1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/mm/page_alloc.c
5 * Manages the free list, the system allocates free pages here.
6 * Note that kmalloc() lives in slab.c
8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
9 * Swap reorganised 29.12.95, Stephen Tweedie
10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
18 #include <linux/stddef.h>
20 #include <linux/highmem.h>
21 #include <linux/interrupt.h>
22 #include <linux/jiffies.h>
23 #include <linux/compiler.h>
24 #include <linux/kernel.h>
25 #include <linux/kasan.h>
26 #include <linux/kmsan.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/ratelimit.h>
30 #include <linux/oom.h>
31 #include <linux/topology.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/pagevec.h>
36 #include <linux/memory_hotplug.h>
37 #include <linux/nodemask.h>
38 #include <linux/vmstat.h>
39 #include <linux/fault-inject.h>
40 #include <linux/compaction.h>
41 #include <trace/events/kmem.h>
42 #include <trace/events/oom.h>
43 #include <linux/prefetch.h>
44 #include <linux/mm_inline.h>
45 #include <linux/mmu_notifier.h>
46 #include <linux/migrate.h>
47 #include <linux/sched/mm.h>
48 #include <linux/page_owner.h>
49 #include <linux/page_table_check.h>
50 #include <linux/memcontrol.h>
51 #include <linux/ftrace.h>
52 #include <linux/lockdep.h>
53 #include <linux/psi.h>
54 #include <linux/khugepaged.h>
55 #include <linux/delayacct.h>
56 #include <linux/cacheinfo.h>
57 #include <linux/pgalloc_tag.h>
58 #include <asm/div64.h>
61 #include "page_reporting.h"
63 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
64 typedef int __bitwise fpi_t
;
66 /* No special request */
67 #define FPI_NONE ((__force fpi_t)0)
70 * Skip free page reporting notification for the (possibly merged) page.
71 * This does not hinder free page reporting from grabbing the page,
72 * reporting it and marking it "reported" - it only skips notifying
73 * the free page reporting infrastructure about a newly freed page. For
74 * example, used when temporarily pulling a page from a freelist and
75 * putting it back unmodified.
77 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0))
80 * Place the (possibly merged) page to the tail of the freelist. Will ignore
81 * page shuffling (relevant code - e.g., memory onlining - is expected to
82 * shuffle the whole zone).
84 * Note: No code should rely on this flag for correctness - it's purely
85 * to allow for optimizations when handing back either fresh pages
86 * (memory onlining) or untouched pages (page isolation, free page
89 #define FPI_TO_TAIL ((__force fpi_t)BIT(1))
91 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
92 static DEFINE_MUTEX(pcp_batch_high_lock
);
93 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
95 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT)
97 * On SMP, spin_trylock is sufficient protection.
98 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP.
100 #define pcp_trylock_prepare(flags) do { } while (0)
101 #define pcp_trylock_finish(flag) do { } while (0)
104 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */
105 #define pcp_trylock_prepare(flags) local_irq_save(flags)
106 #define pcp_trylock_finish(flags) local_irq_restore(flags)
110 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid
111 * a migration causing the wrong PCP to be locked and remote memory being
112 * potentially allocated, pin the task to the CPU for the lookup+lock.
113 * preempt_disable is used on !RT because it is faster than migrate_disable.
114 * migrate_disable is used on RT because otherwise RT spinlock usage is
115 * interfered with and a high priority task cannot preempt the allocator.
117 #ifndef CONFIG_PREEMPT_RT
118 #define pcpu_task_pin() preempt_disable()
119 #define pcpu_task_unpin() preempt_enable()
121 #define pcpu_task_pin() migrate_disable()
122 #define pcpu_task_unpin() migrate_enable()
126 * Generic helper to lookup and a per-cpu variable with an embedded spinlock.
127 * Return value should be used with equivalent unlock helper.
129 #define pcpu_spin_lock(type, member, ptr) \
133 _ret = this_cpu_ptr(ptr); \
134 spin_lock(&_ret->member); \
138 #define pcpu_spin_trylock(type, member, ptr) \
142 _ret = this_cpu_ptr(ptr); \
143 if (!spin_trylock(&_ret->member)) { \
150 #define pcpu_spin_unlock(member, ptr) \
152 spin_unlock(&ptr->member); \
156 /* struct per_cpu_pages specific helpers. */
157 #define pcp_spin_lock(ptr) \
158 pcpu_spin_lock(struct per_cpu_pages, lock, ptr)
160 #define pcp_spin_trylock(ptr) \
161 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr)
163 #define pcp_spin_unlock(ptr) \
164 pcpu_spin_unlock(lock, ptr)
166 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
167 DEFINE_PER_CPU(int, numa_node
);
168 EXPORT_PER_CPU_SYMBOL(numa_node
);
171 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
173 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
175 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
176 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
177 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
178 * defined in <linux/topology.h>.
180 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
181 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
184 static DEFINE_MUTEX(pcpu_drain_mutex
);
186 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
187 volatile unsigned long latent_entropy __latent_entropy
;
188 EXPORT_SYMBOL(latent_entropy
);
192 * Array of node states.
194 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
195 [N_POSSIBLE
] = NODE_MASK_ALL
,
196 [N_ONLINE
] = { { [0] = 1UL } },
198 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
199 #ifdef CONFIG_HIGHMEM
200 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
202 [N_MEMORY
] = { { [0] = 1UL } },
203 [N_CPU
] = { { [0] = 1UL } },
206 EXPORT_SYMBOL(node_states
);
208 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
210 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
211 unsigned int pageblock_order __read_mostly
;
214 static void __free_pages_ok(struct page
*page
, unsigned int order
,
218 * results with 256, 32 in the lowmem_reserve sysctl:
219 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
220 * 1G machine -> (16M dma, 784M normal, 224M high)
221 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
222 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
223 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
225 * TBD: should special case ZONE_DMA32 machines here - in those we normally
226 * don't need any ZONE_NORMAL reservation
228 static int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
] = {
229 #ifdef CONFIG_ZONE_DMA
232 #ifdef CONFIG_ZONE_DMA32
236 #ifdef CONFIG_HIGHMEM
242 char * const zone_names
[MAX_NR_ZONES
] = {
243 #ifdef CONFIG_ZONE_DMA
246 #ifdef CONFIG_ZONE_DMA32
250 #ifdef CONFIG_HIGHMEM
254 #ifdef CONFIG_ZONE_DEVICE
259 const char * const migratetype_names
[MIGRATE_TYPES
] = {
267 #ifdef CONFIG_MEMORY_ISOLATION
272 int min_free_kbytes
= 1024;
273 int user_min_free_kbytes
= -1;
274 static int watermark_boost_factor __read_mostly
= 15000;
275 static int watermark_scale_factor
= 10;
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279 EXPORT_SYMBOL(movable_zone
);
282 unsigned int nr_node_ids __read_mostly
= MAX_NUMNODES
;
283 unsigned int nr_online_nodes __read_mostly
= 1;
284 EXPORT_SYMBOL(nr_node_ids
);
285 EXPORT_SYMBOL(nr_online_nodes
);
288 static bool page_contains_unaccepted(struct page
*page
, unsigned int order
);
289 static bool cond_accept_memory(struct zone
*zone
, unsigned int order
);
290 static bool __free_unaccepted(struct page
*page
);
292 int page_group_by_mobility_disabled __read_mostly
;
294 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
296 * During boot we initialize deferred pages on-demand, as needed, but once
297 * page_alloc_init_late() has finished, the deferred pages are all initialized,
298 * and we can permanently disable that path.
300 DEFINE_STATIC_KEY_TRUE(deferred_pages
);
302 static inline bool deferred_pages_enabled(void)
304 return static_branch_unlikely(&deferred_pages
);
308 * deferred_grow_zone() is __init, but it is called from
309 * get_page_from_freelist() during early boot until deferred_pages permanently
310 * disables this call. This is why we have refdata wrapper to avoid warning,
311 * and to ensure that the function body gets unloaded.
314 _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
316 return deferred_grow_zone(zone
, order
);
319 static inline bool deferred_pages_enabled(void)
324 static inline bool _deferred_grow_zone(struct zone
*zone
, unsigned int order
)
328 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
330 /* Return a pointer to the bitmap storing bits affecting a block of pages */
331 static inline unsigned long *get_pageblock_bitmap(const struct page
*page
,
334 #ifdef CONFIG_SPARSEMEM
335 return section_to_usemap(__pfn_to_section(pfn
));
337 return page_zone(page
)->pageblock_flags
;
338 #endif /* CONFIG_SPARSEMEM */
341 static inline int pfn_to_bitidx(const struct page
*page
, unsigned long pfn
)
343 #ifdef CONFIG_SPARSEMEM
344 pfn
&= (PAGES_PER_SECTION
-1);
346 pfn
= pfn
- pageblock_start_pfn(page_zone(page
)->zone_start_pfn
);
347 #endif /* CONFIG_SPARSEMEM */
348 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
352 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
353 * @page: The page within the block of interest
354 * @pfn: The target page frame number
355 * @mask: mask of bits that the caller is interested in
357 * Return: pageblock_bits flags
359 unsigned long get_pfnblock_flags_mask(const struct page
*page
,
360 unsigned long pfn
, unsigned long mask
)
362 unsigned long *bitmap
;
363 unsigned long bitidx
, word_bitidx
;
366 bitmap
= get_pageblock_bitmap(page
, pfn
);
367 bitidx
= pfn_to_bitidx(page
, pfn
);
368 word_bitidx
= bitidx
/ BITS_PER_LONG
;
369 bitidx
&= (BITS_PER_LONG
-1);
371 * This races, without locks, with set_pfnblock_flags_mask(). Ensure
372 * a consistent read of the memory array, so that results, even though
373 * racy, are not corrupted.
375 word
= READ_ONCE(bitmap
[word_bitidx
]);
376 return (word
>> bitidx
) & mask
;
379 static __always_inline
int get_pfnblock_migratetype(const struct page
*page
,
382 return get_pfnblock_flags_mask(page
, pfn
, MIGRATETYPE_MASK
);
386 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
387 * @page: The page within the block of interest
388 * @flags: The flags to set
389 * @pfn: The target page frame number
390 * @mask: mask of bits that the caller is interested in
392 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
396 unsigned long *bitmap
;
397 unsigned long bitidx
, word_bitidx
;
400 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
401 BUILD_BUG_ON(MIGRATE_TYPES
> (1 << PB_migratetype_bits
));
403 bitmap
= get_pageblock_bitmap(page
, pfn
);
404 bitidx
= pfn_to_bitidx(page
, pfn
);
405 word_bitidx
= bitidx
/ BITS_PER_LONG
;
406 bitidx
&= (BITS_PER_LONG
-1);
408 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
413 word
= READ_ONCE(bitmap
[word_bitidx
]);
415 } while (!try_cmpxchg(&bitmap
[word_bitidx
], &word
, (word
& ~mask
) | flags
));
418 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
420 if (unlikely(page_group_by_mobility_disabled
&&
421 migratetype
< MIGRATE_PCPTYPES
))
422 migratetype
= MIGRATE_UNMOVABLE
;
424 set_pfnblock_flags_mask(page
, (unsigned long)migratetype
,
425 page_to_pfn(page
), MIGRATETYPE_MASK
);
428 #ifdef CONFIG_DEBUG_VM
429 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
433 unsigned long pfn
= page_to_pfn(page
);
434 unsigned long sp
, start_pfn
;
437 seq
= zone_span_seqbegin(zone
);
438 start_pfn
= zone
->zone_start_pfn
;
439 sp
= zone
->spanned_pages
;
440 ret
= !zone_spans_pfn(zone
, pfn
);
441 } while (zone_span_seqretry(zone
, seq
));
444 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
445 pfn
, zone_to_nid(zone
), zone
->name
,
446 start_pfn
, start_pfn
+ sp
);
452 * Temporary debugging check for pages not lying within a given zone.
454 static bool __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
456 if (page_outside_zone_boundaries(zone
, page
))
458 if (zone
!= page_zone(page
))
464 static inline bool __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
470 static void bad_page(struct page
*page
, const char *reason
)
472 static unsigned long resume
;
473 static unsigned long nr_shown
;
474 static unsigned long nr_unshown
;
477 * Allow a burst of 60 reports, then keep quiet for that minute;
478 * or allow a steady drip of one report per second.
480 if (nr_shown
== 60) {
481 if (time_before(jiffies
, resume
)) {
487 "BUG: Bad page state: %lu messages suppressed\n",
494 resume
= jiffies
+ 60 * HZ
;
496 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
497 current
->comm
, page_to_pfn(page
));
498 dump_page(page
, reason
);
503 /* Leave bad fields for debug, except PageBuddy could make trouble */
505 __ClearPageBuddy(page
);
506 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
509 static inline unsigned int order_to_pindex(int migratetype
, int order
)
511 bool __maybe_unused movable
;
513 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
514 if (order
> PAGE_ALLOC_COSTLY_ORDER
) {
515 VM_BUG_ON(order
!= HPAGE_PMD_ORDER
);
517 movable
= migratetype
== MIGRATE_MOVABLE
;
519 return NR_LOWORDER_PCP_LISTS
+ movable
;
522 VM_BUG_ON(order
> PAGE_ALLOC_COSTLY_ORDER
);
525 return (MIGRATE_PCPTYPES
* order
) + migratetype
;
528 static inline int pindex_to_order(unsigned int pindex
)
530 int order
= pindex
/ MIGRATE_PCPTYPES
;
532 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
533 if (pindex
>= NR_LOWORDER_PCP_LISTS
)
534 order
= HPAGE_PMD_ORDER
;
536 VM_BUG_ON(order
> PAGE_ALLOC_COSTLY_ORDER
);
542 static inline bool pcp_allowed_order(unsigned int order
)
544 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
546 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
547 if (order
== HPAGE_PMD_ORDER
)
554 * Higher-order pages are called "compound pages". They are structured thusly:
556 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
558 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
559 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
561 * The first tail page's ->compound_order holds the order of allocation.
562 * This usage means that zero-order pages may not be compound.
565 void prep_compound_page(struct page
*page
, unsigned int order
)
568 int nr_pages
= 1 << order
;
571 for (i
= 1; i
< nr_pages
; i
++)
572 prep_compound_tail(page
, i
);
574 prep_compound_head(page
, order
);
577 static inline void set_buddy_order(struct page
*page
, unsigned int order
)
579 set_page_private(page
, order
);
580 __SetPageBuddy(page
);
583 #ifdef CONFIG_COMPACTION
584 static inline struct capture_control
*task_capc(struct zone
*zone
)
586 struct capture_control
*capc
= current
->capture_control
;
588 return unlikely(capc
) &&
589 !(current
->flags
& PF_KTHREAD
) &&
591 capc
->cc
->zone
== zone
? capc
: NULL
;
595 compaction_capture(struct capture_control
*capc
, struct page
*page
,
596 int order
, int migratetype
)
598 if (!capc
|| order
!= capc
->cc
->order
)
601 /* Do not accidentally pollute CMA or isolated regions*/
602 if (is_migrate_cma(migratetype
) ||
603 is_migrate_isolate(migratetype
))
607 * Do not let lower order allocations pollute a movable pageblock
608 * unless compaction is also requesting movable pages.
609 * This might let an unmovable request use a reclaimable pageblock
610 * and vice-versa but no more than normal fallback logic which can
611 * have trouble finding a high-order free page.
613 if (order
< pageblock_order
&& migratetype
== MIGRATE_MOVABLE
&&
614 capc
->cc
->migratetype
!= MIGRATE_MOVABLE
)
622 static inline struct capture_control
*task_capc(struct zone
*zone
)
628 compaction_capture(struct capture_control
*capc
, struct page
*page
,
629 int order
, int migratetype
)
633 #endif /* CONFIG_COMPACTION */
635 static inline void account_freepages(struct zone
*zone
, int nr_pages
,
638 lockdep_assert_held(&zone
->lock
);
640 if (is_migrate_isolate(migratetype
))
643 __mod_zone_page_state(zone
, NR_FREE_PAGES
, nr_pages
);
645 if (is_migrate_cma(migratetype
))
646 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
, nr_pages
);
647 else if (is_migrate_highatomic(migratetype
))
648 WRITE_ONCE(zone
->nr_free_highatomic
,
649 zone
->nr_free_highatomic
+ nr_pages
);
652 /* Used for pages not on another list */
653 static inline void __add_to_free_list(struct page
*page
, struct zone
*zone
,
654 unsigned int order
, int migratetype
,
657 struct free_area
*area
= &zone
->free_area
[order
];
659 VM_WARN_ONCE(get_pageblock_migratetype(page
) != migratetype
,
660 "page type is %lu, passed migratetype is %d (nr=%d)\n",
661 get_pageblock_migratetype(page
), migratetype
, 1 << order
);
664 list_add_tail(&page
->buddy_list
, &area
->free_list
[migratetype
]);
666 list_add(&page
->buddy_list
, &area
->free_list
[migratetype
]);
671 * Used for pages which are on another list. Move the pages to the tail
672 * of the list - so the moved pages won't immediately be considered for
673 * allocation again (e.g., optimization for memory onlining).
675 static inline void move_to_free_list(struct page
*page
, struct zone
*zone
,
676 unsigned int order
, int old_mt
, int new_mt
)
678 struct free_area
*area
= &zone
->free_area
[order
];
680 /* Free page moving can fail, so it happens before the type update */
681 VM_WARN_ONCE(get_pageblock_migratetype(page
) != old_mt
,
682 "page type is %lu, passed migratetype is %d (nr=%d)\n",
683 get_pageblock_migratetype(page
), old_mt
, 1 << order
);
685 list_move_tail(&page
->buddy_list
, &area
->free_list
[new_mt
]);
687 account_freepages(zone
, -(1 << order
), old_mt
);
688 account_freepages(zone
, 1 << order
, new_mt
);
691 static inline void __del_page_from_free_list(struct page
*page
, struct zone
*zone
,
692 unsigned int order
, int migratetype
)
694 VM_WARN_ONCE(get_pageblock_migratetype(page
) != migratetype
,
695 "page type is %lu, passed migratetype is %d (nr=%d)\n",
696 get_pageblock_migratetype(page
), migratetype
, 1 << order
);
698 /* clear reported state and update reported page count */
699 if (page_reported(page
))
700 __ClearPageReported(page
);
702 list_del(&page
->buddy_list
);
703 __ClearPageBuddy(page
);
704 set_page_private(page
, 0);
705 zone
->free_area
[order
].nr_free
--;
708 static inline void del_page_from_free_list(struct page
*page
, struct zone
*zone
,
709 unsigned int order
, int migratetype
)
711 __del_page_from_free_list(page
, zone
, order
, migratetype
);
712 account_freepages(zone
, -(1 << order
), migratetype
);
715 static inline struct page
*get_page_from_free_area(struct free_area
*area
,
718 return list_first_entry_or_null(&area
->free_list
[migratetype
],
719 struct page
, buddy_list
);
723 * If this is less than the 2nd largest possible page, check if the buddy
724 * of the next-higher order is free. If it is, it's possible
725 * that pages are being freed that will coalesce soon. In case,
726 * that is happening, add the free page to the tail of the list
727 * so it's less likely to be used soon and more likely to be merged
728 * as a 2-level higher order page
731 buddy_merge_likely(unsigned long pfn
, unsigned long buddy_pfn
,
732 struct page
*page
, unsigned int order
)
734 unsigned long higher_page_pfn
;
735 struct page
*higher_page
;
737 if (order
>= MAX_PAGE_ORDER
- 1)
740 higher_page_pfn
= buddy_pfn
& pfn
;
741 higher_page
= page
+ (higher_page_pfn
- pfn
);
743 return find_buddy_page_pfn(higher_page
, higher_page_pfn
, order
+ 1,
748 * Freeing function for a buddy system allocator.
750 * The concept of a buddy system is to maintain direct-mapped table
751 * (containing bit values) for memory blocks of various "orders".
752 * The bottom level table contains the map for the smallest allocatable
753 * units of memory (here, pages), and each level above it describes
754 * pairs of units from the levels below, hence, "buddies".
755 * At a high level, all that happens here is marking the table entry
756 * at the bottom level available, and propagating the changes upward
757 * as necessary, plus some accounting needed to play nicely with other
758 * parts of the VM system.
759 * At each level, we keep a list of pages, which are heads of continuous
760 * free pages of length of (1 << order) and marked with PageBuddy.
761 * Page's order is recorded in page_private(page) field.
762 * So when we are allocating or freeing one, we can derive the state of the
763 * other. That is, if we allocate a small block, and both were
764 * free, the remainder of the region must be split into blocks.
765 * If a block is freed, and its buddy is also free, then this
766 * triggers coalescing into a block of larger size.
771 static inline void __free_one_page(struct page
*page
,
773 struct zone
*zone
, unsigned int order
,
774 int migratetype
, fpi_t fpi_flags
)
776 struct capture_control
*capc
= task_capc(zone
);
777 unsigned long buddy_pfn
= 0;
778 unsigned long combined_pfn
;
782 VM_BUG_ON(!zone_is_initialized(zone
));
783 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
785 VM_BUG_ON(migratetype
== -1);
786 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
787 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
789 account_freepages(zone
, 1 << order
, migratetype
);
791 while (order
< MAX_PAGE_ORDER
) {
792 int buddy_mt
= migratetype
;
794 if (compaction_capture(capc
, page
, order
, migratetype
)) {
795 account_freepages(zone
, -(1 << order
), migratetype
);
799 buddy
= find_buddy_page_pfn(page
, pfn
, order
, &buddy_pfn
);
803 if (unlikely(order
>= pageblock_order
)) {
805 * We want to prevent merge between freepages on pageblock
806 * without fallbacks and normal pageblock. Without this,
807 * pageblock isolation could cause incorrect freepage or CMA
808 * accounting or HIGHATOMIC accounting.
810 buddy_mt
= get_pfnblock_migratetype(buddy
, buddy_pfn
);
812 if (migratetype
!= buddy_mt
&&
813 (!migratetype_is_mergeable(migratetype
) ||
814 !migratetype_is_mergeable(buddy_mt
)))
819 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 * merge with it and move up one order.
822 if (page_is_guard(buddy
))
823 clear_page_guard(zone
, buddy
, order
);
825 __del_page_from_free_list(buddy
, zone
, order
, buddy_mt
);
827 if (unlikely(buddy_mt
!= migratetype
)) {
829 * Match buddy type. This ensures that an
830 * expand() down the line puts the sub-blocks
831 * on the right freelists.
833 set_pageblock_migratetype(buddy
, migratetype
);
836 combined_pfn
= buddy_pfn
& pfn
;
837 page
= page
+ (combined_pfn
- pfn
);
843 set_buddy_order(page
, order
);
845 if (fpi_flags
& FPI_TO_TAIL
)
847 else if (is_shuffle_order(order
))
848 to_tail
= shuffle_pick_tail();
850 to_tail
= buddy_merge_likely(pfn
, buddy_pfn
, page
, order
);
852 __add_to_free_list(page
, zone
, order
, migratetype
, to_tail
);
854 /* Notify page reporting subsystem of freed page */
855 if (!(fpi_flags
& FPI_SKIP_REPORT_NOTIFY
))
856 page_reporting_notify_free(order
);
860 * A bad page could be due to a number of fields. Instead of multiple branches,
861 * try and check multiple fields with one check. The caller must do a detailed
862 * check if necessary.
864 static inline bool page_expected_state(struct page
*page
,
865 unsigned long check_flags
)
867 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
870 if (unlikely((unsigned long)page
->mapping
|
871 page_ref_count(page
) |
875 #ifdef CONFIG_PAGE_POOL
876 ((page
->pp_magic
& ~0x3UL
) == PP_SIGNATURE
) |
878 (page
->flags
& check_flags
)))
884 static const char *page_bad_reason(struct page
*page
, unsigned long flags
)
886 const char *bad_reason
= NULL
;
888 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
889 bad_reason
= "nonzero mapcount";
890 if (unlikely(page
->mapping
!= NULL
))
891 bad_reason
= "non-NULL mapping";
892 if (unlikely(page_ref_count(page
) != 0))
893 bad_reason
= "nonzero _refcount";
894 if (unlikely(page
->flags
& flags
)) {
895 if (flags
== PAGE_FLAGS_CHECK_AT_PREP
)
896 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
898 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
901 if (unlikely(page
->memcg_data
))
902 bad_reason
= "page still charged to cgroup";
904 #ifdef CONFIG_PAGE_POOL
905 if (unlikely((page
->pp_magic
& ~0x3UL
) == PP_SIGNATURE
))
906 bad_reason
= "page_pool leak";
911 static void free_page_is_bad_report(struct page
*page
)
914 page_bad_reason(page
, PAGE_FLAGS_CHECK_AT_FREE
));
917 static inline bool free_page_is_bad(struct page
*page
)
919 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
922 /* Something has gone sideways, find it */
923 free_page_is_bad_report(page
);
927 static inline bool is_check_pages_enabled(void)
929 return static_branch_unlikely(&check_pages_enabled
);
932 static int free_tail_page_prepare(struct page
*head_page
, struct page
*page
)
934 struct folio
*folio
= (struct folio
*)head_page
;
938 * We rely page->lru.next never has bit 0 set, unless the page
939 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
941 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
943 if (!is_check_pages_enabled()) {
947 switch (page
- head_page
) {
949 /* the first tail page: these may be in place of ->mapping */
950 if (unlikely(folio_entire_mapcount(folio
))) {
951 bad_page(page
, "nonzero entire_mapcount");
954 if (unlikely(folio_large_mapcount(folio
))) {
955 bad_page(page
, "nonzero large_mapcount");
958 if (unlikely(atomic_read(&folio
->_nr_pages_mapped
))) {
959 bad_page(page
, "nonzero nr_pages_mapped");
962 if (unlikely(atomic_read(&folio
->_pincount
))) {
963 bad_page(page
, "nonzero pincount");
968 /* the second tail page: deferred_list overlaps ->mapping */
969 if (unlikely(!list_empty(&folio
->_deferred_list
))) {
970 bad_page(page
, "on deferred list");
975 if (page
->mapping
!= TAIL_MAPPING
) {
976 bad_page(page
, "corrupted mapping in tail page");
981 if (unlikely(!PageTail(page
))) {
982 bad_page(page
, "PageTail not set");
985 if (unlikely(compound_head(page
) != head_page
)) {
986 bad_page(page
, "compound_head not consistent");
991 page
->mapping
= NULL
;
992 clear_compound_head(page
);
997 * Skip KASAN memory poisoning when either:
999 * 1. For generic KASAN: deferred memory initialization has not yet completed.
1000 * Tag-based KASAN modes skip pages freed via deferred memory initialization
1001 * using page tags instead (see below).
1002 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating
1003 * that error detection is disabled for accesses via the page address.
1005 * Pages will have match-all tags in the following circumstances:
1007 * 1. Pages are being initialized for the first time, including during deferred
1008 * memory init; see the call to page_kasan_tag_reset in __init_single_page.
1009 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the
1010 * exception of pages unpoisoned by kasan_unpoison_vmalloc.
1011 * 3. The allocation was excluded from being checked due to sampling,
1012 * see the call to kasan_unpoison_pages.
1014 * Poisoning pages during deferred memory init will greatly lengthen the
1015 * process and cause problem in large memory systems as the deferred pages
1016 * initialization is done with interrupt disabled.
1018 * Assuming that there will be no reference to those newly initialized
1019 * pages before they are ever allocated, this should have no effect on
1020 * KASAN memory tracking as the poison will be properly inserted at page
1021 * allocation time. The only corner case is when pages are allocated by
1022 * on-demand allocation and then freed again before the deferred pages
1023 * initialization is done, but this is not likely to happen.
1025 static inline bool should_skip_kasan_poison(struct page
*page
)
1027 if (IS_ENABLED(CONFIG_KASAN_GENERIC
))
1028 return deferred_pages_enabled();
1030 return page_kasan_tag(page
) == KASAN_TAG_KERNEL
;
1033 static void kernel_init_pages(struct page
*page
, int numpages
)
1037 /* s390's use of memset() could override KASAN redzones. */
1038 kasan_disable_current();
1039 for (i
= 0; i
< numpages
; i
++)
1040 clear_highpage_kasan_tagged(page
+ i
);
1041 kasan_enable_current();
1044 __always_inline
bool free_pages_prepare(struct page
*page
,
1048 bool skip_kasan_poison
= should_skip_kasan_poison(page
);
1049 bool init
= want_init_on_free();
1050 bool compound
= PageCompound(page
);
1051 struct folio
*folio
= page_folio(page
);
1053 VM_BUG_ON_PAGE(PageTail(page
), page
);
1055 trace_mm_page_free(page
, order
);
1056 kmsan_free_page(page
, order
);
1058 if (memcg_kmem_online() && PageMemcgKmem(page
))
1059 __memcg_kmem_uncharge_page(page
, order
);
1062 * In rare cases, when truncation or holepunching raced with
1063 * munlock after VM_LOCKED was cleared, Mlocked may still be
1064 * found set here. This does not indicate a problem, unless
1065 * "unevictable_pgs_cleared" appears worryingly large.
1067 if (unlikely(folio_test_mlocked(folio
))) {
1068 long nr_pages
= folio_nr_pages(folio
);
1070 __folio_clear_mlocked(folio
);
1071 zone_stat_mod_folio(folio
, NR_MLOCK
, -nr_pages
);
1072 count_vm_events(UNEVICTABLE_PGCLEARED
, nr_pages
);
1075 if (unlikely(PageHWPoison(page
)) && !order
) {
1076 /* Do not let hwpoison pages hit pcplists/buddy */
1077 reset_page_owner(page
, order
);
1078 page_table_check_free(page
, order
);
1079 pgalloc_tag_sub(page
, 1 << order
);
1082 * The page is isolated and accounted for.
1083 * Mark the codetag as empty to avoid accounting error
1084 * when the page is freed by unpoison_memory().
1086 clear_page_tag_ref(page
);
1090 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1093 * Check tail pages before head page information is cleared to
1094 * avoid checking PageCompound for order-0 pages.
1096 if (unlikely(order
)) {
1100 page
[1].flags
&= ~PAGE_FLAGS_SECOND
;
1101 for (i
= 1; i
< (1 << order
); i
++) {
1103 bad
+= free_tail_page_prepare(page
, page
+ i
);
1104 if (is_check_pages_enabled()) {
1105 if (free_page_is_bad(page
+ i
)) {
1110 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1113 if (PageMappingFlags(page
)) {
1115 mod_mthp_stat(order
, MTHP_STAT_NR_ANON
, -1);
1116 page
->mapping
= NULL
;
1118 if (is_check_pages_enabled()) {
1119 if (free_page_is_bad(page
))
1125 page_cpupid_reset_last(page
);
1126 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1127 reset_page_owner(page
, order
);
1128 page_table_check_free(page
, order
);
1129 pgalloc_tag_sub(page
, 1 << order
);
1131 if (!PageHighMem(page
)) {
1132 debug_check_no_locks_freed(page_address(page
),
1133 PAGE_SIZE
<< order
);
1134 debug_check_no_obj_freed(page_address(page
),
1135 PAGE_SIZE
<< order
);
1138 kernel_poison_pages(page
, 1 << order
);
1141 * As memory initialization might be integrated into KASAN,
1142 * KASAN poisoning and memory initialization code must be
1143 * kept together to avoid discrepancies in behavior.
1145 * With hardware tag-based KASAN, memory tags must be set before the
1146 * page becomes unavailable via debug_pagealloc or arch_free_page.
1148 if (!skip_kasan_poison
) {
1149 kasan_poison_pages(page
, order
, init
);
1151 /* Memory is already initialized if KASAN did it internally. */
1152 if (kasan_has_integrated_init())
1156 kernel_init_pages(page
, 1 << order
);
1159 * arch_free_page() can make the page's contents inaccessible. s390
1160 * does this. So nothing which can access the page's contents should
1161 * happen after this.
1163 arch_free_page(page
, order
);
1165 debug_pagealloc_unmap_pages(page
, 1 << order
);
1171 * Frees a number of pages from the PCP lists
1172 * Assumes all pages on list are in same zone.
1173 * count is the number of pages to free.
1175 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1176 struct per_cpu_pages
*pcp
,
1179 unsigned long flags
;
1184 * Ensure proper count is passed which otherwise would stuck in the
1185 * below while (list_empty(list)) loop.
1187 count
= min(pcp
->count
, count
);
1189 /* Ensure requested pindex is drained first. */
1190 pindex
= pindex
- 1;
1192 spin_lock_irqsave(&zone
->lock
, flags
);
1195 struct list_head
*list
;
1198 /* Remove pages from lists in a round-robin fashion. */
1200 if (++pindex
> NR_PCP_LISTS
- 1)
1202 list
= &pcp
->lists
[pindex
];
1203 } while (list_empty(list
));
1205 order
= pindex_to_order(pindex
);
1206 nr_pages
= 1 << order
;
1211 page
= list_last_entry(list
, struct page
, pcp_list
);
1212 pfn
= page_to_pfn(page
);
1213 mt
= get_pfnblock_migratetype(page
, pfn
);
1215 /* must delete to avoid corrupting pcp list */
1216 list_del(&page
->pcp_list
);
1218 pcp
->count
-= nr_pages
;
1220 __free_one_page(page
, pfn
, zone
, order
, mt
, FPI_NONE
);
1221 trace_mm_page_pcpu_drain(page
, order
, mt
);
1222 } while (count
> 0 && !list_empty(list
));
1225 spin_unlock_irqrestore(&zone
->lock
, flags
);
1228 /* Split a multi-block free page into its individual pageblocks. */
1229 static void split_large_buddy(struct zone
*zone
, struct page
*page
,
1230 unsigned long pfn
, int order
, fpi_t fpi
)
1232 unsigned long end
= pfn
+ (1 << order
);
1234 VM_WARN_ON_ONCE(!IS_ALIGNED(pfn
, 1 << order
));
1235 /* Caller removed page from freelist, buddy info cleared! */
1236 VM_WARN_ON_ONCE(PageBuddy(page
));
1238 if (order
> pageblock_order
)
1239 order
= pageblock_order
;
1241 while (pfn
!= end
) {
1242 int mt
= get_pfnblock_migratetype(page
, pfn
);
1244 __free_one_page(page
, pfn
, zone
, order
, mt
, fpi
);
1246 page
= pfn_to_page(pfn
);
1250 static void free_one_page(struct zone
*zone
, struct page
*page
,
1251 unsigned long pfn
, unsigned int order
,
1254 unsigned long flags
;
1256 spin_lock_irqsave(&zone
->lock
, flags
);
1257 split_large_buddy(zone
, page
, pfn
, order
, fpi_flags
);
1258 spin_unlock_irqrestore(&zone
->lock
, flags
);
1260 __count_vm_events(PGFREE
, 1 << order
);
1263 static void __free_pages_ok(struct page
*page
, unsigned int order
,
1266 unsigned long pfn
= page_to_pfn(page
);
1267 struct zone
*zone
= page_zone(page
);
1269 if (free_pages_prepare(page
, order
))
1270 free_one_page(zone
, page
, pfn
, order
, fpi_flags
);
1273 void __meminit
__free_pages_core(struct page
*page
, unsigned int order
,
1274 enum meminit_context context
)
1276 unsigned int nr_pages
= 1 << order
;
1277 struct page
*p
= page
;
1281 * When initializing the memmap, __init_single_page() sets the refcount
1282 * of all pages to 1 ("allocated"/"not free"). We have to set the
1283 * refcount of all involved pages to 0.
1285 * Note that hotplugged memory pages are initialized to PageOffline().
1286 * Pages freed from memblock might be marked as reserved.
1288 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG
) &&
1289 unlikely(context
== MEMINIT_HOTPLUG
)) {
1290 for (loop
= 0; loop
< nr_pages
; loop
++, p
++) {
1291 VM_WARN_ON_ONCE(PageReserved(p
));
1292 __ClearPageOffline(p
);
1293 set_page_count(p
, 0);
1297 * Freeing the page with debug_pagealloc enabled will try to
1298 * unmap it; some archs don't like double-unmappings, so
1301 debug_pagealloc_map_pages(page
, nr_pages
);
1302 adjust_managed_page_count(page
, nr_pages
);
1304 for (loop
= 0; loop
< nr_pages
; loop
++, p
++) {
1305 __ClearPageReserved(p
);
1306 set_page_count(p
, 0);
1309 /* memblock adjusts totalram_pages() manually. */
1310 atomic_long_add(nr_pages
, &page_zone(page
)->managed_pages
);
1313 if (page_contains_unaccepted(page
, order
)) {
1314 if (order
== MAX_PAGE_ORDER
&& __free_unaccepted(page
))
1317 accept_memory(page_to_phys(page
), PAGE_SIZE
<< order
);
1321 * Bypass PCP and place fresh pages right to the tail, primarily
1322 * relevant for memory onlining.
1324 __free_pages_ok(page
, order
, FPI_TO_TAIL
);
1328 * Check that the whole (or subset of) a pageblock given by the interval of
1329 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1330 * with the migration of free compaction scanner.
1332 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1334 * It's possible on some configurations to have a setup like node0 node1 node0
1335 * i.e. it's possible that all pages within a zones range of pages do not
1336 * belong to a single zone. We assume that a border between node0 and node1
1337 * can occur within a single pageblock, but not a node0 node1 node0
1338 * interleaving within a single pageblock. It is therefore sufficient to check
1339 * the first and last page of a pageblock and avoid checking each individual
1340 * page in a pageblock.
1342 * Note: the function may return non-NULL struct page even for a page block
1343 * which contains a memory hole (i.e. there is no physical memory for a subset
1344 * of the pfn range). For example, if the pageblock order is MAX_PAGE_ORDER, which
1345 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole
1346 * even though the start pfn is online and valid. This should be safe most of
1347 * the time because struct pages are still initialized via init_unavailable_range()
1348 * and pfn walkers shouldn't touch any physical memory range for which they do
1349 * not recognize any specific metadata in struct pages.
1351 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1352 unsigned long end_pfn
, struct zone
*zone
)
1354 struct page
*start_page
;
1355 struct page
*end_page
;
1357 /* end_pfn is one past the range we are checking */
1360 if (!pfn_valid(end_pfn
))
1363 start_page
= pfn_to_online_page(start_pfn
);
1367 if (page_zone(start_page
) != zone
)
1370 end_page
= pfn_to_page(end_pfn
);
1372 /* This gives a shorter code than deriving page_zone(end_page) */
1373 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1380 * The order of subdivision here is critical for the IO subsystem.
1381 * Please do not alter this order without good reasons and regression
1382 * testing. Specifically, as large blocks of memory are subdivided,
1383 * the order in which smaller blocks are delivered depends on the order
1384 * they're subdivided in this function. This is the primary factor
1385 * influencing the order in which pages are delivered to the IO
1386 * subsystem according to empirical testing, and this is also justified
1387 * by considering the behavior of a buddy system containing a single
1388 * large block of memory acted on by a series of small allocations.
1389 * This behavior is a critical factor in sglist merging's success.
1393 static inline unsigned int expand(struct zone
*zone
, struct page
*page
, int low
,
1394 int high
, int migratetype
)
1396 unsigned int size
= 1 << high
;
1397 unsigned int nr_added
= 0;
1399 while (high
> low
) {
1402 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1405 * Mark as guard pages (or page), that will allow to
1406 * merge back to allocator when buddy will be freed.
1407 * Corresponding page table entries will not be touched,
1408 * pages will stay not present in virtual address space
1410 if (set_page_guard(zone
, &page
[size
], high
))
1413 __add_to_free_list(&page
[size
], zone
, high
, migratetype
, false);
1414 set_buddy_order(&page
[size
], high
);
1421 static __always_inline
void page_del_and_expand(struct zone
*zone
,
1422 struct page
*page
, int low
,
1423 int high
, int migratetype
)
1425 int nr_pages
= 1 << high
;
1427 __del_page_from_free_list(page
, zone
, high
, migratetype
);
1428 nr_pages
-= expand(zone
, page
, low
, high
, migratetype
);
1429 account_freepages(zone
, -nr_pages
, migratetype
);
1432 static void check_new_page_bad(struct page
*page
)
1434 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1435 /* Don't complain about hwpoisoned pages */
1436 if (PageBuddy(page
))
1437 __ClearPageBuddy(page
);
1442 page_bad_reason(page
, PAGE_FLAGS_CHECK_AT_PREP
));
1446 * This page is about to be returned from the page allocator
1448 static bool check_new_page(struct page
*page
)
1450 if (likely(page_expected_state(page
,
1451 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1454 check_new_page_bad(page
);
1458 static inline bool check_new_pages(struct page
*page
, unsigned int order
)
1460 if (is_check_pages_enabled()) {
1461 for (int i
= 0; i
< (1 << order
); i
++) {
1462 struct page
*p
= page
+ i
;
1464 if (check_new_page(p
))
1472 static inline bool should_skip_kasan_unpoison(gfp_t flags
)
1474 /* Don't skip if a software KASAN mode is enabled. */
1475 if (IS_ENABLED(CONFIG_KASAN_GENERIC
) ||
1476 IS_ENABLED(CONFIG_KASAN_SW_TAGS
))
1479 /* Skip, if hardware tag-based KASAN is not enabled. */
1480 if (!kasan_hw_tags_enabled())
1484 * With hardware tag-based KASAN enabled, skip if this has been
1485 * requested via __GFP_SKIP_KASAN.
1487 return flags
& __GFP_SKIP_KASAN
;
1490 static inline bool should_skip_init(gfp_t flags
)
1492 /* Don't skip, if hardware tag-based KASAN is not enabled. */
1493 if (!kasan_hw_tags_enabled())
1496 /* For hardware tag-based KASAN, skip if requested. */
1497 return (flags
& __GFP_SKIP_ZERO
);
1500 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1503 bool init
= !want_init_on_free() && want_init_on_alloc(gfp_flags
) &&
1504 !should_skip_init(gfp_flags
);
1505 bool zero_tags
= init
&& (gfp_flags
& __GFP_ZEROTAGS
);
1508 set_page_private(page
, 0);
1509 set_page_refcounted(page
);
1511 arch_alloc_page(page
, order
);
1512 debug_pagealloc_map_pages(page
, 1 << order
);
1515 * Page unpoisoning must happen before memory initialization.
1516 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
1517 * allocations and the page unpoisoning code will complain.
1519 kernel_unpoison_pages(page
, 1 << order
);
1522 * As memory initialization might be integrated into KASAN,
1523 * KASAN unpoisoning and memory initializion code must be
1524 * kept together to avoid discrepancies in behavior.
1528 * If memory tags should be zeroed
1529 * (which happens only when memory should be initialized as well).
1532 /* Initialize both memory and memory tags. */
1533 for (i
= 0; i
!= 1 << order
; ++i
)
1534 tag_clear_highpage(page
+ i
);
1536 /* Take note that memory was initialized by the loop above. */
1539 if (!should_skip_kasan_unpoison(gfp_flags
) &&
1540 kasan_unpoison_pages(page
, order
, init
)) {
1541 /* Take note that memory was initialized by KASAN. */
1542 if (kasan_has_integrated_init())
1546 * If memory tags have not been set by KASAN, reset the page
1547 * tags to ensure page_address() dereferencing does not fault.
1549 for (i
= 0; i
!= 1 << order
; ++i
)
1550 page_kasan_tag_reset(page
+ i
);
1552 /* If memory is still not initialized, initialize it now. */
1554 kernel_init_pages(page
, 1 << order
);
1556 set_page_owner(page
, order
, gfp_flags
);
1557 page_table_check_alloc(page
, order
);
1558 pgalloc_tag_add(page
, current
, 1 << order
);
1561 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1562 unsigned int alloc_flags
)
1564 post_alloc_hook(page
, order
, gfp_flags
);
1566 if (order
&& (gfp_flags
& __GFP_COMP
))
1567 prep_compound_page(page
, order
);
1570 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1571 * allocate the page. The expectation is that the caller is taking
1572 * steps that will free more memory. The caller should avoid the page
1573 * being used for !PFMEMALLOC purposes.
1575 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1576 set_page_pfmemalloc(page
);
1578 clear_page_pfmemalloc(page
);
1582 * Go through the free lists for the given migratetype and remove
1583 * the smallest available page from the freelists
1585 static __always_inline
1586 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1589 unsigned int current_order
;
1590 struct free_area
*area
;
1593 /* Find a page of the appropriate size in the preferred list */
1594 for (current_order
= order
; current_order
< NR_PAGE_ORDERS
; ++current_order
) {
1595 area
= &(zone
->free_area
[current_order
]);
1596 page
= get_page_from_free_area(area
, migratetype
);
1600 page_del_and_expand(zone
, page
, order
, current_order
,
1602 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
,
1603 pcp_allowed_order(order
) &&
1604 migratetype
< MIGRATE_PCPTYPES
);
1613 * This array describes the order lists are fallen back to when
1614 * the free lists for the desirable migrate type are depleted
1616 * The other migratetypes do not have fallbacks.
1618 static int fallbacks
[MIGRATE_PCPTYPES
][MIGRATE_PCPTYPES
- 1] = {
1619 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
},
1620 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
},
1621 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
},
1625 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1628 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1631 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1632 unsigned int order
) { return NULL
; }
1636 * Change the type of a block and move all its free pages to that
1639 static int __move_freepages_block(struct zone
*zone
, unsigned long start_pfn
,
1640 int old_mt
, int new_mt
)
1643 unsigned long pfn
, end_pfn
;
1645 int pages_moved
= 0;
1647 VM_WARN_ON(start_pfn
& (pageblock_nr_pages
- 1));
1648 end_pfn
= pageblock_end_pfn(start_pfn
);
1650 for (pfn
= start_pfn
; pfn
< end_pfn
;) {
1651 page
= pfn_to_page(pfn
);
1652 if (!PageBuddy(page
)) {
1657 /* Make sure we are not inadvertently changing nodes */
1658 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1659 VM_BUG_ON_PAGE(page_zone(page
) != zone
, page
);
1661 order
= buddy_order(page
);
1663 move_to_free_list(page
, zone
, order
, old_mt
, new_mt
);
1666 pages_moved
+= 1 << order
;
1669 set_pageblock_migratetype(pfn_to_page(start_pfn
), new_mt
);
1674 static bool prep_move_freepages_block(struct zone
*zone
, struct page
*page
,
1675 unsigned long *start_pfn
,
1676 int *num_free
, int *num_movable
)
1678 unsigned long pfn
, start
, end
;
1680 pfn
= page_to_pfn(page
);
1681 start
= pageblock_start_pfn(pfn
);
1682 end
= pageblock_end_pfn(pfn
);
1685 * The caller only has the lock for @zone, don't touch ranges
1686 * that straddle into other zones. While we could move part of
1687 * the range that's inside the zone, this call is usually
1688 * accompanied by other operations such as migratetype updates
1689 * which also should be locked.
1691 if (!zone_spans_pfn(zone
, start
))
1693 if (!zone_spans_pfn(zone
, end
- 1))
1701 for (pfn
= start
; pfn
< end
;) {
1702 page
= pfn_to_page(pfn
);
1703 if (PageBuddy(page
)) {
1704 int nr
= 1 << buddy_order(page
);
1711 * We assume that pages that could be isolated for
1712 * migration are movable. But we don't actually try
1713 * isolating, as that would be expensive.
1715 if (PageLRU(page
) || __PageMovable(page
))
1724 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
1725 int old_mt
, int new_mt
)
1727 unsigned long start_pfn
;
1729 if (!prep_move_freepages_block(zone
, page
, &start_pfn
, NULL
, NULL
))
1732 return __move_freepages_block(zone
, start_pfn
, old_mt
, new_mt
);
1735 #ifdef CONFIG_MEMORY_ISOLATION
1736 /* Look for a buddy that straddles start_pfn */
1737 static unsigned long find_large_buddy(unsigned long start_pfn
)
1741 unsigned long pfn
= start_pfn
;
1743 while (!PageBuddy(page
= pfn_to_page(pfn
))) {
1745 if (++order
> MAX_PAGE_ORDER
)
1747 pfn
&= ~0UL << order
;
1751 * Found a preceding buddy, but does it straddle?
1753 if (pfn
+ (1 << buddy_order(page
)) > start_pfn
)
1761 * move_freepages_block_isolate - move free pages in block for page isolation
1763 * @page: the pageblock page
1764 * @migratetype: migratetype to set on the pageblock
1766 * This is similar to move_freepages_block(), but handles the special
1767 * case encountered in page isolation, where the block of interest
1768 * might be part of a larger buddy spanning multiple pageblocks.
1770 * Unlike the regular page allocator path, which moves pages while
1771 * stealing buddies off the freelist, page isolation is interested in
1772 * arbitrary pfn ranges that may have overlapping buddies on both ends.
1774 * This function handles that. Straddling buddies are split into
1775 * individual pageblocks. Only the block of interest is moved.
1777 * Returns %true if pages could be moved, %false otherwise.
1779 bool move_freepages_block_isolate(struct zone
*zone
, struct page
*page
,
1782 unsigned long start_pfn
, pfn
;
1784 if (!prep_move_freepages_block(zone
, page
, &start_pfn
, NULL
, NULL
))
1787 /* No splits needed if buddies can't span multiple blocks */
1788 if (pageblock_order
== MAX_PAGE_ORDER
)
1791 /* We're a tail block in a larger buddy */
1792 pfn
= find_large_buddy(start_pfn
);
1793 if (pfn
!= start_pfn
) {
1794 struct page
*buddy
= pfn_to_page(pfn
);
1795 int order
= buddy_order(buddy
);
1797 del_page_from_free_list(buddy
, zone
, order
,
1798 get_pfnblock_migratetype(buddy
, pfn
));
1799 set_pageblock_migratetype(page
, migratetype
);
1800 split_large_buddy(zone
, buddy
, pfn
, order
, FPI_NONE
);
1804 /* We're the starting block of a larger buddy */
1805 if (PageBuddy(page
) && buddy_order(page
) > pageblock_order
) {
1806 int order
= buddy_order(page
);
1808 del_page_from_free_list(page
, zone
, order
,
1809 get_pfnblock_migratetype(page
, pfn
));
1810 set_pageblock_migratetype(page
, migratetype
);
1811 split_large_buddy(zone
, page
, pfn
, order
, FPI_NONE
);
1815 __move_freepages_block(zone
, start_pfn
,
1816 get_pfnblock_migratetype(page
, start_pfn
),
1820 #endif /* CONFIG_MEMORY_ISOLATION */
1822 static void change_pageblock_range(struct page
*pageblock_page
,
1823 int start_order
, int migratetype
)
1825 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1827 while (nr_pageblocks
--) {
1828 set_pageblock_migratetype(pageblock_page
, migratetype
);
1829 pageblock_page
+= pageblock_nr_pages
;
1834 * When we are falling back to another migratetype during allocation, try to
1835 * steal extra free pages from the same pageblocks to satisfy further
1836 * allocations, instead of polluting multiple pageblocks.
1838 * If we are stealing a relatively large buddy page, it is likely there will
1839 * be more free pages in the pageblock, so try to steal them all. For
1840 * reclaimable and unmovable allocations, we steal regardless of page size,
1841 * as fragmentation caused by those allocations polluting movable pageblocks
1842 * is worse than movable allocations stealing from unmovable and reclaimable
1845 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1848 * Leaving this order check is intended, although there is
1849 * relaxed order check in next check. The reason is that
1850 * we can actually steal whole pageblock if this condition met,
1851 * but, below check doesn't guarantee it and that is just heuristic
1852 * so could be changed anytime.
1854 if (order
>= pageblock_order
)
1857 if (order
>= pageblock_order
/ 2 ||
1858 start_mt
== MIGRATE_RECLAIMABLE
||
1859 start_mt
== MIGRATE_UNMOVABLE
||
1860 page_group_by_mobility_disabled
)
1866 static inline bool boost_watermark(struct zone
*zone
)
1868 unsigned long max_boost
;
1870 if (!watermark_boost_factor
)
1873 * Don't bother in zones that are unlikely to produce results.
1874 * On small machines, including kdump capture kernels running
1875 * in a small area, boosting the watermark can cause an out of
1876 * memory situation immediately.
1878 if ((pageblock_nr_pages
* 4) > zone_managed_pages(zone
))
1881 max_boost
= mult_frac(zone
->_watermark
[WMARK_HIGH
],
1882 watermark_boost_factor
, 10000);
1885 * high watermark may be uninitialised if fragmentation occurs
1886 * very early in boot so do not boost. We do not fall
1887 * through and boost by pageblock_nr_pages as failing
1888 * allocations that early means that reclaim is not going
1889 * to help and it may even be impossible to reclaim the
1890 * boosted watermark resulting in a hang.
1895 max_boost
= max(pageblock_nr_pages
, max_boost
);
1897 zone
->watermark_boost
= min(zone
->watermark_boost
+ pageblock_nr_pages
,
1904 * This function implements actual steal behaviour. If order is large enough, we
1905 * can claim the whole pageblock for the requested migratetype. If not, we check
1906 * the pageblock for constituent pages; if at least half of the pages are free
1907 * or compatible, we can still claim the whole block, so pages freed in the
1908 * future will be put on the correct free list. Otherwise, we isolate exactly
1909 * the order we need from the fallback block and leave its migratetype alone.
1911 static struct page
*
1912 steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
1913 int current_order
, int order
, int start_type
,
1914 unsigned int alloc_flags
, bool whole_block
)
1916 int free_pages
, movable_pages
, alike_pages
;
1917 unsigned long start_pfn
;
1920 block_type
= get_pageblock_migratetype(page
);
1923 * This can happen due to races and we want to prevent broken
1924 * highatomic accounting.
1926 if (is_migrate_highatomic(block_type
))
1929 /* Take ownership for orders >= pageblock_order */
1930 if (current_order
>= pageblock_order
) {
1931 unsigned int nr_added
;
1933 del_page_from_free_list(page
, zone
, current_order
, block_type
);
1934 change_pageblock_range(page
, current_order
, start_type
);
1935 nr_added
= expand(zone
, page
, order
, current_order
, start_type
);
1936 account_freepages(zone
, nr_added
, start_type
);
1941 * Boost watermarks to increase reclaim pressure to reduce the
1942 * likelihood of future fallbacks. Wake kswapd now as the node
1943 * may be balanced overall and kswapd will not wake naturally.
1945 if (boost_watermark(zone
) && (alloc_flags
& ALLOC_KSWAPD
))
1946 set_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
1948 /* We are not allowed to try stealing from the whole block */
1952 /* moving whole block can fail due to zone boundary conditions */
1953 if (!prep_move_freepages_block(zone
, page
, &start_pfn
, &free_pages
,
1958 * Determine how many pages are compatible with our allocation.
1959 * For movable allocation, it's the number of movable pages which
1960 * we just obtained. For other types it's a bit more tricky.
1962 if (start_type
== MIGRATE_MOVABLE
) {
1963 alike_pages
= movable_pages
;
1966 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
1967 * to MOVABLE pageblock, consider all non-movable pages as
1968 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
1969 * vice versa, be conservative since we can't distinguish the
1970 * exact migratetype of non-movable pages.
1972 if (block_type
== MIGRATE_MOVABLE
)
1973 alike_pages
= pageblock_nr_pages
1974 - (free_pages
+ movable_pages
);
1979 * If a sufficient number of pages in the block are either free or of
1980 * compatible migratability as our allocation, claim the whole block.
1982 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
1983 page_group_by_mobility_disabled
) {
1984 __move_freepages_block(zone
, start_pfn
, block_type
, start_type
);
1985 return __rmqueue_smallest(zone
, order
, start_type
);
1989 page_del_and_expand(zone
, page
, order
, current_order
, block_type
);
1994 * Check whether there is a suitable fallback freepage with requested order.
1995 * If only_stealable is true, this function returns fallback_mt only if
1996 * we can steal other freepages all together. This would help to reduce
1997 * fragmentation due to mixed migratetype pages in one pageblock.
1999 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2000 int migratetype
, bool only_stealable
, bool *can_steal
)
2005 if (area
->nr_free
== 0)
2009 for (i
= 0; i
< MIGRATE_PCPTYPES
- 1 ; i
++) {
2010 fallback_mt
= fallbacks
[migratetype
][i
];
2011 if (free_area_empty(area
, fallback_mt
))
2014 if (can_steal_fallback(order
, migratetype
))
2017 if (!only_stealable
)
2028 * Reserve the pageblock(s) surrounding an allocation request for
2029 * exclusive use of high-order atomic allocations if there are no
2030 * empty page blocks that contain a page with a suitable order
2032 static void reserve_highatomic_pageblock(struct page
*page
, int order
,
2036 unsigned long max_managed
, flags
;
2039 * The number reserved as: minimum is 1 pageblock, maximum is
2040 * roughly 1% of a zone. But if 1% of a zone falls below a
2041 * pageblock size, then don't reserve any pageblocks.
2042 * Check is race-prone but harmless.
2044 if ((zone_managed_pages(zone
) / 100) < pageblock_nr_pages
)
2046 max_managed
= ALIGN((zone_managed_pages(zone
) / 100), pageblock_nr_pages
);
2047 if (zone
->nr_reserved_highatomic
>= max_managed
)
2050 spin_lock_irqsave(&zone
->lock
, flags
);
2052 /* Recheck the nr_reserved_highatomic limit under the lock */
2053 if (zone
->nr_reserved_highatomic
>= max_managed
)
2057 mt
= get_pageblock_migratetype(page
);
2058 /* Only reserve normal pageblocks (i.e., they can merge with others) */
2059 if (!migratetype_is_mergeable(mt
))
2062 if (order
< pageblock_order
) {
2063 if (move_freepages_block(zone
, page
, mt
, MIGRATE_HIGHATOMIC
) == -1)
2065 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2067 change_pageblock_range(page
, order
, MIGRATE_HIGHATOMIC
);
2068 zone
->nr_reserved_highatomic
+= 1 << order
;
2072 spin_unlock_irqrestore(&zone
->lock
, flags
);
2076 * Used when an allocation is about to fail under memory pressure. This
2077 * potentially hurts the reliability of high-order allocations when under
2078 * intense memory pressure but failed atomic allocations should be easier
2079 * to recover from than an OOM.
2081 * If @force is true, try to unreserve pageblocks even though highatomic
2082 * pageblock is exhausted.
2084 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2087 struct zonelist
*zonelist
= ac
->zonelist
;
2088 unsigned long flags
;
2095 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->highest_zoneidx
,
2098 * Preserve at least one pageblock unless memory pressure
2101 if (!force
&& zone
->nr_reserved_highatomic
<=
2105 spin_lock_irqsave(&zone
->lock
, flags
);
2106 for (order
= 0; order
< NR_PAGE_ORDERS
; order
++) {
2107 struct free_area
*area
= &(zone
->free_area
[order
]);
2110 page
= get_page_from_free_area(area
, MIGRATE_HIGHATOMIC
);
2114 mt
= get_pageblock_migratetype(page
);
2116 * In page freeing path, migratetype change is racy so
2117 * we can counter several free pages in a pageblock
2118 * in this loop although we changed the pageblock type
2119 * from highatomic to ac->migratetype. So we should
2120 * adjust the count once.
2122 if (is_migrate_highatomic(mt
)) {
2125 * It should never happen but changes to
2126 * locking could inadvertently allow a per-cpu
2127 * drain to add pages to MIGRATE_HIGHATOMIC
2128 * while unreserving so be safe and watch for
2131 size
= max(pageblock_nr_pages
, 1UL << order
);
2132 size
= min(size
, zone
->nr_reserved_highatomic
);
2133 zone
->nr_reserved_highatomic
-= size
;
2137 * Convert to ac->migratetype and avoid the normal
2138 * pageblock stealing heuristics. Minimally, the caller
2139 * is doing the work and needs the pages. More
2140 * importantly, if the block was always converted to
2141 * MIGRATE_UNMOVABLE or another type then the number
2142 * of pageblocks that cannot be completely freed
2145 if (order
< pageblock_order
)
2146 ret
= move_freepages_block(zone
, page
, mt
,
2149 move_to_free_list(page
, zone
, order
, mt
,
2151 change_pageblock_range(page
, order
,
2156 * Reserving the block(s) already succeeded,
2157 * so this should not fail on zone boundaries.
2159 WARN_ON_ONCE(ret
== -1);
2161 spin_unlock_irqrestore(&zone
->lock
, flags
);
2165 spin_unlock_irqrestore(&zone
->lock
, flags
);
2172 * Try finding a free buddy page on the fallback list and put it on the free
2173 * list of requested migratetype, possibly along with other pages from the same
2174 * block, depending on fragmentation avoidance heuristics. Returns true if
2175 * fallback was found so that __rmqueue_smallest() can grab it.
2177 * The use of signed ints for order and current_order is a deliberate
2178 * deviation from the rest of this file, to make the for loop
2179 * condition simpler.
2181 static __always_inline
struct page
*
2182 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
,
2183 unsigned int alloc_flags
)
2185 struct free_area
*area
;
2187 int min_order
= order
;
2193 * Do not steal pages from freelists belonging to other pageblocks
2194 * i.e. orders < pageblock_order. If there are no local zones free,
2195 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2197 if (order
< pageblock_order
&& alloc_flags
& ALLOC_NOFRAGMENT
)
2198 min_order
= pageblock_order
;
2201 * Find the largest available free page in the other list. This roughly
2202 * approximates finding the pageblock with the most free pages, which
2203 * would be too costly to do exactly.
2205 for (current_order
= MAX_PAGE_ORDER
; current_order
>= min_order
;
2207 area
= &(zone
->free_area
[current_order
]);
2208 fallback_mt
= find_suitable_fallback(area
, current_order
,
2209 start_migratetype
, false, &can_steal
);
2210 if (fallback_mt
== -1)
2214 * We cannot steal all free pages from the pageblock and the
2215 * requested migratetype is movable. In that case it's better to
2216 * steal and split the smallest available page instead of the
2217 * largest available page, because even if the next movable
2218 * allocation falls back into a different pageblock than this
2219 * one, it won't cause permanent fragmentation.
2221 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2222 && current_order
> order
)
2231 for (current_order
= order
; current_order
< NR_PAGE_ORDERS
; current_order
++) {
2232 area
= &(zone
->free_area
[current_order
]);
2233 fallback_mt
= find_suitable_fallback(area
, current_order
,
2234 start_migratetype
, false, &can_steal
);
2235 if (fallback_mt
!= -1)
2240 * This should not happen - we already found a suitable fallback
2241 * when looking for the largest page.
2243 VM_BUG_ON(current_order
> MAX_PAGE_ORDER
);
2246 page
= get_page_from_free_area(area
, fallback_mt
);
2248 /* take off list, maybe claim block, expand remainder */
2249 page
= steal_suitable_fallback(zone
, page
, current_order
, order
,
2250 start_migratetype
, alloc_flags
, can_steal
);
2252 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2253 start_migratetype
, fallback_mt
);
2259 * Do the hard work of removing an element from the buddy allocator.
2260 * Call me with the zone->lock already held.
2262 static __always_inline
struct page
*
2263 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
,
2264 unsigned int alloc_flags
)
2268 if (IS_ENABLED(CONFIG_CMA
)) {
2270 * Balance movable allocations between regular and CMA areas by
2271 * allocating from CMA when over half of the zone's free memory
2272 * is in the CMA area.
2274 if (alloc_flags
& ALLOC_CMA
&&
2275 zone_page_state(zone
, NR_FREE_CMA_PAGES
) >
2276 zone_page_state(zone
, NR_FREE_PAGES
) / 2) {
2277 page
= __rmqueue_cma_fallback(zone
, order
);
2283 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2284 if (unlikely(!page
)) {
2285 if (alloc_flags
& ALLOC_CMA
)
2286 page
= __rmqueue_cma_fallback(zone
, order
);
2289 page
= __rmqueue_fallback(zone
, order
, migratetype
,
2296 * Obtain a specified number of elements from the buddy allocator, all under
2297 * a single hold of the lock, for efficiency. Add them to the supplied list.
2298 * Returns the number of new pages which were placed at *list.
2300 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2301 unsigned long count
, struct list_head
*list
,
2302 int migratetype
, unsigned int alloc_flags
)
2304 unsigned long flags
;
2307 spin_lock_irqsave(&zone
->lock
, flags
);
2308 for (i
= 0; i
< count
; ++i
) {
2309 struct page
*page
= __rmqueue(zone
, order
, migratetype
,
2311 if (unlikely(page
== NULL
))
2315 * Split buddy pages returned by expand() are received here in
2316 * physical page order. The page is added to the tail of
2317 * caller's list. From the callers perspective, the linked list
2318 * is ordered by page number under some conditions. This is
2319 * useful for IO devices that can forward direction from the
2320 * head, thus also in the physical page order. This is useful
2321 * for IO devices that can merge IO requests if the physical
2322 * pages are ordered properly.
2324 list_add_tail(&page
->pcp_list
, list
);
2326 spin_unlock_irqrestore(&zone
->lock
, flags
);
2332 * Called from the vmstat counter updater to decay the PCP high.
2333 * Return whether there are addition works to do.
2335 int decay_pcp_high(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2337 int high_min
, to_drain
, batch
;
2340 high_min
= READ_ONCE(pcp
->high_min
);
2341 batch
= READ_ONCE(pcp
->batch
);
2343 * Decrease pcp->high periodically to try to free possible
2344 * idle PCP pages. And, avoid to free too many pages to
2345 * control latency. This caps pcp->high decrement too.
2347 if (pcp
->high
> high_min
) {
2348 pcp
->high
= max3(pcp
->count
- (batch
<< CONFIG_PCP_BATCH_SCALE_MAX
),
2349 pcp
->high
- (pcp
->high
>> 3), high_min
);
2350 if (pcp
->high
> high_min
)
2354 to_drain
= pcp
->count
- pcp
->high
;
2356 spin_lock(&pcp
->lock
);
2357 free_pcppages_bulk(zone
, to_drain
, pcp
, 0);
2358 spin_unlock(&pcp
->lock
);
2367 * Called from the vmstat counter updater to drain pagesets of this
2368 * currently executing processor on remote nodes after they have
2371 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2373 int to_drain
, batch
;
2375 batch
= READ_ONCE(pcp
->batch
);
2376 to_drain
= min(pcp
->count
, batch
);
2378 spin_lock(&pcp
->lock
);
2379 free_pcppages_bulk(zone
, to_drain
, pcp
, 0);
2380 spin_unlock(&pcp
->lock
);
2386 * Drain pcplists of the indicated processor and zone.
2388 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2390 struct per_cpu_pages
*pcp
= per_cpu_ptr(zone
->per_cpu_pageset
, cpu
);
2394 spin_lock(&pcp
->lock
);
2397 int to_drain
= min(count
,
2398 pcp
->batch
<< CONFIG_PCP_BATCH_SCALE_MAX
);
2400 free_pcppages_bulk(zone
, to_drain
, pcp
, 0);
2403 spin_unlock(&pcp
->lock
);
2408 * Drain pcplists of all zones on the indicated processor.
2410 static void drain_pages(unsigned int cpu
)
2414 for_each_populated_zone(zone
) {
2415 drain_pages_zone(cpu
, zone
);
2420 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2422 void drain_local_pages(struct zone
*zone
)
2424 int cpu
= smp_processor_id();
2427 drain_pages_zone(cpu
, zone
);
2433 * The implementation of drain_all_pages(), exposing an extra parameter to
2434 * drain on all cpus.
2436 * drain_all_pages() is optimized to only execute on cpus where pcplists are
2437 * not empty. The check for non-emptiness can however race with a free to
2438 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
2439 * that need the guarantee that every CPU has drained can disable the
2440 * optimizing racy check.
2442 static void __drain_all_pages(struct zone
*zone
, bool force_all_cpus
)
2447 * Allocate in the BSS so we won't require allocation in
2448 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2450 static cpumask_t cpus_with_pcps
;
2453 * Do not drain if one is already in progress unless it's specific to
2454 * a zone. Such callers are primarily CMA and memory hotplug and need
2455 * the drain to be complete when the call returns.
2457 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2460 mutex_lock(&pcpu_drain_mutex
);
2464 * We don't care about racing with CPU hotplug event
2465 * as offline notification will cause the notified
2466 * cpu to drain that CPU pcps and on_each_cpu_mask
2467 * disables preemption as part of its processing
2469 for_each_online_cpu(cpu
) {
2470 struct per_cpu_pages
*pcp
;
2472 bool has_pcps
= false;
2474 if (force_all_cpus
) {
2476 * The pcp.count check is racy, some callers need a
2477 * guarantee that no cpu is missed.
2481 pcp
= per_cpu_ptr(zone
->per_cpu_pageset
, cpu
);
2485 for_each_populated_zone(z
) {
2486 pcp
= per_cpu_ptr(z
->per_cpu_pageset
, cpu
);
2495 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2497 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2500 for_each_cpu(cpu
, &cpus_with_pcps
) {
2502 drain_pages_zone(cpu
, zone
);
2507 mutex_unlock(&pcpu_drain_mutex
);
2511 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2513 * When zone parameter is non-NULL, spill just the single zone's pages.
2515 void drain_all_pages(struct zone
*zone
)
2517 __drain_all_pages(zone
, false);
2520 static int nr_pcp_free(struct per_cpu_pages
*pcp
, int batch
, int high
, bool free_high
)
2522 int min_nr_free
, max_nr_free
;
2524 /* Free as much as possible if batch freeing high-order pages. */
2525 if (unlikely(free_high
))
2526 return min(pcp
->count
, batch
<< CONFIG_PCP_BATCH_SCALE_MAX
);
2528 /* Check for PCP disabled or boot pageset */
2529 if (unlikely(high
< batch
))
2532 /* Leave at least pcp->batch pages on the list */
2533 min_nr_free
= batch
;
2534 max_nr_free
= high
- batch
;
2537 * Increase the batch number to the number of the consecutive
2538 * freed pages to reduce zone lock contention.
2540 batch
= clamp_t(int, pcp
->free_count
, min_nr_free
, max_nr_free
);
2545 static int nr_pcp_high(struct per_cpu_pages
*pcp
, struct zone
*zone
,
2546 int batch
, bool free_high
)
2548 int high
, high_min
, high_max
;
2550 high_min
= READ_ONCE(pcp
->high_min
);
2551 high_max
= READ_ONCE(pcp
->high_max
);
2552 high
= pcp
->high
= clamp(pcp
->high
, high_min
, high_max
);
2554 if (unlikely(!high
))
2557 if (unlikely(free_high
)) {
2558 pcp
->high
= max(high
- (batch
<< CONFIG_PCP_BATCH_SCALE_MAX
),
2564 * If reclaim is active, limit the number of pages that can be
2565 * stored on pcp lists
2567 if (test_bit(ZONE_RECLAIM_ACTIVE
, &zone
->flags
)) {
2568 int free_count
= max_t(int, pcp
->free_count
, batch
);
2570 pcp
->high
= max(high
- free_count
, high_min
);
2571 return min(batch
<< 2, pcp
->high
);
2574 if (high_min
== high_max
)
2577 if (test_bit(ZONE_BELOW_HIGH
, &zone
->flags
)) {
2578 int free_count
= max_t(int, pcp
->free_count
, batch
);
2580 pcp
->high
= max(high
- free_count
, high_min
);
2581 high
= max(pcp
->count
, high_min
);
2582 } else if (pcp
->count
>= high
) {
2583 int need_high
= pcp
->free_count
+ batch
;
2585 /* pcp->high should be large enough to hold batch freed pages */
2586 if (pcp
->high
< need_high
)
2587 pcp
->high
= clamp(need_high
, high_min
, high_max
);
2593 static void free_unref_page_commit(struct zone
*zone
, struct per_cpu_pages
*pcp
,
2594 struct page
*page
, int migratetype
,
2599 bool free_high
= false;
2602 * On freeing, reduce the number of pages that are batch allocated.
2603 * See nr_pcp_alloc() where alloc_factor is increased for subsequent
2606 pcp
->alloc_factor
>>= 1;
2607 __count_vm_events(PGFREE
, 1 << order
);
2608 pindex
= order_to_pindex(migratetype
, order
);
2609 list_add(&page
->pcp_list
, &pcp
->lists
[pindex
]);
2610 pcp
->count
+= 1 << order
;
2612 batch
= READ_ONCE(pcp
->batch
);
2614 * As high-order pages other than THP's stored on PCP can contribute
2615 * to fragmentation, limit the number stored when PCP is heavily
2616 * freeing without allocation. The remainder after bulk freeing
2617 * stops will be drained from vmstat refresh context.
2619 if (order
&& order
<= PAGE_ALLOC_COSTLY_ORDER
) {
2620 free_high
= (pcp
->free_count
>= batch
&&
2621 (pcp
->flags
& PCPF_PREV_FREE_HIGH_ORDER
) &&
2622 (!(pcp
->flags
& PCPF_FREE_HIGH_BATCH
) ||
2623 pcp
->count
>= READ_ONCE(batch
)));
2624 pcp
->flags
|= PCPF_PREV_FREE_HIGH_ORDER
;
2625 } else if (pcp
->flags
& PCPF_PREV_FREE_HIGH_ORDER
) {
2626 pcp
->flags
&= ~PCPF_PREV_FREE_HIGH_ORDER
;
2628 if (pcp
->free_count
< (batch
<< CONFIG_PCP_BATCH_SCALE_MAX
))
2629 pcp
->free_count
+= (1 << order
);
2630 high
= nr_pcp_high(pcp
, zone
, batch
, free_high
);
2631 if (pcp
->count
>= high
) {
2632 free_pcppages_bulk(zone
, nr_pcp_free(pcp
, batch
, high
, free_high
),
2634 if (test_bit(ZONE_BELOW_HIGH
, &zone
->flags
) &&
2635 zone_watermark_ok(zone
, 0, high_wmark_pages(zone
),
2637 clear_bit(ZONE_BELOW_HIGH
, &zone
->flags
);
2644 void free_unref_page(struct page
*page
, unsigned int order
)
2646 unsigned long __maybe_unused UP_flags
;
2647 struct per_cpu_pages
*pcp
;
2649 unsigned long pfn
= page_to_pfn(page
);
2652 if (!pcp_allowed_order(order
)) {
2653 __free_pages_ok(page
, order
, FPI_NONE
);
2657 if (!free_pages_prepare(page
, order
))
2661 * We only track unmovable, reclaimable and movable on pcp lists.
2662 * Place ISOLATE pages on the isolated list because they are being
2663 * offlined but treat HIGHATOMIC and CMA as movable pages so we can
2664 * get those areas back if necessary. Otherwise, we may have to free
2665 * excessively into the page allocator
2667 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2668 if (unlikely(migratetype
>= MIGRATE_PCPTYPES
)) {
2669 if (unlikely(is_migrate_isolate(migratetype
))) {
2670 free_one_page(page_zone(page
), page
, pfn
, order
, FPI_NONE
);
2673 migratetype
= MIGRATE_MOVABLE
;
2676 zone
= page_zone(page
);
2677 pcp_trylock_prepare(UP_flags
);
2678 pcp
= pcp_spin_trylock(zone
->per_cpu_pageset
);
2680 free_unref_page_commit(zone
, pcp
, page
, migratetype
, order
);
2681 pcp_spin_unlock(pcp
);
2683 free_one_page(zone
, page
, pfn
, order
, FPI_NONE
);
2685 pcp_trylock_finish(UP_flags
);
2689 * Free a batch of folios
2691 void free_unref_folios(struct folio_batch
*folios
)
2693 unsigned long __maybe_unused UP_flags
;
2694 struct per_cpu_pages
*pcp
= NULL
;
2695 struct zone
*locked_zone
= NULL
;
2698 /* Prepare folios for freeing */
2699 for (i
= 0, j
= 0; i
< folios
->nr
; i
++) {
2700 struct folio
*folio
= folios
->folios
[i
];
2701 unsigned long pfn
= folio_pfn(folio
);
2702 unsigned int order
= folio_order(folio
);
2704 if (!free_pages_prepare(&folio
->page
, order
))
2707 * Free orders not handled on the PCP directly to the
2710 if (!pcp_allowed_order(order
)) {
2711 free_one_page(folio_zone(folio
), &folio
->page
,
2712 pfn
, order
, FPI_NONE
);
2715 folio
->private = (void *)(unsigned long)order
;
2717 folios
->folios
[j
] = folio
;
2722 for (i
= 0; i
< folios
->nr
; i
++) {
2723 struct folio
*folio
= folios
->folios
[i
];
2724 struct zone
*zone
= folio_zone(folio
);
2725 unsigned long pfn
= folio_pfn(folio
);
2726 unsigned int order
= (unsigned long)folio
->private;
2729 folio
->private = NULL
;
2730 migratetype
= get_pfnblock_migratetype(&folio
->page
, pfn
);
2732 /* Different zone requires a different pcp lock */
2733 if (zone
!= locked_zone
||
2734 is_migrate_isolate(migratetype
)) {
2736 pcp_spin_unlock(pcp
);
2737 pcp_trylock_finish(UP_flags
);
2743 * Free isolated pages directly to the
2744 * allocator, see comment in free_unref_page.
2746 if (is_migrate_isolate(migratetype
)) {
2747 free_one_page(zone
, &folio
->page
, pfn
,
2753 * trylock is necessary as folios may be getting freed
2754 * from IRQ or SoftIRQ context after an IO completion.
2756 pcp_trylock_prepare(UP_flags
);
2757 pcp
= pcp_spin_trylock(zone
->per_cpu_pageset
);
2758 if (unlikely(!pcp
)) {
2759 pcp_trylock_finish(UP_flags
);
2760 free_one_page(zone
, &folio
->page
, pfn
,
2768 * Non-isolated types over MIGRATE_PCPTYPES get added
2769 * to the MIGRATE_MOVABLE pcp list.
2771 if (unlikely(migratetype
>= MIGRATE_PCPTYPES
))
2772 migratetype
= MIGRATE_MOVABLE
;
2774 trace_mm_page_free_batched(&folio
->page
);
2775 free_unref_page_commit(zone
, pcp
, &folio
->page
, migratetype
,
2780 pcp_spin_unlock(pcp
);
2781 pcp_trylock_finish(UP_flags
);
2783 folio_batch_reinit(folios
);
2787 * split_page takes a non-compound higher-order page, and splits it into
2788 * n (1<<order) sub-pages: page[0..n]
2789 * Each sub-page must be freed individually.
2791 * Note: this is probably too low level an operation for use in drivers.
2792 * Please consult with lkml before using this in your driver.
2794 void split_page(struct page
*page
, unsigned int order
)
2798 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2799 VM_BUG_ON_PAGE(!page_count(page
), page
);
2801 for (i
= 1; i
< (1 << order
); i
++)
2802 set_page_refcounted(page
+ i
);
2803 split_page_owner(page
, order
, 0);
2804 pgalloc_tag_split(page_folio(page
), order
, 0);
2805 split_page_memcg(page
, order
, 0);
2807 EXPORT_SYMBOL_GPL(split_page
);
2809 int __isolate_free_page(struct page
*page
, unsigned int order
)
2811 struct zone
*zone
= page_zone(page
);
2812 int mt
= get_pageblock_migratetype(page
);
2814 if (!is_migrate_isolate(mt
)) {
2815 unsigned long watermark
;
2817 * Obey watermarks as if the page was being allocated. We can
2818 * emulate a high-order watermark check with a raised order-0
2819 * watermark, because we already know our high-order page
2822 watermark
= zone
->_watermark
[WMARK_MIN
] + (1UL << order
);
2823 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2827 del_page_from_free_list(page
, zone
, order
, mt
);
2830 * Set the pageblock if the isolated page is at least half of a
2833 if (order
>= pageblock_order
- 1) {
2834 struct page
*endpage
= page
+ (1 << order
) - 1;
2835 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2836 int mt
= get_pageblock_migratetype(page
);
2838 * Only change normal pageblocks (i.e., they can merge
2841 if (migratetype_is_mergeable(mt
))
2842 move_freepages_block(zone
, page
, mt
,
2847 return 1UL << order
;
2851 * __putback_isolated_page - Return a now-isolated page back where we got it
2852 * @page: Page that was isolated
2853 * @order: Order of the isolated page
2854 * @mt: The page's pageblock's migratetype
2856 * This function is meant to return a page pulled from the free lists via
2857 * __isolate_free_page back to the free lists they were pulled from.
2859 void __putback_isolated_page(struct page
*page
, unsigned int order
, int mt
)
2861 struct zone
*zone
= page_zone(page
);
2863 /* zone lock should be held when this function is called */
2864 lockdep_assert_held(&zone
->lock
);
2866 /* Return isolated page to tail of freelist. */
2867 __free_one_page(page
, page_to_pfn(page
), zone
, order
, mt
,
2868 FPI_SKIP_REPORT_NOTIFY
| FPI_TO_TAIL
);
2872 * Update NUMA hit/miss statistics
2874 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
,
2878 enum numa_stat_item local_stat
= NUMA_LOCAL
;
2880 /* skip numa counters update if numa stats is disabled */
2881 if (!static_branch_likely(&vm_numa_stat_key
))
2884 if (zone_to_nid(z
) != numa_node_id())
2885 local_stat
= NUMA_OTHER
;
2887 if (zone_to_nid(z
) == zone_to_nid(preferred_zone
))
2888 __count_numa_events(z
, NUMA_HIT
, nr_account
);
2890 __count_numa_events(z
, NUMA_MISS
, nr_account
);
2891 __count_numa_events(preferred_zone
, NUMA_FOREIGN
, nr_account
);
2893 __count_numa_events(z
, local_stat
, nr_account
);
2897 static __always_inline
2898 struct page
*rmqueue_buddy(struct zone
*preferred_zone
, struct zone
*zone
,
2899 unsigned int order
, unsigned int alloc_flags
,
2903 unsigned long flags
;
2907 spin_lock_irqsave(&zone
->lock
, flags
);
2908 if (alloc_flags
& ALLOC_HIGHATOMIC
)
2909 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2911 page
= __rmqueue(zone
, order
, migratetype
, alloc_flags
);
2914 * If the allocation fails, allow OOM handling and
2915 * order-0 (atomic) allocs access to HIGHATOMIC
2916 * reserves as failing now is worse than failing a
2917 * high-order atomic allocation in the future.
2919 if (!page
&& (alloc_flags
& (ALLOC_OOM
|ALLOC_NON_BLOCK
)))
2920 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2923 spin_unlock_irqrestore(&zone
->lock
, flags
);
2927 spin_unlock_irqrestore(&zone
->lock
, flags
);
2928 } while (check_new_pages(page
, order
));
2930 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2931 zone_statistics(preferred_zone
, zone
, 1);
2936 static int nr_pcp_alloc(struct per_cpu_pages
*pcp
, struct zone
*zone
, int order
)
2938 int high
, base_batch
, batch
, max_nr_alloc
;
2939 int high_max
, high_min
;
2941 base_batch
= READ_ONCE(pcp
->batch
);
2942 high_min
= READ_ONCE(pcp
->high_min
);
2943 high_max
= READ_ONCE(pcp
->high_max
);
2944 high
= pcp
->high
= clamp(pcp
->high
, high_min
, high_max
);
2946 /* Check for PCP disabled or boot pageset */
2947 if (unlikely(high
< base_batch
))
2953 batch
= (base_batch
<< pcp
->alloc_factor
);
2956 * If we had larger pcp->high, we could avoid to allocate from
2959 if (high_min
!= high_max
&& !test_bit(ZONE_BELOW_HIGH
, &zone
->flags
))
2960 high
= pcp
->high
= min(high
+ batch
, high_max
);
2963 max_nr_alloc
= max(high
- pcp
->count
- base_batch
, base_batch
);
2965 * Double the number of pages allocated each time there is
2966 * subsequent allocation of order-0 pages without any freeing.
2968 if (batch
<= max_nr_alloc
&&
2969 pcp
->alloc_factor
< CONFIG_PCP_BATCH_SCALE_MAX
)
2970 pcp
->alloc_factor
++;
2971 batch
= min(batch
, max_nr_alloc
);
2975 * Scale batch relative to order if batch implies free pages
2976 * can be stored on the PCP. Batch can be 1 for small zones or
2977 * for boot pagesets which should never store free pages as
2978 * the pages may belong to arbitrary zones.
2981 batch
= max(batch
>> order
, 2);
2986 /* Remove page from the per-cpu list, caller must protect the list */
2988 struct page
*__rmqueue_pcplist(struct zone
*zone
, unsigned int order
,
2990 unsigned int alloc_flags
,
2991 struct per_cpu_pages
*pcp
,
2992 struct list_head
*list
)
2997 if (list_empty(list
)) {
2998 int batch
= nr_pcp_alloc(pcp
, zone
, order
);
3001 alloced
= rmqueue_bulk(zone
, order
,
3003 migratetype
, alloc_flags
);
3005 pcp
->count
+= alloced
<< order
;
3006 if (unlikely(list_empty(list
)))
3010 page
= list_first_entry(list
, struct page
, pcp_list
);
3011 list_del(&page
->pcp_list
);
3012 pcp
->count
-= 1 << order
;
3013 } while (check_new_pages(page
, order
));
3018 /* Lock and remove page from the per-cpu list */
3019 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
3020 struct zone
*zone
, unsigned int order
,
3021 int migratetype
, unsigned int alloc_flags
)
3023 struct per_cpu_pages
*pcp
;
3024 struct list_head
*list
;
3026 unsigned long __maybe_unused UP_flags
;
3028 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
3029 pcp_trylock_prepare(UP_flags
);
3030 pcp
= pcp_spin_trylock(zone
->per_cpu_pageset
);
3032 pcp_trylock_finish(UP_flags
);
3037 * On allocation, reduce the number of pages that are batch freed.
3038 * See nr_pcp_free() where free_factor is increased for subsequent
3041 pcp
->free_count
>>= 1;
3042 list
= &pcp
->lists
[order_to_pindex(migratetype
, order
)];
3043 page
= __rmqueue_pcplist(zone
, order
, migratetype
, alloc_flags
, pcp
, list
);
3044 pcp_spin_unlock(pcp
);
3045 pcp_trylock_finish(UP_flags
);
3047 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
3048 zone_statistics(preferred_zone
, zone
, 1);
3054 * Allocate a page from the given zone.
3055 * Use pcplists for THP or "cheap" high-order allocations.
3059 * Do not instrument rmqueue() with KMSAN. This function may call
3060 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask().
3061 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it
3062 * may call rmqueue() again, which will result in a deadlock.
3064 __no_sanitize_memory
3066 struct page
*rmqueue(struct zone
*preferred_zone
,
3067 struct zone
*zone
, unsigned int order
,
3068 gfp_t gfp_flags
, unsigned int alloc_flags
,
3073 if (likely(pcp_allowed_order(order
))) {
3074 page
= rmqueue_pcplist(preferred_zone
, zone
, order
,
3075 migratetype
, alloc_flags
);
3080 page
= rmqueue_buddy(preferred_zone
, zone
, order
, alloc_flags
,
3084 /* Separate test+clear to avoid unnecessary atomics */
3085 if ((alloc_flags
& ALLOC_KSWAPD
) &&
3086 unlikely(test_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
))) {
3087 clear_bit(ZONE_BOOSTED_WATERMARK
, &zone
->flags
);
3088 wakeup_kswapd(zone
, 0, 0, zone_idx(zone
));
3091 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
3095 static inline long __zone_watermark_unusable_free(struct zone
*z
,
3096 unsigned int order
, unsigned int alloc_flags
)
3098 long unusable_free
= (1 << order
) - 1;
3101 * If the caller does not have rights to reserves below the min
3102 * watermark then subtract the free pages reserved for highatomic.
3104 if (likely(!(alloc_flags
& ALLOC_RESERVES
)))
3105 unusable_free
+= READ_ONCE(z
->nr_free_highatomic
);
3108 /* If allocation can't use CMA areas don't use free CMA pages */
3109 if (!(alloc_flags
& ALLOC_CMA
))
3110 unusable_free
+= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3113 return unusable_free
;
3117 * Return true if free base pages are above 'mark'. For high-order checks it
3118 * will return true of the order-0 watermark is reached and there is at least
3119 * one free page of a suitable size. Checking now avoids taking the zone lock
3120 * to check in the allocation paths if no pages are free.
3122 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3123 int highest_zoneidx
, unsigned int alloc_flags
,
3129 /* free_pages may go negative - that's OK */
3130 free_pages
-= __zone_watermark_unusable_free(z
, order
, alloc_flags
);
3132 if (unlikely(alloc_flags
& ALLOC_RESERVES
)) {
3134 * __GFP_HIGH allows access to 50% of the min reserve as well
3137 if (alloc_flags
& ALLOC_MIN_RESERVE
) {
3141 * Non-blocking allocations (e.g. GFP_ATOMIC) can
3142 * access more reserves than just __GFP_HIGH. Other
3143 * non-blocking allocations requests such as GFP_NOWAIT
3144 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get
3145 * access to the min reserve.
3147 if (alloc_flags
& ALLOC_NON_BLOCK
)
3152 * OOM victims can try even harder than the normal reserve
3153 * users on the grounds that it's definitely going to be in
3154 * the exit path shortly and free memory. Any allocation it
3155 * makes during the free path will be small and short-lived.
3157 if (alloc_flags
& ALLOC_OOM
)
3162 * Check watermarks for an order-0 allocation request. If these
3163 * are not met, then a high-order request also cannot go ahead
3164 * even if a suitable page happened to be free.
3166 if (free_pages
<= min
+ z
->lowmem_reserve
[highest_zoneidx
])
3169 /* If this is an order-0 request then the watermark is fine */
3173 /* For a high-order request, check at least one suitable page is free */
3174 for (o
= order
; o
< NR_PAGE_ORDERS
; o
++) {
3175 struct free_area
*area
= &z
->free_area
[o
];
3181 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3182 if (!free_area_empty(area
, mt
))
3187 if ((alloc_flags
& ALLOC_CMA
) &&
3188 !free_area_empty(area
, MIGRATE_CMA
)) {
3192 if ((alloc_flags
& (ALLOC_HIGHATOMIC
|ALLOC_OOM
)) &&
3193 !free_area_empty(area
, MIGRATE_HIGHATOMIC
)) {
3200 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3201 int highest_zoneidx
, unsigned int alloc_flags
)
3203 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, alloc_flags
,
3204 zone_page_state(z
, NR_FREE_PAGES
));
3207 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3208 unsigned long mark
, int highest_zoneidx
,
3209 unsigned int alloc_flags
, gfp_t gfp_mask
)
3213 free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3216 * Fast check for order-0 only. If this fails then the reserves
3217 * need to be calculated.
3223 usable_free
= free_pages
;
3224 reserved
= __zone_watermark_unusable_free(z
, 0, alloc_flags
);
3226 /* reserved may over estimate high-atomic reserves. */
3227 usable_free
-= min(usable_free
, reserved
);
3228 if (usable_free
> mark
+ z
->lowmem_reserve
[highest_zoneidx
])
3232 if (__zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, alloc_flags
,
3237 * Ignore watermark boosting for __GFP_HIGH order-0 allocations
3238 * when checking the min watermark. The min watermark is the
3239 * point where boosting is ignored so that kswapd is woken up
3240 * when below the low watermark.
3242 if (unlikely(!order
&& (alloc_flags
& ALLOC_MIN_RESERVE
) && z
->watermark_boost
3243 && ((alloc_flags
& ALLOC_WMARK_MASK
) == WMARK_MIN
))) {
3244 mark
= z
->_watermark
[WMARK_MIN
];
3245 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
,
3246 alloc_flags
, free_pages
);
3252 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3253 unsigned long mark
, int highest_zoneidx
)
3255 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3257 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3258 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3260 return __zone_watermark_ok(z
, order
, mark
, highest_zoneidx
, 0,
3265 int __read_mostly node_reclaim_distance
= RECLAIM_DISTANCE
;
3267 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3269 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3270 node_reclaim_distance
;
3272 #else /* CONFIG_NUMA */
3273 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3277 #endif /* CONFIG_NUMA */
3280 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3281 * fragmentation is subtle. If the preferred zone was HIGHMEM then
3282 * premature use of a lower zone may cause lowmem pressure problems that
3283 * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3284 * probably too small. It only makes sense to spread allocations to avoid
3285 * fragmentation between the Normal and DMA32 zones.
3287 static inline unsigned int
3288 alloc_flags_nofragment(struct zone
*zone
, gfp_t gfp_mask
)
3290 unsigned int alloc_flags
;
3293 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3296 alloc_flags
= (__force
int) (gfp_mask
& __GFP_KSWAPD_RECLAIM
);
3298 #ifdef CONFIG_ZONE_DMA32
3302 if (zone_idx(zone
) != ZONE_NORMAL
)
3306 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3307 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3308 * on UMA that if Normal is populated then so is DMA32.
3310 BUILD_BUG_ON(ZONE_NORMAL
- ZONE_DMA32
!= 1);
3311 if (nr_online_nodes
> 1 && !populated_zone(--zone
))
3314 alloc_flags
|= ALLOC_NOFRAGMENT
;
3315 #endif /* CONFIG_ZONE_DMA32 */
3319 /* Must be called after current_gfp_context() which can change gfp_mask */
3320 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask
,
3321 unsigned int alloc_flags
)
3324 if (gfp_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3325 alloc_flags
|= ALLOC_CMA
;
3331 * get_page_from_freelist goes through the zonelist trying to allocate
3334 static struct page
*
3335 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3336 const struct alloc_context
*ac
)
3340 struct pglist_data
*last_pgdat
= NULL
;
3341 bool last_pgdat_dirty_ok
= false;
3346 * Scan zonelist, looking for a zone with enough free.
3347 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c.
3349 no_fallback
= alloc_flags
& ALLOC_NOFRAGMENT
;
3350 z
= ac
->preferred_zoneref
;
3351 for_next_zone_zonelist_nodemask(zone
, z
, ac
->highest_zoneidx
,
3356 if (cpusets_enabled() &&
3357 (alloc_flags
& ALLOC_CPUSET
) &&
3358 !__cpuset_zone_allowed(zone
, gfp_mask
))
3361 * When allocating a page cache page for writing, we
3362 * want to get it from a node that is within its dirty
3363 * limit, such that no single node holds more than its
3364 * proportional share of globally allowed dirty pages.
3365 * The dirty limits take into account the node's
3366 * lowmem reserves and high watermark so that kswapd
3367 * should be able to balance it without having to
3368 * write pages from its LRU list.
3370 * XXX: For now, allow allocations to potentially
3371 * exceed the per-node dirty limit in the slowpath
3372 * (spread_dirty_pages unset) before going into reclaim,
3373 * which is important when on a NUMA setup the allowed
3374 * nodes are together not big enough to reach the
3375 * global limit. The proper fix for these situations
3376 * will require awareness of nodes in the
3377 * dirty-throttling and the flusher threads.
3379 if (ac
->spread_dirty_pages
) {
3380 if (last_pgdat
!= zone
->zone_pgdat
) {
3381 last_pgdat
= zone
->zone_pgdat
;
3382 last_pgdat_dirty_ok
= node_dirty_ok(zone
->zone_pgdat
);
3385 if (!last_pgdat_dirty_ok
)
3389 if (no_fallback
&& nr_online_nodes
> 1 &&
3390 zone
!= zonelist_zone(ac
->preferred_zoneref
)) {
3394 * If moving to a remote node, retry but allow
3395 * fragmenting fallbacks. Locality is more important
3396 * than fragmentation avoidance.
3398 local_nid
= zonelist_node_idx(ac
->preferred_zoneref
);
3399 if (zone_to_nid(zone
) != local_nid
) {
3400 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3405 cond_accept_memory(zone
, order
);
3408 * Detect whether the number of free pages is below high
3409 * watermark. If so, we will decrease pcp->high and free
3410 * PCP pages in free path to reduce the possibility of
3411 * premature page reclaiming. Detection is done here to
3412 * avoid to do that in hotter free path.
3414 if (test_bit(ZONE_BELOW_HIGH
, &zone
->flags
))
3415 goto check_alloc_wmark
;
3417 mark
= high_wmark_pages(zone
);
3418 if (zone_watermark_fast(zone
, order
, mark
,
3419 ac
->highest_zoneidx
, alloc_flags
,
3423 set_bit(ZONE_BELOW_HIGH
, &zone
->flags
);
3426 mark
= wmark_pages(zone
, alloc_flags
& ALLOC_WMARK_MASK
);
3427 if (!zone_watermark_fast(zone
, order
, mark
,
3428 ac
->highest_zoneidx
, alloc_flags
,
3432 if (cond_accept_memory(zone
, order
))
3436 * Watermark failed for this zone, but see if we can
3437 * grow this zone if it contains deferred pages.
3439 if (deferred_pages_enabled()) {
3440 if (_deferred_grow_zone(zone
, order
))
3443 /* Checked here to keep the fast path fast */
3444 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3445 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3448 if (!node_reclaim_enabled() ||
3449 !zone_allows_reclaim(zonelist_zone(ac
->preferred_zoneref
), zone
))
3452 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3454 case NODE_RECLAIM_NOSCAN
:
3457 case NODE_RECLAIM_FULL
:
3458 /* scanned but unreclaimable */
3461 /* did we reclaim enough */
3462 if (zone_watermark_ok(zone
, order
, mark
,
3463 ac
->highest_zoneidx
, alloc_flags
))
3471 page
= rmqueue(zonelist_zone(ac
->preferred_zoneref
), zone
, order
,
3472 gfp_mask
, alloc_flags
, ac
->migratetype
);
3474 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3477 * If this is a high-order atomic allocation then check
3478 * if the pageblock should be reserved for the future
3480 if (unlikely(alloc_flags
& ALLOC_HIGHATOMIC
))
3481 reserve_highatomic_pageblock(page
, order
, zone
);
3485 if (cond_accept_memory(zone
, order
))
3488 /* Try again if zone has deferred pages */
3489 if (deferred_pages_enabled()) {
3490 if (_deferred_grow_zone(zone
, order
))
3497 * It's possible on a UMA machine to get through all zones that are
3498 * fragmented. If avoiding fragmentation, reset and try again.
3501 alloc_flags
&= ~ALLOC_NOFRAGMENT
;
3508 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3510 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3513 * This documents exceptions given to allocations in certain
3514 * contexts that are allowed to allocate outside current's set
3517 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3518 if (tsk_is_oom_victim(current
) ||
3519 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3520 filter
&= ~SHOW_MEM_FILTER_NODES
;
3521 if (!in_task() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3522 filter
&= ~SHOW_MEM_FILTER_NODES
;
3524 __show_mem(filter
, nodemask
, gfp_zone(gfp_mask
));
3527 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3529 struct va_format vaf
;
3531 static DEFINE_RATELIMIT_STATE(nopage_rs
, 10*HZ
, 1);
3533 if ((gfp_mask
& __GFP_NOWARN
) ||
3534 !__ratelimit(&nopage_rs
) ||
3535 ((gfp_mask
& __GFP_DMA
) && !has_managed_dma()))
3538 va_start(args
, fmt
);
3541 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3542 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
3543 nodemask_pr_args(nodemask
));
3546 cpuset_print_current_mems_allowed();
3549 warn_alloc_show_mem(gfp_mask
, nodemask
);
3552 static inline struct page
*
3553 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3554 unsigned int alloc_flags
,
3555 const struct alloc_context
*ac
)
3559 page
= get_page_from_freelist(gfp_mask
, order
,
3560 alloc_flags
|ALLOC_CPUSET
, ac
);
3562 * fallback to ignore cpuset restriction if our nodes
3566 page
= get_page_from_freelist(gfp_mask
, order
,
3572 static inline struct page
*
3573 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3574 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3576 struct oom_control oc
= {
3577 .zonelist
= ac
->zonelist
,
3578 .nodemask
= ac
->nodemask
,
3580 .gfp_mask
= gfp_mask
,
3585 *did_some_progress
= 0;
3588 * Acquire the oom lock. If that fails, somebody else is
3589 * making progress for us.
3591 if (!mutex_trylock(&oom_lock
)) {
3592 *did_some_progress
= 1;
3593 schedule_timeout_uninterruptible(1);
3598 * Go through the zonelist yet one more time, keep very high watermark
3599 * here, this is only to catch a parallel oom killing, we must fail if
3600 * we're still under heavy pressure. But make sure that this reclaim
3601 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3602 * allocation which will never fail due to oom_lock already held.
3604 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3605 ~__GFP_DIRECT_RECLAIM
, order
,
3606 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3610 /* Coredumps can quickly deplete all memory reserves */
3611 if (current
->flags
& PF_DUMPCORE
)
3613 /* The OOM killer will not help higher order allocs */
3614 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3617 * We have already exhausted all our reclaim opportunities without any
3618 * success so it is time to admit defeat. We will skip the OOM killer
3619 * because it is very likely that the caller has a more reasonable
3620 * fallback than shooting a random task.
3622 * The OOM killer may not free memory on a specific node.
3624 if (gfp_mask
& (__GFP_RETRY_MAYFAIL
| __GFP_THISNODE
))
3626 /* The OOM killer does not needlessly kill tasks for lowmem */
3627 if (ac
->highest_zoneidx
< ZONE_NORMAL
)
3629 if (pm_suspended_storage())
3632 * XXX: GFP_NOFS allocations should rather fail than rely on
3633 * other request to make a forward progress.
3634 * We are in an unfortunate situation where out_of_memory cannot
3635 * do much for this context but let's try it to at least get
3636 * access to memory reserved if the current task is killed (see
3637 * out_of_memory). Once filesystems are ready to handle allocation
3638 * failures more gracefully we should just bail out here.
3641 /* Exhausted what can be done so it's blame time */
3642 if (out_of_memory(&oc
) ||
3643 WARN_ON_ONCE_GFP(gfp_mask
& __GFP_NOFAIL
, gfp_mask
)) {
3644 *did_some_progress
= 1;
3647 * Help non-failing allocations by giving them access to memory
3650 if (gfp_mask
& __GFP_NOFAIL
)
3651 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3652 ALLOC_NO_WATERMARKS
, ac
);
3655 mutex_unlock(&oom_lock
);
3660 * Maximum number of compaction retries with a progress before OOM
3661 * killer is consider as the only way to move forward.
3663 #define MAX_COMPACT_RETRIES 16
3665 #ifdef CONFIG_COMPACTION
3666 /* Try memory compaction for high-order allocations before reclaim */
3667 static struct page
*
3668 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3669 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3670 enum compact_priority prio
, enum compact_result
*compact_result
)
3672 struct page
*page
= NULL
;
3673 unsigned long pflags
;
3674 unsigned int noreclaim_flag
;
3679 psi_memstall_enter(&pflags
);
3680 delayacct_compact_start();
3681 noreclaim_flag
= memalloc_noreclaim_save();
3683 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3686 memalloc_noreclaim_restore(noreclaim_flag
);
3687 psi_memstall_leave(&pflags
);
3688 delayacct_compact_end();
3690 if (*compact_result
== COMPACT_SKIPPED
)
3693 * At least in one zone compaction wasn't deferred or skipped, so let's
3694 * count a compaction stall
3696 count_vm_event(COMPACTSTALL
);
3698 /* Prep a captured page if available */
3700 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3702 /* Try get a page from the freelist if available */
3704 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3707 struct zone
*zone
= page_zone(page
);
3709 zone
->compact_blockskip_flush
= false;
3710 compaction_defer_reset(zone
, order
, true);
3711 count_vm_event(COMPACTSUCCESS
);
3716 * It's bad if compaction run occurs and fails. The most likely reason
3717 * is that pages exist, but not enough to satisfy watermarks.
3719 count_vm_event(COMPACTFAIL
);
3727 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3728 enum compact_result compact_result
,
3729 enum compact_priority
*compact_priority
,
3730 int *compaction_retries
)
3732 int max_retries
= MAX_COMPACT_RETRIES
;
3735 int retries
= *compaction_retries
;
3736 enum compact_priority priority
= *compact_priority
;
3741 if (fatal_signal_pending(current
))
3745 * Compaction was skipped due to a lack of free order-0
3746 * migration targets. Continue if reclaim can help.
3748 if (compact_result
== COMPACT_SKIPPED
) {
3749 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3754 * Compaction managed to coalesce some page blocks, but the
3755 * allocation failed presumably due to a race. Retry some.
3757 if (compact_result
== COMPACT_SUCCESS
) {
3759 * !costly requests are much more important than
3760 * __GFP_RETRY_MAYFAIL costly ones because they are de
3761 * facto nofail and invoke OOM killer to move on while
3762 * costly can fail and users are ready to cope with
3763 * that. 1/4 retries is rather arbitrary but we would
3764 * need much more detailed feedback from compaction to
3765 * make a better decision.
3767 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3770 if (++(*compaction_retries
) <= max_retries
) {
3777 * Compaction failed. Retry with increasing priority.
3779 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3780 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3782 if (*compact_priority
> min_priority
) {
3783 (*compact_priority
)--;
3784 *compaction_retries
= 0;
3788 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
3792 static inline struct page
*
3793 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3794 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3795 enum compact_priority prio
, enum compact_result
*compact_result
)
3797 *compact_result
= COMPACT_SKIPPED
;
3802 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3803 enum compact_result compact_result
,
3804 enum compact_priority
*compact_priority
,
3805 int *compaction_retries
)
3810 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3814 * There are setups with compaction disabled which would prefer to loop
3815 * inside the allocator rather than hit the oom killer prematurely.
3816 * Let's give them a good hope and keep retrying while the order-0
3817 * watermarks are OK.
3819 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3820 ac
->highest_zoneidx
, ac
->nodemask
) {
3821 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3822 ac
->highest_zoneidx
, alloc_flags
))
3827 #endif /* CONFIG_COMPACTION */
3829 #ifdef CONFIG_LOCKDEP
3830 static struct lockdep_map __fs_reclaim_map
=
3831 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
3833 static bool __need_reclaim(gfp_t gfp_mask
)
3835 /* no reclaim without waiting on it */
3836 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3839 /* this guy won't enter reclaim */
3840 if (current
->flags
& PF_MEMALLOC
)
3843 if (gfp_mask
& __GFP_NOLOCKDEP
)
3849 void __fs_reclaim_acquire(unsigned long ip
)
3851 lock_acquire_exclusive(&__fs_reclaim_map
, 0, 0, NULL
, ip
);
3854 void __fs_reclaim_release(unsigned long ip
)
3856 lock_release(&__fs_reclaim_map
, ip
);
3859 void fs_reclaim_acquire(gfp_t gfp_mask
)
3861 gfp_mask
= current_gfp_context(gfp_mask
);
3863 if (__need_reclaim(gfp_mask
)) {
3864 if (gfp_mask
& __GFP_FS
)
3865 __fs_reclaim_acquire(_RET_IP_
);
3867 #ifdef CONFIG_MMU_NOTIFIER
3868 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map
);
3869 lock_map_release(&__mmu_notifier_invalidate_range_start_map
);
3874 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
3876 void fs_reclaim_release(gfp_t gfp_mask
)
3878 gfp_mask
= current_gfp_context(gfp_mask
);
3880 if (__need_reclaim(gfp_mask
)) {
3881 if (gfp_mask
& __GFP_FS
)
3882 __fs_reclaim_release(_RET_IP_
);
3885 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
3889 * Zonelists may change due to hotplug during allocation. Detect when zonelists
3890 * have been rebuilt so allocation retries. Reader side does not lock and
3891 * retries the allocation if zonelist changes. Writer side is protected by the
3892 * embedded spin_lock.
3894 static DEFINE_SEQLOCK(zonelist_update_seq
);
3896 static unsigned int zonelist_iter_begin(void)
3898 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE
))
3899 return read_seqbegin(&zonelist_update_seq
);
3904 static unsigned int check_retry_zonelist(unsigned int seq
)
3906 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE
))
3907 return read_seqretry(&zonelist_update_seq
, seq
);
3912 /* Perform direct synchronous page reclaim */
3913 static unsigned long
3914 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3915 const struct alloc_context
*ac
)
3917 unsigned int noreclaim_flag
;
3918 unsigned long progress
;
3922 /* We now go into synchronous reclaim */
3923 cpuset_memory_pressure_bump();
3924 fs_reclaim_acquire(gfp_mask
);
3925 noreclaim_flag
= memalloc_noreclaim_save();
3927 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3930 memalloc_noreclaim_restore(noreclaim_flag
);
3931 fs_reclaim_release(gfp_mask
);
3938 /* The really slow allocator path where we enter direct reclaim */
3939 static inline struct page
*
3940 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3941 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3942 unsigned long *did_some_progress
)
3944 struct page
*page
= NULL
;
3945 unsigned long pflags
;
3946 bool drained
= false;
3948 psi_memstall_enter(&pflags
);
3949 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3950 if (unlikely(!(*did_some_progress
)))
3954 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3957 * If an allocation failed after direct reclaim, it could be because
3958 * pages are pinned on the per-cpu lists or in high alloc reserves.
3959 * Shrink them and try again
3961 if (!page
&& !drained
) {
3962 unreserve_highatomic_pageblock(ac
, false);
3963 drain_all_pages(NULL
);
3968 psi_memstall_leave(&pflags
);
3973 static void wake_all_kswapds(unsigned int order
, gfp_t gfp_mask
,
3974 const struct alloc_context
*ac
)
3978 pg_data_t
*last_pgdat
= NULL
;
3979 enum zone_type highest_zoneidx
= ac
->highest_zoneidx
;
3981 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, highest_zoneidx
,
3983 if (!managed_zone(zone
))
3985 if (last_pgdat
!= zone
->zone_pgdat
) {
3986 wakeup_kswapd(zone
, gfp_mask
, order
, highest_zoneidx
);
3987 last_pgdat
= zone
->zone_pgdat
;
3992 static inline unsigned int
3993 gfp_to_alloc_flags(gfp_t gfp_mask
, unsigned int order
)
3995 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3998 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE
3999 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4000 * to save two branches.
4002 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_MIN_RESERVE
);
4003 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM
!= (__force gfp_t
) ALLOC_KSWAPD
);
4006 * The caller may dip into page reserves a bit more if the caller
4007 * cannot run direct reclaim, or if the caller has realtime scheduling
4008 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
4009 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH).
4011 alloc_flags
|= (__force
int)
4012 (gfp_mask
& (__GFP_HIGH
| __GFP_KSWAPD_RECLAIM
));
4014 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
)) {
4016 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4017 * if it can't schedule.
4019 if (!(gfp_mask
& __GFP_NOMEMALLOC
)) {
4020 alloc_flags
|= ALLOC_NON_BLOCK
;
4023 alloc_flags
|= ALLOC_HIGHATOMIC
;
4027 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably
4028 * GFP_ATOMIC) rather than fail, see the comment for
4029 * cpuset_node_allowed().
4031 if (alloc_flags
& ALLOC_MIN_RESERVE
)
4032 alloc_flags
&= ~ALLOC_CPUSET
;
4033 } else if (unlikely(rt_or_dl_task(current
)) && in_task())
4034 alloc_flags
|= ALLOC_MIN_RESERVE
;
4036 alloc_flags
= gfp_to_alloc_flags_cma(gfp_mask
, alloc_flags
);
4041 static bool oom_reserves_allowed(struct task_struct
*tsk
)
4043 if (!tsk_is_oom_victim(tsk
))
4047 * !MMU doesn't have oom reaper so give access to memory reserves
4048 * only to the thread with TIF_MEMDIE set
4050 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
4057 * Distinguish requests which really need access to full memory
4058 * reserves from oom victims which can live with a portion of it
4060 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
4062 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
4064 if (gfp_mask
& __GFP_MEMALLOC
)
4065 return ALLOC_NO_WATERMARKS
;
4066 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
4067 return ALLOC_NO_WATERMARKS
;
4068 if (!in_interrupt()) {
4069 if (current
->flags
& PF_MEMALLOC
)
4070 return ALLOC_NO_WATERMARKS
;
4071 else if (oom_reserves_allowed(current
))
4078 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
4080 return !!__gfp_pfmemalloc_flags(gfp_mask
);
4084 * Checks whether it makes sense to retry the reclaim to make a forward progress
4085 * for the given allocation request.
4087 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4088 * without success, or when we couldn't even meet the watermark if we
4089 * reclaimed all remaining pages on the LRU lists.
4091 * Returns true if a retry is viable or false to enter the oom path.
4094 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
4095 struct alloc_context
*ac
, int alloc_flags
,
4096 bool did_some_progress
, int *no_progress_loops
)
4103 * Costly allocations might have made a progress but this doesn't mean
4104 * their order will become available due to high fragmentation so
4105 * always increment the no progress counter for them
4107 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
4108 *no_progress_loops
= 0;
4110 (*no_progress_loops
)++;
4112 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
)
4117 * Keep reclaiming pages while there is a chance this will lead
4118 * somewhere. If none of the target zones can satisfy our allocation
4119 * request even if all reclaimable pages are considered then we are
4120 * screwed and have to go OOM.
4122 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
4123 ac
->highest_zoneidx
, ac
->nodemask
) {
4124 unsigned long available
;
4125 unsigned long reclaimable
;
4126 unsigned long min_wmark
= min_wmark_pages(zone
);
4129 if (cpusets_enabled() &&
4130 (alloc_flags
& ALLOC_CPUSET
) &&
4131 !__cpuset_zone_allowed(zone
, gfp_mask
))
4134 available
= reclaimable
= zone_reclaimable_pages(zone
);
4135 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
4138 * Would the allocation succeed if we reclaimed all
4139 * reclaimable pages?
4141 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
4142 ac
->highest_zoneidx
, alloc_flags
, available
);
4143 trace_reclaim_retry_zone(z
, order
, reclaimable
,
4144 available
, min_wmark
, *no_progress_loops
, wmark
);
4152 * Memory allocation/reclaim might be called from a WQ context and the
4153 * current implementation of the WQ concurrency control doesn't
4154 * recognize that a particular WQ is congested if the worker thread is
4155 * looping without ever sleeping. Therefore we have to do a short sleep
4156 * here rather than calling cond_resched().
4158 if (current
->flags
& PF_WQ_WORKER
)
4159 schedule_timeout_uninterruptible(1);
4163 /* Before OOM, exhaust highatomic_reserve */
4165 return unreserve_highatomic_pageblock(ac
, true);
4171 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
4174 * It's possible that cpuset's mems_allowed and the nodemask from
4175 * mempolicy don't intersect. This should be normally dealt with by
4176 * policy_nodemask(), but it's possible to race with cpuset update in
4177 * such a way the check therein was true, and then it became false
4178 * before we got our cpuset_mems_cookie here.
4179 * This assumes that for all allocations, ac->nodemask can come only
4180 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4181 * when it does not intersect with the cpuset restrictions) or the
4182 * caller can deal with a violated nodemask.
4184 if (cpusets_enabled() && ac
->nodemask
&&
4185 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
4186 ac
->nodemask
= NULL
;
4191 * When updating a task's mems_allowed or mempolicy nodemask, it is
4192 * possible to race with parallel threads in such a way that our
4193 * allocation can fail while the mask is being updated. If we are about
4194 * to fail, check if the cpuset changed during allocation and if so,
4197 if (read_mems_allowed_retry(cpuset_mems_cookie
))
4203 static inline struct page
*
4204 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
4205 struct alloc_context
*ac
)
4207 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
4208 bool can_compact
= gfp_compaction_allowed(gfp_mask
);
4209 bool nofail
= gfp_mask
& __GFP_NOFAIL
;
4210 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
4211 struct page
*page
= NULL
;
4212 unsigned int alloc_flags
;
4213 unsigned long did_some_progress
;
4214 enum compact_priority compact_priority
;
4215 enum compact_result compact_result
;
4216 int compaction_retries
;
4217 int no_progress_loops
;
4218 unsigned int cpuset_mems_cookie
;
4219 unsigned int zonelist_iter_cookie
;
4222 if (unlikely(nofail
)) {
4224 * We most definitely don't want callers attempting to
4225 * allocate greater than order-1 page units with __GFP_NOFAIL.
4227 WARN_ON_ONCE(order
> 1);
4229 * Also we don't support __GFP_NOFAIL without __GFP_DIRECT_RECLAIM,
4230 * otherwise, we may result in lockup.
4232 WARN_ON_ONCE(!can_direct_reclaim
);
4234 * PF_MEMALLOC request from this context is rather bizarre
4235 * because we cannot reclaim anything and only can loop waiting
4236 * for somebody to do a work for us.
4238 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4242 compaction_retries
= 0;
4243 no_progress_loops
= 0;
4244 compact_priority
= DEF_COMPACT_PRIORITY
;
4245 cpuset_mems_cookie
= read_mems_allowed_begin();
4246 zonelist_iter_cookie
= zonelist_iter_begin();
4249 * The fast path uses conservative alloc_flags to succeed only until
4250 * kswapd needs to be woken up, and to avoid the cost of setting up
4251 * alloc_flags precisely. So we do that now.
4253 alloc_flags
= gfp_to_alloc_flags(gfp_mask
, order
);
4256 * We need to recalculate the starting point for the zonelist iterator
4257 * because we might have used different nodemask in the fast path, or
4258 * there was a cpuset modification and we are retrying - otherwise we
4259 * could end up iterating over non-eligible zones endlessly.
4261 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4262 ac
->highest_zoneidx
, ac
->nodemask
);
4263 if (!zonelist_zone(ac
->preferred_zoneref
))
4267 * Check for insane configurations where the cpuset doesn't contain
4268 * any suitable zone to satisfy the request - e.g. non-movable
4269 * GFP_HIGHUSER allocations from MOVABLE nodes only.
4271 if (cpusets_insane_config() && (gfp_mask
& __GFP_HARDWALL
)) {
4272 struct zoneref
*z
= first_zones_zonelist(ac
->zonelist
,
4273 ac
->highest_zoneidx
,
4274 &cpuset_current_mems_allowed
);
4275 if (!zonelist_zone(z
))
4279 if (alloc_flags
& ALLOC_KSWAPD
)
4280 wake_all_kswapds(order
, gfp_mask
, ac
);
4283 * The adjusted alloc_flags might result in immediate success, so try
4286 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4291 * For costly allocations, try direct compaction first, as it's likely
4292 * that we have enough base pages and don't need to reclaim. For non-
4293 * movable high-order allocations, do that as well, as compaction will
4294 * try prevent permanent fragmentation by migrating from blocks of the
4296 * Don't try this for allocations that are allowed to ignore
4297 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4299 if (can_direct_reclaim
&& can_compact
&&
4301 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
4302 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
4303 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
4305 INIT_COMPACT_PRIORITY
,
4311 * Checks for costly allocations with __GFP_NORETRY, which
4312 * includes some THP page fault allocations
4314 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4316 * If allocating entire pageblock(s) and compaction
4317 * failed because all zones are below low watermarks
4318 * or is prohibited because it recently failed at this
4319 * order, fail immediately unless the allocator has
4320 * requested compaction and reclaim retry.
4323 * - potentially very expensive because zones are far
4324 * below their low watermarks or this is part of very
4325 * bursty high order allocations,
4326 * - not guaranteed to help because isolate_freepages()
4327 * may not iterate over freed pages as part of its
4329 * - unlikely to make entire pageblocks free on its
4332 if (compact_result
== COMPACT_SKIPPED
||
4333 compact_result
== COMPACT_DEFERRED
)
4337 * Looks like reclaim/compaction is worth trying, but
4338 * sync compaction could be very expensive, so keep
4339 * using async compaction.
4341 compact_priority
= INIT_COMPACT_PRIORITY
;
4346 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4347 if (alloc_flags
& ALLOC_KSWAPD
)
4348 wake_all_kswapds(order
, gfp_mask
, ac
);
4350 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4352 alloc_flags
= gfp_to_alloc_flags_cma(gfp_mask
, reserve_flags
) |
4353 (alloc_flags
& ALLOC_KSWAPD
);
4356 * Reset the nodemask and zonelist iterators if memory policies can be
4357 * ignored. These allocations are high priority and system rather than
4360 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4361 ac
->nodemask
= NULL
;
4362 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4363 ac
->highest_zoneidx
, ac
->nodemask
);
4366 /* Attempt with potentially adjusted zonelist and alloc_flags */
4367 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4371 /* Caller is not willing to reclaim, we can't balance anything */
4372 if (!can_direct_reclaim
)
4375 /* Avoid recursion of direct reclaim */
4376 if (current
->flags
& PF_MEMALLOC
)
4379 /* Try direct reclaim and then allocating */
4380 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4381 &did_some_progress
);
4385 /* Try direct compaction and then allocating */
4386 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4387 compact_priority
, &compact_result
);
4391 /* Do not loop if specifically requested */
4392 if (gfp_mask
& __GFP_NORETRY
)
4396 * Do not retry costly high order allocations unless they are
4397 * __GFP_RETRY_MAYFAIL and we can compact
4399 if (costly_order
&& (!can_compact
||
4400 !(gfp_mask
& __GFP_RETRY_MAYFAIL
)))
4403 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4404 did_some_progress
> 0, &no_progress_loops
))
4408 * It doesn't make any sense to retry for the compaction if the order-0
4409 * reclaim is not able to make any progress because the current
4410 * implementation of the compaction depends on the sufficient amount
4411 * of free memory (see __compaction_suitable)
4413 if (did_some_progress
> 0 && can_compact
&&
4414 should_compact_retry(ac
, order
, alloc_flags
,
4415 compact_result
, &compact_priority
,
4416 &compaction_retries
))
4421 * Deal with possible cpuset update races or zonelist updates to avoid
4422 * a unnecessary OOM kill.
4424 if (check_retry_cpuset(cpuset_mems_cookie
, ac
) ||
4425 check_retry_zonelist(zonelist_iter_cookie
))
4428 /* Reclaim has failed us, start killing things */
4429 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4433 /* Avoid allocations with no watermarks from looping endlessly */
4434 if (tsk_is_oom_victim(current
) &&
4435 (alloc_flags
& ALLOC_OOM
||
4436 (gfp_mask
& __GFP_NOMEMALLOC
)))
4439 /* Retry as long as the OOM killer is making progress */
4440 if (did_some_progress
) {
4441 no_progress_loops
= 0;
4447 * Deal with possible cpuset update races or zonelist updates to avoid
4448 * a unnecessary OOM kill.
4450 if (check_retry_cpuset(cpuset_mems_cookie
, ac
) ||
4451 check_retry_zonelist(zonelist_iter_cookie
))
4455 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4458 if (unlikely(nofail
)) {
4460 * Lacking direct_reclaim we can't do anything to reclaim memory,
4461 * we disregard these unreasonable nofail requests and still
4464 if (!can_direct_reclaim
)
4468 * Help non-failing allocations by giving some access to memory
4469 * reserves normally used for high priority non-blocking
4470 * allocations but do not use ALLOC_NO_WATERMARKS because this
4471 * could deplete whole memory reserves which would just make
4472 * the situation worse.
4474 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_MIN_RESERVE
, ac
);
4482 warn_alloc(gfp_mask
, ac
->nodemask
,
4483 "page allocation failure: order:%u", order
);
4488 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4489 int preferred_nid
, nodemask_t
*nodemask
,
4490 struct alloc_context
*ac
, gfp_t
*alloc_gfp
,
4491 unsigned int *alloc_flags
)
4493 ac
->highest_zoneidx
= gfp_zone(gfp_mask
);
4494 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4495 ac
->nodemask
= nodemask
;
4496 ac
->migratetype
= gfp_migratetype(gfp_mask
);
4498 if (cpusets_enabled()) {
4499 *alloc_gfp
|= __GFP_HARDWALL
;
4501 * When we are in the interrupt context, it is irrelevant
4502 * to the current task context. It means that any node ok.
4504 if (in_task() && !ac
->nodemask
)
4505 ac
->nodemask
= &cpuset_current_mems_allowed
;
4507 *alloc_flags
|= ALLOC_CPUSET
;
4510 might_alloc(gfp_mask
);
4512 if (should_fail_alloc_page(gfp_mask
, order
))
4515 *alloc_flags
= gfp_to_alloc_flags_cma(gfp_mask
, *alloc_flags
);
4517 /* Dirty zone balancing only done in the fast path */
4518 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4521 * The preferred zone is used for statistics but crucially it is
4522 * also used as the starting point for the zonelist iterator. It
4523 * may get reset for allocations that ignore memory policies.
4525 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4526 ac
->highest_zoneidx
, ac
->nodemask
);
4532 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
4533 * @gfp: GFP flags for the allocation
4534 * @preferred_nid: The preferred NUMA node ID to allocate from
4535 * @nodemask: Set of nodes to allocate from, may be NULL
4536 * @nr_pages: The number of pages desired on the list or array
4537 * @page_list: Optional list to store the allocated pages
4538 * @page_array: Optional array to store the pages
4540 * This is a batched version of the page allocator that attempts to
4541 * allocate nr_pages quickly. Pages are added to page_list if page_list
4542 * is not NULL, otherwise it is assumed that the page_array is valid.
4544 * For lists, nr_pages is the number of pages that should be allocated.
4546 * For arrays, only NULL elements are populated with pages and nr_pages
4547 * is the maximum number of pages that will be stored in the array.
4549 * Returns the number of pages on the list or array.
4551 unsigned long alloc_pages_bulk_noprof(gfp_t gfp
, int preferred_nid
,
4552 nodemask_t
*nodemask
, int nr_pages
,
4553 struct list_head
*page_list
,
4554 struct page
**page_array
)
4557 unsigned long __maybe_unused UP_flags
;
4560 struct per_cpu_pages
*pcp
;
4561 struct list_head
*pcp_list
;
4562 struct alloc_context ac
;
4564 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4565 int nr_populated
= 0, nr_account
= 0;
4568 * Skip populated array elements to determine if any pages need
4569 * to be allocated before disabling IRQs.
4571 while (page_array
&& nr_populated
< nr_pages
&& page_array
[nr_populated
])
4574 /* No pages requested? */
4575 if (unlikely(nr_pages
<= 0))
4578 /* Already populated array? */
4579 if (unlikely(page_array
&& nr_pages
- nr_populated
== 0))
4582 /* Bulk allocator does not support memcg accounting. */
4583 if (memcg_kmem_online() && (gfp
& __GFP_ACCOUNT
))
4586 /* Use the single page allocator for one page. */
4587 if (nr_pages
- nr_populated
== 1)
4590 #ifdef CONFIG_PAGE_OWNER
4592 * PAGE_OWNER may recurse into the allocator to allocate space to
4593 * save the stack with pagesets.lock held. Releasing/reacquiring
4594 * removes much of the performance benefit of bulk allocation so
4595 * force the caller to allocate one page at a time as it'll have
4596 * similar performance to added complexity to the bulk allocator.
4598 if (static_branch_unlikely(&page_owner_inited
))
4602 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
4603 gfp
&= gfp_allowed_mask
;
4605 if (!prepare_alloc_pages(gfp
, 0, preferred_nid
, nodemask
, &ac
, &alloc_gfp
, &alloc_flags
))
4609 /* Find an allowed local zone that meets the low watermark. */
4610 z
= ac
.preferred_zoneref
;
4611 for_next_zone_zonelist_nodemask(zone
, z
, ac
.highest_zoneidx
, ac
.nodemask
) {
4614 if (cpusets_enabled() && (alloc_flags
& ALLOC_CPUSET
) &&
4615 !__cpuset_zone_allowed(zone
, gfp
)) {
4619 if (nr_online_nodes
> 1 && zone
!= zonelist_zone(ac
.preferred_zoneref
) &&
4620 zone_to_nid(zone
) != zonelist_node_idx(ac
.preferred_zoneref
)) {
4624 cond_accept_memory(zone
, 0);
4626 mark
= wmark_pages(zone
, alloc_flags
& ALLOC_WMARK_MASK
) + nr_pages
;
4627 if (zone_watermark_fast(zone
, 0, mark
,
4628 zonelist_zone_idx(ac
.preferred_zoneref
),
4629 alloc_flags
, gfp
)) {
4633 if (cond_accept_memory(zone
, 0))
4634 goto retry_this_zone
;
4636 /* Try again if zone has deferred pages */
4637 if (deferred_pages_enabled()) {
4638 if (_deferred_grow_zone(zone
, 0))
4639 goto retry_this_zone
;
4644 * If there are no allowed local zones that meets the watermarks then
4645 * try to allocate a single page and reclaim if necessary.
4647 if (unlikely(!zone
))
4650 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */
4651 pcp_trylock_prepare(UP_flags
);
4652 pcp
= pcp_spin_trylock(zone
->per_cpu_pageset
);
4656 /* Attempt the batch allocation */
4657 pcp_list
= &pcp
->lists
[order_to_pindex(ac
.migratetype
, 0)];
4658 while (nr_populated
< nr_pages
) {
4660 /* Skip existing pages */
4661 if (page_array
&& page_array
[nr_populated
]) {
4666 page
= __rmqueue_pcplist(zone
, 0, ac
.migratetype
, alloc_flags
,
4668 if (unlikely(!page
)) {
4669 /* Try and allocate at least one page */
4671 pcp_spin_unlock(pcp
);
4678 prep_new_page(page
, 0, gfp
, 0);
4680 list_add(&page
->lru
, page_list
);
4682 page_array
[nr_populated
] = page
;
4686 pcp_spin_unlock(pcp
);
4687 pcp_trylock_finish(UP_flags
);
4689 __count_zid_vm_events(PGALLOC
, zone_idx(zone
), nr_account
);
4690 zone_statistics(zonelist_zone(ac
.preferred_zoneref
), zone
, nr_account
);
4693 return nr_populated
;
4696 pcp_trylock_finish(UP_flags
);
4699 page
= __alloc_pages_noprof(gfp
, 0, preferred_nid
, nodemask
);
4702 list_add(&page
->lru
, page_list
);
4704 page_array
[nr_populated
] = page
;
4710 EXPORT_SYMBOL_GPL(alloc_pages_bulk_noprof
);
4713 * This is the 'heart' of the zoned buddy allocator.
4715 struct page
*__alloc_pages_noprof(gfp_t gfp
, unsigned int order
,
4716 int preferred_nid
, nodemask_t
*nodemask
)
4719 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4720 gfp_t alloc_gfp
; /* The gfp_t that was actually used for allocation */
4721 struct alloc_context ac
= { };
4724 * There are several places where we assume that the order value is sane
4725 * so bail out early if the request is out of bound.
4727 if (WARN_ON_ONCE_GFP(order
> MAX_PAGE_ORDER
, gfp
))
4730 gfp
&= gfp_allowed_mask
;
4732 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4733 * resp. GFP_NOIO which has to be inherited for all allocation requests
4734 * from a particular context which has been marked by
4735 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
4736 * movable zones are not used during allocation.
4738 gfp
= current_gfp_context(gfp
);
4740 if (!prepare_alloc_pages(gfp
, order
, preferred_nid
, nodemask
, &ac
,
4741 &alloc_gfp
, &alloc_flags
))
4745 * Forbid the first pass from falling back to types that fragment
4746 * memory until all local zones are considered.
4748 alloc_flags
|= alloc_flags_nofragment(zonelist_zone(ac
.preferred_zoneref
), gfp
);
4750 /* First allocation attempt */
4751 page
= get_page_from_freelist(alloc_gfp
, order
, alloc_flags
, &ac
);
4756 ac
.spread_dirty_pages
= false;
4759 * Restore the original nodemask if it was potentially replaced with
4760 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4762 ac
.nodemask
= nodemask
;
4764 page
= __alloc_pages_slowpath(alloc_gfp
, order
, &ac
);
4767 if (memcg_kmem_online() && (gfp
& __GFP_ACCOUNT
) && page
&&
4768 unlikely(__memcg_kmem_charge_page(page
, gfp
, order
) != 0)) {
4769 __free_pages(page
, order
);
4773 trace_mm_page_alloc(page
, order
, alloc_gfp
, ac
.migratetype
);
4774 kmsan_alloc_page(page
, order
, alloc_gfp
);
4778 EXPORT_SYMBOL(__alloc_pages_noprof
);
4780 struct folio
*__folio_alloc_noprof(gfp_t gfp
, unsigned int order
, int preferred_nid
,
4781 nodemask_t
*nodemask
)
4783 struct page
*page
= __alloc_pages_noprof(gfp
| __GFP_COMP
, order
,
4784 preferred_nid
, nodemask
);
4785 return page_rmappable_folio(page
);
4787 EXPORT_SYMBOL(__folio_alloc_noprof
);
4790 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4791 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4792 * you need to access high mem.
4794 unsigned long get_free_pages_noprof(gfp_t gfp_mask
, unsigned int order
)
4798 page
= alloc_pages_noprof(gfp_mask
& ~__GFP_HIGHMEM
, order
);
4801 return (unsigned long) page_address(page
);
4803 EXPORT_SYMBOL(get_free_pages_noprof
);
4805 unsigned long get_zeroed_page_noprof(gfp_t gfp_mask
)
4807 return get_free_pages_noprof(gfp_mask
| __GFP_ZERO
, 0);
4809 EXPORT_SYMBOL(get_zeroed_page_noprof
);
4812 * __free_pages - Free pages allocated with alloc_pages().
4813 * @page: The page pointer returned from alloc_pages().
4814 * @order: The order of the allocation.
4816 * This function can free multi-page allocations that are not compound
4817 * pages. It does not check that the @order passed in matches that of
4818 * the allocation, so it is easy to leak memory. Freeing more memory
4819 * than was allocated will probably emit a warning.
4821 * If the last reference to this page is speculative, it will be released
4822 * by put_page() which only frees the first page of a non-compound
4823 * allocation. To prevent the remaining pages from being leaked, we free
4824 * the subsequent pages here. If you want to use the page's reference
4825 * count to decide when to free the allocation, you should allocate a
4826 * compound page, and use put_page() instead of __free_pages().
4828 * Context: May be called in interrupt context or while holding a normal
4829 * spinlock, but not in NMI context or while holding a raw spinlock.
4831 void __free_pages(struct page
*page
, unsigned int order
)
4833 /* get PageHead before we drop reference */
4834 int head
= PageHead(page
);
4835 struct alloc_tag
*tag
= pgalloc_tag_get(page
);
4837 if (put_page_testzero(page
))
4838 free_unref_page(page
, order
);
4840 pgalloc_tag_sub_pages(tag
, (1 << order
) - 1);
4842 free_unref_page(page
+ (1 << order
), order
);
4845 EXPORT_SYMBOL(__free_pages
);
4847 void free_pages(unsigned long addr
, unsigned int order
)
4850 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4851 __free_pages(virt_to_page((void *)addr
), order
);
4855 EXPORT_SYMBOL(free_pages
);
4857 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4861 unsigned long nr
= DIV_ROUND_UP(size
, PAGE_SIZE
);
4862 struct page
*page
= virt_to_page((void *)addr
);
4863 struct page
*last
= page
+ nr
;
4865 split_page_owner(page
, order
, 0);
4866 pgalloc_tag_split(page_folio(page
), order
, 0);
4867 split_page_memcg(page
, order
, 0);
4868 while (page
< --last
)
4869 set_page_refcounted(last
);
4871 last
= page
+ (1UL << order
);
4872 for (page
+= nr
; page
< last
; page
++)
4873 __free_pages_ok(page
, 0, FPI_TO_TAIL
);
4875 return (void *)addr
;
4879 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4880 * @size: the number of bytes to allocate
4881 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4883 * This function is similar to alloc_pages(), except that it allocates the
4884 * minimum number of pages to satisfy the request. alloc_pages() can only
4885 * allocate memory in power-of-two pages.
4887 * This function is also limited by MAX_PAGE_ORDER.
4889 * Memory allocated by this function must be released by free_pages_exact().
4891 * Return: pointer to the allocated area or %NULL in case of error.
4893 void *alloc_pages_exact_noprof(size_t size
, gfp_t gfp_mask
)
4895 unsigned int order
= get_order(size
);
4898 if (WARN_ON_ONCE(gfp_mask
& (__GFP_COMP
| __GFP_HIGHMEM
)))
4899 gfp_mask
&= ~(__GFP_COMP
| __GFP_HIGHMEM
);
4901 addr
= get_free_pages_noprof(gfp_mask
, order
);
4902 return make_alloc_exact(addr
, order
, size
);
4904 EXPORT_SYMBOL(alloc_pages_exact_noprof
);
4907 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4909 * @nid: the preferred node ID where memory should be allocated
4910 * @size: the number of bytes to allocate
4911 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4913 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4916 * Return: pointer to the allocated area or %NULL in case of error.
4918 void * __meminit
alloc_pages_exact_nid_noprof(int nid
, size_t size
, gfp_t gfp_mask
)
4920 unsigned int order
= get_order(size
);
4923 if (WARN_ON_ONCE(gfp_mask
& (__GFP_COMP
| __GFP_HIGHMEM
)))
4924 gfp_mask
&= ~(__GFP_COMP
| __GFP_HIGHMEM
);
4926 p
= alloc_pages_node_noprof(nid
, gfp_mask
, order
);
4929 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4933 * free_pages_exact - release memory allocated via alloc_pages_exact()
4934 * @virt: the value returned by alloc_pages_exact.
4935 * @size: size of allocation, same value as passed to alloc_pages_exact().
4937 * Release the memory allocated by a previous call to alloc_pages_exact.
4939 void free_pages_exact(void *virt
, size_t size
)
4941 unsigned long addr
= (unsigned long)virt
;
4942 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4944 while (addr
< end
) {
4949 EXPORT_SYMBOL(free_pages_exact
);
4952 * nr_free_zone_pages - count number of pages beyond high watermark
4953 * @offset: The zone index of the highest zone
4955 * nr_free_zone_pages() counts the number of pages which are beyond the
4956 * high watermark within all zones at or below a given zone index. For each
4957 * zone, the number of pages is calculated as:
4959 * nr_free_zone_pages = managed_pages - high_pages
4961 * Return: number of pages beyond high watermark.
4963 static unsigned long nr_free_zone_pages(int offset
)
4968 /* Just pick one node, since fallback list is circular */
4969 unsigned long sum
= 0;
4971 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4973 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4974 unsigned long size
= zone_managed_pages(zone
);
4975 unsigned long high
= high_wmark_pages(zone
);
4984 * nr_free_buffer_pages - count number of pages beyond high watermark
4986 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4987 * watermark within ZONE_DMA and ZONE_NORMAL.
4989 * Return: number of pages beyond high watermark within ZONE_DMA and
4992 unsigned long nr_free_buffer_pages(void)
4994 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4996 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4998 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
5000 zoneref
->zone
= zone
;
5001 zoneref
->zone_idx
= zone_idx(zone
);
5005 * Builds allocation fallback zone lists.
5007 * Add all populated zones of a node to the zonelist.
5009 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
5012 enum zone_type zone_type
= MAX_NR_ZONES
;
5017 zone
= pgdat
->node_zones
+ zone_type
;
5018 if (populated_zone(zone
)) {
5019 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
5020 check_highest_zone(zone_type
);
5022 } while (zone_type
);
5029 static int __parse_numa_zonelist_order(char *s
)
5032 * We used to support different zonelists modes but they turned
5033 * out to be just not useful. Let's keep the warning in place
5034 * if somebody still use the cmd line parameter so that we do
5035 * not fail it silently
5037 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
5038 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
5044 static char numa_zonelist_order
[] = "Node";
5045 #define NUMA_ZONELIST_ORDER_LEN 16
5047 * sysctl handler for numa_zonelist_order
5049 static int numa_zonelist_order_handler(const struct ctl_table
*table
, int write
,
5050 void *buffer
, size_t *length
, loff_t
*ppos
)
5053 return __parse_numa_zonelist_order(buffer
);
5054 return proc_dostring(table
, write
, buffer
, length
, ppos
);
5057 static int node_load
[MAX_NUMNODES
];
5060 * find_next_best_node - find the next node that should appear in a given node's fallback list
5061 * @node: node whose fallback list we're appending
5062 * @used_node_mask: nodemask_t of already used nodes
5064 * We use a number of factors to determine which is the next node that should
5065 * appear on a given node's fallback list. The node should not have appeared
5066 * already in @node's fallback list, and it should be the next closest node
5067 * according to the distance array (which contains arbitrary distance values
5068 * from each node to each node in the system), and should also prefer nodes
5069 * with no CPUs, since presumably they'll have very little allocation pressure
5070 * on them otherwise.
5072 * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5074 int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5077 int min_val
= INT_MAX
;
5078 int best_node
= NUMA_NO_NODE
;
5081 * Use the local node if we haven't already, but for memoryless local
5082 * node, we should skip it and fall back to other nodes.
5084 if (!node_isset(node
, *used_node_mask
) && node_state(node
, N_MEMORY
)) {
5085 node_set(node
, *used_node_mask
);
5089 for_each_node_state(n
, N_MEMORY
) {
5091 /* Don't want a node to appear more than once */
5092 if (node_isset(n
, *used_node_mask
))
5095 /* Use the distance array to find the distance */
5096 val
= node_distance(node
, n
);
5098 /* Penalize nodes under us ("prefer the next node") */
5101 /* Give preference to headless and unused nodes */
5102 if (!cpumask_empty(cpumask_of_node(n
)))
5103 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5105 /* Slight preference for less loaded node */
5106 val
*= MAX_NUMNODES
;
5107 val
+= node_load
[n
];
5109 if (val
< min_val
) {
5116 node_set(best_node
, *used_node_mask
);
5123 * Build zonelists ordered by node and zones within node.
5124 * This results in maximum locality--normal zone overflows into local
5125 * DMA zone, if any--but risks exhausting DMA zone.
5127 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5130 struct zoneref
*zonerefs
;
5133 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5135 for (i
= 0; i
< nr_nodes
; i
++) {
5138 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5140 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5141 zonerefs
+= nr_zones
;
5143 zonerefs
->zone
= NULL
;
5144 zonerefs
->zone_idx
= 0;
5148 * Build __GFP_THISNODE zonelists
5150 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5152 struct zoneref
*zonerefs
;
5155 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5156 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5157 zonerefs
+= nr_zones
;
5158 zonerefs
->zone
= NULL
;
5159 zonerefs
->zone_idx
= 0;
5163 * Build zonelists ordered by zone and nodes within zones.
5164 * This results in conserving DMA zone[s] until all Normal memory is
5165 * exhausted, but results in overflowing to remote node while memory
5166 * may still exist in local DMA zone.
5169 static void build_zonelists(pg_data_t
*pgdat
)
5171 static int node_order
[MAX_NUMNODES
];
5172 int node
, nr_nodes
= 0;
5173 nodemask_t used_mask
= NODE_MASK_NONE
;
5174 int local_node
, prev_node
;
5176 /* NUMA-aware ordering of nodes */
5177 local_node
= pgdat
->node_id
;
5178 prev_node
= local_node
;
5180 memset(node_order
, 0, sizeof(node_order
));
5181 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5183 * We don't want to pressure a particular node.
5184 * So adding penalty to the first node in same
5185 * distance group to make it round-robin.
5187 if (node_distance(local_node
, node
) !=
5188 node_distance(local_node
, prev_node
))
5189 node_load
[node
] += 1;
5191 node_order
[nr_nodes
++] = node
;
5195 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5196 build_thisnode_zonelists(pgdat
);
5197 pr_info("Fallback order for Node %d: ", local_node
);
5198 for (node
= 0; node
< nr_nodes
; node
++)
5199 pr_cont("%d ", node_order
[node
]);
5203 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5205 * Return node id of node used for "local" allocations.
5206 * I.e., first node id of first zone in arg node's generic zonelist.
5207 * Used for initializing percpu 'numa_mem', which is used primarily
5208 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5210 int local_memory_node(int node
)
5214 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5215 gfp_zone(GFP_KERNEL
),
5217 return zonelist_node_idx(z
);
5221 static void setup_min_unmapped_ratio(void);
5222 static void setup_min_slab_ratio(void);
5223 #else /* CONFIG_NUMA */
5225 static void build_zonelists(pg_data_t
*pgdat
)
5227 struct zoneref
*zonerefs
;
5230 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5231 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5232 zonerefs
+= nr_zones
;
5234 zonerefs
->zone
= NULL
;
5235 zonerefs
->zone_idx
= 0;
5238 #endif /* CONFIG_NUMA */
5241 * Boot pageset table. One per cpu which is going to be used for all
5242 * zones and all nodes. The parameters will be set in such a way
5243 * that an item put on a list will immediately be handed over to
5244 * the buddy list. This is safe since pageset manipulation is done
5245 * with interrupts disabled.
5247 * The boot_pagesets must be kept even after bootup is complete for
5248 * unused processors and/or zones. They do play a role for bootstrapping
5249 * hotplugged processors.
5251 * zoneinfo_show() and maybe other functions do
5252 * not check if the processor is online before following the pageset pointer.
5253 * Other parts of the kernel may not check if the zone is available.
5255 static void per_cpu_pages_init(struct per_cpu_pages
*pcp
, struct per_cpu_zonestat
*pzstats
);
5256 /* These effectively disable the pcplists in the boot pageset completely */
5257 #define BOOT_PAGESET_HIGH 0
5258 #define BOOT_PAGESET_BATCH 1
5259 static DEFINE_PER_CPU(struct per_cpu_pages
, boot_pageset
);
5260 static DEFINE_PER_CPU(struct per_cpu_zonestat
, boot_zonestats
);
5262 static void __build_all_zonelists(void *data
)
5265 int __maybe_unused cpu
;
5266 pg_data_t
*self
= data
;
5267 unsigned long flags
;
5270 * The zonelist_update_seq must be acquired with irqsave because the
5271 * reader can be invoked from IRQ with GFP_ATOMIC.
5273 write_seqlock_irqsave(&zonelist_update_seq
, flags
);
5275 * Also disable synchronous printk() to prevent any printk() from
5276 * trying to hold port->lock, for
5277 * tty_insert_flip_string_and_push_buffer() on other CPU might be
5278 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
5280 printk_deferred_enter();
5283 memset(node_load
, 0, sizeof(node_load
));
5287 * This node is hotadded and no memory is yet present. So just
5288 * building zonelists is fine - no need to touch other nodes.
5290 if (self
&& !node_online(self
->node_id
)) {
5291 build_zonelists(self
);
5294 * All possible nodes have pgdat preallocated
5297 for_each_node(nid
) {
5298 pg_data_t
*pgdat
= NODE_DATA(nid
);
5300 build_zonelists(pgdat
);
5303 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5305 * We now know the "local memory node" for each node--
5306 * i.e., the node of the first zone in the generic zonelist.
5307 * Set up numa_mem percpu variable for on-line cpus. During
5308 * boot, only the boot cpu should be on-line; we'll init the
5309 * secondary cpus' numa_mem as they come on-line. During
5310 * node/memory hotplug, we'll fixup all on-line cpus.
5312 for_each_online_cpu(cpu
)
5313 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5317 printk_deferred_exit();
5318 write_sequnlock_irqrestore(&zonelist_update_seq
, flags
);
5321 static noinline
void __init
5322 build_all_zonelists_init(void)
5326 __build_all_zonelists(NULL
);
5329 * Initialize the boot_pagesets that are going to be used
5330 * for bootstrapping processors. The real pagesets for
5331 * each zone will be allocated later when the per cpu
5332 * allocator is available.
5334 * boot_pagesets are used also for bootstrapping offline
5335 * cpus if the system is already booted because the pagesets
5336 * are needed to initialize allocators on a specific cpu too.
5337 * F.e. the percpu allocator needs the page allocator which
5338 * needs the percpu allocator in order to allocate its pagesets
5339 * (a chicken-egg dilemma).
5341 for_each_possible_cpu(cpu
)
5342 per_cpu_pages_init(&per_cpu(boot_pageset
, cpu
), &per_cpu(boot_zonestats
, cpu
));
5344 mminit_verify_zonelist();
5345 cpuset_init_current_mems_allowed();
5349 * unless system_state == SYSTEM_BOOTING.
5351 * __ref due to call of __init annotated helper build_all_zonelists_init
5352 * [protected by SYSTEM_BOOTING].
5354 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5356 unsigned long vm_total_pages
;
5358 if (system_state
== SYSTEM_BOOTING
) {
5359 build_all_zonelists_init();
5361 __build_all_zonelists(pgdat
);
5362 /* cpuset refresh routine should be here */
5364 /* Get the number of free pages beyond high watermark in all zones. */
5365 vm_total_pages
= nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
5367 * Disable grouping by mobility if the number of pages in the
5368 * system is too low to allow the mechanism to work. It would be
5369 * more accurate, but expensive to check per-zone. This check is
5370 * made on memory-hotadd so a system can start with mobility
5371 * disabled and enable it later
5373 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5374 page_group_by_mobility_disabled
= 1;
5376 page_group_by_mobility_disabled
= 0;
5378 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n",
5380 str_off_on(page_group_by_mobility_disabled
),
5383 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5387 static int zone_batchsize(struct zone
*zone
)
5393 * The number of pages to batch allocate is either ~0.1%
5394 * of the zone or 1MB, whichever is smaller. The batch
5395 * size is striking a balance between allocation latency
5396 * and zone lock contention.
5398 batch
= min(zone_managed_pages(zone
) >> 10, SZ_1M
/ PAGE_SIZE
);
5399 batch
/= 4; /* We effectively *= 4 below */
5404 * Clamp the batch to a 2^n - 1 value. Having a power
5405 * of 2 value was found to be more likely to have
5406 * suboptimal cache aliasing properties in some cases.
5408 * For example if 2 tasks are alternately allocating
5409 * batches of pages, one task can end up with a lot
5410 * of pages of one half of the possible page colors
5411 * and the other with pages of the other colors.
5413 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5418 /* The deferral and batching of frees should be suppressed under NOMMU
5421 * The problem is that NOMMU needs to be able to allocate large chunks
5422 * of contiguous memory as there's no hardware page translation to
5423 * assemble apparent contiguous memory from discontiguous pages.
5425 * Queueing large contiguous runs of pages for batching, however,
5426 * causes the pages to actually be freed in smaller chunks. As there
5427 * can be a significant delay between the individual batches being
5428 * recycled, this leads to the once large chunks of space being
5429 * fragmented and becoming unavailable for high-order allocations.
5435 static int percpu_pagelist_high_fraction
;
5436 static int zone_highsize(struct zone
*zone
, int batch
, int cpu_online
,
5442 unsigned long total_pages
;
5444 if (!high_fraction
) {
5446 * By default, the high value of the pcp is based on the zone
5447 * low watermark so that if they are full then background
5448 * reclaim will not be started prematurely.
5450 total_pages
= low_wmark_pages(zone
);
5453 * If percpu_pagelist_high_fraction is configured, the high
5454 * value is based on a fraction of the managed pages in the
5457 total_pages
= zone_managed_pages(zone
) / high_fraction
;
5461 * Split the high value across all online CPUs local to the zone. Note
5462 * that early in boot that CPUs may not be online yet and that during
5463 * CPU hotplug that the cpumask is not yet updated when a CPU is being
5464 * onlined. For memory nodes that have no CPUs, split the high value
5465 * across all online CPUs to mitigate the risk that reclaim is triggered
5466 * prematurely due to pages stored on pcp lists.
5468 nr_split_cpus
= cpumask_weight(cpumask_of_node(zone_to_nid(zone
))) + cpu_online
;
5470 nr_split_cpus
= num_online_cpus();
5471 high
= total_pages
/ nr_split_cpus
;
5474 * Ensure high is at least batch*4. The multiple is based on the
5475 * historical relationship between high and batch.
5477 high
= max(high
, batch
<< 2);
5486 * pcp->high and pcp->batch values are related and generally batch is lower
5487 * than high. They are also related to pcp->count such that count is lower
5488 * than high, and as soon as it reaches high, the pcplist is flushed.
5490 * However, guaranteeing these relations at all times would require e.g. write
5491 * barriers here but also careful usage of read barriers at the read side, and
5492 * thus be prone to error and bad for performance. Thus the update only prevents
5493 * store tearing. Any new users of pcp->batch, pcp->high_min and pcp->high_max
5494 * should ensure they can cope with those fields changing asynchronously, and
5495 * fully trust only the pcp->count field on the local CPU with interrupts
5498 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5499 * outside of boot time (or some other assurance that no concurrent updaters
5502 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high_min
,
5503 unsigned long high_max
, unsigned long batch
)
5505 WRITE_ONCE(pcp
->batch
, batch
);
5506 WRITE_ONCE(pcp
->high_min
, high_min
);
5507 WRITE_ONCE(pcp
->high_max
, high_max
);
5510 static void per_cpu_pages_init(struct per_cpu_pages
*pcp
, struct per_cpu_zonestat
*pzstats
)
5514 memset(pcp
, 0, sizeof(*pcp
));
5515 memset(pzstats
, 0, sizeof(*pzstats
));
5517 spin_lock_init(&pcp
->lock
);
5518 for (pindex
= 0; pindex
< NR_PCP_LISTS
; pindex
++)
5519 INIT_LIST_HEAD(&pcp
->lists
[pindex
]);
5522 * Set batch and high values safe for a boot pageset. A true percpu
5523 * pageset's initialization will update them subsequently. Here we don't
5524 * need to be as careful as pageset_update() as nobody can access the
5527 pcp
->high_min
= BOOT_PAGESET_HIGH
;
5528 pcp
->high_max
= BOOT_PAGESET_HIGH
;
5529 pcp
->batch
= BOOT_PAGESET_BATCH
;
5530 pcp
->free_count
= 0;
5533 static void __zone_set_pageset_high_and_batch(struct zone
*zone
, unsigned long high_min
,
5534 unsigned long high_max
, unsigned long batch
)
5536 struct per_cpu_pages
*pcp
;
5539 for_each_possible_cpu(cpu
) {
5540 pcp
= per_cpu_ptr(zone
->per_cpu_pageset
, cpu
);
5541 pageset_update(pcp
, high_min
, high_max
, batch
);
5546 * Calculate and set new high and batch values for all per-cpu pagesets of a
5547 * zone based on the zone's size.
5549 static void zone_set_pageset_high_and_batch(struct zone
*zone
, int cpu_online
)
5551 int new_high_min
, new_high_max
, new_batch
;
5553 new_batch
= max(1, zone_batchsize(zone
));
5554 if (percpu_pagelist_high_fraction
) {
5555 new_high_min
= zone_highsize(zone
, new_batch
, cpu_online
,
5556 percpu_pagelist_high_fraction
);
5558 * PCP high is tuned manually, disable auto-tuning via
5559 * setting high_min and high_max to the manual value.
5561 new_high_max
= new_high_min
;
5563 new_high_min
= zone_highsize(zone
, new_batch
, cpu_online
, 0);
5564 new_high_max
= zone_highsize(zone
, new_batch
, cpu_online
,
5565 MIN_PERCPU_PAGELIST_HIGH_FRACTION
);
5568 if (zone
->pageset_high_min
== new_high_min
&&
5569 zone
->pageset_high_max
== new_high_max
&&
5570 zone
->pageset_batch
== new_batch
)
5573 zone
->pageset_high_min
= new_high_min
;
5574 zone
->pageset_high_max
= new_high_max
;
5575 zone
->pageset_batch
= new_batch
;
5577 __zone_set_pageset_high_and_batch(zone
, new_high_min
, new_high_max
,
5581 void __meminit
setup_zone_pageset(struct zone
*zone
)
5585 /* Size may be 0 on !SMP && !NUMA */
5586 if (sizeof(struct per_cpu_zonestat
) > 0)
5587 zone
->per_cpu_zonestats
= alloc_percpu(struct per_cpu_zonestat
);
5589 zone
->per_cpu_pageset
= alloc_percpu(struct per_cpu_pages
);
5590 for_each_possible_cpu(cpu
) {
5591 struct per_cpu_pages
*pcp
;
5592 struct per_cpu_zonestat
*pzstats
;
5594 pcp
= per_cpu_ptr(zone
->per_cpu_pageset
, cpu
);
5595 pzstats
= per_cpu_ptr(zone
->per_cpu_zonestats
, cpu
);
5596 per_cpu_pages_init(pcp
, pzstats
);
5599 zone_set_pageset_high_and_batch(zone
, 0);
5603 * The zone indicated has a new number of managed_pages; batch sizes and percpu
5604 * page high values need to be recalculated.
5606 static void zone_pcp_update(struct zone
*zone
, int cpu_online
)
5608 mutex_lock(&pcp_batch_high_lock
);
5609 zone_set_pageset_high_and_batch(zone
, cpu_online
);
5610 mutex_unlock(&pcp_batch_high_lock
);
5613 static void zone_pcp_update_cacheinfo(struct zone
*zone
, unsigned int cpu
)
5615 struct per_cpu_pages
*pcp
;
5616 struct cpu_cacheinfo
*cci
;
5618 pcp
= per_cpu_ptr(zone
->per_cpu_pageset
, cpu
);
5619 cci
= get_cpu_cacheinfo(cpu
);
5621 * If data cache slice of CPU is large enough, "pcp->batch"
5622 * pages can be preserved in PCP before draining PCP for
5623 * consecutive high-order pages freeing without allocation.
5624 * This can reduce zone lock contention without hurting
5625 * cache-hot pages sharing.
5627 spin_lock(&pcp
->lock
);
5628 if ((cci
->per_cpu_data_slice_size
>> PAGE_SHIFT
) > 3 * pcp
->batch
)
5629 pcp
->flags
|= PCPF_FREE_HIGH_BATCH
;
5631 pcp
->flags
&= ~PCPF_FREE_HIGH_BATCH
;
5632 spin_unlock(&pcp
->lock
);
5635 void setup_pcp_cacheinfo(unsigned int cpu
)
5639 for_each_populated_zone(zone
)
5640 zone_pcp_update_cacheinfo(zone
, cpu
);
5644 * Allocate per cpu pagesets and initialize them.
5645 * Before this call only boot pagesets were available.
5647 void __init
setup_per_cpu_pageset(void)
5649 struct pglist_data
*pgdat
;
5651 int __maybe_unused cpu
;
5653 for_each_populated_zone(zone
)
5654 setup_zone_pageset(zone
);
5658 * Unpopulated zones continue using the boot pagesets.
5659 * The numa stats for these pagesets need to be reset.
5660 * Otherwise, they will end up skewing the stats of
5661 * the nodes these zones are associated with.
5663 for_each_possible_cpu(cpu
) {
5664 struct per_cpu_zonestat
*pzstats
= &per_cpu(boot_zonestats
, cpu
);
5665 memset(pzstats
->vm_numa_event
, 0,
5666 sizeof(pzstats
->vm_numa_event
));
5670 for_each_online_pgdat(pgdat
)
5671 pgdat
->per_cpu_nodestats
=
5672 alloc_percpu(struct per_cpu_nodestat
);
5675 __meminit
void zone_pcp_init(struct zone
*zone
)
5678 * per cpu subsystem is not up at this point. The following code
5679 * relies on the ability of the linker to provide the
5680 * offset of a (static) per cpu variable into the per cpu area.
5682 zone
->per_cpu_pageset
= &boot_pageset
;
5683 zone
->per_cpu_zonestats
= &boot_zonestats
;
5684 zone
->pageset_high_min
= BOOT_PAGESET_HIGH
;
5685 zone
->pageset_high_max
= BOOT_PAGESET_HIGH
;
5686 zone
->pageset_batch
= BOOT_PAGESET_BATCH
;
5688 if (populated_zone(zone
))
5689 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone
->name
,
5690 zone
->present_pages
, zone_batchsize(zone
));
5693 void adjust_managed_page_count(struct page
*page
, long count
)
5695 atomic_long_add(count
, &page_zone(page
)->managed_pages
);
5696 totalram_pages_add(count
);
5698 EXPORT_SYMBOL(adjust_managed_page_count
);
5700 unsigned long free_reserved_area(void *start
, void *end
, int poison
, const char *s
)
5703 unsigned long pages
= 0;
5705 start
= (void *)PAGE_ALIGN((unsigned long)start
);
5706 end
= (void *)((unsigned long)end
& PAGE_MASK
);
5707 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
5708 struct page
*page
= virt_to_page(pos
);
5709 void *direct_map_addr
;
5712 * 'direct_map_addr' might be different from 'pos'
5713 * because some architectures' virt_to_page()
5714 * work with aliases. Getting the direct map
5715 * address ensures that we get a _writeable_
5716 * alias for the memset().
5718 direct_map_addr
= page_address(page
);
5720 * Perform a kasan-unchecked memset() since this memory
5721 * has not been initialized.
5723 direct_map_addr
= kasan_reset_tag(direct_map_addr
);
5724 if ((unsigned int)poison
<= 0xFF)
5725 memset(direct_map_addr
, poison
, PAGE_SIZE
);
5727 free_reserved_page(page
);
5731 pr_info("Freeing %s memory: %ldK\n", s
, K(pages
));
5736 void free_reserved_page(struct page
*page
)
5738 clear_page_tag_ref(page
);
5739 ClearPageReserved(page
);
5740 init_page_count(page
);
5742 adjust_managed_page_count(page
, 1);
5744 EXPORT_SYMBOL(free_reserved_page
);
5746 static int page_alloc_cpu_dead(unsigned int cpu
)
5750 lru_add_drain_cpu(cpu
);
5751 mlock_drain_remote(cpu
);
5755 * Spill the event counters of the dead processor
5756 * into the current processors event counters.
5757 * This artificially elevates the count of the current
5760 vm_events_fold_cpu(cpu
);
5763 * Zero the differential counters of the dead processor
5764 * so that the vm statistics are consistent.
5766 * This is only okay since the processor is dead and cannot
5767 * race with what we are doing.
5769 cpu_vm_stats_fold(cpu
);
5771 for_each_populated_zone(zone
)
5772 zone_pcp_update(zone
, 0);
5777 static int page_alloc_cpu_online(unsigned int cpu
)
5781 for_each_populated_zone(zone
)
5782 zone_pcp_update(zone
, 1);
5786 void __init
page_alloc_init_cpuhp(void)
5790 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC
,
5791 "mm/page_alloc:pcp",
5792 page_alloc_cpu_online
,
5793 page_alloc_cpu_dead
);
5798 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
5799 * or min_free_kbytes changes.
5801 static void calculate_totalreserve_pages(void)
5803 struct pglist_data
*pgdat
;
5804 unsigned long reserve_pages
= 0;
5805 enum zone_type i
, j
;
5807 for_each_online_pgdat(pgdat
) {
5809 pgdat
->totalreserve_pages
= 0;
5811 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5812 struct zone
*zone
= pgdat
->node_zones
+ i
;
5814 unsigned long managed_pages
= zone_managed_pages(zone
);
5816 /* Find valid and maximum lowmem_reserve in the zone */
5817 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5818 if (zone
->lowmem_reserve
[j
] > max
)
5819 max
= zone
->lowmem_reserve
[j
];
5822 /* we treat the high watermark as reserved pages. */
5823 max
+= high_wmark_pages(zone
);
5825 if (max
> managed_pages
)
5826 max
= managed_pages
;
5828 pgdat
->totalreserve_pages
+= max
;
5830 reserve_pages
+= max
;
5833 totalreserve_pages
= reserve_pages
;
5837 * setup_per_zone_lowmem_reserve - called whenever
5838 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
5839 * has a correct pages reserved value, so an adequate number of
5840 * pages are left in the zone after a successful __alloc_pages().
5842 static void setup_per_zone_lowmem_reserve(void)
5844 struct pglist_data
*pgdat
;
5845 enum zone_type i
, j
;
5847 for_each_online_pgdat(pgdat
) {
5848 for (i
= 0; i
< MAX_NR_ZONES
- 1; i
++) {
5849 struct zone
*zone
= &pgdat
->node_zones
[i
];
5850 int ratio
= sysctl_lowmem_reserve_ratio
[i
];
5851 bool clear
= !ratio
|| !zone_managed_pages(zone
);
5852 unsigned long managed_pages
= 0;
5854 for (j
= i
+ 1; j
< MAX_NR_ZONES
; j
++) {
5855 struct zone
*upper_zone
= &pgdat
->node_zones
[j
];
5856 bool empty
= !zone_managed_pages(upper_zone
);
5858 managed_pages
+= zone_managed_pages(upper_zone
);
5861 zone
->lowmem_reserve
[j
] = 0;
5863 zone
->lowmem_reserve
[j
] = managed_pages
/ ratio
;
5868 /* update totalreserve_pages */
5869 calculate_totalreserve_pages();
5872 static void __setup_per_zone_wmarks(void)
5874 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5875 unsigned long lowmem_pages
= 0;
5877 unsigned long flags
;
5879 /* Calculate total number of !ZONE_HIGHMEM and !ZONE_MOVABLE pages */
5880 for_each_zone(zone
) {
5881 if (!is_highmem(zone
) && zone_idx(zone
) != ZONE_MOVABLE
)
5882 lowmem_pages
+= zone_managed_pages(zone
);
5885 for_each_zone(zone
) {
5888 spin_lock_irqsave(&zone
->lock
, flags
);
5889 tmp
= (u64
)pages_min
* zone_managed_pages(zone
);
5890 tmp
= div64_ul(tmp
, lowmem_pages
);
5891 if (is_highmem(zone
) || zone_idx(zone
) == ZONE_MOVABLE
) {
5893 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5894 * need highmem and movable zones pages, so cap pages_min
5895 * to a small value here.
5897 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5898 * deltas control async page reclaim, and so should
5899 * not be capped for highmem and movable zones.
5901 unsigned long min_pages
;
5903 min_pages
= zone_managed_pages(zone
) / 1024;
5904 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
5905 zone
->_watermark
[WMARK_MIN
] = min_pages
;
5908 * If it's a lowmem zone, reserve a number of pages
5909 * proportionate to the zone's size.
5911 zone
->_watermark
[WMARK_MIN
] = tmp
;
5915 * Set the kswapd watermarks distance according to the
5916 * scale factor in proportion to available memory, but
5917 * ensure a minimum size on small systems.
5919 tmp
= max_t(u64
, tmp
>> 2,
5920 mult_frac(zone_managed_pages(zone
),
5921 watermark_scale_factor
, 10000));
5923 zone
->watermark_boost
= 0;
5924 zone
->_watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
5925 zone
->_watermark
[WMARK_HIGH
] = low_wmark_pages(zone
) + tmp
;
5926 zone
->_watermark
[WMARK_PROMO
] = high_wmark_pages(zone
) + tmp
;
5928 spin_unlock_irqrestore(&zone
->lock
, flags
);
5931 /* update totalreserve_pages */
5932 calculate_totalreserve_pages();
5936 * setup_per_zone_wmarks - called when min_free_kbytes changes
5937 * or when memory is hot-{added|removed}
5939 * Ensures that the watermark[min,low,high] values for each zone are set
5940 * correctly with respect to min_free_kbytes.
5942 void setup_per_zone_wmarks(void)
5945 static DEFINE_SPINLOCK(lock
);
5948 __setup_per_zone_wmarks();
5952 * The watermark size have changed so update the pcpu batch
5953 * and high limits or the limits may be inappropriate.
5956 zone_pcp_update(zone
, 0);
5960 * Initialise min_free_kbytes.
5962 * For small machines we want it small (128k min). For large machines
5963 * we want it large (256MB max). But it is not linear, because network
5964 * bandwidth does not increase linearly with machine size. We use
5966 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5967 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5983 void calculate_min_free_kbytes(void)
5985 unsigned long lowmem_kbytes
;
5986 int new_min_free_kbytes
;
5988 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5989 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5991 if (new_min_free_kbytes
> user_min_free_kbytes
)
5992 min_free_kbytes
= clamp(new_min_free_kbytes
, 128, 262144);
5994 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
5995 new_min_free_kbytes
, user_min_free_kbytes
);
5999 int __meminit
init_per_zone_wmark_min(void)
6001 calculate_min_free_kbytes();
6002 setup_per_zone_wmarks();
6003 refresh_zone_stat_thresholds();
6004 setup_per_zone_lowmem_reserve();
6007 setup_min_unmapped_ratio();
6008 setup_min_slab_ratio();
6011 khugepaged_min_free_kbytes_update();
6015 postcore_initcall(init_per_zone_wmark_min
)
6018 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6019 * that we can call two helper functions whenever min_free_kbytes
6022 static int min_free_kbytes_sysctl_handler(const struct ctl_table
*table
, int write
,
6023 void *buffer
, size_t *length
, loff_t
*ppos
)
6027 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6032 user_min_free_kbytes
= min_free_kbytes
;
6033 setup_per_zone_wmarks();
6038 static int watermark_scale_factor_sysctl_handler(const struct ctl_table
*table
, int write
,
6039 void *buffer
, size_t *length
, loff_t
*ppos
)
6043 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6048 setup_per_zone_wmarks();
6054 static void setup_min_unmapped_ratio(void)
6059 for_each_online_pgdat(pgdat
)
6060 pgdat
->min_unmapped_pages
= 0;
6063 zone
->zone_pgdat
->min_unmapped_pages
+= (zone_managed_pages(zone
) *
6064 sysctl_min_unmapped_ratio
) / 100;
6068 static int sysctl_min_unmapped_ratio_sysctl_handler(const struct ctl_table
*table
, int write
,
6069 void *buffer
, size_t *length
, loff_t
*ppos
)
6073 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6077 setup_min_unmapped_ratio();
6082 static void setup_min_slab_ratio(void)
6087 for_each_online_pgdat(pgdat
)
6088 pgdat
->min_slab_pages
= 0;
6091 zone
->zone_pgdat
->min_slab_pages
+= (zone_managed_pages(zone
) *
6092 sysctl_min_slab_ratio
) / 100;
6095 static int sysctl_min_slab_ratio_sysctl_handler(const struct ctl_table
*table
, int write
,
6096 void *buffer
, size_t *length
, loff_t
*ppos
)
6100 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6104 setup_min_slab_ratio();
6111 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6112 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6113 * whenever sysctl_lowmem_reserve_ratio changes.
6115 * The reserve ratio obviously has absolutely no relation with the
6116 * minimum watermarks. The lowmem reserve ratio can only make sense
6117 * if in function of the boot time zone sizes.
6119 static int lowmem_reserve_ratio_sysctl_handler(const struct ctl_table
*table
,
6120 int write
, void *buffer
, size_t *length
, loff_t
*ppos
)
6124 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6126 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6127 if (sysctl_lowmem_reserve_ratio
[i
] < 1)
6128 sysctl_lowmem_reserve_ratio
[i
] = 0;
6131 setup_per_zone_lowmem_reserve();
6136 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
6137 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6138 * pagelist can have before it gets flushed back to buddy allocator.
6140 static int percpu_pagelist_high_fraction_sysctl_handler(const struct ctl_table
*table
,
6141 int write
, void *buffer
, size_t *length
, loff_t
*ppos
)
6144 int old_percpu_pagelist_high_fraction
;
6147 mutex_lock(&pcp_batch_high_lock
);
6148 old_percpu_pagelist_high_fraction
= percpu_pagelist_high_fraction
;
6150 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
6151 if (!write
|| ret
< 0)
6154 /* Sanity checking to avoid pcp imbalance */
6155 if (percpu_pagelist_high_fraction
&&
6156 percpu_pagelist_high_fraction
< MIN_PERCPU_PAGELIST_HIGH_FRACTION
) {
6157 percpu_pagelist_high_fraction
= old_percpu_pagelist_high_fraction
;
6163 if (percpu_pagelist_high_fraction
== old_percpu_pagelist_high_fraction
)
6166 for_each_populated_zone(zone
)
6167 zone_set_pageset_high_and_batch(zone
, 0);
6169 mutex_unlock(&pcp_batch_high_lock
);
6173 static struct ctl_table page_alloc_sysctl_table
[] = {
6175 .procname
= "min_free_kbytes",
6176 .data
= &min_free_kbytes
,
6177 .maxlen
= sizeof(min_free_kbytes
),
6179 .proc_handler
= min_free_kbytes_sysctl_handler
,
6180 .extra1
= SYSCTL_ZERO
,
6183 .procname
= "watermark_boost_factor",
6184 .data
= &watermark_boost_factor
,
6185 .maxlen
= sizeof(watermark_boost_factor
),
6187 .proc_handler
= proc_dointvec_minmax
,
6188 .extra1
= SYSCTL_ZERO
,
6191 .procname
= "watermark_scale_factor",
6192 .data
= &watermark_scale_factor
,
6193 .maxlen
= sizeof(watermark_scale_factor
),
6195 .proc_handler
= watermark_scale_factor_sysctl_handler
,
6196 .extra1
= SYSCTL_ONE
,
6197 .extra2
= SYSCTL_THREE_THOUSAND
,
6200 .procname
= "percpu_pagelist_high_fraction",
6201 .data
= &percpu_pagelist_high_fraction
,
6202 .maxlen
= sizeof(percpu_pagelist_high_fraction
),
6204 .proc_handler
= percpu_pagelist_high_fraction_sysctl_handler
,
6205 .extra1
= SYSCTL_ZERO
,
6208 .procname
= "lowmem_reserve_ratio",
6209 .data
= &sysctl_lowmem_reserve_ratio
,
6210 .maxlen
= sizeof(sysctl_lowmem_reserve_ratio
),
6212 .proc_handler
= lowmem_reserve_ratio_sysctl_handler
,
6216 .procname
= "numa_zonelist_order",
6217 .data
= &numa_zonelist_order
,
6218 .maxlen
= NUMA_ZONELIST_ORDER_LEN
,
6220 .proc_handler
= numa_zonelist_order_handler
,
6223 .procname
= "min_unmapped_ratio",
6224 .data
= &sysctl_min_unmapped_ratio
,
6225 .maxlen
= sizeof(sysctl_min_unmapped_ratio
),
6227 .proc_handler
= sysctl_min_unmapped_ratio_sysctl_handler
,
6228 .extra1
= SYSCTL_ZERO
,
6229 .extra2
= SYSCTL_ONE_HUNDRED
,
6232 .procname
= "min_slab_ratio",
6233 .data
= &sysctl_min_slab_ratio
,
6234 .maxlen
= sizeof(sysctl_min_slab_ratio
),
6236 .proc_handler
= sysctl_min_slab_ratio_sysctl_handler
,
6237 .extra1
= SYSCTL_ZERO
,
6238 .extra2
= SYSCTL_ONE_HUNDRED
,
6243 void __init
page_alloc_sysctl_init(void)
6245 register_sysctl_init("vm", page_alloc_sysctl_table
);
6248 #ifdef CONFIG_CONTIG_ALLOC
6249 /* Usage: See admin-guide/dynamic-debug-howto.rst */
6250 static void alloc_contig_dump_pages(struct list_head
*page_list
)
6252 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor
, "migrate failure");
6254 if (DYNAMIC_DEBUG_BRANCH(descriptor
)) {
6258 list_for_each_entry(page
, page_list
, lru
)
6259 dump_page(page
, "migration failure");
6264 * [start, end) must belong to a single zone.
6265 * @migratetype: using migratetype to filter the type of migration in
6266 * trace_mm_alloc_contig_migrate_range_info.
6268 int __alloc_contig_migrate_range(struct compact_control
*cc
,
6269 unsigned long start
, unsigned long end
,
6272 /* This function is based on compact_zone() from compaction.c. */
6273 unsigned int nr_reclaimed
;
6274 unsigned long pfn
= start
;
6275 unsigned int tries
= 0;
6277 struct migration_target_control mtc
= {
6278 .nid
= zone_to_nid(cc
->zone
),
6279 .gfp_mask
= GFP_USER
| __GFP_MOVABLE
| __GFP_RETRY_MAYFAIL
,
6280 .reason
= MR_CONTIG_RANGE
,
6283 unsigned long total_mapped
= 0;
6284 unsigned long total_migrated
= 0;
6285 unsigned long total_reclaimed
= 0;
6287 lru_cache_disable();
6289 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
6290 if (fatal_signal_pending(current
)) {
6295 if (list_empty(&cc
->migratepages
)) {
6296 cc
->nr_migratepages
= 0;
6297 ret
= isolate_migratepages_range(cc
, pfn
, end
);
6298 if (ret
&& ret
!= -EAGAIN
)
6300 pfn
= cc
->migrate_pfn
;
6302 } else if (++tries
== 5) {
6307 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
6309 cc
->nr_migratepages
-= nr_reclaimed
;
6311 if (trace_mm_alloc_contig_migrate_range_info_enabled()) {
6312 total_reclaimed
+= nr_reclaimed
;
6313 list_for_each_entry(page
, &cc
->migratepages
, lru
) {
6314 struct folio
*folio
= page_folio(page
);
6316 total_mapped
+= folio_mapped(folio
) *
6317 folio_nr_pages(folio
);
6321 ret
= migrate_pages(&cc
->migratepages
, alloc_migration_target
,
6322 NULL
, (unsigned long)&mtc
, cc
->mode
, MR_CONTIG_RANGE
, NULL
);
6324 if (trace_mm_alloc_contig_migrate_range_info_enabled() && !ret
)
6325 total_migrated
+= cc
->nr_migratepages
;
6328 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
6329 * to retry again over this error, so do the same here.
6337 if (!(cc
->gfp_mask
& __GFP_NOWARN
) && ret
== -EBUSY
)
6338 alloc_contig_dump_pages(&cc
->migratepages
);
6339 putback_movable_pages(&cc
->migratepages
);
6342 trace_mm_alloc_contig_migrate_range_info(start
, end
, migratetype
,
6346 return (ret
< 0) ? ret
: 0;
6349 static void split_free_pages(struct list_head
*list
)
6353 for (order
= 0; order
< NR_PAGE_ORDERS
; order
++) {
6354 struct page
*page
, *next
;
6355 int nr_pages
= 1 << order
;
6357 list_for_each_entry_safe(page
, next
, &list
[order
], lru
) {
6360 post_alloc_hook(page
, order
, __GFP_MOVABLE
);
6364 split_page(page
, order
);
6366 /* Add all subpages to the order-0 head, in sequence. */
6367 list_del(&page
->lru
);
6368 for (i
= 0; i
< nr_pages
; i
++)
6369 list_add_tail(&page
[i
].lru
, &list
[0]);
6375 * alloc_contig_range() -- tries to allocate given range of pages
6376 * @start: start PFN to allocate
6377 * @end: one-past-the-last PFN to allocate
6378 * @migratetype: migratetype of the underlying pageblocks (either
6379 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
6380 * in range must have the same migratetype and it must
6381 * be either of the two.
6382 * @gfp_mask: GFP mask to use during compaction
6384 * The PFN range does not have to be pageblock aligned. The PFN range must
6385 * belong to a single zone.
6387 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
6388 * pageblocks in the range. Once isolated, the pageblocks should not
6389 * be modified by others.
6391 * Return: zero on success or negative error code. On success all
6392 * pages which PFN is in [start, end) are allocated for the caller and
6393 * need to be freed with free_contig_range().
6395 int alloc_contig_range_noprof(unsigned long start
, unsigned long end
,
6396 unsigned migratetype
, gfp_t gfp_mask
)
6398 unsigned long outer_start
, outer_end
;
6401 struct compact_control cc
= {
6402 .nr_migratepages
= 0,
6404 .zone
= page_zone(pfn_to_page(start
)),
6405 .mode
= MIGRATE_SYNC
,
6406 .ignore_skip_hint
= true,
6407 .no_set_skip_hint
= true,
6408 .gfp_mask
= current_gfp_context(gfp_mask
),
6409 .alloc_contig
= true,
6411 INIT_LIST_HEAD(&cc
.migratepages
);
6414 * What we do here is we mark all pageblocks in range as
6415 * MIGRATE_ISOLATE. Because pageblock and max order pages may
6416 * have different sizes, and due to the way page allocator
6417 * work, start_isolate_page_range() has special handlings for this.
6419 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
6420 * migrate the pages from an unaligned range (ie. pages that
6421 * we are interested in). This will put all the pages in
6422 * range back to page allocator as MIGRATE_ISOLATE.
6424 * When this is done, we take the pages in range from page
6425 * allocator removing them from the buddy system. This way
6426 * page allocator will never consider using them.
6428 * This lets us mark the pageblocks back as
6429 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
6430 * aligned range but not in the unaligned, original range are
6431 * put back to page allocator so that buddy can use them.
6434 ret
= start_isolate_page_range(start
, end
, migratetype
, 0, gfp_mask
);
6438 drain_all_pages(cc
.zone
);
6441 * In case of -EBUSY, we'd like to know which page causes problem.
6442 * So, just fall through. test_pages_isolated() has a tracepoint
6443 * which will report the busy page.
6445 * It is possible that busy pages could become available before
6446 * the call to test_pages_isolated, and the range will actually be
6447 * allocated. So, if we fall through be sure to clear ret so that
6448 * -EBUSY is not accidentally used or returned to caller.
6450 ret
= __alloc_contig_migrate_range(&cc
, start
, end
, migratetype
);
6451 if (ret
&& ret
!= -EBUSY
)
6456 * Pages from [start, end) are within a pageblock_nr_pages
6457 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
6458 * more, all pages in [start, end) are free in page allocator.
6459 * What we are going to do is to allocate all pages from
6460 * [start, end) (that is remove them from page allocator).
6462 * The only problem is that pages at the beginning and at the
6463 * end of interesting range may be not aligned with pages that
6464 * page allocator holds, ie. they can be part of higher order
6465 * pages. Because of this, we reserve the bigger range and
6466 * once this is done free the pages we are not interested in.
6468 * We don't have to hold zone->lock here because the pages are
6469 * isolated thus they won't get removed from buddy.
6471 outer_start
= find_large_buddy(start
);
6473 /* Make sure the range is really isolated. */
6474 if (test_pages_isolated(outer_start
, end
, 0)) {
6479 /* Grab isolated pages from freelists. */
6480 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
6486 if (!(gfp_mask
& __GFP_COMP
)) {
6487 split_free_pages(cc
.freepages
);
6489 /* Free head and tail (if any) */
6490 if (start
!= outer_start
)
6491 free_contig_range(outer_start
, start
- outer_start
);
6492 if (end
!= outer_end
)
6493 free_contig_range(end
, outer_end
- end
);
6494 } else if (start
== outer_start
&& end
== outer_end
&& is_power_of_2(end
- start
)) {
6495 struct page
*head
= pfn_to_page(start
);
6496 int order
= ilog2(end
- start
);
6498 check_new_pages(head
, order
);
6499 prep_new_page(head
, order
, gfp_mask
, 0);
6502 WARN(true, "PFN range: requested [%lu, %lu), allocated [%lu, %lu)\n",
6503 start
, end
, outer_start
, outer_end
);
6506 undo_isolate_page_range(start
, end
, migratetype
);
6509 EXPORT_SYMBOL(alloc_contig_range_noprof
);
6511 static int __alloc_contig_pages(unsigned long start_pfn
,
6512 unsigned long nr_pages
, gfp_t gfp_mask
)
6514 unsigned long end_pfn
= start_pfn
+ nr_pages
;
6516 return alloc_contig_range_noprof(start_pfn
, end_pfn
, MIGRATE_MOVABLE
,
6520 static bool pfn_range_valid_contig(struct zone
*z
, unsigned long start_pfn
,
6521 unsigned long nr_pages
)
6523 unsigned long i
, end_pfn
= start_pfn
+ nr_pages
;
6526 for (i
= start_pfn
; i
< end_pfn
; i
++) {
6527 page
= pfn_to_online_page(i
);
6531 if (page_zone(page
) != z
)
6534 if (PageReserved(page
))
6543 static bool zone_spans_last_pfn(const struct zone
*zone
,
6544 unsigned long start_pfn
, unsigned long nr_pages
)
6546 unsigned long last_pfn
= start_pfn
+ nr_pages
- 1;
6548 return zone_spans_pfn(zone
, last_pfn
);
6552 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
6553 * @nr_pages: Number of contiguous pages to allocate
6554 * @gfp_mask: GFP mask to limit search and used during compaction
6556 * @nodemask: Mask for other possible nodes
6558 * This routine is a wrapper around alloc_contig_range(). It scans over zones
6559 * on an applicable zonelist to find a contiguous pfn range which can then be
6560 * tried for allocation with alloc_contig_range(). This routine is intended
6561 * for allocation requests which can not be fulfilled with the buddy allocator.
6563 * The allocated memory is always aligned to a page boundary. If nr_pages is a
6564 * power of two, then allocated range is also guaranteed to be aligned to same
6565 * nr_pages (e.g. 1GB request would be aligned to 1GB).
6567 * Allocated pages can be freed with free_contig_range() or by manually calling
6568 * __free_page() on each allocated page.
6570 * Return: pointer to contiguous pages on success, or NULL if not successful.
6572 struct page
*alloc_contig_pages_noprof(unsigned long nr_pages
, gfp_t gfp_mask
,
6573 int nid
, nodemask_t
*nodemask
)
6575 unsigned long ret
, pfn
, flags
;
6576 struct zonelist
*zonelist
;
6580 zonelist
= node_zonelist(nid
, gfp_mask
);
6581 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
6582 gfp_zone(gfp_mask
), nodemask
) {
6583 spin_lock_irqsave(&zone
->lock
, flags
);
6585 pfn
= ALIGN(zone
->zone_start_pfn
, nr_pages
);
6586 while (zone_spans_last_pfn(zone
, pfn
, nr_pages
)) {
6587 if (pfn_range_valid_contig(zone
, pfn
, nr_pages
)) {
6589 * We release the zone lock here because
6590 * alloc_contig_range() will also lock the zone
6591 * at some point. If there's an allocation
6592 * spinning on this lock, it may win the race
6593 * and cause alloc_contig_range() to fail...
6595 spin_unlock_irqrestore(&zone
->lock
, flags
);
6596 ret
= __alloc_contig_pages(pfn
, nr_pages
,
6599 return pfn_to_page(pfn
);
6600 spin_lock_irqsave(&zone
->lock
, flags
);
6604 spin_unlock_irqrestore(&zone
->lock
, flags
);
6608 #endif /* CONFIG_CONTIG_ALLOC */
6610 void free_contig_range(unsigned long pfn
, unsigned long nr_pages
)
6612 unsigned long count
= 0;
6613 struct folio
*folio
= pfn_folio(pfn
);
6615 if (folio_test_large(folio
)) {
6616 int expected
= folio_nr_pages(folio
);
6618 if (nr_pages
== expected
)
6621 WARN(true, "PFN %lu: nr_pages %lu != expected %d\n",
6622 pfn
, nr_pages
, expected
);
6626 for (; nr_pages
--; pfn
++) {
6627 struct page
*page
= pfn_to_page(pfn
);
6629 count
+= page_count(page
) != 1;
6632 WARN(count
!= 0, "%lu pages are still in use!\n", count
);
6634 EXPORT_SYMBOL(free_contig_range
);
6637 * Effectively disable pcplists for the zone by setting the high limit to 0
6638 * and draining all cpus. A concurrent page freeing on another CPU that's about
6639 * to put the page on pcplist will either finish before the drain and the page
6640 * will be drained, or observe the new high limit and skip the pcplist.
6642 * Must be paired with a call to zone_pcp_enable().
6644 void zone_pcp_disable(struct zone
*zone
)
6646 mutex_lock(&pcp_batch_high_lock
);
6647 __zone_set_pageset_high_and_batch(zone
, 0, 0, 1);
6648 __drain_all_pages(zone
, true);
6651 void zone_pcp_enable(struct zone
*zone
)
6653 __zone_set_pageset_high_and_batch(zone
, zone
->pageset_high_min
,
6654 zone
->pageset_high_max
, zone
->pageset_batch
);
6655 mutex_unlock(&pcp_batch_high_lock
);
6658 void zone_pcp_reset(struct zone
*zone
)
6661 struct per_cpu_zonestat
*pzstats
;
6663 if (zone
->per_cpu_pageset
!= &boot_pageset
) {
6664 for_each_online_cpu(cpu
) {
6665 pzstats
= per_cpu_ptr(zone
->per_cpu_zonestats
, cpu
);
6666 drain_zonestat(zone
, pzstats
);
6668 free_percpu(zone
->per_cpu_pageset
);
6669 zone
->per_cpu_pageset
= &boot_pageset
;
6670 if (zone
->per_cpu_zonestats
!= &boot_zonestats
) {
6671 free_percpu(zone
->per_cpu_zonestats
);
6672 zone
->per_cpu_zonestats
= &boot_zonestats
;
6677 #ifdef CONFIG_MEMORY_HOTREMOVE
6679 * All pages in the range must be in a single zone, must not contain holes,
6680 * must span full sections, and must be isolated before calling this function.
6682 * Returns the number of managed (non-PageOffline()) pages in the range: the
6683 * number of pages for which memory offlining code must adjust managed page
6684 * counters using adjust_managed_page_count().
6686 unsigned long __offline_isolated_pages(unsigned long start_pfn
,
6687 unsigned long end_pfn
)
6689 unsigned long already_offline
= 0, flags
;
6690 unsigned long pfn
= start_pfn
;
6695 offline_mem_sections(pfn
, end_pfn
);
6696 zone
= page_zone(pfn_to_page(pfn
));
6697 spin_lock_irqsave(&zone
->lock
, flags
);
6698 while (pfn
< end_pfn
) {
6699 page
= pfn_to_page(pfn
);
6701 * The HWPoisoned page may be not in buddy system, and
6702 * page_count() is not 0.
6704 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
6709 * At this point all remaining PageOffline() pages have a
6710 * reference count of 0 and can simply be skipped.
6712 if (PageOffline(page
)) {
6713 BUG_ON(page_count(page
));
6714 BUG_ON(PageBuddy(page
));
6720 BUG_ON(page_count(page
));
6721 BUG_ON(!PageBuddy(page
));
6722 VM_WARN_ON(get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
);
6723 order
= buddy_order(page
);
6724 del_page_from_free_list(page
, zone
, order
, MIGRATE_ISOLATE
);
6725 pfn
+= (1 << order
);
6727 spin_unlock_irqrestore(&zone
->lock
, flags
);
6729 return end_pfn
- start_pfn
- already_offline
;
6734 * This function returns a stable result only if called under zone lock.
6736 bool is_free_buddy_page(const struct page
*page
)
6738 unsigned long pfn
= page_to_pfn(page
);
6741 for (order
= 0; order
< NR_PAGE_ORDERS
; order
++) {
6742 const struct page
*head
= page
- (pfn
& ((1 << order
) - 1));
6744 if (PageBuddy(head
) &&
6745 buddy_order_unsafe(head
) >= order
)
6749 return order
<= MAX_PAGE_ORDER
;
6751 EXPORT_SYMBOL(is_free_buddy_page
);
6753 #ifdef CONFIG_MEMORY_FAILURE
6754 static inline void add_to_free_list(struct page
*page
, struct zone
*zone
,
6755 unsigned int order
, int migratetype
,
6758 __add_to_free_list(page
, zone
, order
, migratetype
, tail
);
6759 account_freepages(zone
, 1 << order
, migratetype
);
6763 * Break down a higher-order page in sub-pages, and keep our target out of
6766 static void break_down_buddy_pages(struct zone
*zone
, struct page
*page
,
6767 struct page
*target
, int low
, int high
,
6770 unsigned long size
= 1 << high
;
6771 struct page
*current_buddy
;
6773 while (high
> low
) {
6777 if (target
>= &page
[size
]) {
6778 current_buddy
= page
;
6781 current_buddy
= page
+ size
;
6784 if (set_page_guard(zone
, current_buddy
, high
))
6787 add_to_free_list(current_buddy
, zone
, high
, migratetype
, false);
6788 set_buddy_order(current_buddy
, high
);
6793 * Take a page that will be marked as poisoned off the buddy allocator.
6795 bool take_page_off_buddy(struct page
*page
)
6797 struct zone
*zone
= page_zone(page
);
6798 unsigned long pfn
= page_to_pfn(page
);
6799 unsigned long flags
;
6803 spin_lock_irqsave(&zone
->lock
, flags
);
6804 for (order
= 0; order
< NR_PAGE_ORDERS
; order
++) {
6805 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
6806 int page_order
= buddy_order(page_head
);
6808 if (PageBuddy(page_head
) && page_order
>= order
) {
6809 unsigned long pfn_head
= page_to_pfn(page_head
);
6810 int migratetype
= get_pfnblock_migratetype(page_head
,
6813 del_page_from_free_list(page_head
, zone
, page_order
,
6815 break_down_buddy_pages(zone
, page_head
, page
, 0,
6816 page_order
, migratetype
);
6817 SetPageHWPoisonTakenOff(page
);
6821 if (page_count(page_head
) > 0)
6824 spin_unlock_irqrestore(&zone
->lock
, flags
);
6829 * Cancel takeoff done by take_page_off_buddy().
6831 bool put_page_back_buddy(struct page
*page
)
6833 struct zone
*zone
= page_zone(page
);
6834 unsigned long flags
;
6837 spin_lock_irqsave(&zone
->lock
, flags
);
6838 if (put_page_testzero(page
)) {
6839 unsigned long pfn
= page_to_pfn(page
);
6840 int migratetype
= get_pfnblock_migratetype(page
, pfn
);
6842 ClearPageHWPoisonTakenOff(page
);
6843 __free_one_page(page
, pfn
, zone
, 0, migratetype
, FPI_NONE
);
6844 if (TestClearPageHWPoison(page
)) {
6848 spin_unlock_irqrestore(&zone
->lock
, flags
);
6854 #ifdef CONFIG_ZONE_DMA
6855 bool has_managed_dma(void)
6857 struct pglist_data
*pgdat
;
6859 for_each_online_pgdat(pgdat
) {
6860 struct zone
*zone
= &pgdat
->node_zones
[ZONE_DMA
];
6862 if (managed_zone(zone
))
6867 #endif /* CONFIG_ZONE_DMA */
6869 #ifdef CONFIG_UNACCEPTED_MEMORY
6871 /* Counts number of zones with unaccepted pages. */
6872 static DEFINE_STATIC_KEY_FALSE(zones_with_unaccepted_pages
);
6874 static bool lazy_accept
= true;
6876 static int __init
accept_memory_parse(char *p
)
6878 if (!strcmp(p
, "lazy")) {
6881 } else if (!strcmp(p
, "eager")) {
6882 lazy_accept
= false;
6888 early_param("accept_memory", accept_memory_parse
);
6890 static bool page_contains_unaccepted(struct page
*page
, unsigned int order
)
6892 phys_addr_t start
= page_to_phys(page
);
6894 return range_contains_unaccepted_memory(start
, PAGE_SIZE
<< order
);
6897 static void __accept_page(struct zone
*zone
, unsigned long *flags
,
6902 list_del(&page
->lru
);
6903 last
= list_empty(&zone
->unaccepted_pages
);
6905 account_freepages(zone
, -MAX_ORDER_NR_PAGES
, MIGRATE_MOVABLE
);
6906 __mod_zone_page_state(zone
, NR_UNACCEPTED
, -MAX_ORDER_NR_PAGES
);
6907 __ClearPageUnaccepted(page
);
6908 spin_unlock_irqrestore(&zone
->lock
, *flags
);
6910 accept_memory(page_to_phys(page
), PAGE_SIZE
<< MAX_PAGE_ORDER
);
6912 __free_pages_ok(page
, MAX_PAGE_ORDER
, FPI_TO_TAIL
);
6915 static_branch_dec(&zones_with_unaccepted_pages
);
6918 void accept_page(struct page
*page
)
6920 struct zone
*zone
= page_zone(page
);
6921 unsigned long flags
;
6923 spin_lock_irqsave(&zone
->lock
, flags
);
6924 if (!PageUnaccepted(page
)) {
6925 spin_unlock_irqrestore(&zone
->lock
, flags
);
6929 /* Unlocks zone->lock */
6930 __accept_page(zone
, &flags
, page
);
6933 static bool try_to_accept_memory_one(struct zone
*zone
)
6935 unsigned long flags
;
6938 spin_lock_irqsave(&zone
->lock
, flags
);
6939 page
= list_first_entry_or_null(&zone
->unaccepted_pages
,
6942 spin_unlock_irqrestore(&zone
->lock
, flags
);
6946 /* Unlocks zone->lock */
6947 __accept_page(zone
, &flags
, page
);
6952 static inline bool has_unaccepted_memory(void)
6954 return static_branch_unlikely(&zones_with_unaccepted_pages
);
6957 static bool cond_accept_memory(struct zone
*zone
, unsigned int order
)
6962 if (!has_unaccepted_memory())
6965 if (list_empty(&zone
->unaccepted_pages
))
6968 /* How much to accept to get to promo watermark? */
6969 to_accept
= promo_wmark_pages(zone
) -
6970 (zone_page_state(zone
, NR_FREE_PAGES
) -
6971 __zone_watermark_unusable_free(zone
, order
, 0) -
6972 zone_page_state(zone
, NR_UNACCEPTED
));
6974 while (to_accept
> 0) {
6975 if (!try_to_accept_memory_one(zone
))
6978 to_accept
-= MAX_ORDER_NR_PAGES
;
6984 static bool __free_unaccepted(struct page
*page
)
6986 struct zone
*zone
= page_zone(page
);
6987 unsigned long flags
;
6993 spin_lock_irqsave(&zone
->lock
, flags
);
6994 first
= list_empty(&zone
->unaccepted_pages
);
6995 list_add_tail(&page
->lru
, &zone
->unaccepted_pages
);
6996 account_freepages(zone
, MAX_ORDER_NR_PAGES
, MIGRATE_MOVABLE
);
6997 __mod_zone_page_state(zone
, NR_UNACCEPTED
, MAX_ORDER_NR_PAGES
);
6998 __SetPageUnaccepted(page
);
6999 spin_unlock_irqrestore(&zone
->lock
, flags
);
7002 static_branch_inc(&zones_with_unaccepted_pages
);
7009 static bool page_contains_unaccepted(struct page
*page
, unsigned int order
)
7014 static bool cond_accept_memory(struct zone
*zone
, unsigned int order
)
7019 static bool __free_unaccepted(struct page
*page
)
7025 #endif /* CONFIG_UNACCEPTED_MEMORY */