 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
640 mod_timer(&dom->period_timer, dom->period_time);
641 } else {
643 * Aging has zeroed all fractions. Stop wasting CPU on period
644 * updates.
646 dom->period_time = 0;
650 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
652 memset(dom, 0, sizeof(*dom));
654 spin_lock_init(&dom->lock);
656 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
658 dom->dirty_limit_tstamp = jiffies;
660 return fprop_global_init(&dom->completions, gfp);
663 #ifdef CONFIG_CGROUP_WRITEBACK
664 void wb_domain_exit(struct wb_domain *dom)
666 del_timer_sync(&dom->period_timer);
667 fprop_global_destroy(&dom->completions);
669 #endif
672 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
673 * registered backing devices, which, for obvious reasons, can not
674 * exceed 100%.
676 static unsigned int bdi_min_ratio;
678 static int bdi_check_pages_limit(unsigned long pages)
680 unsigned long max_dirty_pages = global_dirtyable_memory();
682 if (pages > max_dirty_pages)
683 return -EINVAL;
685 return 0;
688 static unsigned long bdi_ratio_from_pages(unsigned long pages)
690 unsigned long background_thresh;
691 unsigned long dirty_thresh;
692 unsigned long ratio;
694 global_dirty_limits(&background_thresh, &dirty_thresh);
695 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
697 return ratio;
700 static u64 bdi_get_bytes(unsigned int ratio)
702 unsigned long background_thresh;
703 unsigned long dirty_thresh;
704 u64 bytes;
706 global_dirty_limits(&background_thresh, &dirty_thresh);
707 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
709 return bytes;
712 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
714 unsigned int delta;
715 int ret = 0;
717 if (min_ratio > 100 * BDI_RATIO_SCALE)
718 return -EINVAL;
720 spin_lock_bh(&bdi_lock);
721 if (min_ratio > bdi->max_ratio) {
722 ret = -EINVAL;
723 } else {
724 if (min_ratio < bdi->min_ratio) {
725 delta = bdi->min_ratio - min_ratio;
726 bdi_min_ratio -= delta;
727 bdi->min_ratio = min_ratio;
728 } else {
729 delta = min_ratio - bdi->min_ratio;
730 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
731 bdi_min_ratio += delta;
732 bdi->min_ratio = min_ratio;
733 } else {
734 ret = -EINVAL;
738 spin_unlock_bh(&bdi_lock);
740 return ret;
743 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
745 int ret = 0;
747 if (max_ratio > 100 * BDI_RATIO_SCALE)
748 return -EINVAL;
750 spin_lock_bh(&bdi_lock);
751 if (bdi->min_ratio > max_ratio) {
752 ret = -EINVAL;
753 } else {
754 bdi->max_ratio = max_ratio;
755 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
756 (100 * BDI_RATIO_SCALE);
758 spin_unlock_bh(&bdi_lock);
760 return ret;
763 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
765 return __bdi_set_min_ratio(bdi, min_ratio);
768 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
770 return __bdi_set_max_ratio(bdi, max_ratio);
773 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
775 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
778 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
780 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
782 EXPORT_SYMBOL(bdi_set_max_ratio);
784 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
786 return bdi_get_bytes(bdi->min_ratio);
789 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
791 int ret;
792 unsigned long pages = min_bytes >> PAGE_SHIFT;
793 unsigned long min_ratio;
795 ret = bdi_check_pages_limit(pages);
796 if (ret)
797 return ret;
799 min_ratio = bdi_ratio_from_pages(pages);
800 return __bdi_set_min_ratio(bdi, min_ratio);
803 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
805 return bdi_get_bytes(bdi->max_ratio);
808 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
810 int ret;
811 unsigned long pages = max_bytes >> PAGE_SHIFT;
812 unsigned long max_ratio;
814 ret = bdi_check_pages_limit(pages);
815 if (ret)
816 return ret;
818 max_ratio = bdi_ratio_from_pages(pages);
819 return __bdi_set_max_ratio(bdi, max_ratio);
822 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
824 if (strict_limit > 1)
825 return -EINVAL;
827 spin_lock_bh(&bdi_lock);
828 if (strict_limit)
829 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
830 else
831 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
832 spin_unlock_bh(&bdi_lock);
834 return 0;
837 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
838 unsigned long bg_thresh)
840 return (thresh + bg_thresh) / 2;
843 static unsigned long hard_dirty_limit(struct wb_domain *dom,
844 unsigned long thresh)
846 return max(thresh, dom->dirty_limit);
850 * Memory which can be further allocated to a memcg domain is capped by
851 * system-wide clean memory excluding the amount being used in the domain.
853 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
854 unsigned long filepages, unsigned long headroom)
856 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
857 unsigned long clean = filepages - min(filepages, mdtc->dirty);
858 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
859 unsigned long other_clean = global_clean - min(global_clean, clean);
861 mdtc->avail = filepages + min(headroom, other_clean);
864 static inline bool dtc_is_global(struct dirty_throttle_control *dtc)
866 return mdtc_gdtc(dtc) == NULL;
870 * Dirty background will ignore pages being written as we're trying to
871 * decide whether to put more under writeback.
873 static void domain_dirty_avail(struct dirty_throttle_control *dtc,
874 bool include_writeback)
876 if (dtc_is_global(dtc)) {
877 dtc->avail = global_dirtyable_memory();
878 dtc->dirty = global_node_page_state(NR_FILE_DIRTY);
879 if (include_writeback)
880 dtc->dirty += global_node_page_state(NR_WRITEBACK);
881 } else {
882 unsigned long filepages = 0, headroom = 0, writeback = 0;
884 mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty,
885 &writeback);
886 if (include_writeback)
887 dtc->dirty += writeback;
888 mdtc_calc_avail(dtc, filepages, headroom);
893 * __wb_calc_thresh - @wb's share of dirty threshold
894 * @dtc: dirty_throttle_context of interest
895 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
897 * Note that balance_dirty_pages() will only seriously take dirty throttling
898 * threshold as a hard limit when sleeping max_pause per page is not enough
899 * to keep the dirty pages under control. For example, when the device is
900 * completely stalled due to some error conditions, or when there are 1000
901 * dd tasks writing to a slow 10MB/s USB key.
902 * In the other normal situations, it acts more gently by throttling the tasks
903 * more (rather than completely block them) when the wb dirty pages go high.
905 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
906 * - starving fast devices
907 * - piling up dirty pages (that will take long time to sync) on slow devices
909 * The wb's share of dirty limit will be adapting to its throughput and
910 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
912 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
913 * "dirty" in the context of dirty balancing includes all PG_dirty and
914 * PG_writeback pages.
916 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
917 unsigned long thresh)
919 struct wb_domain *dom = dtc_dom(dtc);
920 struct bdi_writeback *wb = dtc->wb;
921 u64 wb_thresh;
922 u64 wb_max_thresh;
923 unsigned long numerator, denominator;
924 unsigned long wb_min_ratio, wb_max_ratio;
927 * Calculate this wb's share of the thresh ratio.
929 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
930 &numerator, &denominator);
932 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
933 wb_thresh *= numerator;
934 wb_thresh = div64_ul(wb_thresh, denominator);
936 wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);
938 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
939 wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
940 if (wb_thresh > wb_max_thresh)
941 wb_thresh = wb_max_thresh;
944 * With strictlimit flag, the wb_thresh is treated as
945 * a hard limit in balance_dirty_pages() and wb_position_ratio().
946 * It's possible that wb_thresh is close to zero, not because
947 * the device is slow, but because it has been inactive.
948 * To prevent occasional writes from being blocked, we raise wb_thresh.
950 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
951 unsigned long limit = hard_dirty_limit(dom, dtc->thresh);
952 u64 wb_scale_thresh = 0;
954 if (limit > dtc->dirty)
955 wb_scale_thresh = (limit - dtc->dirty) / 100;
956 wb_thresh = max(wb_thresh, min(wb_scale_thresh, wb_max_thresh / 4));
959 return wb_thresh;
962 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
964 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
966 return __wb_calc_thresh(&gdtc, thresh);
969 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
971 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
972 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
974 domain_dirty_avail(&gdtc, true);
975 domain_dirty_avail(&mdtc, true);
976 domain_dirty_limits(&mdtc);
978 return __wb_calc_thresh(&mdtc, mdtc.thresh);
982 * setpoint - dirty 3
983 * f(dirty) := 1.0 + (----------------)
984 * limit - setpoint
986 * it's a 3rd order polynomial that subjects to
988 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
989 * (2) f(setpoint) = 1.0 => the balance point
990 * (3) f(limit) = 0 => the hard limit
991 * (4) df/dx <= 0 => negative feedback control
992 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
993 * => fast response on large errors; small oscillation near setpoint
995 static long long pos_ratio_polynom(unsigned long setpoint,
996 unsigned long dirty,
997 unsigned long limit)
999 long long pos_ratio;
1000 long x;
1002 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
1003 (limit - setpoint) | 1);
1004 pos_ratio = x;
1005 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
1006 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
1007 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
1009 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
1013 * Dirty position control.
1015 * (o) global/bdi setpoints
1017 * We want the dirty pages be balanced around the global/wb setpoints.
1018 * When the number of dirty pages is higher/lower than the setpoint, the
1019 * dirty position control ratio (and hence task dirty ratelimit) will be
1020 * decreased/increased to bring the dirty pages back to the setpoint.
1022 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
1024 * if (dirty < setpoint) scale up pos_ratio
1025 * if (dirty > setpoint) scale down pos_ratio
1027 * if (wb_dirty < wb_setpoint) scale up pos_ratio
1028 * if (wb_dirty > wb_setpoint) scale down pos_ratio
1030 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
1032 * (o) global control line
1034 * ^ pos_ratio
1036 * | |<===== global dirty control scope ======>|
1037 * 2.0 * * * * * * *
1038 * | .*
1039 * | . *
1040 * | . *
1041 * | . *
1042 * | . *
1043 * | . *
1044 * 1.0 ................................*
1045 * | . . *
1046 * | . . *
1047 * | . . *
1048 * | . . *
1049 * | . . *
1050 * 0 +------------.------------------.----------------------*------------->
1051 * freerun^ setpoint^ limit^ dirty pages
1053 * (o) wb control line
1055 * ^ pos_ratio
1057 * | *
1058 * | *
1059 * | *
1060 * | *
1061 * | * |<=========== span ============>|
1062 * 1.0 .......................*
1063 * | . *
1064 * | . *
1065 * | . *
1066 * | . *
1067 * | . *
1068 * | . *
1069 * | . *
1070 * | . *
1071 * | . *
1072 * | . *
1073 * | . *
1074 * 1/4 ...............................................* * * * * * * * * * * *
1075 * | . .
1076 * | . .
1077 * | . .
1078 * 0 +----------------------.-------------------------------.------------->
1079 * wb_setpoint^ x_intercept^
1081 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1082 * be smoothly throttled down to normal if it starts high in situations like
1083 * - start writing to a slow SD card and a fast disk at the same time. The SD
1084 * card's wb_dirty may rush to many times higher than wb_setpoint.
1085 * - the wb dirty thresh drops quickly due to change of JBOD workload
1087 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1089 struct bdi_writeback *wb = dtc->wb;
1090 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1091 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1092 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1093 unsigned long wb_thresh = dtc->wb_thresh;
1094 unsigned long x_intercept;
1095 unsigned long setpoint; /* dirty pages' target balance point */
1096 unsigned long wb_setpoint;
1097 unsigned long span;
1098 long long pos_ratio; /* for scaling up/down the rate limit */
1099 long x;
1101 dtc->pos_ratio = 0;
1103 if (unlikely(dtc->dirty >= limit))
1104 return;
1107 * global setpoint
1109 * See comment for pos_ratio_polynom().
1111 setpoint = (freerun + limit) / 2;
1112 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1115 * The strictlimit feature is a tool preventing mistrusted filesystems
1116 * from growing a large number of dirty pages before throttling. For
1117 * such filesystems balance_dirty_pages always checks wb counters
1118 * against wb limits. Even if global "nr_dirty" is under "freerun".
1119 * This is especially important for fuse which sets bdi->max_ratio to
1120 * 1% by default. Without strictlimit feature, fuse writeback may
1121 * consume arbitrary amount of RAM because it is accounted in
1122 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1124 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1125 * two values: wb_dirty and wb_thresh. Let's consider an example:
1126 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1127 * limits are set by default to 10% and 20% (background and throttle).
1128 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1129 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1130 * about ~6K pages (as the average of background and throttle wb
1131 * limits). The 3rd order polynomial will provide positive feedback if
1132 * wb_dirty is under wb_setpoint and vice versa.
1134 * Note, that we cannot use global counters in these calculations
1135 * because we want to throttle process writing to a strictlimit wb
1136 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1137 * in the example above).
1139 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1140 long long wb_pos_ratio;
1142 if (dtc->wb_dirty < 8) {
1143 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1144 2 << RATELIMIT_CALC_SHIFT);
1145 return;
1148 if (dtc->wb_dirty >= wb_thresh)
1149 return;
1151 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1152 dtc->wb_bg_thresh);
1154 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1155 return;
1157 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1158 wb_thresh);
1161 * Typically, for strictlimit case, wb_setpoint << setpoint
1162 * and pos_ratio >> wb_pos_ratio. In the other words global
1163 * state ("dirty") is not limiting factor and we have to
1164 * make decision based on wb counters. But there is an
1165 * important case when global pos_ratio should get precedence:
1166 * global limits are exceeded (e.g. due to activities on other
1167 * wb's) while given strictlimit wb is below limit.
1169 * "pos_ratio * wb_pos_ratio" would work for the case above,
1170 * but it would look too non-natural for the case of all
1171 * activity in the system coming from a single strictlimit wb
1172 * with bdi->max_ratio == 100%.
1174 * Note that min() below somewhat changes the dynamics of the
1175 * control system. Normally, pos_ratio value can be well over 3
1176 * (when globally we are at freerun and wb is well below wb
1177 * setpoint). Now the maximum pos_ratio in the same situation
1178 * is 2. We might want to tweak this if we observe the control
1179 * system is too slow to adapt.
1181 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1182 return;
1186 * We have computed basic pos_ratio above based on global situation. If
1187 * the wb is over/under its share of dirty pages, we want to scale
1188 * pos_ratio further down/up. That is done by the following mechanism.
1192 * wb setpoint
1194 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1196 * x_intercept - wb_dirty
1197 * := --------------------------
1198 * x_intercept - wb_setpoint
1200 * The main wb control line is a linear function that subjects to
1202 * (1) f(wb_setpoint) = 1.0
1203 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1204 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1206 * For single wb case, the dirty pages are observed to fluctuate
1207 * regularly within range
1208 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1209 * for various filesystems, where (2) can yield in a reasonable 12.5%
1210 * fluctuation range for pos_ratio.
1212 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1213 * own size, so move the slope over accordingly and choose a slope that
1214 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1216 if (unlikely(wb_thresh > dtc->thresh))
1217 wb_thresh = dtc->thresh;
1219 * It's very possible that wb_thresh is close to 0 not because the
1220 * device is slow, but that it has remained inactive for long time.
1221 * Honour such devices a reasonable good (hopefully IO efficient)
1222 * threshold, so that the occasional writes won't be blocked and active
1223 * writes can rampup the threshold quickly.
1225 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1227 * scale global setpoint to wb's:
1228 * wb_setpoint = setpoint * wb_thresh / thresh
1230 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1231 wb_setpoint = setpoint * (u64)x >> 16;
1233 * Use span=(8*write_bw) in single wb case as indicated by
1234 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1236 * wb_thresh thresh - wb_thresh
1237 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1238 * thresh thresh
1240 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1241 x_intercept = wb_setpoint + span;
1243 if (dtc->wb_dirty < x_intercept - span / 4) {
1244 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1245 (x_intercept - wb_setpoint) | 1);
1246 } else
1247 pos_ratio /= 4;
1250 * wb reserve area, safeguard against dirty pool underrun and disk idle
1251 * It may push the desired control point of global dirty pages higher
1252 * than setpoint.
1254 x_intercept = wb_thresh / 2;
1255 if (dtc->wb_dirty < x_intercept) {
1256 if (dtc->wb_dirty > x_intercept / 8)
1257 pos_ratio = div_u64(pos_ratio * x_intercept,
1258 dtc->wb_dirty);
1259 else
1260 pos_ratio *= 8;
1263 dtc->pos_ratio = pos_ratio;
1266 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1267 unsigned long elapsed,
1268 unsigned long written)
1270 const unsigned long period = roundup_pow_of_two(3 * HZ);
1271 unsigned long avg = wb->avg_write_bandwidth;
1272 unsigned long old = wb->write_bandwidth;
1273 u64 bw;
1276 * bw = written * HZ / elapsed
1278 * bw * elapsed + write_bandwidth * (period - elapsed)
1279 * write_bandwidth = ---------------------------------------------------
1280 * period
1282 * @written may have decreased due to folio_redirty_for_writepage().
1283 * Avoid underflowing @bw calculation.
1285 bw = written - min(written, wb->written_stamp);
1286 bw *= HZ;
1287 if (unlikely(elapsed > period)) {
1288 bw = div64_ul(bw, elapsed);
1289 avg = bw;
1290 goto out;
1292 bw += (u64)wb->write_bandwidth * (period - elapsed);
1293 bw >>= ilog2(period);
1296 * one more level of smoothing, for filtering out sudden spikes
1298 if (avg > old && old >= (unsigned long)bw)
1299 avg -= (avg - old) >> 3;
1301 if (avg < old && old <= (unsigned long)bw)
1302 avg += (old - avg) >> 3;
1304 out:
1305 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1306 avg = max(avg, 1LU);
1307 if (wb_has_dirty_io(wb)) {
1308 long delta = avg - wb->avg_write_bandwidth;
1309 WARN_ON_ONCE(atomic_long_add_return(delta,
1310 &wb->bdi->tot_write_bandwidth) <= 0);
1312 wb->write_bandwidth = bw;
1313 WRITE_ONCE(wb->avg_write_bandwidth, avg);
1316 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1318 struct wb_domain *dom = dtc_dom(dtc);
1319 unsigned long thresh = dtc->thresh;
1320 unsigned long limit = dom->dirty_limit;
1323 * Follow up in one step.
1325 if (limit < thresh) {
1326 limit = thresh;
1327 goto update;
1331 * Follow down slowly. Use the higher one as the target, because thresh
1332 * may drop below dirty. This is exactly the reason to introduce
1333 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1335 thresh = max(thresh, dtc->dirty);
1336 if (limit > thresh) {
1337 limit -= (limit - thresh) >> 5;
1338 goto update;
1340 return;
1341 update:
1342 dom->dirty_limit = limit;
1345 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1346 unsigned long now)
1348 struct wb_domain *dom = dtc_dom(dtc);
1351 * check locklessly first to optimize away locking for the most time
1353 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1354 return;
1356 spin_lock(&dom->lock);
1357 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1358 update_dirty_limit(dtc);
1359 dom->dirty_limit_tstamp = now;
1361 spin_unlock(&dom->lock);
1365 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1367 * Normal wb tasks will be curbed at or below it in long term.
1368 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1370 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1371 unsigned long dirtied,
1372 unsigned long elapsed)
1374 struct bdi_writeback *wb = dtc->wb;
1375 unsigned long dirty = dtc->dirty;
1376 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1377 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1378 unsigned long setpoint = (freerun + limit) / 2;
1379 unsigned long write_bw = wb->avg_write_bandwidth;
1380 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1381 unsigned long dirty_rate;
1382 unsigned long task_ratelimit;
1383 unsigned long balanced_dirty_ratelimit;
1384 unsigned long step;
1385 unsigned long x;
1386 unsigned long shift;
1389 * The dirty rate will match the writeout rate in long term, except
1390 * when dirty pages are truncated by userspace or re-dirtied by FS.
1392 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1395 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1397 task_ratelimit = (u64)dirty_ratelimit *
1398 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1399 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1402 * A linear estimation of the "balanced" throttle rate. The theory is,
1403 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1404 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1405 * formula will yield the balanced rate limit (write_bw / N).
1407 * Note that the expanded form is not a pure rate feedback:
1408 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1409 * but also takes pos_ratio into account:
1410 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1412 * (1) is not realistic because pos_ratio also takes part in balancing
1413 * the dirty rate. Consider the state
1414 * pos_ratio = 0.5 (3)
1415 * rate = 2 * (write_bw / N) (4)
1416 * If (1) is used, it will stuck in that state! Because each dd will
1417 * be throttled at
1418 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1419 * yielding
1420 * dirty_rate = N * task_ratelimit = write_bw (6)
1421 * put (6) into (1) we get
1422 * rate_(i+1) = rate_(i) (7)
1424 * So we end up using (2) to always keep
1425 * rate_(i+1) ~= (write_bw / N) (8)
1426 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1427 * pos_ratio is able to drive itself to 1.0, which is not only where
1428 * the dirty count meet the setpoint, but also where the slope of
1429 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1431 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1432 dirty_rate | 1);
1434 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1436 if (unlikely(balanced_dirty_ratelimit > write_bw))
1437 balanced_dirty_ratelimit = write_bw;
1440 * We could safely do this and return immediately:
1442 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1444 * However to get a more stable dirty_ratelimit, the below elaborated
1445 * code makes use of task_ratelimit to filter out singular points and
1446 * limit the step size.
1448 * The below code essentially only uses the relative value of
1450 * task_ratelimit - dirty_ratelimit
1451 * = (pos_ratio - 1) * dirty_ratelimit
1453 * which reflects the direction and size of dirty position error.
1457 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1458 * task_ratelimit is on the same side of dirty_ratelimit, too.
1459 * For example, when
1460 * - dirty_ratelimit > balanced_dirty_ratelimit
1461 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1462 * lowering dirty_ratelimit will help meet both the position and rate
1463 * control targets. Otherwise, don't update dirty_ratelimit if it will
1464 * only help meet the rate target. After all, what the users ultimately
1465 * feel and care are stable dirty rate and small position error.
1467 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1468 * and filter out the singular points of balanced_dirty_ratelimit. Which
1469 * keeps jumping around randomly and can even leap far away at times
1470 * due to the small 200ms estimation period of dirty_rate (we want to
1471 * keep that period small to reduce time lags).
1473 step = 0;
1476 * For strictlimit case, calculations above were based on wb counters
1477 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1478 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1479 * Hence, to calculate "step" properly, we have to use wb_dirty as
1480 * "dirty" and wb_setpoint as "setpoint".
1482 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1483 * it's possible that wb_thresh is close to zero due to inactivity
1484 * of backing device.
1486 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1487 dirty = dtc->wb_dirty;
1488 if (dtc->wb_dirty < 8)
1489 setpoint = dtc->wb_dirty + 1;
1490 else
1491 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1494 if (dirty < setpoint) {
1495 x = min3(wb->balanced_dirty_ratelimit,
1496 balanced_dirty_ratelimit, task_ratelimit);
1497 if (dirty_ratelimit < x)
1498 step = x - dirty_ratelimit;
1499 } else {
1500 x = max3(wb->balanced_dirty_ratelimit,
1501 balanced_dirty_ratelimit, task_ratelimit);
1502 if (dirty_ratelimit > x)
1503 step = dirty_ratelimit - x;
1507 * Don't pursue 100% rate matching. It's impossible since the balanced
1508 * rate itself is constantly fluctuating. So decrease the track speed
1509 * when it gets close to the target. Helps eliminate pointless tremors.
1511 shift = dirty_ratelimit / (2 * step + 1);
1512 if (shift < BITS_PER_LONG)
1513 step = DIV_ROUND_UP(step >> shift, 8);
1514 else
1515 step = 0;
1517 if (dirty_ratelimit < balanced_dirty_ratelimit)
1518 dirty_ratelimit += step;
1519 else
1520 dirty_ratelimit -= step;
1522 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1523 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1525 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1528 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1529 struct dirty_throttle_control *mdtc,
1530 bool update_ratelimit)
1532 struct bdi_writeback *wb = gdtc->wb;
1533 unsigned long now = jiffies;
1534 unsigned long elapsed;
1535 unsigned long dirtied;
1536 unsigned long written;
1538 spin_lock(&wb->list_lock);
1541 * Lockless checks for elapsed time are racy and delayed update after
1542 * IO completion doesn't do it at all (to make sure written pages are
1543 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1544 * division errors.
1546 elapsed = max(now - wb->bw_time_stamp, 1UL);
1547 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1548 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1550 if (update_ratelimit) {
1551 domain_update_dirty_limit(gdtc, now);
1552 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1555 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1556 * compiler has no way to figure that out. Help it.
1558 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1559 domain_update_dirty_limit(mdtc, now);
1560 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1563 wb_update_write_bandwidth(wb, elapsed, written);
1565 wb->dirtied_stamp = dirtied;
1566 wb->written_stamp = written;
1567 WRITE_ONCE(wb->bw_time_stamp, now);
1568 spin_unlock(&wb->list_lock);
1571 void wb_update_bandwidth(struct bdi_writeback *wb)
1573 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1575 __wb_update_bandwidth(&gdtc, NULL, false);
1578 /* Interval after which we consider wb idle and don't estimate bandwidth */
1579 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1581 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1583 unsigned long now = jiffies;
1584 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1586 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1587 !atomic_read(&wb->writeback_inodes)) {
1588 spin_lock(&wb->list_lock);
1589 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1590 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1591 WRITE_ONCE(wb->bw_time_stamp, now);
1592 spin_unlock(&wb->list_lock);
1597 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1598 * will look to see if it needs to start dirty throttling.
1600 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1601 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1602 * (the number of pages we may dirty without exceeding the dirty limits).
1604 static unsigned long dirty_poll_interval(unsigned long dirty,
1605 unsigned long thresh)
1607 if (thresh > dirty)
1608 return 1UL << (ilog2(thresh - dirty) >> 1);
1610 return 1;
1613 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1614 unsigned long wb_dirty)
1616 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1617 unsigned long t;
1620 * Limit pause time for small memory systems. If sleeping for too long
1621 * time, a small pool of dirty/writeback pages may go empty and disk go
1622 * idle.
1624 * 8 serves as the safety ratio.
1626 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1627 t++;
1629 return min_t(unsigned long, t, MAX_PAUSE);
1632 static long wb_min_pause(struct bdi_writeback *wb,
1633 long max_pause,
1634 unsigned long task_ratelimit,
1635 unsigned long dirty_ratelimit,
1636 int *nr_dirtied_pause)
1638 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1639 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1640 long t; /* target pause */
1641 long pause; /* estimated next pause */
1642 int pages; /* target nr_dirtied_pause */
1644 /* target for 10ms pause on 1-dd case */
1645 t = max(1, HZ / 100);
1648 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1649 * overheads.
1651 * (N * 10ms) on 2^N concurrent tasks.
1653 if (hi > lo)
1654 t += (hi - lo) * (10 * HZ) / 1024;
1657 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1658 * on the much more stable dirty_ratelimit. However the next pause time
1659 * will be computed based on task_ratelimit and the two rate limits may
1660 * depart considerably at some time. Especially if task_ratelimit goes
1661 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1662 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1663 * result task_ratelimit won't be executed faithfully, which could
1664 * eventually bring down dirty_ratelimit.
1666 * We apply two rules to fix it up:
1667 * 1) try to estimate the next pause time and if necessary, use a lower
1668 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1669 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1670 * 2) limit the target pause time to max_pause/2, so that the normal
1671 * small fluctuations of task_ratelimit won't trigger rule (1) and
1672 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1674 t = min(t, 1 + max_pause / 2);
1675 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1678 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1679 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1680 * When the 16 consecutive reads are often interrupted by some dirty
1681 * throttling pause during the async writes, cfq will go into idles
1682 * (deadline is fine). So push nr_dirtied_pause as high as possible
1683 * until reaches DIRTY_POLL_THRESH=32 pages.
1685 if (pages < DIRTY_POLL_THRESH) {
1686 t = max_pause;
1687 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1688 if (pages > DIRTY_POLL_THRESH) {
1689 pages = DIRTY_POLL_THRESH;
1690 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1694 pause = HZ * pages / (task_ratelimit + 1);
1695 if (pause > max_pause) {
1696 t = max_pause;
1697 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1700 *nr_dirtied_pause = pages;
1702 * The minimal pause time will normally be half the target pause time.
1704 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1707 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1709 struct bdi_writeback *wb = dtc->wb;
1710 unsigned long wb_reclaimable;
1713 * wb_thresh is not treated as some limiting factor as
1714 * dirty_thresh, due to reasons
1715 * - in JBOD setup, wb_thresh can fluctuate a lot
1716 * - in a system with HDD and USB key, the USB key may somehow
1717 * go into state (wb_dirty >> wb_thresh) either because
1718 * wb_dirty starts high, or because wb_thresh drops low.
1719 * In this case we don't want to hard throttle the USB key
1720 * dirtiers for 100 seconds until wb_dirty drops under
1721 * wb_thresh. Instead the auxiliary wb control line in
1722 * wb_position_ratio() will let the dirtier task progress
1723 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1725 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
1726 dtc->wb_bg_thresh = dtc->thresh ?
1727 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1730 * In order to avoid the stacked BDI deadlock we need
1731 * to ensure we accurately count the 'dirty' pages when
1732 * the threshold is low.
1734 * Otherwise it would be possible to get thresh+n pages
1735 * reported dirty, even though there are thresh-m pages
1736 * actually dirty; with m+n sitting in the percpu
1737 * deltas.
1739 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1740 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1741 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1742 } else {
1743 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1744 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1748 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc,
1749 bool strictlimit)
1751 unsigned long dirty, thresh;
1753 if (strictlimit) {
1754 dirty = dtc->wb_dirty;
1755 thresh = dtc->wb_thresh;
1756 } else {
1757 dirty = dtc->dirty;
1758 thresh = dtc->thresh;
1761 return dirty_poll_interval(dirty, thresh);
1765 * Throttle it only when the background writeback cannot catch-up. This avoids
1766 * (excessively) small writeouts when the wb limits are ramping up in case of
1767 * !strictlimit.
1769 * In strictlimit case make decision based on the wb counters and limits. Small
1770 * writeouts when the wb limits are ramping up are the price we consciously pay
1771 * for strictlimit-ing.
1773 static void domain_dirty_freerun(struct dirty_throttle_control *dtc,
1774 bool strictlimit)
1776 unsigned long dirty, thresh, bg_thresh;
1778 if (unlikely(strictlimit)) {
1779 wb_dirty_limits(dtc);
1780 dirty = dtc->wb_dirty;
1781 thresh = dtc->wb_thresh;
1782 bg_thresh = dtc->wb_bg_thresh;
1783 } else {
1784 dirty = dtc->dirty;
1785 thresh = dtc->thresh;
1786 bg_thresh = dtc->bg_thresh;
1788 dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh);
1791 static void balance_domain_limits(struct dirty_throttle_control *dtc,
1792 bool strictlimit)
1794 domain_dirty_avail(dtc, true);
1795 domain_dirty_limits(dtc);
1796 domain_dirty_freerun(dtc, strictlimit);
1799 static void wb_dirty_freerun(struct dirty_throttle_control *dtc,
1800 bool strictlimit)
1802 dtc->freerun = false;
1804 /* was already handled in domain_dirty_freerun */
1805 if (strictlimit)
1806 return;
1808 wb_dirty_limits(dtc);
1810 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb
1811 * freerun ceiling.
1813 if (!(current->flags & PF_LOCAL_THROTTLE))
1814 return;
1816 dtc->freerun = dtc->wb_dirty <
1817 dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh);
1820 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc,
1821 bool strictlimit)
1823 dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) &&
1824 ((dtc->dirty > dtc->thresh) || strictlimit);
1828 * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is
1829 * in freerun state. Please don't use these invalid fields in freerun case.
1831 static void balance_wb_limits(struct dirty_throttle_control *dtc,
1832 bool strictlimit)
1834 wb_dirty_freerun(dtc, strictlimit);
1835 if (dtc->freerun)
1836 return;
1838 wb_dirty_exceeded(dtc, strictlimit);
1839 wb_position_ratio(dtc);
1843 * balance_dirty_pages() must be called by processes which are generating dirty
1844 * data. It looks at the number of dirty pages in the machine and will force
1845 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1846 * If we're over `background_thresh' then the writeback threads are woken to
1847 * perform some writeout.
1849 static int balance_dirty_pages(struct bdi_writeback *wb,
1850 unsigned long pages_dirtied, unsigned int flags)
1852 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1853 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1854 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1855 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1856 &mdtc_stor : NULL;
1857 struct dirty_throttle_control *sdtc;
1858 unsigned long nr_dirty;
1859 long period;
1860 long pause;
1861 long max_pause;
1862 long min_pause;
1863 int nr_dirtied_pause;
1864 unsigned long task_ratelimit;
1865 unsigned long dirty_ratelimit;
1866 struct backing_dev_info *bdi = wb->bdi;
1867 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1868 unsigned long start_time = jiffies;
1869 int ret = 0;
1871 for (;;) {
1872 unsigned long now = jiffies;
1874 nr_dirty = global_node_page_state(NR_FILE_DIRTY);
1876 balance_domain_limits(gdtc, strictlimit);
1877 if (mdtc) {
1879 * If @wb belongs to !root memcg, repeat the same
1880 * basic calculations for the memcg domain.
1882 balance_domain_limits(mdtc, strictlimit);
1886 * In laptop mode, we wait until hitting the higher threshold
1887 * before starting background writeout, and then write out all
1888 * the way down to the lower threshold. So slow writers cause
1889 * minimal disk activity.
1891 * In normal mode, we start background writeout at the lower
1892 * background_thresh, to keep the amount of dirty memory low.
1894 if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
1895 !writeback_in_progress(wb))
1896 wb_start_background_writeback(wb);
1899 * If memcg domain is in effect, @dirty should be under
1900 * both global and memcg freerun ceilings.
1902 if (gdtc->freerun && (!mdtc || mdtc->freerun)) {
1903 unsigned long intv;
1904 unsigned long m_intv;
1906 free_running:
1907 intv = domain_poll_intv(gdtc, strictlimit);
1908 m_intv = ULONG_MAX;
1910 current->dirty_paused_when = now;
1911 current->nr_dirtied = 0;
1912 if (mdtc)
1913 m_intv = domain_poll_intv(mdtc, strictlimit);
1914 current->nr_dirtied_pause = min(intv, m_intv);
1915 break;
1918 /* Start writeback even when in laptop mode */
1919 if (unlikely(!writeback_in_progress(wb)))
1920 wb_start_background_writeback(wb);
1922 mem_cgroup_flush_foreign(wb);
1925 * Calculate global domain's pos_ratio and select the
1926 * global dtc by default.
1928 balance_wb_limits(gdtc, strictlimit);
1929 if (gdtc->freerun)
1930 goto free_running;
1931 sdtc = gdtc;
1933 if (mdtc) {
1935 * If memcg domain is in effect, calculate its
1936 * pos_ratio. @wb should satisfy constraints from
1937 * both global and memcg domains. Choose the one
1938 * w/ lower pos_ratio.
1940 balance_wb_limits(mdtc, strictlimit);
1941 if (mdtc->freerun)
1942 goto free_running;
1943 if (mdtc->pos_ratio < gdtc->pos_ratio)
1944 sdtc = mdtc;
1947 wb->dirty_exceeded = gdtc->dirty_exceeded ||
1948 (mdtc && mdtc->dirty_exceeded);
1949 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1950 BANDWIDTH_INTERVAL))
1951 __wb_update_bandwidth(gdtc, mdtc, true);
1953 /* throttle according to the chosen dtc */
1954 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1955 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1956 RATELIMIT_CALC_SHIFT;
1957 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1958 min_pause = wb_min_pause(wb, max_pause,
1959 task_ratelimit, dirty_ratelimit,
1960 &nr_dirtied_pause);
1962 if (unlikely(task_ratelimit == 0)) {
1963 period = max_pause;
1964 pause = max_pause;
1965 goto pause;
1967 period = HZ * pages_dirtied / task_ratelimit;
1968 pause = period;
1969 if (current->dirty_paused_when)
1970 pause -= now - current->dirty_paused_when;
1972 * For less than 1s think time (ext3/4 may block the dirtier
1973 * for up to 800ms from time to time on 1-HDD; so does xfs,
1974 * however at much less frequency), try to compensate it in
1975 * future periods by updating the virtual time; otherwise just
1976 * do a reset, as it may be a light dirtier.
1978 if (pause < min_pause) {
1979 trace_balance_dirty_pages(wb,
1980 sdtc->thresh,
1981 sdtc->bg_thresh,
1982 sdtc->dirty,
1983 sdtc->wb_thresh,
1984 sdtc->wb_dirty,
1985 dirty_ratelimit,
1986 task_ratelimit,
1987 pages_dirtied,
1988 period,
1989 min(pause, 0L),
1990 start_time);
1991 if (pause < -HZ) {
1992 current->dirty_paused_when = now;
1993 current->nr_dirtied = 0;
1994 } else if (period) {
1995 current->dirty_paused_when += period;
1996 current->nr_dirtied = 0;
1997 } else if (current->nr_dirtied_pause <= pages_dirtied)
1998 current->nr_dirtied_pause += pages_dirtied;
1999 break;
2001 if (unlikely(pause > max_pause)) {
2002 /* for occasional dropped task_ratelimit */
2003 now += min(pause - max_pause, max_pause);
2004 pause = max_pause;
2007 pause:
2008 trace_balance_dirty_pages(wb,
2009 sdtc->thresh,
2010 sdtc->bg_thresh,
2011 sdtc->dirty,
2012 sdtc->wb_thresh,
2013 sdtc->wb_dirty,
2014 dirty_ratelimit,
2015 task_ratelimit,
2016 pages_dirtied,
2017 period,
2018 pause,
2019 start_time);
2020 if (flags & BDP_ASYNC) {
2021 ret = -EAGAIN;
2022 break;
2024 __set_current_state(TASK_KILLABLE);
2025 bdi->last_bdp_sleep = jiffies;
2026 io_schedule_timeout(pause);
2028 current->dirty_paused_when = now + pause;
2029 current->nr_dirtied = 0;
2030 current->nr_dirtied_pause = nr_dirtied_pause;
2033 * This is typically equal to (dirty < thresh) and can also
2034 * keep "1000+ dd on a slow USB stick" under control.
2036 if (task_ratelimit)
2037 break;
2040 * In the case of an unresponsive NFS server and the NFS dirty
2041 * pages exceeds dirty_thresh, give the other good wb's a pipe
2042 * to go through, so that tasks on them still remain responsive.
2044 * In theory 1 page is enough to keep the consumer-producer
2045 * pipe going: the flusher cleans 1 page => the task dirties 1
2046 * more page. However wb_dirty has accounting errors. So use
2047 * the larger and more IO friendly wb_stat_error.
2049 if (sdtc->wb_dirty <= wb_stat_error())
2050 break;
2052 if (fatal_signal_pending(current))
2053 break;
2055 return ret;
2058 static DEFINE_PER_CPU(int, bdp_ratelimits);
2061 * Normal tasks are throttled by
2062 * loop {
2063 * dirty tsk->nr_dirtied_pause pages;
2064 * take a snap in balance_dirty_pages();
2066 * However there is a worst case. If every task exit immediately when dirtied
2067 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
2068 * called to throttle the page dirties. The solution is to save the not yet
2069 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
2070 * randomly into the running tasks. This works well for the above worst case,
2071 * as the new task will pick up and accumulate the old task's leaked dirty
2072 * count and eventually get throttled.
2074 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
2077 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2078 * @mapping: address_space which was dirtied.
2079 * @flags: BDP flags.
2081 * Processes which are dirtying memory should call in here once for each page
2082 * which was newly dirtied. The function will periodically check the system's
2083 * dirty state and will initiate writeback if needed.
2085 * See balance_dirty_pages_ratelimited() for details.
2087 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2088 * indicate that memory is out of balance and the caller must wait
2089 * for I/O to complete. Otherwise, it will return 0 to indicate
2090 * that either memory was already in balance, or it was able to sleep
2091 * until the amount of dirty memory returned to balance.
2093 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2094 unsigned int flags)
2096 struct inode *inode = mapping->host;
2097 struct backing_dev_info *bdi = inode_to_bdi(inode);
2098 struct bdi_writeback *wb = NULL;
2099 int ratelimit;
2100 int ret = 0;
2101 int *p;
2103 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2104 return ret;
2106 if (inode_cgwb_enabled(inode))
2107 wb = wb_get_create_current(bdi, GFP_KERNEL);
2108 if (!wb)
2109 wb = &bdi->wb;
2111 ratelimit = current->nr_dirtied_pause;
2112 if (wb->dirty_exceeded)
2113 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2115 preempt_disable();
2117 * This prevents one CPU to accumulate too many dirtied pages without
2118 * calling into balance_dirty_pages(), which can happen when there are
2119 * 1000+ tasks, all of them start dirtying pages at exactly the same
2120 * time, hence all honoured too large initial task->nr_dirtied_pause.
2122 p = this_cpu_ptr(&bdp_ratelimits);
2123 if (unlikely(current->nr_dirtied >= ratelimit))
2124 *p = 0;
2125 else if (unlikely(*p >= ratelimit_pages)) {
2126 *p = 0;
2127 ratelimit = 0;
2130 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2131 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2132 * the dirty throttling and livelock other long-run dirtiers.
2134 p = this_cpu_ptr(&dirty_throttle_leaks);
2135 if (*p > 0 && current->nr_dirtied < ratelimit) {
2136 unsigned long nr_pages_dirtied;
2137 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2138 *p -= nr_pages_dirtied;
2139 current->nr_dirtied += nr_pages_dirtied;
2141 preempt_enable();
2143 if (unlikely(current->nr_dirtied >= ratelimit))
2144 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2146 wb_put(wb);
2147 return ret;
2149 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2152 * balance_dirty_pages_ratelimited - balance dirty memory state.
2153 * @mapping: address_space which was dirtied.
2155 * Processes which are dirtying memory should call in here once for each page
2156 * which was newly dirtied. The function will periodically check the system's
2157 * dirty state and will initiate writeback if needed.
2159 * Once we're over the dirty memory limit we decrease the ratelimiting
2160 * by a lot, to prevent individual processes from overshooting the limit
2161 * by (ratelimit_pages) each.
2163 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2165 balance_dirty_pages_ratelimited_flags(mapping, 0);
2167 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2170 * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty
2171 * and thresh, but it's for background writeback.
2173 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc)
2175 struct bdi_writeback *wb = dtc->wb;
2177 dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh);
2178 if (dtc->wb_bg_thresh < 2 * wb_stat_error())
2179 dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE);
2180 else
2181 dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE);
2184 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc)
2186 domain_dirty_avail(dtc, false);
2187 domain_dirty_limits(dtc);
2188 if (dtc->dirty > dtc->bg_thresh)
2189 return true;
2191 wb_bg_dirty_limits(dtc);
2192 if (dtc->wb_dirty > dtc->wb_bg_thresh)
2193 return true;
2195 return false;
2199 * wb_over_bg_thresh - does @wb need to be written back?
2200 * @wb: bdi_writeback of interest
2202 * Determines whether background writeback should keep writing @wb or it's
2203 * clean enough.
2205 * Return: %true if writeback should continue.
2207 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2209 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
2210 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
2212 if (domain_over_bg_thresh(&gdtc))
2213 return true;
2215 if (mdtc_valid(&mdtc))
2216 return domain_over_bg_thresh(&mdtc);
2218 return false;
2221 #ifdef CONFIG_SYSCTL
2223 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2225 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write,
2226 void *buffer, size_t *length, loff_t *ppos)
2228 unsigned int old_interval = dirty_writeback_interval;
2229 int ret;
2231 ret = proc_dointvec(table, write, buffer, length, ppos);
2234 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2235 * and a different non-zero value will wakeup the writeback threads.
2236 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2237 * iterate over all bdis and wbs.
2238 * The reason we do this is to make the change take effect immediately.
2240 if (!ret && write && dirty_writeback_interval &&
2241 dirty_writeback_interval != old_interval)
2242 wakeup_flusher_threads(WB_REASON_PERIODIC);
2244 return ret;
2246 #endif
2248 void laptop_mode_timer_fn(struct timer_list *t)
2250 struct backing_dev_info *backing_dev_info =
2251 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2253 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2257 * We've spun up the disk and we're in laptop mode: schedule writeback
2258 * of all dirty data a few seconds from now. If the flush is already scheduled
2259 * then push it back - the user is still using the disk.
2261 void laptop_io_completion(struct backing_dev_info *info)
2263 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2267 * We're in laptop mode and we've just synced. The sync's writes will have
2268 * caused another writeback to be scheduled by laptop_io_completion.
2269 * Nothing needs to be written back anymore, so we unschedule the writeback.
2271 void laptop_sync_completion(void)
2273 struct backing_dev_info *bdi;
2275 rcu_read_lock();
2277 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2278 del_timer(&bdi->laptop_mode_wb_timer);
2280 rcu_read_unlock();
2284 * If ratelimit_pages is too high then we can get into dirty-data overload
2285 * if a large number of processes all perform writes at the same time.
2287 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2288 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2289 * thresholds.
2292 void writeback_set_ratelimit(void)
2294 struct wb_domain *dom = &global_wb_domain;
2295 unsigned long background_thresh;
2296 unsigned long dirty_thresh;
2298 global_dirty_limits(&background_thresh, &dirty_thresh);
2299 dom->dirty_limit = dirty_thresh;
2300 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2301 if (ratelimit_pages < 16)
2302 ratelimit_pages = 16;
2305 static int page_writeback_cpu_online(unsigned int cpu)
2307 writeback_set_ratelimit();
2308 return 0;
2311 #ifdef CONFIG_SYSCTL
2313 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2314 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2316 static struct ctl_table vm_page_writeback_sysctls[] = {
2318 .procname = "dirty_background_ratio",
2319 .data = &dirty_background_ratio,
2320 .maxlen = sizeof(dirty_background_ratio),
2321 .mode = 0644,
2322 .proc_handler = dirty_background_ratio_handler,
2323 .extra1 = SYSCTL_ZERO,
2324 .extra2 = SYSCTL_ONE_HUNDRED,
2327 .procname = "dirty_background_bytes",
2328 .data = &dirty_background_bytes,
2329 .maxlen = sizeof(dirty_background_bytes),
2330 .mode = 0644,
2331 .proc_handler = dirty_background_bytes_handler,
2332 .extra1 = SYSCTL_LONG_ONE,
2335 .procname = "dirty_ratio",
2336 .data = &vm_dirty_ratio,
2337 .maxlen = sizeof(vm_dirty_ratio),
2338 .mode = 0644,
2339 .proc_handler = dirty_ratio_handler,
2340 .extra1 = SYSCTL_ZERO,
2341 .extra2 = SYSCTL_ONE_HUNDRED,
2344 .procname = "dirty_bytes",
2345 .data = &vm_dirty_bytes,
2346 .maxlen = sizeof(vm_dirty_bytes),
2347 .mode = 0644,
2348 .proc_handler = dirty_bytes_handler,
2349 .extra1 = (void *)&dirty_bytes_min,
2352 .procname = "dirty_writeback_centisecs",
2353 .data = &dirty_writeback_interval,
2354 .maxlen = sizeof(dirty_writeback_interval),
2355 .mode = 0644,
2356 .proc_handler = dirty_writeback_centisecs_handler,
2359 .procname = "dirty_expire_centisecs",
2360 .data = &dirty_expire_interval,
2361 .maxlen = sizeof(dirty_expire_interval),
2362 .mode = 0644,
2363 .proc_handler = proc_dointvec_minmax,
2364 .extra1 = SYSCTL_ZERO,
2366 #ifdef CONFIG_HIGHMEM
2368 .procname = "highmem_is_dirtyable",
2369 .data = &vm_highmem_is_dirtyable,
2370 .maxlen = sizeof(vm_highmem_is_dirtyable),
2371 .mode = 0644,
2372 .proc_handler = proc_dointvec_minmax,
2373 .extra1 = SYSCTL_ZERO,
2374 .extra2 = SYSCTL_ONE,
2376 #endif
2378 .procname = "laptop_mode",
2379 .data = &laptop_mode,
2380 .maxlen = sizeof(laptop_mode),
2381 .mode = 0644,
2382 .proc_handler = proc_dointvec_jiffies,
2385 #endif
2388 * Called early on to tune the page writeback dirty limits.
2390 * We used to scale dirty pages according to how total memory
2391 * related to pages that could be allocated for buffers.
2393 * However, that was when we used "dirty_ratio" to scale with
2394 * all memory, and we don't do that any more. "dirty_ratio"
2395 * is now applied to total non-HIGHPAGE memory, and as such we can't
2396 * get into the old insane situation any more where we had
2397 * large amounts of dirty pages compared to a small amount of
2398 * non-HIGHMEM memory.
2400 * But we might still want to scale the dirty_ratio by how
2401 * much memory the box has..
2403 void __init page_writeback_init(void)
2405 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2407 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2408 page_writeback_cpu_online, NULL);
2409 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2410 page_writeback_cpu_online);
2411 #ifdef CONFIG_SYSCTL
2412 register_sysctl_init("vm", vm_page_writeback_sysctls);
2413 #endif
2417 * tag_pages_for_writeback - tag pages to be written by writeback
2418 * @mapping: address space structure to write
2419 * @start: starting page index
2420 * @end: ending page index (inclusive)
2422 * This function scans the page range from @start to @end (inclusive) and tags
2423 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller
2424 * can then use the TOWRITE tag to identify pages eligible for writeback.
2425 * This mechanism is used to avoid livelocking of writeback by a process
2426 * steadily creating new dirty pages in the file (thus it is important for this
2427 * function to be quick so that it can tag pages faster than a dirtying process
2428 * can create them).
2430 void tag_pages_for_writeback(struct address_space *mapping,
2431 pgoff_t start, pgoff_t end)
2433 XA_STATE(xas, &mapping->i_pages, start);
2434 unsigned int tagged = 0;
2435 void *page;
2437 xas_lock_irq(&xas);
2438 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2439 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2440 if (++tagged % XA_CHECK_SCHED)
2441 continue;
2443 xas_pause(&xas);
2444 xas_unlock_irq(&xas);
2445 cond_resched();
2446 xas_lock_irq(&xas);
2448 xas_unlock_irq(&xas);
2450 EXPORT_SYMBOL(tag_pages_for_writeback);
2452 static bool folio_prepare_writeback(struct address_space *mapping,
2453 struct writeback_control *wbc, struct folio *folio)
2456 * Folio truncated or invalidated. We can freely skip it then,
2457 * even for data integrity operations: the folio has disappeared
2458 * concurrently, so there could be no real expectation of this
2459 * data integrity operation even if there is now a new, dirty
2460 * folio at the same pagecache index.
2462 if (unlikely(folio->mapping != mapping))
2463 return false;
2466 * Did somebody else write it for us?
2468 if (!folio_test_dirty(folio))
2469 return false;
2471 if (folio_test_writeback(folio)) {
2472 if (wbc->sync_mode == WB_SYNC_NONE)
2473 return false;
2474 folio_wait_writeback(folio);
2476 BUG_ON(folio_test_writeback(folio));
2478 if (!folio_clear_dirty_for_io(folio))
2479 return false;
2481 return true;
2484 static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2486 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2487 return PAGECACHE_TAG_TOWRITE;
2488 return PAGECACHE_TAG_DIRTY;
2491 static pgoff_t wbc_end(struct writeback_control *wbc)
2493 if (wbc->range_cyclic)
2494 return -1;
2495 return wbc->range_end >> PAGE_SHIFT;
2498 static struct folio *writeback_get_folio(struct address_space *mapping,
2499 struct writeback_control *wbc)
2501 struct folio *folio;
2503 retry:
2504 folio = folio_batch_next(&wbc->fbatch);
2505 if (!folio) {
2506 folio_batch_release(&wbc->fbatch);
2507 cond_resched();
2508 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2509 wbc_to_tag(wbc), &wbc->fbatch);
2510 folio = folio_batch_next(&wbc->fbatch);
2511 if (!folio)
2512 return NULL;
2515 folio_lock(folio);
2516 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2517 folio_unlock(folio);
2518 goto retry;
2521 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2522 return folio;
2526 * writeback_iter - iterate folio of a mapping for writeback
2527 * @mapping: address space structure to write
2528 * @wbc: writeback context
2529 * @folio: previously iterated folio (%NULL to start)
2530 * @error: in-out pointer for writeback errors (see below)
2532 * This function returns the next folio for the writeback operation described by
2533 * @wbc on @mapping and should be called in a while loop in the ->writepages
2534 * implementation.
2536 * To start the writeback operation, %NULL is passed in the @folio argument, and
2537 * for every subsequent iteration the folio returned previously should be passed
2538 * back in.
2540 * If there was an error in the per-folio writeback inside the writeback_iter()
2541 * loop, @error should be set to the error value.
2543 * Once the writeback described in @wbc has finished, this function will return
2544 * %NULL and if there was an error in any iteration restore it to @error.
2546 * Note: callers should not manually break out of the loop using break or goto
2547 * but must keep calling writeback_iter() until it returns %NULL.
2549 * Return: the folio to write or %NULL if the loop is done.
2551 struct folio *writeback_iter(struct address_space *mapping,
2552 struct writeback_control *wbc, struct folio *folio, int *error)
2554 if (!folio) {
2555 folio_batch_init(&wbc->fbatch);
2556 wbc->saved_err = *error = 0;
2559 * For range cyclic writeback we remember where we stopped so
2560 * that we can continue where we stopped.
2562 * For non-cyclic writeback we always start at the beginning of
2563 * the passed in range.
2565 if (wbc->range_cyclic)
2566 wbc->index = mapping->writeback_index;
2567 else
2568 wbc->index = wbc->range_start >> PAGE_SHIFT;
2571 * To avoid livelocks when other processes dirty new pages, we
2572 * first tag pages which should be written back and only then
2573 * start writing them.
2575 * For data-integrity writeback we have to be careful so that we
2576 * do not miss some pages (e.g., because some other process has
2577 * cleared the TOWRITE tag we set). The rule we follow is that
2578 * TOWRITE tag can be cleared only by the process clearing the
2579 * DIRTY tag (and submitting the page for I/O).
2581 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2582 tag_pages_for_writeback(mapping, wbc->index,
2583 wbc_end(wbc));
2584 } else {
2585 wbc->nr_to_write -= folio_nr_pages(folio);
2587 WARN_ON_ONCE(*error > 0);
2590 * For integrity writeback we have to keep going until we have
2591 * written all the folios we tagged for writeback above, even if
2592 * we run past wbc->nr_to_write or encounter errors.
2593 * We stash away the first error we encounter in wbc->saved_err
2594 * so that it can be retrieved when we're done. This is because
2595 * the file system may still have state to clear for each folio.
2597 * For background writeback we exit as soon as we run past
2598 * wbc->nr_to_write or encounter the first error.
2600 if (wbc->sync_mode == WB_SYNC_ALL) {
2601 if (*error && !wbc->saved_err)
2602 wbc->saved_err = *error;
2603 } else {
2604 if (*error || wbc->nr_to_write <= 0)
2605 goto done;
2609 folio = writeback_get_folio(mapping, wbc);
2610 if (!folio) {
2612 * To avoid deadlocks between range_cyclic writeback and callers
2613 * that hold pages in PageWriteback to aggregate I/O until
2614 * the writeback iteration finishes, we do not loop back to the
2615 * start of the file. Doing so causes a page lock/page
2616 * writeback access order inversion - we should only ever lock
2617 * multiple pages in ascending page->index order, and looping
2618 * back to the start of the file violates that rule and causes
2619 * deadlocks.
2621 if (wbc->range_cyclic)
2622 mapping->writeback_index = 0;
2625 * Return the first error we encountered (if there was any) to
2626 * the caller.
2628 *error = wbc->saved_err;
2630 return folio;
2632 done:
2633 if (wbc->range_cyclic)
2634 mapping->writeback_index = folio_next_index(folio);
2635 folio_batch_release(&wbc->fbatch);
2636 return NULL;
2638 EXPORT_SYMBOL_GPL(writeback_iter);
2641 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2642 * @mapping: address space structure to write
2643 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2644 * @writepage: function called for each page
2645 * @data: data passed to writepage function
2647 * Return: %0 on success, negative error code otherwise
2649 * Note: please use writeback_iter() instead.
2651 int write_cache_pages(struct address_space *mapping,
2652 struct writeback_control *wbc, writepage_t writepage,
2653 void *data)
2655 struct folio *folio = NULL;
2656 int error;
2658 while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2659 error = writepage(folio, wbc, data);
2660 if (error == AOP_WRITEPAGE_ACTIVATE) {
2661 folio_unlock(folio);
2662 error = 0;
2666 return error;
2668 EXPORT_SYMBOL(write_cache_pages);
2670 static int writeback_use_writepage(struct address_space *mapping,
2671 struct writeback_control *wbc)
2673 struct folio *folio = NULL;
2674 struct blk_plug plug;
2675 int err;
2677 blk_start_plug(&plug);
2678 while ((folio = writeback_iter(mapping, wbc, folio, &err))) {
2679 err = mapping->a_ops->writepage(&folio->page, wbc);
2680 if (err == AOP_WRITEPAGE_ACTIVATE) {
2681 folio_unlock(folio);
2682 err = 0;
2684 mapping_set_error(mapping, err);
2686 blk_finish_plug(&plug);
2688 return err;
2691 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2693 int ret;
2694 struct bdi_writeback *wb;
2696 if (wbc->nr_to_write <= 0)
2697 return 0;
2698 wb = inode_to_wb_wbc(mapping->host, wbc);
2699 wb_bandwidth_estimate_start(wb);
2700 while (1) {
2701 if (mapping->a_ops->writepages) {
2702 ret = mapping->a_ops->writepages(mapping, wbc);
2703 } else if (mapping->a_ops->writepage) {
2704 ret = writeback_use_writepage(mapping, wbc);
2705 } else {
2706 /* deal with chardevs and other special files */
2707 ret = 0;
2709 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2710 break;
2713 * Lacking an allocation context or the locality or writeback
2714 * state of any of the inode's pages, throttle based on
2715 * writeback activity on the local node. It's as good a
2716 * guess as any.
2718 reclaim_throttle(NODE_DATA(numa_node_id()),
2719 VMSCAN_THROTTLE_WRITEBACK);
2722 * Usually few pages are written by now from those we've just submitted
2723 * but if there's constant writeback being submitted, this makes sure
2724 * writeback bandwidth is updated once in a while.
2726 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2727 BANDWIDTH_INTERVAL))
2728 wb_update_bandwidth(wb);
2729 return ret;
2733 * For address_spaces which do not use buffers nor write back.
2735 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2737 if (!folio_test_dirty(folio))
2738 return !folio_test_set_dirty(folio);
2739 return false;
2741 EXPORT_SYMBOL(noop_dirty_folio);
2744 * Helper function for set_page_dirty family.
2746 * NOTE: This relies on being atomic wrt interrupts.
2748 static void folio_account_dirtied(struct folio *folio,
2749 struct address_space *mapping)
2751 struct inode *inode = mapping->host;
2753 trace_writeback_dirty_folio(folio, mapping);
2755 if (mapping_can_writeback(mapping)) {
2756 struct bdi_writeback *wb;
2757 long nr = folio_nr_pages(folio);
2759 inode_attach_wb(inode, folio);
2760 wb = inode_to_wb(inode);
2762 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2763 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2764 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2765 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2766 wb_stat_mod(wb, WB_DIRTIED, nr);
2767 task_io_account_write(nr * PAGE_SIZE);
2768 current->nr_dirtied += nr;
2769 __this_cpu_add(bdp_ratelimits, nr);
2771 mem_cgroup_track_foreign_dirty(folio, wb);
2776 * Helper function for deaccounting dirty page without writeback.
2779 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2781 long nr = folio_nr_pages(folio);
2783 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2784 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2785 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2786 task_io_account_cancelled_write(nr * PAGE_SIZE);
2790 * Mark the folio dirty, and set it dirty in the page cache.
2792 * If warn is true, then emit a warning if the folio is not uptodate and has
2793 * not been truncated.
2795 * It is the caller's responsibility to prevent the folio from being truncated
2796 * while this function is in progress, although it may have been truncated
2797 * before this function is called. Most callers have the folio locked.
2798 * A few have the folio blocked from truncation through other means (e.g.
2799 * zap_vma_pages() has it mapped and is holding the page table lock).
2800 * When called from mark_buffer_dirty(), the filesystem should hold a
2801 * reference to the buffer_head that is being marked dirty, which causes
2802 * try_to_free_buffers() to fail.
2804 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2805 int warn)
2807 unsigned long flags;
2809 xa_lock_irqsave(&mapping->i_pages, flags);
2810 if (folio->mapping) { /* Race with truncate? */
2811 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2812 folio_account_dirtied(folio, mapping);
2813 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2814 PAGECACHE_TAG_DIRTY);
2816 xa_unlock_irqrestore(&mapping->i_pages, flags);
2820 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2821 * @mapping: Address space this folio belongs to.
2822 * @folio: Folio to be marked as dirty.
2824 * Filesystems which do not use buffer heads should call this function
2825 * from their dirty_folio address space operation. It ignores the
2826 * contents of folio_get_private(), so if the filesystem marks individual
2827 * blocks as dirty, the filesystem should handle that itself.
2829 * This is also sometimes used by filesystems which use buffer_heads when
2830 * a single buffer is being dirtied: we want to set the folio dirty in
2831 * that case, but not all the buffers. This is a "bottom-up" dirtying,
2832 * whereas block_dirty_folio() is a "top-down" dirtying.
2834 * The caller must ensure this doesn't race with truncation. Most will
2835 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2836 * folio mapped and the pte lock held, which also locks out truncation.
2838 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2840 if (folio_test_set_dirty(folio))
2841 return false;
2843 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2845 if (mapping->host) {
2846 /* !PageAnon && !swapper_space */
2847 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2849 return true;
2851 EXPORT_SYMBOL(filemap_dirty_folio);
2854 * folio_redirty_for_writepage - Decline to write a dirty folio.
2855 * @wbc: The writeback control.
2856 * @folio: The folio.
2858 * When a writepage implementation decides that it doesn't want to write
2859 * @folio for some reason, it should call this function, unlock @folio and
2860 * return 0.
2862 * Return: True if we redirtied the folio. False if someone else dirtied
2863 * it first.
2865 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2866 struct folio *folio)
2868 struct address_space *mapping = folio->mapping;
2869 long nr = folio_nr_pages(folio);
2870 bool ret;
2872 wbc->pages_skipped += nr;
2873 ret = filemap_dirty_folio(mapping, folio);
2874 if (mapping && mapping_can_writeback(mapping)) {
2875 struct inode *inode = mapping->host;
2876 struct bdi_writeback *wb;
2877 struct wb_lock_cookie cookie = {};
2879 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2880 current->nr_dirtied -= nr;
2881 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2882 wb_stat_mod(wb, WB_DIRTIED, -nr);
2883 unlocked_inode_to_wb_end(inode, &cookie);
2885 return ret;
2887 EXPORT_SYMBOL(folio_redirty_for_writepage);
2890 * folio_mark_dirty - Mark a folio as being modified.
2891 * @folio: The folio.
2893 * The folio may not be truncated while this function is running.
2894 * Holding the folio lock is sufficient to prevent truncation, but some
2895 * callers cannot acquire a sleeping lock. These callers instead hold
2896 * the page table lock for a page table which contains at least one page
2897 * in this folio. Truncation will block on the page table lock as it
2898 * unmaps pages before removing the folio from its mapping.
2900 * Return: True if the folio was newly dirtied, false if it was already dirty.
2902 bool folio_mark_dirty(struct folio *folio)
2904 struct address_space *mapping = folio_mapping(folio);
2906 if (likely(mapping)) {
2908 * readahead/folio_deactivate could remain
2909 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2910 * About readahead, if the folio is written, the flags would be
2911 * reset. So no problem.
2912 * About folio_deactivate, if the folio is redirtied,
2913 * the flag will be reset. So no problem. but if the
2914 * folio is used by readahead it will confuse readahead
2915 * and make it restart the size rampup process. But it's
2916 * a trivial problem.
2918 if (folio_test_reclaim(folio))
2919 folio_clear_reclaim(folio);
2920 return mapping->a_ops->dirty_folio(mapping, folio);
2923 return noop_dirty_folio(mapping, folio);
2925 EXPORT_SYMBOL(folio_mark_dirty);
2928 * folio_mark_dirty() is racy if the caller has no reference against
2929 * folio->mapping->host, and if the folio is unlocked. This is because another
2930 * CPU could truncate the folio off the mapping and then free the mapping.
2932 * Usually, the folio _is_ locked, or the caller is a user-space process which
2933 * holds a reference on the inode by having an open file.
2935 * In other cases, the folio should be locked before running folio_mark_dirty().
2937 bool folio_mark_dirty_lock(struct folio *folio)
2939 bool ret;
2941 folio_lock(folio);
2942 ret = folio_mark_dirty(folio);
2943 folio_unlock(folio);
2944 return ret;
2946 EXPORT_SYMBOL(folio_mark_dirty_lock);
2949 * This cancels just the dirty bit on the kernel page itself, it does NOT
2950 * actually remove dirty bits on any mmap's that may be around. It also
2951 * leaves the page tagged dirty, so any sync activity will still find it on
2952 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2953 * look at the dirty bits in the VM.
2955 * Doing this should *normally* only ever be done when a page is truncated,
2956 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2957 * this when it notices that somebody has cleaned out all the buffers on a
2958 * page without actually doing it through the VM. Can you say "ext3 is
2959 * horribly ugly"? Thought you could.
2961 void __folio_cancel_dirty(struct folio *folio)
2963 struct address_space *mapping = folio_mapping(folio);
2965 if (mapping_can_writeback(mapping)) {
2966 struct inode *inode = mapping->host;
2967 struct bdi_writeback *wb;
2968 struct wb_lock_cookie cookie = {};
2970 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2972 if (folio_test_clear_dirty(folio))
2973 folio_account_cleaned(folio, wb);
2975 unlocked_inode_to_wb_end(inode, &cookie);
2976 } else {
2977 folio_clear_dirty(folio);
2980 EXPORT_SYMBOL(__folio_cancel_dirty);
2983 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2984 * Returns true if the folio was previously dirty.
2986 * This is for preparing to put the folio under writeout. We leave
2987 * the folio tagged as dirty in the xarray so that a concurrent
2988 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2989 * The ->writepage implementation will run either folio_start_writeback()
2990 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2991 * and xarray dirty tag back into sync.
2993 * This incoherency between the folio's dirty flag and xarray tag is
2994 * unfortunate, but it only exists while the folio is locked.
2996 bool folio_clear_dirty_for_io(struct folio *folio)
2998 struct address_space *mapping = folio_mapping(folio);
2999 bool ret = false;
3001 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
3003 if (mapping && mapping_can_writeback(mapping)) {
3004 struct inode *inode = mapping->host;
3005 struct bdi_writeback *wb;
3006 struct wb_lock_cookie cookie = {};
3009 * Yes, Virginia, this is indeed insane.
3011 * We use this sequence to make sure that
3012 * (a) we account for dirty stats properly
3013 * (b) we tell the low-level filesystem to
3014 * mark the whole folio dirty if it was
3015 * dirty in a pagetable. Only to then
3016 * (c) clean the folio again and return 1 to
3017 * cause the writeback.
3019 * This way we avoid all nasty races with the
3020 * dirty bit in multiple places and clearing
3021 * them concurrently from different threads.
3023 * Note! Normally the "folio_mark_dirty(folio)"
3024 * has no effect on the actual dirty bit - since
3025 * that will already usually be set. But we
3026 * need the side effects, and it can help us
3027 * avoid races.
3029 * We basically use the folio "master dirty bit"
3030 * as a serialization point for all the different
3031 * threads doing their things.
3033 if (folio_mkclean(folio))
3034 folio_mark_dirty(folio);
3036 * We carefully synchronise fault handlers against
3037 * installing a dirty pte and marking the folio dirty
3038 * at this point. We do this by having them hold the
3039 * page lock while dirtying the folio, and folios are
3040 * always locked coming in here, so we get the desired
3041 * exclusion.
3043 wb = unlocked_inode_to_wb_begin(inode, &cookie);
3044 if (folio_test_clear_dirty(folio)) {
3045 long nr = folio_nr_pages(folio);
3046 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
3047 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3048 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
3049 ret = true;
3051 unlocked_inode_to_wb_end(inode, &cookie);
3052 return ret;
3054 return folio_test_clear_dirty(folio);
3056 EXPORT_SYMBOL(folio_clear_dirty_for_io);
3058 static void wb_inode_writeback_start(struct bdi_writeback *wb)
3060 atomic_inc(&wb->writeback_inodes);
3063 static void wb_inode_writeback_end(struct bdi_writeback *wb)
3065 unsigned long flags;
3066 atomic_dec(&wb->writeback_inodes);
3068 * Make sure estimate of writeback throughput gets updated after
3069 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3070 * (which is the interval other bandwidth updates use for batching) so
3071 * that if multiple inodes end writeback at a similar time, they get
3072 * batched into one bandwidth update.
3074 spin_lock_irqsave(&wb->work_lock, flags);
3075 if (test_bit(WB_registered, &wb->state))
3076 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3077 spin_unlock_irqrestore(&wb->work_lock, flags);
3080 bool __folio_end_writeback(struct folio *folio)
3082 long nr = folio_nr_pages(folio);
3083 struct address_space *mapping = folio_mapping(folio);
3084 bool ret;
3086 if (mapping && mapping_use_writeback_tags(mapping)) {
3087 struct inode *inode = mapping->host;
3088 struct backing_dev_info *bdi = inode_to_bdi(inode);
3089 unsigned long flags;
3091 xa_lock_irqsave(&mapping->i_pages, flags);
3092 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3093 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
3094 PAGECACHE_TAG_WRITEBACK);
3095 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3096 struct bdi_writeback *wb = inode_to_wb(inode);
3098 wb_stat_mod(wb, WB_WRITEBACK, -nr);
3099 __wb_writeout_add(wb, nr);
3100 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3101 wb_inode_writeback_end(wb);
3104 if (mapping->host && !mapping_tagged(mapping,
3105 PAGECACHE_TAG_WRITEBACK))
3106 sb_clear_inode_writeback(mapping->host);
3108 xa_unlock_irqrestore(&mapping->i_pages, flags);
3109 } else {
3110 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3113 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3114 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3115 node_stat_mod_folio(folio, NR_WRITTEN, nr);
3117 return ret;
3120 void __folio_start_writeback(struct folio *folio, bool keep_write)
3122 long nr = folio_nr_pages(folio);
3123 struct address_space *mapping = folio_mapping(folio);
3124 int access_ret;
3126 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3128 if (mapping && mapping_use_writeback_tags(mapping)) {
3129 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3130 struct inode *inode = mapping->host;
3131 struct backing_dev_info *bdi = inode_to_bdi(inode);
3132 unsigned long flags;
3133 bool on_wblist;
3135 xas_lock_irqsave(&xas, flags);
3136 xas_load(&xas);
3137 folio_test_set_writeback(folio);
3139 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3141 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3142 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3143 struct bdi_writeback *wb = inode_to_wb(inode);
3145 wb_stat_mod(wb, WB_WRITEBACK, nr);
3146 if (!on_wblist)
3147 wb_inode_writeback_start(wb);
3151 * We can come through here when swapping anonymous
3152 * folios, so we don't necessarily have an inode to
3153 * track for sync.
3155 if (mapping->host && !on_wblist)
3156 sb_mark_inode_writeback(mapping->host);
3157 if (!folio_test_dirty(folio))
3158 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3159 if (!keep_write)
3160 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3161 xas_unlock_irqrestore(&xas, flags);
3162 } else {
3163 folio_test_set_writeback(folio);
3166 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3167 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3169 access_ret = arch_make_folio_accessible(folio);
3171 * If writeback has been triggered on a page that cannot be made
3172 * accessible, it is too late to recover here.
3174 VM_BUG_ON_FOLIO(access_ret != 0, folio);
3176 EXPORT_SYMBOL(__folio_start_writeback);
3179 * folio_wait_writeback - Wait for a folio to finish writeback.
3180 * @folio: The folio to wait for.
3182 * If the folio is currently being written back to storage, wait for the
3183 * I/O to complete.
3185 * Context: Sleeps. Must be called in process context and with
3186 * no spinlocks held. Caller should hold a reference on the folio.
3187 * If the folio is not locked, writeback may start again after writeback
3188 * has finished.
3190 void folio_wait_writeback(struct folio *folio)
3192 while (folio_test_writeback(folio)) {
3193 trace_folio_wait_writeback(folio, folio_mapping(folio));
3194 folio_wait_bit(folio, PG_writeback);
3197 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3200 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3201 * @folio: The folio to wait for.
3203 * If the folio is currently being written back to storage, wait for the
3204 * I/O to complete or a fatal signal to arrive.
3206 * Context: Sleeps. Must be called in process context and with
3207 * no spinlocks held. Caller should hold a reference on the folio.
3208 * If the folio is not locked, writeback may start again after writeback
3209 * has finished.
3210 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3212 int folio_wait_writeback_killable(struct folio *folio)
3214 while (folio_test_writeback(folio)) {
3215 trace_folio_wait_writeback(folio, folio_mapping(folio));
3216 if (folio_wait_bit_killable(folio, PG_writeback))
3217 return -EINTR;
3220 return 0;
3222 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3225 * folio_wait_stable() - wait for writeback to finish, if necessary.
3226 * @folio: The folio to wait on.
3228 * This function determines if the given folio is related to a backing
3229 * device that requires folio contents to be held stable during writeback.
3230 * If so, then it will wait for any pending writeback to complete.
3232 * Context: Sleeps. Must be called in process context and with
3233 * no spinlocks held. Caller should hold a reference on the folio.
3234 * If the folio is not locked, writeback may start again after writeback
3235 * has finished.
3237 void folio_wait_stable(struct folio *folio)
3239 if (mapping_stable_writes(folio_mapping(folio)))
3240 folio_wait_writeback(folio);
3242 EXPORT_SYMBOL_GPL(folio_wait_stable);