drm/ast: Only warn about unsupported TX chips on Gen4 and later
[drm/drm-misc.git] / mm / readahead.c
blobea650b8b02fb19642b5e26a743814b95c7c99594
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/readahead.c - address_space-level file readahead.
5 * Copyright (C) 2002, Linus Torvalds
7 * 09Apr2002 Andrew Morton
8 * Initial version.
9 */
11 /**
12 * DOC: Readahead Overview
14 * Readahead is used to read content into the page cache before it is
15 * explicitly requested by the application. Readahead only ever
16 * attempts to read folios that are not yet in the page cache. If a
17 * folio is present but not up-to-date, readahead will not try to read
18 * it. In that case a simple ->read_folio() will be requested.
20 * Readahead is triggered when an application read request (whether a
21 * system call or a page fault) finds that the requested folio is not in
22 * the page cache, or that it is in the page cache and has the
23 * readahead flag set. This flag indicates that the folio was read
24 * as part of a previous readahead request and now that it has been
25 * accessed, it is time for the next readahead.
27 * Each readahead request is partly synchronous read, and partly async
28 * readahead. This is reflected in the struct file_ra_state which
29 * contains ->size being the total number of pages, and ->async_size
30 * which is the number of pages in the async section. The readahead
31 * flag will be set on the first folio in this async section to trigger
32 * a subsequent readahead. Once a series of sequential reads has been
33 * established, there should be no need for a synchronous component and
34 * all readahead request will be fully asynchronous.
36 * When either of the triggers causes a readahead, three numbers need
37 * to be determined: the start of the region to read, the size of the
38 * region, and the size of the async tail.
40 * The start of the region is simply the first page address at or after
41 * the accessed address, which is not currently populated in the page
42 * cache. This is found with a simple search in the page cache.
44 * The size of the async tail is determined by subtracting the size that
45 * was explicitly requested from the determined request size, unless
46 * this would be less than zero - then zero is used. NOTE THIS
47 * CALCULATION IS WRONG WHEN THE START OF THE REGION IS NOT THE ACCESSED
48 * PAGE. ALSO THIS CALCULATION IS NOT USED CONSISTENTLY.
50 * The size of the region is normally determined from the size of the
51 * previous readahead which loaded the preceding pages. This may be
52 * discovered from the struct file_ra_state for simple sequential reads,
53 * or from examining the state of the page cache when multiple
54 * sequential reads are interleaved. Specifically: where the readahead
55 * was triggered by the readahead flag, the size of the previous
56 * readahead is assumed to be the number of pages from the triggering
57 * page to the start of the new readahead. In these cases, the size of
58 * the previous readahead is scaled, often doubled, for the new
59 * readahead, though see get_next_ra_size() for details.
61 * If the size of the previous read cannot be determined, the number of
62 * preceding pages in the page cache is used to estimate the size of
63 * a previous read. This estimate could easily be misled by random
64 * reads being coincidentally adjacent, so it is ignored unless it is
65 * larger than the current request, and it is not scaled up, unless it
66 * is at the start of file.
68 * In general readahead is accelerated at the start of the file, as
69 * reads from there are often sequential. There are other minor
70 * adjustments to the readahead size in various special cases and these
71 * are best discovered by reading the code.
73 * The above calculation, based on the previous readahead size,
74 * determines the size of the readahead, to which any requested read
75 * size may be added.
77 * Readahead requests are sent to the filesystem using the ->readahead()
78 * address space operation, for which mpage_readahead() is a canonical
79 * implementation. ->readahead() should normally initiate reads on all
80 * folios, but may fail to read any or all folios without causing an I/O
81 * error. The page cache reading code will issue a ->read_folio() request
82 * for any folio which ->readahead() did not read, and only an error
83 * from this will be final.
85 * ->readahead() will generally call readahead_folio() repeatedly to get
86 * each folio from those prepared for readahead. It may fail to read a
87 * folio by:
89 * * not calling readahead_folio() sufficiently many times, effectively
90 * ignoring some folios, as might be appropriate if the path to
91 * storage is congested.
93 * * failing to actually submit a read request for a given folio,
94 * possibly due to insufficient resources, or
96 * * getting an error during subsequent processing of a request.
98 * In the last two cases, the folio should be unlocked by the filesystem
99 * to indicate that the read attempt has failed. In the first case the
100 * folio will be unlocked by the VFS.
102 * Those folios not in the final ``async_size`` of the request should be
103 * considered to be important and ->readahead() should not fail them due
104 * to congestion or temporary resource unavailability, but should wait
105 * for necessary resources (e.g. memory or indexing information) to
106 * become available. Folios in the final ``async_size`` may be
107 * considered less urgent and failure to read them is more acceptable.
108 * In this case it is best to use filemap_remove_folio() to remove the
109 * folios from the page cache as is automatically done for folios that
110 * were not fetched with readahead_folio(). This will allow a
111 * subsequent synchronous readahead request to try them again. If they
112 * are left in the page cache, then they will be read individually using
113 * ->read_folio() which may be less efficient.
116 #include <linux/blkdev.h>
117 #include <linux/kernel.h>
118 #include <linux/dax.h>
119 #include <linux/gfp.h>
120 #include <linux/export.h>
121 #include <linux/backing-dev.h>
122 #include <linux/task_io_accounting_ops.h>
123 #include <linux/pagemap.h>
124 #include <linux/psi.h>
125 #include <linux/syscalls.h>
126 #include <linux/file.h>
127 #include <linux/mm_inline.h>
128 #include <linux/blk-cgroup.h>
129 #include <linux/fadvise.h>
130 #include <linux/sched/mm.h>
132 #include "internal.h"
135 * Initialise a struct file's readahead state. Assumes that the caller has
136 * memset *ra to zero.
138 void
139 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
141 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
142 ra->prev_pos = -1;
144 EXPORT_SYMBOL_GPL(file_ra_state_init);
146 static void read_pages(struct readahead_control *rac)
148 const struct address_space_operations *aops = rac->mapping->a_ops;
149 struct folio *folio;
150 struct blk_plug plug;
152 if (!readahead_count(rac))
153 return;
155 if (unlikely(rac->_workingset))
156 psi_memstall_enter(&rac->_pflags);
157 blk_start_plug(&plug);
159 if (aops->readahead) {
160 aops->readahead(rac);
162 * Clean up the remaining folios. The sizes in ->ra
163 * may be used to size the next readahead, so make sure
164 * they accurately reflect what happened.
166 while ((folio = readahead_folio(rac)) != NULL) {
167 unsigned long nr = folio_nr_pages(folio);
169 folio_get(folio);
170 rac->ra->size -= nr;
171 if (rac->ra->async_size >= nr) {
172 rac->ra->async_size -= nr;
173 filemap_remove_folio(folio);
175 folio_unlock(folio);
176 folio_put(folio);
178 } else {
179 while ((folio = readahead_folio(rac)) != NULL)
180 aops->read_folio(rac->file, folio);
183 blk_finish_plug(&plug);
184 if (unlikely(rac->_workingset))
185 psi_memstall_leave(&rac->_pflags);
186 rac->_workingset = false;
188 BUG_ON(readahead_count(rac));
192 * page_cache_ra_unbounded - Start unchecked readahead.
193 * @ractl: Readahead control.
194 * @nr_to_read: The number of pages to read.
195 * @lookahead_size: Where to start the next readahead.
197 * This function is for filesystems to call when they want to start
198 * readahead beyond a file's stated i_size. This is almost certainly
199 * not the function you want to call. Use page_cache_async_readahead()
200 * or page_cache_sync_readahead() instead.
202 * Context: File is referenced by caller. Mutexes may be held by caller.
203 * May sleep, but will not reenter filesystem to reclaim memory.
205 void page_cache_ra_unbounded(struct readahead_control *ractl,
206 unsigned long nr_to_read, unsigned long lookahead_size)
208 struct address_space *mapping = ractl->mapping;
209 unsigned long index = readahead_index(ractl);
210 gfp_t gfp_mask = readahead_gfp_mask(mapping);
211 unsigned long mark = ULONG_MAX, i = 0;
212 unsigned int min_nrpages = mapping_min_folio_nrpages(mapping);
215 * Partway through the readahead operation, we will have added
216 * locked pages to the page cache, but will not yet have submitted
217 * them for I/O. Adding another page may need to allocate memory,
218 * which can trigger memory reclaim. Telling the VM we're in
219 * the middle of a filesystem operation will cause it to not
220 * touch file-backed pages, preventing a deadlock. Most (all?)
221 * filesystems already specify __GFP_NOFS in their mapping's
222 * gfp_mask, but let's be explicit here.
224 unsigned int nofs = memalloc_nofs_save();
226 filemap_invalidate_lock_shared(mapping);
227 index = mapping_align_index(mapping, index);
230 * As iterator `i` is aligned to min_nrpages, round_up the
231 * difference between nr_to_read and lookahead_size to mark the
232 * index that only has lookahead or "async_region" to set the
233 * readahead flag.
235 if (lookahead_size <= nr_to_read) {
236 unsigned long ra_folio_index;
238 ra_folio_index = round_up(readahead_index(ractl) +
239 nr_to_read - lookahead_size,
240 min_nrpages);
241 mark = ra_folio_index - index;
243 nr_to_read += readahead_index(ractl) - index;
244 ractl->_index = index;
247 * Preallocate as many pages as we will need.
249 while (i < nr_to_read) {
250 struct folio *folio = xa_load(&mapping->i_pages, index + i);
251 int ret;
253 if (folio && !xa_is_value(folio)) {
255 * Page already present? Kick off the current batch
256 * of contiguous pages before continuing with the
257 * next batch. This page may be the one we would
258 * have intended to mark as Readahead, but we don't
259 * have a stable reference to this page, and it's
260 * not worth getting one just for that.
262 read_pages(ractl);
263 ractl->_index += min_nrpages;
264 i = ractl->_index + ractl->_nr_pages - index;
265 continue;
268 folio = filemap_alloc_folio(gfp_mask,
269 mapping_min_folio_order(mapping));
270 if (!folio)
271 break;
273 ret = filemap_add_folio(mapping, folio, index + i, gfp_mask);
274 if (ret < 0) {
275 folio_put(folio);
276 if (ret == -ENOMEM)
277 break;
278 read_pages(ractl);
279 ractl->_index += min_nrpages;
280 i = ractl->_index + ractl->_nr_pages - index;
281 continue;
283 if (i == mark)
284 folio_set_readahead(folio);
285 ractl->_workingset |= folio_test_workingset(folio);
286 ractl->_nr_pages += min_nrpages;
287 i += min_nrpages;
291 * Now start the IO. We ignore I/O errors - if the folio is not
292 * uptodate then the caller will launch read_folio again, and
293 * will then handle the error.
295 read_pages(ractl);
296 filemap_invalidate_unlock_shared(mapping);
297 memalloc_nofs_restore(nofs);
299 EXPORT_SYMBOL_GPL(page_cache_ra_unbounded);
302 * do_page_cache_ra() actually reads a chunk of disk. It allocates
303 * the pages first, then submits them for I/O. This avoids the very bad
304 * behaviour which would occur if page allocations are causing VM writeback.
305 * We really don't want to intermingle reads and writes like that.
307 static void do_page_cache_ra(struct readahead_control *ractl,
308 unsigned long nr_to_read, unsigned long lookahead_size)
310 struct inode *inode = ractl->mapping->host;
311 unsigned long index = readahead_index(ractl);
312 loff_t isize = i_size_read(inode);
313 pgoff_t end_index; /* The last page we want to read */
315 if (isize == 0)
316 return;
318 end_index = (isize - 1) >> PAGE_SHIFT;
319 if (index > end_index)
320 return;
321 /* Don't read past the page containing the last byte of the file */
322 if (nr_to_read > end_index - index)
323 nr_to_read = end_index - index + 1;
325 page_cache_ra_unbounded(ractl, nr_to_read, lookahead_size);
329 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
330 * memory at once.
332 void force_page_cache_ra(struct readahead_control *ractl,
333 unsigned long nr_to_read)
335 struct address_space *mapping = ractl->mapping;
336 struct file_ra_state *ra = ractl->ra;
337 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
338 unsigned long max_pages;
340 if (unlikely(!mapping->a_ops->read_folio && !mapping->a_ops->readahead))
341 return;
344 * If the request exceeds the readahead window, allow the read to
345 * be up to the optimal hardware IO size
347 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
348 nr_to_read = min_t(unsigned long, nr_to_read, max_pages);
349 while (nr_to_read) {
350 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
352 if (this_chunk > nr_to_read)
353 this_chunk = nr_to_read;
354 do_page_cache_ra(ractl, this_chunk, 0);
356 nr_to_read -= this_chunk;
361 * Set the initial window size, round to next power of 2 and square
362 * for small size, x 4 for medium, and x 2 for large
363 * for 128k (32 page) max ra
364 * 1-2 page = 16k, 3-4 page 32k, 5-8 page = 64k, > 8 page = 128k initial
366 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
368 unsigned long newsize = roundup_pow_of_two(size);
370 if (newsize <= max / 32)
371 newsize = newsize * 4;
372 else if (newsize <= max / 4)
373 newsize = newsize * 2;
374 else
375 newsize = max;
377 return newsize;
381 * Get the previous window size, ramp it up, and
382 * return it as the new window size.
384 static unsigned long get_next_ra_size(struct file_ra_state *ra,
385 unsigned long max)
387 unsigned long cur = ra->size;
389 if (cur < max / 16)
390 return 4 * cur;
391 if (cur <= max / 2)
392 return 2 * cur;
393 return max;
397 * On-demand readahead design.
399 * The fields in struct file_ra_state represent the most-recently-executed
400 * readahead attempt:
402 * |<----- async_size ---------|
403 * |------------------- size -------------------->|
404 * |==================#===========================|
405 * ^start ^page marked with PG_readahead
407 * To overlap application thinking time and disk I/O time, we do
408 * `readahead pipelining': Do not wait until the application consumed all
409 * readahead pages and stalled on the missing page at readahead_index;
410 * Instead, submit an asynchronous readahead I/O as soon as there are
411 * only async_size pages left in the readahead window. Normally async_size
412 * will be equal to size, for maximum pipelining.
414 * In interleaved sequential reads, concurrent streams on the same fd can
415 * be invalidating each other's readahead state. So we flag the new readahead
416 * page at (start+size-async_size) with PG_readahead, and use it as readahead
417 * indicator. The flag won't be set on already cached pages, to avoid the
418 * readahead-for-nothing fuss, saving pointless page cache lookups.
420 * prev_pos tracks the last visited byte in the _previous_ read request.
421 * It should be maintained by the caller, and will be used for detecting
422 * small random reads. Note that the readahead algorithm checks loosely
423 * for sequential patterns. Hence interleaved reads might be served as
424 * sequential ones.
426 * There is a special-case: if the first page which the application tries to
427 * read happens to be the first page of the file, it is assumed that a linear
428 * read is about to happen and the window is immediately set to the initial size
429 * based on I/O request size and the max_readahead.
431 * The code ramps up the readahead size aggressively at first, but slow down as
432 * it approaches max_readhead.
435 static inline int ra_alloc_folio(struct readahead_control *ractl, pgoff_t index,
436 pgoff_t mark, unsigned int order, gfp_t gfp)
438 int err;
439 struct folio *folio = filemap_alloc_folio(gfp, order);
441 if (!folio)
442 return -ENOMEM;
443 mark = round_down(mark, 1UL << order);
444 if (index == mark)
445 folio_set_readahead(folio);
446 err = filemap_add_folio(ractl->mapping, folio, index, gfp);
447 if (err) {
448 folio_put(folio);
449 return err;
452 ractl->_nr_pages += 1UL << order;
453 ractl->_workingset |= folio_test_workingset(folio);
454 return 0;
457 void page_cache_ra_order(struct readahead_control *ractl,
458 struct file_ra_state *ra, unsigned int new_order)
460 struct address_space *mapping = ractl->mapping;
461 pgoff_t index = readahead_index(ractl);
462 unsigned int min_order = mapping_min_folio_order(mapping);
463 pgoff_t limit = (i_size_read(mapping->host) - 1) >> PAGE_SHIFT;
464 pgoff_t mark = index + ra->size - ra->async_size;
465 unsigned int nofs;
466 int err = 0;
467 gfp_t gfp = readahead_gfp_mask(mapping);
468 unsigned int min_ra_size = max(4, mapping_min_folio_nrpages(mapping));
471 * Fallback when size < min_nrpages as each folio should be
472 * at least min_nrpages anyway.
474 if (!mapping_large_folio_support(mapping) || ra->size < min_ra_size)
475 goto fallback;
477 limit = min(limit, index + ra->size - 1);
479 if (new_order < mapping_max_folio_order(mapping))
480 new_order += 2;
482 new_order = min(mapping_max_folio_order(mapping), new_order);
483 new_order = min_t(unsigned int, new_order, ilog2(ra->size));
484 new_order = max(new_order, min_order);
486 /* See comment in page_cache_ra_unbounded() */
487 nofs = memalloc_nofs_save();
488 filemap_invalidate_lock_shared(mapping);
490 * If the new_order is greater than min_order and index is
491 * already aligned to new_order, then this will be noop as index
492 * aligned to new_order should also be aligned to min_order.
494 ractl->_index = mapping_align_index(mapping, index);
495 index = readahead_index(ractl);
497 while (index <= limit) {
498 unsigned int order = new_order;
500 /* Align with smaller pages if needed */
501 if (index & ((1UL << order) - 1))
502 order = __ffs(index);
503 /* Don't allocate pages past EOF */
504 while (order > min_order && index + (1UL << order) - 1 > limit)
505 order--;
506 err = ra_alloc_folio(ractl, index, mark, order, gfp);
507 if (err)
508 break;
509 index += 1UL << order;
512 read_pages(ractl);
513 filemap_invalidate_unlock_shared(mapping);
514 memalloc_nofs_restore(nofs);
517 * If there were already pages in the page cache, then we may have
518 * left some gaps. Let the regular readahead code take care of this
519 * situation.
521 if (!err)
522 return;
523 fallback:
524 do_page_cache_ra(ractl, ra->size, ra->async_size);
527 static unsigned long ractl_max_pages(struct readahead_control *ractl,
528 unsigned long req_size)
530 struct backing_dev_info *bdi = inode_to_bdi(ractl->mapping->host);
531 unsigned long max_pages = ractl->ra->ra_pages;
534 * If the request exceeds the readahead window, allow the read to
535 * be up to the optimal hardware IO size
537 if (req_size > max_pages && bdi->io_pages > max_pages)
538 max_pages = min(req_size, bdi->io_pages);
539 return max_pages;
542 void page_cache_sync_ra(struct readahead_control *ractl,
543 unsigned long req_count)
545 pgoff_t index = readahead_index(ractl);
546 bool do_forced_ra = ractl->file && (ractl->file->f_mode & FMODE_RANDOM);
547 struct file_ra_state *ra = ractl->ra;
548 unsigned long max_pages, contig_count;
549 pgoff_t prev_index, miss;
552 * Even if readahead is disabled, issue this request as readahead
553 * as we'll need it to satisfy the requested range. The forced
554 * readahead will do the right thing and limit the read to just the
555 * requested range, which we'll set to 1 page for this case.
557 if (!ra->ra_pages || blk_cgroup_congested()) {
558 if (!ractl->file)
559 return;
560 req_count = 1;
561 do_forced_ra = true;
564 /* be dumb */
565 if (do_forced_ra) {
566 force_page_cache_ra(ractl, req_count);
567 return;
570 max_pages = ractl_max_pages(ractl, req_count);
571 prev_index = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
573 * A start of file, oversized read, or sequential cache miss:
574 * trivial case: (index - prev_index) == 1
575 * unaligned reads: (index - prev_index) == 0
577 if (!index || req_count > max_pages || index - prev_index <= 1UL) {
578 ra->start = index;
579 ra->size = get_init_ra_size(req_count, max_pages);
580 ra->async_size = ra->size > req_count ? ra->size - req_count :
581 ra->size >> 1;
582 goto readit;
586 * Query the page cache and look for the traces(cached history pages)
587 * that a sequential stream would leave behind.
589 rcu_read_lock();
590 miss = page_cache_prev_miss(ractl->mapping, index - 1, max_pages);
591 rcu_read_unlock();
592 contig_count = index - miss - 1;
594 * Standalone, small random read. Read as is, and do not pollute the
595 * readahead state.
597 if (contig_count <= req_count) {
598 do_page_cache_ra(ractl, req_count, 0);
599 return;
602 * File cached from the beginning:
603 * it is a strong indication of long-run stream (or whole-file-read)
605 if (miss == ULONG_MAX)
606 contig_count *= 2;
607 ra->start = index;
608 ra->size = min(contig_count + req_count, max_pages);
609 ra->async_size = 1;
610 readit:
611 ractl->_index = ra->start;
612 page_cache_ra_order(ractl, ra, 0);
614 EXPORT_SYMBOL_GPL(page_cache_sync_ra);
616 void page_cache_async_ra(struct readahead_control *ractl,
617 struct folio *folio, unsigned long req_count)
619 unsigned long max_pages;
620 struct file_ra_state *ra = ractl->ra;
621 pgoff_t index = readahead_index(ractl);
622 pgoff_t expected, start;
623 unsigned int order = folio_order(folio);
625 /* no readahead */
626 if (!ra->ra_pages)
627 return;
630 * Same bit is used for PG_readahead and PG_reclaim.
632 if (folio_test_writeback(folio))
633 return;
635 folio_clear_readahead(folio);
637 if (blk_cgroup_congested())
638 return;
640 max_pages = ractl_max_pages(ractl, req_count);
642 * It's the expected callback index, assume sequential access.
643 * Ramp up sizes, and push forward the readahead window.
645 expected = round_down(ra->start + ra->size - ra->async_size,
646 1UL << order);
647 if (index == expected) {
648 ra->start += ra->size;
649 ra->size = get_next_ra_size(ra, max_pages);
650 ra->async_size = ra->size;
651 goto readit;
655 * Hit a marked folio without valid readahead state.
656 * E.g. interleaved reads.
657 * Query the pagecache for async_size, which normally equals to
658 * readahead size. Ramp it up and use it as the new readahead size.
660 rcu_read_lock();
661 start = page_cache_next_miss(ractl->mapping, index + 1, max_pages);
662 rcu_read_unlock();
664 if (!start || start - index > max_pages)
665 return;
667 ra->start = start;
668 ra->size = start - index; /* old async_size */
669 ra->size += req_count;
670 ra->size = get_next_ra_size(ra, max_pages);
671 ra->async_size = ra->size;
672 readit:
673 ractl->_index = ra->start;
674 page_cache_ra_order(ractl, ra, order);
676 EXPORT_SYMBOL_GPL(page_cache_async_ra);
678 ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
680 CLASS(fd, f)(fd);
682 if (fd_empty(f) || !(fd_file(f)->f_mode & FMODE_READ))
683 return -EBADF;
686 * The readahead() syscall is intended to run only on files
687 * that can execute readahead. If readahead is not possible
688 * on this file, then we must return -EINVAL.
690 if (!fd_file(f)->f_mapping || !fd_file(f)->f_mapping->a_ops ||
691 (!S_ISREG(file_inode(fd_file(f))->i_mode) &&
692 !S_ISBLK(file_inode(fd_file(f))->i_mode)))
693 return -EINVAL;
695 return vfs_fadvise(fd_file(f), offset, count, POSIX_FADV_WILLNEED);
698 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
700 return ksys_readahead(fd, offset, count);
703 #if defined(CONFIG_COMPAT) && defined(__ARCH_WANT_COMPAT_READAHEAD)
704 COMPAT_SYSCALL_DEFINE4(readahead, int, fd, compat_arg_u64_dual(offset), size_t, count)
706 return ksys_readahead(fd, compat_arg_u64_glue(offset), count);
708 #endif
711 * readahead_expand - Expand a readahead request
712 * @ractl: The request to be expanded
713 * @new_start: The revised start
714 * @new_len: The revised size of the request
716 * Attempt to expand a readahead request outwards from the current size to the
717 * specified size by inserting locked pages before and after the current window
718 * to increase the size to the new window. This may involve the insertion of
719 * THPs, in which case the window may get expanded even beyond what was
720 * requested.
722 * The algorithm will stop if it encounters a conflicting page already in the
723 * pagecache and leave a smaller expansion than requested.
725 * The caller must check for this by examining the revised @ractl object for a
726 * different expansion than was requested.
728 void readahead_expand(struct readahead_control *ractl,
729 loff_t new_start, size_t new_len)
731 struct address_space *mapping = ractl->mapping;
732 struct file_ra_state *ra = ractl->ra;
733 pgoff_t new_index, new_nr_pages;
734 gfp_t gfp_mask = readahead_gfp_mask(mapping);
735 unsigned long min_nrpages = mapping_min_folio_nrpages(mapping);
736 unsigned int min_order = mapping_min_folio_order(mapping);
738 new_index = new_start / PAGE_SIZE;
740 * Readahead code should have aligned the ractl->_index to
741 * min_nrpages before calling readahead aops.
743 VM_BUG_ON(!IS_ALIGNED(ractl->_index, min_nrpages));
745 /* Expand the leading edge downwards */
746 while (ractl->_index > new_index) {
747 unsigned long index = ractl->_index - 1;
748 struct folio *folio = xa_load(&mapping->i_pages, index);
750 if (folio && !xa_is_value(folio))
751 return; /* Folio apparently present */
753 folio = filemap_alloc_folio(gfp_mask, min_order);
754 if (!folio)
755 return;
757 index = mapping_align_index(mapping, index);
758 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
759 folio_put(folio);
760 return;
762 if (unlikely(folio_test_workingset(folio)) &&
763 !ractl->_workingset) {
764 ractl->_workingset = true;
765 psi_memstall_enter(&ractl->_pflags);
767 ractl->_nr_pages += min_nrpages;
768 ractl->_index = folio->index;
771 new_len += new_start - readahead_pos(ractl);
772 new_nr_pages = DIV_ROUND_UP(new_len, PAGE_SIZE);
774 /* Expand the trailing edge upwards */
775 while (ractl->_nr_pages < new_nr_pages) {
776 unsigned long index = ractl->_index + ractl->_nr_pages;
777 struct folio *folio = xa_load(&mapping->i_pages, index);
779 if (folio && !xa_is_value(folio))
780 return; /* Folio apparently present */
782 folio = filemap_alloc_folio(gfp_mask, min_order);
783 if (!folio)
784 return;
786 index = mapping_align_index(mapping, index);
787 if (filemap_add_folio(mapping, folio, index, gfp_mask) < 0) {
788 folio_put(folio);
789 return;
791 if (unlikely(folio_test_workingset(folio)) &&
792 !ractl->_workingset) {
793 ractl->_workingset = true;
794 psi_memstall_enter(&ractl->_pflags);
796 ractl->_nr_pages += min_nrpages;
797 if (ra) {
798 ra->size += min_nrpages;
799 ra->async_size += min_nrpages;
803 EXPORT_SYMBOL(readahead_expand);