drm/ast: Only warn about unsupported TX chips on Gen4 and later
[drm/drm-misc.git] / mm / swap.c
blob10decd9dffa172899f27e6968e3a95405da9ecf3
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
39 #include <linux/buffer_head.h>
41 #include "internal.h"
43 #define CREATE_TRACE_POINTS
44 #include <trace/events/pagemap.h>
46 /* How many pages do we try to swap or page in/out together? As a power of 2 */
47 int page_cluster;
48 const int page_cluster_max = 31;
50 struct cpu_fbatches {
52 * The following folio batches are grouped together because they are protected
53 * by disabling preemption (and interrupts remain enabled).
55 local_lock_t lock;
56 struct folio_batch lru_add;
57 struct folio_batch lru_deactivate_file;
58 struct folio_batch lru_deactivate;
59 struct folio_batch lru_lazyfree;
60 #ifdef CONFIG_SMP
61 struct folio_batch lru_activate;
62 #endif
63 /* Protecting the following batches which require disabling interrupts */
64 local_lock_t lock_irq;
65 struct folio_batch lru_move_tail;
68 static DEFINE_PER_CPU(struct cpu_fbatches, cpu_fbatches) = {
69 .lock = INIT_LOCAL_LOCK(lock),
70 .lock_irq = INIT_LOCAL_LOCK(lock_irq),
73 static void __page_cache_release(struct folio *folio, struct lruvec **lruvecp,
74 unsigned long *flagsp)
76 if (folio_test_lru(folio)) {
77 folio_lruvec_relock_irqsave(folio, lruvecp, flagsp);
78 lruvec_del_folio(*lruvecp, folio);
79 __folio_clear_lru_flags(folio);
84 * This path almost never happens for VM activity - pages are normally freed
85 * in batches. But it gets used by networking - and for compound pages.
87 static void page_cache_release(struct folio *folio)
89 struct lruvec *lruvec = NULL;
90 unsigned long flags;
92 __page_cache_release(folio, &lruvec, &flags);
93 if (lruvec)
94 unlock_page_lruvec_irqrestore(lruvec, flags);
97 void __folio_put(struct folio *folio)
99 if (unlikely(folio_is_zone_device(folio))) {
100 free_zone_device_folio(folio);
101 return;
104 if (folio_test_hugetlb(folio)) {
105 free_huge_folio(folio);
106 return;
109 page_cache_release(folio);
110 folio_unqueue_deferred_split(folio);
111 mem_cgroup_uncharge(folio);
112 free_unref_page(&folio->page, folio_order(folio));
114 EXPORT_SYMBOL(__folio_put);
116 typedef void (*move_fn_t)(struct lruvec *lruvec, struct folio *folio);
118 static void lru_add(struct lruvec *lruvec, struct folio *folio)
120 int was_unevictable = folio_test_clear_unevictable(folio);
121 long nr_pages = folio_nr_pages(folio);
123 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
126 * Is an smp_mb__after_atomic() still required here, before
127 * folio_evictable() tests the mlocked flag, to rule out the possibility
128 * of stranding an evictable folio on an unevictable LRU? I think
129 * not, because __munlock_folio() only clears the mlocked flag
130 * while the LRU lock is held.
132 * (That is not true of __page_cache_release(), and not necessarily
133 * true of folios_put(): but those only clear the mlocked flag after
134 * folio_put_testzero() has excluded any other users of the folio.)
136 if (folio_evictable(folio)) {
137 if (was_unevictable)
138 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
139 } else {
140 folio_clear_active(folio);
141 folio_set_unevictable(folio);
143 * folio->mlock_count = !!folio_test_mlocked(folio)?
144 * But that leaves __mlock_folio() in doubt whether another
145 * actor has already counted the mlock or not. Err on the
146 * safe side, underestimate, let page reclaim fix it, rather
147 * than leaving a page on the unevictable LRU indefinitely.
149 folio->mlock_count = 0;
150 if (!was_unevictable)
151 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
154 lruvec_add_folio(lruvec, folio);
155 trace_mm_lru_insertion(folio);
158 static void folio_batch_move_lru(struct folio_batch *fbatch, move_fn_t move_fn)
160 int i;
161 struct lruvec *lruvec = NULL;
162 unsigned long flags = 0;
164 for (i = 0; i < folio_batch_count(fbatch); i++) {
165 struct folio *folio = fbatch->folios[i];
167 folio_lruvec_relock_irqsave(folio, &lruvec, &flags);
168 move_fn(lruvec, folio);
170 folio_set_lru(folio);
173 if (lruvec)
174 unlock_page_lruvec_irqrestore(lruvec, flags);
175 folios_put(fbatch);
178 static void __folio_batch_add_and_move(struct folio_batch __percpu *fbatch,
179 struct folio *folio, move_fn_t move_fn,
180 bool on_lru, bool disable_irq)
182 unsigned long flags;
184 if (on_lru && !folio_test_clear_lru(folio))
185 return;
187 folio_get(folio);
189 if (disable_irq)
190 local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
191 else
192 local_lock(&cpu_fbatches.lock);
194 if (!folio_batch_add(this_cpu_ptr(fbatch), folio) || folio_test_large(folio) ||
195 lru_cache_disabled())
196 folio_batch_move_lru(this_cpu_ptr(fbatch), move_fn);
198 if (disable_irq)
199 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
200 else
201 local_unlock(&cpu_fbatches.lock);
204 #define folio_batch_add_and_move(folio, op, on_lru) \
205 __folio_batch_add_and_move( \
206 &cpu_fbatches.op, \
207 folio, \
208 op, \
209 on_lru, \
210 offsetof(struct cpu_fbatches, op) >= offsetof(struct cpu_fbatches, lock_irq) \
213 static void lru_move_tail(struct lruvec *lruvec, struct folio *folio)
215 if (folio_test_unevictable(folio))
216 return;
218 lruvec_del_folio(lruvec, folio);
219 folio_clear_active(folio);
220 lruvec_add_folio_tail(lruvec, folio);
221 __count_vm_events(PGROTATED, folio_nr_pages(folio));
225 * Writeback is about to end against a folio which has been marked for
226 * immediate reclaim. If it still appears to be reclaimable, move it
227 * to the tail of the inactive list.
229 * folio_rotate_reclaimable() must disable IRQs, to prevent nasty races.
231 void folio_rotate_reclaimable(struct folio *folio)
233 if (folio_test_locked(folio) || folio_test_dirty(folio) ||
234 folio_test_unevictable(folio))
235 return;
237 folio_batch_add_and_move(folio, lru_move_tail, true);
240 void lru_note_cost(struct lruvec *lruvec, bool file,
241 unsigned int nr_io, unsigned int nr_rotated)
243 unsigned long cost;
246 * Reflect the relative cost of incurring IO and spending CPU
247 * time on rotations. This doesn't attempt to make a precise
248 * comparison, it just says: if reloads are about comparable
249 * between the LRU lists, or rotations are overwhelmingly
250 * different between them, adjust scan balance for CPU work.
252 cost = nr_io * SWAP_CLUSTER_MAX + nr_rotated;
254 do {
255 unsigned long lrusize;
258 * Hold lruvec->lru_lock is safe here, since
259 * 1) The pinned lruvec in reclaim, or
260 * 2) From a pre-LRU page during refault (which also holds the
261 * rcu lock, so would be safe even if the page was on the LRU
262 * and could move simultaneously to a new lruvec).
264 spin_lock_irq(&lruvec->lru_lock);
265 /* Record cost event */
266 if (file)
267 lruvec->file_cost += cost;
268 else
269 lruvec->anon_cost += cost;
272 * Decay previous events
274 * Because workloads change over time (and to avoid
275 * overflow) we keep these statistics as a floating
276 * average, which ends up weighing recent refaults
277 * more than old ones.
279 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
280 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
281 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
282 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
284 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
285 lruvec->file_cost /= 2;
286 lruvec->anon_cost /= 2;
288 spin_unlock_irq(&lruvec->lru_lock);
289 } while ((lruvec = parent_lruvec(lruvec)));
292 void lru_note_cost_refault(struct folio *folio)
294 lru_note_cost(folio_lruvec(folio), folio_is_file_lru(folio),
295 folio_nr_pages(folio), 0);
298 static void lru_activate(struct lruvec *lruvec, struct folio *folio)
300 long nr_pages = folio_nr_pages(folio);
302 if (folio_test_active(folio) || folio_test_unevictable(folio))
303 return;
306 lruvec_del_folio(lruvec, folio);
307 folio_set_active(folio);
308 lruvec_add_folio(lruvec, folio);
309 trace_mm_lru_activate(folio);
311 __count_vm_events(PGACTIVATE, nr_pages);
312 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE, nr_pages);
315 #ifdef CONFIG_SMP
316 static void folio_activate_drain(int cpu)
318 struct folio_batch *fbatch = &per_cpu(cpu_fbatches.lru_activate, cpu);
320 if (folio_batch_count(fbatch))
321 folio_batch_move_lru(fbatch, lru_activate);
324 void folio_activate(struct folio *folio)
326 if (folio_test_active(folio) || folio_test_unevictable(folio))
327 return;
329 folio_batch_add_and_move(folio, lru_activate, true);
332 #else
333 static inline void folio_activate_drain(int cpu)
337 void folio_activate(struct folio *folio)
339 struct lruvec *lruvec;
341 if (!folio_test_clear_lru(folio))
342 return;
344 lruvec = folio_lruvec_lock_irq(folio);
345 lru_activate(lruvec, folio);
346 unlock_page_lruvec_irq(lruvec);
347 folio_set_lru(folio);
349 #endif
351 static void __lru_cache_activate_folio(struct folio *folio)
353 struct folio_batch *fbatch;
354 int i;
356 local_lock(&cpu_fbatches.lock);
357 fbatch = this_cpu_ptr(&cpu_fbatches.lru_add);
360 * Search backwards on the optimistic assumption that the folio being
361 * activated has just been added to this batch. Note that only
362 * the local batch is examined as a !LRU folio could be in the
363 * process of being released, reclaimed, migrated or on a remote
364 * batch that is currently being drained. Furthermore, marking
365 * a remote batch's folio active potentially hits a race where
366 * a folio is marked active just after it is added to the inactive
367 * list causing accounting errors and BUG_ON checks to trigger.
369 for (i = folio_batch_count(fbatch) - 1; i >= 0; i--) {
370 struct folio *batch_folio = fbatch->folios[i];
372 if (batch_folio == folio) {
373 folio_set_active(folio);
374 break;
378 local_unlock(&cpu_fbatches.lock);
381 #ifdef CONFIG_LRU_GEN
382 static void folio_inc_refs(struct folio *folio)
384 unsigned long new_flags, old_flags = READ_ONCE(folio->flags);
386 if (folio_test_unevictable(folio))
387 return;
389 if (!folio_test_referenced(folio)) {
390 folio_set_referenced(folio);
391 return;
394 if (!folio_test_workingset(folio)) {
395 folio_set_workingset(folio);
396 return;
399 /* see the comment on MAX_NR_TIERS */
400 do {
401 new_flags = old_flags & LRU_REFS_MASK;
402 if (new_flags == LRU_REFS_MASK)
403 break;
405 new_flags += BIT(LRU_REFS_PGOFF);
406 new_flags |= old_flags & ~LRU_REFS_MASK;
407 } while (!try_cmpxchg(&folio->flags, &old_flags, new_flags));
409 #else
410 static void folio_inc_refs(struct folio *folio)
413 #endif /* CONFIG_LRU_GEN */
416 * folio_mark_accessed - Mark a folio as having seen activity.
417 * @folio: The folio to mark.
419 * This function will perform one of the following transitions:
421 * * inactive,unreferenced -> inactive,referenced
422 * * inactive,referenced -> active,unreferenced
423 * * active,unreferenced -> active,referenced
425 * When a newly allocated folio is not yet visible, so safe for non-atomic ops,
426 * __folio_set_referenced() may be substituted for folio_mark_accessed().
428 void folio_mark_accessed(struct folio *folio)
430 if (lru_gen_enabled()) {
431 folio_inc_refs(folio);
432 return;
435 if (!folio_test_referenced(folio)) {
436 folio_set_referenced(folio);
437 } else if (folio_test_unevictable(folio)) {
439 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
440 * this list is never rotated or maintained, so marking an
441 * unevictable page accessed has no effect.
443 } else if (!folio_test_active(folio)) {
445 * If the folio is on the LRU, queue it for activation via
446 * cpu_fbatches.lru_activate. Otherwise, assume the folio is in a
447 * folio_batch, mark it active and it'll be moved to the active
448 * LRU on the next drain.
450 if (folio_test_lru(folio))
451 folio_activate(folio);
452 else
453 __lru_cache_activate_folio(folio);
454 folio_clear_referenced(folio);
455 workingset_activation(folio);
457 if (folio_test_idle(folio))
458 folio_clear_idle(folio);
460 EXPORT_SYMBOL(folio_mark_accessed);
463 * folio_add_lru - Add a folio to an LRU list.
464 * @folio: The folio to be added to the LRU.
466 * Queue the folio for addition to the LRU. The decision on whether
467 * to add the page to the [in]active [file|anon] list is deferred until the
468 * folio_batch is drained. This gives a chance for the caller of folio_add_lru()
469 * have the folio added to the active list using folio_mark_accessed().
471 void folio_add_lru(struct folio *folio)
473 VM_BUG_ON_FOLIO(folio_test_active(folio) &&
474 folio_test_unevictable(folio), folio);
475 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
477 /* see the comment in lru_gen_add_folio() */
478 if (lru_gen_enabled() && !folio_test_unevictable(folio) &&
479 lru_gen_in_fault() && !(current->flags & PF_MEMALLOC))
480 folio_set_active(folio);
482 folio_batch_add_and_move(folio, lru_add, false);
484 EXPORT_SYMBOL(folio_add_lru);
487 * folio_add_lru_vma() - Add a folio to the appropate LRU list for this VMA.
488 * @folio: The folio to be added to the LRU.
489 * @vma: VMA in which the folio is mapped.
491 * If the VMA is mlocked, @folio is added to the unevictable list.
492 * Otherwise, it is treated the same way as folio_add_lru().
494 void folio_add_lru_vma(struct folio *folio, struct vm_area_struct *vma)
496 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
498 if (unlikely((vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED))
499 mlock_new_folio(folio);
500 else
501 folio_add_lru(folio);
505 * If the folio cannot be invalidated, it is moved to the
506 * inactive list to speed up its reclaim. It is moved to the
507 * head of the list, rather than the tail, to give the flusher
508 * threads some time to write it out, as this is much more
509 * effective than the single-page writeout from reclaim.
511 * If the folio isn't mapped and dirty/writeback, the folio
512 * could be reclaimed asap using the reclaim flag.
514 * 1. active, mapped folio -> none
515 * 2. active, dirty/writeback folio -> inactive, head, reclaim
516 * 3. inactive, mapped folio -> none
517 * 4. inactive, dirty/writeback folio -> inactive, head, reclaim
518 * 5. inactive, clean -> inactive, tail
519 * 6. Others -> none
521 * In 4, it moves to the head of the inactive list so the folio is
522 * written out by flusher threads as this is much more efficient
523 * than the single-page writeout from reclaim.
525 static void lru_deactivate_file(struct lruvec *lruvec, struct folio *folio)
527 bool active = folio_test_active(folio);
528 long nr_pages = folio_nr_pages(folio);
530 if (folio_test_unevictable(folio))
531 return;
533 /* Some processes are using the folio */
534 if (folio_mapped(folio))
535 return;
537 lruvec_del_folio(lruvec, folio);
538 folio_clear_active(folio);
539 folio_clear_referenced(folio);
541 if (folio_test_writeback(folio) || folio_test_dirty(folio)) {
543 * Setting the reclaim flag could race with
544 * folio_end_writeback() and confuse readahead. But the
545 * race window is _really_ small and it's not a critical
546 * problem.
548 lruvec_add_folio(lruvec, folio);
549 folio_set_reclaim(folio);
550 } else {
552 * The folio's writeback ended while it was in the batch.
553 * We move that folio to the tail of the inactive list.
555 lruvec_add_folio_tail(lruvec, folio);
556 __count_vm_events(PGROTATED, nr_pages);
559 if (active) {
560 __count_vm_events(PGDEACTIVATE, nr_pages);
561 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
562 nr_pages);
566 static void lru_deactivate(struct lruvec *lruvec, struct folio *folio)
568 long nr_pages = folio_nr_pages(folio);
570 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
571 return;
573 lruvec_del_folio(lruvec, folio);
574 folio_clear_active(folio);
575 folio_clear_referenced(folio);
576 lruvec_add_folio(lruvec, folio);
578 __count_vm_events(PGDEACTIVATE, nr_pages);
579 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE, nr_pages);
582 static void lru_lazyfree(struct lruvec *lruvec, struct folio *folio)
584 long nr_pages = folio_nr_pages(folio);
586 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
587 folio_test_swapcache(folio) || folio_test_unevictable(folio))
588 return;
590 lruvec_del_folio(lruvec, folio);
591 folio_clear_active(folio);
592 folio_clear_referenced(folio);
594 * Lazyfree folios are clean anonymous folios. They have
595 * the swapbacked flag cleared, to distinguish them from normal
596 * anonymous folios
598 folio_clear_swapbacked(folio);
599 lruvec_add_folio(lruvec, folio);
601 __count_vm_events(PGLAZYFREE, nr_pages);
602 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE, nr_pages);
606 * Drain pages out of the cpu's folio_batch.
607 * Either "cpu" is the current CPU, and preemption has already been
608 * disabled; or "cpu" is being hot-unplugged, and is already dead.
610 void lru_add_drain_cpu(int cpu)
612 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
613 struct folio_batch *fbatch = &fbatches->lru_add;
615 if (folio_batch_count(fbatch))
616 folio_batch_move_lru(fbatch, lru_add);
618 fbatch = &fbatches->lru_move_tail;
619 /* Disabling interrupts below acts as a compiler barrier. */
620 if (data_race(folio_batch_count(fbatch))) {
621 unsigned long flags;
623 /* No harm done if a racing interrupt already did this */
624 local_lock_irqsave(&cpu_fbatches.lock_irq, flags);
625 folio_batch_move_lru(fbatch, lru_move_tail);
626 local_unlock_irqrestore(&cpu_fbatches.lock_irq, flags);
629 fbatch = &fbatches->lru_deactivate_file;
630 if (folio_batch_count(fbatch))
631 folio_batch_move_lru(fbatch, lru_deactivate_file);
633 fbatch = &fbatches->lru_deactivate;
634 if (folio_batch_count(fbatch))
635 folio_batch_move_lru(fbatch, lru_deactivate);
637 fbatch = &fbatches->lru_lazyfree;
638 if (folio_batch_count(fbatch))
639 folio_batch_move_lru(fbatch, lru_lazyfree);
641 folio_activate_drain(cpu);
645 * deactivate_file_folio() - Deactivate a file folio.
646 * @folio: Folio to deactivate.
648 * This function hints to the VM that @folio is a good reclaim candidate,
649 * for example if its invalidation fails due to the folio being dirty
650 * or under writeback.
652 * Context: Caller holds a reference on the folio.
654 void deactivate_file_folio(struct folio *folio)
656 /* Deactivating an unevictable folio will not accelerate reclaim */
657 if (folio_test_unevictable(folio))
658 return;
660 folio_batch_add_and_move(folio, lru_deactivate_file, true);
664 * folio_deactivate - deactivate a folio
665 * @folio: folio to deactivate
667 * folio_deactivate() moves @folio to the inactive list if @folio was on the
668 * active list and was not unevictable. This is done to accelerate the
669 * reclaim of @folio.
671 void folio_deactivate(struct folio *folio)
673 if (folio_test_unevictable(folio) || !(folio_test_active(folio) || lru_gen_enabled()))
674 return;
676 folio_batch_add_and_move(folio, lru_deactivate, true);
680 * folio_mark_lazyfree - make an anon folio lazyfree
681 * @folio: folio to deactivate
683 * folio_mark_lazyfree() moves @folio to the inactive file list.
684 * This is done to accelerate the reclaim of @folio.
686 void folio_mark_lazyfree(struct folio *folio)
688 if (!folio_test_anon(folio) || !folio_test_swapbacked(folio) ||
689 folio_test_swapcache(folio) || folio_test_unevictable(folio))
690 return;
692 folio_batch_add_and_move(folio, lru_lazyfree, true);
695 void lru_add_drain(void)
697 local_lock(&cpu_fbatches.lock);
698 lru_add_drain_cpu(smp_processor_id());
699 local_unlock(&cpu_fbatches.lock);
700 mlock_drain_local();
704 * It's called from per-cpu workqueue context in SMP case so
705 * lru_add_drain_cpu and invalidate_bh_lrus_cpu should run on
706 * the same cpu. It shouldn't be a problem in !SMP case since
707 * the core is only one and the locks will disable preemption.
709 static void lru_add_and_bh_lrus_drain(void)
711 local_lock(&cpu_fbatches.lock);
712 lru_add_drain_cpu(smp_processor_id());
713 local_unlock(&cpu_fbatches.lock);
714 invalidate_bh_lrus_cpu();
715 mlock_drain_local();
718 void lru_add_drain_cpu_zone(struct zone *zone)
720 local_lock(&cpu_fbatches.lock);
721 lru_add_drain_cpu(smp_processor_id());
722 drain_local_pages(zone);
723 local_unlock(&cpu_fbatches.lock);
724 mlock_drain_local();
727 #ifdef CONFIG_SMP
729 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
731 static void lru_add_drain_per_cpu(struct work_struct *dummy)
733 lru_add_and_bh_lrus_drain();
736 static bool cpu_needs_drain(unsigned int cpu)
738 struct cpu_fbatches *fbatches = &per_cpu(cpu_fbatches, cpu);
740 /* Check these in order of likelihood that they're not zero */
741 return folio_batch_count(&fbatches->lru_add) ||
742 folio_batch_count(&fbatches->lru_move_tail) ||
743 folio_batch_count(&fbatches->lru_deactivate_file) ||
744 folio_batch_count(&fbatches->lru_deactivate) ||
745 folio_batch_count(&fbatches->lru_lazyfree) ||
746 folio_batch_count(&fbatches->lru_activate) ||
747 need_mlock_drain(cpu) ||
748 has_bh_in_lru(cpu, NULL);
752 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
753 * kworkers being shut down before our page_alloc_cpu_dead callback is
754 * executed on the offlined cpu.
755 * Calling this function with cpu hotplug locks held can actually lead
756 * to obscure indirect dependencies via WQ context.
758 static inline void __lru_add_drain_all(bool force_all_cpus)
761 * lru_drain_gen - Global pages generation number
763 * (A) Definition: global lru_drain_gen = x implies that all generations
764 * 0 < n <= x are already *scheduled* for draining.
766 * This is an optimization for the highly-contended use case where a
767 * user space workload keeps constantly generating a flow of pages for
768 * each CPU.
770 static unsigned int lru_drain_gen;
771 static struct cpumask has_work;
772 static DEFINE_MUTEX(lock);
773 unsigned cpu, this_gen;
776 * Make sure nobody triggers this path before mm_percpu_wq is fully
777 * initialized.
779 if (WARN_ON(!mm_percpu_wq))
780 return;
783 * Guarantee folio_batch counter stores visible by this CPU
784 * are visible to other CPUs before loading the current drain
785 * generation.
787 smp_mb();
790 * (B) Locally cache global LRU draining generation number
792 * The read barrier ensures that the counter is loaded before the mutex
793 * is taken. It pairs with smp_mb() inside the mutex critical section
794 * at (D).
796 this_gen = smp_load_acquire(&lru_drain_gen);
798 mutex_lock(&lock);
801 * (C) Exit the draining operation if a newer generation, from another
802 * lru_add_drain_all(), was already scheduled for draining. Check (A).
804 if (unlikely(this_gen != lru_drain_gen && !force_all_cpus))
805 goto done;
808 * (D) Increment global generation number
810 * Pairs with smp_load_acquire() at (B), outside of the critical
811 * section. Use a full memory barrier to guarantee that the
812 * new global drain generation number is stored before loading
813 * folio_batch counters.
815 * This pairing must be done here, before the for_each_online_cpu loop
816 * below which drains the page vectors.
818 * Let x, y, and z represent some system CPU numbers, where x < y < z.
819 * Assume CPU #z is in the middle of the for_each_online_cpu loop
820 * below and has already reached CPU #y's per-cpu data. CPU #x comes
821 * along, adds some pages to its per-cpu vectors, then calls
822 * lru_add_drain_all().
824 * If the paired barrier is done at any later step, e.g. after the
825 * loop, CPU #x will just exit at (C) and miss flushing out all of its
826 * added pages.
828 WRITE_ONCE(lru_drain_gen, lru_drain_gen + 1);
829 smp_mb();
831 cpumask_clear(&has_work);
832 for_each_online_cpu(cpu) {
833 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
835 if (cpu_needs_drain(cpu)) {
836 INIT_WORK(work, lru_add_drain_per_cpu);
837 queue_work_on(cpu, mm_percpu_wq, work);
838 __cpumask_set_cpu(cpu, &has_work);
842 for_each_cpu(cpu, &has_work)
843 flush_work(&per_cpu(lru_add_drain_work, cpu));
845 done:
846 mutex_unlock(&lock);
849 void lru_add_drain_all(void)
851 __lru_add_drain_all(false);
853 #else
854 void lru_add_drain_all(void)
856 lru_add_drain();
858 #endif /* CONFIG_SMP */
860 atomic_t lru_disable_count = ATOMIC_INIT(0);
863 * lru_cache_disable() needs to be called before we start compiling
864 * a list of folios to be migrated using folio_isolate_lru().
865 * It drains folios on LRU cache and then disable on all cpus until
866 * lru_cache_enable is called.
868 * Must be paired with a call to lru_cache_enable().
870 void lru_cache_disable(void)
872 atomic_inc(&lru_disable_count);
874 * Readers of lru_disable_count are protected by either disabling
875 * preemption or rcu_read_lock:
877 * preempt_disable, local_irq_disable [bh_lru_lock()]
878 * rcu_read_lock [rt_spin_lock CONFIG_PREEMPT_RT]
879 * preempt_disable [local_lock !CONFIG_PREEMPT_RT]
881 * Since v5.1 kernel, synchronize_rcu() is guaranteed to wait on
882 * preempt_disable() regions of code. So any CPU which sees
883 * lru_disable_count = 0 will have exited the critical
884 * section when synchronize_rcu() returns.
886 synchronize_rcu_expedited();
887 #ifdef CONFIG_SMP
888 __lru_add_drain_all(true);
889 #else
890 lru_add_and_bh_lrus_drain();
891 #endif
895 * folios_put_refs - Reduce the reference count on a batch of folios.
896 * @folios: The folios.
897 * @refs: The number of refs to subtract from each folio.
899 * Like folio_put(), but for a batch of folios. This is more efficient
900 * than writing the loop yourself as it will optimise the locks which need
901 * to be taken if the folios are freed. The folios batch is returned
902 * empty and ready to be reused for another batch; there is no need
903 * to reinitialise it. If @refs is NULL, we subtract one from each
904 * folio refcount.
906 * Context: May be called in process or interrupt context, but not in NMI
907 * context. May be called while holding a spinlock.
909 void folios_put_refs(struct folio_batch *folios, unsigned int *refs)
911 int i, j;
912 struct lruvec *lruvec = NULL;
913 unsigned long flags = 0;
915 for (i = 0, j = 0; i < folios->nr; i++) {
916 struct folio *folio = folios->folios[i];
917 unsigned int nr_refs = refs ? refs[i] : 1;
919 if (is_huge_zero_folio(folio))
920 continue;
922 if (folio_is_zone_device(folio)) {
923 if (lruvec) {
924 unlock_page_lruvec_irqrestore(lruvec, flags);
925 lruvec = NULL;
927 if (put_devmap_managed_folio_refs(folio, nr_refs))
928 continue;
929 if (folio_ref_sub_and_test(folio, nr_refs))
930 free_zone_device_folio(folio);
931 continue;
934 if (!folio_ref_sub_and_test(folio, nr_refs))
935 continue;
937 /* hugetlb has its own memcg */
938 if (folio_test_hugetlb(folio)) {
939 if (lruvec) {
940 unlock_page_lruvec_irqrestore(lruvec, flags);
941 lruvec = NULL;
943 free_huge_folio(folio);
944 continue;
946 folio_unqueue_deferred_split(folio);
947 __page_cache_release(folio, &lruvec, &flags);
949 if (j != i)
950 folios->folios[j] = folio;
951 j++;
953 if (lruvec)
954 unlock_page_lruvec_irqrestore(lruvec, flags);
955 if (!j) {
956 folio_batch_reinit(folios);
957 return;
960 folios->nr = j;
961 mem_cgroup_uncharge_folios(folios);
962 free_unref_folios(folios);
964 EXPORT_SYMBOL(folios_put_refs);
967 * release_pages - batched put_page()
968 * @arg: array of pages to release
969 * @nr: number of pages
971 * Decrement the reference count on all the pages in @arg. If it
972 * fell to zero, remove the page from the LRU and free it.
974 * Note that the argument can be an array of pages, encoded pages,
975 * or folio pointers. We ignore any encoded bits, and turn any of
976 * them into just a folio that gets free'd.
978 void release_pages(release_pages_arg arg, int nr)
980 struct folio_batch fbatch;
981 int refs[PAGEVEC_SIZE];
982 struct encoded_page **encoded = arg.encoded_pages;
983 int i;
985 folio_batch_init(&fbatch);
986 for (i = 0; i < nr; i++) {
987 /* Turn any of the argument types into a folio */
988 struct folio *folio = page_folio(encoded_page_ptr(encoded[i]));
990 /* Is our next entry actually "nr_pages" -> "nr_refs" ? */
991 refs[fbatch.nr] = 1;
992 if (unlikely(encoded_page_flags(encoded[i]) &
993 ENCODED_PAGE_BIT_NR_PAGES_NEXT))
994 refs[fbatch.nr] = encoded_nr_pages(encoded[++i]);
996 if (folio_batch_add(&fbatch, folio) > 0)
997 continue;
998 folios_put_refs(&fbatch, refs);
1001 if (fbatch.nr)
1002 folios_put_refs(&fbatch, refs);
1004 EXPORT_SYMBOL(release_pages);
1007 * The folios which we're about to release may be in the deferred lru-addition
1008 * queues. That would prevent them from really being freed right now. That's
1009 * OK from a correctness point of view but is inefficient - those folios may be
1010 * cache-warm and we want to give them back to the page allocator ASAP.
1012 * So __folio_batch_release() will drain those queues here.
1013 * folio_batch_move_lru() calls folios_put() directly to avoid
1014 * mutual recursion.
1016 void __folio_batch_release(struct folio_batch *fbatch)
1018 if (!fbatch->percpu_pvec_drained) {
1019 lru_add_drain();
1020 fbatch->percpu_pvec_drained = true;
1022 folios_put(fbatch);
1024 EXPORT_SYMBOL(__folio_batch_release);
1027 * folio_batch_remove_exceptionals() - Prune non-folios from a batch.
1028 * @fbatch: The batch to prune
1030 * find_get_entries() fills a batch with both folios and shadow/swap/DAX
1031 * entries. This function prunes all the non-folio entries from @fbatch
1032 * without leaving holes, so that it can be passed on to folio-only batch
1033 * operations.
1035 void folio_batch_remove_exceptionals(struct folio_batch *fbatch)
1037 unsigned int i, j;
1039 for (i = 0, j = 0; i < folio_batch_count(fbatch); i++) {
1040 struct folio *folio = fbatch->folios[i];
1041 if (!xa_is_value(folio))
1042 fbatch->folios[j++] = folio;
1044 fbatch->nr = j;
1048 * Perform any setup for the swap system
1050 void __init swap_setup(void)
1052 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1054 /* Use a smaller cluster for small-memory machines */
1055 if (megs < 16)
1056 page_cluster = 2;
1057 else
1058 page_cluster = 3;
1060 * Right now other parts of the system means that we
1061 * _really_ don't want to cluster much more