1 // SPDX-License-Identifier: GPL-2.0-only
3 * mm/percpu.c - percpu memory allocator
5 * Copyright (C) 2009 SUSE Linux Products GmbH
6 * Copyright (C) 2009 Tejun Heo <tj@kernel.org>
8 * Copyright (C) 2017 Facebook Inc.
9 * Copyright (C) 2017 Dennis Zhou <dennis@kernel.org>
11 * The percpu allocator handles both static and dynamic areas. Percpu
12 * areas are allocated in chunks which are divided into units. There is
13 * a 1-to-1 mapping for units to possible cpus. These units are grouped
14 * based on NUMA properties of the machine.
17 * ------------------- ------------------- ------------
18 * | u0 | u1 | u2 | u3 | | u0 | u1 | u2 | u3 | | u0 | u1 | u
19 * ------------------- ...... ------------------- .... ------------
21 * Allocation is done by offsets into a unit's address space. Ie., an
22 * area of 512 bytes at 6k in c1 occupies 512 bytes at 6k in c1:u0,
23 * c1:u1, c1:u2, etc. On NUMA machines, the mapping may be non-linear
24 * and even sparse. Access is handled by configuring percpu base
25 * registers according to the cpu to unit mappings and offsetting the
26 * base address using pcpu_unit_size.
28 * There is special consideration for the first chunk which must handle
29 * the static percpu variables in the kernel image as allocation services
30 * are not online yet. In short, the first chunk is structured like so:
32 * <Static | [Reserved] | Dynamic>
34 * The static data is copied from the original section managed by the
35 * linker. The reserved section, if non-zero, primarily manages static
36 * percpu variables from kernel modules. Finally, the dynamic section
37 * takes care of normal allocations.
39 * The allocator organizes chunks into lists according to free size and
40 * memcg-awareness. To make a percpu allocation memcg-aware the __GFP_ACCOUNT
41 * flag should be passed. All memcg-aware allocations are sharing one set
42 * of chunks and all unaccounted allocations and allocations performed
43 * by processes belonging to the root memory cgroup are using the second set.
45 * The allocator tries to allocate from the fullest chunk first. Each chunk
46 * is managed by a bitmap with metadata blocks. The allocation map is updated
47 * on every allocation and free to reflect the current state while the boundary
48 * map is only updated on allocation. Each metadata block contains
49 * information to help mitigate the need to iterate over large portions
50 * of the bitmap. The reverse mapping from page to chunk is stored in
51 * the page's index. Lastly, units are lazily backed and grow in unison.
53 * There is a unique conversion that goes on here between bytes and bits.
54 * Each bit represents a fragment of size PCPU_MIN_ALLOC_SIZE. The chunk
55 * tracks the number of pages it is responsible for in nr_pages. Helper
56 * functions are used to convert from between the bytes, bits, and blocks.
57 * All hints are managed in bits unless explicitly stated.
59 * To use this allocator, arch code should do the following:
61 * - define __addr_to_pcpu_ptr() and __pcpu_ptr_to_addr() to translate
62 * regular address to percpu pointer and back if they need to be
63 * different from the default
65 * - use pcpu_setup_first_chunk() during percpu area initialization to
66 * setup the first chunk containing the kernel static percpu area
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
71 #include <linux/bitmap.h>
72 #include <linux/cpumask.h>
73 #include <linux/memblock.h>
74 #include <linux/err.h>
75 #include <linux/list.h>
76 #include <linux/log2.h>
78 #include <linux/module.h>
79 #include <linux/mutex.h>
80 #include <linux/percpu.h>
81 #include <linux/pfn.h>
82 #include <linux/slab.h>
83 #include <linux/spinlock.h>
84 #include <linux/vmalloc.h>
85 #include <linux/workqueue.h>
86 #include <linux/kmemleak.h>
87 #include <linux/sched.h>
88 #include <linux/sched/mm.h>
89 #include <linux/memcontrol.h>
91 #include <asm/cacheflush.h>
92 #include <asm/sections.h>
93 #include <asm/tlbflush.h>
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/percpu.h>
99 #include "percpu-internal.h"
102 * The slots are sorted by the size of the biggest continuous free area.
103 * 1-31 bytes share the same slot.
105 #define PCPU_SLOT_BASE_SHIFT 5
106 /* chunks in slots below this are subject to being sidelined on failed alloc */
107 #define PCPU_SLOT_FAIL_THRESHOLD 3
109 #define PCPU_EMPTY_POP_PAGES_LOW 2
110 #define PCPU_EMPTY_POP_PAGES_HIGH 4
113 /* default addr <-> pcpu_ptr mapping, override in asm/percpu.h if necessary */
114 #ifndef __addr_to_pcpu_ptr
115 #define __addr_to_pcpu_ptr(addr) \
116 (void __percpu *)((unsigned long)(addr) - \
117 (unsigned long)pcpu_base_addr + \
118 (unsigned long)__per_cpu_start)
120 #ifndef __pcpu_ptr_to_addr
121 #define __pcpu_ptr_to_addr(ptr) \
122 (void __force *)((unsigned long)(ptr) + \
123 (unsigned long)pcpu_base_addr - \
124 (unsigned long)__per_cpu_start)
126 #else /* CONFIG_SMP */
127 /* on UP, it's always identity mapped */
128 #define __addr_to_pcpu_ptr(addr) (void __percpu *)(addr)
129 #define __pcpu_ptr_to_addr(ptr) (void __force *)(ptr)
130 #endif /* CONFIG_SMP */
132 static int pcpu_unit_pages __ro_after_init
;
133 static int pcpu_unit_size __ro_after_init
;
134 static int pcpu_nr_units __ro_after_init
;
135 static int pcpu_atom_size __ro_after_init
;
136 int pcpu_nr_slots __ro_after_init
;
137 static int pcpu_free_slot __ro_after_init
;
138 int pcpu_sidelined_slot __ro_after_init
;
139 int pcpu_to_depopulate_slot __ro_after_init
;
140 static size_t pcpu_chunk_struct_size __ro_after_init
;
142 /* cpus with the lowest and highest unit addresses */
143 static unsigned int pcpu_low_unit_cpu __ro_after_init
;
144 static unsigned int pcpu_high_unit_cpu __ro_after_init
;
146 /* the address of the first chunk which starts with the kernel static area */
147 void *pcpu_base_addr __ro_after_init
;
149 static const int *pcpu_unit_map __ro_after_init
; /* cpu -> unit */
150 const unsigned long *pcpu_unit_offsets __ro_after_init
; /* cpu -> unit offset */
152 /* group information, used for vm allocation */
153 static int pcpu_nr_groups __ro_after_init
;
154 static const unsigned long *pcpu_group_offsets __ro_after_init
;
155 static const size_t *pcpu_group_sizes __ro_after_init
;
158 * The first chunk which always exists. Note that unlike other
159 * chunks, this one can be allocated and mapped in several different
160 * ways and thus often doesn't live in the vmalloc area.
162 struct pcpu_chunk
*pcpu_first_chunk __ro_after_init
;
165 * Optional reserved chunk. This chunk reserves part of the first
166 * chunk and serves it for reserved allocations. When the reserved
167 * region doesn't exist, the following variable is NULL.
169 struct pcpu_chunk
*pcpu_reserved_chunk __ro_after_init
;
171 DEFINE_SPINLOCK(pcpu_lock
); /* all internal data structures */
172 static DEFINE_MUTEX(pcpu_alloc_mutex
); /* chunk create/destroy, [de]pop, map ext */
174 struct list_head
*pcpu_chunk_lists __ro_after_init
; /* chunk list slots */
177 * The number of empty populated pages, protected by pcpu_lock.
178 * The reserved chunk doesn't contribute to the count.
180 int pcpu_nr_empty_pop_pages
;
183 * The number of populated pages in use by the allocator, protected by
184 * pcpu_lock. This number is kept per a unit per chunk (i.e. when a page gets
185 * allocated/deallocated, it is allocated/deallocated in all units of a chunk
186 * and increments/decrements this count by 1).
188 static unsigned long pcpu_nr_populated
;
191 * Balance work is used to populate or destroy chunks asynchronously. We
192 * try to keep the number of populated free pages between
193 * PCPU_EMPTY_POP_PAGES_LOW and HIGH for atomic allocations and at most one
196 static void pcpu_balance_workfn(struct work_struct
*work
);
197 static DECLARE_WORK(pcpu_balance_work
, pcpu_balance_workfn
);
198 static bool pcpu_async_enabled __read_mostly
;
199 static bool pcpu_atomic_alloc_failed
;
201 static void pcpu_schedule_balance_work(void)
203 if (pcpu_async_enabled
)
204 schedule_work(&pcpu_balance_work
);
208 * pcpu_addr_in_chunk - check if the address is served from this chunk
209 * @chunk: chunk of interest
210 * @addr: percpu address
213 * True if the address is served from this chunk.
215 static bool pcpu_addr_in_chunk(struct pcpu_chunk
*chunk
, void *addr
)
217 void *start_addr
, *end_addr
;
222 start_addr
= chunk
->base_addr
+ chunk
->start_offset
;
223 end_addr
= chunk
->base_addr
+ chunk
->nr_pages
* PAGE_SIZE
-
226 return addr
>= start_addr
&& addr
< end_addr
;
229 static int __pcpu_size_to_slot(int size
)
231 int highbit
= fls(size
); /* size is in bytes */
232 return max(highbit
- PCPU_SLOT_BASE_SHIFT
+ 2, 1);
235 static int pcpu_size_to_slot(int size
)
237 if (size
== pcpu_unit_size
)
238 return pcpu_free_slot
;
239 return __pcpu_size_to_slot(size
);
242 static int pcpu_chunk_slot(const struct pcpu_chunk
*chunk
)
244 const struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
246 if (chunk
->free_bytes
< PCPU_MIN_ALLOC_SIZE
||
247 chunk_md
->contig_hint
== 0)
250 return pcpu_size_to_slot(chunk_md
->contig_hint
* PCPU_MIN_ALLOC_SIZE
);
253 /* set the pointer to a chunk in a page struct */
254 static void pcpu_set_page_chunk(struct page
*page
, struct pcpu_chunk
*pcpu
)
256 page
->private = (unsigned long)pcpu
;
259 /* obtain pointer to a chunk from a page struct */
260 static struct pcpu_chunk
*pcpu_get_page_chunk(struct page
*page
)
262 return (struct pcpu_chunk
*)page
->private;
265 static int __maybe_unused
pcpu_page_idx(unsigned int cpu
, int page_idx
)
267 return pcpu_unit_map
[cpu
] * pcpu_unit_pages
+ page_idx
;
270 static unsigned long pcpu_unit_page_offset(unsigned int cpu
, int page_idx
)
272 return pcpu_unit_offsets
[cpu
] + (page_idx
<< PAGE_SHIFT
);
275 static unsigned long pcpu_chunk_addr(struct pcpu_chunk
*chunk
,
276 unsigned int cpu
, int page_idx
)
278 return (unsigned long)chunk
->base_addr
+
279 pcpu_unit_page_offset(cpu
, page_idx
);
283 * The following are helper functions to help access bitmaps and convert
284 * between bitmap offsets to address offsets.
286 static unsigned long *pcpu_index_alloc_map(struct pcpu_chunk
*chunk
, int index
)
288 return chunk
->alloc_map
+
289 (index
* PCPU_BITMAP_BLOCK_BITS
/ BITS_PER_LONG
);
292 static unsigned long pcpu_off_to_block_index(int off
)
294 return off
/ PCPU_BITMAP_BLOCK_BITS
;
297 static unsigned long pcpu_off_to_block_off(int off
)
299 return off
& (PCPU_BITMAP_BLOCK_BITS
- 1);
302 static unsigned long pcpu_block_off_to_off(int index
, int off
)
304 return index
* PCPU_BITMAP_BLOCK_BITS
+ off
;
308 * pcpu_check_block_hint - check against the contig hint
309 * @block: block of interest
310 * @bits: size of allocation
311 * @align: alignment of area (max PAGE_SIZE)
313 * Check to see if the allocation can fit in the block's contig hint.
314 * Note, a chunk uses the same hints as a block so this can also check against
315 * the chunk's contig hint.
317 static bool pcpu_check_block_hint(struct pcpu_block_md
*block
, int bits
,
320 int bit_off
= ALIGN(block
->contig_hint_start
, align
) -
321 block
->contig_hint_start
;
323 return bit_off
+ bits
<= block
->contig_hint
;
327 * pcpu_next_hint - determine which hint to use
328 * @block: block of interest
329 * @alloc_bits: size of allocation
331 * This determines if we should scan based on the scan_hint or first_free.
332 * In general, we want to scan from first_free to fulfill allocations by
333 * first fit. However, if we know a scan_hint at position scan_hint_start
334 * cannot fulfill an allocation, we can begin scanning from there knowing
335 * the contig_hint will be our fallback.
337 static int pcpu_next_hint(struct pcpu_block_md
*block
, int alloc_bits
)
340 * The three conditions below determine if we can skip past the
341 * scan_hint. First, does the scan hint exist. Second, is the
342 * contig_hint after the scan_hint (possibly not true iff
343 * contig_hint == scan_hint). Third, is the allocation request
344 * larger than the scan_hint.
346 if (block
->scan_hint
&&
347 block
->contig_hint_start
> block
->scan_hint_start
&&
348 alloc_bits
> block
->scan_hint
)
349 return block
->scan_hint_start
+ block
->scan_hint
;
351 return block
->first_free
;
355 * pcpu_next_md_free_region - finds the next hint free area
356 * @chunk: chunk of interest
357 * @bit_off: chunk offset
358 * @bits: size of free area
360 * Helper function for pcpu_for_each_md_free_region. It checks
361 * block->contig_hint and performs aggregation across blocks to find the
362 * next hint. It modifies bit_off and bits in-place to be consumed in the
365 static void pcpu_next_md_free_region(struct pcpu_chunk
*chunk
, int *bit_off
,
368 int i
= pcpu_off_to_block_index(*bit_off
);
369 int block_off
= pcpu_off_to_block_off(*bit_off
);
370 struct pcpu_block_md
*block
;
373 for (block
= chunk
->md_blocks
+ i
; i
< pcpu_chunk_nr_blocks(chunk
);
375 /* handles contig area across blocks */
377 *bits
+= block
->left_free
;
378 if (block
->left_free
== PCPU_BITMAP_BLOCK_BITS
)
384 * This checks three things. First is there a contig_hint to
385 * check. Second, have we checked this hint before by
386 * comparing the block_off. Third, is this the same as the
387 * right contig hint. In the last case, it spills over into
388 * the next block and should be handled by the contig area
389 * across blocks code.
391 *bits
= block
->contig_hint
;
392 if (*bits
&& block
->contig_hint_start
>= block_off
&&
393 *bits
+ block
->contig_hint_start
< PCPU_BITMAP_BLOCK_BITS
) {
394 *bit_off
= pcpu_block_off_to_off(i
,
395 block
->contig_hint_start
);
398 /* reset to satisfy the second predicate above */
401 *bits
= block
->right_free
;
402 *bit_off
= (i
+ 1) * PCPU_BITMAP_BLOCK_BITS
- block
->right_free
;
407 * pcpu_next_fit_region - finds fit areas for a given allocation request
408 * @chunk: chunk of interest
409 * @alloc_bits: size of allocation
410 * @align: alignment of area (max PAGE_SIZE)
411 * @bit_off: chunk offset
412 * @bits: size of free area
414 * Finds the next free region that is viable for use with a given size and
415 * alignment. This only returns if there is a valid area to be used for this
416 * allocation. block->first_free is returned if the allocation request fits
417 * within the block to see if the request can be fulfilled prior to the contig
420 static void pcpu_next_fit_region(struct pcpu_chunk
*chunk
, int alloc_bits
,
421 int align
, int *bit_off
, int *bits
)
423 int i
= pcpu_off_to_block_index(*bit_off
);
424 int block_off
= pcpu_off_to_block_off(*bit_off
);
425 struct pcpu_block_md
*block
;
428 for (block
= chunk
->md_blocks
+ i
; i
< pcpu_chunk_nr_blocks(chunk
);
430 /* handles contig area across blocks */
432 *bits
+= block
->left_free
;
433 if (*bits
>= alloc_bits
)
435 if (block
->left_free
== PCPU_BITMAP_BLOCK_BITS
)
439 /* check block->contig_hint */
440 *bits
= ALIGN(block
->contig_hint_start
, align
) -
441 block
->contig_hint_start
;
443 * This uses the block offset to determine if this has been
444 * checked in the prior iteration.
446 if (block
->contig_hint
&&
447 block
->contig_hint_start
>= block_off
&&
448 block
->contig_hint
>= *bits
+ alloc_bits
) {
449 int start
= pcpu_next_hint(block
, alloc_bits
);
451 *bits
+= alloc_bits
+ block
->contig_hint_start
-
453 *bit_off
= pcpu_block_off_to_off(i
, start
);
456 /* reset to satisfy the second predicate above */
459 *bit_off
= ALIGN(PCPU_BITMAP_BLOCK_BITS
- block
->right_free
,
461 *bits
= PCPU_BITMAP_BLOCK_BITS
- *bit_off
;
462 *bit_off
= pcpu_block_off_to_off(i
, *bit_off
);
463 if (*bits
>= alloc_bits
)
467 /* no valid offsets were found - fail condition */
468 *bit_off
= pcpu_chunk_map_bits(chunk
);
472 * Metadata free area iterators. These perform aggregation of free areas
473 * based on the metadata blocks and return the offset @bit_off and size in
474 * bits of the free area @bits. pcpu_for_each_fit_region only returns when
475 * a fit is found for the allocation request.
477 #define pcpu_for_each_md_free_region(chunk, bit_off, bits) \
478 for (pcpu_next_md_free_region((chunk), &(bit_off), &(bits)); \
479 (bit_off) < pcpu_chunk_map_bits((chunk)); \
480 (bit_off) += (bits) + 1, \
481 pcpu_next_md_free_region((chunk), &(bit_off), &(bits)))
483 #define pcpu_for_each_fit_region(chunk, alloc_bits, align, bit_off, bits) \
484 for (pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
486 (bit_off) < pcpu_chunk_map_bits((chunk)); \
487 (bit_off) += (bits), \
488 pcpu_next_fit_region((chunk), (alloc_bits), (align), &(bit_off), \
492 * pcpu_mem_zalloc - allocate memory
493 * @size: bytes to allocate
494 * @gfp: allocation flags
496 * Allocate @size bytes. If @size is smaller than PAGE_SIZE,
497 * kzalloc() is used; otherwise, the equivalent of vzalloc() is used.
498 * This is to facilitate passing through whitelisted flags. The
499 * returned memory is always zeroed.
502 * Pointer to the allocated area on success, NULL on failure.
504 static void *pcpu_mem_zalloc(size_t size
, gfp_t gfp
)
506 if (WARN_ON_ONCE(!slab_is_available()))
509 if (size
<= PAGE_SIZE
)
510 return kzalloc(size
, gfp
);
512 return __vmalloc(size
, gfp
| __GFP_ZERO
);
516 * pcpu_mem_free - free memory
517 * @ptr: memory to free
519 * Free @ptr. @ptr should have been allocated using pcpu_mem_zalloc().
521 static void pcpu_mem_free(void *ptr
)
526 static void __pcpu_chunk_move(struct pcpu_chunk
*chunk
, int slot
,
529 if (chunk
!= pcpu_reserved_chunk
) {
531 list_move(&chunk
->list
, &pcpu_chunk_lists
[slot
]);
533 list_move_tail(&chunk
->list
, &pcpu_chunk_lists
[slot
]);
537 static void pcpu_chunk_move(struct pcpu_chunk
*chunk
, int slot
)
539 __pcpu_chunk_move(chunk
, slot
, true);
543 * pcpu_chunk_relocate - put chunk in the appropriate chunk slot
544 * @chunk: chunk of interest
545 * @oslot: the previous slot it was on
547 * This function is called after an allocation or free changed @chunk.
548 * New slot according to the changed state is determined and @chunk is
549 * moved to the slot. Note that the reserved chunk is never put on
555 static void pcpu_chunk_relocate(struct pcpu_chunk
*chunk
, int oslot
)
557 int nslot
= pcpu_chunk_slot(chunk
);
559 /* leave isolated chunks in-place */
564 __pcpu_chunk_move(chunk
, nslot
, oslot
< nslot
);
567 static void pcpu_isolate_chunk(struct pcpu_chunk
*chunk
)
569 lockdep_assert_held(&pcpu_lock
);
571 if (!chunk
->isolated
) {
572 chunk
->isolated
= true;
573 pcpu_nr_empty_pop_pages
-= chunk
->nr_empty_pop_pages
;
575 list_move(&chunk
->list
, &pcpu_chunk_lists
[pcpu_to_depopulate_slot
]);
578 static void pcpu_reintegrate_chunk(struct pcpu_chunk
*chunk
)
580 lockdep_assert_held(&pcpu_lock
);
582 if (chunk
->isolated
) {
583 chunk
->isolated
= false;
584 pcpu_nr_empty_pop_pages
+= chunk
->nr_empty_pop_pages
;
585 pcpu_chunk_relocate(chunk
, -1);
590 * pcpu_update_empty_pages - update empty page counters
591 * @chunk: chunk of interest
592 * @nr: nr of empty pages
594 * This is used to keep track of the empty pages now based on the premise
595 * a md_block covers a page. The hint update functions recognize if a block
596 * is made full or broken to calculate deltas for keeping track of free pages.
598 static inline void pcpu_update_empty_pages(struct pcpu_chunk
*chunk
, int nr
)
600 chunk
->nr_empty_pop_pages
+= nr
;
601 if (chunk
!= pcpu_reserved_chunk
&& !chunk
->isolated
)
602 pcpu_nr_empty_pop_pages
+= nr
;
606 * pcpu_region_overlap - determines if two regions overlap
607 * @a: start of first region, inclusive
608 * @b: end of first region, exclusive
609 * @x: start of second region, inclusive
610 * @y: end of second region, exclusive
612 * This is used to determine if the hint region [a, b) overlaps with the
613 * allocated region [x, y).
615 static inline bool pcpu_region_overlap(int a
, int b
, int x
, int y
)
617 return (a
< y
) && (x
< b
);
621 * pcpu_block_update - updates a block given a free area
622 * @block: block of interest
623 * @start: start offset in block
624 * @end: end offset in block
626 * Updates a block given a known free area. The region [start, end) is
627 * expected to be the entirety of the free area within a block. Chooses
628 * the best starting offset if the contig hints are equal.
630 static void pcpu_block_update(struct pcpu_block_md
*block
, int start
, int end
)
632 int contig
= end
- start
;
634 block
->first_free
= min(block
->first_free
, start
);
636 block
->left_free
= contig
;
638 if (end
== block
->nr_bits
)
639 block
->right_free
= contig
;
641 if (contig
> block
->contig_hint
) {
642 /* promote the old contig_hint to be the new scan_hint */
643 if (start
> block
->contig_hint_start
) {
644 if (block
->contig_hint
> block
->scan_hint
) {
645 block
->scan_hint_start
=
646 block
->contig_hint_start
;
647 block
->scan_hint
= block
->contig_hint
;
648 } else if (start
< block
->scan_hint_start
) {
650 * The old contig_hint == scan_hint. But, the
651 * new contig is larger so hold the invariant
652 * scan_hint_start < contig_hint_start.
654 block
->scan_hint
= 0;
657 block
->scan_hint
= 0;
659 block
->contig_hint_start
= start
;
660 block
->contig_hint
= contig
;
661 } else if (contig
== block
->contig_hint
) {
662 if (block
->contig_hint_start
&&
664 __ffs(start
) > __ffs(block
->contig_hint_start
))) {
665 /* start has a better alignment so use it */
666 block
->contig_hint_start
= start
;
667 if (start
< block
->scan_hint_start
&&
668 block
->contig_hint
> block
->scan_hint
)
669 block
->scan_hint
= 0;
670 } else if (start
> block
->scan_hint_start
||
671 block
->contig_hint
> block
->scan_hint
) {
673 * Knowing contig == contig_hint, update the scan_hint
674 * if it is farther than or larger than the current
677 block
->scan_hint_start
= start
;
678 block
->scan_hint
= contig
;
682 * The region is smaller than the contig_hint. So only update
683 * the scan_hint if it is larger than or equal and farther than
684 * the current scan_hint.
686 if ((start
< block
->contig_hint_start
&&
687 (contig
> block
->scan_hint
||
688 (contig
== block
->scan_hint
&&
689 start
> block
->scan_hint_start
)))) {
690 block
->scan_hint_start
= start
;
691 block
->scan_hint
= contig
;
697 * pcpu_block_update_scan - update a block given a free area from a scan
698 * @chunk: chunk of interest
699 * @bit_off: chunk offset
700 * @bits: size of free area
702 * Finding the final allocation spot first goes through pcpu_find_block_fit()
703 * to find a block that can hold the allocation and then pcpu_alloc_area()
704 * where a scan is used. When allocations require specific alignments,
705 * we can inadvertently create holes which will not be seen in the alloc
708 * This takes a given free area hole and updates a block as it may change the
709 * scan_hint. We need to scan backwards to ensure we don't miss free bits
712 static void pcpu_block_update_scan(struct pcpu_chunk
*chunk
, int bit_off
,
715 int s_off
= pcpu_off_to_block_off(bit_off
);
716 int e_off
= s_off
+ bits
;
718 struct pcpu_block_md
*block
;
720 if (e_off
> PCPU_BITMAP_BLOCK_BITS
)
723 s_index
= pcpu_off_to_block_index(bit_off
);
724 block
= chunk
->md_blocks
+ s_index
;
726 /* scan backwards in case of alignment skipping free bits */
727 l_bit
= find_last_bit(pcpu_index_alloc_map(chunk
, s_index
), s_off
);
728 s_off
= (s_off
== l_bit
) ? 0 : l_bit
+ 1;
730 pcpu_block_update(block
, s_off
, e_off
);
734 * pcpu_chunk_refresh_hint - updates metadata about a chunk
735 * @chunk: chunk of interest
736 * @full_scan: if we should scan from the beginning
738 * Iterates over the metadata blocks to find the largest contig area.
739 * A full scan can be avoided on the allocation path as this is triggered
740 * if we broke the contig_hint. In doing so, the scan_hint will be before
741 * the contig_hint or after if the scan_hint == contig_hint. This cannot
742 * be prevented on freeing as we want to find the largest area possibly
745 static void pcpu_chunk_refresh_hint(struct pcpu_chunk
*chunk
, bool full_scan
)
747 struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
750 /* promote scan_hint to contig_hint */
751 if (!full_scan
&& chunk_md
->scan_hint
) {
752 bit_off
= chunk_md
->scan_hint_start
+ chunk_md
->scan_hint
;
753 chunk_md
->contig_hint_start
= chunk_md
->scan_hint_start
;
754 chunk_md
->contig_hint
= chunk_md
->scan_hint
;
755 chunk_md
->scan_hint
= 0;
757 bit_off
= chunk_md
->first_free
;
758 chunk_md
->contig_hint
= 0;
762 pcpu_for_each_md_free_region(chunk
, bit_off
, bits
)
763 pcpu_block_update(chunk_md
, bit_off
, bit_off
+ bits
);
767 * pcpu_block_refresh_hint
768 * @chunk: chunk of interest
769 * @index: index of the metadata block
771 * Scans over the block beginning at first_free and updates the block
772 * metadata accordingly.
774 static void pcpu_block_refresh_hint(struct pcpu_chunk
*chunk
, int index
)
776 struct pcpu_block_md
*block
= chunk
->md_blocks
+ index
;
777 unsigned long *alloc_map
= pcpu_index_alloc_map(chunk
, index
);
778 unsigned int start
, end
; /* region start, region end */
780 /* promote scan_hint to contig_hint */
781 if (block
->scan_hint
) {
782 start
= block
->scan_hint_start
+ block
->scan_hint
;
783 block
->contig_hint_start
= block
->scan_hint_start
;
784 block
->contig_hint
= block
->scan_hint
;
785 block
->scan_hint
= 0;
787 start
= block
->first_free
;
788 block
->contig_hint
= 0;
791 block
->right_free
= 0;
793 /* iterate over free areas and update the contig hints */
794 for_each_clear_bitrange_from(start
, end
, alloc_map
, PCPU_BITMAP_BLOCK_BITS
)
795 pcpu_block_update(block
, start
, end
);
799 * pcpu_block_update_hint_alloc - update hint on allocation path
800 * @chunk: chunk of interest
801 * @bit_off: chunk offset
802 * @bits: size of request
804 * Updates metadata for the allocation path. The metadata only has to be
805 * refreshed by a full scan iff the chunk's contig hint is broken. Block level
806 * scans are required if the block's contig hint is broken.
808 static void pcpu_block_update_hint_alloc(struct pcpu_chunk
*chunk
, int bit_off
,
811 struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
812 int nr_empty_pages
= 0;
813 struct pcpu_block_md
*s_block
, *e_block
, *block
;
814 int s_index
, e_index
; /* block indexes of the freed allocation */
815 int s_off
, e_off
; /* block offsets of the freed allocation */
818 * Calculate per block offsets.
819 * The calculation uses an inclusive range, but the resulting offsets
820 * are [start, end). e_index always points to the last block in the
823 s_index
= pcpu_off_to_block_index(bit_off
);
824 e_index
= pcpu_off_to_block_index(bit_off
+ bits
- 1);
825 s_off
= pcpu_off_to_block_off(bit_off
);
826 e_off
= pcpu_off_to_block_off(bit_off
+ bits
- 1) + 1;
828 s_block
= chunk
->md_blocks
+ s_index
;
829 e_block
= chunk
->md_blocks
+ e_index
;
834 if (s_block
->contig_hint
== PCPU_BITMAP_BLOCK_BITS
)
838 * block->first_free must be updated if the allocation takes its place.
839 * If the allocation breaks the contig_hint, a scan is required to
842 if (s_off
== s_block
->first_free
)
843 s_block
->first_free
= find_next_zero_bit(
844 pcpu_index_alloc_map(chunk
, s_index
),
845 PCPU_BITMAP_BLOCK_BITS
,
848 if (pcpu_region_overlap(s_block
->scan_hint_start
,
849 s_block
->scan_hint_start
+ s_block
->scan_hint
,
852 s_block
->scan_hint
= 0;
854 if (pcpu_region_overlap(s_block
->contig_hint_start
,
855 s_block
->contig_hint_start
+
856 s_block
->contig_hint
,
859 /* block contig hint is broken - scan to fix it */
861 s_block
->left_free
= 0;
862 pcpu_block_refresh_hint(chunk
, s_index
);
864 /* update left and right contig manually */
865 s_block
->left_free
= min(s_block
->left_free
, s_off
);
866 if (s_index
== e_index
)
867 s_block
->right_free
= min_t(int, s_block
->right_free
,
868 PCPU_BITMAP_BLOCK_BITS
- e_off
);
870 s_block
->right_free
= 0;
876 if (s_index
!= e_index
) {
877 if (e_block
->contig_hint
== PCPU_BITMAP_BLOCK_BITS
)
881 * When the allocation is across blocks, the end is along
882 * the left part of the e_block.
884 e_block
->first_free
= find_next_zero_bit(
885 pcpu_index_alloc_map(chunk
, e_index
),
886 PCPU_BITMAP_BLOCK_BITS
, e_off
);
888 if (e_off
== PCPU_BITMAP_BLOCK_BITS
) {
889 /* reset the block */
892 if (e_off
> e_block
->scan_hint_start
)
893 e_block
->scan_hint
= 0;
895 e_block
->left_free
= 0;
896 if (e_off
> e_block
->contig_hint_start
) {
897 /* contig hint is broken - scan to fix it */
898 pcpu_block_refresh_hint(chunk
, e_index
);
900 e_block
->right_free
=
901 min_t(int, e_block
->right_free
,
902 PCPU_BITMAP_BLOCK_BITS
- e_off
);
906 /* update in-between md_blocks */
907 nr_empty_pages
+= (e_index
- s_index
- 1);
908 for (block
= s_block
+ 1; block
< e_block
; block
++) {
909 block
->scan_hint
= 0;
910 block
->contig_hint
= 0;
911 block
->left_free
= 0;
912 block
->right_free
= 0;
917 * If the allocation is not atomic, some blocks may not be
918 * populated with pages, while we account it here. The number
919 * of pages will be added back with pcpu_chunk_populated()
920 * when populating pages.
923 pcpu_update_empty_pages(chunk
, -nr_empty_pages
);
925 if (pcpu_region_overlap(chunk_md
->scan_hint_start
,
926 chunk_md
->scan_hint_start
+
930 chunk_md
->scan_hint
= 0;
933 * The only time a full chunk scan is required is if the chunk
934 * contig hint is broken. Otherwise, it means a smaller space
935 * was used and therefore the chunk contig hint is still correct.
937 if (pcpu_region_overlap(chunk_md
->contig_hint_start
,
938 chunk_md
->contig_hint_start
+
939 chunk_md
->contig_hint
,
942 pcpu_chunk_refresh_hint(chunk
, false);
946 * pcpu_block_update_hint_free - updates the block hints on the free path
947 * @chunk: chunk of interest
948 * @bit_off: chunk offset
949 * @bits: size of request
951 * Updates metadata for the allocation path. This avoids a blind block
952 * refresh by making use of the block contig hints. If this fails, it scans
953 * forward and backward to determine the extent of the free area. This is
954 * capped at the boundary of blocks.
956 * A chunk update is triggered if a page becomes free, a block becomes free,
957 * or the free spans across blocks. This tradeoff is to minimize iterating
958 * over the block metadata to update chunk_md->contig_hint.
959 * chunk_md->contig_hint may be off by up to a page, but it will never be more
960 * than the available space. If the contig hint is contained in one block, it
963 static void pcpu_block_update_hint_free(struct pcpu_chunk
*chunk
, int bit_off
,
966 int nr_empty_pages
= 0;
967 struct pcpu_block_md
*s_block
, *e_block
, *block
;
968 int s_index
, e_index
; /* block indexes of the freed allocation */
969 int s_off
, e_off
; /* block offsets of the freed allocation */
970 int start
, end
; /* start and end of the whole free area */
973 * Calculate per block offsets.
974 * The calculation uses an inclusive range, but the resulting offsets
975 * are [start, end). e_index always points to the last block in the
978 s_index
= pcpu_off_to_block_index(bit_off
);
979 e_index
= pcpu_off_to_block_index(bit_off
+ bits
- 1);
980 s_off
= pcpu_off_to_block_off(bit_off
);
981 e_off
= pcpu_off_to_block_off(bit_off
+ bits
- 1) + 1;
983 s_block
= chunk
->md_blocks
+ s_index
;
984 e_block
= chunk
->md_blocks
+ e_index
;
987 * Check if the freed area aligns with the block->contig_hint.
988 * If it does, then the scan to find the beginning/end of the
989 * larger free area can be avoided.
991 * start and end refer to beginning and end of the free area
992 * within each their respective blocks. This is not necessarily
993 * the entire free area as it may span blocks past the beginning
994 * or end of the block.
997 if (s_off
== s_block
->contig_hint
+ s_block
->contig_hint_start
) {
998 start
= s_block
->contig_hint_start
;
1001 * Scan backwards to find the extent of the free area.
1002 * find_last_bit returns the starting bit, so if the start bit
1003 * is returned, that means there was no last bit and the
1004 * remainder of the chunk is free.
1006 int l_bit
= find_last_bit(pcpu_index_alloc_map(chunk
, s_index
),
1008 start
= (start
== l_bit
) ? 0 : l_bit
+ 1;
1012 if (e_off
== e_block
->contig_hint_start
)
1013 end
= e_block
->contig_hint_start
+ e_block
->contig_hint
;
1015 end
= find_next_bit(pcpu_index_alloc_map(chunk
, e_index
),
1016 PCPU_BITMAP_BLOCK_BITS
, end
);
1018 /* update s_block */
1019 e_off
= (s_index
== e_index
) ? end
: PCPU_BITMAP_BLOCK_BITS
;
1020 if (!start
&& e_off
== PCPU_BITMAP_BLOCK_BITS
)
1022 pcpu_block_update(s_block
, start
, e_off
);
1024 /* freeing in the same block */
1025 if (s_index
!= e_index
) {
1026 /* update e_block */
1027 if (end
== PCPU_BITMAP_BLOCK_BITS
)
1029 pcpu_block_update(e_block
, 0, end
);
1031 /* reset md_blocks in the middle */
1032 nr_empty_pages
+= (e_index
- s_index
- 1);
1033 for (block
= s_block
+ 1; block
< e_block
; block
++) {
1034 block
->first_free
= 0;
1035 block
->scan_hint
= 0;
1036 block
->contig_hint_start
= 0;
1037 block
->contig_hint
= PCPU_BITMAP_BLOCK_BITS
;
1038 block
->left_free
= PCPU_BITMAP_BLOCK_BITS
;
1039 block
->right_free
= PCPU_BITMAP_BLOCK_BITS
;
1044 pcpu_update_empty_pages(chunk
, nr_empty_pages
);
1047 * Refresh chunk metadata when the free makes a block free or spans
1048 * across blocks. The contig_hint may be off by up to a page, but if
1049 * the contig_hint is contained in a block, it will be accurate with
1050 * the else condition below.
1052 if (((end
- start
) >= PCPU_BITMAP_BLOCK_BITS
) || s_index
!= e_index
)
1053 pcpu_chunk_refresh_hint(chunk
, true);
1055 pcpu_block_update(&chunk
->chunk_md
,
1056 pcpu_block_off_to_off(s_index
, start
),
1061 * pcpu_is_populated - determines if the region is populated
1062 * @chunk: chunk of interest
1063 * @bit_off: chunk offset
1064 * @bits: size of area
1065 * @next_off: return value for the next offset to start searching
1067 * For atomic allocations, check if the backing pages are populated.
1070 * Bool if the backing pages are populated.
1071 * next_index is to skip over unpopulated blocks in pcpu_find_block_fit.
1073 static bool pcpu_is_populated(struct pcpu_chunk
*chunk
, int bit_off
, int bits
,
1076 unsigned int start
, end
;
1078 start
= PFN_DOWN(bit_off
* PCPU_MIN_ALLOC_SIZE
);
1079 end
= PFN_UP((bit_off
+ bits
) * PCPU_MIN_ALLOC_SIZE
);
1081 start
= find_next_zero_bit(chunk
->populated
, end
, start
);
1085 end
= find_next_bit(chunk
->populated
, end
, start
+ 1);
1087 *next_off
= end
* PAGE_SIZE
/ PCPU_MIN_ALLOC_SIZE
;
1092 * pcpu_find_block_fit - finds the block index to start searching
1093 * @chunk: chunk of interest
1094 * @alloc_bits: size of request in allocation units
1095 * @align: alignment of area (max PAGE_SIZE bytes)
1096 * @pop_only: use populated regions only
1098 * Given a chunk and an allocation spec, find the offset to begin searching
1099 * for a free region. This iterates over the bitmap metadata blocks to
1100 * find an offset that will be guaranteed to fit the requirements. It is
1101 * not quite first fit as if the allocation does not fit in the contig hint
1102 * of a block or chunk, it is skipped. This errs on the side of caution
1103 * to prevent excess iteration. Poor alignment can cause the allocator to
1104 * skip over blocks and chunks that have valid free areas.
1107 * The offset in the bitmap to begin searching.
1108 * -1 if no offset is found.
1110 static int pcpu_find_block_fit(struct pcpu_chunk
*chunk
, int alloc_bits
,
1111 size_t align
, bool pop_only
)
1113 struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
1114 int bit_off
, bits
, next_off
;
1117 * This is an optimization to prevent scanning by assuming if the
1118 * allocation cannot fit in the global hint, there is memory pressure
1119 * and creating a new chunk would happen soon.
1121 if (!pcpu_check_block_hint(chunk_md
, alloc_bits
, align
))
1124 bit_off
= pcpu_next_hint(chunk_md
, alloc_bits
);
1126 pcpu_for_each_fit_region(chunk
, alloc_bits
, align
, bit_off
, bits
) {
1127 if (!pop_only
|| pcpu_is_populated(chunk
, bit_off
, bits
,
1135 if (bit_off
== pcpu_chunk_map_bits(chunk
))
1142 * pcpu_find_zero_area - modified from bitmap_find_next_zero_area_off()
1143 * @map: the address to base the search on
1144 * @size: the bitmap size in bits
1145 * @start: the bitnumber to start searching at
1146 * @nr: the number of zeroed bits we're looking for
1147 * @align_mask: alignment mask for zero area
1148 * @largest_off: offset of the largest area skipped
1149 * @largest_bits: size of the largest area skipped
1151 * The @align_mask should be one less than a power of 2.
1153 * This is a modified version of bitmap_find_next_zero_area_off() to remember
1154 * the largest area that was skipped. This is imperfect, but in general is
1155 * good enough. The largest remembered region is the largest failed region
1156 * seen. This does not include anything we possibly skipped due to alignment.
1157 * pcpu_block_update_scan() does scan backwards to try and recover what was
1158 * lost to alignment. While this can cause scanning to miss earlier possible
1159 * free areas, smaller allocations will eventually fill those holes.
1161 static unsigned long pcpu_find_zero_area(unsigned long *map
,
1163 unsigned long start
,
1165 unsigned long align_mask
,
1166 unsigned long *largest_off
,
1167 unsigned long *largest_bits
)
1169 unsigned long index
, end
, i
, area_off
, area_bits
;
1171 index
= find_next_zero_bit(map
, size
, start
);
1173 /* Align allocation */
1174 index
= __ALIGN_MASK(index
, align_mask
);
1180 i
= find_next_bit(map
, end
, index
);
1182 area_bits
= i
- area_off
;
1183 /* remember largest unused area with best alignment */
1184 if (area_bits
> *largest_bits
||
1185 (area_bits
== *largest_bits
&& *largest_off
&&
1186 (!area_off
|| __ffs(area_off
) > __ffs(*largest_off
)))) {
1187 *largest_off
= area_off
;
1188 *largest_bits
= area_bits
;
1198 * pcpu_alloc_area - allocates an area from a pcpu_chunk
1199 * @chunk: chunk of interest
1200 * @alloc_bits: size of request in allocation units
1201 * @align: alignment of area (max PAGE_SIZE)
1202 * @start: bit_off to start searching
1204 * This function takes in a @start offset to begin searching to fit an
1205 * allocation of @alloc_bits with alignment @align. It needs to scan
1206 * the allocation map because if it fits within the block's contig hint,
1207 * @start will be block->first_free. This is an attempt to fill the
1208 * allocation prior to breaking the contig hint. The allocation and
1209 * boundary maps are updated accordingly if it confirms a valid
1213 * Allocated addr offset in @chunk on success.
1214 * -1 if no matching area is found.
1216 static int pcpu_alloc_area(struct pcpu_chunk
*chunk
, int alloc_bits
,
1217 size_t align
, int start
)
1219 struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
1220 size_t align_mask
= (align
) ? (align
- 1) : 0;
1221 unsigned long area_off
= 0, area_bits
= 0;
1222 int bit_off
, end
, oslot
;
1224 lockdep_assert_held(&pcpu_lock
);
1226 oslot
= pcpu_chunk_slot(chunk
);
1229 * Search to find a fit.
1231 end
= min_t(int, start
+ alloc_bits
+ PCPU_BITMAP_BLOCK_BITS
,
1232 pcpu_chunk_map_bits(chunk
));
1233 bit_off
= pcpu_find_zero_area(chunk
->alloc_map
, end
, start
, alloc_bits
,
1234 align_mask
, &area_off
, &area_bits
);
1239 pcpu_block_update_scan(chunk
, area_off
, area_bits
);
1241 /* update alloc map */
1242 bitmap_set(chunk
->alloc_map
, bit_off
, alloc_bits
);
1244 /* update boundary map */
1245 set_bit(bit_off
, chunk
->bound_map
);
1246 bitmap_clear(chunk
->bound_map
, bit_off
+ 1, alloc_bits
- 1);
1247 set_bit(bit_off
+ alloc_bits
, chunk
->bound_map
);
1249 chunk
->free_bytes
-= alloc_bits
* PCPU_MIN_ALLOC_SIZE
;
1251 /* update first free bit */
1252 if (bit_off
== chunk_md
->first_free
)
1253 chunk_md
->first_free
= find_next_zero_bit(
1255 pcpu_chunk_map_bits(chunk
),
1256 bit_off
+ alloc_bits
);
1258 pcpu_block_update_hint_alloc(chunk
, bit_off
, alloc_bits
);
1260 pcpu_chunk_relocate(chunk
, oslot
);
1262 return bit_off
* PCPU_MIN_ALLOC_SIZE
;
1266 * pcpu_free_area - frees the corresponding offset
1267 * @chunk: chunk of interest
1268 * @off: addr offset into chunk
1270 * This function determines the size of an allocation to free using
1271 * the boundary bitmap and clears the allocation map.
1274 * Number of freed bytes.
1276 static int pcpu_free_area(struct pcpu_chunk
*chunk
, int off
)
1278 struct pcpu_block_md
*chunk_md
= &chunk
->chunk_md
;
1279 int bit_off
, bits
, end
, oslot
, freed
;
1281 lockdep_assert_held(&pcpu_lock
);
1282 pcpu_stats_area_dealloc(chunk
);
1284 oslot
= pcpu_chunk_slot(chunk
);
1286 bit_off
= off
/ PCPU_MIN_ALLOC_SIZE
;
1288 /* find end index */
1289 end
= find_next_bit(chunk
->bound_map
, pcpu_chunk_map_bits(chunk
),
1291 bits
= end
- bit_off
;
1292 bitmap_clear(chunk
->alloc_map
, bit_off
, bits
);
1294 freed
= bits
* PCPU_MIN_ALLOC_SIZE
;
1296 /* update metadata */
1297 chunk
->free_bytes
+= freed
;
1299 /* update first free bit */
1300 chunk_md
->first_free
= min(chunk_md
->first_free
, bit_off
);
1302 pcpu_block_update_hint_free(chunk
, bit_off
, bits
);
1304 pcpu_chunk_relocate(chunk
, oslot
);
1309 static void pcpu_init_md_block(struct pcpu_block_md
*block
, int nr_bits
)
1311 block
->scan_hint
= 0;
1312 block
->contig_hint
= nr_bits
;
1313 block
->left_free
= nr_bits
;
1314 block
->right_free
= nr_bits
;
1315 block
->first_free
= 0;
1316 block
->nr_bits
= nr_bits
;
1319 static void pcpu_init_md_blocks(struct pcpu_chunk
*chunk
)
1321 struct pcpu_block_md
*md_block
;
1323 /* init the chunk's block */
1324 pcpu_init_md_block(&chunk
->chunk_md
, pcpu_chunk_map_bits(chunk
));
1326 for (md_block
= chunk
->md_blocks
;
1327 md_block
!= chunk
->md_blocks
+ pcpu_chunk_nr_blocks(chunk
);
1329 pcpu_init_md_block(md_block
, PCPU_BITMAP_BLOCK_BITS
);
1333 * pcpu_alloc_first_chunk - creates chunks that serve the first chunk
1334 * @tmp_addr: the start of the region served
1335 * @map_size: size of the region served
1337 * This is responsible for creating the chunks that serve the first chunk. The
1338 * base_addr is page aligned down of @tmp_addr while the region end is page
1339 * aligned up. Offsets are kept track of to determine the region served. All
1340 * this is done to appease the bitmap allocator in avoiding partial blocks.
1343 * Chunk serving the region at @tmp_addr of @map_size.
1345 static struct pcpu_chunk
* __init
pcpu_alloc_first_chunk(unsigned long tmp_addr
,
1348 struct pcpu_chunk
*chunk
;
1349 unsigned long aligned_addr
;
1350 int start_offset
, offset_bits
, region_size
, region_bits
;
1353 /* region calculations */
1354 aligned_addr
= tmp_addr
& PAGE_MASK
;
1356 start_offset
= tmp_addr
- aligned_addr
;
1357 region_size
= ALIGN(start_offset
+ map_size
, PAGE_SIZE
);
1359 /* allocate chunk */
1360 alloc_size
= struct_size(chunk
, populated
,
1361 BITS_TO_LONGS(region_size
>> PAGE_SHIFT
));
1362 chunk
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
1364 panic("%s: Failed to allocate %zu bytes\n", __func__
,
1367 INIT_LIST_HEAD(&chunk
->list
);
1369 chunk
->base_addr
= (void *)aligned_addr
;
1370 chunk
->start_offset
= start_offset
;
1371 chunk
->end_offset
= region_size
- chunk
->start_offset
- map_size
;
1373 chunk
->nr_pages
= region_size
>> PAGE_SHIFT
;
1374 region_bits
= pcpu_chunk_map_bits(chunk
);
1376 alloc_size
= BITS_TO_LONGS(region_bits
) * sizeof(chunk
->alloc_map
[0]);
1377 chunk
->alloc_map
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
1378 if (!chunk
->alloc_map
)
1379 panic("%s: Failed to allocate %zu bytes\n", __func__
,
1383 BITS_TO_LONGS(region_bits
+ 1) * sizeof(chunk
->bound_map
[0]);
1384 chunk
->bound_map
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
1385 if (!chunk
->bound_map
)
1386 panic("%s: Failed to allocate %zu bytes\n", __func__
,
1389 alloc_size
= pcpu_chunk_nr_blocks(chunk
) * sizeof(chunk
->md_blocks
[0]);
1390 chunk
->md_blocks
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
1391 if (!chunk
->md_blocks
)
1392 panic("%s: Failed to allocate %zu bytes\n", __func__
,
1395 #ifdef NEED_PCPUOBJ_EXT
1396 /* first chunk is free to use */
1397 chunk
->obj_exts
= NULL
;
1399 pcpu_init_md_blocks(chunk
);
1401 /* manage populated page bitmap */
1402 chunk
->immutable
= true;
1403 bitmap_fill(chunk
->populated
, chunk
->nr_pages
);
1404 chunk
->nr_populated
= chunk
->nr_pages
;
1405 chunk
->nr_empty_pop_pages
= chunk
->nr_pages
;
1407 chunk
->free_bytes
= map_size
;
1409 if (chunk
->start_offset
) {
1410 /* hide the beginning of the bitmap */
1411 offset_bits
= chunk
->start_offset
/ PCPU_MIN_ALLOC_SIZE
;
1412 bitmap_set(chunk
->alloc_map
, 0, offset_bits
);
1413 set_bit(0, chunk
->bound_map
);
1414 set_bit(offset_bits
, chunk
->bound_map
);
1416 chunk
->chunk_md
.first_free
= offset_bits
;
1418 pcpu_block_update_hint_alloc(chunk
, 0, offset_bits
);
1421 if (chunk
->end_offset
) {
1422 /* hide the end of the bitmap */
1423 offset_bits
= chunk
->end_offset
/ PCPU_MIN_ALLOC_SIZE
;
1424 bitmap_set(chunk
->alloc_map
,
1425 pcpu_chunk_map_bits(chunk
) - offset_bits
,
1427 set_bit((start_offset
+ map_size
) / PCPU_MIN_ALLOC_SIZE
,
1429 set_bit(region_bits
, chunk
->bound_map
);
1431 pcpu_block_update_hint_alloc(chunk
, pcpu_chunk_map_bits(chunk
)
1432 - offset_bits
, offset_bits
);
1438 static struct pcpu_chunk
*pcpu_alloc_chunk(gfp_t gfp
)
1440 struct pcpu_chunk
*chunk
;
1443 chunk
= pcpu_mem_zalloc(pcpu_chunk_struct_size
, gfp
);
1447 INIT_LIST_HEAD(&chunk
->list
);
1448 chunk
->nr_pages
= pcpu_unit_pages
;
1449 region_bits
= pcpu_chunk_map_bits(chunk
);
1451 chunk
->alloc_map
= pcpu_mem_zalloc(BITS_TO_LONGS(region_bits
) *
1452 sizeof(chunk
->alloc_map
[0]), gfp
);
1453 if (!chunk
->alloc_map
)
1454 goto alloc_map_fail
;
1456 chunk
->bound_map
= pcpu_mem_zalloc(BITS_TO_LONGS(region_bits
+ 1) *
1457 sizeof(chunk
->bound_map
[0]), gfp
);
1458 if (!chunk
->bound_map
)
1459 goto bound_map_fail
;
1461 chunk
->md_blocks
= pcpu_mem_zalloc(pcpu_chunk_nr_blocks(chunk
) *
1462 sizeof(chunk
->md_blocks
[0]), gfp
);
1463 if (!chunk
->md_blocks
)
1464 goto md_blocks_fail
;
1466 #ifdef NEED_PCPUOBJ_EXT
1467 if (need_pcpuobj_ext()) {
1469 pcpu_mem_zalloc(pcpu_chunk_map_bits(chunk
) *
1470 sizeof(struct pcpuobj_ext
), gfp
);
1471 if (!chunk
->obj_exts
)
1476 pcpu_init_md_blocks(chunk
);
1479 chunk
->free_bytes
= chunk
->nr_pages
* PAGE_SIZE
;
1483 #ifdef NEED_PCPUOBJ_EXT
1485 pcpu_mem_free(chunk
->md_blocks
);
1488 pcpu_mem_free(chunk
->bound_map
);
1490 pcpu_mem_free(chunk
->alloc_map
);
1492 pcpu_mem_free(chunk
);
1497 static void pcpu_free_chunk(struct pcpu_chunk
*chunk
)
1501 #ifdef NEED_PCPUOBJ_EXT
1502 pcpu_mem_free(chunk
->obj_exts
);
1504 pcpu_mem_free(chunk
->md_blocks
);
1505 pcpu_mem_free(chunk
->bound_map
);
1506 pcpu_mem_free(chunk
->alloc_map
);
1507 pcpu_mem_free(chunk
);
1511 * pcpu_chunk_populated - post-population bookkeeping
1512 * @chunk: pcpu_chunk which got populated
1513 * @page_start: the start page
1514 * @page_end: the end page
1516 * Pages in [@page_start,@page_end) have been populated to @chunk. Update
1517 * the bookkeeping information accordingly. Must be called after each
1518 * successful population.
1520 static void pcpu_chunk_populated(struct pcpu_chunk
*chunk
, int page_start
,
1523 int nr
= page_end
- page_start
;
1525 lockdep_assert_held(&pcpu_lock
);
1527 bitmap_set(chunk
->populated
, page_start
, nr
);
1528 chunk
->nr_populated
+= nr
;
1529 pcpu_nr_populated
+= nr
;
1531 pcpu_update_empty_pages(chunk
, nr
);
1535 * pcpu_chunk_depopulated - post-depopulation bookkeeping
1536 * @chunk: pcpu_chunk which got depopulated
1537 * @page_start: the start page
1538 * @page_end: the end page
1540 * Pages in [@page_start,@page_end) have been depopulated from @chunk.
1541 * Update the bookkeeping information accordingly. Must be called after
1542 * each successful depopulation.
1544 static void pcpu_chunk_depopulated(struct pcpu_chunk
*chunk
,
1545 int page_start
, int page_end
)
1547 int nr
= page_end
- page_start
;
1549 lockdep_assert_held(&pcpu_lock
);
1551 bitmap_clear(chunk
->populated
, page_start
, nr
);
1552 chunk
->nr_populated
-= nr
;
1553 pcpu_nr_populated
-= nr
;
1555 pcpu_update_empty_pages(chunk
, -nr
);
1559 * Chunk management implementation.
1561 * To allow different implementations, chunk alloc/free and
1562 * [de]population are implemented in a separate file which is pulled
1563 * into this file and compiled together. The following functions
1564 * should be implemented.
1566 * pcpu_populate_chunk - populate the specified range of a chunk
1567 * pcpu_depopulate_chunk - depopulate the specified range of a chunk
1568 * pcpu_post_unmap_tlb_flush - flush tlb for the specified range of a chunk
1569 * pcpu_create_chunk - create a new chunk
1570 * pcpu_destroy_chunk - destroy a chunk, always preceded by full depop
1571 * pcpu_addr_to_page - translate address to physical address
1572 * pcpu_verify_alloc_info - check alloc_info is acceptable during init
1574 static int pcpu_populate_chunk(struct pcpu_chunk
*chunk
,
1575 int page_start
, int page_end
, gfp_t gfp
);
1576 static void pcpu_depopulate_chunk(struct pcpu_chunk
*chunk
,
1577 int page_start
, int page_end
);
1578 static void pcpu_post_unmap_tlb_flush(struct pcpu_chunk
*chunk
,
1579 int page_start
, int page_end
);
1580 static struct pcpu_chunk
*pcpu_create_chunk(gfp_t gfp
);
1581 static void pcpu_destroy_chunk(struct pcpu_chunk
*chunk
);
1582 static struct page
*pcpu_addr_to_page(void *addr
);
1583 static int __init
pcpu_verify_alloc_info(const struct pcpu_alloc_info
*ai
);
1585 #ifdef CONFIG_NEED_PER_CPU_KM
1586 #include "percpu-km.c"
1588 #include "percpu-vm.c"
1592 * pcpu_chunk_addr_search - determine chunk containing specified address
1593 * @addr: address for which the chunk needs to be determined.
1595 * This is an internal function that handles all but static allocations.
1596 * Static percpu address values should never be passed into the allocator.
1599 * The address of the found chunk.
1601 static struct pcpu_chunk
*pcpu_chunk_addr_search(void *addr
)
1603 /* is it in the dynamic region (first chunk)? */
1604 if (pcpu_addr_in_chunk(pcpu_first_chunk
, addr
))
1605 return pcpu_first_chunk
;
1607 /* is it in the reserved region? */
1608 if (pcpu_addr_in_chunk(pcpu_reserved_chunk
, addr
))
1609 return pcpu_reserved_chunk
;
1612 * The address is relative to unit0 which might be unused and
1613 * thus unmapped. Offset the address to the unit space of the
1614 * current processor before looking it up in the vmalloc
1615 * space. Note that any possible cpu id can be used here, so
1616 * there's no need to worry about preemption or cpu hotplug.
1618 addr
+= pcpu_unit_offsets
[raw_smp_processor_id()];
1619 return pcpu_get_page_chunk(pcpu_addr_to_page(addr
));
1623 static bool pcpu_memcg_pre_alloc_hook(size_t size
, gfp_t gfp
,
1624 struct obj_cgroup
**objcgp
)
1626 struct obj_cgroup
*objcg
;
1628 if (!memcg_kmem_online() || !(gfp
& __GFP_ACCOUNT
))
1631 objcg
= current_obj_cgroup();
1635 if (obj_cgroup_charge(objcg
, gfp
, pcpu_obj_full_size(size
)))
1642 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup
*objcg
,
1643 struct pcpu_chunk
*chunk
, int off
,
1649 if (likely(chunk
&& chunk
->obj_exts
)) {
1650 obj_cgroup_get(objcg
);
1651 chunk
->obj_exts
[off
>> PCPU_MIN_ALLOC_SHIFT
].cgroup
= objcg
;
1654 mod_memcg_state(obj_cgroup_memcg(objcg
), MEMCG_PERCPU_B
,
1655 pcpu_obj_full_size(size
));
1658 obj_cgroup_uncharge(objcg
, pcpu_obj_full_size(size
));
1662 static void pcpu_memcg_free_hook(struct pcpu_chunk
*chunk
, int off
, size_t size
)
1664 struct obj_cgroup
*objcg
;
1666 if (unlikely(!chunk
->obj_exts
))
1669 objcg
= chunk
->obj_exts
[off
>> PCPU_MIN_ALLOC_SHIFT
].cgroup
;
1672 chunk
->obj_exts
[off
>> PCPU_MIN_ALLOC_SHIFT
].cgroup
= NULL
;
1674 obj_cgroup_uncharge(objcg
, pcpu_obj_full_size(size
));
1677 mod_memcg_state(obj_cgroup_memcg(objcg
), MEMCG_PERCPU_B
,
1678 -pcpu_obj_full_size(size
));
1681 obj_cgroup_put(objcg
);
1684 #else /* CONFIG_MEMCG */
1686 pcpu_memcg_pre_alloc_hook(size_t size
, gfp_t gfp
, struct obj_cgroup
**objcgp
)
1691 static void pcpu_memcg_post_alloc_hook(struct obj_cgroup
*objcg
,
1692 struct pcpu_chunk
*chunk
, int off
,
1697 static void pcpu_memcg_free_hook(struct pcpu_chunk
*chunk
, int off
, size_t size
)
1700 #endif /* CONFIG_MEMCG */
1702 #ifdef CONFIG_MEM_ALLOC_PROFILING
1703 static void pcpu_alloc_tag_alloc_hook(struct pcpu_chunk
*chunk
, int off
,
1706 if (mem_alloc_profiling_enabled() && likely(chunk
->obj_exts
)) {
1707 alloc_tag_add(&chunk
->obj_exts
[off
>> PCPU_MIN_ALLOC_SHIFT
].tag
,
1708 current
->alloc_tag
, size
);
1712 static void pcpu_alloc_tag_free_hook(struct pcpu_chunk
*chunk
, int off
, size_t size
)
1714 if (mem_alloc_profiling_enabled() && likely(chunk
->obj_exts
))
1715 alloc_tag_sub(&chunk
->obj_exts
[off
>> PCPU_MIN_ALLOC_SHIFT
].tag
, size
);
1718 static void pcpu_alloc_tag_alloc_hook(struct pcpu_chunk
*chunk
, int off
,
1723 static void pcpu_alloc_tag_free_hook(struct pcpu_chunk
*chunk
, int off
, size_t size
)
1729 * pcpu_alloc - the percpu allocator
1730 * @size: size of area to allocate in bytes
1731 * @align: alignment of area (max PAGE_SIZE)
1732 * @reserved: allocate from the reserved chunk if available
1733 * @gfp: allocation flags
1735 * Allocate percpu area of @size bytes aligned at @align. If @gfp doesn't
1736 * contain %GFP_KERNEL, the allocation is atomic. If @gfp has __GFP_NOWARN
1737 * then no warning will be triggered on invalid or failed allocation
1741 * Percpu pointer to the allocated area on success, NULL on failure.
1743 void __percpu
*pcpu_alloc_noprof(size_t size
, size_t align
, bool reserved
,
1749 struct obj_cgroup
*objcg
= NULL
;
1750 static int warn_limit
= 10;
1751 struct pcpu_chunk
*chunk
, *next
;
1753 int slot
, off
, cpu
, ret
;
1754 unsigned long flags
;
1756 size_t bits
, bit_align
;
1758 gfp
= current_gfp_context(gfp
);
1759 /* whitelisted flags that can be passed to the backing allocators */
1760 pcpu_gfp
= gfp
& (GFP_KERNEL
| __GFP_NORETRY
| __GFP_NOWARN
);
1761 is_atomic
= (gfp
& GFP_KERNEL
) != GFP_KERNEL
;
1762 do_warn
= !(gfp
& __GFP_NOWARN
);
1765 * There is now a minimum allocation size of PCPU_MIN_ALLOC_SIZE,
1766 * therefore alignment must be a minimum of that many bytes.
1767 * An allocation may have internal fragmentation from rounding up
1768 * of up to PCPU_MIN_ALLOC_SIZE - 1 bytes.
1770 if (unlikely(align
< PCPU_MIN_ALLOC_SIZE
))
1771 align
= PCPU_MIN_ALLOC_SIZE
;
1773 size
= ALIGN(size
, PCPU_MIN_ALLOC_SIZE
);
1774 bits
= size
>> PCPU_MIN_ALLOC_SHIFT
;
1775 bit_align
= align
>> PCPU_MIN_ALLOC_SHIFT
;
1777 if (unlikely(!size
|| size
> PCPU_MIN_UNIT_SIZE
|| align
> PAGE_SIZE
||
1778 !is_power_of_2(align
))) {
1779 WARN(do_warn
, "illegal size (%zu) or align (%zu) for percpu allocation\n",
1784 if (unlikely(!pcpu_memcg_pre_alloc_hook(size
, gfp
, &objcg
)))
1789 * pcpu_balance_workfn() allocates memory under this mutex,
1790 * and it may wait for memory reclaim. Allow current task
1791 * to become OOM victim, in case of memory pressure.
1793 if (gfp
& __GFP_NOFAIL
) {
1794 mutex_lock(&pcpu_alloc_mutex
);
1795 } else if (mutex_lock_killable(&pcpu_alloc_mutex
)) {
1796 pcpu_memcg_post_alloc_hook(objcg
, NULL
, 0, size
);
1801 spin_lock_irqsave(&pcpu_lock
, flags
);
1803 /* serve reserved allocations from the reserved chunk if available */
1804 if (reserved
&& pcpu_reserved_chunk
) {
1805 chunk
= pcpu_reserved_chunk
;
1807 off
= pcpu_find_block_fit(chunk
, bits
, bit_align
, is_atomic
);
1809 err
= "alloc from reserved chunk failed";
1813 off
= pcpu_alloc_area(chunk
, bits
, bit_align
, off
);
1817 err
= "alloc from reserved chunk failed";
1822 /* search through normal chunks */
1823 for (slot
= pcpu_size_to_slot(size
); slot
<= pcpu_free_slot
; slot
++) {
1824 list_for_each_entry_safe(chunk
, next
, &pcpu_chunk_lists
[slot
],
1826 off
= pcpu_find_block_fit(chunk
, bits
, bit_align
,
1829 if (slot
< PCPU_SLOT_FAIL_THRESHOLD
)
1830 pcpu_chunk_move(chunk
, 0);
1834 off
= pcpu_alloc_area(chunk
, bits
, bit_align
, off
);
1836 pcpu_reintegrate_chunk(chunk
);
1842 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1845 err
= "atomic alloc failed, no space left";
1849 /* No space left. Create a new chunk. */
1850 if (list_empty(&pcpu_chunk_lists
[pcpu_free_slot
])) {
1851 chunk
= pcpu_create_chunk(pcpu_gfp
);
1853 err
= "failed to allocate new chunk";
1857 spin_lock_irqsave(&pcpu_lock
, flags
);
1858 pcpu_chunk_relocate(chunk
, -1);
1860 spin_lock_irqsave(&pcpu_lock
, flags
);
1866 pcpu_stats_area_alloc(chunk
, size
);
1868 if (pcpu_nr_empty_pop_pages
< PCPU_EMPTY_POP_PAGES_LOW
)
1869 pcpu_schedule_balance_work();
1871 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1873 /* populate if not all pages are already there */
1875 unsigned int page_end
, rs
, re
;
1878 page_end
= PFN_UP(off
+ size
);
1880 for_each_clear_bitrange_from(rs
, re
, chunk
->populated
, page_end
) {
1881 WARN_ON(chunk
->immutable
);
1883 ret
= pcpu_populate_chunk(chunk
, rs
, re
, pcpu_gfp
);
1885 spin_lock_irqsave(&pcpu_lock
, flags
);
1887 pcpu_free_area(chunk
, off
);
1888 err
= "failed to populate";
1891 pcpu_chunk_populated(chunk
, rs
, re
);
1892 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1895 mutex_unlock(&pcpu_alloc_mutex
);
1898 /* clear the areas and return address relative to base address */
1899 for_each_possible_cpu(cpu
)
1900 memset((void *)pcpu_chunk_addr(chunk
, cpu
, 0) + off
, 0, size
);
1902 ptr
= __addr_to_pcpu_ptr(chunk
->base_addr
+ off
);
1903 kmemleak_alloc_percpu(ptr
, size
, gfp
);
1905 trace_percpu_alloc_percpu(_RET_IP_
, reserved
, is_atomic
, size
, align
,
1906 chunk
->base_addr
, off
, ptr
,
1907 pcpu_obj_full_size(size
), gfp
);
1909 pcpu_memcg_post_alloc_hook(objcg
, chunk
, off
, size
);
1911 pcpu_alloc_tag_alloc_hook(chunk
, off
, size
);
1916 spin_unlock_irqrestore(&pcpu_lock
, flags
);
1918 trace_percpu_alloc_percpu_fail(reserved
, is_atomic
, size
, align
);
1920 if (do_warn
&& warn_limit
) {
1921 pr_warn("allocation failed, size=%zu align=%zu atomic=%d, %s\n",
1922 size
, align
, is_atomic
, err
);
1926 pr_info("limit reached, disable warning\n");
1930 /* see the flag handling in pcpu_balance_workfn() */
1931 pcpu_atomic_alloc_failed
= true;
1932 pcpu_schedule_balance_work();
1934 mutex_unlock(&pcpu_alloc_mutex
);
1937 pcpu_memcg_post_alloc_hook(objcg
, NULL
, 0, size
);
1941 EXPORT_SYMBOL_GPL(pcpu_alloc_noprof
);
1944 * pcpu_balance_free - manage the amount of free chunks
1945 * @empty_only: free chunks only if there are no populated pages
1947 * If empty_only is %false, reclaim all fully free chunks regardless of the
1948 * number of populated pages. Otherwise, only reclaim chunks that have no
1952 * pcpu_lock (can be dropped temporarily)
1954 static void pcpu_balance_free(bool empty_only
)
1957 struct list_head
*free_head
= &pcpu_chunk_lists
[pcpu_free_slot
];
1958 struct pcpu_chunk
*chunk
, *next
;
1960 lockdep_assert_held(&pcpu_lock
);
1963 * There's no reason to keep around multiple unused chunks and VM
1964 * areas can be scarce. Destroy all free chunks except for one.
1966 list_for_each_entry_safe(chunk
, next
, free_head
, list
) {
1967 WARN_ON(chunk
->immutable
);
1969 /* spare the first one */
1970 if (chunk
== list_first_entry(free_head
, struct pcpu_chunk
, list
))
1973 if (!empty_only
|| chunk
->nr_empty_pop_pages
== 0)
1974 list_move(&chunk
->list
, &to_free
);
1977 if (list_empty(&to_free
))
1980 spin_unlock_irq(&pcpu_lock
);
1981 list_for_each_entry_safe(chunk
, next
, &to_free
, list
) {
1982 unsigned int rs
, re
;
1984 for_each_set_bitrange(rs
, re
, chunk
->populated
, chunk
->nr_pages
) {
1985 pcpu_depopulate_chunk(chunk
, rs
, re
);
1986 spin_lock_irq(&pcpu_lock
);
1987 pcpu_chunk_depopulated(chunk
, rs
, re
);
1988 spin_unlock_irq(&pcpu_lock
);
1990 pcpu_destroy_chunk(chunk
);
1993 spin_lock_irq(&pcpu_lock
);
1997 * pcpu_balance_populated - manage the amount of populated pages
1999 * Maintain a certain amount of populated pages to satisfy atomic allocations.
2000 * It is possible that this is called when physical memory is scarce causing
2001 * OOM killer to be triggered. We should avoid doing so until an actual
2002 * allocation causes the failure as it is possible that requests can be
2003 * serviced from already backed regions.
2006 * pcpu_lock (can be dropped temporarily)
2008 static void pcpu_balance_populated(void)
2010 /* gfp flags passed to underlying allocators */
2011 const gfp_t gfp
= GFP_KERNEL
| __GFP_NORETRY
| __GFP_NOWARN
;
2012 struct pcpu_chunk
*chunk
;
2013 int slot
, nr_to_pop
, ret
;
2015 lockdep_assert_held(&pcpu_lock
);
2018 * Ensure there are certain number of free populated pages for
2019 * atomic allocs. Fill up from the most packed so that atomic
2020 * allocs don't increase fragmentation. If atomic allocation
2021 * failed previously, always populate the maximum amount. This
2022 * should prevent atomic allocs larger than PAGE_SIZE from keeping
2023 * failing indefinitely; however, large atomic allocs are not
2024 * something we support properly and can be highly unreliable and
2028 if (pcpu_atomic_alloc_failed
) {
2029 nr_to_pop
= PCPU_EMPTY_POP_PAGES_HIGH
;
2030 /* best effort anyway, don't worry about synchronization */
2031 pcpu_atomic_alloc_failed
= false;
2033 nr_to_pop
= clamp(PCPU_EMPTY_POP_PAGES_HIGH
-
2034 pcpu_nr_empty_pop_pages
,
2035 0, PCPU_EMPTY_POP_PAGES_HIGH
);
2038 for (slot
= pcpu_size_to_slot(PAGE_SIZE
); slot
<= pcpu_free_slot
; slot
++) {
2039 unsigned int nr_unpop
= 0, rs
, re
;
2044 list_for_each_entry(chunk
, &pcpu_chunk_lists
[slot
], list
) {
2045 nr_unpop
= chunk
->nr_pages
- chunk
->nr_populated
;
2053 /* @chunk can't go away while pcpu_alloc_mutex is held */
2054 for_each_clear_bitrange(rs
, re
, chunk
->populated
, chunk
->nr_pages
) {
2055 int nr
= min_t(int, re
- rs
, nr_to_pop
);
2057 spin_unlock_irq(&pcpu_lock
);
2058 ret
= pcpu_populate_chunk(chunk
, rs
, rs
+ nr
, gfp
);
2060 spin_lock_irq(&pcpu_lock
);
2063 pcpu_chunk_populated(chunk
, rs
, rs
+ nr
);
2074 /* ran out of chunks to populate, create a new one and retry */
2075 spin_unlock_irq(&pcpu_lock
);
2076 chunk
= pcpu_create_chunk(gfp
);
2078 spin_lock_irq(&pcpu_lock
);
2080 pcpu_chunk_relocate(chunk
, -1);
2087 * pcpu_reclaim_populated - scan over to_depopulate chunks and free empty pages
2089 * Scan over chunks in the depopulate list and try to release unused populated
2090 * pages back to the system. Depopulated chunks are sidelined to prevent
2091 * repopulating these pages unless required. Fully free chunks are reintegrated
2092 * and freed accordingly (1 is kept around). If we drop below the empty
2093 * populated pages threshold, reintegrate the chunk if it has empty free pages.
2094 * Each chunk is scanned in the reverse order to keep populated pages close to
2095 * the beginning of the chunk.
2098 * pcpu_lock (can be dropped temporarily)
2101 static void pcpu_reclaim_populated(void)
2103 struct pcpu_chunk
*chunk
;
2104 struct pcpu_block_md
*block
;
2105 int freed_page_start
, freed_page_end
;
2109 lockdep_assert_held(&pcpu_lock
);
2112 * Once a chunk is isolated to the to_depopulate list, the chunk is no
2113 * longer discoverable to allocations whom may populate pages. The only
2114 * other accessor is the free path which only returns area back to the
2115 * allocator not touching the populated bitmap.
2117 while ((chunk
= list_first_entry_or_null(
2118 &pcpu_chunk_lists
[pcpu_to_depopulate_slot
],
2119 struct pcpu_chunk
, list
))) {
2120 WARN_ON(chunk
->immutable
);
2123 * Scan chunk's pages in the reverse order to keep populated
2124 * pages close to the beginning of the chunk.
2126 freed_page_start
= chunk
->nr_pages
;
2128 reintegrate
= false;
2129 for (i
= chunk
->nr_pages
- 1, end
= -1; i
>= 0; i
--) {
2130 /* no more work to do */
2131 if (chunk
->nr_empty_pop_pages
== 0)
2134 /* reintegrate chunk to prevent atomic alloc failures */
2135 if (pcpu_nr_empty_pop_pages
< PCPU_EMPTY_POP_PAGES_HIGH
) {
2141 * If the page is empty and populated, start or
2142 * extend the (i, end) range. If i == 0, decrease
2143 * i and perform the depopulation to cover the last
2144 * (first) page in the chunk.
2146 block
= chunk
->md_blocks
+ i
;
2147 if (block
->contig_hint
== PCPU_BITMAP_BLOCK_BITS
&&
2148 test_bit(i
, chunk
->populated
)) {
2156 /* depopulate if there is an active range */
2160 spin_unlock_irq(&pcpu_lock
);
2161 pcpu_depopulate_chunk(chunk
, i
+ 1, end
+ 1);
2163 spin_lock_irq(&pcpu_lock
);
2165 pcpu_chunk_depopulated(chunk
, i
+ 1, end
+ 1);
2166 freed_page_start
= min(freed_page_start
, i
+ 1);
2167 freed_page_end
= max(freed_page_end
, end
+ 1);
2169 /* reset the range and continue */
2173 /* batch tlb flush per chunk to amortize cost */
2174 if (freed_page_start
< freed_page_end
) {
2175 spin_unlock_irq(&pcpu_lock
);
2176 pcpu_post_unmap_tlb_flush(chunk
,
2180 spin_lock_irq(&pcpu_lock
);
2183 if (reintegrate
|| chunk
->free_bytes
== pcpu_unit_size
)
2184 pcpu_reintegrate_chunk(chunk
);
2186 list_move_tail(&chunk
->list
,
2187 &pcpu_chunk_lists
[pcpu_sidelined_slot
]);
2192 * pcpu_balance_workfn - manage the amount of free chunks and populated pages
2195 * For each chunk type, manage the number of fully free chunks and the number of
2196 * populated pages. An important thing to consider is when pages are freed and
2197 * how they contribute to the global counts.
2199 static void pcpu_balance_workfn(struct work_struct
*work
)
2202 * pcpu_balance_free() is called twice because the first time we may
2203 * trim pages in the active pcpu_nr_empty_pop_pages which may cause us
2204 * to grow other chunks. This then gives pcpu_reclaim_populated() time
2205 * to move fully free chunks to the active list to be freed if
2208 mutex_lock(&pcpu_alloc_mutex
);
2209 spin_lock_irq(&pcpu_lock
);
2211 pcpu_balance_free(false);
2212 pcpu_reclaim_populated();
2213 pcpu_balance_populated();
2214 pcpu_balance_free(true);
2216 spin_unlock_irq(&pcpu_lock
);
2217 mutex_unlock(&pcpu_alloc_mutex
);
2221 * free_percpu - free percpu area
2222 * @ptr: pointer to area to free
2224 * Free percpu area @ptr.
2227 * Can be called from atomic context.
2229 void free_percpu(void __percpu
*ptr
)
2232 struct pcpu_chunk
*chunk
;
2233 unsigned long flags
;
2235 bool need_balance
= false;
2240 kmemleak_free_percpu(ptr
);
2242 addr
= __pcpu_ptr_to_addr(ptr
);
2243 chunk
= pcpu_chunk_addr_search(addr
);
2244 off
= addr
- chunk
->base_addr
;
2246 spin_lock_irqsave(&pcpu_lock
, flags
);
2247 size
= pcpu_free_area(chunk
, off
);
2249 pcpu_alloc_tag_free_hook(chunk
, off
, size
);
2251 pcpu_memcg_free_hook(chunk
, off
, size
);
2254 * If there are more than one fully free chunks, wake up grim reaper.
2255 * If the chunk is isolated, it may be in the process of being
2256 * reclaimed. Let reclaim manage cleaning up of that chunk.
2258 if (!chunk
->isolated
&& chunk
->free_bytes
== pcpu_unit_size
) {
2259 struct pcpu_chunk
*pos
;
2261 list_for_each_entry(pos
, &pcpu_chunk_lists
[pcpu_free_slot
], list
)
2263 need_balance
= true;
2266 } else if (pcpu_should_reclaim_chunk(chunk
)) {
2267 pcpu_isolate_chunk(chunk
);
2268 need_balance
= true;
2271 trace_percpu_free_percpu(chunk
->base_addr
, off
, ptr
);
2273 spin_unlock_irqrestore(&pcpu_lock
, flags
);
2276 pcpu_schedule_balance_work();
2278 EXPORT_SYMBOL_GPL(free_percpu
);
2280 bool __is_kernel_percpu_address(unsigned long addr
, unsigned long *can_addr
)
2283 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
2284 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
2287 for_each_possible_cpu(cpu
) {
2288 void *start
= per_cpu_ptr(base
, cpu
);
2289 void *va
= (void *)addr
;
2291 if (va
>= start
&& va
< start
+ static_size
) {
2293 *can_addr
= (unsigned long) (va
- start
);
2294 *can_addr
+= (unsigned long)
2295 per_cpu_ptr(base
, get_boot_cpu_id());
2301 /* on UP, can't distinguish from other static vars, always false */
2306 * is_kernel_percpu_address - test whether address is from static percpu area
2307 * @addr: address to test
2309 * Test whether @addr belongs to in-kernel static percpu area. Module
2310 * static percpu areas are not considered. For those, use
2311 * is_module_percpu_address().
2314 * %true if @addr is from in-kernel static percpu area, %false otherwise.
2316 bool is_kernel_percpu_address(unsigned long addr
)
2318 return __is_kernel_percpu_address(addr
, NULL
);
2322 * per_cpu_ptr_to_phys - convert translated percpu address to physical address
2323 * @addr: the address to be converted to physical address
2325 * Given @addr which is dereferenceable address obtained via one of
2326 * percpu access macros, this function translates it into its physical
2327 * address. The caller is responsible for ensuring @addr stays valid
2328 * until this function finishes.
2330 * percpu allocator has special setup for the first chunk, which currently
2331 * supports either embedding in linear address space or vmalloc mapping,
2332 * and, from the second one, the backing allocator (currently either vm or
2333 * km) provides translation.
2335 * The addr can be translated simply without checking if it falls into the
2336 * first chunk. But the current code reflects better how percpu allocator
2337 * actually works, and the verification can discover both bugs in percpu
2338 * allocator itself and per_cpu_ptr_to_phys() callers. So we keep current
2342 * The physical address for @addr.
2344 phys_addr_t
per_cpu_ptr_to_phys(void *addr
)
2346 void __percpu
*base
= __addr_to_pcpu_ptr(pcpu_base_addr
);
2347 bool in_first_chunk
= false;
2348 unsigned long first_low
, first_high
;
2352 * The following test on unit_low/high isn't strictly
2353 * necessary but will speed up lookups of addresses which
2354 * aren't in the first chunk.
2356 * The address check is against full chunk sizes. pcpu_base_addr
2357 * points to the beginning of the first chunk including the
2358 * static region. Assumes good intent as the first chunk may
2359 * not be full (ie. < pcpu_unit_pages in size).
2361 first_low
= (unsigned long)pcpu_base_addr
+
2362 pcpu_unit_page_offset(pcpu_low_unit_cpu
, 0);
2363 first_high
= (unsigned long)pcpu_base_addr
+
2364 pcpu_unit_page_offset(pcpu_high_unit_cpu
, pcpu_unit_pages
);
2365 if ((unsigned long)addr
>= first_low
&&
2366 (unsigned long)addr
< first_high
) {
2367 for_each_possible_cpu(cpu
) {
2368 void *start
= per_cpu_ptr(base
, cpu
);
2370 if (addr
>= start
&& addr
< start
+ pcpu_unit_size
) {
2371 in_first_chunk
= true;
2377 if (in_first_chunk
) {
2378 if (!is_vmalloc_addr(addr
))
2381 return page_to_phys(vmalloc_to_page(addr
)) +
2382 offset_in_page(addr
);
2384 return page_to_phys(pcpu_addr_to_page(addr
)) +
2385 offset_in_page(addr
);
2389 * pcpu_alloc_alloc_info - allocate percpu allocation info
2390 * @nr_groups: the number of groups
2391 * @nr_units: the number of units
2393 * Allocate ai which is large enough for @nr_groups groups containing
2394 * @nr_units units. The returned ai's groups[0].cpu_map points to the
2395 * cpu_map array which is long enough for @nr_units and filled with
2396 * NR_CPUS. It's the caller's responsibility to initialize cpu_map
2397 * pointer of other groups.
2400 * Pointer to the allocated pcpu_alloc_info on success, NULL on
2403 struct pcpu_alloc_info
* __init
pcpu_alloc_alloc_info(int nr_groups
,
2406 struct pcpu_alloc_info
*ai
;
2407 size_t base_size
, ai_size
;
2411 base_size
= ALIGN(struct_size(ai
, groups
, nr_groups
),
2412 __alignof__(ai
->groups
[0].cpu_map
[0]));
2413 ai_size
= base_size
+ nr_units
* sizeof(ai
->groups
[0].cpu_map
[0]);
2415 ptr
= memblock_alloc(PFN_ALIGN(ai_size
), PAGE_SIZE
);
2421 ai
->groups
[0].cpu_map
= ptr
;
2423 for (unit
= 0; unit
< nr_units
; unit
++)
2424 ai
->groups
[0].cpu_map
[unit
] = NR_CPUS
;
2426 ai
->nr_groups
= nr_groups
;
2427 ai
->__ai_size
= PFN_ALIGN(ai_size
);
2433 * pcpu_free_alloc_info - free percpu allocation info
2434 * @ai: pcpu_alloc_info to free
2436 * Free @ai which was allocated by pcpu_alloc_alloc_info().
2438 void __init
pcpu_free_alloc_info(struct pcpu_alloc_info
*ai
)
2440 memblock_free(ai
, ai
->__ai_size
);
2444 * pcpu_dump_alloc_info - print out information about pcpu_alloc_info
2446 * @ai: allocation info to dump
2448 * Print out information about @ai using loglevel @lvl.
2450 static void pcpu_dump_alloc_info(const char *lvl
,
2451 const struct pcpu_alloc_info
*ai
)
2453 int group_width
= 1, cpu_width
= 1, width
;
2454 char empty_str
[] = "--------";
2455 int alloc
= 0, alloc_end
= 0;
2457 int upa
, apl
; /* units per alloc, allocs per line */
2463 v
= num_possible_cpus();
2466 empty_str
[min_t(int, cpu_width
, sizeof(empty_str
) - 1)] = '\0';
2468 upa
= ai
->alloc_size
/ ai
->unit_size
;
2469 width
= upa
* (cpu_width
+ 1) + group_width
+ 3;
2470 apl
= rounddown_pow_of_two(max(60 / width
, 1));
2472 printk("%spcpu-alloc: s%zu r%zu d%zu u%zu alloc=%zu*%zu",
2473 lvl
, ai
->static_size
, ai
->reserved_size
, ai
->dyn_size
,
2474 ai
->unit_size
, ai
->alloc_size
/ ai
->atom_size
, ai
->atom_size
);
2476 for (group
= 0; group
< ai
->nr_groups
; group
++) {
2477 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2478 int unit
= 0, unit_end
= 0;
2480 BUG_ON(gi
->nr_units
% upa
);
2481 for (alloc_end
+= gi
->nr_units
/ upa
;
2482 alloc
< alloc_end
; alloc
++) {
2483 if (!(alloc
% apl
)) {
2485 printk("%spcpu-alloc: ", lvl
);
2487 pr_cont("[%0*d] ", group_width
, group
);
2489 for (unit_end
+= upa
; unit
< unit_end
; unit
++)
2490 if (gi
->cpu_map
[unit
] != NR_CPUS
)
2492 cpu_width
, gi
->cpu_map
[unit
]);
2494 pr_cont("%s ", empty_str
);
2501 * pcpu_setup_first_chunk - initialize the first percpu chunk
2502 * @ai: pcpu_alloc_info describing how to percpu area is shaped
2503 * @base_addr: mapped address
2505 * Initialize the first percpu chunk which contains the kernel static
2506 * percpu area. This function is to be called from arch percpu area
2509 * @ai contains all information necessary to initialize the first
2510 * chunk and prime the dynamic percpu allocator.
2512 * @ai->static_size is the size of static percpu area.
2514 * @ai->reserved_size, if non-zero, specifies the amount of bytes to
2515 * reserve after the static area in the first chunk. This reserves
2516 * the first chunk such that it's available only through reserved
2517 * percpu allocation. This is primarily used to serve module percpu
2518 * static areas on architectures where the addressing model has
2519 * limited offset range for symbol relocations to guarantee module
2520 * percpu symbols fall inside the relocatable range.
2522 * @ai->dyn_size determines the number of bytes available for dynamic
2523 * allocation in the first chunk. The area between @ai->static_size +
2524 * @ai->reserved_size + @ai->dyn_size and @ai->unit_size is unused.
2526 * @ai->unit_size specifies unit size and must be aligned to PAGE_SIZE
2527 * and equal to or larger than @ai->static_size + @ai->reserved_size +
2530 * @ai->atom_size is the allocation atom size and used as alignment
2533 * @ai->alloc_size is the allocation size and always multiple of
2534 * @ai->atom_size. This is larger than @ai->atom_size if
2535 * @ai->unit_size is larger than @ai->atom_size.
2537 * @ai->nr_groups and @ai->groups describe virtual memory layout of
2538 * percpu areas. Units which should be colocated are put into the
2539 * same group. Dynamic VM areas will be allocated according to these
2540 * groupings. If @ai->nr_groups is zero, a single group containing
2541 * all units is assumed.
2543 * The caller should have mapped the first chunk at @base_addr and
2544 * copied static data to each unit.
2546 * The first chunk will always contain a static and a dynamic region.
2547 * However, the static region is not managed by any chunk. If the first
2548 * chunk also contains a reserved region, it is served by two chunks -
2549 * one for the reserved region and one for the dynamic region. They
2550 * share the same vm, but use offset regions in the area allocation map.
2551 * The chunk serving the dynamic region is circulated in the chunk slots
2552 * and available for dynamic allocation like any other chunk.
2554 void __init
pcpu_setup_first_chunk(const struct pcpu_alloc_info
*ai
,
2557 size_t size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
2558 size_t static_size
, dyn_size
;
2559 unsigned long *group_offsets
;
2560 size_t *group_sizes
;
2561 unsigned long *unit_off
;
2565 unsigned long tmp_addr
;
2568 #define PCPU_SETUP_BUG_ON(cond) do { \
2569 if (unlikely(cond)) { \
2570 pr_emerg("failed to initialize, %s\n", #cond); \
2571 pr_emerg("cpu_possible_mask=%*pb\n", \
2572 cpumask_pr_args(cpu_possible_mask)); \
2573 pcpu_dump_alloc_info(KERN_EMERG, ai); \
2579 PCPU_SETUP_BUG_ON(ai
->nr_groups
<= 0);
2581 PCPU_SETUP_BUG_ON(!ai
->static_size
);
2582 PCPU_SETUP_BUG_ON(offset_in_page(__per_cpu_start
));
2584 PCPU_SETUP_BUG_ON(!base_addr
);
2585 PCPU_SETUP_BUG_ON(offset_in_page(base_addr
));
2586 PCPU_SETUP_BUG_ON(ai
->unit_size
< size_sum
);
2587 PCPU_SETUP_BUG_ON(offset_in_page(ai
->unit_size
));
2588 PCPU_SETUP_BUG_ON(ai
->unit_size
< PCPU_MIN_UNIT_SIZE
);
2589 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai
->unit_size
, PCPU_BITMAP_BLOCK_SIZE
));
2590 PCPU_SETUP_BUG_ON(ai
->dyn_size
< PERCPU_DYNAMIC_EARLY_SIZE
);
2591 PCPU_SETUP_BUG_ON(!IS_ALIGNED(ai
->reserved_size
, PCPU_MIN_ALLOC_SIZE
));
2592 PCPU_SETUP_BUG_ON(!(IS_ALIGNED(PCPU_BITMAP_BLOCK_SIZE
, PAGE_SIZE
) ||
2593 IS_ALIGNED(PAGE_SIZE
, PCPU_BITMAP_BLOCK_SIZE
)));
2594 PCPU_SETUP_BUG_ON(pcpu_verify_alloc_info(ai
) < 0);
2596 /* process group information and build config tables accordingly */
2597 alloc_size
= ai
->nr_groups
* sizeof(group_offsets
[0]);
2598 group_offsets
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
2600 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2603 alloc_size
= ai
->nr_groups
* sizeof(group_sizes
[0]);
2604 group_sizes
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
2606 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2609 alloc_size
= nr_cpu_ids
* sizeof(unit_map
[0]);
2610 unit_map
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
2612 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2615 alloc_size
= nr_cpu_ids
* sizeof(unit_off
[0]);
2616 unit_off
= memblock_alloc(alloc_size
, SMP_CACHE_BYTES
);
2618 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2621 for (cpu
= 0; cpu
< nr_cpu_ids
; cpu
++)
2622 unit_map
[cpu
] = UINT_MAX
;
2624 pcpu_low_unit_cpu
= NR_CPUS
;
2625 pcpu_high_unit_cpu
= NR_CPUS
;
2627 for (group
= 0, unit
= 0; group
< ai
->nr_groups
; group
++, unit
+= i
) {
2628 const struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2630 group_offsets
[group
] = gi
->base_offset
;
2631 group_sizes
[group
] = gi
->nr_units
* ai
->unit_size
;
2633 for (i
= 0; i
< gi
->nr_units
; i
++) {
2634 cpu
= gi
->cpu_map
[i
];
2638 PCPU_SETUP_BUG_ON(cpu
>= nr_cpu_ids
);
2639 PCPU_SETUP_BUG_ON(!cpu_possible(cpu
));
2640 PCPU_SETUP_BUG_ON(unit_map
[cpu
] != UINT_MAX
);
2642 unit_map
[cpu
] = unit
+ i
;
2643 unit_off
[cpu
] = gi
->base_offset
+ i
* ai
->unit_size
;
2645 /* determine low/high unit_cpu */
2646 if (pcpu_low_unit_cpu
== NR_CPUS
||
2647 unit_off
[cpu
] < unit_off
[pcpu_low_unit_cpu
])
2648 pcpu_low_unit_cpu
= cpu
;
2649 if (pcpu_high_unit_cpu
== NR_CPUS
||
2650 unit_off
[cpu
] > unit_off
[pcpu_high_unit_cpu
])
2651 pcpu_high_unit_cpu
= cpu
;
2654 pcpu_nr_units
= unit
;
2656 for_each_possible_cpu(cpu
)
2657 PCPU_SETUP_BUG_ON(unit_map
[cpu
] == UINT_MAX
);
2659 /* we're done parsing the input, undefine BUG macro and dump config */
2660 #undef PCPU_SETUP_BUG_ON
2661 pcpu_dump_alloc_info(KERN_DEBUG
, ai
);
2663 pcpu_nr_groups
= ai
->nr_groups
;
2664 pcpu_group_offsets
= group_offsets
;
2665 pcpu_group_sizes
= group_sizes
;
2666 pcpu_unit_map
= unit_map
;
2667 pcpu_unit_offsets
= unit_off
;
2669 /* determine basic parameters */
2670 pcpu_unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
2671 pcpu_unit_size
= pcpu_unit_pages
<< PAGE_SHIFT
;
2672 pcpu_atom_size
= ai
->atom_size
;
2673 pcpu_chunk_struct_size
= struct_size((struct pcpu_chunk
*)0, populated
,
2674 BITS_TO_LONGS(pcpu_unit_pages
));
2676 pcpu_stats_save_ai(ai
);
2679 * Allocate chunk slots. The slots after the active slots are:
2680 * sidelined_slot - isolated, depopulated chunks
2681 * free_slot - fully free chunks
2682 * to_depopulate_slot - isolated, chunks to depopulate
2684 pcpu_sidelined_slot
= __pcpu_size_to_slot(pcpu_unit_size
) + 1;
2685 pcpu_free_slot
= pcpu_sidelined_slot
+ 1;
2686 pcpu_to_depopulate_slot
= pcpu_free_slot
+ 1;
2687 pcpu_nr_slots
= pcpu_to_depopulate_slot
+ 1;
2688 pcpu_chunk_lists
= memblock_alloc(pcpu_nr_slots
*
2689 sizeof(pcpu_chunk_lists
[0]),
2691 if (!pcpu_chunk_lists
)
2692 panic("%s: Failed to allocate %zu bytes\n", __func__
,
2693 pcpu_nr_slots
* sizeof(pcpu_chunk_lists
[0]));
2695 for (i
= 0; i
< pcpu_nr_slots
; i
++)
2696 INIT_LIST_HEAD(&pcpu_chunk_lists
[i
]);
2699 * The end of the static region needs to be aligned with the
2700 * minimum allocation size as this offsets the reserved and
2701 * dynamic region. The first chunk ends page aligned by
2702 * expanding the dynamic region, therefore the dynamic region
2703 * can be shrunk to compensate while still staying above the
2706 static_size
= ALIGN(ai
->static_size
, PCPU_MIN_ALLOC_SIZE
);
2707 dyn_size
= ai
->dyn_size
- (static_size
- ai
->static_size
);
2710 * Initialize first chunk:
2711 * This chunk is broken up into 3 parts:
2712 * < static | [reserved] | dynamic >
2713 * - static - there is no backing chunk because these allocations can
2715 * - reserved (pcpu_reserved_chunk) - exists primarily to serve
2716 * allocations from module load.
2717 * - dynamic (pcpu_first_chunk) - serves the dynamic part of the first
2720 tmp_addr
= (unsigned long)base_addr
+ static_size
;
2721 if (ai
->reserved_size
)
2722 pcpu_reserved_chunk
= pcpu_alloc_first_chunk(tmp_addr
,
2724 tmp_addr
= (unsigned long)base_addr
+ static_size
+ ai
->reserved_size
;
2725 pcpu_first_chunk
= pcpu_alloc_first_chunk(tmp_addr
, dyn_size
);
2727 pcpu_nr_empty_pop_pages
= pcpu_first_chunk
->nr_empty_pop_pages
;
2728 pcpu_chunk_relocate(pcpu_first_chunk
, -1);
2730 /* include all regions of the first chunk */
2731 pcpu_nr_populated
+= PFN_DOWN(size_sum
);
2733 pcpu_stats_chunk_alloc();
2734 trace_percpu_create_chunk(base_addr
);
2737 pcpu_base_addr
= base_addr
;
2742 const char * const pcpu_fc_names
[PCPU_FC_NR
] __initconst
= {
2743 [PCPU_FC_AUTO
] = "auto",
2744 [PCPU_FC_EMBED
] = "embed",
2745 [PCPU_FC_PAGE
] = "page",
2748 enum pcpu_fc pcpu_chosen_fc __initdata
= PCPU_FC_AUTO
;
2750 static int __init
percpu_alloc_setup(char *str
)
2757 #ifdef CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK
2758 else if (!strcmp(str
, "embed"))
2759 pcpu_chosen_fc
= PCPU_FC_EMBED
;
2761 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
2762 else if (!strcmp(str
, "page"))
2763 pcpu_chosen_fc
= PCPU_FC_PAGE
;
2766 pr_warn("unknown allocator %s specified\n", str
);
2770 early_param("percpu_alloc", percpu_alloc_setup
);
2773 * pcpu_embed_first_chunk() is used by the generic percpu setup.
2774 * Build it if needed by the arch config or the generic setup is going
2777 #if defined(CONFIG_NEED_PER_CPU_EMBED_FIRST_CHUNK) || \
2778 !defined(CONFIG_HAVE_SETUP_PER_CPU_AREA)
2779 #define BUILD_EMBED_FIRST_CHUNK
2782 /* build pcpu_page_first_chunk() iff needed by the arch config */
2783 #if defined(CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK)
2784 #define BUILD_PAGE_FIRST_CHUNK
2787 /* pcpu_build_alloc_info() is used by both embed and page first chunk */
2788 #if defined(BUILD_EMBED_FIRST_CHUNK) || defined(BUILD_PAGE_FIRST_CHUNK)
2790 * pcpu_build_alloc_info - build alloc_info considering distances between CPUs
2791 * @reserved_size: the size of reserved percpu area in bytes
2792 * @dyn_size: minimum free size for dynamic allocation in bytes
2793 * @atom_size: allocation atom size
2794 * @cpu_distance_fn: callback to determine distance between cpus, optional
2796 * This function determines grouping of units, their mappings to cpus
2797 * and other parameters considering needed percpu size, allocation
2798 * atom size and distances between CPUs.
2800 * Groups are always multiples of atom size and CPUs which are of
2801 * LOCAL_DISTANCE both ways are grouped together and share space for
2802 * units in the same group. The returned configuration is guaranteed
2803 * to have CPUs on different nodes on different groups and >=75% usage
2804 * of allocated virtual address space.
2807 * On success, pointer to the new allocation_info is returned. On
2808 * failure, ERR_PTR value is returned.
2810 static struct pcpu_alloc_info
* __init __flatten
pcpu_build_alloc_info(
2811 size_t reserved_size
, size_t dyn_size
,
2813 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
)
2815 static int group_map
[NR_CPUS
] __initdata
;
2816 static int group_cnt
[NR_CPUS
] __initdata
;
2817 static struct cpumask mask __initdata
;
2818 const size_t static_size
= __per_cpu_end
- __per_cpu_start
;
2819 int nr_groups
= 1, nr_units
= 0;
2820 size_t size_sum
, min_unit_size
, alloc_size
;
2821 int upa
, max_upa
, best_upa
; /* units_per_alloc */
2822 int last_allocs
, group
, unit
;
2823 unsigned int cpu
, tcpu
;
2824 struct pcpu_alloc_info
*ai
;
2825 unsigned int *cpu_map
;
2827 /* this function may be called multiple times */
2828 memset(group_map
, 0, sizeof(group_map
));
2829 memset(group_cnt
, 0, sizeof(group_cnt
));
2830 cpumask_clear(&mask
);
2832 /* calculate size_sum and ensure dyn_size is enough for early alloc */
2833 size_sum
= PFN_ALIGN(static_size
+ reserved_size
+
2834 max_t(size_t, dyn_size
, PERCPU_DYNAMIC_EARLY_SIZE
));
2835 dyn_size
= size_sum
- static_size
- reserved_size
;
2838 * Determine min_unit_size, alloc_size and max_upa such that
2839 * alloc_size is multiple of atom_size and is the smallest
2840 * which can accommodate 4k aligned segments which are equal to
2841 * or larger than min_unit_size.
2843 min_unit_size
= max_t(size_t, size_sum
, PCPU_MIN_UNIT_SIZE
);
2845 /* determine the maximum # of units that can fit in an allocation */
2846 alloc_size
= roundup(min_unit_size
, atom_size
);
2847 upa
= alloc_size
/ min_unit_size
;
2848 while (alloc_size
% upa
|| (offset_in_page(alloc_size
/ upa
)))
2852 cpumask_copy(&mask
, cpu_possible_mask
);
2854 /* group cpus according to their proximity */
2855 for (group
= 0; !cpumask_empty(&mask
); group
++) {
2856 /* pop the group's first cpu */
2857 cpu
= cpumask_first(&mask
);
2858 group_map
[cpu
] = group
;
2860 cpumask_clear_cpu(cpu
, &mask
);
2862 for_each_cpu(tcpu
, &mask
) {
2863 if (!cpu_distance_fn
||
2864 (cpu_distance_fn(cpu
, tcpu
) == LOCAL_DISTANCE
&&
2865 cpu_distance_fn(tcpu
, cpu
) == LOCAL_DISTANCE
)) {
2866 group_map
[tcpu
] = group
;
2868 cpumask_clear_cpu(tcpu
, &mask
);
2875 * Wasted space is caused by a ratio imbalance of upa to group_cnt.
2876 * Expand the unit_size until we use >= 75% of the units allocated.
2877 * Related to atom_size, which could be much larger than the unit_size.
2879 last_allocs
= INT_MAX
;
2881 for (upa
= max_upa
; upa
; upa
--) {
2882 int allocs
= 0, wasted
= 0;
2884 if (alloc_size
% upa
|| (offset_in_page(alloc_size
/ upa
)))
2887 for (group
= 0; group
< nr_groups
; group
++) {
2888 int this_allocs
= DIV_ROUND_UP(group_cnt
[group
], upa
);
2889 allocs
+= this_allocs
;
2890 wasted
+= this_allocs
* upa
- group_cnt
[group
];
2894 * Don't accept if wastage is over 1/3. The
2895 * greater-than comparison ensures upa==1 always
2896 * passes the following check.
2898 if (wasted
> num_possible_cpus() / 3)
2901 /* and then don't consume more memory */
2902 if (allocs
> last_allocs
)
2904 last_allocs
= allocs
;
2910 /* allocate and fill alloc_info */
2911 for (group
= 0; group
< nr_groups
; group
++)
2912 nr_units
+= roundup(group_cnt
[group
], upa
);
2914 ai
= pcpu_alloc_alloc_info(nr_groups
, nr_units
);
2916 return ERR_PTR(-ENOMEM
);
2917 cpu_map
= ai
->groups
[0].cpu_map
;
2919 for (group
= 0; group
< nr_groups
; group
++) {
2920 ai
->groups
[group
].cpu_map
= cpu_map
;
2921 cpu_map
+= roundup(group_cnt
[group
], upa
);
2924 ai
->static_size
= static_size
;
2925 ai
->reserved_size
= reserved_size
;
2926 ai
->dyn_size
= dyn_size
;
2927 ai
->unit_size
= alloc_size
/ upa
;
2928 ai
->atom_size
= atom_size
;
2929 ai
->alloc_size
= alloc_size
;
2931 for (group
= 0, unit
= 0; group
< nr_groups
; group
++) {
2932 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
2935 * Initialize base_offset as if all groups are located
2936 * back-to-back. The caller should update this to
2937 * reflect actual allocation.
2939 gi
->base_offset
= unit
* ai
->unit_size
;
2941 for_each_possible_cpu(cpu
)
2942 if (group_map
[cpu
] == group
)
2943 gi
->cpu_map
[gi
->nr_units
++] = cpu
;
2944 gi
->nr_units
= roundup(gi
->nr_units
, upa
);
2945 unit
+= gi
->nr_units
;
2947 BUG_ON(unit
!= nr_units
);
2952 static void * __init
pcpu_fc_alloc(unsigned int cpu
, size_t size
, size_t align
,
2953 pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn
)
2955 const unsigned long goal
= __pa(MAX_DMA_ADDRESS
);
2957 int node
= NUMA_NO_NODE
;
2961 node
= cpu_to_nd_fn(cpu
);
2963 if (node
== NUMA_NO_NODE
|| !node_online(node
) || !NODE_DATA(node
)) {
2964 ptr
= memblock_alloc_from(size
, align
, goal
);
2965 pr_info("cpu %d has no node %d or node-local memory\n",
2967 pr_debug("per cpu data for cpu%d %zu bytes at 0x%llx\n",
2968 cpu
, size
, (u64
)__pa(ptr
));
2970 ptr
= memblock_alloc_try_nid(size
, align
, goal
,
2971 MEMBLOCK_ALLOC_ACCESSIBLE
,
2974 pr_debug("per cpu data for cpu%d %zu bytes on node%d at 0x%llx\n",
2975 cpu
, size
, node
, (u64
)__pa(ptr
));
2979 return memblock_alloc_from(size
, align
, goal
);
2983 static void __init
pcpu_fc_free(void *ptr
, size_t size
)
2985 memblock_free(ptr
, size
);
2987 #endif /* BUILD_EMBED_FIRST_CHUNK || BUILD_PAGE_FIRST_CHUNK */
2989 #if defined(BUILD_EMBED_FIRST_CHUNK)
2991 * pcpu_embed_first_chunk - embed the first percpu chunk into bootmem
2992 * @reserved_size: the size of reserved percpu area in bytes
2993 * @dyn_size: minimum free size for dynamic allocation in bytes
2994 * @atom_size: allocation atom size
2995 * @cpu_distance_fn: callback to determine distance between cpus, optional
2996 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
2998 * This is a helper to ease setting up embedded first percpu chunk and
2999 * can be called where pcpu_setup_first_chunk() is expected.
3001 * If this function is used to setup the first chunk, it is allocated
3002 * by calling pcpu_fc_alloc and used as-is without being mapped into
3003 * vmalloc area. Allocations are always whole multiples of @atom_size
3004 * aligned to @atom_size.
3006 * This enables the first chunk to piggy back on the linear physical
3007 * mapping which often uses larger page size. Please note that this
3008 * can result in very sparse cpu->unit mapping on NUMA machines thus
3009 * requiring large vmalloc address space. Don't use this allocator if
3010 * vmalloc space is not orders of magnitude larger than distances
3011 * between node memory addresses (ie. 32bit NUMA machines).
3013 * @dyn_size specifies the minimum dynamic area size.
3015 * If the needed size is smaller than the minimum or specified unit
3016 * size, the leftover is returned using pcpu_fc_free.
3019 * 0 on success, -errno on failure.
3021 int __init
pcpu_embed_first_chunk(size_t reserved_size
, size_t dyn_size
,
3023 pcpu_fc_cpu_distance_fn_t cpu_distance_fn
,
3024 pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn
)
3026 void *base
= (void *)ULONG_MAX
;
3027 void **areas
= NULL
;
3028 struct pcpu_alloc_info
*ai
;
3029 size_t size_sum
, areas_size
;
3030 unsigned long max_distance
;
3031 int group
, i
, highest_group
, rc
= 0;
3033 ai
= pcpu_build_alloc_info(reserved_size
, dyn_size
, atom_size
,
3038 size_sum
= ai
->static_size
+ ai
->reserved_size
+ ai
->dyn_size
;
3039 areas_size
= PFN_ALIGN(ai
->nr_groups
* sizeof(void *));
3041 areas
= memblock_alloc(areas_size
, SMP_CACHE_BYTES
);
3047 /* allocate, copy and determine base address & max_distance */
3049 for (group
= 0; group
< ai
->nr_groups
; group
++) {
3050 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
3051 unsigned int cpu
= NR_CPUS
;
3054 for (i
= 0; i
< gi
->nr_units
&& cpu
== NR_CPUS
; i
++)
3055 cpu
= gi
->cpu_map
[i
];
3056 BUG_ON(cpu
== NR_CPUS
);
3058 /* allocate space for the whole group */
3059 ptr
= pcpu_fc_alloc(cpu
, gi
->nr_units
* ai
->unit_size
, atom_size
, cpu_to_nd_fn
);
3062 goto out_free_areas
;
3064 /* kmemleak tracks the percpu allocations separately */
3065 kmemleak_ignore_phys(__pa(ptr
));
3068 base
= min(ptr
, base
);
3069 if (ptr
> areas
[highest_group
])
3070 highest_group
= group
;
3072 max_distance
= areas
[highest_group
] - base
;
3073 max_distance
+= ai
->unit_size
* ai
->groups
[highest_group
].nr_units
;
3075 /* warn if maximum distance is further than 75% of vmalloc space */
3076 if (max_distance
> VMALLOC_TOTAL
* 3 / 4) {
3077 pr_warn("max_distance=0x%lx too large for vmalloc space 0x%lx\n",
3078 max_distance
, VMALLOC_TOTAL
);
3079 #ifdef CONFIG_NEED_PER_CPU_PAGE_FIRST_CHUNK
3080 /* and fail if we have fallback */
3082 goto out_free_areas
;
3087 * Copy data and free unused parts. This should happen after all
3088 * allocations are complete; otherwise, we may end up with
3089 * overlapping groups.
3091 for (group
= 0; group
< ai
->nr_groups
; group
++) {
3092 struct pcpu_group_info
*gi
= &ai
->groups
[group
];
3093 void *ptr
= areas
[group
];
3095 for (i
= 0; i
< gi
->nr_units
; i
++, ptr
+= ai
->unit_size
) {
3096 if (gi
->cpu_map
[i
] == NR_CPUS
) {
3097 /* unused unit, free whole */
3098 pcpu_fc_free(ptr
, ai
->unit_size
);
3101 /* copy and return the unused part */
3102 memcpy(ptr
, __per_cpu_load
, ai
->static_size
);
3103 pcpu_fc_free(ptr
+ size_sum
, ai
->unit_size
- size_sum
);
3107 /* base address is now known, determine group base offsets */
3108 for (group
= 0; group
< ai
->nr_groups
; group
++) {
3109 ai
->groups
[group
].base_offset
= areas
[group
] - base
;
3112 pr_info("Embedded %zu pages/cpu s%zu r%zu d%zu u%zu\n",
3113 PFN_DOWN(size_sum
), ai
->static_size
, ai
->reserved_size
,
3114 ai
->dyn_size
, ai
->unit_size
);
3116 pcpu_setup_first_chunk(ai
, base
);
3120 for (group
= 0; group
< ai
->nr_groups
; group
++)
3122 pcpu_fc_free(areas
[group
],
3123 ai
->groups
[group
].nr_units
* ai
->unit_size
);
3125 pcpu_free_alloc_info(ai
);
3127 memblock_free(areas
, areas_size
);
3130 #endif /* BUILD_EMBED_FIRST_CHUNK */
3132 #ifdef BUILD_PAGE_FIRST_CHUNK
3133 #include <asm/pgalloc.h>
3135 #ifndef P4D_TABLE_SIZE
3136 #define P4D_TABLE_SIZE PAGE_SIZE
3139 #ifndef PUD_TABLE_SIZE
3140 #define PUD_TABLE_SIZE PAGE_SIZE
3143 #ifndef PMD_TABLE_SIZE
3144 #define PMD_TABLE_SIZE PAGE_SIZE
3147 #ifndef PTE_TABLE_SIZE
3148 #define PTE_TABLE_SIZE PAGE_SIZE
3150 void __init __weak
pcpu_populate_pte(unsigned long addr
)
3152 pgd_t
*pgd
= pgd_offset_k(addr
);
3157 if (pgd_none(*pgd
)) {
3158 p4d
= memblock_alloc(P4D_TABLE_SIZE
, P4D_TABLE_SIZE
);
3161 pgd_populate(&init_mm
, pgd
, p4d
);
3164 p4d
= p4d_offset(pgd
, addr
);
3165 if (p4d_none(*p4d
)) {
3166 pud
= memblock_alloc(PUD_TABLE_SIZE
, PUD_TABLE_SIZE
);
3169 p4d_populate(&init_mm
, p4d
, pud
);
3172 pud
= pud_offset(p4d
, addr
);
3173 if (pud_none(*pud
)) {
3174 pmd
= memblock_alloc(PMD_TABLE_SIZE
, PMD_TABLE_SIZE
);
3177 pud_populate(&init_mm
, pud
, pmd
);
3180 pmd
= pmd_offset(pud
, addr
);
3181 if (!pmd_present(*pmd
)) {
3184 new = memblock_alloc(PTE_TABLE_SIZE
, PTE_TABLE_SIZE
);
3187 pmd_populate_kernel(&init_mm
, pmd
, new);
3193 panic("%s: Failed to allocate memory\n", __func__
);
3197 * pcpu_page_first_chunk - map the first chunk using PAGE_SIZE pages
3198 * @reserved_size: the size of reserved percpu area in bytes
3199 * @cpu_to_nd_fn: callback to convert cpu to it's node, optional
3201 * This is a helper to ease setting up page-remapped first percpu
3202 * chunk and can be called where pcpu_setup_first_chunk() is expected.
3204 * This is the basic allocator. Static percpu area is allocated
3205 * page-by-page into vmalloc area.
3208 * 0 on success, -errno on failure.
3210 int __init
pcpu_page_first_chunk(size_t reserved_size
, pcpu_fc_cpu_to_node_fn_t cpu_to_nd_fn
)
3212 static struct vm_struct vm
;
3213 struct pcpu_alloc_info
*ai
;
3217 struct page
**pages
;
3218 int unit
, i
, j
, rc
= 0;
3222 snprintf(psize_str
, sizeof(psize_str
), "%luK", PAGE_SIZE
>> 10);
3224 ai
= pcpu_build_alloc_info(reserved_size
, 0, PAGE_SIZE
, NULL
);
3227 BUG_ON(ai
->nr_groups
!= 1);
3228 upa
= ai
->alloc_size
/ai
->unit_size
;
3229 nr_g0_units
= roundup(num_possible_cpus(), upa
);
3230 if (WARN_ON(ai
->groups
[0].nr_units
!= nr_g0_units
)) {
3231 pcpu_free_alloc_info(ai
);
3235 unit_pages
= ai
->unit_size
>> PAGE_SHIFT
;
3237 /* unaligned allocations can't be freed, round up to page size */
3238 pages_size
= PFN_ALIGN(unit_pages
* num_possible_cpus() *
3240 pages
= memblock_alloc(pages_size
, SMP_CACHE_BYTES
);
3242 panic("%s: Failed to allocate %zu bytes\n", __func__
,
3245 /* allocate pages */
3247 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
3248 unsigned int cpu
= ai
->groups
[0].cpu_map
[unit
];
3249 for (i
= 0; i
< unit_pages
; i
++) {
3252 ptr
= pcpu_fc_alloc(cpu
, PAGE_SIZE
, PAGE_SIZE
, cpu_to_nd_fn
);
3254 pr_warn("failed to allocate %s page for cpu%u\n",
3258 /* kmemleak tracks the percpu allocations separately */
3259 kmemleak_ignore_phys(__pa(ptr
));
3260 pages
[j
++] = virt_to_page(ptr
);
3264 /* allocate vm area, map the pages and copy static data */
3265 vm
.flags
= VM_ALLOC
;
3266 vm
.size
= num_possible_cpus() * ai
->unit_size
;
3267 vm_area_register_early(&vm
, PAGE_SIZE
);
3269 for (unit
= 0; unit
< num_possible_cpus(); unit
++) {
3270 unsigned long unit_addr
=
3271 (unsigned long)vm
.addr
+ unit
* ai
->unit_size
;
3273 for (i
= 0; i
< unit_pages
; i
++)
3274 pcpu_populate_pte(unit_addr
+ (i
<< PAGE_SHIFT
));
3276 /* pte already populated, the following shouldn't fail */
3277 rc
= __pcpu_map_pages(unit_addr
, &pages
[unit
* unit_pages
],
3280 panic("failed to map percpu area, err=%d\n", rc
);
3282 flush_cache_vmap_early(unit_addr
, unit_addr
+ ai
->unit_size
);
3284 /* copy static data */
3285 memcpy((void *)unit_addr
, __per_cpu_load
, ai
->static_size
);
3288 /* we're ready, commit */
3289 pr_info("%d %s pages/cpu s%zu r%zu d%zu\n",
3290 unit_pages
, psize_str
, ai
->static_size
,
3291 ai
->reserved_size
, ai
->dyn_size
);
3293 pcpu_setup_first_chunk(ai
, vm
.addr
);
3298 pcpu_fc_free(page_address(pages
[j
]), PAGE_SIZE
);
3301 memblock_free(pages
, pages_size
);
3302 pcpu_free_alloc_info(ai
);
3305 #endif /* BUILD_PAGE_FIRST_CHUNK */
3307 #ifndef CONFIG_HAVE_SETUP_PER_CPU_AREA
3309 * Generic SMP percpu area setup.
3311 * The embedding helper is used because its behavior closely resembles
3312 * the original non-dynamic generic percpu area setup. This is
3313 * important because many archs have addressing restrictions and might
3314 * fail if the percpu area is located far away from the previous
3315 * location. As an added bonus, in non-NUMA cases, embedding is
3316 * generally a good idea TLB-wise because percpu area can piggy back
3317 * on the physical linear memory mapping which uses large page
3318 * mappings on applicable archs.
3320 unsigned long __per_cpu_offset
[NR_CPUS
] __read_mostly
;
3321 EXPORT_SYMBOL(__per_cpu_offset
);
3323 void __init
setup_per_cpu_areas(void)
3325 unsigned long delta
;
3330 * Always reserve area for module percpu variables. That's
3331 * what the legacy allocator did.
3333 rc
= pcpu_embed_first_chunk(PERCPU_MODULE_RESERVE
, PERCPU_DYNAMIC_RESERVE
,
3334 PAGE_SIZE
, NULL
, NULL
);
3336 panic("Failed to initialize percpu areas.");
3338 delta
= (unsigned long)pcpu_base_addr
- (unsigned long)__per_cpu_start
;
3339 for_each_possible_cpu(cpu
)
3340 __per_cpu_offset
[cpu
] = delta
+ pcpu_unit_offsets
[cpu
];
3342 #endif /* CONFIG_HAVE_SETUP_PER_CPU_AREA */
3344 #else /* CONFIG_SMP */
3347 * UP percpu area setup.
3349 * UP always uses km-based percpu allocator with identity mapping.
3350 * Static percpu variables are indistinguishable from the usual static
3351 * variables and don't require any special preparation.
3353 void __init
setup_per_cpu_areas(void)
3355 const size_t unit_size
=
3356 roundup_pow_of_two(max_t(size_t, PCPU_MIN_UNIT_SIZE
,
3357 PERCPU_DYNAMIC_RESERVE
));
3358 struct pcpu_alloc_info
*ai
;
3361 ai
= pcpu_alloc_alloc_info(1, 1);
3362 fc
= memblock_alloc_from(unit_size
, PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
));
3364 panic("Failed to allocate memory for percpu areas.");
3365 /* kmemleak tracks the percpu allocations separately */
3366 kmemleak_ignore_phys(__pa(fc
));
3368 ai
->dyn_size
= unit_size
;
3369 ai
->unit_size
= unit_size
;
3370 ai
->atom_size
= unit_size
;
3371 ai
->alloc_size
= unit_size
;
3372 ai
->groups
[0].nr_units
= 1;
3373 ai
->groups
[0].cpu_map
[0] = 0;
3375 pcpu_setup_first_chunk(ai
, fc
);
3376 pcpu_free_alloc_info(ai
);
3379 #endif /* CONFIG_SMP */
3382 * pcpu_nr_pages - calculate total number of populated backing pages
3384 * This reflects the number of pages populated to back chunks. Metadata is
3385 * excluded in the number exposed in meminfo as the number of backing pages
3386 * scales with the number of cpus and can quickly outweigh the memory used for
3387 * metadata. It also keeps this calculation nice and simple.
3390 * Total number of populated backing pages in use by the allocator.
3392 unsigned long pcpu_nr_pages(void)
3394 return pcpu_nr_populated
* pcpu_nr_units
;
3398 * Percpu allocator is initialized early during boot when neither slab or
3399 * workqueue is available. Plug async management until everything is up
3402 static int __init
percpu_enable_async(void)
3404 pcpu_async_enabled
= true;
3407 subsys_initcall(percpu_enable_async
);