1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
8 * Contains functions related to writing back dirty pages at the
11 * 10Apr2002 Andrew Morton
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
46 * Sleep at most 200ms at a time in balance_dirty_pages().
48 #define MAX_PAUSE max(HZ/5, 1)
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
57 * Estimate write bandwidth or update dirty limit at 200ms intervals.
59 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
61 #define RATELIMIT_CALC_SHIFT 10
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
67 static long ratelimit_pages
= 32;
69 /* The following parameters are exported via /proc/sys/vm */
72 * Start background writeback (via writeback threads) at this percentage
74 static int dirty_background_ratio
= 10;
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
80 static unsigned long dirty_background_bytes
;
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
86 static int vm_highmem_is_dirtyable
;
89 * The generator of dirty data starts writeback at this percentage
91 static int vm_dirty_ratio
= 20;
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
97 static unsigned long vm_dirty_bytes
;
100 * The interval between `kupdate'-style writebacks
102 unsigned int dirty_writeback_interval
= 5 * 100; /* centiseconds */
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval
);
107 * The longest time for which data is allowed to remain dirty
109 unsigned int dirty_expire_interval
= 30 * 100; /* centiseconds */
112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113 * a full sync is triggered after this time elapses without any disk activity.
117 EXPORT_SYMBOL(laptop_mode
);
119 /* End of sysctl-exported parameters */
121 struct wb_domain global_wb_domain
;
123 /* consolidated parameters for balance_dirty_pages() and its subroutines */
124 struct dirty_throttle_control
{
125 #ifdef CONFIG_CGROUP_WRITEBACK
126 struct wb_domain
*dom
;
127 struct dirty_throttle_control
*gdtc
; /* only set in memcg dtc's */
129 struct bdi_writeback
*wb
;
130 struct fprop_local_percpu
*wb_completions
;
132 unsigned long avail
; /* dirtyable */
133 unsigned long dirty
; /* file_dirty + write + nfs */
134 unsigned long thresh
; /* dirty threshold */
135 unsigned long bg_thresh
; /* dirty background threshold */
137 unsigned long wb_dirty
; /* per-wb counterparts */
138 unsigned long wb_thresh
;
139 unsigned long wb_bg_thresh
;
141 unsigned long pos_ratio
;
147 * Length of period for aging writeout fractions of bdis. This is an
148 * arbitrarily chosen number. The longer the period, the slower fractions will
149 * reflect changes in current writeout rate.
151 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
153 #ifdef CONFIG_CGROUP_WRITEBACK
155 #define GDTC_INIT(__wb) .wb = (__wb), \
156 .dom = &global_wb_domain, \
157 .wb_completions = &(__wb)->completions
159 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
161 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
162 .dom = mem_cgroup_wb_domain(__wb), \
163 .wb_completions = &(__wb)->memcg_completions, \
166 static bool mdtc_valid(struct dirty_throttle_control
*dtc
)
171 static struct wb_domain
*dtc_dom(struct dirty_throttle_control
*dtc
)
176 static struct dirty_throttle_control
*mdtc_gdtc(struct dirty_throttle_control
*mdtc
)
181 static struct fprop_local_percpu
*wb_memcg_completions(struct bdi_writeback
*wb
)
183 return &wb
->memcg_completions
;
186 static void wb_min_max_ratio(struct bdi_writeback
*wb
,
187 unsigned long *minp
, unsigned long *maxp
)
189 unsigned long this_bw
= READ_ONCE(wb
->avg_write_bandwidth
);
190 unsigned long tot_bw
= atomic_long_read(&wb
->bdi
->tot_write_bandwidth
);
191 unsigned long long min
= wb
->bdi
->min_ratio
;
192 unsigned long long max
= wb
->bdi
->max_ratio
;
195 * @wb may already be clean by the time control reaches here and
196 * the total may not include its bw.
198 if (this_bw
< tot_bw
) {
201 min
= div64_ul(min
, tot_bw
);
203 if (max
< 100 * BDI_RATIO_SCALE
) {
205 max
= div64_ul(max
, tot_bw
);
213 #else /* CONFIG_CGROUP_WRITEBACK */
215 #define GDTC_INIT(__wb) .wb = (__wb), \
216 .wb_completions = &(__wb)->completions
217 #define GDTC_INIT_NO_WB
218 #define MDTC_INIT(__wb, __gdtc)
220 static bool mdtc_valid(struct dirty_throttle_control
*dtc
)
225 static struct wb_domain
*dtc_dom(struct dirty_throttle_control
*dtc
)
227 return &global_wb_domain
;
230 static struct dirty_throttle_control
*mdtc_gdtc(struct dirty_throttle_control
*mdtc
)
235 static struct fprop_local_percpu
*wb_memcg_completions(struct bdi_writeback
*wb
)
240 static void wb_min_max_ratio(struct bdi_writeback
*wb
,
241 unsigned long *minp
, unsigned long *maxp
)
243 *minp
= wb
->bdi
->min_ratio
;
244 *maxp
= wb
->bdi
->max_ratio
;
247 #endif /* CONFIG_CGROUP_WRITEBACK */
250 * In a memory zone, there is a certain amount of pages we consider
251 * available for the page cache, which is essentially the number of
252 * free and reclaimable pages, minus some zone reserves to protect
253 * lowmem and the ability to uphold the zone's watermarks without
254 * requiring writeback.
256 * This number of dirtyable pages is the base value of which the
257 * user-configurable dirty ratio is the effective number of pages that
258 * are allowed to be actually dirtied. Per individual zone, or
259 * globally by using the sum of dirtyable pages over all zones.
261 * Because the user is allowed to specify the dirty limit globally as
262 * absolute number of bytes, calculating the per-zone dirty limit can
263 * require translating the configured limit into a percentage of
264 * global dirtyable memory first.
268 * node_dirtyable_memory - number of dirtyable pages in a node
271 * Return: the node's number of pages potentially available for dirty
272 * page cache. This is the base value for the per-node dirty limits.
274 static unsigned long node_dirtyable_memory(struct pglist_data
*pgdat
)
276 unsigned long nr_pages
= 0;
279 for (z
= 0; z
< MAX_NR_ZONES
; z
++) {
280 struct zone
*zone
= pgdat
->node_zones
+ z
;
282 if (!populated_zone(zone
))
285 nr_pages
+= zone_page_state(zone
, NR_FREE_PAGES
);
289 * Pages reserved for the kernel should not be considered
290 * dirtyable, to prevent a situation where reclaim has to
291 * clean pages in order to balance the zones.
293 nr_pages
-= min(nr_pages
, pgdat
->totalreserve_pages
);
295 nr_pages
+= node_page_state(pgdat
, NR_INACTIVE_FILE
);
296 nr_pages
+= node_page_state(pgdat
, NR_ACTIVE_FILE
);
301 static unsigned long highmem_dirtyable_memory(unsigned long total
)
303 #ifdef CONFIG_HIGHMEM
308 for_each_node_state(node
, N_HIGH_MEMORY
) {
309 for (i
= ZONE_NORMAL
+ 1; i
< MAX_NR_ZONES
; i
++) {
311 unsigned long nr_pages
;
313 if (!is_highmem_idx(i
))
316 z
= &NODE_DATA(node
)->node_zones
[i
];
317 if (!populated_zone(z
))
320 nr_pages
= zone_page_state(z
, NR_FREE_PAGES
);
321 /* watch for underflows */
322 nr_pages
-= min(nr_pages
, high_wmark_pages(z
));
323 nr_pages
+= zone_page_state(z
, NR_ZONE_INACTIVE_FILE
);
324 nr_pages
+= zone_page_state(z
, NR_ZONE_ACTIVE_FILE
);
330 * Make sure that the number of highmem pages is never larger
331 * than the number of the total dirtyable memory. This can only
332 * occur in very strange VM situations but we want to make sure
333 * that this does not occur.
335 return min(x
, total
);
342 * global_dirtyable_memory - number of globally dirtyable pages
344 * Return: the global number of pages potentially available for dirty
345 * page cache. This is the base value for the global dirty limits.
347 static unsigned long global_dirtyable_memory(void)
351 x
= global_zone_page_state(NR_FREE_PAGES
);
353 * Pages reserved for the kernel should not be considered
354 * dirtyable, to prevent a situation where reclaim has to
355 * clean pages in order to balance the zones.
357 x
-= min(x
, totalreserve_pages
);
359 x
+= global_node_page_state(NR_INACTIVE_FILE
);
360 x
+= global_node_page_state(NR_ACTIVE_FILE
);
362 if (!vm_highmem_is_dirtyable
)
363 x
-= highmem_dirtyable_memory(x
);
365 return x
+ 1; /* Ensure that we never return 0 */
369 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
370 * @dtc: dirty_throttle_control of interest
372 * Calculate @dtc->thresh and ->bg_thresh considering
373 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
374 * must ensure that @dtc->avail is set before calling this function. The
375 * dirty limits will be lifted by 1/4 for real-time tasks.
377 static void domain_dirty_limits(struct dirty_throttle_control
*dtc
)
379 const unsigned long available_memory
= dtc
->avail
;
380 struct dirty_throttle_control
*gdtc
= mdtc_gdtc(dtc
);
381 unsigned long bytes
= vm_dirty_bytes
;
382 unsigned long bg_bytes
= dirty_background_bytes
;
383 /* convert ratios to per-PAGE_SIZE for higher precision */
384 unsigned long ratio
= (vm_dirty_ratio
* PAGE_SIZE
) / 100;
385 unsigned long bg_ratio
= (dirty_background_ratio
* PAGE_SIZE
) / 100;
386 unsigned long thresh
;
387 unsigned long bg_thresh
;
388 struct task_struct
*tsk
;
390 /* gdtc is !NULL iff @dtc is for memcg domain */
392 unsigned long global_avail
= gdtc
->avail
;
395 * The byte settings can't be applied directly to memcg
396 * domains. Convert them to ratios by scaling against
397 * globally available memory. As the ratios are in
398 * per-PAGE_SIZE, they can be obtained by dividing bytes by
402 ratio
= min(DIV_ROUND_UP(bytes
, global_avail
),
405 bg_ratio
= min(DIV_ROUND_UP(bg_bytes
, global_avail
),
407 bytes
= bg_bytes
= 0;
411 thresh
= DIV_ROUND_UP(bytes
, PAGE_SIZE
);
413 thresh
= (ratio
* available_memory
) / PAGE_SIZE
;
416 bg_thresh
= DIV_ROUND_UP(bg_bytes
, PAGE_SIZE
);
418 bg_thresh
= (bg_ratio
* available_memory
) / PAGE_SIZE
;
421 if (rt_or_dl_task(tsk
)) {
422 bg_thresh
+= bg_thresh
/ 4 + global_wb_domain
.dirty_limit
/ 32;
423 thresh
+= thresh
/ 4 + global_wb_domain
.dirty_limit
/ 32;
426 * Dirty throttling logic assumes the limits in page units fit into
427 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
429 if (thresh
> UINT_MAX
)
431 /* This makes sure bg_thresh is within 32-bits as well */
432 if (bg_thresh
>= thresh
)
433 bg_thresh
= thresh
/ 2;
434 dtc
->thresh
= thresh
;
435 dtc
->bg_thresh
= bg_thresh
;
437 /* we should eventually report the domain in the TP */
439 trace_global_dirty_state(bg_thresh
, thresh
);
443 * global_dirty_limits - background-writeback and dirty-throttling thresholds
444 * @pbackground: out parameter for bg_thresh
445 * @pdirty: out parameter for thresh
447 * Calculate bg_thresh and thresh for global_wb_domain. See
448 * domain_dirty_limits() for details.
450 void global_dirty_limits(unsigned long *pbackground
, unsigned long *pdirty
)
452 struct dirty_throttle_control gdtc
= { GDTC_INIT_NO_WB
};
454 gdtc
.avail
= global_dirtyable_memory();
455 domain_dirty_limits(&gdtc
);
457 *pbackground
= gdtc
.bg_thresh
;
458 *pdirty
= gdtc
.thresh
;
462 * node_dirty_limit - maximum number of dirty pages allowed in a node
465 * Return: the maximum number of dirty pages allowed in a node, based
466 * on the node's dirtyable memory.
468 static unsigned long node_dirty_limit(struct pglist_data
*pgdat
)
470 unsigned long node_memory
= node_dirtyable_memory(pgdat
);
471 struct task_struct
*tsk
= current
;
475 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
) *
476 node_memory
/ global_dirtyable_memory();
478 dirty
= vm_dirty_ratio
* node_memory
/ 100;
480 if (rt_or_dl_task(tsk
))
484 * Dirty throttling logic assumes the limits in page units fit into
485 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
487 return min_t(unsigned long, dirty
, UINT_MAX
);
491 * node_dirty_ok - tells whether a node is within its dirty limits
492 * @pgdat: the node to check
494 * Return: %true when the dirty pages in @pgdat are within the node's
495 * dirty limit, %false if the limit is exceeded.
497 bool node_dirty_ok(struct pglist_data
*pgdat
)
499 unsigned long limit
= node_dirty_limit(pgdat
);
500 unsigned long nr_pages
= 0;
502 nr_pages
+= node_page_state(pgdat
, NR_FILE_DIRTY
);
503 nr_pages
+= node_page_state(pgdat
, NR_WRITEBACK
);
505 return nr_pages
<= limit
;
509 static int dirty_background_ratio_handler(const struct ctl_table
*table
, int write
,
510 void *buffer
, size_t *lenp
, loff_t
*ppos
)
514 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
515 if (ret
== 0 && write
)
516 dirty_background_bytes
= 0;
520 static int dirty_background_bytes_handler(const struct ctl_table
*table
, int write
,
521 void *buffer
, size_t *lenp
, loff_t
*ppos
)
524 unsigned long old_bytes
= dirty_background_bytes
;
526 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
527 if (ret
== 0 && write
) {
528 if (DIV_ROUND_UP(dirty_background_bytes
, PAGE_SIZE
) >
530 dirty_background_bytes
= old_bytes
;
533 dirty_background_ratio
= 0;
538 static int dirty_ratio_handler(const struct ctl_table
*table
, int write
, void *buffer
,
539 size_t *lenp
, loff_t
*ppos
)
541 int old_ratio
= vm_dirty_ratio
;
544 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
545 if (ret
== 0 && write
&& vm_dirty_ratio
!= old_ratio
) {
546 writeback_set_ratelimit();
552 static int dirty_bytes_handler(const struct ctl_table
*table
, int write
,
553 void *buffer
, size_t *lenp
, loff_t
*ppos
)
555 unsigned long old_bytes
= vm_dirty_bytes
;
558 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
559 if (ret
== 0 && write
&& vm_dirty_bytes
!= old_bytes
) {
560 if (DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
) > UINT_MAX
) {
561 vm_dirty_bytes
= old_bytes
;
564 writeback_set_ratelimit();
571 static unsigned long wp_next_time(unsigned long cur_time
)
573 cur_time
+= VM_COMPLETIONS_PERIOD_LEN
;
574 /* 0 has a special meaning... */
580 static void wb_domain_writeout_add(struct wb_domain
*dom
,
581 struct fprop_local_percpu
*completions
,
582 unsigned int max_prop_frac
, long nr
)
584 __fprop_add_percpu_max(&dom
->completions
, completions
,
586 /* First event after period switching was turned off? */
587 if (unlikely(!dom
->period_time
)) {
589 * We can race with other wb_domain_writeout_add calls here but
590 * it does not cause any harm since the resulting time when
591 * timer will fire and what is in writeout_period_time will be
594 dom
->period_time
= wp_next_time(jiffies
);
595 mod_timer(&dom
->period_timer
, dom
->period_time
);
600 * Increment @wb's writeout completion count and the global writeout
601 * completion count. Called from __folio_end_writeback().
603 static inline void __wb_writeout_add(struct bdi_writeback
*wb
, long nr
)
605 struct wb_domain
*cgdom
;
607 wb_stat_mod(wb
, WB_WRITTEN
, nr
);
608 wb_domain_writeout_add(&global_wb_domain
, &wb
->completions
,
609 wb
->bdi
->max_prop_frac
, nr
);
611 cgdom
= mem_cgroup_wb_domain(wb
);
613 wb_domain_writeout_add(cgdom
, wb_memcg_completions(wb
),
614 wb
->bdi
->max_prop_frac
, nr
);
617 void wb_writeout_inc(struct bdi_writeback
*wb
)
621 local_irq_save(flags
);
622 __wb_writeout_add(wb
, 1);
623 local_irq_restore(flags
);
625 EXPORT_SYMBOL_GPL(wb_writeout_inc
);
628 * On idle system, we can be called long after we scheduled because we use
629 * deferred timers so count with missed periods.
631 static void writeout_period(struct timer_list
*t
)
633 struct wb_domain
*dom
= from_timer(dom
, t
, period_timer
);
634 int miss_periods
= (jiffies
- dom
->period_time
) /
635 VM_COMPLETIONS_PERIOD_LEN
;
637 if (fprop_new_period(&dom
->completions
, miss_periods
+ 1)) {
638 dom
->period_time
= wp_next_time(dom
->period_time
+
639 miss_periods
* VM_COMPLETIONS_PERIOD_LEN
);
640 mod_timer(&dom
->period_timer
, dom
->period_time
);
643 * Aging has zeroed all fractions. Stop wasting CPU on period
646 dom
->period_time
= 0;
650 int wb_domain_init(struct wb_domain
*dom
, gfp_t gfp
)
652 memset(dom
, 0, sizeof(*dom
));
654 spin_lock_init(&dom
->lock
);
656 timer_setup(&dom
->period_timer
, writeout_period
, TIMER_DEFERRABLE
);
658 dom
->dirty_limit_tstamp
= jiffies
;
660 return fprop_global_init(&dom
->completions
, gfp
);
663 #ifdef CONFIG_CGROUP_WRITEBACK
664 void wb_domain_exit(struct wb_domain
*dom
)
666 del_timer_sync(&dom
->period_timer
);
667 fprop_global_destroy(&dom
->completions
);
672 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
673 * registered backing devices, which, for obvious reasons, can not
676 static unsigned int bdi_min_ratio
;
678 static int bdi_check_pages_limit(unsigned long pages
)
680 unsigned long max_dirty_pages
= global_dirtyable_memory();
682 if (pages
> max_dirty_pages
)
688 static unsigned long bdi_ratio_from_pages(unsigned long pages
)
690 unsigned long background_thresh
;
691 unsigned long dirty_thresh
;
694 global_dirty_limits(&background_thresh
, &dirty_thresh
);
695 ratio
= div64_u64(pages
* 100ULL * BDI_RATIO_SCALE
, dirty_thresh
);
700 static u64
bdi_get_bytes(unsigned int ratio
)
702 unsigned long background_thresh
;
703 unsigned long dirty_thresh
;
706 global_dirty_limits(&background_thresh
, &dirty_thresh
);
707 bytes
= (dirty_thresh
* PAGE_SIZE
* ratio
) / BDI_RATIO_SCALE
/ 100;
712 static int __bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
717 if (min_ratio
> 100 * BDI_RATIO_SCALE
)
720 spin_lock_bh(&bdi_lock
);
721 if (min_ratio
> bdi
->max_ratio
) {
724 if (min_ratio
< bdi
->min_ratio
) {
725 delta
= bdi
->min_ratio
- min_ratio
;
726 bdi_min_ratio
-= delta
;
727 bdi
->min_ratio
= min_ratio
;
729 delta
= min_ratio
- bdi
->min_ratio
;
730 if (bdi_min_ratio
+ delta
< 100 * BDI_RATIO_SCALE
) {
731 bdi_min_ratio
+= delta
;
732 bdi
->min_ratio
= min_ratio
;
738 spin_unlock_bh(&bdi_lock
);
743 static int __bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned int max_ratio
)
747 if (max_ratio
> 100 * BDI_RATIO_SCALE
)
750 spin_lock_bh(&bdi_lock
);
751 if (bdi
->min_ratio
> max_ratio
) {
754 bdi
->max_ratio
= max_ratio
;
755 bdi
->max_prop_frac
= (FPROP_FRAC_BASE
* max_ratio
) /
756 (100 * BDI_RATIO_SCALE
);
758 spin_unlock_bh(&bdi_lock
);
763 int bdi_set_min_ratio_no_scale(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
765 return __bdi_set_min_ratio(bdi
, min_ratio
);
768 int bdi_set_max_ratio_no_scale(struct backing_dev_info
*bdi
, unsigned int max_ratio
)
770 return __bdi_set_max_ratio(bdi
, max_ratio
);
773 int bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
775 return __bdi_set_min_ratio(bdi
, min_ratio
* BDI_RATIO_SCALE
);
778 int bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned int max_ratio
)
780 return __bdi_set_max_ratio(bdi
, max_ratio
* BDI_RATIO_SCALE
);
782 EXPORT_SYMBOL(bdi_set_max_ratio
);
784 u64
bdi_get_min_bytes(struct backing_dev_info
*bdi
)
786 return bdi_get_bytes(bdi
->min_ratio
);
789 int bdi_set_min_bytes(struct backing_dev_info
*bdi
, u64 min_bytes
)
792 unsigned long pages
= min_bytes
>> PAGE_SHIFT
;
793 unsigned long min_ratio
;
795 ret
= bdi_check_pages_limit(pages
);
799 min_ratio
= bdi_ratio_from_pages(pages
);
800 return __bdi_set_min_ratio(bdi
, min_ratio
);
803 u64
bdi_get_max_bytes(struct backing_dev_info
*bdi
)
805 return bdi_get_bytes(bdi
->max_ratio
);
808 int bdi_set_max_bytes(struct backing_dev_info
*bdi
, u64 max_bytes
)
811 unsigned long pages
= max_bytes
>> PAGE_SHIFT
;
812 unsigned long max_ratio
;
814 ret
= bdi_check_pages_limit(pages
);
818 max_ratio
= bdi_ratio_from_pages(pages
);
819 return __bdi_set_max_ratio(bdi
, max_ratio
);
822 int bdi_set_strict_limit(struct backing_dev_info
*bdi
, unsigned int strict_limit
)
824 if (strict_limit
> 1)
827 spin_lock_bh(&bdi_lock
);
829 bdi
->capabilities
|= BDI_CAP_STRICTLIMIT
;
831 bdi
->capabilities
&= ~BDI_CAP_STRICTLIMIT
;
832 spin_unlock_bh(&bdi_lock
);
837 static unsigned long dirty_freerun_ceiling(unsigned long thresh
,
838 unsigned long bg_thresh
)
840 return (thresh
+ bg_thresh
) / 2;
843 static unsigned long hard_dirty_limit(struct wb_domain
*dom
,
844 unsigned long thresh
)
846 return max(thresh
, dom
->dirty_limit
);
850 * Memory which can be further allocated to a memcg domain is capped by
851 * system-wide clean memory excluding the amount being used in the domain.
853 static void mdtc_calc_avail(struct dirty_throttle_control
*mdtc
,
854 unsigned long filepages
, unsigned long headroom
)
856 struct dirty_throttle_control
*gdtc
= mdtc_gdtc(mdtc
);
857 unsigned long clean
= filepages
- min(filepages
, mdtc
->dirty
);
858 unsigned long global_clean
= gdtc
->avail
- min(gdtc
->avail
, gdtc
->dirty
);
859 unsigned long other_clean
= global_clean
- min(global_clean
, clean
);
861 mdtc
->avail
= filepages
+ min(headroom
, other_clean
);
864 static inline bool dtc_is_global(struct dirty_throttle_control
*dtc
)
866 return mdtc_gdtc(dtc
) == NULL
;
870 * Dirty background will ignore pages being written as we're trying to
871 * decide whether to put more under writeback.
873 static void domain_dirty_avail(struct dirty_throttle_control
*dtc
,
874 bool include_writeback
)
876 if (dtc_is_global(dtc
)) {
877 dtc
->avail
= global_dirtyable_memory();
878 dtc
->dirty
= global_node_page_state(NR_FILE_DIRTY
);
879 if (include_writeback
)
880 dtc
->dirty
+= global_node_page_state(NR_WRITEBACK
);
882 unsigned long filepages
= 0, headroom
= 0, writeback
= 0;
884 mem_cgroup_wb_stats(dtc
->wb
, &filepages
, &headroom
, &dtc
->dirty
,
886 if (include_writeback
)
887 dtc
->dirty
+= writeback
;
888 mdtc_calc_avail(dtc
, filepages
, headroom
);
893 * __wb_calc_thresh - @wb's share of dirty threshold
894 * @dtc: dirty_throttle_context of interest
895 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
897 * Note that balance_dirty_pages() will only seriously take dirty throttling
898 * threshold as a hard limit when sleeping max_pause per page is not enough
899 * to keep the dirty pages under control. For example, when the device is
900 * completely stalled due to some error conditions, or when there are 1000
901 * dd tasks writing to a slow 10MB/s USB key.
902 * In the other normal situations, it acts more gently by throttling the tasks
903 * more (rather than completely block them) when the wb dirty pages go high.
905 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
906 * - starving fast devices
907 * - piling up dirty pages (that will take long time to sync) on slow devices
909 * The wb's share of dirty limit will be adapting to its throughput and
910 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
912 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
913 * "dirty" in the context of dirty balancing includes all PG_dirty and
914 * PG_writeback pages.
916 static unsigned long __wb_calc_thresh(struct dirty_throttle_control
*dtc
,
917 unsigned long thresh
)
919 struct wb_domain
*dom
= dtc_dom(dtc
);
920 struct bdi_writeback
*wb
= dtc
->wb
;
923 unsigned long numerator
, denominator
;
924 unsigned long wb_min_ratio
, wb_max_ratio
;
927 * Calculate this wb's share of the thresh ratio.
929 fprop_fraction_percpu(&dom
->completions
, dtc
->wb_completions
,
930 &numerator
, &denominator
);
932 wb_thresh
= (thresh
* (100 * BDI_RATIO_SCALE
- bdi_min_ratio
)) / (100 * BDI_RATIO_SCALE
);
933 wb_thresh
*= numerator
;
934 wb_thresh
= div64_ul(wb_thresh
, denominator
);
936 wb_min_max_ratio(wb
, &wb_min_ratio
, &wb_max_ratio
);
938 wb_thresh
+= (thresh
* wb_min_ratio
) / (100 * BDI_RATIO_SCALE
);
939 wb_max_thresh
= thresh
* wb_max_ratio
/ (100 * BDI_RATIO_SCALE
);
940 if (wb_thresh
> wb_max_thresh
)
941 wb_thresh
= wb_max_thresh
;
944 * With strictlimit flag, the wb_thresh is treated as
945 * a hard limit in balance_dirty_pages() and wb_position_ratio().
946 * It's possible that wb_thresh is close to zero, not because
947 * the device is slow, but because it has been inactive.
948 * To prevent occasional writes from being blocked, we raise wb_thresh.
950 if (unlikely(wb
->bdi
->capabilities
& BDI_CAP_STRICTLIMIT
)) {
951 unsigned long limit
= hard_dirty_limit(dom
, dtc
->thresh
);
952 u64 wb_scale_thresh
= 0;
954 if (limit
> dtc
->dirty
)
955 wb_scale_thresh
= (limit
- dtc
->dirty
) / 100;
956 wb_thresh
= max(wb_thresh
, min(wb_scale_thresh
, wb_max_thresh
/ 4));
962 unsigned long wb_calc_thresh(struct bdi_writeback
*wb
, unsigned long thresh
)
964 struct dirty_throttle_control gdtc
= { GDTC_INIT(wb
) };
966 return __wb_calc_thresh(&gdtc
, thresh
);
969 unsigned long cgwb_calc_thresh(struct bdi_writeback
*wb
)
971 struct dirty_throttle_control gdtc
= { GDTC_INIT_NO_WB
};
972 struct dirty_throttle_control mdtc
= { MDTC_INIT(wb
, &gdtc
) };
974 domain_dirty_avail(&gdtc
, true);
975 domain_dirty_avail(&mdtc
, true);
976 domain_dirty_limits(&mdtc
);
978 return __wb_calc_thresh(&mdtc
, mdtc
.thresh
);
983 * f(dirty) := 1.0 + (----------------)
986 * it's a 3rd order polynomial that subjects to
988 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
989 * (2) f(setpoint) = 1.0 => the balance point
990 * (3) f(limit) = 0 => the hard limit
991 * (4) df/dx <= 0 => negative feedback control
992 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
993 * => fast response on large errors; small oscillation near setpoint
995 static long long pos_ratio_polynom(unsigned long setpoint
,
1002 x
= div64_s64(((s64
)setpoint
- (s64
)dirty
) << RATELIMIT_CALC_SHIFT
,
1003 (limit
- setpoint
) | 1);
1005 pos_ratio
= pos_ratio
* x
>> RATELIMIT_CALC_SHIFT
;
1006 pos_ratio
= pos_ratio
* x
>> RATELIMIT_CALC_SHIFT
;
1007 pos_ratio
+= 1 << RATELIMIT_CALC_SHIFT
;
1009 return clamp(pos_ratio
, 0LL, 2LL << RATELIMIT_CALC_SHIFT
);
1013 * Dirty position control.
1015 * (o) global/bdi setpoints
1017 * We want the dirty pages be balanced around the global/wb setpoints.
1018 * When the number of dirty pages is higher/lower than the setpoint, the
1019 * dirty position control ratio (and hence task dirty ratelimit) will be
1020 * decreased/increased to bring the dirty pages back to the setpoint.
1022 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
1024 * if (dirty < setpoint) scale up pos_ratio
1025 * if (dirty > setpoint) scale down pos_ratio
1027 * if (wb_dirty < wb_setpoint) scale up pos_ratio
1028 * if (wb_dirty > wb_setpoint) scale down pos_ratio
1030 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
1032 * (o) global control line
1036 * | |<===== global dirty control scope ======>|
1044 * 1.0 ................................*
1050 * 0 +------------.------------------.----------------------*------------->
1051 * freerun^ setpoint^ limit^ dirty pages
1053 * (o) wb control line
1061 * | * |<=========== span ============>|
1062 * 1.0 .......................*
1074 * 1/4 ...............................................* * * * * * * * * * * *
1078 * 0 +----------------------.-------------------------------.------------->
1079 * wb_setpoint^ x_intercept^
1081 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1082 * be smoothly throttled down to normal if it starts high in situations like
1083 * - start writing to a slow SD card and a fast disk at the same time. The SD
1084 * card's wb_dirty may rush to many times higher than wb_setpoint.
1085 * - the wb dirty thresh drops quickly due to change of JBOD workload
1087 static void wb_position_ratio(struct dirty_throttle_control
*dtc
)
1089 struct bdi_writeback
*wb
= dtc
->wb
;
1090 unsigned long write_bw
= READ_ONCE(wb
->avg_write_bandwidth
);
1091 unsigned long freerun
= dirty_freerun_ceiling(dtc
->thresh
, dtc
->bg_thresh
);
1092 unsigned long limit
= hard_dirty_limit(dtc_dom(dtc
), dtc
->thresh
);
1093 unsigned long wb_thresh
= dtc
->wb_thresh
;
1094 unsigned long x_intercept
;
1095 unsigned long setpoint
; /* dirty pages' target balance point */
1096 unsigned long wb_setpoint
;
1098 long long pos_ratio
; /* for scaling up/down the rate limit */
1103 if (unlikely(dtc
->dirty
>= limit
))
1109 * See comment for pos_ratio_polynom().
1111 setpoint
= (freerun
+ limit
) / 2;
1112 pos_ratio
= pos_ratio_polynom(setpoint
, dtc
->dirty
, limit
);
1115 * The strictlimit feature is a tool preventing mistrusted filesystems
1116 * from growing a large number of dirty pages before throttling. For
1117 * such filesystems balance_dirty_pages always checks wb counters
1118 * against wb limits. Even if global "nr_dirty" is under "freerun".
1119 * This is especially important for fuse which sets bdi->max_ratio to
1120 * 1% by default. Without strictlimit feature, fuse writeback may
1121 * consume arbitrary amount of RAM because it is accounted in
1122 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1124 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1125 * two values: wb_dirty and wb_thresh. Let's consider an example:
1126 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1127 * limits are set by default to 10% and 20% (background and throttle).
1128 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1129 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1130 * about ~6K pages (as the average of background and throttle wb
1131 * limits). The 3rd order polynomial will provide positive feedback if
1132 * wb_dirty is under wb_setpoint and vice versa.
1134 * Note, that we cannot use global counters in these calculations
1135 * because we want to throttle process writing to a strictlimit wb
1136 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1137 * in the example above).
1139 if (unlikely(wb
->bdi
->capabilities
& BDI_CAP_STRICTLIMIT
)) {
1140 long long wb_pos_ratio
;
1142 if (dtc
->wb_dirty
< 8) {
1143 dtc
->pos_ratio
= min_t(long long, pos_ratio
* 2,
1144 2 << RATELIMIT_CALC_SHIFT
);
1148 if (dtc
->wb_dirty
>= wb_thresh
)
1151 wb_setpoint
= dirty_freerun_ceiling(wb_thresh
,
1154 if (wb_setpoint
== 0 || wb_setpoint
== wb_thresh
)
1157 wb_pos_ratio
= pos_ratio_polynom(wb_setpoint
, dtc
->wb_dirty
,
1161 * Typically, for strictlimit case, wb_setpoint << setpoint
1162 * and pos_ratio >> wb_pos_ratio. In the other words global
1163 * state ("dirty") is not limiting factor and we have to
1164 * make decision based on wb counters. But there is an
1165 * important case when global pos_ratio should get precedence:
1166 * global limits are exceeded (e.g. due to activities on other
1167 * wb's) while given strictlimit wb is below limit.
1169 * "pos_ratio * wb_pos_ratio" would work for the case above,
1170 * but it would look too non-natural for the case of all
1171 * activity in the system coming from a single strictlimit wb
1172 * with bdi->max_ratio == 100%.
1174 * Note that min() below somewhat changes the dynamics of the
1175 * control system. Normally, pos_ratio value can be well over 3
1176 * (when globally we are at freerun and wb is well below wb
1177 * setpoint). Now the maximum pos_ratio in the same situation
1178 * is 2. We might want to tweak this if we observe the control
1179 * system is too slow to adapt.
1181 dtc
->pos_ratio
= min(pos_ratio
, wb_pos_ratio
);
1186 * We have computed basic pos_ratio above based on global situation. If
1187 * the wb is over/under its share of dirty pages, we want to scale
1188 * pos_ratio further down/up. That is done by the following mechanism.
1194 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1196 * x_intercept - wb_dirty
1197 * := --------------------------
1198 * x_intercept - wb_setpoint
1200 * The main wb control line is a linear function that subjects to
1202 * (1) f(wb_setpoint) = 1.0
1203 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1204 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1206 * For single wb case, the dirty pages are observed to fluctuate
1207 * regularly within range
1208 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1209 * for various filesystems, where (2) can yield in a reasonable 12.5%
1210 * fluctuation range for pos_ratio.
1212 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1213 * own size, so move the slope over accordingly and choose a slope that
1214 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1216 if (unlikely(wb_thresh
> dtc
->thresh
))
1217 wb_thresh
= dtc
->thresh
;
1219 * It's very possible that wb_thresh is close to 0 not because the
1220 * device is slow, but that it has remained inactive for long time.
1221 * Honour such devices a reasonable good (hopefully IO efficient)
1222 * threshold, so that the occasional writes won't be blocked and active
1223 * writes can rampup the threshold quickly.
1225 wb_thresh
= max(wb_thresh
, (limit
- dtc
->dirty
) / 8);
1227 * scale global setpoint to wb's:
1228 * wb_setpoint = setpoint * wb_thresh / thresh
1230 x
= div_u64((u64
)wb_thresh
<< 16, dtc
->thresh
| 1);
1231 wb_setpoint
= setpoint
* (u64
)x
>> 16;
1233 * Use span=(8*write_bw) in single wb case as indicated by
1234 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1236 * wb_thresh thresh - wb_thresh
1237 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1240 span
= (dtc
->thresh
- wb_thresh
+ 8 * write_bw
) * (u64
)x
>> 16;
1241 x_intercept
= wb_setpoint
+ span
;
1243 if (dtc
->wb_dirty
< x_intercept
- span
/ 4) {
1244 pos_ratio
= div64_u64(pos_ratio
* (x_intercept
- dtc
->wb_dirty
),
1245 (x_intercept
- wb_setpoint
) | 1);
1250 * wb reserve area, safeguard against dirty pool underrun and disk idle
1251 * It may push the desired control point of global dirty pages higher
1254 x_intercept
= wb_thresh
/ 2;
1255 if (dtc
->wb_dirty
< x_intercept
) {
1256 if (dtc
->wb_dirty
> x_intercept
/ 8)
1257 pos_ratio
= div_u64(pos_ratio
* x_intercept
,
1263 dtc
->pos_ratio
= pos_ratio
;
1266 static void wb_update_write_bandwidth(struct bdi_writeback
*wb
,
1267 unsigned long elapsed
,
1268 unsigned long written
)
1270 const unsigned long period
= roundup_pow_of_two(3 * HZ
);
1271 unsigned long avg
= wb
->avg_write_bandwidth
;
1272 unsigned long old
= wb
->write_bandwidth
;
1276 * bw = written * HZ / elapsed
1278 * bw * elapsed + write_bandwidth * (period - elapsed)
1279 * write_bandwidth = ---------------------------------------------------
1282 * @written may have decreased due to folio_redirty_for_writepage().
1283 * Avoid underflowing @bw calculation.
1285 bw
= written
- min(written
, wb
->written_stamp
);
1287 if (unlikely(elapsed
> period
)) {
1288 bw
= div64_ul(bw
, elapsed
);
1292 bw
+= (u64
)wb
->write_bandwidth
* (period
- elapsed
);
1293 bw
>>= ilog2(period
);
1296 * one more level of smoothing, for filtering out sudden spikes
1298 if (avg
> old
&& old
>= (unsigned long)bw
)
1299 avg
-= (avg
- old
) >> 3;
1301 if (avg
< old
&& old
<= (unsigned long)bw
)
1302 avg
+= (old
- avg
) >> 3;
1305 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1306 avg
= max(avg
, 1LU);
1307 if (wb_has_dirty_io(wb
)) {
1308 long delta
= avg
- wb
->avg_write_bandwidth
;
1309 WARN_ON_ONCE(atomic_long_add_return(delta
,
1310 &wb
->bdi
->tot_write_bandwidth
) <= 0);
1312 wb
->write_bandwidth
= bw
;
1313 WRITE_ONCE(wb
->avg_write_bandwidth
, avg
);
1316 static void update_dirty_limit(struct dirty_throttle_control
*dtc
)
1318 struct wb_domain
*dom
= dtc_dom(dtc
);
1319 unsigned long thresh
= dtc
->thresh
;
1320 unsigned long limit
= dom
->dirty_limit
;
1323 * Follow up in one step.
1325 if (limit
< thresh
) {
1331 * Follow down slowly. Use the higher one as the target, because thresh
1332 * may drop below dirty. This is exactly the reason to introduce
1333 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1335 thresh
= max(thresh
, dtc
->dirty
);
1336 if (limit
> thresh
) {
1337 limit
-= (limit
- thresh
) >> 5;
1342 dom
->dirty_limit
= limit
;
1345 static void domain_update_dirty_limit(struct dirty_throttle_control
*dtc
,
1348 struct wb_domain
*dom
= dtc_dom(dtc
);
1351 * check locklessly first to optimize away locking for the most time
1353 if (time_before(now
, dom
->dirty_limit_tstamp
+ BANDWIDTH_INTERVAL
))
1356 spin_lock(&dom
->lock
);
1357 if (time_after_eq(now
, dom
->dirty_limit_tstamp
+ BANDWIDTH_INTERVAL
)) {
1358 update_dirty_limit(dtc
);
1359 dom
->dirty_limit_tstamp
= now
;
1361 spin_unlock(&dom
->lock
);
1365 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1367 * Normal wb tasks will be curbed at or below it in long term.
1368 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1370 static void wb_update_dirty_ratelimit(struct dirty_throttle_control
*dtc
,
1371 unsigned long dirtied
,
1372 unsigned long elapsed
)
1374 struct bdi_writeback
*wb
= dtc
->wb
;
1375 unsigned long dirty
= dtc
->dirty
;
1376 unsigned long freerun
= dirty_freerun_ceiling(dtc
->thresh
, dtc
->bg_thresh
);
1377 unsigned long limit
= hard_dirty_limit(dtc_dom(dtc
), dtc
->thresh
);
1378 unsigned long setpoint
= (freerun
+ limit
) / 2;
1379 unsigned long write_bw
= wb
->avg_write_bandwidth
;
1380 unsigned long dirty_ratelimit
= wb
->dirty_ratelimit
;
1381 unsigned long dirty_rate
;
1382 unsigned long task_ratelimit
;
1383 unsigned long balanced_dirty_ratelimit
;
1386 unsigned long shift
;
1389 * The dirty rate will match the writeout rate in long term, except
1390 * when dirty pages are truncated by userspace or re-dirtied by FS.
1392 dirty_rate
= (dirtied
- wb
->dirtied_stamp
) * HZ
/ elapsed
;
1395 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1397 task_ratelimit
= (u64
)dirty_ratelimit
*
1398 dtc
->pos_ratio
>> RATELIMIT_CALC_SHIFT
;
1399 task_ratelimit
++; /* it helps rampup dirty_ratelimit from tiny values */
1402 * A linear estimation of the "balanced" throttle rate. The theory is,
1403 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1404 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1405 * formula will yield the balanced rate limit (write_bw / N).
1407 * Note that the expanded form is not a pure rate feedback:
1408 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1409 * but also takes pos_ratio into account:
1410 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1412 * (1) is not realistic because pos_ratio also takes part in balancing
1413 * the dirty rate. Consider the state
1414 * pos_ratio = 0.5 (3)
1415 * rate = 2 * (write_bw / N) (4)
1416 * If (1) is used, it will stuck in that state! Because each dd will
1418 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1420 * dirty_rate = N * task_ratelimit = write_bw (6)
1421 * put (6) into (1) we get
1422 * rate_(i+1) = rate_(i) (7)
1424 * So we end up using (2) to always keep
1425 * rate_(i+1) ~= (write_bw / N) (8)
1426 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1427 * pos_ratio is able to drive itself to 1.0, which is not only where
1428 * the dirty count meet the setpoint, but also where the slope of
1429 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1431 balanced_dirty_ratelimit
= div_u64((u64
)task_ratelimit
* write_bw
,
1434 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1436 if (unlikely(balanced_dirty_ratelimit
> write_bw
))
1437 balanced_dirty_ratelimit
= write_bw
;
1440 * We could safely do this and return immediately:
1442 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1444 * However to get a more stable dirty_ratelimit, the below elaborated
1445 * code makes use of task_ratelimit to filter out singular points and
1446 * limit the step size.
1448 * The below code essentially only uses the relative value of
1450 * task_ratelimit - dirty_ratelimit
1451 * = (pos_ratio - 1) * dirty_ratelimit
1453 * which reflects the direction and size of dirty position error.
1457 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1458 * task_ratelimit is on the same side of dirty_ratelimit, too.
1460 * - dirty_ratelimit > balanced_dirty_ratelimit
1461 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1462 * lowering dirty_ratelimit will help meet both the position and rate
1463 * control targets. Otherwise, don't update dirty_ratelimit if it will
1464 * only help meet the rate target. After all, what the users ultimately
1465 * feel and care are stable dirty rate and small position error.
1467 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1468 * and filter out the singular points of balanced_dirty_ratelimit. Which
1469 * keeps jumping around randomly and can even leap far away at times
1470 * due to the small 200ms estimation period of dirty_rate (we want to
1471 * keep that period small to reduce time lags).
1476 * For strictlimit case, calculations above were based on wb counters
1477 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1478 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1479 * Hence, to calculate "step" properly, we have to use wb_dirty as
1480 * "dirty" and wb_setpoint as "setpoint".
1482 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1483 * it's possible that wb_thresh is close to zero due to inactivity
1484 * of backing device.
1486 if (unlikely(wb
->bdi
->capabilities
& BDI_CAP_STRICTLIMIT
)) {
1487 dirty
= dtc
->wb_dirty
;
1488 if (dtc
->wb_dirty
< 8)
1489 setpoint
= dtc
->wb_dirty
+ 1;
1491 setpoint
= (dtc
->wb_thresh
+ dtc
->wb_bg_thresh
) / 2;
1494 if (dirty
< setpoint
) {
1495 x
= min3(wb
->balanced_dirty_ratelimit
,
1496 balanced_dirty_ratelimit
, task_ratelimit
);
1497 if (dirty_ratelimit
< x
)
1498 step
= x
- dirty_ratelimit
;
1500 x
= max3(wb
->balanced_dirty_ratelimit
,
1501 balanced_dirty_ratelimit
, task_ratelimit
);
1502 if (dirty_ratelimit
> x
)
1503 step
= dirty_ratelimit
- x
;
1507 * Don't pursue 100% rate matching. It's impossible since the balanced
1508 * rate itself is constantly fluctuating. So decrease the track speed
1509 * when it gets close to the target. Helps eliminate pointless tremors.
1511 shift
= dirty_ratelimit
/ (2 * step
+ 1);
1512 if (shift
< BITS_PER_LONG
)
1513 step
= DIV_ROUND_UP(step
>> shift
, 8);
1517 if (dirty_ratelimit
< balanced_dirty_ratelimit
)
1518 dirty_ratelimit
+= step
;
1520 dirty_ratelimit
-= step
;
1522 WRITE_ONCE(wb
->dirty_ratelimit
, max(dirty_ratelimit
, 1UL));
1523 wb
->balanced_dirty_ratelimit
= balanced_dirty_ratelimit
;
1525 trace_bdi_dirty_ratelimit(wb
, dirty_rate
, task_ratelimit
);
1528 static void __wb_update_bandwidth(struct dirty_throttle_control
*gdtc
,
1529 struct dirty_throttle_control
*mdtc
,
1530 bool update_ratelimit
)
1532 struct bdi_writeback
*wb
= gdtc
->wb
;
1533 unsigned long now
= jiffies
;
1534 unsigned long elapsed
;
1535 unsigned long dirtied
;
1536 unsigned long written
;
1538 spin_lock(&wb
->list_lock
);
1541 * Lockless checks for elapsed time are racy and delayed update after
1542 * IO completion doesn't do it at all (to make sure written pages are
1543 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1546 elapsed
= max(now
- wb
->bw_time_stamp
, 1UL);
1547 dirtied
= percpu_counter_read(&wb
->stat
[WB_DIRTIED
]);
1548 written
= percpu_counter_read(&wb
->stat
[WB_WRITTEN
]);
1550 if (update_ratelimit
) {
1551 domain_update_dirty_limit(gdtc
, now
);
1552 wb_update_dirty_ratelimit(gdtc
, dirtied
, elapsed
);
1555 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1556 * compiler has no way to figure that out. Help it.
1558 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK
) && mdtc
) {
1559 domain_update_dirty_limit(mdtc
, now
);
1560 wb_update_dirty_ratelimit(mdtc
, dirtied
, elapsed
);
1563 wb_update_write_bandwidth(wb
, elapsed
, written
);
1565 wb
->dirtied_stamp
= dirtied
;
1566 wb
->written_stamp
= written
;
1567 WRITE_ONCE(wb
->bw_time_stamp
, now
);
1568 spin_unlock(&wb
->list_lock
);
1571 void wb_update_bandwidth(struct bdi_writeback
*wb
)
1573 struct dirty_throttle_control gdtc
= { GDTC_INIT(wb
) };
1575 __wb_update_bandwidth(&gdtc
, NULL
, false);
1578 /* Interval after which we consider wb idle and don't estimate bandwidth */
1579 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1581 static void wb_bandwidth_estimate_start(struct bdi_writeback
*wb
)
1583 unsigned long now
= jiffies
;
1584 unsigned long elapsed
= now
- READ_ONCE(wb
->bw_time_stamp
);
1586 if (elapsed
> WB_BANDWIDTH_IDLE_JIF
&&
1587 !atomic_read(&wb
->writeback_inodes
)) {
1588 spin_lock(&wb
->list_lock
);
1589 wb
->dirtied_stamp
= wb_stat(wb
, WB_DIRTIED
);
1590 wb
->written_stamp
= wb_stat(wb
, WB_WRITTEN
);
1591 WRITE_ONCE(wb
->bw_time_stamp
, now
);
1592 spin_unlock(&wb
->list_lock
);
1597 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1598 * will look to see if it needs to start dirty throttling.
1600 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1601 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1602 * (the number of pages we may dirty without exceeding the dirty limits).
1604 static unsigned long dirty_poll_interval(unsigned long dirty
,
1605 unsigned long thresh
)
1608 return 1UL << (ilog2(thresh
- dirty
) >> 1);
1613 static unsigned long wb_max_pause(struct bdi_writeback
*wb
,
1614 unsigned long wb_dirty
)
1616 unsigned long bw
= READ_ONCE(wb
->avg_write_bandwidth
);
1620 * Limit pause time for small memory systems. If sleeping for too long
1621 * time, a small pool of dirty/writeback pages may go empty and disk go
1624 * 8 serves as the safety ratio.
1626 t
= wb_dirty
/ (1 + bw
/ roundup_pow_of_two(1 + HZ
/ 8));
1629 return min_t(unsigned long, t
, MAX_PAUSE
);
1632 static long wb_min_pause(struct bdi_writeback
*wb
,
1634 unsigned long task_ratelimit
,
1635 unsigned long dirty_ratelimit
,
1636 int *nr_dirtied_pause
)
1638 long hi
= ilog2(READ_ONCE(wb
->avg_write_bandwidth
));
1639 long lo
= ilog2(READ_ONCE(wb
->dirty_ratelimit
));
1640 long t
; /* target pause */
1641 long pause
; /* estimated next pause */
1642 int pages
; /* target nr_dirtied_pause */
1644 /* target for 10ms pause on 1-dd case */
1645 t
= max(1, HZ
/ 100);
1648 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1651 * (N * 10ms) on 2^N concurrent tasks.
1654 t
+= (hi
- lo
) * (10 * HZ
) / 1024;
1657 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1658 * on the much more stable dirty_ratelimit. However the next pause time
1659 * will be computed based on task_ratelimit and the two rate limits may
1660 * depart considerably at some time. Especially if task_ratelimit goes
1661 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1662 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1663 * result task_ratelimit won't be executed faithfully, which could
1664 * eventually bring down dirty_ratelimit.
1666 * We apply two rules to fix it up:
1667 * 1) try to estimate the next pause time and if necessary, use a lower
1668 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1669 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1670 * 2) limit the target pause time to max_pause/2, so that the normal
1671 * small fluctuations of task_ratelimit won't trigger rule (1) and
1672 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1674 t
= min(t
, 1 + max_pause
/ 2);
1675 pages
= dirty_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1678 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1679 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1680 * When the 16 consecutive reads are often interrupted by some dirty
1681 * throttling pause during the async writes, cfq will go into idles
1682 * (deadline is fine). So push nr_dirtied_pause as high as possible
1683 * until reaches DIRTY_POLL_THRESH=32 pages.
1685 if (pages
< DIRTY_POLL_THRESH
) {
1687 pages
= dirty_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1688 if (pages
> DIRTY_POLL_THRESH
) {
1689 pages
= DIRTY_POLL_THRESH
;
1690 t
= HZ
* DIRTY_POLL_THRESH
/ dirty_ratelimit
;
1694 pause
= HZ
* pages
/ (task_ratelimit
+ 1);
1695 if (pause
> max_pause
) {
1697 pages
= task_ratelimit
* t
/ roundup_pow_of_two(HZ
);
1700 *nr_dirtied_pause
= pages
;
1702 * The minimal pause time will normally be half the target pause time.
1704 return pages
>= DIRTY_POLL_THRESH
? 1 + t
/ 2 : t
;
1707 static inline void wb_dirty_limits(struct dirty_throttle_control
*dtc
)
1709 struct bdi_writeback
*wb
= dtc
->wb
;
1710 unsigned long wb_reclaimable
;
1713 * wb_thresh is not treated as some limiting factor as
1714 * dirty_thresh, due to reasons
1715 * - in JBOD setup, wb_thresh can fluctuate a lot
1716 * - in a system with HDD and USB key, the USB key may somehow
1717 * go into state (wb_dirty >> wb_thresh) either because
1718 * wb_dirty starts high, or because wb_thresh drops low.
1719 * In this case we don't want to hard throttle the USB key
1720 * dirtiers for 100 seconds until wb_dirty drops under
1721 * wb_thresh. Instead the auxiliary wb control line in
1722 * wb_position_ratio() will let the dirtier task progress
1723 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1725 dtc
->wb_thresh
= __wb_calc_thresh(dtc
, dtc
->thresh
);
1726 dtc
->wb_bg_thresh
= dtc
->thresh
?
1727 div_u64((u64
)dtc
->wb_thresh
* dtc
->bg_thresh
, dtc
->thresh
) : 0;
1730 * In order to avoid the stacked BDI deadlock we need
1731 * to ensure we accurately count the 'dirty' pages when
1732 * the threshold is low.
1734 * Otherwise it would be possible to get thresh+n pages
1735 * reported dirty, even though there are thresh-m pages
1736 * actually dirty; with m+n sitting in the percpu
1739 if (dtc
->wb_thresh
< 2 * wb_stat_error()) {
1740 wb_reclaimable
= wb_stat_sum(wb
, WB_RECLAIMABLE
);
1741 dtc
->wb_dirty
= wb_reclaimable
+ wb_stat_sum(wb
, WB_WRITEBACK
);
1743 wb_reclaimable
= wb_stat(wb
, WB_RECLAIMABLE
);
1744 dtc
->wb_dirty
= wb_reclaimable
+ wb_stat(wb
, WB_WRITEBACK
);
1748 static unsigned long domain_poll_intv(struct dirty_throttle_control
*dtc
,
1751 unsigned long dirty
, thresh
;
1754 dirty
= dtc
->wb_dirty
;
1755 thresh
= dtc
->wb_thresh
;
1758 thresh
= dtc
->thresh
;
1761 return dirty_poll_interval(dirty
, thresh
);
1765 * Throttle it only when the background writeback cannot catch-up. This avoids
1766 * (excessively) small writeouts when the wb limits are ramping up in case of
1769 * In strictlimit case make decision based on the wb counters and limits. Small
1770 * writeouts when the wb limits are ramping up are the price we consciously pay
1771 * for strictlimit-ing.
1773 static void domain_dirty_freerun(struct dirty_throttle_control
*dtc
,
1776 unsigned long dirty
, thresh
, bg_thresh
;
1778 if (unlikely(strictlimit
)) {
1779 wb_dirty_limits(dtc
);
1780 dirty
= dtc
->wb_dirty
;
1781 thresh
= dtc
->wb_thresh
;
1782 bg_thresh
= dtc
->wb_bg_thresh
;
1785 thresh
= dtc
->thresh
;
1786 bg_thresh
= dtc
->bg_thresh
;
1788 dtc
->freerun
= dirty
<= dirty_freerun_ceiling(thresh
, bg_thresh
);
1791 static void balance_domain_limits(struct dirty_throttle_control
*dtc
,
1794 domain_dirty_avail(dtc
, true);
1795 domain_dirty_limits(dtc
);
1796 domain_dirty_freerun(dtc
, strictlimit
);
1799 static void wb_dirty_freerun(struct dirty_throttle_control
*dtc
,
1802 dtc
->freerun
= false;
1804 /* was already handled in domain_dirty_freerun */
1808 wb_dirty_limits(dtc
);
1810 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb
1813 if (!(current
->flags
& PF_LOCAL_THROTTLE
))
1816 dtc
->freerun
= dtc
->wb_dirty
<
1817 dirty_freerun_ceiling(dtc
->wb_thresh
, dtc
->wb_bg_thresh
);
1820 static inline void wb_dirty_exceeded(struct dirty_throttle_control
*dtc
,
1823 dtc
->dirty_exceeded
= (dtc
->wb_dirty
> dtc
->wb_thresh
) &&
1824 ((dtc
->dirty
> dtc
->thresh
) || strictlimit
);
1828 * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is
1829 * in freerun state. Please don't use these invalid fields in freerun case.
1831 static void balance_wb_limits(struct dirty_throttle_control
*dtc
,
1834 wb_dirty_freerun(dtc
, strictlimit
);
1838 wb_dirty_exceeded(dtc
, strictlimit
);
1839 wb_position_ratio(dtc
);
1843 * balance_dirty_pages() must be called by processes which are generating dirty
1844 * data. It looks at the number of dirty pages in the machine and will force
1845 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1846 * If we're over `background_thresh' then the writeback threads are woken to
1847 * perform some writeout.
1849 static int balance_dirty_pages(struct bdi_writeback
*wb
,
1850 unsigned long pages_dirtied
, unsigned int flags
)
1852 struct dirty_throttle_control gdtc_stor
= { GDTC_INIT(wb
) };
1853 struct dirty_throttle_control mdtc_stor
= { MDTC_INIT(wb
, &gdtc_stor
) };
1854 struct dirty_throttle_control
* const gdtc
= &gdtc_stor
;
1855 struct dirty_throttle_control
* const mdtc
= mdtc_valid(&mdtc_stor
) ?
1857 struct dirty_throttle_control
*sdtc
;
1858 unsigned long nr_dirty
;
1863 int nr_dirtied_pause
;
1864 unsigned long task_ratelimit
;
1865 unsigned long dirty_ratelimit
;
1866 struct backing_dev_info
*bdi
= wb
->bdi
;
1867 bool strictlimit
= bdi
->capabilities
& BDI_CAP_STRICTLIMIT
;
1868 unsigned long start_time
= jiffies
;
1872 unsigned long now
= jiffies
;
1874 nr_dirty
= global_node_page_state(NR_FILE_DIRTY
);
1876 balance_domain_limits(gdtc
, strictlimit
);
1879 * If @wb belongs to !root memcg, repeat the same
1880 * basic calculations for the memcg domain.
1882 balance_domain_limits(mdtc
, strictlimit
);
1886 * In laptop mode, we wait until hitting the higher threshold
1887 * before starting background writeout, and then write out all
1888 * the way down to the lower threshold. So slow writers cause
1889 * minimal disk activity.
1891 * In normal mode, we start background writeout at the lower
1892 * background_thresh, to keep the amount of dirty memory low.
1894 if (!laptop_mode
&& nr_dirty
> gdtc
->bg_thresh
&&
1895 !writeback_in_progress(wb
))
1896 wb_start_background_writeback(wb
);
1899 * If memcg domain is in effect, @dirty should be under
1900 * both global and memcg freerun ceilings.
1902 if (gdtc
->freerun
&& (!mdtc
|| mdtc
->freerun
)) {
1904 unsigned long m_intv
;
1907 intv
= domain_poll_intv(gdtc
, strictlimit
);
1910 current
->dirty_paused_when
= now
;
1911 current
->nr_dirtied
= 0;
1913 m_intv
= domain_poll_intv(mdtc
, strictlimit
);
1914 current
->nr_dirtied_pause
= min(intv
, m_intv
);
1918 /* Start writeback even when in laptop mode */
1919 if (unlikely(!writeback_in_progress(wb
)))
1920 wb_start_background_writeback(wb
);
1922 mem_cgroup_flush_foreign(wb
);
1925 * Calculate global domain's pos_ratio and select the
1926 * global dtc by default.
1928 balance_wb_limits(gdtc
, strictlimit
);
1935 * If memcg domain is in effect, calculate its
1936 * pos_ratio. @wb should satisfy constraints from
1937 * both global and memcg domains. Choose the one
1938 * w/ lower pos_ratio.
1940 balance_wb_limits(mdtc
, strictlimit
);
1943 if (mdtc
->pos_ratio
< gdtc
->pos_ratio
)
1947 wb
->dirty_exceeded
= gdtc
->dirty_exceeded
||
1948 (mdtc
&& mdtc
->dirty_exceeded
);
1949 if (time_is_before_jiffies(READ_ONCE(wb
->bw_time_stamp
) +
1950 BANDWIDTH_INTERVAL
))
1951 __wb_update_bandwidth(gdtc
, mdtc
, true);
1953 /* throttle according to the chosen dtc */
1954 dirty_ratelimit
= READ_ONCE(wb
->dirty_ratelimit
);
1955 task_ratelimit
= ((u64
)dirty_ratelimit
* sdtc
->pos_ratio
) >>
1956 RATELIMIT_CALC_SHIFT
;
1957 max_pause
= wb_max_pause(wb
, sdtc
->wb_dirty
);
1958 min_pause
= wb_min_pause(wb
, max_pause
,
1959 task_ratelimit
, dirty_ratelimit
,
1962 if (unlikely(task_ratelimit
== 0)) {
1967 period
= HZ
* pages_dirtied
/ task_ratelimit
;
1969 if (current
->dirty_paused_when
)
1970 pause
-= now
- current
->dirty_paused_when
;
1972 * For less than 1s think time (ext3/4 may block the dirtier
1973 * for up to 800ms from time to time on 1-HDD; so does xfs,
1974 * however at much less frequency), try to compensate it in
1975 * future periods by updating the virtual time; otherwise just
1976 * do a reset, as it may be a light dirtier.
1978 if (pause
< min_pause
) {
1979 trace_balance_dirty_pages(wb
,
1992 current
->dirty_paused_when
= now
;
1993 current
->nr_dirtied
= 0;
1994 } else if (period
) {
1995 current
->dirty_paused_when
+= period
;
1996 current
->nr_dirtied
= 0;
1997 } else if (current
->nr_dirtied_pause
<= pages_dirtied
)
1998 current
->nr_dirtied_pause
+= pages_dirtied
;
2001 if (unlikely(pause
> max_pause
)) {
2002 /* for occasional dropped task_ratelimit */
2003 now
+= min(pause
- max_pause
, max_pause
);
2008 trace_balance_dirty_pages(wb
,
2020 if (flags
& BDP_ASYNC
) {
2024 __set_current_state(TASK_KILLABLE
);
2025 bdi
->last_bdp_sleep
= jiffies
;
2026 io_schedule_timeout(pause
);
2028 current
->dirty_paused_when
= now
+ pause
;
2029 current
->nr_dirtied
= 0;
2030 current
->nr_dirtied_pause
= nr_dirtied_pause
;
2033 * This is typically equal to (dirty < thresh) and can also
2034 * keep "1000+ dd on a slow USB stick" under control.
2040 * In the case of an unresponsive NFS server and the NFS dirty
2041 * pages exceeds dirty_thresh, give the other good wb's a pipe
2042 * to go through, so that tasks on them still remain responsive.
2044 * In theory 1 page is enough to keep the consumer-producer
2045 * pipe going: the flusher cleans 1 page => the task dirties 1
2046 * more page. However wb_dirty has accounting errors. So use
2047 * the larger and more IO friendly wb_stat_error.
2049 if (sdtc
->wb_dirty
<= wb_stat_error())
2052 if (fatal_signal_pending(current
))
2058 static DEFINE_PER_CPU(int, bdp_ratelimits
);
2061 * Normal tasks are throttled by
2063 * dirty tsk->nr_dirtied_pause pages;
2064 * take a snap in balance_dirty_pages();
2066 * However there is a worst case. If every task exit immediately when dirtied
2067 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
2068 * called to throttle the page dirties. The solution is to save the not yet
2069 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
2070 * randomly into the running tasks. This works well for the above worst case,
2071 * as the new task will pick up and accumulate the old task's leaked dirty
2072 * count and eventually get throttled.
2074 DEFINE_PER_CPU(int, dirty_throttle_leaks
) = 0;
2077 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2078 * @mapping: address_space which was dirtied.
2079 * @flags: BDP flags.
2081 * Processes which are dirtying memory should call in here once for each page
2082 * which was newly dirtied. The function will periodically check the system's
2083 * dirty state and will initiate writeback if needed.
2085 * See balance_dirty_pages_ratelimited() for details.
2087 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2088 * indicate that memory is out of balance and the caller must wait
2089 * for I/O to complete. Otherwise, it will return 0 to indicate
2090 * that either memory was already in balance, or it was able to sleep
2091 * until the amount of dirty memory returned to balance.
2093 int balance_dirty_pages_ratelimited_flags(struct address_space
*mapping
,
2096 struct inode
*inode
= mapping
->host
;
2097 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
2098 struct bdi_writeback
*wb
= NULL
;
2103 if (!(bdi
->capabilities
& BDI_CAP_WRITEBACK
))
2106 if (inode_cgwb_enabled(inode
))
2107 wb
= wb_get_create_current(bdi
, GFP_KERNEL
);
2111 ratelimit
= current
->nr_dirtied_pause
;
2112 if (wb
->dirty_exceeded
)
2113 ratelimit
= min(ratelimit
, 32 >> (PAGE_SHIFT
- 10));
2117 * This prevents one CPU to accumulate too many dirtied pages without
2118 * calling into balance_dirty_pages(), which can happen when there are
2119 * 1000+ tasks, all of them start dirtying pages at exactly the same
2120 * time, hence all honoured too large initial task->nr_dirtied_pause.
2122 p
= this_cpu_ptr(&bdp_ratelimits
);
2123 if (unlikely(current
->nr_dirtied
>= ratelimit
))
2125 else if (unlikely(*p
>= ratelimit_pages
)) {
2130 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2131 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2132 * the dirty throttling and livelock other long-run dirtiers.
2134 p
= this_cpu_ptr(&dirty_throttle_leaks
);
2135 if (*p
> 0 && current
->nr_dirtied
< ratelimit
) {
2136 unsigned long nr_pages_dirtied
;
2137 nr_pages_dirtied
= min(*p
, ratelimit
- current
->nr_dirtied
);
2138 *p
-= nr_pages_dirtied
;
2139 current
->nr_dirtied
+= nr_pages_dirtied
;
2143 if (unlikely(current
->nr_dirtied
>= ratelimit
))
2144 ret
= balance_dirty_pages(wb
, current
->nr_dirtied
, flags
);
2149 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags
);
2152 * balance_dirty_pages_ratelimited - balance dirty memory state.
2153 * @mapping: address_space which was dirtied.
2155 * Processes which are dirtying memory should call in here once for each page
2156 * which was newly dirtied. The function will periodically check the system's
2157 * dirty state and will initiate writeback if needed.
2159 * Once we're over the dirty memory limit we decrease the ratelimiting
2160 * by a lot, to prevent individual processes from overshooting the limit
2161 * by (ratelimit_pages) each.
2163 void balance_dirty_pages_ratelimited(struct address_space
*mapping
)
2165 balance_dirty_pages_ratelimited_flags(mapping
, 0);
2167 EXPORT_SYMBOL(balance_dirty_pages_ratelimited
);
2170 * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty
2171 * and thresh, but it's for background writeback.
2173 static void wb_bg_dirty_limits(struct dirty_throttle_control
*dtc
)
2175 struct bdi_writeback
*wb
= dtc
->wb
;
2177 dtc
->wb_bg_thresh
= __wb_calc_thresh(dtc
, dtc
->bg_thresh
);
2178 if (dtc
->wb_bg_thresh
< 2 * wb_stat_error())
2179 dtc
->wb_dirty
= wb_stat_sum(wb
, WB_RECLAIMABLE
);
2181 dtc
->wb_dirty
= wb_stat(wb
, WB_RECLAIMABLE
);
2184 static bool domain_over_bg_thresh(struct dirty_throttle_control
*dtc
)
2186 domain_dirty_avail(dtc
, false);
2187 domain_dirty_limits(dtc
);
2188 if (dtc
->dirty
> dtc
->bg_thresh
)
2191 wb_bg_dirty_limits(dtc
);
2192 if (dtc
->wb_dirty
> dtc
->wb_bg_thresh
)
2199 * wb_over_bg_thresh - does @wb need to be written back?
2200 * @wb: bdi_writeback of interest
2202 * Determines whether background writeback should keep writing @wb or it's
2205 * Return: %true if writeback should continue.
2207 bool wb_over_bg_thresh(struct bdi_writeback
*wb
)
2209 struct dirty_throttle_control gdtc
= { GDTC_INIT(wb
) };
2210 struct dirty_throttle_control mdtc
= { MDTC_INIT(wb
, &gdtc
) };
2212 if (domain_over_bg_thresh(&gdtc
))
2215 if (mdtc_valid(&mdtc
))
2216 return domain_over_bg_thresh(&mdtc
);
2221 #ifdef CONFIG_SYSCTL
2223 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2225 static int dirty_writeback_centisecs_handler(const struct ctl_table
*table
, int write
,
2226 void *buffer
, size_t *length
, loff_t
*ppos
)
2228 unsigned int old_interval
= dirty_writeback_interval
;
2231 ret
= proc_dointvec(table
, write
, buffer
, length
, ppos
);
2234 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2235 * and a different non-zero value will wakeup the writeback threads.
2236 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2237 * iterate over all bdis and wbs.
2238 * The reason we do this is to make the change take effect immediately.
2240 if (!ret
&& write
&& dirty_writeback_interval
&&
2241 dirty_writeback_interval
!= old_interval
)
2242 wakeup_flusher_threads(WB_REASON_PERIODIC
);
2248 void laptop_mode_timer_fn(struct timer_list
*t
)
2250 struct backing_dev_info
*backing_dev_info
=
2251 from_timer(backing_dev_info
, t
, laptop_mode_wb_timer
);
2253 wakeup_flusher_threads_bdi(backing_dev_info
, WB_REASON_LAPTOP_TIMER
);
2257 * We've spun up the disk and we're in laptop mode: schedule writeback
2258 * of all dirty data a few seconds from now. If the flush is already scheduled
2259 * then push it back - the user is still using the disk.
2261 void laptop_io_completion(struct backing_dev_info
*info
)
2263 mod_timer(&info
->laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
2267 * We're in laptop mode and we've just synced. The sync's writes will have
2268 * caused another writeback to be scheduled by laptop_io_completion.
2269 * Nothing needs to be written back anymore, so we unschedule the writeback.
2271 void laptop_sync_completion(void)
2273 struct backing_dev_info
*bdi
;
2277 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
)
2278 del_timer(&bdi
->laptop_mode_wb_timer
);
2284 * If ratelimit_pages is too high then we can get into dirty-data overload
2285 * if a large number of processes all perform writes at the same time.
2287 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2288 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2292 void writeback_set_ratelimit(void)
2294 struct wb_domain
*dom
= &global_wb_domain
;
2295 unsigned long background_thresh
;
2296 unsigned long dirty_thresh
;
2298 global_dirty_limits(&background_thresh
, &dirty_thresh
);
2299 dom
->dirty_limit
= dirty_thresh
;
2300 ratelimit_pages
= dirty_thresh
/ (num_online_cpus() * 32);
2301 if (ratelimit_pages
< 16)
2302 ratelimit_pages
= 16;
2305 static int page_writeback_cpu_online(unsigned int cpu
)
2307 writeback_set_ratelimit();
2311 #ifdef CONFIG_SYSCTL
2313 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2314 static const unsigned long dirty_bytes_min
= 2 * PAGE_SIZE
;
2316 static struct ctl_table vm_page_writeback_sysctls
[] = {
2318 .procname
= "dirty_background_ratio",
2319 .data
= &dirty_background_ratio
,
2320 .maxlen
= sizeof(dirty_background_ratio
),
2322 .proc_handler
= dirty_background_ratio_handler
,
2323 .extra1
= SYSCTL_ZERO
,
2324 .extra2
= SYSCTL_ONE_HUNDRED
,
2327 .procname
= "dirty_background_bytes",
2328 .data
= &dirty_background_bytes
,
2329 .maxlen
= sizeof(dirty_background_bytes
),
2331 .proc_handler
= dirty_background_bytes_handler
,
2332 .extra1
= SYSCTL_LONG_ONE
,
2335 .procname
= "dirty_ratio",
2336 .data
= &vm_dirty_ratio
,
2337 .maxlen
= sizeof(vm_dirty_ratio
),
2339 .proc_handler
= dirty_ratio_handler
,
2340 .extra1
= SYSCTL_ZERO
,
2341 .extra2
= SYSCTL_ONE_HUNDRED
,
2344 .procname
= "dirty_bytes",
2345 .data
= &vm_dirty_bytes
,
2346 .maxlen
= sizeof(vm_dirty_bytes
),
2348 .proc_handler
= dirty_bytes_handler
,
2349 .extra1
= (void *)&dirty_bytes_min
,
2352 .procname
= "dirty_writeback_centisecs",
2353 .data
= &dirty_writeback_interval
,
2354 .maxlen
= sizeof(dirty_writeback_interval
),
2356 .proc_handler
= dirty_writeback_centisecs_handler
,
2359 .procname
= "dirty_expire_centisecs",
2360 .data
= &dirty_expire_interval
,
2361 .maxlen
= sizeof(dirty_expire_interval
),
2363 .proc_handler
= proc_dointvec_minmax
,
2364 .extra1
= SYSCTL_ZERO
,
2366 #ifdef CONFIG_HIGHMEM
2368 .procname
= "highmem_is_dirtyable",
2369 .data
= &vm_highmem_is_dirtyable
,
2370 .maxlen
= sizeof(vm_highmem_is_dirtyable
),
2372 .proc_handler
= proc_dointvec_minmax
,
2373 .extra1
= SYSCTL_ZERO
,
2374 .extra2
= SYSCTL_ONE
,
2378 .procname
= "laptop_mode",
2379 .data
= &laptop_mode
,
2380 .maxlen
= sizeof(laptop_mode
),
2382 .proc_handler
= proc_dointvec_jiffies
,
2388 * Called early on to tune the page writeback dirty limits.
2390 * We used to scale dirty pages according to how total memory
2391 * related to pages that could be allocated for buffers.
2393 * However, that was when we used "dirty_ratio" to scale with
2394 * all memory, and we don't do that any more. "dirty_ratio"
2395 * is now applied to total non-HIGHPAGE memory, and as such we can't
2396 * get into the old insane situation any more where we had
2397 * large amounts of dirty pages compared to a small amount of
2398 * non-HIGHMEM memory.
2400 * But we might still want to scale the dirty_ratio by how
2401 * much memory the box has..
2403 void __init
page_writeback_init(void)
2405 BUG_ON(wb_domain_init(&global_wb_domain
, GFP_KERNEL
));
2407 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "mm/writeback:online",
2408 page_writeback_cpu_online
, NULL
);
2409 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD
, "mm/writeback:dead", NULL
,
2410 page_writeback_cpu_online
);
2411 #ifdef CONFIG_SYSCTL
2412 register_sysctl_init("vm", vm_page_writeback_sysctls
);
2417 * tag_pages_for_writeback - tag pages to be written by writeback
2418 * @mapping: address space structure to write
2419 * @start: starting page index
2420 * @end: ending page index (inclusive)
2422 * This function scans the page range from @start to @end (inclusive) and tags
2423 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller
2424 * can then use the TOWRITE tag to identify pages eligible for writeback.
2425 * This mechanism is used to avoid livelocking of writeback by a process
2426 * steadily creating new dirty pages in the file (thus it is important for this
2427 * function to be quick so that it can tag pages faster than a dirtying process
2430 void tag_pages_for_writeback(struct address_space
*mapping
,
2431 pgoff_t start
, pgoff_t end
)
2433 XA_STATE(xas
, &mapping
->i_pages
, start
);
2434 unsigned int tagged
= 0;
2438 xas_for_each_marked(&xas
, page
, end
, PAGECACHE_TAG_DIRTY
) {
2439 xas_set_mark(&xas
, PAGECACHE_TAG_TOWRITE
);
2440 if (++tagged
% XA_CHECK_SCHED
)
2444 xas_unlock_irq(&xas
);
2448 xas_unlock_irq(&xas
);
2450 EXPORT_SYMBOL(tag_pages_for_writeback
);
2452 static bool folio_prepare_writeback(struct address_space
*mapping
,
2453 struct writeback_control
*wbc
, struct folio
*folio
)
2456 * Folio truncated or invalidated. We can freely skip it then,
2457 * even for data integrity operations: the folio has disappeared
2458 * concurrently, so there could be no real expectation of this
2459 * data integrity operation even if there is now a new, dirty
2460 * folio at the same pagecache index.
2462 if (unlikely(folio
->mapping
!= mapping
))
2466 * Did somebody else write it for us?
2468 if (!folio_test_dirty(folio
))
2471 if (folio_test_writeback(folio
)) {
2472 if (wbc
->sync_mode
== WB_SYNC_NONE
)
2474 folio_wait_writeback(folio
);
2476 BUG_ON(folio_test_writeback(folio
));
2478 if (!folio_clear_dirty_for_io(folio
))
2484 static xa_mark_t
wbc_to_tag(struct writeback_control
*wbc
)
2486 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2487 return PAGECACHE_TAG_TOWRITE
;
2488 return PAGECACHE_TAG_DIRTY
;
2491 static pgoff_t
wbc_end(struct writeback_control
*wbc
)
2493 if (wbc
->range_cyclic
)
2495 return wbc
->range_end
>> PAGE_SHIFT
;
2498 static struct folio
*writeback_get_folio(struct address_space
*mapping
,
2499 struct writeback_control
*wbc
)
2501 struct folio
*folio
;
2504 folio
= folio_batch_next(&wbc
->fbatch
);
2506 folio_batch_release(&wbc
->fbatch
);
2508 filemap_get_folios_tag(mapping
, &wbc
->index
, wbc_end(wbc
),
2509 wbc_to_tag(wbc
), &wbc
->fbatch
);
2510 folio
= folio_batch_next(&wbc
->fbatch
);
2516 if (unlikely(!folio_prepare_writeback(mapping
, wbc
, folio
))) {
2517 folio_unlock(folio
);
2521 trace_wbc_writepage(wbc
, inode_to_bdi(mapping
->host
));
2526 * writeback_iter - iterate folio of a mapping for writeback
2527 * @mapping: address space structure to write
2528 * @wbc: writeback context
2529 * @folio: previously iterated folio (%NULL to start)
2530 * @error: in-out pointer for writeback errors (see below)
2532 * This function returns the next folio for the writeback operation described by
2533 * @wbc on @mapping and should be called in a while loop in the ->writepages
2536 * To start the writeback operation, %NULL is passed in the @folio argument, and
2537 * for every subsequent iteration the folio returned previously should be passed
2540 * If there was an error in the per-folio writeback inside the writeback_iter()
2541 * loop, @error should be set to the error value.
2543 * Once the writeback described in @wbc has finished, this function will return
2544 * %NULL and if there was an error in any iteration restore it to @error.
2546 * Note: callers should not manually break out of the loop using break or goto
2547 * but must keep calling writeback_iter() until it returns %NULL.
2549 * Return: the folio to write or %NULL if the loop is done.
2551 struct folio
*writeback_iter(struct address_space
*mapping
,
2552 struct writeback_control
*wbc
, struct folio
*folio
, int *error
)
2555 folio_batch_init(&wbc
->fbatch
);
2556 wbc
->saved_err
= *error
= 0;
2559 * For range cyclic writeback we remember where we stopped so
2560 * that we can continue where we stopped.
2562 * For non-cyclic writeback we always start at the beginning of
2563 * the passed in range.
2565 if (wbc
->range_cyclic
)
2566 wbc
->index
= mapping
->writeback_index
;
2568 wbc
->index
= wbc
->range_start
>> PAGE_SHIFT
;
2571 * To avoid livelocks when other processes dirty new pages, we
2572 * first tag pages which should be written back and only then
2573 * start writing them.
2575 * For data-integrity writeback we have to be careful so that we
2576 * do not miss some pages (e.g., because some other process has
2577 * cleared the TOWRITE tag we set). The rule we follow is that
2578 * TOWRITE tag can be cleared only by the process clearing the
2579 * DIRTY tag (and submitting the page for I/O).
2581 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2582 tag_pages_for_writeback(mapping
, wbc
->index
,
2585 wbc
->nr_to_write
-= folio_nr_pages(folio
);
2587 WARN_ON_ONCE(*error
> 0);
2590 * For integrity writeback we have to keep going until we have
2591 * written all the folios we tagged for writeback above, even if
2592 * we run past wbc->nr_to_write or encounter errors.
2593 * We stash away the first error we encounter in wbc->saved_err
2594 * so that it can be retrieved when we're done. This is because
2595 * the file system may still have state to clear for each folio.
2597 * For background writeback we exit as soon as we run past
2598 * wbc->nr_to_write or encounter the first error.
2600 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
2601 if (*error
&& !wbc
->saved_err
)
2602 wbc
->saved_err
= *error
;
2604 if (*error
|| wbc
->nr_to_write
<= 0)
2609 folio
= writeback_get_folio(mapping
, wbc
);
2612 * To avoid deadlocks between range_cyclic writeback and callers
2613 * that hold pages in PageWriteback to aggregate I/O until
2614 * the writeback iteration finishes, we do not loop back to the
2615 * start of the file. Doing so causes a page lock/page
2616 * writeback access order inversion - we should only ever lock
2617 * multiple pages in ascending page->index order, and looping
2618 * back to the start of the file violates that rule and causes
2621 if (wbc
->range_cyclic
)
2622 mapping
->writeback_index
= 0;
2625 * Return the first error we encountered (if there was any) to
2628 *error
= wbc
->saved_err
;
2633 if (wbc
->range_cyclic
)
2634 mapping
->writeback_index
= folio_next_index(folio
);
2635 folio_batch_release(&wbc
->fbatch
);
2638 EXPORT_SYMBOL_GPL(writeback_iter
);
2641 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2642 * @mapping: address space structure to write
2643 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2644 * @writepage: function called for each page
2645 * @data: data passed to writepage function
2647 * Return: %0 on success, negative error code otherwise
2649 * Note: please use writeback_iter() instead.
2651 int write_cache_pages(struct address_space
*mapping
,
2652 struct writeback_control
*wbc
, writepage_t writepage
,
2655 struct folio
*folio
= NULL
;
2658 while ((folio
= writeback_iter(mapping
, wbc
, folio
, &error
))) {
2659 error
= writepage(folio
, wbc
, data
);
2660 if (error
== AOP_WRITEPAGE_ACTIVATE
) {
2661 folio_unlock(folio
);
2668 EXPORT_SYMBOL(write_cache_pages
);
2670 static int writeback_use_writepage(struct address_space
*mapping
,
2671 struct writeback_control
*wbc
)
2673 struct folio
*folio
= NULL
;
2674 struct blk_plug plug
;
2677 blk_start_plug(&plug
);
2678 while ((folio
= writeback_iter(mapping
, wbc
, folio
, &err
))) {
2679 err
= mapping
->a_ops
->writepage(&folio
->page
, wbc
);
2680 if (err
== AOP_WRITEPAGE_ACTIVATE
) {
2681 folio_unlock(folio
);
2684 mapping_set_error(mapping
, err
);
2686 blk_finish_plug(&plug
);
2691 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
2694 struct bdi_writeback
*wb
;
2696 if (wbc
->nr_to_write
<= 0)
2698 wb
= inode_to_wb_wbc(mapping
->host
, wbc
);
2699 wb_bandwidth_estimate_start(wb
);
2701 if (mapping
->a_ops
->writepages
) {
2702 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
2703 } else if (mapping
->a_ops
->writepage
) {
2704 ret
= writeback_use_writepage(mapping
, wbc
);
2706 /* deal with chardevs and other special files */
2709 if (ret
!= -ENOMEM
|| wbc
->sync_mode
!= WB_SYNC_ALL
)
2713 * Lacking an allocation context or the locality or writeback
2714 * state of any of the inode's pages, throttle based on
2715 * writeback activity on the local node. It's as good a
2718 reclaim_throttle(NODE_DATA(numa_node_id()),
2719 VMSCAN_THROTTLE_WRITEBACK
);
2722 * Usually few pages are written by now from those we've just submitted
2723 * but if there's constant writeback being submitted, this makes sure
2724 * writeback bandwidth is updated once in a while.
2726 if (time_is_before_jiffies(READ_ONCE(wb
->bw_time_stamp
) +
2727 BANDWIDTH_INTERVAL
))
2728 wb_update_bandwidth(wb
);
2733 * For address_spaces which do not use buffers nor write back.
2735 bool noop_dirty_folio(struct address_space
*mapping
, struct folio
*folio
)
2737 if (!folio_test_dirty(folio
))
2738 return !folio_test_set_dirty(folio
);
2741 EXPORT_SYMBOL(noop_dirty_folio
);
2744 * Helper function for set_page_dirty family.
2746 * NOTE: This relies on being atomic wrt interrupts.
2748 static void folio_account_dirtied(struct folio
*folio
,
2749 struct address_space
*mapping
)
2751 struct inode
*inode
= mapping
->host
;
2753 trace_writeback_dirty_folio(folio
, mapping
);
2755 if (mapping_can_writeback(mapping
)) {
2756 struct bdi_writeback
*wb
;
2757 long nr
= folio_nr_pages(folio
);
2759 inode_attach_wb(inode
, folio
);
2760 wb
= inode_to_wb(inode
);
2762 __lruvec_stat_mod_folio(folio
, NR_FILE_DIRTY
, nr
);
2763 __zone_stat_mod_folio(folio
, NR_ZONE_WRITE_PENDING
, nr
);
2764 __node_stat_mod_folio(folio
, NR_DIRTIED
, nr
);
2765 wb_stat_mod(wb
, WB_RECLAIMABLE
, nr
);
2766 wb_stat_mod(wb
, WB_DIRTIED
, nr
);
2767 task_io_account_write(nr
* PAGE_SIZE
);
2768 current
->nr_dirtied
+= nr
;
2769 __this_cpu_add(bdp_ratelimits
, nr
);
2771 mem_cgroup_track_foreign_dirty(folio
, wb
);
2776 * Helper function for deaccounting dirty page without writeback.
2779 void folio_account_cleaned(struct folio
*folio
, struct bdi_writeback
*wb
)
2781 long nr
= folio_nr_pages(folio
);
2783 lruvec_stat_mod_folio(folio
, NR_FILE_DIRTY
, -nr
);
2784 zone_stat_mod_folio(folio
, NR_ZONE_WRITE_PENDING
, -nr
);
2785 wb_stat_mod(wb
, WB_RECLAIMABLE
, -nr
);
2786 task_io_account_cancelled_write(nr
* PAGE_SIZE
);
2790 * Mark the folio dirty, and set it dirty in the page cache.
2792 * If warn is true, then emit a warning if the folio is not uptodate and has
2793 * not been truncated.
2795 * It is the caller's responsibility to prevent the folio from being truncated
2796 * while this function is in progress, although it may have been truncated
2797 * before this function is called. Most callers have the folio locked.
2798 * A few have the folio blocked from truncation through other means (e.g.
2799 * zap_vma_pages() has it mapped and is holding the page table lock).
2800 * When called from mark_buffer_dirty(), the filesystem should hold a
2801 * reference to the buffer_head that is being marked dirty, which causes
2802 * try_to_free_buffers() to fail.
2804 void __folio_mark_dirty(struct folio
*folio
, struct address_space
*mapping
,
2807 unsigned long flags
;
2809 xa_lock_irqsave(&mapping
->i_pages
, flags
);
2810 if (folio
->mapping
) { /* Race with truncate? */
2811 WARN_ON_ONCE(warn
&& !folio_test_uptodate(folio
));
2812 folio_account_dirtied(folio
, mapping
);
2813 __xa_set_mark(&mapping
->i_pages
, folio_index(folio
),
2814 PAGECACHE_TAG_DIRTY
);
2816 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
2820 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2821 * @mapping: Address space this folio belongs to.
2822 * @folio: Folio to be marked as dirty.
2824 * Filesystems which do not use buffer heads should call this function
2825 * from their dirty_folio address space operation. It ignores the
2826 * contents of folio_get_private(), so if the filesystem marks individual
2827 * blocks as dirty, the filesystem should handle that itself.
2829 * This is also sometimes used by filesystems which use buffer_heads when
2830 * a single buffer is being dirtied: we want to set the folio dirty in
2831 * that case, but not all the buffers. This is a "bottom-up" dirtying,
2832 * whereas block_dirty_folio() is a "top-down" dirtying.
2834 * The caller must ensure this doesn't race with truncation. Most will
2835 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2836 * folio mapped and the pte lock held, which also locks out truncation.
2838 bool filemap_dirty_folio(struct address_space
*mapping
, struct folio
*folio
)
2840 if (folio_test_set_dirty(folio
))
2843 __folio_mark_dirty(folio
, mapping
, !folio_test_private(folio
));
2845 if (mapping
->host
) {
2846 /* !PageAnon && !swapper_space */
2847 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
2851 EXPORT_SYMBOL(filemap_dirty_folio
);
2854 * folio_redirty_for_writepage - Decline to write a dirty folio.
2855 * @wbc: The writeback control.
2856 * @folio: The folio.
2858 * When a writepage implementation decides that it doesn't want to write
2859 * @folio for some reason, it should call this function, unlock @folio and
2862 * Return: True if we redirtied the folio. False if someone else dirtied
2865 bool folio_redirty_for_writepage(struct writeback_control
*wbc
,
2866 struct folio
*folio
)
2868 struct address_space
*mapping
= folio
->mapping
;
2869 long nr
= folio_nr_pages(folio
);
2872 wbc
->pages_skipped
+= nr
;
2873 ret
= filemap_dirty_folio(mapping
, folio
);
2874 if (mapping
&& mapping_can_writeback(mapping
)) {
2875 struct inode
*inode
= mapping
->host
;
2876 struct bdi_writeback
*wb
;
2877 struct wb_lock_cookie cookie
= {};
2879 wb
= unlocked_inode_to_wb_begin(inode
, &cookie
);
2880 current
->nr_dirtied
-= nr
;
2881 node_stat_mod_folio(folio
, NR_DIRTIED
, -nr
);
2882 wb_stat_mod(wb
, WB_DIRTIED
, -nr
);
2883 unlocked_inode_to_wb_end(inode
, &cookie
);
2887 EXPORT_SYMBOL(folio_redirty_for_writepage
);
2890 * folio_mark_dirty - Mark a folio as being modified.
2891 * @folio: The folio.
2893 * The folio may not be truncated while this function is running.
2894 * Holding the folio lock is sufficient to prevent truncation, but some
2895 * callers cannot acquire a sleeping lock. These callers instead hold
2896 * the page table lock for a page table which contains at least one page
2897 * in this folio. Truncation will block on the page table lock as it
2898 * unmaps pages before removing the folio from its mapping.
2900 * Return: True if the folio was newly dirtied, false if it was already dirty.
2902 bool folio_mark_dirty(struct folio
*folio
)
2904 struct address_space
*mapping
= folio_mapping(folio
);
2906 if (likely(mapping
)) {
2908 * readahead/folio_deactivate could remain
2909 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2910 * About readahead, if the folio is written, the flags would be
2911 * reset. So no problem.
2912 * About folio_deactivate, if the folio is redirtied,
2913 * the flag will be reset. So no problem. but if the
2914 * folio is used by readahead it will confuse readahead
2915 * and make it restart the size rampup process. But it's
2916 * a trivial problem.
2918 if (folio_test_reclaim(folio
))
2919 folio_clear_reclaim(folio
);
2920 return mapping
->a_ops
->dirty_folio(mapping
, folio
);
2923 return noop_dirty_folio(mapping
, folio
);
2925 EXPORT_SYMBOL(folio_mark_dirty
);
2928 * folio_mark_dirty() is racy if the caller has no reference against
2929 * folio->mapping->host, and if the folio is unlocked. This is because another
2930 * CPU could truncate the folio off the mapping and then free the mapping.
2932 * Usually, the folio _is_ locked, or the caller is a user-space process which
2933 * holds a reference on the inode by having an open file.
2935 * In other cases, the folio should be locked before running folio_mark_dirty().
2937 bool folio_mark_dirty_lock(struct folio
*folio
)
2942 ret
= folio_mark_dirty(folio
);
2943 folio_unlock(folio
);
2946 EXPORT_SYMBOL(folio_mark_dirty_lock
);
2949 * This cancels just the dirty bit on the kernel page itself, it does NOT
2950 * actually remove dirty bits on any mmap's that may be around. It also
2951 * leaves the page tagged dirty, so any sync activity will still find it on
2952 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2953 * look at the dirty bits in the VM.
2955 * Doing this should *normally* only ever be done when a page is truncated,
2956 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2957 * this when it notices that somebody has cleaned out all the buffers on a
2958 * page without actually doing it through the VM. Can you say "ext3 is
2959 * horribly ugly"? Thought you could.
2961 void __folio_cancel_dirty(struct folio
*folio
)
2963 struct address_space
*mapping
= folio_mapping(folio
);
2965 if (mapping_can_writeback(mapping
)) {
2966 struct inode
*inode
= mapping
->host
;
2967 struct bdi_writeback
*wb
;
2968 struct wb_lock_cookie cookie
= {};
2970 wb
= unlocked_inode_to_wb_begin(inode
, &cookie
);
2972 if (folio_test_clear_dirty(folio
))
2973 folio_account_cleaned(folio
, wb
);
2975 unlocked_inode_to_wb_end(inode
, &cookie
);
2977 folio_clear_dirty(folio
);
2980 EXPORT_SYMBOL(__folio_cancel_dirty
);
2983 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2984 * Returns true if the folio was previously dirty.
2986 * This is for preparing to put the folio under writeout. We leave
2987 * the folio tagged as dirty in the xarray so that a concurrent
2988 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2989 * The ->writepage implementation will run either folio_start_writeback()
2990 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2991 * and xarray dirty tag back into sync.
2993 * This incoherency between the folio's dirty flag and xarray tag is
2994 * unfortunate, but it only exists while the folio is locked.
2996 bool folio_clear_dirty_for_io(struct folio
*folio
)
2998 struct address_space
*mapping
= folio_mapping(folio
);
3001 VM_BUG_ON_FOLIO(!folio_test_locked(folio
), folio
);
3003 if (mapping
&& mapping_can_writeback(mapping
)) {
3004 struct inode
*inode
= mapping
->host
;
3005 struct bdi_writeback
*wb
;
3006 struct wb_lock_cookie cookie
= {};
3009 * Yes, Virginia, this is indeed insane.
3011 * We use this sequence to make sure that
3012 * (a) we account for dirty stats properly
3013 * (b) we tell the low-level filesystem to
3014 * mark the whole folio dirty if it was
3015 * dirty in a pagetable. Only to then
3016 * (c) clean the folio again and return 1 to
3017 * cause the writeback.
3019 * This way we avoid all nasty races with the
3020 * dirty bit in multiple places and clearing
3021 * them concurrently from different threads.
3023 * Note! Normally the "folio_mark_dirty(folio)"
3024 * has no effect on the actual dirty bit - since
3025 * that will already usually be set. But we
3026 * need the side effects, and it can help us
3029 * We basically use the folio "master dirty bit"
3030 * as a serialization point for all the different
3031 * threads doing their things.
3033 if (folio_mkclean(folio
))
3034 folio_mark_dirty(folio
);
3036 * We carefully synchronise fault handlers against
3037 * installing a dirty pte and marking the folio dirty
3038 * at this point. We do this by having them hold the
3039 * page lock while dirtying the folio, and folios are
3040 * always locked coming in here, so we get the desired
3043 wb
= unlocked_inode_to_wb_begin(inode
, &cookie
);
3044 if (folio_test_clear_dirty(folio
)) {
3045 long nr
= folio_nr_pages(folio
);
3046 lruvec_stat_mod_folio(folio
, NR_FILE_DIRTY
, -nr
);
3047 zone_stat_mod_folio(folio
, NR_ZONE_WRITE_PENDING
, -nr
);
3048 wb_stat_mod(wb
, WB_RECLAIMABLE
, -nr
);
3051 unlocked_inode_to_wb_end(inode
, &cookie
);
3054 return folio_test_clear_dirty(folio
);
3056 EXPORT_SYMBOL(folio_clear_dirty_for_io
);
3058 static void wb_inode_writeback_start(struct bdi_writeback
*wb
)
3060 atomic_inc(&wb
->writeback_inodes
);
3063 static void wb_inode_writeback_end(struct bdi_writeback
*wb
)
3065 unsigned long flags
;
3066 atomic_dec(&wb
->writeback_inodes
);
3068 * Make sure estimate of writeback throughput gets updated after
3069 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3070 * (which is the interval other bandwidth updates use for batching) so
3071 * that if multiple inodes end writeback at a similar time, they get
3072 * batched into one bandwidth update.
3074 spin_lock_irqsave(&wb
->work_lock
, flags
);
3075 if (test_bit(WB_registered
, &wb
->state
))
3076 queue_delayed_work(bdi_wq
, &wb
->bw_dwork
, BANDWIDTH_INTERVAL
);
3077 spin_unlock_irqrestore(&wb
->work_lock
, flags
);
3080 bool __folio_end_writeback(struct folio
*folio
)
3082 long nr
= folio_nr_pages(folio
);
3083 struct address_space
*mapping
= folio_mapping(folio
);
3086 if (mapping
&& mapping_use_writeback_tags(mapping
)) {
3087 struct inode
*inode
= mapping
->host
;
3088 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
3089 unsigned long flags
;
3091 xa_lock_irqsave(&mapping
->i_pages
, flags
);
3092 ret
= folio_xor_flags_has_waiters(folio
, 1 << PG_writeback
);
3093 __xa_clear_mark(&mapping
->i_pages
, folio_index(folio
),
3094 PAGECACHE_TAG_WRITEBACK
);
3095 if (bdi
->capabilities
& BDI_CAP_WRITEBACK_ACCT
) {
3096 struct bdi_writeback
*wb
= inode_to_wb(inode
);
3098 wb_stat_mod(wb
, WB_WRITEBACK
, -nr
);
3099 __wb_writeout_add(wb
, nr
);
3100 if (!mapping_tagged(mapping
, PAGECACHE_TAG_WRITEBACK
))
3101 wb_inode_writeback_end(wb
);
3104 if (mapping
->host
&& !mapping_tagged(mapping
,
3105 PAGECACHE_TAG_WRITEBACK
))
3106 sb_clear_inode_writeback(mapping
->host
);
3108 xa_unlock_irqrestore(&mapping
->i_pages
, flags
);
3110 ret
= folio_xor_flags_has_waiters(folio
, 1 << PG_writeback
);
3113 lruvec_stat_mod_folio(folio
, NR_WRITEBACK
, -nr
);
3114 zone_stat_mod_folio(folio
, NR_ZONE_WRITE_PENDING
, -nr
);
3115 node_stat_mod_folio(folio
, NR_WRITTEN
, nr
);
3120 void __folio_start_writeback(struct folio
*folio
, bool keep_write
)
3122 long nr
= folio_nr_pages(folio
);
3123 struct address_space
*mapping
= folio_mapping(folio
);
3126 VM_BUG_ON_FOLIO(folio_test_writeback(folio
), folio
);
3128 if (mapping
&& mapping_use_writeback_tags(mapping
)) {
3129 XA_STATE(xas
, &mapping
->i_pages
, folio_index(folio
));
3130 struct inode
*inode
= mapping
->host
;
3131 struct backing_dev_info
*bdi
= inode_to_bdi(inode
);
3132 unsigned long flags
;
3135 xas_lock_irqsave(&xas
, flags
);
3137 folio_test_set_writeback(folio
);
3139 on_wblist
= mapping_tagged(mapping
, PAGECACHE_TAG_WRITEBACK
);
3141 xas_set_mark(&xas
, PAGECACHE_TAG_WRITEBACK
);
3142 if (bdi
->capabilities
& BDI_CAP_WRITEBACK_ACCT
) {
3143 struct bdi_writeback
*wb
= inode_to_wb(inode
);
3145 wb_stat_mod(wb
, WB_WRITEBACK
, nr
);
3147 wb_inode_writeback_start(wb
);
3151 * We can come through here when swapping anonymous
3152 * folios, so we don't necessarily have an inode to
3155 if (mapping
->host
&& !on_wblist
)
3156 sb_mark_inode_writeback(mapping
->host
);
3157 if (!folio_test_dirty(folio
))
3158 xas_clear_mark(&xas
, PAGECACHE_TAG_DIRTY
);
3160 xas_clear_mark(&xas
, PAGECACHE_TAG_TOWRITE
);
3161 xas_unlock_irqrestore(&xas
, flags
);
3163 folio_test_set_writeback(folio
);
3166 lruvec_stat_mod_folio(folio
, NR_WRITEBACK
, nr
);
3167 zone_stat_mod_folio(folio
, NR_ZONE_WRITE_PENDING
, nr
);
3169 access_ret
= arch_make_folio_accessible(folio
);
3171 * If writeback has been triggered on a page that cannot be made
3172 * accessible, it is too late to recover here.
3174 VM_BUG_ON_FOLIO(access_ret
!= 0, folio
);
3176 EXPORT_SYMBOL(__folio_start_writeback
);
3179 * folio_wait_writeback - Wait for a folio to finish writeback.
3180 * @folio: The folio to wait for.
3182 * If the folio is currently being written back to storage, wait for the
3185 * Context: Sleeps. Must be called in process context and with
3186 * no spinlocks held. Caller should hold a reference on the folio.
3187 * If the folio is not locked, writeback may start again after writeback
3190 void folio_wait_writeback(struct folio
*folio
)
3192 while (folio_test_writeback(folio
)) {
3193 trace_folio_wait_writeback(folio
, folio_mapping(folio
));
3194 folio_wait_bit(folio
, PG_writeback
);
3197 EXPORT_SYMBOL_GPL(folio_wait_writeback
);
3200 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3201 * @folio: The folio to wait for.
3203 * If the folio is currently being written back to storage, wait for the
3204 * I/O to complete or a fatal signal to arrive.
3206 * Context: Sleeps. Must be called in process context and with
3207 * no spinlocks held. Caller should hold a reference on the folio.
3208 * If the folio is not locked, writeback may start again after writeback
3210 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3212 int folio_wait_writeback_killable(struct folio
*folio
)
3214 while (folio_test_writeback(folio
)) {
3215 trace_folio_wait_writeback(folio
, folio_mapping(folio
));
3216 if (folio_wait_bit_killable(folio
, PG_writeback
))
3222 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable
);
3225 * folio_wait_stable() - wait for writeback to finish, if necessary.
3226 * @folio: The folio to wait on.
3228 * This function determines if the given folio is related to a backing
3229 * device that requires folio contents to be held stable during writeback.
3230 * If so, then it will wait for any pending writeback to complete.
3232 * Context: Sleeps. Must be called in process context and with
3233 * no spinlocks held. Caller should hold a reference on the folio.
3234 * If the folio is not locked, writeback may start again after writeback
3237 void folio_wait_stable(struct folio
*folio
)
3239 if (mapping_stable_writes(folio_mapping(folio
)))
3240 folio_wait_writeback(folio
);
3242 EXPORT_SYMBOL_GPL(folio_wait_stable
);