1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie
9 #include <linux/blkdev.h>
11 #include <linux/sched/mm.h>
12 #include <linux/sched/task.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mman.h>
15 #include <linux/slab.h>
16 #include <linux/kernel_stat.h>
17 #include <linux/swap.h>
18 #include <linux/vmalloc.h>
19 #include <linux/pagemap.h>
20 #include <linux/namei.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/blk-cgroup.h>
23 #include <linux/random.h>
24 #include <linux/writeback.h>
25 #include <linux/proc_fs.h>
26 #include <linux/seq_file.h>
27 #include <linux/init.h>
28 #include <linux/ksm.h>
29 #include <linux/rmap.h>
30 #include <linux/security.h>
31 #include <linux/backing-dev.h>
32 #include <linux/mutex.h>
33 #include <linux/capability.h>
34 #include <linux/syscalls.h>
35 #include <linux/memcontrol.h>
36 #include <linux/poll.h>
37 #include <linux/oom.h>
38 #include <linux/swapfile.h>
39 #include <linux/export.h>
40 #include <linux/swap_slots.h>
41 #include <linux/sort.h>
42 #include <linux/completion.h>
43 #include <linux/suspend.h>
44 #include <linux/zswap.h>
45 #include <linux/plist.h>
47 #include <asm/tlbflush.h>
48 #include <linux/swapops.h>
49 #include <linux/swap_cgroup.h>
53 static bool swap_count_continued(struct swap_info_struct
*, pgoff_t
,
55 static void free_swap_count_continuations(struct swap_info_struct
*);
56 static void swap_entry_range_free(struct swap_info_struct
*si
, swp_entry_t entry
,
57 unsigned int nr_pages
);
58 static void swap_range_alloc(struct swap_info_struct
*si
, unsigned long offset
,
59 unsigned int nr_entries
);
60 static bool folio_swapcache_freeable(struct folio
*folio
);
61 static struct swap_cluster_info
*lock_cluster_or_swap_info(
62 struct swap_info_struct
*si
, unsigned long offset
);
63 static void unlock_cluster_or_swap_info(struct swap_info_struct
*si
,
64 struct swap_cluster_info
*ci
);
66 static DEFINE_SPINLOCK(swap_lock
);
67 static unsigned int nr_swapfiles
;
68 atomic_long_t nr_swap_pages
;
70 * Some modules use swappable objects and may try to swap them out under
71 * memory pressure (via the shrinker). Before doing so, they may wish to
72 * check to see if any swap space is available.
74 EXPORT_SYMBOL_GPL(nr_swap_pages
);
75 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
76 long total_swap_pages
;
77 static int least_priority
= -1;
78 unsigned long swapfile_maximum_size
;
79 #ifdef CONFIG_MIGRATION
80 bool swap_migration_ad_supported
;
81 #endif /* CONFIG_MIGRATION */
83 static const char Bad_file
[] = "Bad swap file entry ";
84 static const char Unused_file
[] = "Unused swap file entry ";
85 static const char Bad_offset
[] = "Bad swap offset entry ";
86 static const char Unused_offset
[] = "Unused swap offset entry ";
89 * all active swap_info_structs
90 * protected with swap_lock, and ordered by priority.
92 static PLIST_HEAD(swap_active_head
);
95 * all available (active, not full) swap_info_structs
96 * protected with swap_avail_lock, ordered by priority.
97 * This is used by folio_alloc_swap() instead of swap_active_head
98 * because swap_active_head includes all swap_info_structs,
99 * but folio_alloc_swap() doesn't need to look at full ones.
100 * This uses its own lock instead of swap_lock because when a
101 * swap_info_struct changes between not-full/full, it needs to
102 * add/remove itself to/from this list, but the swap_info_struct->lock
103 * is held and the locking order requires swap_lock to be taken
104 * before any swap_info_struct->lock.
106 static struct plist_head
*swap_avail_heads
;
107 static DEFINE_SPINLOCK(swap_avail_lock
);
109 static struct swap_info_struct
*swap_info
[MAX_SWAPFILES
];
111 static DEFINE_MUTEX(swapon_mutex
);
113 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait
);
114 /* Activity counter to indicate that a swapon or swapoff has occurred */
115 static atomic_t proc_poll_event
= ATOMIC_INIT(0);
117 atomic_t nr_rotate_swap
= ATOMIC_INIT(0);
119 static struct swap_info_struct
*swap_type_to_swap_info(int type
)
121 if (type
>= MAX_SWAPFILES
)
124 return READ_ONCE(swap_info
[type
]); /* rcu_dereference() */
127 static inline unsigned char swap_count(unsigned char ent
)
129 return ent
& ~SWAP_HAS_CACHE
; /* may include COUNT_CONTINUED flag */
132 /* Reclaim the swap entry anyway if possible */
133 #define TTRS_ANYWAY 0x1
135 * Reclaim the swap entry if there are no more mappings of the
138 #define TTRS_UNMAPPED 0x2
139 /* Reclaim the swap entry if swap is getting full */
140 #define TTRS_FULL 0x4
141 /* Reclaim directly, bypass the slot cache and don't touch device lock */
142 #define TTRS_DIRECT 0x8
144 static bool swap_is_has_cache(struct swap_info_struct
*si
,
145 unsigned long offset
, int nr_pages
)
147 unsigned char *map
= si
->swap_map
+ offset
;
148 unsigned char *map_end
= map
+ nr_pages
;
151 VM_BUG_ON(!(*map
& SWAP_HAS_CACHE
));
152 if (*map
!= SWAP_HAS_CACHE
)
154 } while (++map
< map_end
);
159 static bool swap_is_last_map(struct swap_info_struct
*si
,
160 unsigned long offset
, int nr_pages
, bool *has_cache
)
162 unsigned char *map
= si
->swap_map
+ offset
;
163 unsigned char *map_end
= map
+ nr_pages
;
164 unsigned char count
= *map
;
166 if (swap_count(count
) != 1)
169 while (++map
< map_end
) {
174 *has_cache
= !!(count
& SWAP_HAS_CACHE
);
179 * returns number of pages in the folio that backs the swap entry. If positive,
180 * the folio was reclaimed. If negative, the folio was not reclaimed. If 0, no
181 * folio was associated with the swap entry.
183 static int __try_to_reclaim_swap(struct swap_info_struct
*si
,
184 unsigned long offset
, unsigned long flags
)
186 swp_entry_t entry
= swp_entry(si
->type
, offset
);
187 struct address_space
*address_space
= swap_address_space(entry
);
188 struct swap_cluster_info
*ci
;
193 folio
= filemap_get_folio(address_space
, swap_cache_index(entry
));
197 nr_pages
= folio_nr_pages(folio
);
201 * When this function is called from scan_swap_map_slots() and it's
202 * called by vmscan.c at reclaiming folios. So we hold a folio lock
203 * here. We have to use trylock for avoiding deadlock. This is a special
204 * case and you should use folio_free_swap() with explicit folio_lock()
205 * in usual operations.
207 if (!folio_trylock(folio
))
210 /* offset could point to the middle of a large folio */
212 offset
= swp_offset(entry
);
214 need_reclaim
= ((flags
& TTRS_ANYWAY
) ||
215 ((flags
& TTRS_UNMAPPED
) && !folio_mapped(folio
)) ||
216 ((flags
& TTRS_FULL
) && mem_cgroup_swap_full(folio
)));
217 if (!need_reclaim
|| !folio_swapcache_freeable(folio
))
221 * It's safe to delete the folio from swap cache only if the folio's
222 * swap_map is HAS_CACHE only, which means the slots have no page table
223 * reference or pending writeback, and can't be allocated to others.
225 ci
= lock_cluster_or_swap_info(si
, offset
);
226 need_reclaim
= swap_is_has_cache(si
, offset
, nr_pages
);
227 unlock_cluster_or_swap_info(si
, ci
);
231 if (!(flags
& TTRS_DIRECT
)) {
232 /* Free through slot cache */
233 delete_from_swap_cache(folio
);
234 folio_set_dirty(folio
);
239 xa_lock_irq(&address_space
->i_pages
);
240 __delete_from_swap_cache(folio
, entry
, NULL
);
241 xa_unlock_irq(&address_space
->i_pages
);
242 folio_ref_sub(folio
, nr_pages
);
243 folio_set_dirty(folio
);
245 spin_lock(&si
->lock
);
246 /* Only sinple page folio can be backed by zswap */
248 zswap_invalidate(entry
);
249 swap_entry_range_free(si
, entry
, nr_pages
);
250 spin_unlock(&si
->lock
);
259 static inline struct swap_extent
*first_se(struct swap_info_struct
*sis
)
261 struct rb_node
*rb
= rb_first(&sis
->swap_extent_root
);
262 return rb_entry(rb
, struct swap_extent
, rb_node
);
265 static inline struct swap_extent
*next_se(struct swap_extent
*se
)
267 struct rb_node
*rb
= rb_next(&se
->rb_node
);
268 return rb
? rb_entry(rb
, struct swap_extent
, rb_node
) : NULL
;
272 * swapon tell device that all the old swap contents can be discarded,
273 * to allow the swap device to optimize its wear-levelling.
275 static int discard_swap(struct swap_info_struct
*si
)
277 struct swap_extent
*se
;
278 sector_t start_block
;
282 /* Do not discard the swap header page! */
284 start_block
= (se
->start_block
+ 1) << (PAGE_SHIFT
- 9);
285 nr_blocks
= ((sector_t
)se
->nr_pages
- 1) << (PAGE_SHIFT
- 9);
287 err
= blkdev_issue_discard(si
->bdev
, start_block
,
288 nr_blocks
, GFP_KERNEL
);
294 for (se
= next_se(se
); se
; se
= next_se(se
)) {
295 start_block
= se
->start_block
<< (PAGE_SHIFT
- 9);
296 nr_blocks
= (sector_t
)se
->nr_pages
<< (PAGE_SHIFT
- 9);
298 err
= blkdev_issue_discard(si
->bdev
, start_block
,
299 nr_blocks
, GFP_KERNEL
);
305 return err
; /* That will often be -EOPNOTSUPP */
308 static struct swap_extent
*
309 offset_to_swap_extent(struct swap_info_struct
*sis
, unsigned long offset
)
311 struct swap_extent
*se
;
314 rb
= sis
->swap_extent_root
.rb_node
;
316 se
= rb_entry(rb
, struct swap_extent
, rb_node
);
317 if (offset
< se
->start_page
)
319 else if (offset
>= se
->start_page
+ se
->nr_pages
)
324 /* It *must* be present */
328 sector_t
swap_folio_sector(struct folio
*folio
)
330 struct swap_info_struct
*sis
= swp_swap_info(folio
->swap
);
331 struct swap_extent
*se
;
335 offset
= swp_offset(folio
->swap
);
336 se
= offset_to_swap_extent(sis
, offset
);
337 sector
= se
->start_block
+ (offset
- se
->start_page
);
338 return sector
<< (PAGE_SHIFT
- 9);
342 * swap allocation tell device that a cluster of swap can now be discarded,
343 * to allow the swap device to optimize its wear-levelling.
345 static void discard_swap_cluster(struct swap_info_struct
*si
,
346 pgoff_t start_page
, pgoff_t nr_pages
)
348 struct swap_extent
*se
= offset_to_swap_extent(si
, start_page
);
351 pgoff_t offset
= start_page
- se
->start_page
;
352 sector_t start_block
= se
->start_block
+ offset
;
353 sector_t nr_blocks
= se
->nr_pages
- offset
;
355 if (nr_blocks
> nr_pages
)
356 nr_blocks
= nr_pages
;
357 start_page
+= nr_blocks
;
358 nr_pages
-= nr_blocks
;
360 start_block
<<= PAGE_SHIFT
- 9;
361 nr_blocks
<<= PAGE_SHIFT
- 9;
362 if (blkdev_issue_discard(si
->bdev
, start_block
,
363 nr_blocks
, GFP_NOIO
))
370 #ifdef CONFIG_THP_SWAP
371 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
373 #define swap_entry_order(order) (order)
375 #define SWAPFILE_CLUSTER 256
378 * Define swap_entry_order() as constant to let compiler to optimize
379 * out some code if !CONFIG_THP_SWAP
381 #define swap_entry_order(order) 0
383 #define LATENCY_LIMIT 256
385 static inline bool cluster_is_free(struct swap_cluster_info
*info
)
387 return info
->flags
& CLUSTER_FLAG_FREE
;
390 static inline unsigned int cluster_index(struct swap_info_struct
*si
,
391 struct swap_cluster_info
*ci
)
393 return ci
- si
->cluster_info
;
396 static inline unsigned int cluster_offset(struct swap_info_struct
*si
,
397 struct swap_cluster_info
*ci
)
399 return cluster_index(si
, ci
) * SWAPFILE_CLUSTER
;
402 static inline struct swap_cluster_info
*lock_cluster(struct swap_info_struct
*si
,
403 unsigned long offset
)
405 struct swap_cluster_info
*ci
;
407 ci
= si
->cluster_info
;
409 ci
+= offset
/ SWAPFILE_CLUSTER
;
410 spin_lock(&ci
->lock
);
415 static inline void unlock_cluster(struct swap_cluster_info
*ci
)
418 spin_unlock(&ci
->lock
);
422 * Determine the locking method in use for this device. Return
423 * swap_cluster_info if SSD-style cluster-based locking is in place.
425 static inline struct swap_cluster_info
*lock_cluster_or_swap_info(
426 struct swap_info_struct
*si
, unsigned long offset
)
428 struct swap_cluster_info
*ci
;
430 /* Try to use fine-grained SSD-style locking if available: */
431 ci
= lock_cluster(si
, offset
);
432 /* Otherwise, fall back to traditional, coarse locking: */
434 spin_lock(&si
->lock
);
439 static inline void unlock_cluster_or_swap_info(struct swap_info_struct
*si
,
440 struct swap_cluster_info
*ci
)
445 spin_unlock(&si
->lock
);
448 /* Add a cluster to discard list and schedule it to do discard */
449 static void swap_cluster_schedule_discard(struct swap_info_struct
*si
,
450 struct swap_cluster_info
*ci
)
452 unsigned int idx
= cluster_index(si
, ci
);
454 * If scan_swap_map_slots() can't find a free cluster, it will check
455 * si->swap_map directly. To make sure the discarding cluster isn't
456 * taken by scan_swap_map_slots(), mark the swap entries bad (occupied).
457 * It will be cleared after discard
459 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
460 SWAP_MAP_BAD
, SWAPFILE_CLUSTER
);
462 VM_BUG_ON(ci
->flags
& CLUSTER_FLAG_FREE
);
463 list_move_tail(&ci
->list
, &si
->discard_clusters
);
465 schedule_work(&si
->discard_work
);
468 static void __free_cluster(struct swap_info_struct
*si
, struct swap_cluster_info
*ci
)
470 lockdep_assert_held(&si
->lock
);
471 lockdep_assert_held(&ci
->lock
);
474 list_move_tail(&ci
->list
, &si
->free_clusters
);
476 list_add_tail(&ci
->list
, &si
->free_clusters
);
477 ci
->flags
= CLUSTER_FLAG_FREE
;
482 * Doing discard actually. After a cluster discard is finished, the cluster
483 * will be added to free cluster list. caller should hold si->lock.
485 static void swap_do_scheduled_discard(struct swap_info_struct
*si
)
487 struct swap_cluster_info
*ci
;
490 while (!list_empty(&si
->discard_clusters
)) {
491 ci
= list_first_entry(&si
->discard_clusters
, struct swap_cluster_info
, list
);
493 idx
= cluster_index(si
, ci
);
494 spin_unlock(&si
->lock
);
496 discard_swap_cluster(si
, idx
* SWAPFILE_CLUSTER
,
499 spin_lock(&si
->lock
);
500 spin_lock(&ci
->lock
);
501 __free_cluster(si
, ci
);
502 memset(si
->swap_map
+ idx
* SWAPFILE_CLUSTER
,
503 0, SWAPFILE_CLUSTER
);
504 spin_unlock(&ci
->lock
);
508 static void swap_discard_work(struct work_struct
*work
)
510 struct swap_info_struct
*si
;
512 si
= container_of(work
, struct swap_info_struct
, discard_work
);
514 spin_lock(&si
->lock
);
515 swap_do_scheduled_discard(si
);
516 spin_unlock(&si
->lock
);
519 static void swap_users_ref_free(struct percpu_ref
*ref
)
521 struct swap_info_struct
*si
;
523 si
= container_of(ref
, struct swap_info_struct
, users
);
527 static void free_cluster(struct swap_info_struct
*si
, struct swap_cluster_info
*ci
)
529 VM_BUG_ON(ci
->count
!= 0);
530 lockdep_assert_held(&si
->lock
);
531 lockdep_assert_held(&ci
->lock
);
533 if (ci
->flags
& CLUSTER_FLAG_FRAG
)
534 si
->frag_cluster_nr
[ci
->order
]--;
537 * If the swap is discardable, prepare discard the cluster
538 * instead of free it immediately. The cluster will be freed
541 if ((si
->flags
& (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) ==
542 (SWP_WRITEOK
| SWP_PAGE_DISCARD
)) {
543 swap_cluster_schedule_discard(si
, ci
);
547 __free_cluster(si
, ci
);
551 * The cluster corresponding to page_nr will be used. The cluster will not be
552 * added to free cluster list and its usage counter will be increased by 1.
553 * Only used for initialization.
555 static void inc_cluster_info_page(struct swap_info_struct
*si
,
556 struct swap_cluster_info
*cluster_info
, unsigned long page_nr
)
558 unsigned long idx
= page_nr
/ SWAPFILE_CLUSTER
;
559 struct swap_cluster_info
*ci
;
564 ci
= cluster_info
+ idx
;
567 VM_BUG_ON(ci
->count
> SWAPFILE_CLUSTER
);
568 VM_BUG_ON(ci
->flags
);
572 * The cluster ci decreases @nr_pages usage. If the usage counter becomes 0,
573 * which means no page in the cluster is in use, we can optionally discard
574 * the cluster and add it to free cluster list.
576 static void dec_cluster_info_page(struct swap_info_struct
*si
,
577 struct swap_cluster_info
*ci
, int nr_pages
)
579 if (!si
->cluster_info
)
582 VM_BUG_ON(ci
->count
< nr_pages
);
583 VM_BUG_ON(cluster_is_free(ci
));
584 lockdep_assert_held(&si
->lock
);
585 lockdep_assert_held(&ci
->lock
);
586 ci
->count
-= nr_pages
;
589 free_cluster(si
, ci
);
593 if (!(ci
->flags
& CLUSTER_FLAG_NONFULL
)) {
594 VM_BUG_ON(ci
->flags
& CLUSTER_FLAG_FREE
);
595 if (ci
->flags
& CLUSTER_FLAG_FRAG
)
596 si
->frag_cluster_nr
[ci
->order
]--;
597 list_move_tail(&ci
->list
, &si
->nonfull_clusters
[ci
->order
]);
598 ci
->flags
= CLUSTER_FLAG_NONFULL
;
602 static bool cluster_reclaim_range(struct swap_info_struct
*si
,
603 struct swap_cluster_info
*ci
,
604 unsigned long start
, unsigned long end
)
606 unsigned char *map
= si
->swap_map
;
607 unsigned long offset
;
609 spin_unlock(&ci
->lock
);
610 spin_unlock(&si
->lock
);
612 for (offset
= start
; offset
< end
; offset
++) {
613 switch (READ_ONCE(map
[offset
])) {
617 if (__try_to_reclaim_swap(si
, offset
, TTRS_ANYWAY
| TTRS_DIRECT
) > 0)
625 spin_lock(&si
->lock
);
626 spin_lock(&ci
->lock
);
629 * Recheck the range no matter reclaim succeeded or not, the slot
630 * could have been be freed while we are not holding the lock.
632 for (offset
= start
; offset
< end
; offset
++)
633 if (READ_ONCE(map
[offset
]))
639 static bool cluster_scan_range(struct swap_info_struct
*si
,
640 struct swap_cluster_info
*ci
,
641 unsigned long start
, unsigned int nr_pages
)
643 unsigned long offset
, end
= start
+ nr_pages
;
644 unsigned char *map
= si
->swap_map
;
645 bool need_reclaim
= false;
647 for (offset
= start
; offset
< end
; offset
++) {
648 switch (READ_ONCE(map
[offset
])) {
662 return cluster_reclaim_range(si
, ci
, start
, end
);
667 static bool cluster_alloc_range(struct swap_info_struct
*si
, struct swap_cluster_info
*ci
,
668 unsigned int start
, unsigned char usage
,
671 unsigned int nr_pages
= 1 << order
;
673 if (!(si
->flags
& SWP_WRITEOK
))
676 if (cluster_is_free(ci
)) {
677 if (nr_pages
< SWAPFILE_CLUSTER
) {
678 list_move_tail(&ci
->list
, &si
->nonfull_clusters
[order
]);
679 ci
->flags
= CLUSTER_FLAG_NONFULL
;
684 memset(si
->swap_map
+ start
, usage
, nr_pages
);
685 swap_range_alloc(si
, start
, nr_pages
);
686 ci
->count
+= nr_pages
;
688 if (ci
->count
== SWAPFILE_CLUSTER
) {
689 VM_BUG_ON(!(ci
->flags
&
690 (CLUSTER_FLAG_FREE
| CLUSTER_FLAG_NONFULL
| CLUSTER_FLAG_FRAG
)));
691 if (ci
->flags
& CLUSTER_FLAG_FRAG
)
692 si
->frag_cluster_nr
[ci
->order
]--;
693 list_move_tail(&ci
->list
, &si
->full_clusters
);
694 ci
->flags
= CLUSTER_FLAG_FULL
;
700 static unsigned int alloc_swap_scan_cluster(struct swap_info_struct
*si
, unsigned long offset
,
701 unsigned int *foundp
, unsigned int order
,
704 unsigned long start
= offset
& ~(SWAPFILE_CLUSTER
- 1);
705 unsigned long end
= min(start
+ SWAPFILE_CLUSTER
, si
->max
);
706 unsigned int nr_pages
= 1 << order
;
707 struct swap_cluster_info
*ci
;
710 return SWAP_NEXT_INVALID
;
713 ci
= lock_cluster(si
, offset
);
714 if (ci
->count
+ nr_pages
> SWAPFILE_CLUSTER
) {
715 offset
= SWAP_NEXT_INVALID
;
719 while (offset
<= end
) {
720 if (cluster_scan_range(si
, ci
, offset
, nr_pages
)) {
721 if (!cluster_alloc_range(si
, ci
, offset
, usage
, order
)) {
722 offset
= SWAP_NEXT_INVALID
;
726 if (ci
->count
== SWAPFILE_CLUSTER
) {
727 offset
= SWAP_NEXT_INVALID
;
736 offset
= SWAP_NEXT_INVALID
;
742 /* Return true if reclaimed a whole cluster */
743 static void swap_reclaim_full_clusters(struct swap_info_struct
*si
, bool force
)
746 unsigned long offset
, end
;
747 struct swap_cluster_info
*ci
;
748 unsigned char *map
= si
->swap_map
;
752 to_scan
= si
->inuse_pages
/ SWAPFILE_CLUSTER
;
754 while (!list_empty(&si
->full_clusters
)) {
755 ci
= list_first_entry(&si
->full_clusters
, struct swap_cluster_info
, list
);
756 list_move_tail(&ci
->list
, &si
->full_clusters
);
757 offset
= cluster_offset(si
, ci
);
758 end
= min(si
->max
, offset
+ SWAPFILE_CLUSTER
);
761 spin_unlock(&si
->lock
);
762 while (offset
< end
) {
763 if (READ_ONCE(map
[offset
]) == SWAP_HAS_CACHE
) {
764 nr_reclaim
= __try_to_reclaim_swap(si
, offset
,
765 TTRS_ANYWAY
| TTRS_DIRECT
);
767 offset
+= abs(nr_reclaim
);
773 spin_lock(&si
->lock
);
780 static void swap_reclaim_work(struct work_struct
*work
)
782 struct swap_info_struct
*si
;
784 si
= container_of(work
, struct swap_info_struct
, reclaim_work
);
786 spin_lock(&si
->lock
);
787 swap_reclaim_full_clusters(si
, true);
788 spin_unlock(&si
->lock
);
792 * Try to get swap entries with specified order from current cpu's swap entry
793 * pool (a cluster). This might involve allocating a new cluster for current CPU
796 static unsigned long cluster_alloc_swap_entry(struct swap_info_struct
*si
, int order
,
799 struct percpu_cluster
*cluster
;
800 struct swap_cluster_info
*ci
;
801 unsigned int offset
, found
= 0;
804 lockdep_assert_held(&si
->lock
);
805 cluster
= this_cpu_ptr(si
->percpu_cluster
);
806 offset
= cluster
->next
[order
];
808 offset
= alloc_swap_scan_cluster(si
, offset
, &found
, order
, usage
);
813 if (!list_empty(&si
->free_clusters
)) {
814 ci
= list_first_entry(&si
->free_clusters
, struct swap_cluster_info
, list
);
815 offset
= alloc_swap_scan_cluster(si
, cluster_offset(si
, ci
), &found
, order
, usage
);
817 * Either we didn't touch the cluster due to swapoff,
818 * or the allocation must success.
820 VM_BUG_ON((si
->flags
& SWP_WRITEOK
) && !found
);
824 /* Try reclaim from full clusters if free clusters list is drained */
826 swap_reclaim_full_clusters(si
, false);
828 if (order
< PMD_ORDER
) {
829 unsigned int frags
= 0;
831 while (!list_empty(&si
->nonfull_clusters
[order
])) {
832 ci
= list_first_entry(&si
->nonfull_clusters
[order
],
833 struct swap_cluster_info
, list
);
834 list_move_tail(&ci
->list
, &si
->frag_clusters
[order
]);
835 ci
->flags
= CLUSTER_FLAG_FRAG
;
836 si
->frag_cluster_nr
[order
]++;
837 offset
= alloc_swap_scan_cluster(si
, cluster_offset(si
, ci
),
838 &found
, order
, usage
);
846 * Nonfull clusters are moved to frag tail if we reached
847 * here, count them too, don't over scan the frag list.
849 while (frags
< si
->frag_cluster_nr
[order
]) {
850 ci
= list_first_entry(&si
->frag_clusters
[order
],
851 struct swap_cluster_info
, list
);
853 * Rotate the frag list to iterate, they were all failing
854 * high order allocation or moved here due to per-CPU usage,
855 * this help keeping usable cluster ahead.
857 list_move_tail(&ci
->list
, &si
->frag_clusters
[order
]);
858 offset
= alloc_swap_scan_cluster(si
, cluster_offset(si
, ci
),
859 &found
, order
, usage
);
870 if (!list_empty(&si
->discard_clusters
)) {
872 * we don't have free cluster but have some clusters in
873 * discarding, do discard now and reclaim them, then
874 * reread cluster_next_cpu since we dropped si->lock
876 swap_do_scheduled_discard(si
);
883 /* Order 0 stealing from higher order */
884 for (int o
= 1; o
< SWAP_NR_ORDERS
; o
++) {
886 * Clusters here have at least one usable slots and can't fail order 0
887 * allocation, but reclaim may drop si->lock and race with another user.
889 while (!list_empty(&si
->frag_clusters
[o
])) {
890 ci
= list_first_entry(&si
->frag_clusters
[o
],
891 struct swap_cluster_info
, list
);
892 offset
= alloc_swap_scan_cluster(si
, cluster_offset(si
, ci
),
898 while (!list_empty(&si
->nonfull_clusters
[o
])) {
899 ci
= list_first_entry(&si
->nonfull_clusters
[o
],
900 struct swap_cluster_info
, list
);
901 offset
= alloc_swap_scan_cluster(si
, cluster_offset(si
, ci
),
909 cluster
->next
[order
] = offset
;
913 static void __del_from_avail_list(struct swap_info_struct
*si
)
917 assert_spin_locked(&si
->lock
);
919 plist_del(&si
->avail_lists
[nid
], &swap_avail_heads
[nid
]);
922 static void del_from_avail_list(struct swap_info_struct
*si
)
924 spin_lock(&swap_avail_lock
);
925 __del_from_avail_list(si
);
926 spin_unlock(&swap_avail_lock
);
929 static void swap_range_alloc(struct swap_info_struct
*si
, unsigned long offset
,
930 unsigned int nr_entries
)
932 unsigned int end
= offset
+ nr_entries
- 1;
934 if (offset
== si
->lowest_bit
)
935 si
->lowest_bit
+= nr_entries
;
936 if (end
== si
->highest_bit
)
937 WRITE_ONCE(si
->highest_bit
, si
->highest_bit
- nr_entries
);
938 WRITE_ONCE(si
->inuse_pages
, si
->inuse_pages
+ nr_entries
);
939 if (si
->inuse_pages
== si
->pages
) {
940 si
->lowest_bit
= si
->max
;
942 del_from_avail_list(si
);
944 if (si
->cluster_info
&& vm_swap_full())
945 schedule_work(&si
->reclaim_work
);
949 static void add_to_avail_list(struct swap_info_struct
*si
)
953 spin_lock(&swap_avail_lock
);
955 plist_add(&si
->avail_lists
[nid
], &swap_avail_heads
[nid
]);
956 spin_unlock(&swap_avail_lock
);
959 static void swap_range_free(struct swap_info_struct
*si
, unsigned long offset
,
960 unsigned int nr_entries
)
962 unsigned long begin
= offset
;
963 unsigned long end
= offset
+ nr_entries
- 1;
964 void (*swap_slot_free_notify
)(struct block_device
*, unsigned long);
968 * Use atomic clear_bit operations only on zeromap instead of non-atomic
969 * bitmap_clear to prevent adjacent bits corruption due to simultaneous writes.
971 for (i
= 0; i
< nr_entries
; i
++)
972 clear_bit(offset
+ i
, si
->zeromap
);
974 if (offset
< si
->lowest_bit
)
975 si
->lowest_bit
= offset
;
976 if (end
> si
->highest_bit
) {
977 bool was_full
= !si
->highest_bit
;
979 WRITE_ONCE(si
->highest_bit
, end
);
980 if (was_full
&& (si
->flags
& SWP_WRITEOK
))
981 add_to_avail_list(si
);
983 if (si
->flags
& SWP_BLKDEV
)
984 swap_slot_free_notify
=
985 si
->bdev
->bd_disk
->fops
->swap_slot_free_notify
;
987 swap_slot_free_notify
= NULL
;
988 while (offset
<= end
) {
989 arch_swap_invalidate_page(si
->type
, offset
);
990 if (swap_slot_free_notify
)
991 swap_slot_free_notify(si
->bdev
, offset
);
994 clear_shadow_from_swap_cache(si
->type
, begin
, end
);
997 * Make sure that try_to_unuse() observes si->inuse_pages reaching 0
998 * only after the above cleanups are done.
1001 atomic_long_add(nr_entries
, &nr_swap_pages
);
1002 WRITE_ONCE(si
->inuse_pages
, si
->inuse_pages
- nr_entries
);
1005 static void set_cluster_next(struct swap_info_struct
*si
, unsigned long next
)
1009 if (!(si
->flags
& SWP_SOLIDSTATE
)) {
1010 si
->cluster_next
= next
;
1014 prev
= this_cpu_read(*si
->cluster_next_cpu
);
1016 * Cross the swap address space size aligned trunk, choose
1017 * another trunk randomly to avoid lock contention on swap
1018 * address space if possible.
1020 if ((prev
>> SWAP_ADDRESS_SPACE_SHIFT
) !=
1021 (next
>> SWAP_ADDRESS_SPACE_SHIFT
)) {
1022 /* No free swap slots available */
1023 if (si
->highest_bit
<= si
->lowest_bit
)
1025 next
= get_random_u32_inclusive(si
->lowest_bit
, si
->highest_bit
);
1026 next
= ALIGN_DOWN(next
, SWAP_ADDRESS_SPACE_PAGES
);
1027 next
= max_t(unsigned int, next
, si
->lowest_bit
);
1029 this_cpu_write(*si
->cluster_next_cpu
, next
);
1032 static bool swap_offset_available_and_locked(struct swap_info_struct
*si
,
1033 unsigned long offset
)
1035 if (data_race(!si
->swap_map
[offset
])) {
1036 spin_lock(&si
->lock
);
1040 if (vm_swap_full() && READ_ONCE(si
->swap_map
[offset
]) == SWAP_HAS_CACHE
) {
1041 spin_lock(&si
->lock
);
1048 static int cluster_alloc_swap(struct swap_info_struct
*si
,
1049 unsigned char usage
, int nr
,
1050 swp_entry_t slots
[], int order
)
1054 VM_BUG_ON(!si
->cluster_info
);
1056 si
->flags
+= SWP_SCANNING
;
1058 while (n_ret
< nr
) {
1059 unsigned long offset
= cluster_alloc_swap_entry(si
, order
, usage
);
1063 slots
[n_ret
++] = swp_entry(si
->type
, offset
);
1066 si
->flags
-= SWP_SCANNING
;
1071 static int scan_swap_map_slots(struct swap_info_struct
*si
,
1072 unsigned char usage
, int nr
,
1073 swp_entry_t slots
[], int order
)
1075 unsigned long offset
;
1076 unsigned long scan_base
;
1077 unsigned long last_in_cluster
= 0;
1078 int latency_ration
= LATENCY_LIMIT
;
1079 unsigned int nr_pages
= 1 << order
;
1081 bool scanned_many
= false;
1084 * We try to cluster swap pages by allocating them sequentially
1085 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
1086 * way, however, we resort to first-free allocation, starting
1087 * a new cluster. This prevents us from scattering swap pages
1088 * all over the entire swap partition, so that we reduce
1089 * overall disk seek times between swap pages. -- sct
1090 * But we do now try to find an empty cluster. -Andrea
1091 * And we let swap pages go all over an SSD partition. Hugh
1096 * Should not even be attempting large allocations when huge
1097 * page swap is disabled. Warn and fail the allocation.
1099 if (!IS_ENABLED(CONFIG_THP_SWAP
) ||
1100 nr_pages
> SWAPFILE_CLUSTER
) {
1106 * Swapfile is not block device or not using clusters so unable
1107 * to allocate large entries.
1109 if (!(si
->flags
& SWP_BLKDEV
) || !si
->cluster_info
)
1113 if (si
->cluster_info
)
1114 return cluster_alloc_swap(si
, usage
, nr
, slots
, order
);
1116 si
->flags
+= SWP_SCANNING
;
1118 /* For HDD, sequential access is more important. */
1119 scan_base
= si
->cluster_next
;
1122 if (unlikely(!si
->cluster_nr
--)) {
1123 if (si
->pages
- si
->inuse_pages
< SWAPFILE_CLUSTER
) {
1124 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
1128 spin_unlock(&si
->lock
);
1131 * If seek is expensive, start searching for new cluster from
1132 * start of partition, to minimize the span of allocated swap.
1134 scan_base
= offset
= si
->lowest_bit
;
1135 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
- 1;
1137 /* Locate the first empty (unaligned) cluster */
1138 for (; last_in_cluster
<= READ_ONCE(si
->highest_bit
); offset
++) {
1139 if (si
->swap_map
[offset
])
1140 last_in_cluster
= offset
+ SWAPFILE_CLUSTER
;
1141 else if (offset
== last_in_cluster
) {
1142 spin_lock(&si
->lock
);
1143 offset
-= SWAPFILE_CLUSTER
- 1;
1144 si
->cluster_next
= offset
;
1145 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
1148 if (unlikely(--latency_ration
< 0)) {
1150 latency_ration
= LATENCY_LIMIT
;
1155 spin_lock(&si
->lock
);
1156 si
->cluster_nr
= SWAPFILE_CLUSTER
- 1;
1160 if (!(si
->flags
& SWP_WRITEOK
))
1162 if (!si
->highest_bit
)
1164 if (offset
> si
->highest_bit
)
1165 scan_base
= offset
= si
->lowest_bit
;
1167 /* reuse swap entry of cache-only swap if not busy. */
1168 if (vm_swap_full() && si
->swap_map
[offset
] == SWAP_HAS_CACHE
) {
1170 spin_unlock(&si
->lock
);
1171 swap_was_freed
= __try_to_reclaim_swap(si
, offset
, TTRS_ANYWAY
| TTRS_DIRECT
);
1172 spin_lock(&si
->lock
);
1173 /* entry was freed successfully, try to use this again */
1174 if (swap_was_freed
> 0)
1176 goto scan
; /* check next one */
1179 if (si
->swap_map
[offset
]) {
1185 memset(si
->swap_map
+ offset
, usage
, nr_pages
);
1187 swap_range_alloc(si
, offset
, nr_pages
);
1188 slots
[n_ret
++] = swp_entry(si
->type
, offset
);
1190 /* got enough slots or reach max slots? */
1191 if ((n_ret
== nr
) || (offset
>= si
->highest_bit
))
1194 /* search for next available slot */
1196 /* time to take a break? */
1197 if (unlikely(--latency_ration
< 0)) {
1200 spin_unlock(&si
->lock
);
1202 spin_lock(&si
->lock
);
1203 latency_ration
= LATENCY_LIMIT
;
1206 if (si
->cluster_nr
&& !si
->swap_map
[++offset
]) {
1207 /* non-ssd case, still more slots in cluster? */
1213 * Even if there's no free clusters available (fragmented),
1214 * try to scan a little more quickly with lock held unless we
1215 * have scanned too many slots already.
1217 if (!scanned_many
) {
1218 unsigned long scan_limit
;
1220 if (offset
< scan_base
)
1221 scan_limit
= scan_base
;
1223 scan_limit
= si
->highest_bit
;
1224 for (; offset
<= scan_limit
&& --latency_ration
> 0;
1226 if (!si
->swap_map
[offset
])
1233 set_cluster_next(si
, offset
+ 1);
1234 si
->flags
-= SWP_SCANNING
;
1238 VM_WARN_ON(order
> 0);
1239 spin_unlock(&si
->lock
);
1240 while (++offset
<= READ_ONCE(si
->highest_bit
)) {
1241 if (unlikely(--latency_ration
< 0)) {
1243 latency_ration
= LATENCY_LIMIT
;
1244 scanned_many
= true;
1246 if (swap_offset_available_and_locked(si
, offset
))
1249 offset
= si
->lowest_bit
;
1250 while (offset
< scan_base
) {
1251 if (unlikely(--latency_ration
< 0)) {
1253 latency_ration
= LATENCY_LIMIT
;
1254 scanned_many
= true;
1256 if (swap_offset_available_and_locked(si
, offset
))
1260 spin_lock(&si
->lock
);
1263 si
->flags
-= SWP_SCANNING
;
1267 int get_swap_pages(int n_goal
, swp_entry_t swp_entries
[], int entry_order
)
1269 int order
= swap_entry_order(entry_order
);
1270 unsigned long size
= 1 << order
;
1271 struct swap_info_struct
*si
, *next
;
1276 spin_lock(&swap_avail_lock
);
1278 avail_pgs
= atomic_long_read(&nr_swap_pages
) / size
;
1279 if (avail_pgs
<= 0) {
1280 spin_unlock(&swap_avail_lock
);
1284 n_goal
= min3((long)n_goal
, (long)SWAP_BATCH
, avail_pgs
);
1286 atomic_long_sub(n_goal
* size
, &nr_swap_pages
);
1289 node
= numa_node_id();
1290 plist_for_each_entry_safe(si
, next
, &swap_avail_heads
[node
], avail_lists
[node
]) {
1291 /* requeue si to after same-priority siblings */
1292 plist_requeue(&si
->avail_lists
[node
], &swap_avail_heads
[node
]);
1293 spin_unlock(&swap_avail_lock
);
1294 spin_lock(&si
->lock
);
1295 if (!si
->highest_bit
|| !(si
->flags
& SWP_WRITEOK
)) {
1296 spin_lock(&swap_avail_lock
);
1297 if (plist_node_empty(&si
->avail_lists
[node
])) {
1298 spin_unlock(&si
->lock
);
1301 WARN(!si
->highest_bit
,
1302 "swap_info %d in list but !highest_bit\n",
1304 WARN(!(si
->flags
& SWP_WRITEOK
),
1305 "swap_info %d in list but !SWP_WRITEOK\n",
1307 __del_from_avail_list(si
);
1308 spin_unlock(&si
->lock
);
1311 n_ret
= scan_swap_map_slots(si
, SWAP_HAS_CACHE
,
1312 n_goal
, swp_entries
, order
);
1313 spin_unlock(&si
->lock
);
1314 if (n_ret
|| size
> 1)
1318 spin_lock(&swap_avail_lock
);
1321 * if we got here, it's likely that si was almost full before,
1322 * and since scan_swap_map_slots() can drop the si->lock,
1323 * multiple callers probably all tried to get a page from the
1324 * same si and it filled up before we could get one; or, the si
1325 * filled up between us dropping swap_avail_lock and taking
1326 * si->lock. Since we dropped the swap_avail_lock, the
1327 * swap_avail_head list may have been modified; so if next is
1328 * still in the swap_avail_head list then try it, otherwise
1329 * start over if we have not gotten any slots.
1331 if (plist_node_empty(&next
->avail_lists
[node
]))
1335 spin_unlock(&swap_avail_lock
);
1339 atomic_long_add((long)(n_goal
- n_ret
) * size
,
1345 static struct swap_info_struct
*_swap_info_get(swp_entry_t entry
)
1347 struct swap_info_struct
*si
;
1348 unsigned long offset
;
1352 si
= swp_swap_info(entry
);
1355 if (data_race(!(si
->flags
& SWP_USED
)))
1357 offset
= swp_offset(entry
);
1358 if (offset
>= si
->max
)
1360 if (data_race(!si
->swap_map
[swp_offset(entry
)]))
1365 pr_err("%s: %s%08lx\n", __func__
, Unused_offset
, entry
.val
);
1368 pr_err("%s: %s%08lx\n", __func__
, Bad_offset
, entry
.val
);
1371 pr_err("%s: %s%08lx\n", __func__
, Unused_file
, entry
.val
);
1374 pr_err("%s: %s%08lx\n", __func__
, Bad_file
, entry
.val
);
1379 static struct swap_info_struct
*swap_info_get_cont(swp_entry_t entry
,
1380 struct swap_info_struct
*q
)
1382 struct swap_info_struct
*p
;
1384 p
= _swap_info_get(entry
);
1388 spin_unlock(&q
->lock
);
1390 spin_lock(&p
->lock
);
1395 static unsigned char __swap_entry_free_locked(struct swap_info_struct
*si
,
1396 unsigned long offset
,
1397 unsigned char usage
)
1399 unsigned char count
;
1400 unsigned char has_cache
;
1402 count
= si
->swap_map
[offset
];
1404 has_cache
= count
& SWAP_HAS_CACHE
;
1405 count
&= ~SWAP_HAS_CACHE
;
1407 if (usage
== SWAP_HAS_CACHE
) {
1408 VM_BUG_ON(!has_cache
);
1410 } else if (count
== SWAP_MAP_SHMEM
) {
1412 * Or we could insist on shmem.c using a special
1413 * swap_shmem_free() and free_shmem_swap_and_cache()...
1416 } else if ((count
& ~COUNT_CONTINUED
) <= SWAP_MAP_MAX
) {
1417 if (count
== COUNT_CONTINUED
) {
1418 if (swap_count_continued(si
, offset
, count
))
1419 count
= SWAP_MAP_MAX
| COUNT_CONTINUED
;
1421 count
= SWAP_MAP_MAX
;
1426 usage
= count
| has_cache
;
1428 WRITE_ONCE(si
->swap_map
[offset
], usage
);
1430 WRITE_ONCE(si
->swap_map
[offset
], SWAP_HAS_CACHE
);
1436 * When we get a swap entry, if there aren't some other ways to
1437 * prevent swapoff, such as the folio in swap cache is locked, RCU
1438 * reader side is locked, etc., the swap entry may become invalid
1439 * because of swapoff. Then, we need to enclose all swap related
1440 * functions with get_swap_device() and put_swap_device(), unless the
1441 * swap functions call get/put_swap_device() by themselves.
1443 * RCU reader side lock (including any spinlock) is sufficient to
1444 * prevent swapoff, because synchronize_rcu() is called in swapoff()
1445 * before freeing data structures.
1447 * Check whether swap entry is valid in the swap device. If so,
1448 * return pointer to swap_info_struct, and keep the swap entry valid
1449 * via preventing the swap device from being swapoff, until
1450 * put_swap_device() is called. Otherwise return NULL.
1452 * Notice that swapoff or swapoff+swapon can still happen before the
1453 * percpu_ref_tryget_live() in get_swap_device() or after the
1454 * percpu_ref_put() in put_swap_device() if there isn't any other way
1455 * to prevent swapoff. The caller must be prepared for that. For
1456 * example, the following situation is possible.
1460 * ... swapoff+swapon
1461 * __read_swap_cache_async()
1462 * swapcache_prepare()
1463 * __swap_duplicate()
1465 * // verify PTE not changed
1467 * In __swap_duplicate(), the swap_map need to be checked before
1468 * changing partly because the specified swap entry may be for another
1469 * swap device which has been swapoff. And in do_swap_page(), after
1470 * the page is read from the swap device, the PTE is verified not
1471 * changed with the page table locked to check whether the swap device
1472 * has been swapoff or swapoff+swapon.
1474 struct swap_info_struct
*get_swap_device(swp_entry_t entry
)
1476 struct swap_info_struct
*si
;
1477 unsigned long offset
;
1481 si
= swp_swap_info(entry
);
1484 if (!percpu_ref_tryget_live(&si
->users
))
1487 * Guarantee the si->users are checked before accessing other
1488 * fields of swap_info_struct.
1490 * Paired with the spin_unlock() after setup_swap_info() in
1491 * enable_swap_info().
1494 offset
= swp_offset(entry
);
1495 if (offset
>= si
->max
)
1500 pr_err("%s: %s%08lx\n", __func__
, Bad_file
, entry
.val
);
1504 pr_err("%s: %s%08lx\n", __func__
, Bad_offset
, entry
.val
);
1505 percpu_ref_put(&si
->users
);
1509 static unsigned char __swap_entry_free(struct swap_info_struct
*si
,
1512 struct swap_cluster_info
*ci
;
1513 unsigned long offset
= swp_offset(entry
);
1514 unsigned char usage
;
1516 ci
= lock_cluster_or_swap_info(si
, offset
);
1517 usage
= __swap_entry_free_locked(si
, offset
, 1);
1518 unlock_cluster_or_swap_info(si
, ci
);
1520 free_swap_slot(entry
);
1525 static bool __swap_entries_free(struct swap_info_struct
*si
,
1526 swp_entry_t entry
, int nr
)
1528 unsigned long offset
= swp_offset(entry
);
1529 unsigned int type
= swp_type(entry
);
1530 struct swap_cluster_info
*ci
;
1531 bool has_cache
= false;
1532 unsigned char count
;
1535 if (nr
<= 1 || swap_count(data_race(si
->swap_map
[offset
])) != 1)
1537 /* cross into another cluster */
1538 if (nr
> SWAPFILE_CLUSTER
- offset
% SWAPFILE_CLUSTER
)
1541 ci
= lock_cluster_or_swap_info(si
, offset
);
1542 if (!swap_is_last_map(si
, offset
, nr
, &has_cache
)) {
1543 unlock_cluster_or_swap_info(si
, ci
);
1546 for (i
= 0; i
< nr
; i
++)
1547 WRITE_ONCE(si
->swap_map
[offset
+ i
], SWAP_HAS_CACHE
);
1548 unlock_cluster_or_swap_info(si
, ci
);
1551 for (i
= 0; i
< nr
; i
++)
1552 zswap_invalidate(swp_entry(si
->type
, offset
+ i
));
1553 spin_lock(&si
->lock
);
1554 swap_entry_range_free(si
, entry
, nr
);
1555 spin_unlock(&si
->lock
);
1560 for (i
= 0; i
< nr
; i
++) {
1561 if (data_race(si
->swap_map
[offset
+ i
])) {
1562 count
= __swap_entry_free(si
, swp_entry(type
, offset
+ i
));
1563 if (count
== SWAP_HAS_CACHE
)
1573 * Drop the last HAS_CACHE flag of swap entries, caller have to
1574 * ensure all entries belong to the same cgroup.
1576 static void swap_entry_range_free(struct swap_info_struct
*si
, swp_entry_t entry
,
1577 unsigned int nr_pages
)
1579 unsigned long offset
= swp_offset(entry
);
1580 unsigned char *map
= si
->swap_map
+ offset
;
1581 unsigned char *map_end
= map
+ nr_pages
;
1582 struct swap_cluster_info
*ci
;
1584 ci
= lock_cluster(si
, offset
);
1586 VM_BUG_ON(*map
!= SWAP_HAS_CACHE
);
1588 } while (++map
< map_end
);
1589 dec_cluster_info_page(si
, ci
, nr_pages
);
1592 mem_cgroup_uncharge_swap(entry
, nr_pages
);
1593 swap_range_free(si
, offset
, nr_pages
);
1596 static void cluster_swap_free_nr(struct swap_info_struct
*si
,
1597 unsigned long offset
, int nr_pages
,
1598 unsigned char usage
)
1600 struct swap_cluster_info
*ci
;
1601 DECLARE_BITMAP(to_free
, BITS_PER_LONG
) = { 0 };
1604 ci
= lock_cluster_or_swap_info(si
, offset
);
1606 nr
= min(BITS_PER_LONG
, nr_pages
);
1607 for (i
= 0; i
< nr
; i
++) {
1608 if (!__swap_entry_free_locked(si
, offset
+ i
, usage
))
1609 bitmap_set(to_free
, i
, 1);
1611 if (!bitmap_empty(to_free
, BITS_PER_LONG
)) {
1612 unlock_cluster_or_swap_info(si
, ci
);
1613 for_each_set_bit(i
, to_free
, BITS_PER_LONG
)
1614 free_swap_slot(swp_entry(si
->type
, offset
+ i
));
1617 bitmap_clear(to_free
, 0, BITS_PER_LONG
);
1618 ci
= lock_cluster_or_swap_info(si
, offset
);
1623 unlock_cluster_or_swap_info(si
, ci
);
1627 * Caller has made sure that the swap device corresponding to entry
1628 * is still around or has not been recycled.
1630 void swap_free_nr(swp_entry_t entry
, int nr_pages
)
1633 struct swap_info_struct
*sis
;
1634 unsigned long offset
= swp_offset(entry
);
1636 sis
= _swap_info_get(entry
);
1641 nr
= min_t(int, nr_pages
, SWAPFILE_CLUSTER
- offset
% SWAPFILE_CLUSTER
);
1642 cluster_swap_free_nr(sis
, offset
, nr
, 1);
1649 * Called after dropping swapcache to decrease refcnt to swap entries.
1651 void put_swap_folio(struct folio
*folio
, swp_entry_t entry
)
1653 unsigned long offset
= swp_offset(entry
);
1654 struct swap_cluster_info
*ci
;
1655 struct swap_info_struct
*si
;
1656 int size
= 1 << swap_entry_order(folio_order(folio
));
1658 si
= _swap_info_get(entry
);
1662 ci
= lock_cluster_or_swap_info(si
, offset
);
1663 if (size
> 1 && swap_is_has_cache(si
, offset
, size
)) {
1664 unlock_cluster_or_swap_info(si
, ci
);
1665 spin_lock(&si
->lock
);
1666 swap_entry_range_free(si
, entry
, size
);
1667 spin_unlock(&si
->lock
);
1670 for (int i
= 0; i
< size
; i
++, entry
.val
++) {
1671 if (!__swap_entry_free_locked(si
, offset
+ i
, SWAP_HAS_CACHE
)) {
1672 unlock_cluster_or_swap_info(si
, ci
);
1673 free_swap_slot(entry
);
1676 lock_cluster_or_swap_info(si
, offset
);
1679 unlock_cluster_or_swap_info(si
, ci
);
1682 static int swp_entry_cmp(const void *ent1
, const void *ent2
)
1684 const swp_entry_t
*e1
= ent1
, *e2
= ent2
;
1686 return (int)swp_type(*e1
) - (int)swp_type(*e2
);
1689 void swapcache_free_entries(swp_entry_t
*entries
, int n
)
1691 struct swap_info_struct
*p
, *prev
;
1701 * Sort swap entries by swap device, so each lock is only taken once.
1702 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1703 * so low that it isn't necessary to optimize further.
1705 if (nr_swapfiles
> 1)
1706 sort(entries
, n
, sizeof(entries
[0]), swp_entry_cmp
, NULL
);
1707 for (i
= 0; i
< n
; ++i
) {
1708 p
= swap_info_get_cont(entries
[i
], prev
);
1710 swap_entry_range_free(p
, entries
[i
], 1);
1714 spin_unlock(&p
->lock
);
1717 int __swap_count(swp_entry_t entry
)
1719 struct swap_info_struct
*si
= swp_swap_info(entry
);
1720 pgoff_t offset
= swp_offset(entry
);
1722 return swap_count(si
->swap_map
[offset
]);
1726 * How many references to @entry are currently swapped out?
1727 * This does not give an exact answer when swap count is continued,
1728 * but does include the high COUNT_CONTINUED flag to allow for that.
1730 int swap_swapcount(struct swap_info_struct
*si
, swp_entry_t entry
)
1732 pgoff_t offset
= swp_offset(entry
);
1733 struct swap_cluster_info
*ci
;
1736 ci
= lock_cluster_or_swap_info(si
, offset
);
1737 count
= swap_count(si
->swap_map
[offset
]);
1738 unlock_cluster_or_swap_info(si
, ci
);
1743 * How many references to @entry are currently swapped out?
1744 * This considers COUNT_CONTINUED so it returns exact answer.
1746 int swp_swapcount(swp_entry_t entry
)
1748 int count
, tmp_count
, n
;
1749 struct swap_info_struct
*si
;
1750 struct swap_cluster_info
*ci
;
1755 si
= _swap_info_get(entry
);
1759 offset
= swp_offset(entry
);
1761 ci
= lock_cluster_or_swap_info(si
, offset
);
1763 count
= swap_count(si
->swap_map
[offset
]);
1764 if (!(count
& COUNT_CONTINUED
))
1767 count
&= ~COUNT_CONTINUED
;
1768 n
= SWAP_MAP_MAX
+ 1;
1770 page
= vmalloc_to_page(si
->swap_map
+ offset
);
1771 offset
&= ~PAGE_MASK
;
1772 VM_BUG_ON(page_private(page
) != SWP_CONTINUED
);
1775 page
= list_next_entry(page
, lru
);
1776 map
= kmap_local_page(page
);
1777 tmp_count
= map
[offset
];
1780 count
+= (tmp_count
& ~COUNT_CONTINUED
) * n
;
1781 n
*= (SWAP_CONT_MAX
+ 1);
1782 } while (tmp_count
& COUNT_CONTINUED
);
1784 unlock_cluster_or_swap_info(si
, ci
);
1788 static bool swap_page_trans_huge_swapped(struct swap_info_struct
*si
,
1789 swp_entry_t entry
, int order
)
1791 struct swap_cluster_info
*ci
;
1792 unsigned char *map
= si
->swap_map
;
1793 unsigned int nr_pages
= 1 << order
;
1794 unsigned long roffset
= swp_offset(entry
);
1795 unsigned long offset
= round_down(roffset
, nr_pages
);
1799 ci
= lock_cluster_or_swap_info(si
, offset
);
1800 if (!ci
|| nr_pages
== 1) {
1801 if (swap_count(map
[roffset
]))
1805 for (i
= 0; i
< nr_pages
; i
++) {
1806 if (swap_count(map
[offset
+ i
])) {
1812 unlock_cluster_or_swap_info(si
, ci
);
1816 static bool folio_swapped(struct folio
*folio
)
1818 swp_entry_t entry
= folio
->swap
;
1819 struct swap_info_struct
*si
= _swap_info_get(entry
);
1824 if (!IS_ENABLED(CONFIG_THP_SWAP
) || likely(!folio_test_large(folio
)))
1825 return swap_swapcount(si
, entry
) != 0;
1827 return swap_page_trans_huge_swapped(si
, entry
, folio_order(folio
));
1830 static bool folio_swapcache_freeable(struct folio
*folio
)
1832 VM_BUG_ON_FOLIO(!folio_test_locked(folio
), folio
);
1834 if (!folio_test_swapcache(folio
))
1836 if (folio_test_writeback(folio
))
1840 * Once hibernation has begun to create its image of memory,
1841 * there's a danger that one of the calls to folio_free_swap()
1842 * - most probably a call from __try_to_reclaim_swap() while
1843 * hibernation is allocating its own swap pages for the image,
1844 * but conceivably even a call from memory reclaim - will free
1845 * the swap from a folio which has already been recorded in the
1846 * image as a clean swapcache folio, and then reuse its swap for
1847 * another page of the image. On waking from hibernation, the
1848 * original folio might be freed under memory pressure, then
1849 * later read back in from swap, now with the wrong data.
1851 * Hibernation suspends storage while it is writing the image
1852 * to disk so check that here.
1854 if (pm_suspended_storage())
1861 * folio_free_swap() - Free the swap space used for this folio.
1862 * @folio: The folio to remove.
1864 * If swap is getting full, or if there are no more mappings of this folio,
1865 * then call folio_free_swap to free its swap space.
1867 * Return: true if we were able to release the swap space.
1869 bool folio_free_swap(struct folio
*folio
)
1871 if (!folio_swapcache_freeable(folio
))
1873 if (folio_swapped(folio
))
1876 delete_from_swap_cache(folio
);
1877 folio_set_dirty(folio
);
1882 * free_swap_and_cache_nr() - Release reference on range of swap entries and
1883 * reclaim their cache if no more references remain.
1884 * @entry: First entry of range.
1885 * @nr: Number of entries in range.
1887 * For each swap entry in the contiguous range, release a reference. If any swap
1888 * entries become free, try to reclaim their underlying folios, if present. The
1889 * offset range is defined by [entry.offset, entry.offset + nr).
1891 void free_swap_and_cache_nr(swp_entry_t entry
, int nr
)
1893 const unsigned long start_offset
= swp_offset(entry
);
1894 const unsigned long end_offset
= start_offset
+ nr
;
1895 struct swap_info_struct
*si
;
1896 bool any_only_cache
= false;
1897 unsigned long offset
;
1899 if (non_swap_entry(entry
))
1902 si
= get_swap_device(entry
);
1906 if (WARN_ON(end_offset
> si
->max
))
1910 * First free all entries in the range.
1912 any_only_cache
= __swap_entries_free(si
, entry
, nr
);
1915 * Short-circuit the below loop if none of the entries had their
1916 * reference drop to zero.
1918 if (!any_only_cache
)
1922 * Now go back over the range trying to reclaim the swap cache. This is
1923 * more efficient for large folios because we will only try to reclaim
1924 * the swap once per folio in the common case. If we do
1925 * __swap_entry_free() and __try_to_reclaim_swap() in the same loop, the
1926 * latter will get a reference and lock the folio for every individual
1927 * page but will only succeed once the swap slot for every subpage is
1930 for (offset
= start_offset
; offset
< end_offset
; offset
+= nr
) {
1932 if (READ_ONCE(si
->swap_map
[offset
]) == SWAP_HAS_CACHE
) {
1934 * Folios are always naturally aligned in swap so
1935 * advance forward to the next boundary. Zero means no
1936 * folio was found for the swap entry, so advance by 1
1937 * in this case. Negative value means folio was found
1938 * but could not be reclaimed. Here we can still advance
1939 * to the next boundary.
1941 nr
= __try_to_reclaim_swap(si
, offset
,
1942 TTRS_UNMAPPED
| TTRS_FULL
);
1947 nr
= ALIGN(offset
+ 1, nr
) - offset
;
1952 put_swap_device(si
);
1955 #ifdef CONFIG_HIBERNATION
1957 swp_entry_t
get_swap_page_of_type(int type
)
1959 struct swap_info_struct
*si
= swap_type_to_swap_info(type
);
1960 swp_entry_t entry
= {0};
1965 /* This is called for allocating swap entry, not cache */
1966 spin_lock(&si
->lock
);
1967 if ((si
->flags
& SWP_WRITEOK
) && scan_swap_map_slots(si
, 1, 1, &entry
, 0))
1968 atomic_long_dec(&nr_swap_pages
);
1969 spin_unlock(&si
->lock
);
1975 * Find the swap type that corresponds to given device (if any).
1977 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1978 * from 0, in which the swap header is expected to be located.
1980 * This is needed for the suspend to disk (aka swsusp).
1982 int swap_type_of(dev_t device
, sector_t offset
)
1989 spin_lock(&swap_lock
);
1990 for (type
= 0; type
< nr_swapfiles
; type
++) {
1991 struct swap_info_struct
*sis
= swap_info
[type
];
1993 if (!(sis
->flags
& SWP_WRITEOK
))
1996 if (device
== sis
->bdev
->bd_dev
) {
1997 struct swap_extent
*se
= first_se(sis
);
1999 if (se
->start_block
== offset
) {
2000 spin_unlock(&swap_lock
);
2005 spin_unlock(&swap_lock
);
2009 int find_first_swap(dev_t
*device
)
2013 spin_lock(&swap_lock
);
2014 for (type
= 0; type
< nr_swapfiles
; type
++) {
2015 struct swap_info_struct
*sis
= swap_info
[type
];
2017 if (!(sis
->flags
& SWP_WRITEOK
))
2019 *device
= sis
->bdev
->bd_dev
;
2020 spin_unlock(&swap_lock
);
2023 spin_unlock(&swap_lock
);
2028 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
2029 * corresponding to given index in swap_info (swap type).
2031 sector_t
swapdev_block(int type
, pgoff_t offset
)
2033 struct swap_info_struct
*si
= swap_type_to_swap_info(type
);
2034 struct swap_extent
*se
;
2036 if (!si
|| !(si
->flags
& SWP_WRITEOK
))
2038 se
= offset_to_swap_extent(si
, offset
);
2039 return se
->start_block
+ (offset
- se
->start_page
);
2043 * Return either the total number of swap pages of given type, or the number
2044 * of free pages of that type (depending on @free)
2046 * This is needed for software suspend
2048 unsigned int count_swap_pages(int type
, int free
)
2052 spin_lock(&swap_lock
);
2053 if ((unsigned int)type
< nr_swapfiles
) {
2054 struct swap_info_struct
*sis
= swap_info
[type
];
2056 spin_lock(&sis
->lock
);
2057 if (sis
->flags
& SWP_WRITEOK
) {
2060 n
-= sis
->inuse_pages
;
2062 spin_unlock(&sis
->lock
);
2064 spin_unlock(&swap_lock
);
2067 #endif /* CONFIG_HIBERNATION */
2069 static inline int pte_same_as_swp(pte_t pte
, pte_t swp_pte
)
2071 return pte_same(pte_swp_clear_flags(pte
), swp_pte
);
2075 * No need to decide whether this PTE shares the swap entry with others,
2076 * just let do_wp_page work it out if a write is requested later - to
2077 * force COW, vm_page_prot omits write permission from any private vma.
2079 static int unuse_pte(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2080 unsigned long addr
, swp_entry_t entry
, struct folio
*folio
)
2083 struct folio
*swapcache
;
2085 pte_t
*pte
, new_pte
, old_pte
;
2086 bool hwpoisoned
= false;
2090 folio
= ksm_might_need_to_copy(folio
, vma
, addr
);
2091 if (unlikely(!folio
))
2093 else if (unlikely(folio
== ERR_PTR(-EHWPOISON
))) {
2098 page
= folio_file_page(folio
, swp_offset(entry
));
2099 if (PageHWPoison(page
))
2102 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
2103 if (unlikely(!pte
|| !pte_same_as_swp(ptep_get(pte
),
2104 swp_entry_to_pte(entry
)))) {
2109 old_pte
= ptep_get(pte
);
2111 if (unlikely(hwpoisoned
|| !folio_test_uptodate(folio
))) {
2112 swp_entry_t swp_entry
;
2114 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
2116 swp_entry
= make_hwpoison_entry(page
);
2118 swp_entry
= make_poisoned_swp_entry();
2120 new_pte
= swp_entry_to_pte(swp_entry
);
2126 * Some architectures may have to restore extra metadata to the page
2127 * when reading from swap. This metadata may be indexed by swap entry
2128 * so this must be called before swap_free().
2130 arch_swap_restore(folio_swap(entry
, folio
), folio
);
2132 dec_mm_counter(vma
->vm_mm
, MM_SWAPENTS
);
2133 inc_mm_counter(vma
->vm_mm
, MM_ANONPAGES
);
2135 if (folio
== swapcache
) {
2136 rmap_t rmap_flags
= RMAP_NONE
;
2139 * See do_swap_page(): writeback would be problematic.
2140 * However, we do a folio_wait_writeback() just before this
2141 * call and have the folio locked.
2143 VM_BUG_ON_FOLIO(folio_test_writeback(folio
), folio
);
2144 if (pte_swp_exclusive(old_pte
))
2145 rmap_flags
|= RMAP_EXCLUSIVE
;
2147 * We currently only expect small !anon folios, which are either
2148 * fully exclusive or fully shared. If we ever get large folios
2149 * here, we have to be careful.
2151 if (!folio_test_anon(folio
)) {
2152 VM_WARN_ON_ONCE(folio_test_large(folio
));
2153 VM_WARN_ON_FOLIO(!folio_test_locked(folio
), folio
);
2154 folio_add_new_anon_rmap(folio
, vma
, addr
, rmap_flags
);
2156 folio_add_anon_rmap_pte(folio
, page
, vma
, addr
, rmap_flags
);
2158 } else { /* ksm created a completely new copy */
2159 folio_add_new_anon_rmap(folio
, vma
, addr
, RMAP_EXCLUSIVE
);
2160 folio_add_lru_vma(folio
, vma
);
2162 new_pte
= pte_mkold(mk_pte(page
, vma
->vm_page_prot
));
2163 if (pte_swp_soft_dirty(old_pte
))
2164 new_pte
= pte_mksoft_dirty(new_pte
);
2165 if (pte_swp_uffd_wp(old_pte
))
2166 new_pte
= pte_mkuffd_wp(new_pte
);
2168 set_pte_at(vma
->vm_mm
, addr
, pte
, new_pte
);
2172 pte_unmap_unlock(pte
, ptl
);
2173 if (folio
!= swapcache
) {
2174 folio_unlock(folio
);
2180 static int unuse_pte_range(struct vm_area_struct
*vma
, pmd_t
*pmd
,
2181 unsigned long addr
, unsigned long end
,
2185 struct swap_info_struct
*si
;
2187 si
= swap_info
[type
];
2189 struct folio
*folio
;
2190 unsigned long offset
;
2191 unsigned char swp_count
;
2197 pte
= pte_offset_map(pmd
, addr
);
2202 ptent
= ptep_get_lockless(pte
);
2204 if (!is_swap_pte(ptent
))
2207 entry
= pte_to_swp_entry(ptent
);
2208 if (swp_type(entry
) != type
)
2211 offset
= swp_offset(entry
);
2215 folio
= swap_cache_get_folio(entry
, vma
, addr
);
2217 struct vm_fault vmf
= {
2220 .real_address
= addr
,
2224 folio
= swapin_readahead(entry
, GFP_HIGHUSER_MOVABLE
,
2228 swp_count
= READ_ONCE(si
->swap_map
[offset
]);
2229 if (swp_count
== 0 || swp_count
== SWAP_MAP_BAD
)
2235 folio_wait_writeback(folio
);
2236 ret
= unuse_pte(vma
, pmd
, addr
, entry
, folio
);
2238 folio_unlock(folio
);
2243 folio_free_swap(folio
);
2244 folio_unlock(folio
);
2246 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2253 static inline int unuse_pmd_range(struct vm_area_struct
*vma
, pud_t
*pud
,
2254 unsigned long addr
, unsigned long end
,
2261 pmd
= pmd_offset(pud
, addr
);
2264 next
= pmd_addr_end(addr
, end
);
2265 ret
= unuse_pte_range(vma
, pmd
, addr
, next
, type
);
2268 } while (pmd
++, addr
= next
, addr
!= end
);
2272 static inline int unuse_pud_range(struct vm_area_struct
*vma
, p4d_t
*p4d
,
2273 unsigned long addr
, unsigned long end
,
2280 pud
= pud_offset(p4d
, addr
);
2282 next
= pud_addr_end(addr
, end
);
2283 if (pud_none_or_clear_bad(pud
))
2285 ret
= unuse_pmd_range(vma
, pud
, addr
, next
, type
);
2288 } while (pud
++, addr
= next
, addr
!= end
);
2292 static inline int unuse_p4d_range(struct vm_area_struct
*vma
, pgd_t
*pgd
,
2293 unsigned long addr
, unsigned long end
,
2300 p4d
= p4d_offset(pgd
, addr
);
2302 next
= p4d_addr_end(addr
, end
);
2303 if (p4d_none_or_clear_bad(p4d
))
2305 ret
= unuse_pud_range(vma
, p4d
, addr
, next
, type
);
2308 } while (p4d
++, addr
= next
, addr
!= end
);
2312 static int unuse_vma(struct vm_area_struct
*vma
, unsigned int type
)
2315 unsigned long addr
, end
, next
;
2318 addr
= vma
->vm_start
;
2321 pgd
= pgd_offset(vma
->vm_mm
, addr
);
2323 next
= pgd_addr_end(addr
, end
);
2324 if (pgd_none_or_clear_bad(pgd
))
2326 ret
= unuse_p4d_range(vma
, pgd
, addr
, next
, type
);
2329 } while (pgd
++, addr
= next
, addr
!= end
);
2333 static int unuse_mm(struct mm_struct
*mm
, unsigned int type
)
2335 struct vm_area_struct
*vma
;
2337 VMA_ITERATOR(vmi
, mm
, 0);
2340 for_each_vma(vmi
, vma
) {
2341 if (vma
->anon_vma
&& !is_vm_hugetlb_page(vma
)) {
2342 ret
= unuse_vma(vma
, type
);
2349 mmap_read_unlock(mm
);
2354 * Scan swap_map from current position to next entry still in use.
2355 * Return 0 if there are no inuse entries after prev till end of
2358 static unsigned int find_next_to_unuse(struct swap_info_struct
*si
,
2362 unsigned char count
;
2365 * No need for swap_lock here: we're just looking
2366 * for whether an entry is in use, not modifying it; false
2367 * hits are okay, and sys_swapoff() has already prevented new
2368 * allocations from this area (while holding swap_lock).
2370 for (i
= prev
+ 1; i
< si
->max
; i
++) {
2371 count
= READ_ONCE(si
->swap_map
[i
]);
2372 if (count
&& swap_count(count
) != SWAP_MAP_BAD
)
2374 if ((i
% LATENCY_LIMIT
) == 0)
2384 static int try_to_unuse(unsigned int type
)
2386 struct mm_struct
*prev_mm
;
2387 struct mm_struct
*mm
;
2388 struct list_head
*p
;
2390 struct swap_info_struct
*si
= swap_info
[type
];
2391 struct folio
*folio
;
2395 if (!READ_ONCE(si
->inuse_pages
))
2399 retval
= shmem_unuse(type
);
2406 spin_lock(&mmlist_lock
);
2407 p
= &init_mm
.mmlist
;
2408 while (READ_ONCE(si
->inuse_pages
) &&
2409 !signal_pending(current
) &&
2410 (p
= p
->next
) != &init_mm
.mmlist
) {
2412 mm
= list_entry(p
, struct mm_struct
, mmlist
);
2413 if (!mmget_not_zero(mm
))
2415 spin_unlock(&mmlist_lock
);
2418 retval
= unuse_mm(mm
, type
);
2425 * Make sure that we aren't completely killing
2426 * interactive performance.
2429 spin_lock(&mmlist_lock
);
2431 spin_unlock(&mmlist_lock
);
2436 while (READ_ONCE(si
->inuse_pages
) &&
2437 !signal_pending(current
) &&
2438 (i
= find_next_to_unuse(si
, i
)) != 0) {
2440 entry
= swp_entry(type
, i
);
2441 folio
= filemap_get_folio(swap_address_space(entry
), swap_cache_index(entry
));
2446 * It is conceivable that a racing task removed this folio from
2447 * swap cache just before we acquired the page lock. The folio
2448 * might even be back in swap cache on another swap area. But
2449 * that is okay, folio_free_swap() only removes stale folios.
2452 folio_wait_writeback(folio
);
2453 folio_free_swap(folio
);
2454 folio_unlock(folio
);
2459 * Lets check again to see if there are still swap entries in the map.
2460 * If yes, we would need to do retry the unuse logic again.
2461 * Under global memory pressure, swap entries can be reinserted back
2462 * into process space after the mmlist loop above passes over them.
2464 * Limit the number of retries? No: when mmget_not_zero()
2465 * above fails, that mm is likely to be freeing swap from
2466 * exit_mmap(), which proceeds at its own independent pace;
2467 * and even shmem_writepage() could have been preempted after
2468 * folio_alloc_swap(), temporarily hiding that swap. It's easy
2469 * and robust (though cpu-intensive) just to keep retrying.
2471 if (READ_ONCE(si
->inuse_pages
)) {
2472 if (!signal_pending(current
))
2479 * Make sure that further cleanups after try_to_unuse() returns happen
2480 * after swap_range_free() reduces si->inuse_pages to 0.
2487 * After a successful try_to_unuse, if no swap is now in use, we know
2488 * we can empty the mmlist. swap_lock must be held on entry and exit.
2489 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2490 * added to the mmlist just after page_duplicate - before would be racy.
2492 static void drain_mmlist(void)
2494 struct list_head
*p
, *next
;
2497 for (type
= 0; type
< nr_swapfiles
; type
++)
2498 if (swap_info
[type
]->inuse_pages
)
2500 spin_lock(&mmlist_lock
);
2501 list_for_each_safe(p
, next
, &init_mm
.mmlist
)
2503 spin_unlock(&mmlist_lock
);
2507 * Free all of a swapdev's extent information
2509 static void destroy_swap_extents(struct swap_info_struct
*sis
)
2511 while (!RB_EMPTY_ROOT(&sis
->swap_extent_root
)) {
2512 struct rb_node
*rb
= sis
->swap_extent_root
.rb_node
;
2513 struct swap_extent
*se
= rb_entry(rb
, struct swap_extent
, rb_node
);
2515 rb_erase(rb
, &sis
->swap_extent_root
);
2519 if (sis
->flags
& SWP_ACTIVATED
) {
2520 struct file
*swap_file
= sis
->swap_file
;
2521 struct address_space
*mapping
= swap_file
->f_mapping
;
2523 sis
->flags
&= ~SWP_ACTIVATED
;
2524 if (mapping
->a_ops
->swap_deactivate
)
2525 mapping
->a_ops
->swap_deactivate(swap_file
);
2530 * Add a block range (and the corresponding page range) into this swapdev's
2533 * This function rather assumes that it is called in ascending page order.
2536 add_swap_extent(struct swap_info_struct
*sis
, unsigned long start_page
,
2537 unsigned long nr_pages
, sector_t start_block
)
2539 struct rb_node
**link
= &sis
->swap_extent_root
.rb_node
, *parent
= NULL
;
2540 struct swap_extent
*se
;
2541 struct swap_extent
*new_se
;
2544 * place the new node at the right most since the
2545 * function is called in ascending page order.
2549 link
= &parent
->rb_right
;
2553 se
= rb_entry(parent
, struct swap_extent
, rb_node
);
2554 BUG_ON(se
->start_page
+ se
->nr_pages
!= start_page
);
2555 if (se
->start_block
+ se
->nr_pages
== start_block
) {
2557 se
->nr_pages
+= nr_pages
;
2562 /* No merge, insert a new extent. */
2563 new_se
= kmalloc(sizeof(*se
), GFP_KERNEL
);
2566 new_se
->start_page
= start_page
;
2567 new_se
->nr_pages
= nr_pages
;
2568 new_se
->start_block
= start_block
;
2570 rb_link_node(&new_se
->rb_node
, parent
, link
);
2571 rb_insert_color(&new_se
->rb_node
, &sis
->swap_extent_root
);
2574 EXPORT_SYMBOL_GPL(add_swap_extent
);
2577 * A `swap extent' is a simple thing which maps a contiguous range of pages
2578 * onto a contiguous range of disk blocks. A rbtree of swap extents is
2579 * built at swapon time and is then used at swap_writepage/swap_read_folio
2580 * time for locating where on disk a page belongs.
2582 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2583 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2584 * swap files identically.
2586 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2587 * extent rbtree operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2588 * swapfiles are handled *identically* after swapon time.
2590 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2591 * and will parse them into a rbtree, in PAGE_SIZE chunks. If some stray
2592 * blocks are found which do not fall within the PAGE_SIZE alignment
2593 * requirements, they are simply tossed out - we will never use those blocks
2596 * For all swap devices we set S_SWAPFILE across the life of the swapon. This
2597 * prevents users from writing to the swap device, which will corrupt memory.
2599 * The amount of disk space which a single swap extent represents varies.
2600 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2601 * extents in the rbtree. - akpm.
2603 static int setup_swap_extents(struct swap_info_struct
*sis
, sector_t
*span
)
2605 struct file
*swap_file
= sis
->swap_file
;
2606 struct address_space
*mapping
= swap_file
->f_mapping
;
2607 struct inode
*inode
= mapping
->host
;
2610 if (S_ISBLK(inode
->i_mode
)) {
2611 ret
= add_swap_extent(sis
, 0, sis
->max
, 0);
2616 if (mapping
->a_ops
->swap_activate
) {
2617 ret
= mapping
->a_ops
->swap_activate(sis
, swap_file
, span
);
2620 sis
->flags
|= SWP_ACTIVATED
;
2621 if ((sis
->flags
& SWP_FS_OPS
) &&
2622 sio_pool_init() != 0) {
2623 destroy_swap_extents(sis
);
2629 return generic_swapfile_activate(sis
, swap_file
, span
);
2632 static int swap_node(struct swap_info_struct
*si
)
2634 struct block_device
*bdev
;
2639 bdev
= si
->swap_file
->f_inode
->i_sb
->s_bdev
;
2641 return bdev
? bdev
->bd_disk
->node_id
: NUMA_NO_NODE
;
2644 static void setup_swap_info(struct swap_info_struct
*si
, int prio
,
2645 unsigned char *swap_map
,
2646 struct swap_cluster_info
*cluster_info
,
2647 unsigned long *zeromap
)
2654 si
->prio
= --least_priority
;
2656 * the plist prio is negated because plist ordering is
2657 * low-to-high, while swap ordering is high-to-low
2659 si
->list
.prio
= -si
->prio
;
2662 si
->avail_lists
[i
].prio
= -si
->prio
;
2664 if (swap_node(si
) == i
)
2665 si
->avail_lists
[i
].prio
= 1;
2667 si
->avail_lists
[i
].prio
= -si
->prio
;
2670 si
->swap_map
= swap_map
;
2671 si
->cluster_info
= cluster_info
;
2672 si
->zeromap
= zeromap
;
2675 static void _enable_swap_info(struct swap_info_struct
*si
)
2677 si
->flags
|= SWP_WRITEOK
;
2678 atomic_long_add(si
->pages
, &nr_swap_pages
);
2679 total_swap_pages
+= si
->pages
;
2681 assert_spin_locked(&swap_lock
);
2683 * both lists are plists, and thus priority ordered.
2684 * swap_active_head needs to be priority ordered for swapoff(),
2685 * which on removal of any swap_info_struct with an auto-assigned
2686 * (i.e. negative) priority increments the auto-assigned priority
2687 * of any lower-priority swap_info_structs.
2688 * swap_avail_head needs to be priority ordered for folio_alloc_swap(),
2689 * which allocates swap pages from the highest available priority
2692 plist_add(&si
->list
, &swap_active_head
);
2694 /* add to available list iff swap device is not full */
2695 if (si
->highest_bit
)
2696 add_to_avail_list(si
);
2699 static void enable_swap_info(struct swap_info_struct
*si
, int prio
,
2700 unsigned char *swap_map
,
2701 struct swap_cluster_info
*cluster_info
,
2702 unsigned long *zeromap
)
2704 spin_lock(&swap_lock
);
2705 spin_lock(&si
->lock
);
2706 setup_swap_info(si
, prio
, swap_map
, cluster_info
, zeromap
);
2707 spin_unlock(&si
->lock
);
2708 spin_unlock(&swap_lock
);
2710 * Finished initializing swap device, now it's safe to reference it.
2712 percpu_ref_resurrect(&si
->users
);
2713 spin_lock(&swap_lock
);
2714 spin_lock(&si
->lock
);
2715 _enable_swap_info(si
);
2716 spin_unlock(&si
->lock
);
2717 spin_unlock(&swap_lock
);
2720 static void reinsert_swap_info(struct swap_info_struct
*si
)
2722 spin_lock(&swap_lock
);
2723 spin_lock(&si
->lock
);
2724 setup_swap_info(si
, si
->prio
, si
->swap_map
, si
->cluster_info
, si
->zeromap
);
2725 _enable_swap_info(si
);
2726 spin_unlock(&si
->lock
);
2727 spin_unlock(&swap_lock
);
2730 static bool __has_usable_swap(void)
2732 return !plist_head_empty(&swap_active_head
);
2735 bool has_usable_swap(void)
2739 spin_lock(&swap_lock
);
2740 ret
= __has_usable_swap();
2741 spin_unlock(&swap_lock
);
2745 SYSCALL_DEFINE1(swapoff
, const char __user
*, specialfile
)
2747 struct swap_info_struct
*p
= NULL
;
2748 unsigned char *swap_map
;
2749 unsigned long *zeromap
;
2750 struct swap_cluster_info
*cluster_info
;
2751 struct file
*swap_file
, *victim
;
2752 struct address_space
*mapping
;
2753 struct inode
*inode
;
2754 struct filename
*pathname
;
2757 if (!capable(CAP_SYS_ADMIN
))
2760 BUG_ON(!current
->mm
);
2762 pathname
= getname(specialfile
);
2763 if (IS_ERR(pathname
))
2764 return PTR_ERR(pathname
);
2766 victim
= file_open_name(pathname
, O_RDWR
|O_LARGEFILE
, 0);
2767 err
= PTR_ERR(victim
);
2771 mapping
= victim
->f_mapping
;
2772 spin_lock(&swap_lock
);
2773 plist_for_each_entry(p
, &swap_active_head
, list
) {
2774 if (p
->flags
& SWP_WRITEOK
) {
2775 if (p
->swap_file
->f_mapping
== mapping
) {
2783 spin_unlock(&swap_lock
);
2786 if (!security_vm_enough_memory_mm(current
->mm
, p
->pages
))
2787 vm_unacct_memory(p
->pages
);
2790 spin_unlock(&swap_lock
);
2793 spin_lock(&p
->lock
);
2794 del_from_avail_list(p
);
2796 struct swap_info_struct
*si
= p
;
2799 plist_for_each_entry_continue(si
, &swap_active_head
, list
) {
2802 for_each_node(nid
) {
2803 if (si
->avail_lists
[nid
].prio
!= 1)
2804 si
->avail_lists
[nid
].prio
--;
2809 plist_del(&p
->list
, &swap_active_head
);
2810 atomic_long_sub(p
->pages
, &nr_swap_pages
);
2811 total_swap_pages
-= p
->pages
;
2812 p
->flags
&= ~SWP_WRITEOK
;
2813 spin_unlock(&p
->lock
);
2814 spin_unlock(&swap_lock
);
2816 disable_swap_slots_cache_lock();
2818 set_current_oom_origin();
2819 err
= try_to_unuse(p
->type
);
2820 clear_current_oom_origin();
2823 /* re-insert swap space back into swap_list */
2824 reinsert_swap_info(p
);
2825 reenable_swap_slots_cache_unlock();
2829 reenable_swap_slots_cache_unlock();
2832 * Wait for swap operations protected by get/put_swap_device()
2833 * to complete. Because of synchronize_rcu() here, all swap
2834 * operations protected by RCU reader side lock (including any
2835 * spinlock) will be waited too. This makes it easy to
2836 * prevent folio_test_swapcache() and the following swap cache
2837 * operations from racing with swapoff.
2839 percpu_ref_kill(&p
->users
);
2841 wait_for_completion(&p
->comp
);
2843 flush_work(&p
->discard_work
);
2844 flush_work(&p
->reclaim_work
);
2846 destroy_swap_extents(p
);
2847 if (p
->flags
& SWP_CONTINUED
)
2848 free_swap_count_continuations(p
);
2850 if (!p
->bdev
|| !bdev_nonrot(p
->bdev
))
2851 atomic_dec(&nr_rotate_swap
);
2853 mutex_lock(&swapon_mutex
);
2854 spin_lock(&swap_lock
);
2855 spin_lock(&p
->lock
);
2858 /* wait for anyone still in scan_swap_map_slots */
2859 p
->highest_bit
= 0; /* cuts scans short */
2860 while (p
->flags
>= SWP_SCANNING
) {
2861 spin_unlock(&p
->lock
);
2862 spin_unlock(&swap_lock
);
2863 schedule_timeout_uninterruptible(1);
2864 spin_lock(&swap_lock
);
2865 spin_lock(&p
->lock
);
2868 swap_file
= p
->swap_file
;
2869 p
->swap_file
= NULL
;
2871 swap_map
= p
->swap_map
;
2873 zeromap
= p
->zeromap
;
2875 cluster_info
= p
->cluster_info
;
2876 p
->cluster_info
= NULL
;
2877 spin_unlock(&p
->lock
);
2878 spin_unlock(&swap_lock
);
2879 arch_swap_invalidate_area(p
->type
);
2880 zswap_swapoff(p
->type
);
2881 mutex_unlock(&swapon_mutex
);
2882 free_percpu(p
->percpu_cluster
);
2883 p
->percpu_cluster
= NULL
;
2884 free_percpu(p
->cluster_next_cpu
);
2885 p
->cluster_next_cpu
= NULL
;
2888 kvfree(cluster_info
);
2889 /* Destroy swap account information */
2890 swap_cgroup_swapoff(p
->type
);
2891 exit_swap_address_space(p
->type
);
2893 inode
= mapping
->host
;
2896 inode
->i_flags
&= ~S_SWAPFILE
;
2897 inode_unlock(inode
);
2898 filp_close(swap_file
, NULL
);
2901 * Clear the SWP_USED flag after all resources are freed so that swapon
2902 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2903 * not hold p->lock after we cleared its SWP_WRITEOK.
2905 spin_lock(&swap_lock
);
2907 spin_unlock(&swap_lock
);
2910 atomic_inc(&proc_poll_event
);
2911 wake_up_interruptible(&proc_poll_wait
);
2914 filp_close(victim
, NULL
);
2920 #ifdef CONFIG_PROC_FS
2921 static __poll_t
swaps_poll(struct file
*file
, poll_table
*wait
)
2923 struct seq_file
*seq
= file
->private_data
;
2925 poll_wait(file
, &proc_poll_wait
, wait
);
2927 if (seq
->poll_event
!= atomic_read(&proc_poll_event
)) {
2928 seq
->poll_event
= atomic_read(&proc_poll_event
);
2929 return EPOLLIN
| EPOLLRDNORM
| EPOLLERR
| EPOLLPRI
;
2932 return EPOLLIN
| EPOLLRDNORM
;
2936 static void *swap_start(struct seq_file
*swap
, loff_t
*pos
)
2938 struct swap_info_struct
*si
;
2942 mutex_lock(&swapon_mutex
);
2945 return SEQ_START_TOKEN
;
2947 for (type
= 0; (si
= swap_type_to_swap_info(type
)); type
++) {
2948 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2957 static void *swap_next(struct seq_file
*swap
, void *v
, loff_t
*pos
)
2959 struct swap_info_struct
*si
= v
;
2962 if (v
== SEQ_START_TOKEN
)
2965 type
= si
->type
+ 1;
2968 for (; (si
= swap_type_to_swap_info(type
)); type
++) {
2969 if (!(si
->flags
& SWP_USED
) || !si
->swap_map
)
2977 static void swap_stop(struct seq_file
*swap
, void *v
)
2979 mutex_unlock(&swapon_mutex
);
2982 static int swap_show(struct seq_file
*swap
, void *v
)
2984 struct swap_info_struct
*si
= v
;
2987 unsigned long bytes
, inuse
;
2989 if (si
== SEQ_START_TOKEN
) {
2990 seq_puts(swap
, "Filename\t\t\t\tType\t\tSize\t\tUsed\t\tPriority\n");
2994 bytes
= K(si
->pages
);
2995 inuse
= K(READ_ONCE(si
->inuse_pages
));
2997 file
= si
->swap_file
;
2998 len
= seq_file_path(swap
, file
, " \t\n\\");
2999 seq_printf(swap
, "%*s%s\t%lu\t%s%lu\t%s%d\n",
3000 len
< 40 ? 40 - len
: 1, " ",
3001 S_ISBLK(file_inode(file
)->i_mode
) ?
3002 "partition" : "file\t",
3003 bytes
, bytes
< 10000000 ? "\t" : "",
3004 inuse
, inuse
< 10000000 ? "\t" : "",
3009 static const struct seq_operations swaps_op
= {
3010 .start
= swap_start
,
3016 static int swaps_open(struct inode
*inode
, struct file
*file
)
3018 struct seq_file
*seq
;
3021 ret
= seq_open(file
, &swaps_op
);
3025 seq
= file
->private_data
;
3026 seq
->poll_event
= atomic_read(&proc_poll_event
);
3030 static const struct proc_ops swaps_proc_ops
= {
3031 .proc_flags
= PROC_ENTRY_PERMANENT
,
3032 .proc_open
= swaps_open
,
3033 .proc_read
= seq_read
,
3034 .proc_lseek
= seq_lseek
,
3035 .proc_release
= seq_release
,
3036 .proc_poll
= swaps_poll
,
3039 static int __init
procswaps_init(void)
3041 proc_create("swaps", 0, NULL
, &swaps_proc_ops
);
3044 __initcall(procswaps_init
);
3045 #endif /* CONFIG_PROC_FS */
3047 #ifdef MAX_SWAPFILES_CHECK
3048 static int __init
max_swapfiles_check(void)
3050 MAX_SWAPFILES_CHECK();
3053 late_initcall(max_swapfiles_check
);
3056 static struct swap_info_struct
*alloc_swap_info(void)
3058 struct swap_info_struct
*p
;
3059 struct swap_info_struct
*defer
= NULL
;
3063 p
= kvzalloc(struct_size(p
, avail_lists
, nr_node_ids
), GFP_KERNEL
);
3065 return ERR_PTR(-ENOMEM
);
3067 if (percpu_ref_init(&p
->users
, swap_users_ref_free
,
3068 PERCPU_REF_INIT_DEAD
, GFP_KERNEL
)) {
3070 return ERR_PTR(-ENOMEM
);
3073 spin_lock(&swap_lock
);
3074 for (type
= 0; type
< nr_swapfiles
; type
++) {
3075 if (!(swap_info
[type
]->flags
& SWP_USED
))
3078 if (type
>= MAX_SWAPFILES
) {
3079 spin_unlock(&swap_lock
);
3080 percpu_ref_exit(&p
->users
);
3082 return ERR_PTR(-EPERM
);
3084 if (type
>= nr_swapfiles
) {
3087 * Publish the swap_info_struct after initializing it.
3088 * Note that kvzalloc() above zeroes all its fields.
3090 smp_store_release(&swap_info
[type
], p
); /* rcu_assign_pointer() */
3094 p
= swap_info
[type
];
3096 * Do not memset this entry: a racing procfs swap_next()
3097 * would be relying on p->type to remain valid.
3100 p
->swap_extent_root
= RB_ROOT
;
3101 plist_node_init(&p
->list
, 0);
3103 plist_node_init(&p
->avail_lists
[i
], 0);
3104 p
->flags
= SWP_USED
;
3105 spin_unlock(&swap_lock
);
3107 percpu_ref_exit(&defer
->users
);
3110 spin_lock_init(&p
->lock
);
3111 spin_lock_init(&p
->cont_lock
);
3112 init_completion(&p
->comp
);
3117 static int claim_swapfile(struct swap_info_struct
*si
, struct inode
*inode
)
3119 if (S_ISBLK(inode
->i_mode
)) {
3120 si
->bdev
= I_BDEV(inode
);
3122 * Zoned block devices contain zones that have a sequential
3123 * write only restriction. Hence zoned block devices are not
3124 * suitable for swapping. Disallow them here.
3126 if (bdev_is_zoned(si
->bdev
))
3128 si
->flags
|= SWP_BLKDEV
;
3129 } else if (S_ISREG(inode
->i_mode
)) {
3130 si
->bdev
= inode
->i_sb
->s_bdev
;
3138 * Find out how many pages are allowed for a single swap device. There
3139 * are two limiting factors:
3140 * 1) the number of bits for the swap offset in the swp_entry_t type, and
3141 * 2) the number of bits in the swap pte, as defined by the different
3144 * In order to find the largest possible bit mask, a swap entry with
3145 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
3146 * decoded to a swp_entry_t again, and finally the swap offset is
3149 * This will mask all the bits from the initial ~0UL mask that can't
3150 * be encoded in either the swp_entry_t or the architecture definition
3153 unsigned long generic_max_swapfile_size(void)
3155 return swp_offset(pte_to_swp_entry(
3156 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
3159 /* Can be overridden by an architecture for additional checks. */
3160 __weak
unsigned long arch_max_swapfile_size(void)
3162 return generic_max_swapfile_size();
3165 static unsigned long read_swap_header(struct swap_info_struct
*si
,
3166 union swap_header
*swap_header
,
3167 struct inode
*inode
)
3170 unsigned long maxpages
;
3171 unsigned long swapfilepages
;
3172 unsigned long last_page
;
3174 if (memcmp("SWAPSPACE2", swap_header
->magic
.magic
, 10)) {
3175 pr_err("Unable to find swap-space signature\n");
3179 /* swap partition endianness hack... */
3180 if (swab32(swap_header
->info
.version
) == 1) {
3181 swab32s(&swap_header
->info
.version
);
3182 swab32s(&swap_header
->info
.last_page
);
3183 swab32s(&swap_header
->info
.nr_badpages
);
3184 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
3186 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
3187 swab32s(&swap_header
->info
.badpages
[i
]);
3189 /* Check the swap header's sub-version */
3190 if (swap_header
->info
.version
!= 1) {
3191 pr_warn("Unable to handle swap header version %d\n",
3192 swap_header
->info
.version
);
3197 si
->cluster_next
= 1;
3200 maxpages
= swapfile_maximum_size
;
3201 last_page
= swap_header
->info
.last_page
;
3203 pr_warn("Empty swap-file\n");
3206 if (last_page
> maxpages
) {
3207 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
3208 K(maxpages
), K(last_page
));
3210 if (maxpages
> last_page
) {
3211 maxpages
= last_page
+ 1;
3212 /* p->max is an unsigned int: don't overflow it */
3213 if ((unsigned int)maxpages
== 0)
3214 maxpages
= UINT_MAX
;
3216 si
->highest_bit
= maxpages
- 1;
3220 swapfilepages
= i_size_read(inode
) >> PAGE_SHIFT
;
3221 if (swapfilepages
&& maxpages
> swapfilepages
) {
3222 pr_warn("Swap area shorter than signature indicates\n");
3225 if (swap_header
->info
.nr_badpages
&& S_ISREG(inode
->i_mode
))
3227 if (swap_header
->info
.nr_badpages
> MAX_SWAP_BADPAGES
)
3233 #define SWAP_CLUSTER_INFO_COLS \
3234 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
3235 #define SWAP_CLUSTER_SPACE_COLS \
3236 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3237 #define SWAP_CLUSTER_COLS \
3238 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
3240 static int setup_swap_map_and_extents(struct swap_info_struct
*si
,
3241 union swap_header
*swap_header
,
3242 unsigned char *swap_map
,
3243 unsigned long maxpages
,
3246 unsigned int nr_good_pages
;
3250 nr_good_pages
= maxpages
- 1; /* omit header page */
3252 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++) {
3253 unsigned int page_nr
= swap_header
->info
.badpages
[i
];
3254 if (page_nr
== 0 || page_nr
> swap_header
->info
.last_page
)
3256 if (page_nr
< maxpages
) {
3257 swap_map
[page_nr
] = SWAP_MAP_BAD
;
3262 if (nr_good_pages
) {
3263 swap_map
[0] = SWAP_MAP_BAD
;
3265 si
->pages
= nr_good_pages
;
3266 nr_extents
= setup_swap_extents(si
, span
);
3269 nr_good_pages
= si
->pages
;
3271 if (!nr_good_pages
) {
3272 pr_warn("Empty swap-file\n");
3279 static struct swap_cluster_info
*setup_clusters(struct swap_info_struct
*si
,
3280 union swap_header
*swap_header
,
3281 unsigned long maxpages
)
3283 unsigned long nr_clusters
= DIV_ROUND_UP(maxpages
, SWAPFILE_CLUSTER
);
3284 unsigned long col
= si
->cluster_next
/ SWAPFILE_CLUSTER
% SWAP_CLUSTER_COLS
;
3285 struct swap_cluster_info
*cluster_info
;
3286 unsigned long i
, j
, k
, idx
;
3287 int cpu
, err
= -ENOMEM
;
3289 cluster_info
= kvcalloc(nr_clusters
, sizeof(*cluster_info
), GFP_KERNEL
);
3293 for (i
= 0; i
< nr_clusters
; i
++)
3294 spin_lock_init(&cluster_info
[i
].lock
);
3296 si
->cluster_next_cpu
= alloc_percpu(unsigned int);
3297 if (!si
->cluster_next_cpu
)
3300 /* Random start position to help with wear leveling */
3301 for_each_possible_cpu(cpu
)
3302 per_cpu(*si
->cluster_next_cpu
, cpu
) =
3303 get_random_u32_inclusive(1, si
->highest_bit
);
3305 si
->percpu_cluster
= alloc_percpu(struct percpu_cluster
);
3306 if (!si
->percpu_cluster
)
3309 for_each_possible_cpu(cpu
) {
3310 struct percpu_cluster
*cluster
;
3312 cluster
= per_cpu_ptr(si
->percpu_cluster
, cpu
);
3313 for (i
= 0; i
< SWAP_NR_ORDERS
; i
++)
3314 cluster
->next
[i
] = SWAP_NEXT_INVALID
;
3318 * Mark unusable pages as unavailable. The clusters aren't
3319 * marked free yet, so no list operations are involved yet.
3321 * See setup_swap_map_and_extents(): header page, bad pages,
3322 * and the EOF part of the last cluster.
3324 inc_cluster_info_page(si
, cluster_info
, 0);
3325 for (i
= 0; i
< swap_header
->info
.nr_badpages
; i
++)
3326 inc_cluster_info_page(si
, cluster_info
,
3327 swap_header
->info
.badpages
[i
]);
3328 for (i
= maxpages
; i
< round_up(maxpages
, SWAPFILE_CLUSTER
); i
++)
3329 inc_cluster_info_page(si
, cluster_info
, i
);
3331 INIT_LIST_HEAD(&si
->free_clusters
);
3332 INIT_LIST_HEAD(&si
->full_clusters
);
3333 INIT_LIST_HEAD(&si
->discard_clusters
);
3335 for (i
= 0; i
< SWAP_NR_ORDERS
; i
++) {
3336 INIT_LIST_HEAD(&si
->nonfull_clusters
[i
]);
3337 INIT_LIST_HEAD(&si
->frag_clusters
[i
]);
3338 si
->frag_cluster_nr
[i
] = 0;
3342 * Reduce false cache line sharing between cluster_info and
3343 * sharing same address space.
3345 for (k
= 0; k
< SWAP_CLUSTER_COLS
; k
++) {
3346 j
= (k
+ col
) % SWAP_CLUSTER_COLS
;
3347 for (i
= 0; i
< DIV_ROUND_UP(nr_clusters
, SWAP_CLUSTER_COLS
); i
++) {
3348 struct swap_cluster_info
*ci
;
3349 idx
= i
* SWAP_CLUSTER_COLS
+ j
;
3350 ci
= cluster_info
+ idx
;
3351 if (idx
>= nr_clusters
)
3354 ci
->flags
= CLUSTER_FLAG_NONFULL
;
3355 list_add_tail(&ci
->list
, &si
->nonfull_clusters
[0]);
3358 ci
->flags
= CLUSTER_FLAG_FREE
;
3359 list_add_tail(&ci
->list
, &si
->free_clusters
);
3363 return cluster_info
;
3366 kvfree(cluster_info
);
3368 return ERR_PTR(err
);
3371 SYSCALL_DEFINE2(swapon
, const char __user
*, specialfile
, int, swap_flags
)
3373 struct swap_info_struct
*si
;
3374 struct filename
*name
;
3375 struct file
*swap_file
= NULL
;
3376 struct address_space
*mapping
;
3377 struct dentry
*dentry
;
3380 union swap_header
*swap_header
;
3383 unsigned long maxpages
;
3384 unsigned char *swap_map
= NULL
;
3385 unsigned long *zeromap
= NULL
;
3386 struct swap_cluster_info
*cluster_info
= NULL
;
3387 struct folio
*folio
= NULL
;
3388 struct inode
*inode
= NULL
;
3389 bool inced_nr_rotate_swap
= false;
3391 if (swap_flags
& ~SWAP_FLAGS_VALID
)
3394 if (!capable(CAP_SYS_ADMIN
))
3397 if (!swap_avail_heads
)
3400 si
= alloc_swap_info();
3404 INIT_WORK(&si
->discard_work
, swap_discard_work
);
3405 INIT_WORK(&si
->reclaim_work
, swap_reclaim_work
);
3407 name
= getname(specialfile
);
3409 error
= PTR_ERR(name
);
3413 swap_file
= file_open_name(name
, O_RDWR
| O_LARGEFILE
| O_EXCL
, 0);
3414 if (IS_ERR(swap_file
)) {
3415 error
= PTR_ERR(swap_file
);
3420 si
->swap_file
= swap_file
;
3421 mapping
= swap_file
->f_mapping
;
3422 dentry
= swap_file
->f_path
.dentry
;
3423 inode
= mapping
->host
;
3425 error
= claim_swapfile(si
, inode
);
3426 if (unlikely(error
))
3430 if (d_unlinked(dentry
) || cant_mount(dentry
)) {
3432 goto bad_swap_unlock_inode
;
3434 if (IS_SWAPFILE(inode
)) {
3436 goto bad_swap_unlock_inode
;
3440 * Read the swap header.
3442 if (!mapping
->a_ops
->read_folio
) {
3444 goto bad_swap_unlock_inode
;
3446 folio
= read_mapping_folio(mapping
, 0, swap_file
);
3447 if (IS_ERR(folio
)) {
3448 error
= PTR_ERR(folio
);
3449 goto bad_swap_unlock_inode
;
3451 swap_header
= kmap_local_folio(folio
, 0);
3453 maxpages
= read_swap_header(si
, swap_header
, inode
);
3454 if (unlikely(!maxpages
)) {
3456 goto bad_swap_unlock_inode
;
3459 /* OK, set up the swap map and apply the bad block list */
3460 swap_map
= vzalloc(maxpages
);
3463 goto bad_swap_unlock_inode
;
3466 error
= swap_cgroup_swapon(si
->type
, maxpages
);
3468 goto bad_swap_unlock_inode
;
3470 nr_extents
= setup_swap_map_and_extents(si
, swap_header
, swap_map
,
3472 if (unlikely(nr_extents
< 0)) {
3474 goto bad_swap_unlock_inode
;
3478 * Use kvmalloc_array instead of bitmap_zalloc as the allocation order might
3479 * be above MAX_PAGE_ORDER incase of a large swap file.
3481 zeromap
= kvmalloc_array(BITS_TO_LONGS(maxpages
), sizeof(long),
3482 GFP_KERNEL
| __GFP_ZERO
);
3485 goto bad_swap_unlock_inode
;
3488 if (si
->bdev
&& bdev_stable_writes(si
->bdev
))
3489 si
->flags
|= SWP_STABLE_WRITES
;
3491 if (si
->bdev
&& bdev_synchronous(si
->bdev
))
3492 si
->flags
|= SWP_SYNCHRONOUS_IO
;
3494 if (si
->bdev
&& bdev_nonrot(si
->bdev
)) {
3495 si
->flags
|= SWP_SOLIDSTATE
;
3497 cluster_info
= setup_clusters(si
, swap_header
, maxpages
);
3498 if (IS_ERR(cluster_info
)) {
3499 error
= PTR_ERR(cluster_info
);
3500 cluster_info
= NULL
;
3501 goto bad_swap_unlock_inode
;
3504 atomic_inc(&nr_rotate_swap
);
3505 inced_nr_rotate_swap
= true;
3508 if ((swap_flags
& SWAP_FLAG_DISCARD
) &&
3509 si
->bdev
&& bdev_max_discard_sectors(si
->bdev
)) {
3511 * When discard is enabled for swap with no particular
3512 * policy flagged, we set all swap discard flags here in
3513 * order to sustain backward compatibility with older
3514 * swapon(8) releases.
3516 si
->flags
|= (SWP_DISCARDABLE
| SWP_AREA_DISCARD
|
3520 * By flagging sys_swapon, a sysadmin can tell us to
3521 * either do single-time area discards only, or to just
3522 * perform discards for released swap page-clusters.
3523 * Now it's time to adjust the p->flags accordingly.
3525 if (swap_flags
& SWAP_FLAG_DISCARD_ONCE
)
3526 si
->flags
&= ~SWP_PAGE_DISCARD
;
3527 else if (swap_flags
& SWAP_FLAG_DISCARD_PAGES
)
3528 si
->flags
&= ~SWP_AREA_DISCARD
;
3530 /* issue a swapon-time discard if it's still required */
3531 if (si
->flags
& SWP_AREA_DISCARD
) {
3532 int err
= discard_swap(si
);
3534 pr_err("swapon: discard_swap(%p): %d\n",
3539 error
= init_swap_address_space(si
->type
, maxpages
);
3541 goto bad_swap_unlock_inode
;
3543 error
= zswap_swapon(si
->type
, maxpages
);
3545 goto free_swap_address_space
;
3548 * Flush any pending IO and dirty mappings before we start using this
3551 inode
->i_flags
|= S_SWAPFILE
;
3552 error
= inode_drain_writes(inode
);
3554 inode
->i_flags
&= ~S_SWAPFILE
;
3555 goto free_swap_zswap
;
3558 mutex_lock(&swapon_mutex
);
3560 if (swap_flags
& SWAP_FLAG_PREFER
)
3562 (swap_flags
& SWAP_FLAG_PRIO_MASK
) >> SWAP_FLAG_PRIO_SHIFT
;
3563 enable_swap_info(si
, prio
, swap_map
, cluster_info
, zeromap
);
3565 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s\n",
3566 K(si
->pages
), name
->name
, si
->prio
, nr_extents
,
3567 K((unsigned long long)span
),
3568 (si
->flags
& SWP_SOLIDSTATE
) ? "SS" : "",
3569 (si
->flags
& SWP_DISCARDABLE
) ? "D" : "",
3570 (si
->flags
& SWP_AREA_DISCARD
) ? "s" : "",
3571 (si
->flags
& SWP_PAGE_DISCARD
) ? "c" : "");
3573 mutex_unlock(&swapon_mutex
);
3574 atomic_inc(&proc_poll_event
);
3575 wake_up_interruptible(&proc_poll_wait
);
3580 zswap_swapoff(si
->type
);
3581 free_swap_address_space
:
3582 exit_swap_address_space(si
->type
);
3583 bad_swap_unlock_inode
:
3584 inode_unlock(inode
);
3586 free_percpu(si
->percpu_cluster
);
3587 si
->percpu_cluster
= NULL
;
3588 free_percpu(si
->cluster_next_cpu
);
3589 si
->cluster_next_cpu
= NULL
;
3591 destroy_swap_extents(si
);
3592 swap_cgroup_swapoff(si
->type
);
3593 spin_lock(&swap_lock
);
3594 si
->swap_file
= NULL
;
3596 spin_unlock(&swap_lock
);
3599 kvfree(cluster_info
);
3600 if (inced_nr_rotate_swap
)
3601 atomic_dec(&nr_rotate_swap
);
3603 filp_close(swap_file
, NULL
);
3605 if (!IS_ERR_OR_NULL(folio
))
3606 folio_release_kmap(folio
, swap_header
);
3610 inode_unlock(inode
);
3612 enable_swap_slots_cache();
3616 void si_swapinfo(struct sysinfo
*val
)
3619 unsigned long nr_to_be_unused
= 0;
3621 spin_lock(&swap_lock
);
3622 for (type
= 0; type
< nr_swapfiles
; type
++) {
3623 struct swap_info_struct
*si
= swap_info
[type
];
3625 if ((si
->flags
& SWP_USED
) && !(si
->flags
& SWP_WRITEOK
))
3626 nr_to_be_unused
+= READ_ONCE(si
->inuse_pages
);
3628 val
->freeswap
= atomic_long_read(&nr_swap_pages
) + nr_to_be_unused
;
3629 val
->totalswap
= total_swap_pages
+ nr_to_be_unused
;
3630 spin_unlock(&swap_lock
);
3634 * Verify that nr swap entries are valid and increment their swap map counts.
3636 * Returns error code in following case.
3638 * - swp_entry is invalid -> EINVAL
3639 * - swp_entry is migration entry -> EINVAL
3640 * - swap-cache reference is requested but there is already one. -> EEXIST
3641 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3642 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3644 static int __swap_duplicate(swp_entry_t entry
, unsigned char usage
, int nr
)
3646 struct swap_info_struct
*si
;
3647 struct swap_cluster_info
*ci
;
3648 unsigned long offset
;
3649 unsigned char count
;
3650 unsigned char has_cache
;
3653 si
= swp_swap_info(entry
);
3655 offset
= swp_offset(entry
);
3656 VM_WARN_ON(nr
> SWAPFILE_CLUSTER
- offset
% SWAPFILE_CLUSTER
);
3657 VM_WARN_ON(usage
== 1 && nr
> 1);
3658 ci
= lock_cluster_or_swap_info(si
, offset
);
3661 for (i
= 0; i
< nr
; i
++) {
3662 count
= si
->swap_map
[offset
+ i
];
3665 * swapin_readahead() doesn't check if a swap entry is valid, so the
3666 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3668 if (unlikely(swap_count(count
) == SWAP_MAP_BAD
)) {
3673 has_cache
= count
& SWAP_HAS_CACHE
;
3674 count
&= ~SWAP_HAS_CACHE
;
3676 if (!count
&& !has_cache
) {
3678 } else if (usage
== SWAP_HAS_CACHE
) {
3681 } else if ((count
& ~COUNT_CONTINUED
) > SWAP_MAP_MAX
) {
3689 for (i
= 0; i
< nr
; i
++) {
3690 count
= si
->swap_map
[offset
+ i
];
3691 has_cache
= count
& SWAP_HAS_CACHE
;
3692 count
&= ~SWAP_HAS_CACHE
;
3694 if (usage
== SWAP_HAS_CACHE
)
3695 has_cache
= SWAP_HAS_CACHE
;
3696 else if ((count
& ~COUNT_CONTINUED
) < SWAP_MAP_MAX
)
3698 else if (swap_count_continued(si
, offset
+ i
, count
))
3699 count
= COUNT_CONTINUED
;
3702 * Don't need to rollback changes, because if
3703 * usage == 1, there must be nr == 1.
3709 WRITE_ONCE(si
->swap_map
[offset
+ i
], count
| has_cache
);
3713 unlock_cluster_or_swap_info(si
, ci
);
3718 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3719 * (in which case its reference count is never incremented).
3721 void swap_shmem_alloc(swp_entry_t entry
, int nr
)
3723 __swap_duplicate(entry
, SWAP_MAP_SHMEM
, nr
);
3727 * Increase reference count of swap entry by 1.
3728 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3729 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3730 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3731 * might occur if a page table entry has got corrupted.
3733 int swap_duplicate(swp_entry_t entry
)
3737 while (!err
&& __swap_duplicate(entry
, 1, 1) == -ENOMEM
)
3738 err
= add_swap_count_continuation(entry
, GFP_ATOMIC
);
3743 * @entry: first swap entry from which we allocate nr swap cache.
3745 * Called when allocating swap cache for existing swap entries,
3746 * This can return error codes. Returns 0 at success.
3747 * -EEXIST means there is a swap cache.
3748 * Note: return code is different from swap_duplicate().
3750 int swapcache_prepare(swp_entry_t entry
, int nr
)
3752 return __swap_duplicate(entry
, SWAP_HAS_CACHE
, nr
);
3755 void swapcache_clear(struct swap_info_struct
*si
, swp_entry_t entry
, int nr
)
3757 unsigned long offset
= swp_offset(entry
);
3759 cluster_swap_free_nr(si
, offset
, nr
, SWAP_HAS_CACHE
);
3762 struct swap_info_struct
*swp_swap_info(swp_entry_t entry
)
3764 return swap_type_to_swap_info(swp_type(entry
));
3768 * out-of-line methods to avoid include hell.
3770 struct address_space
*swapcache_mapping(struct folio
*folio
)
3772 return swp_swap_info(folio
->swap
)->swap_file
->f_mapping
;
3774 EXPORT_SYMBOL_GPL(swapcache_mapping
);
3776 pgoff_t
__folio_swap_cache_index(struct folio
*folio
)
3778 return swap_cache_index(folio
->swap
);
3780 EXPORT_SYMBOL_GPL(__folio_swap_cache_index
);
3783 * add_swap_count_continuation - called when a swap count is duplicated
3784 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3785 * page of the original vmalloc'ed swap_map, to hold the continuation count
3786 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3787 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3789 * These continuation pages are seldom referenced: the common paths all work
3790 * on the original swap_map, only referring to a continuation page when the
3791 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3793 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3794 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3795 * can be called after dropping locks.
3797 int add_swap_count_continuation(swp_entry_t entry
, gfp_t gfp_mask
)
3799 struct swap_info_struct
*si
;
3800 struct swap_cluster_info
*ci
;
3803 struct page
*list_page
;
3805 unsigned char count
;
3809 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3810 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3812 page
= alloc_page(gfp_mask
| __GFP_HIGHMEM
);
3814 si
= get_swap_device(entry
);
3817 * An acceptable race has occurred since the failing
3818 * __swap_duplicate(): the swap device may be swapoff
3822 spin_lock(&si
->lock
);
3824 offset
= swp_offset(entry
);
3826 ci
= lock_cluster(si
, offset
);
3828 count
= swap_count(si
->swap_map
[offset
]);
3830 if ((count
& ~COUNT_CONTINUED
) != SWAP_MAP_MAX
) {
3832 * The higher the swap count, the more likely it is that tasks
3833 * will race to add swap count continuation: we need to avoid
3834 * over-provisioning.
3844 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3845 offset
&= ~PAGE_MASK
;
3847 spin_lock(&si
->cont_lock
);
3849 * Page allocation does not initialize the page's lru field,
3850 * but it does always reset its private field.
3852 if (!page_private(head
)) {
3853 BUG_ON(count
& COUNT_CONTINUED
);
3854 INIT_LIST_HEAD(&head
->lru
);
3855 set_page_private(head
, SWP_CONTINUED
);
3856 si
->flags
|= SWP_CONTINUED
;
3859 list_for_each_entry(list_page
, &head
->lru
, lru
) {
3863 * If the previous map said no continuation, but we've found
3864 * a continuation page, free our allocation and use this one.
3866 if (!(count
& COUNT_CONTINUED
))
3867 goto out_unlock_cont
;
3869 map
= kmap_local_page(list_page
) + offset
;
3874 * If this continuation count now has some space in it,
3875 * free our allocation and use this one.
3877 if ((count
& ~COUNT_CONTINUED
) != SWAP_CONT_MAX
)
3878 goto out_unlock_cont
;
3881 list_add_tail(&page
->lru
, &head
->lru
);
3882 page
= NULL
; /* now it's attached, don't free it */
3884 spin_unlock(&si
->cont_lock
);
3887 spin_unlock(&si
->lock
);
3888 put_swap_device(si
);
3896 * swap_count_continued - when the original swap_map count is incremented
3897 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3898 * into, carry if so, or else fail until a new continuation page is allocated;
3899 * when the original swap_map count is decremented from 0 with continuation,
3900 * borrow from the continuation and report whether it still holds more.
3901 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3904 static bool swap_count_continued(struct swap_info_struct
*si
,
3905 pgoff_t offset
, unsigned char count
)
3912 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3913 if (page_private(head
) != SWP_CONTINUED
) {
3914 BUG_ON(count
& COUNT_CONTINUED
);
3915 return false; /* need to add count continuation */
3918 spin_lock(&si
->cont_lock
);
3919 offset
&= ~PAGE_MASK
;
3920 page
= list_next_entry(head
, lru
);
3921 map
= kmap_local_page(page
) + offset
;
3923 if (count
== SWAP_MAP_MAX
) /* initial increment from swap_map */
3924 goto init_map
; /* jump over SWAP_CONT_MAX checks */
3926 if (count
== (SWAP_MAP_MAX
| COUNT_CONTINUED
)) { /* incrementing */
3928 * Think of how you add 1 to 999
3930 while (*map
== (SWAP_CONT_MAX
| COUNT_CONTINUED
)) {
3932 page
= list_next_entry(page
, lru
);
3933 BUG_ON(page
== head
);
3934 map
= kmap_local_page(page
) + offset
;
3936 if (*map
== SWAP_CONT_MAX
) {
3938 page
= list_next_entry(page
, lru
);
3940 ret
= false; /* add count continuation */
3943 map
= kmap_local_page(page
) + offset
;
3944 init_map
: *map
= 0; /* we didn't zero the page */
3948 while ((page
= list_prev_entry(page
, lru
)) != head
) {
3949 map
= kmap_local_page(page
) + offset
;
3950 *map
= COUNT_CONTINUED
;
3953 ret
= true; /* incremented */
3955 } else { /* decrementing */
3957 * Think of how you subtract 1 from 1000
3959 BUG_ON(count
!= COUNT_CONTINUED
);
3960 while (*map
== COUNT_CONTINUED
) {
3962 page
= list_next_entry(page
, lru
);
3963 BUG_ON(page
== head
);
3964 map
= kmap_local_page(page
) + offset
;
3971 while ((page
= list_prev_entry(page
, lru
)) != head
) {
3972 map
= kmap_local_page(page
) + offset
;
3973 *map
= SWAP_CONT_MAX
| count
;
3974 count
= COUNT_CONTINUED
;
3977 ret
= count
== COUNT_CONTINUED
;
3980 spin_unlock(&si
->cont_lock
);
3985 * free_swap_count_continuations - swapoff free all the continuation pages
3986 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3988 static void free_swap_count_continuations(struct swap_info_struct
*si
)
3992 for (offset
= 0; offset
< si
->max
; offset
+= PAGE_SIZE
) {
3994 head
= vmalloc_to_page(si
->swap_map
+ offset
);
3995 if (page_private(head
)) {
3996 struct page
*page
, *next
;
3998 list_for_each_entry_safe(page
, next
, &head
->lru
, lru
) {
3999 list_del(&page
->lru
);
4006 #if defined(CONFIG_MEMCG) && defined(CONFIG_BLK_CGROUP)
4007 void __folio_throttle_swaprate(struct folio
*folio
, gfp_t gfp
)
4009 struct swap_info_struct
*si
, *next
;
4010 int nid
= folio_nid(folio
);
4012 if (!(gfp
& __GFP_IO
))
4015 if (!__has_usable_swap())
4018 if (!blk_cgroup_congested())
4022 * We've already scheduled a throttle, avoid taking the global swap
4025 if (current
->throttle_disk
)
4028 spin_lock(&swap_avail_lock
);
4029 plist_for_each_entry_safe(si
, next
, &swap_avail_heads
[nid
],
4032 blkcg_schedule_throttle(si
->bdev
->bd_disk
, true);
4036 spin_unlock(&swap_avail_lock
);
4040 static int __init
swapfile_init(void)
4044 swap_avail_heads
= kmalloc_array(nr_node_ids
, sizeof(struct plist_head
),
4046 if (!swap_avail_heads
) {
4047 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
4052 plist_head_init(&swap_avail_heads
[nid
]);
4054 swapfile_maximum_size
= arch_max_swapfile_size();
4056 #ifdef CONFIG_MIGRATION
4057 if (swapfile_maximum_size
>= (1UL << SWP_MIG_TOTAL_BITS
))
4058 swap_migration_ad_supported
= true;
4059 #endif /* CONFIG_MIGRATION */
4063 subsys_initcall(swapfile_init
);