drm/ast: Only warn about unsupported TX chips on Gen4 and later
[drm/drm-misc.git] / mm / util.c
blobc1c3b06ab4f9432d3c99a303f9044a6b37a2b40a
1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/mm.h>
3 #include <linux/slab.h>
4 #include <linux/string.h>
5 #include <linux/compiler.h>
6 #include <linux/export.h>
7 #include <linux/err.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/sched/task_stack.h>
12 #include <linux/security.h>
13 #include <linux/swap.h>
14 #include <linux/swapops.h>
15 #include <linux/mman.h>
16 #include <linux/hugetlb.h>
17 #include <linux/vmalloc.h>
18 #include <linux/userfaultfd_k.h>
19 #include <linux/elf.h>
20 #include <linux/elf-randomize.h>
21 #include <linux/personality.h>
22 #include <linux/random.h>
23 #include <linux/processor.h>
24 #include <linux/sizes.h>
25 #include <linux/compat.h>
27 #include <linux/uaccess.h>
29 #include <kunit/visibility.h>
31 #include "internal.h"
32 #include "swap.h"
34 /**
35 * kfree_const - conditionally free memory
36 * @x: pointer to the memory
38 * Function calls kfree only if @x is not in .rodata section.
40 void kfree_const(const void *x)
42 if (!is_kernel_rodata((unsigned long)x))
43 kfree(x);
45 EXPORT_SYMBOL(kfree_const);
47 /**
48 * __kmemdup_nul - Create a NUL-terminated string from @s, which might be unterminated.
49 * @s: The data to copy
50 * @len: The size of the data, not including the NUL terminator
51 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
53 * Return: newly allocated copy of @s with NUL-termination or %NULL in
54 * case of error
56 static __always_inline char *__kmemdup_nul(const char *s, size_t len, gfp_t gfp)
58 char *buf;
60 /* '+1' for the NUL terminator */
61 buf = kmalloc_track_caller(len + 1, gfp);
62 if (!buf)
63 return NULL;
65 memcpy(buf, s, len);
66 /* Ensure the buf is always NUL-terminated, regardless of @s. */
67 buf[len] = '\0';
68 return buf;
71 /**
72 * kstrdup - allocate space for and copy an existing string
73 * @s: the string to duplicate
74 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
76 * Return: newly allocated copy of @s or %NULL in case of error
78 noinline
79 char *kstrdup(const char *s, gfp_t gfp)
81 return s ? __kmemdup_nul(s, strlen(s), gfp) : NULL;
83 EXPORT_SYMBOL(kstrdup);
85 /**
86 * kstrdup_const - conditionally duplicate an existing const string
87 * @s: the string to duplicate
88 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
90 * Note: Strings allocated by kstrdup_const should be freed by kfree_const and
91 * must not be passed to krealloc().
93 * Return: source string if it is in .rodata section otherwise
94 * fallback to kstrdup.
96 const char *kstrdup_const(const char *s, gfp_t gfp)
98 if (is_kernel_rodata((unsigned long)s))
99 return s;
101 return kstrdup(s, gfp);
103 EXPORT_SYMBOL(kstrdup_const);
106 * kstrndup - allocate space for and copy an existing string
107 * @s: the string to duplicate
108 * @max: read at most @max chars from @s
109 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
111 * Note: Use kmemdup_nul() instead if the size is known exactly.
113 * Return: newly allocated copy of @s or %NULL in case of error
115 char *kstrndup(const char *s, size_t max, gfp_t gfp)
117 return s ? __kmemdup_nul(s, strnlen(s, max), gfp) : NULL;
119 EXPORT_SYMBOL(kstrndup);
122 * kmemdup - duplicate region of memory
124 * @src: memory region to duplicate
125 * @len: memory region length
126 * @gfp: GFP mask to use
128 * Return: newly allocated copy of @src or %NULL in case of error,
129 * result is physically contiguous. Use kfree() to free.
131 void *kmemdup_noprof(const void *src, size_t len, gfp_t gfp)
133 void *p;
135 p = kmalloc_node_track_caller_noprof(len, gfp, NUMA_NO_NODE, _RET_IP_);
136 if (p)
137 memcpy(p, src, len);
138 return p;
140 EXPORT_SYMBOL(kmemdup_noprof);
143 * kmemdup_array - duplicate a given array.
145 * @src: array to duplicate.
146 * @count: number of elements to duplicate from array.
147 * @element_size: size of each element of array.
148 * @gfp: GFP mask to use.
150 * Return: duplicated array of @src or %NULL in case of error,
151 * result is physically contiguous. Use kfree() to free.
153 void *kmemdup_array(const void *src, size_t count, size_t element_size, gfp_t gfp)
155 return kmemdup(src, size_mul(element_size, count), gfp);
157 EXPORT_SYMBOL(kmemdup_array);
160 * kvmemdup - duplicate region of memory
162 * @src: memory region to duplicate
163 * @len: memory region length
164 * @gfp: GFP mask to use
166 * Return: newly allocated copy of @src or %NULL in case of error,
167 * result may be not physically contiguous. Use kvfree() to free.
169 void *kvmemdup(const void *src, size_t len, gfp_t gfp)
171 void *p;
173 p = kvmalloc(len, gfp);
174 if (p)
175 memcpy(p, src, len);
176 return p;
178 EXPORT_SYMBOL(kvmemdup);
181 * kmemdup_nul - Create a NUL-terminated string from unterminated data
182 * @s: The data to stringify
183 * @len: The size of the data
184 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
186 * Return: newly allocated copy of @s with NUL-termination or %NULL in
187 * case of error
189 char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
191 return s ? __kmemdup_nul(s, len, gfp) : NULL;
193 EXPORT_SYMBOL(kmemdup_nul);
195 static kmem_buckets *user_buckets __ro_after_init;
197 static int __init init_user_buckets(void)
199 user_buckets = kmem_buckets_create("memdup_user", 0, 0, INT_MAX, NULL);
201 return 0;
203 subsys_initcall(init_user_buckets);
206 * memdup_user - duplicate memory region from user space
208 * @src: source address in user space
209 * @len: number of bytes to copy
211 * Return: an ERR_PTR() on failure. Result is physically
212 * contiguous, to be freed by kfree().
214 void *memdup_user(const void __user *src, size_t len)
216 void *p;
218 p = kmem_buckets_alloc_track_caller(user_buckets, len, GFP_USER | __GFP_NOWARN);
219 if (!p)
220 return ERR_PTR(-ENOMEM);
222 if (copy_from_user(p, src, len)) {
223 kfree(p);
224 return ERR_PTR(-EFAULT);
227 return p;
229 EXPORT_SYMBOL(memdup_user);
232 * vmemdup_user - duplicate memory region from user space
234 * @src: source address in user space
235 * @len: number of bytes to copy
237 * Return: an ERR_PTR() on failure. Result may be not
238 * physically contiguous. Use kvfree() to free.
240 void *vmemdup_user(const void __user *src, size_t len)
242 void *p;
244 p = kmem_buckets_valloc(user_buckets, len, GFP_USER);
245 if (!p)
246 return ERR_PTR(-ENOMEM);
248 if (copy_from_user(p, src, len)) {
249 kvfree(p);
250 return ERR_PTR(-EFAULT);
253 return p;
255 EXPORT_SYMBOL(vmemdup_user);
258 * strndup_user - duplicate an existing string from user space
259 * @s: The string to duplicate
260 * @n: Maximum number of bytes to copy, including the trailing NUL.
262 * Return: newly allocated copy of @s or an ERR_PTR() in case of error
264 char *strndup_user(const char __user *s, long n)
266 char *p;
267 long length;
269 length = strnlen_user(s, n);
271 if (!length)
272 return ERR_PTR(-EFAULT);
274 if (length > n)
275 return ERR_PTR(-EINVAL);
277 p = memdup_user(s, length);
279 if (IS_ERR(p))
280 return p;
282 p[length - 1] = '\0';
284 return p;
286 EXPORT_SYMBOL(strndup_user);
289 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
291 * @src: source address in user space
292 * @len: number of bytes to copy
294 * Return: an ERR_PTR() on failure.
296 void *memdup_user_nul(const void __user *src, size_t len)
298 char *p;
301 * Always use GFP_KERNEL, since copy_from_user() can sleep and
302 * cause pagefault, which makes it pointless to use GFP_NOFS
303 * or GFP_ATOMIC.
305 p = kmalloc_track_caller(len + 1, GFP_KERNEL);
306 if (!p)
307 return ERR_PTR(-ENOMEM);
309 if (copy_from_user(p, src, len)) {
310 kfree(p);
311 return ERR_PTR(-EFAULT);
313 p[len] = '\0';
315 return p;
317 EXPORT_SYMBOL(memdup_user_nul);
319 /* Check if the vma is being used as a stack by this task */
320 int vma_is_stack_for_current(struct vm_area_struct *vma)
322 struct task_struct * __maybe_unused t = current;
324 return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
328 * Change backing file, only valid to use during initial VMA setup.
330 void vma_set_file(struct vm_area_struct *vma, struct file *file)
332 /* Changing an anonymous vma with this is illegal */
333 get_file(file);
334 swap(vma->vm_file, file);
335 fput(file);
337 EXPORT_SYMBOL(vma_set_file);
339 #ifndef STACK_RND_MASK
340 #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12)) /* 8MB of VA */
341 #endif
343 unsigned long randomize_stack_top(unsigned long stack_top)
345 unsigned long random_variable = 0;
347 if (current->flags & PF_RANDOMIZE) {
348 random_variable = get_random_long();
349 random_variable &= STACK_RND_MASK;
350 random_variable <<= PAGE_SHIFT;
352 #ifdef CONFIG_STACK_GROWSUP
353 return PAGE_ALIGN(stack_top) + random_variable;
354 #else
355 return PAGE_ALIGN(stack_top) - random_variable;
356 #endif
360 * randomize_page - Generate a random, page aligned address
361 * @start: The smallest acceptable address the caller will take.
362 * @range: The size of the area, starting at @start, within which the
363 * random address must fall.
365 * If @start + @range would overflow, @range is capped.
367 * NOTE: Historical use of randomize_range, which this replaces, presumed that
368 * @start was already page aligned. We now align it regardless.
370 * Return: A page aligned address within [start, start + range). On error,
371 * @start is returned.
373 unsigned long randomize_page(unsigned long start, unsigned long range)
375 if (!PAGE_ALIGNED(start)) {
376 range -= PAGE_ALIGN(start) - start;
377 start = PAGE_ALIGN(start);
380 if (start > ULONG_MAX - range)
381 range = ULONG_MAX - start;
383 range >>= PAGE_SHIFT;
385 if (range == 0)
386 return start;
388 return start + (get_random_long() % range << PAGE_SHIFT);
391 #ifdef CONFIG_ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
392 unsigned long __weak arch_randomize_brk(struct mm_struct *mm)
394 /* Is the current task 32bit ? */
395 if (!IS_ENABLED(CONFIG_64BIT) || is_compat_task())
396 return randomize_page(mm->brk, SZ_32M);
398 return randomize_page(mm->brk, SZ_1G);
401 unsigned long arch_mmap_rnd(void)
403 unsigned long rnd;
405 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
406 if (is_compat_task())
407 rnd = get_random_long() & ((1UL << mmap_rnd_compat_bits) - 1);
408 else
409 #endif /* CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS */
410 rnd = get_random_long() & ((1UL << mmap_rnd_bits) - 1);
412 return rnd << PAGE_SHIFT;
415 static int mmap_is_legacy(struct rlimit *rlim_stack)
417 if (current->personality & ADDR_COMPAT_LAYOUT)
418 return 1;
420 /* On parisc the stack always grows up - so a unlimited stack should
421 * not be an indicator to use the legacy memory layout. */
422 if (rlim_stack->rlim_cur == RLIM_INFINITY &&
423 !IS_ENABLED(CONFIG_STACK_GROWSUP))
424 return 1;
426 return sysctl_legacy_va_layout;
430 * Leave enough space between the mmap area and the stack to honour ulimit in
431 * the face of randomisation.
433 #define MIN_GAP (SZ_128M)
434 #define MAX_GAP (STACK_TOP / 6 * 5)
436 static unsigned long mmap_base(unsigned long rnd, struct rlimit *rlim_stack)
438 #ifdef CONFIG_STACK_GROWSUP
440 * For an upwards growing stack the calculation is much simpler.
441 * Memory for the maximum stack size is reserved at the top of the
442 * task. mmap_base starts directly below the stack and grows
443 * downwards.
445 return PAGE_ALIGN_DOWN(mmap_upper_limit(rlim_stack) - rnd);
446 #else
447 unsigned long gap = rlim_stack->rlim_cur;
448 unsigned long pad = stack_guard_gap;
450 /* Account for stack randomization if necessary */
451 if (current->flags & PF_RANDOMIZE)
452 pad += (STACK_RND_MASK << PAGE_SHIFT);
454 /* Values close to RLIM_INFINITY can overflow. */
455 if (gap + pad > gap)
456 gap += pad;
458 if (gap < MIN_GAP && MIN_GAP < MAX_GAP)
459 gap = MIN_GAP;
460 else if (gap > MAX_GAP)
461 gap = MAX_GAP;
463 return PAGE_ALIGN(STACK_TOP - gap - rnd);
464 #endif
467 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
469 unsigned long random_factor = 0UL;
471 if (current->flags & PF_RANDOMIZE)
472 random_factor = arch_mmap_rnd();
474 if (mmap_is_legacy(rlim_stack)) {
475 mm->mmap_base = TASK_UNMAPPED_BASE + random_factor;
476 clear_bit(MMF_TOPDOWN, &mm->flags);
477 } else {
478 mm->mmap_base = mmap_base(random_factor, rlim_stack);
479 set_bit(MMF_TOPDOWN, &mm->flags);
482 #elif defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
483 void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
485 mm->mmap_base = TASK_UNMAPPED_BASE;
486 clear_bit(MMF_TOPDOWN, &mm->flags);
488 #endif
489 #ifdef CONFIG_MMU
490 EXPORT_SYMBOL_IF_KUNIT(arch_pick_mmap_layout);
491 #endif
494 * __account_locked_vm - account locked pages to an mm's locked_vm
495 * @mm: mm to account against
496 * @pages: number of pages to account
497 * @inc: %true if @pages should be considered positive, %false if not
498 * @task: task used to check RLIMIT_MEMLOCK
499 * @bypass_rlim: %true if checking RLIMIT_MEMLOCK should be skipped
501 * Assumes @task and @mm are valid (i.e. at least one reference on each), and
502 * that mmap_lock is held as writer.
504 * Return:
505 * * 0 on success
506 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
508 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
509 struct task_struct *task, bool bypass_rlim)
511 unsigned long locked_vm, limit;
512 int ret = 0;
514 mmap_assert_write_locked(mm);
516 locked_vm = mm->locked_vm;
517 if (inc) {
518 if (!bypass_rlim) {
519 limit = task_rlimit(task, RLIMIT_MEMLOCK) >> PAGE_SHIFT;
520 if (locked_vm + pages > limit)
521 ret = -ENOMEM;
523 if (!ret)
524 mm->locked_vm = locked_vm + pages;
525 } else {
526 WARN_ON_ONCE(pages > locked_vm);
527 mm->locked_vm = locked_vm - pages;
530 pr_debug("%s: [%d] caller %ps %c%lu %lu/%lu%s\n", __func__, task->pid,
531 (void *)_RET_IP_, (inc) ? '+' : '-', pages << PAGE_SHIFT,
532 locked_vm << PAGE_SHIFT, task_rlimit(task, RLIMIT_MEMLOCK),
533 ret ? " - exceeded" : "");
535 return ret;
537 EXPORT_SYMBOL_GPL(__account_locked_vm);
540 * account_locked_vm - account locked pages to an mm's locked_vm
541 * @mm: mm to account against, may be NULL
542 * @pages: number of pages to account
543 * @inc: %true if @pages should be considered positive, %false if not
545 * Assumes a non-NULL @mm is valid (i.e. at least one reference on it).
547 * Return:
548 * * 0 on success, or if mm is NULL
549 * * -ENOMEM if RLIMIT_MEMLOCK would be exceeded.
551 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc)
553 int ret;
555 if (pages == 0 || !mm)
556 return 0;
558 mmap_write_lock(mm);
559 ret = __account_locked_vm(mm, pages, inc, current,
560 capable(CAP_IPC_LOCK));
561 mmap_write_unlock(mm);
563 return ret;
565 EXPORT_SYMBOL_GPL(account_locked_vm);
567 unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
568 unsigned long len, unsigned long prot,
569 unsigned long flag, unsigned long pgoff)
571 unsigned long ret;
572 struct mm_struct *mm = current->mm;
573 unsigned long populate;
574 LIST_HEAD(uf);
576 ret = security_mmap_file(file, prot, flag);
577 if (!ret) {
578 if (mmap_write_lock_killable(mm))
579 return -EINTR;
580 ret = do_mmap(file, addr, len, prot, flag, 0, pgoff, &populate,
581 &uf);
582 mmap_write_unlock(mm);
583 userfaultfd_unmap_complete(mm, &uf);
584 if (populate)
585 mm_populate(ret, populate);
587 return ret;
590 unsigned long vm_mmap(struct file *file, unsigned long addr,
591 unsigned long len, unsigned long prot,
592 unsigned long flag, unsigned long offset)
594 if (unlikely(offset + PAGE_ALIGN(len) < offset))
595 return -EINVAL;
596 if (unlikely(offset_in_page(offset)))
597 return -EINVAL;
599 return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
601 EXPORT_SYMBOL(vm_mmap);
603 static gfp_t kmalloc_gfp_adjust(gfp_t flags, size_t size)
606 * We want to attempt a large physically contiguous block first because
607 * it is less likely to fragment multiple larger blocks and therefore
608 * contribute to a long term fragmentation less than vmalloc fallback.
609 * However make sure that larger requests are not too disruptive - no
610 * OOM killer and no allocation failure warnings as we have a fallback.
612 if (size > PAGE_SIZE) {
613 flags |= __GFP_NOWARN;
615 if (!(flags & __GFP_RETRY_MAYFAIL))
616 flags |= __GFP_NORETRY;
618 /* nofail semantic is implemented by the vmalloc fallback */
619 flags &= ~__GFP_NOFAIL;
622 return flags;
626 * __kvmalloc_node - attempt to allocate physically contiguous memory, but upon
627 * failure, fall back to non-contiguous (vmalloc) allocation.
628 * @size: size of the request.
629 * @b: which set of kmalloc buckets to allocate from.
630 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
631 * @node: numa node to allocate from
633 * Uses kmalloc to get the memory but if the allocation fails then falls back
634 * to the vmalloc allocator. Use kvfree for freeing the memory.
636 * GFP_NOWAIT and GFP_ATOMIC are not supported, neither is the __GFP_NORETRY modifier.
637 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
638 * preferable to the vmalloc fallback, due to visible performance drawbacks.
640 * Return: pointer to the allocated memory of %NULL in case of failure
642 void *__kvmalloc_node_noprof(DECL_BUCKET_PARAMS(size, b), gfp_t flags, int node)
644 void *ret;
647 * It doesn't really make sense to fallback to vmalloc for sub page
648 * requests
650 ret = __kmalloc_node_noprof(PASS_BUCKET_PARAMS(size, b),
651 kmalloc_gfp_adjust(flags, size),
652 node);
653 if (ret || size <= PAGE_SIZE)
654 return ret;
656 /* non-sleeping allocations are not supported by vmalloc */
657 if (!gfpflags_allow_blocking(flags))
658 return NULL;
660 /* Don't even allow crazy sizes */
661 if (unlikely(size > INT_MAX)) {
662 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
663 return NULL;
667 * kvmalloc() can always use VM_ALLOW_HUGE_VMAP,
668 * since the callers already cannot assume anything
669 * about the resulting pointer, and cannot play
670 * protection games.
672 return __vmalloc_node_range_noprof(size, 1, VMALLOC_START, VMALLOC_END,
673 flags, PAGE_KERNEL, VM_ALLOW_HUGE_VMAP,
674 node, __builtin_return_address(0));
676 EXPORT_SYMBOL(__kvmalloc_node_noprof);
679 * kvfree() - Free memory.
680 * @addr: Pointer to allocated memory.
682 * kvfree frees memory allocated by any of vmalloc(), kmalloc() or kvmalloc().
683 * It is slightly more efficient to use kfree() or vfree() if you are certain
684 * that you know which one to use.
686 * Context: Either preemptible task context or not-NMI interrupt.
688 void kvfree(const void *addr)
690 if (is_vmalloc_addr(addr))
691 vfree(addr);
692 else
693 kfree(addr);
695 EXPORT_SYMBOL(kvfree);
698 * kvfree_sensitive - Free a data object containing sensitive information.
699 * @addr: address of the data object to be freed.
700 * @len: length of the data object.
702 * Use the special memzero_explicit() function to clear the content of a
703 * kvmalloc'ed object containing sensitive data to make sure that the
704 * compiler won't optimize out the data clearing.
706 void kvfree_sensitive(const void *addr, size_t len)
708 if (likely(!ZERO_OR_NULL_PTR(addr))) {
709 memzero_explicit((void *)addr, len);
710 kvfree(addr);
713 EXPORT_SYMBOL(kvfree_sensitive);
716 * kvrealloc - reallocate memory; contents remain unchanged
717 * @p: object to reallocate memory for
718 * @size: the size to reallocate
719 * @flags: the flags for the page level allocator
721 * If @p is %NULL, kvrealloc() behaves exactly like kvmalloc(). If @size is 0
722 * and @p is not a %NULL pointer, the object pointed to is freed.
724 * If __GFP_ZERO logic is requested, callers must ensure that, starting with the
725 * initial memory allocation, every subsequent call to this API for the same
726 * memory allocation is flagged with __GFP_ZERO. Otherwise, it is possible that
727 * __GFP_ZERO is not fully honored by this API.
729 * In any case, the contents of the object pointed to are preserved up to the
730 * lesser of the new and old sizes.
732 * This function must not be called concurrently with itself or kvfree() for the
733 * same memory allocation.
735 * Return: pointer to the allocated memory or %NULL in case of error
737 void *kvrealloc_noprof(const void *p, size_t size, gfp_t flags)
739 void *n;
741 if (is_vmalloc_addr(p))
742 return vrealloc_noprof(p, size, flags);
744 n = krealloc_noprof(p, size, kmalloc_gfp_adjust(flags, size));
745 if (!n) {
746 /* We failed to krealloc(), fall back to kvmalloc(). */
747 n = kvmalloc_noprof(size, flags);
748 if (!n)
749 return NULL;
751 if (p) {
752 /* We already know that `p` is not a vmalloc address. */
753 kasan_disable_current();
754 memcpy(n, kasan_reset_tag(p), ksize(p));
755 kasan_enable_current();
757 kfree(p);
761 return n;
763 EXPORT_SYMBOL(kvrealloc_noprof);
766 * __vmalloc_array - allocate memory for a virtually contiguous array.
767 * @n: number of elements.
768 * @size: element size.
769 * @flags: the type of memory to allocate (see kmalloc).
771 void *__vmalloc_array_noprof(size_t n, size_t size, gfp_t flags)
773 size_t bytes;
775 if (unlikely(check_mul_overflow(n, size, &bytes)))
776 return NULL;
777 return __vmalloc_noprof(bytes, flags);
779 EXPORT_SYMBOL(__vmalloc_array_noprof);
782 * vmalloc_array - allocate memory for a virtually contiguous array.
783 * @n: number of elements.
784 * @size: element size.
786 void *vmalloc_array_noprof(size_t n, size_t size)
788 return __vmalloc_array_noprof(n, size, GFP_KERNEL);
790 EXPORT_SYMBOL(vmalloc_array_noprof);
793 * __vcalloc - allocate and zero memory for a virtually contiguous array.
794 * @n: number of elements.
795 * @size: element size.
796 * @flags: the type of memory to allocate (see kmalloc).
798 void *__vcalloc_noprof(size_t n, size_t size, gfp_t flags)
800 return __vmalloc_array_noprof(n, size, flags | __GFP_ZERO);
802 EXPORT_SYMBOL(__vcalloc_noprof);
805 * vcalloc - allocate and zero memory for a virtually contiguous array.
806 * @n: number of elements.
807 * @size: element size.
809 void *vcalloc_noprof(size_t n, size_t size)
811 return __vmalloc_array_noprof(n, size, GFP_KERNEL | __GFP_ZERO);
813 EXPORT_SYMBOL(vcalloc_noprof);
815 struct anon_vma *folio_anon_vma(const struct folio *folio)
817 unsigned long mapping = (unsigned long)folio->mapping;
819 if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
820 return NULL;
821 return (void *)(mapping - PAGE_MAPPING_ANON);
825 * folio_mapping - Find the mapping where this folio is stored.
826 * @folio: The folio.
828 * For folios which are in the page cache, return the mapping that this
829 * page belongs to. Folios in the swap cache return the swap mapping
830 * this page is stored in (which is different from the mapping for the
831 * swap file or swap device where the data is stored).
833 * You can call this for folios which aren't in the swap cache or page
834 * cache and it will return NULL.
836 struct address_space *folio_mapping(struct folio *folio)
838 struct address_space *mapping;
840 /* This happens if someone calls flush_dcache_page on slab page */
841 if (unlikely(folio_test_slab(folio)))
842 return NULL;
844 if (unlikely(folio_test_swapcache(folio)))
845 return swap_address_space(folio->swap);
847 mapping = folio->mapping;
848 if ((unsigned long)mapping & PAGE_MAPPING_FLAGS)
849 return NULL;
851 return mapping;
853 EXPORT_SYMBOL(folio_mapping);
856 * folio_copy - Copy the contents of one folio to another.
857 * @dst: Folio to copy to.
858 * @src: Folio to copy from.
860 * The bytes in the folio represented by @src are copied to @dst.
861 * Assumes the caller has validated that @dst is at least as large as @src.
862 * Can be called in atomic context for order-0 folios, but if the folio is
863 * larger, it may sleep.
865 void folio_copy(struct folio *dst, struct folio *src)
867 long i = 0;
868 long nr = folio_nr_pages(src);
870 for (;;) {
871 copy_highpage(folio_page(dst, i), folio_page(src, i));
872 if (++i == nr)
873 break;
874 cond_resched();
877 EXPORT_SYMBOL(folio_copy);
879 int folio_mc_copy(struct folio *dst, struct folio *src)
881 long nr = folio_nr_pages(src);
882 long i = 0;
884 for (;;) {
885 if (copy_mc_highpage(folio_page(dst, i), folio_page(src, i)))
886 return -EHWPOISON;
887 if (++i == nr)
888 break;
889 cond_resched();
892 return 0;
894 EXPORT_SYMBOL(folio_mc_copy);
896 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
897 int sysctl_overcommit_ratio __read_mostly = 50;
898 unsigned long sysctl_overcommit_kbytes __read_mostly;
899 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
900 unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
901 unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
903 int overcommit_ratio_handler(const struct ctl_table *table, int write, void *buffer,
904 size_t *lenp, loff_t *ppos)
906 int ret;
908 ret = proc_dointvec(table, write, buffer, lenp, ppos);
909 if (ret == 0 && write)
910 sysctl_overcommit_kbytes = 0;
911 return ret;
914 static void sync_overcommit_as(struct work_struct *dummy)
916 percpu_counter_sync(&vm_committed_as);
919 int overcommit_policy_handler(const struct ctl_table *table, int write, void *buffer,
920 size_t *lenp, loff_t *ppos)
922 struct ctl_table t;
923 int new_policy = -1;
924 int ret;
927 * The deviation of sync_overcommit_as could be big with loose policy
928 * like OVERCOMMIT_ALWAYS/OVERCOMMIT_GUESS. When changing policy to
929 * strict OVERCOMMIT_NEVER, we need to reduce the deviation to comply
930 * with the strict "NEVER", and to avoid possible race condition (even
931 * though user usually won't too frequently do the switching to policy
932 * OVERCOMMIT_NEVER), the switch is done in the following order:
933 * 1. changing the batch
934 * 2. sync percpu count on each CPU
935 * 3. switch the policy
937 if (write) {
938 t = *table;
939 t.data = &new_policy;
940 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
941 if (ret || new_policy == -1)
942 return ret;
944 mm_compute_batch(new_policy);
945 if (new_policy == OVERCOMMIT_NEVER)
946 schedule_on_each_cpu(sync_overcommit_as);
947 sysctl_overcommit_memory = new_policy;
948 } else {
949 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
952 return ret;
955 int overcommit_kbytes_handler(const struct ctl_table *table, int write, void *buffer,
956 size_t *lenp, loff_t *ppos)
958 int ret;
960 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
961 if (ret == 0 && write)
962 sysctl_overcommit_ratio = 0;
963 return ret;
967 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
969 unsigned long vm_commit_limit(void)
971 unsigned long allowed;
973 if (sysctl_overcommit_kbytes)
974 allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
975 else
976 allowed = ((totalram_pages() - hugetlb_total_pages())
977 * sysctl_overcommit_ratio / 100);
978 allowed += total_swap_pages;
980 return allowed;
984 * Make sure vm_committed_as in one cacheline and not cacheline shared with
985 * other variables. It can be updated by several CPUs frequently.
987 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
990 * The global memory commitment made in the system can be a metric
991 * that can be used to drive ballooning decisions when Linux is hosted
992 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
993 * balancing memory across competing virtual machines that are hosted.
994 * Several metrics drive this policy engine including the guest reported
995 * memory commitment.
997 * The time cost of this is very low for small platforms, and for big
998 * platform like a 2S/36C/72T Skylake server, in worst case where
999 * vm_committed_as's spinlock is under severe contention, the time cost
1000 * could be about 30~40 microseconds.
1002 unsigned long vm_memory_committed(void)
1004 return percpu_counter_sum_positive(&vm_committed_as);
1006 EXPORT_SYMBOL_GPL(vm_memory_committed);
1009 * Check that a process has enough memory to allocate a new virtual
1010 * mapping. 0 means there is enough memory for the allocation to
1011 * succeed and -ENOMEM implies there is not.
1013 * We currently support three overcommit policies, which are set via the
1014 * vm.overcommit_memory sysctl. See Documentation/mm/overcommit-accounting.rst
1016 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1017 * Additional code 2002 Jul 20 by Robert Love.
1019 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1021 * Note this is a helper function intended to be used by LSMs which
1022 * wish to use this logic.
1024 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1026 long allowed;
1027 unsigned long bytes_failed;
1029 vm_acct_memory(pages);
1032 * Sometimes we want to use more memory than we have
1034 if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1035 return 0;
1037 if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1038 if (pages > totalram_pages() + total_swap_pages)
1039 goto error;
1040 return 0;
1043 allowed = vm_commit_limit();
1045 * Reserve some for root
1047 if (!cap_sys_admin)
1048 allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
1051 * Don't let a single process grow so big a user can't recover
1053 if (mm) {
1054 long reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
1056 allowed -= min_t(long, mm->total_vm / 32, reserve);
1059 if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1060 return 0;
1061 error:
1062 bytes_failed = pages << PAGE_SHIFT;
1063 pr_warn_ratelimited("%s: pid: %d, comm: %s, bytes: %lu not enough memory for the allocation\n",
1064 __func__, current->pid, current->comm, bytes_failed);
1065 vm_unacct_memory(pages);
1067 return -ENOMEM;
1071 * get_cmdline() - copy the cmdline value to a buffer.
1072 * @task: the task whose cmdline value to copy.
1073 * @buffer: the buffer to copy to.
1074 * @buflen: the length of the buffer. Larger cmdline values are truncated
1075 * to this length.
1077 * Return: the size of the cmdline field copied. Note that the copy does
1078 * not guarantee an ending NULL byte.
1080 int get_cmdline(struct task_struct *task, char *buffer, int buflen)
1082 int res = 0;
1083 unsigned int len;
1084 struct mm_struct *mm = get_task_mm(task);
1085 unsigned long arg_start, arg_end, env_start, env_end;
1086 if (!mm)
1087 goto out;
1088 if (!mm->arg_end)
1089 goto out_mm; /* Shh! No looking before we're done */
1091 spin_lock(&mm->arg_lock);
1092 arg_start = mm->arg_start;
1093 arg_end = mm->arg_end;
1094 env_start = mm->env_start;
1095 env_end = mm->env_end;
1096 spin_unlock(&mm->arg_lock);
1098 len = arg_end - arg_start;
1100 if (len > buflen)
1101 len = buflen;
1103 res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
1106 * If the nul at the end of args has been overwritten, then
1107 * assume application is using setproctitle(3).
1109 if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
1110 len = strnlen(buffer, res);
1111 if (len < res) {
1112 res = len;
1113 } else {
1114 len = env_end - env_start;
1115 if (len > buflen - res)
1116 len = buflen - res;
1117 res += access_process_vm(task, env_start,
1118 buffer+res, len,
1119 FOLL_FORCE);
1120 res = strnlen(buffer, res);
1123 out_mm:
1124 mmput(mm);
1125 out:
1126 return res;
1129 int __weak memcmp_pages(struct page *page1, struct page *page2)
1131 char *addr1, *addr2;
1132 int ret;
1134 addr1 = kmap_local_page(page1);
1135 addr2 = kmap_local_page(page2);
1136 ret = memcmp(addr1, addr2, PAGE_SIZE);
1137 kunmap_local(addr2);
1138 kunmap_local(addr1);
1139 return ret;
1142 #ifdef CONFIG_PRINTK
1144 * mem_dump_obj - Print available provenance information
1145 * @object: object for which to find provenance information.
1147 * This function uses pr_cont(), so that the caller is expected to have
1148 * printed out whatever preamble is appropriate. The provenance information
1149 * depends on the type of object and on how much debugging is enabled.
1150 * For example, for a slab-cache object, the slab name is printed, and,
1151 * if available, the return address and stack trace from the allocation
1152 * and last free path of that object.
1154 void mem_dump_obj(void *object)
1156 const char *type;
1158 if (kmem_dump_obj(object))
1159 return;
1161 if (vmalloc_dump_obj(object))
1162 return;
1164 if (is_vmalloc_addr(object))
1165 type = "vmalloc memory";
1166 else if (virt_addr_valid(object))
1167 type = "non-slab/vmalloc memory";
1168 else if (object == NULL)
1169 type = "NULL pointer";
1170 else if (object == ZERO_SIZE_PTR)
1171 type = "zero-size pointer";
1172 else
1173 type = "non-paged memory";
1175 pr_cont(" %s\n", type);
1177 EXPORT_SYMBOL_GPL(mem_dump_obj);
1178 #endif
1181 * A driver might set a page logically offline -- PageOffline() -- and
1182 * turn the page inaccessible in the hypervisor; after that, access to page
1183 * content can be fatal.
1185 * Some special PFN walkers -- i.e., /proc/kcore -- read content of random
1186 * pages after checking PageOffline(); however, these PFN walkers can race
1187 * with drivers that set PageOffline().
1189 * page_offline_freeze()/page_offline_thaw() allows for a subsystem to
1190 * synchronize with such drivers, achieving that a page cannot be set
1191 * PageOffline() while frozen.
1193 * page_offline_begin()/page_offline_end() is used by drivers that care about
1194 * such races when setting a page PageOffline().
1196 static DECLARE_RWSEM(page_offline_rwsem);
1198 void page_offline_freeze(void)
1200 down_read(&page_offline_rwsem);
1203 void page_offline_thaw(void)
1205 up_read(&page_offline_rwsem);
1208 void page_offline_begin(void)
1210 down_write(&page_offline_rwsem);
1212 EXPORT_SYMBOL(page_offline_begin);
1214 void page_offline_end(void)
1216 up_write(&page_offline_rwsem);
1218 EXPORT_SYMBOL(page_offline_end);
1220 #ifndef flush_dcache_folio
1221 void flush_dcache_folio(struct folio *folio)
1223 long i, nr = folio_nr_pages(folio);
1225 for (i = 0; i < nr; i++)
1226 flush_dcache_page(folio_page(folio, i));
1228 EXPORT_SYMBOL(flush_dcache_folio);
1229 #endif