1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * NET3 Protocol independent device support routines.
5 * Derived from the non IP parts of dev.c 1.0.19
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
47 * Rudi Cilibrasi : Pass the right thing to
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/isolation.h>
81 #include <linux/sched/mm.h>
82 #include <linux/smpboot.h>
83 #include <linux/mutex.h>
84 #include <linux/rwsem.h>
85 #include <linux/string.h>
87 #include <linux/socket.h>
88 #include <linux/sockios.h>
89 #include <linux/errno.h>
90 #include <linux/interrupt.h>
91 #include <linux/if_ether.h>
92 #include <linux/netdevice.h>
93 #include <linux/etherdevice.h>
94 #include <linux/ethtool.h>
95 #include <linux/skbuff.h>
96 #include <linux/kthread.h>
97 #include <linux/bpf.h>
98 #include <linux/bpf_trace.h>
99 #include <net/net_namespace.h>
100 #include <net/sock.h>
101 #include <net/busy_poll.h>
102 #include <linux/rtnetlink.h>
103 #include <linux/stat.h>
106 #include <net/dst_metadata.h>
108 #include <net/pkt_sched.h>
109 #include <net/pkt_cls.h>
110 #include <net/checksum.h>
111 #include <net/xfrm.h>
113 #include <linux/highmem.h>
114 #include <linux/init.h>
115 #include <linux/module.h>
116 #include <linux/netpoll.h>
117 #include <linux/rcupdate.h>
118 #include <linux/delay.h>
119 #include <net/iw_handler.h>
120 #include <asm/current.h>
121 #include <linux/audit.h>
122 #include <linux/dmaengine.h>
123 #include <linux/err.h>
124 #include <linux/ctype.h>
125 #include <linux/if_arp.h>
126 #include <linux/if_vlan.h>
127 #include <linux/ip.h>
129 #include <net/mpls.h>
130 #include <linux/ipv6.h>
131 #include <linux/in.h>
132 #include <linux/jhash.h>
133 #include <linux/random.h>
134 #include <trace/events/napi.h>
135 #include <trace/events/net.h>
136 #include <trace/events/skb.h>
137 #include <trace/events/qdisc.h>
138 #include <trace/events/xdp.h>
139 #include <linux/inetdevice.h>
140 #include <linux/cpu_rmap.h>
141 #include <linux/static_key.h>
142 #include <linux/hashtable.h>
143 #include <linux/vmalloc.h>
144 #include <linux/if_macvlan.h>
145 #include <linux/errqueue.h>
146 #include <linux/hrtimer.h>
147 #include <linux/netfilter_netdev.h>
148 #include <linux/crash_dump.h>
149 #include <linux/sctp.h>
150 #include <net/udp_tunnel.h>
151 #include <linux/net_namespace.h>
152 #include <linux/indirect_call_wrapper.h>
153 #include <net/devlink.h>
154 #include <linux/pm_runtime.h>
155 #include <linux/prandom.h>
156 #include <linux/once_lite.h>
157 #include <net/netdev_rx_queue.h>
158 #include <net/page_pool/types.h>
159 #include <net/page_pool/helpers.h>
161 #include <linux/phy_link_topology.h>
165 #include "net-sysfs.h"
167 static DEFINE_SPINLOCK(ptype_lock
);
168 struct list_head ptype_base
[PTYPE_HASH_SIZE
] __read_mostly
;
170 static int netif_rx_internal(struct sk_buff
*skb
);
171 static int call_netdevice_notifiers_extack(unsigned long val
,
172 struct net_device
*dev
,
173 struct netlink_ext_ack
*extack
);
175 static DEFINE_MUTEX(ifalias_mutex
);
177 /* protects napi_hash addition/deletion and napi_gen_id */
178 static DEFINE_SPINLOCK(napi_hash_lock
);
180 static unsigned int napi_gen_id
= NR_CPUS
;
181 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash
, 8);
183 static DECLARE_RWSEM(devnet_rename_sem
);
185 static inline void dev_base_seq_inc(struct net
*net
)
187 unsigned int val
= net
->dev_base_seq
+ 1;
189 WRITE_ONCE(net
->dev_base_seq
, val
?: 1);
192 static inline struct hlist_head
*dev_name_hash(struct net
*net
, const char *name
)
194 unsigned int hash
= full_name_hash(net
, name
, strnlen(name
, IFNAMSIZ
));
196 return &net
->dev_name_head
[hash_32(hash
, NETDEV_HASHBITS
)];
199 static inline struct hlist_head
*dev_index_hash(struct net
*net
, int ifindex
)
201 return &net
->dev_index_head
[ifindex
& (NETDEV_HASHENTRIES
- 1)];
204 #ifndef CONFIG_PREEMPT_RT
206 static DEFINE_STATIC_KEY_FALSE(use_backlog_threads_key
);
208 static int __init
setup_backlog_napi_threads(char *arg
)
210 static_branch_enable(&use_backlog_threads_key
);
213 early_param("thread_backlog_napi", setup_backlog_napi_threads
);
215 static bool use_backlog_threads(void)
217 return static_branch_unlikely(&use_backlog_threads_key
);
222 static bool use_backlog_threads(void)
229 static inline void backlog_lock_irq_save(struct softnet_data
*sd
,
230 unsigned long *flags
)
232 if (IS_ENABLED(CONFIG_RPS
) || use_backlog_threads())
233 spin_lock_irqsave(&sd
->input_pkt_queue
.lock
, *flags
);
235 local_irq_save(*flags
);
238 static inline void backlog_lock_irq_disable(struct softnet_data
*sd
)
240 if (IS_ENABLED(CONFIG_RPS
) || use_backlog_threads())
241 spin_lock_irq(&sd
->input_pkt_queue
.lock
);
246 static inline void backlog_unlock_irq_restore(struct softnet_data
*sd
,
247 unsigned long *flags
)
249 if (IS_ENABLED(CONFIG_RPS
) || use_backlog_threads())
250 spin_unlock_irqrestore(&sd
->input_pkt_queue
.lock
, *flags
);
252 local_irq_restore(*flags
);
255 static inline void backlog_unlock_irq_enable(struct softnet_data
*sd
)
257 if (IS_ENABLED(CONFIG_RPS
) || use_backlog_threads())
258 spin_unlock_irq(&sd
->input_pkt_queue
.lock
);
263 static struct netdev_name_node
*netdev_name_node_alloc(struct net_device
*dev
,
266 struct netdev_name_node
*name_node
;
268 name_node
= kmalloc(sizeof(*name_node
), GFP_KERNEL
);
271 INIT_HLIST_NODE(&name_node
->hlist
);
272 name_node
->dev
= dev
;
273 name_node
->name
= name
;
277 static struct netdev_name_node
*
278 netdev_name_node_head_alloc(struct net_device
*dev
)
280 struct netdev_name_node
*name_node
;
282 name_node
= netdev_name_node_alloc(dev
, dev
->name
);
285 INIT_LIST_HEAD(&name_node
->list
);
289 static void netdev_name_node_free(struct netdev_name_node
*name_node
)
294 static void netdev_name_node_add(struct net
*net
,
295 struct netdev_name_node
*name_node
)
297 hlist_add_head_rcu(&name_node
->hlist
,
298 dev_name_hash(net
, name_node
->name
));
301 static void netdev_name_node_del(struct netdev_name_node
*name_node
)
303 hlist_del_rcu(&name_node
->hlist
);
306 static struct netdev_name_node
*netdev_name_node_lookup(struct net
*net
,
309 struct hlist_head
*head
= dev_name_hash(net
, name
);
310 struct netdev_name_node
*name_node
;
312 hlist_for_each_entry(name_node
, head
, hlist
)
313 if (!strcmp(name_node
->name
, name
))
318 static struct netdev_name_node
*netdev_name_node_lookup_rcu(struct net
*net
,
321 struct hlist_head
*head
= dev_name_hash(net
, name
);
322 struct netdev_name_node
*name_node
;
324 hlist_for_each_entry_rcu(name_node
, head
, hlist
)
325 if (!strcmp(name_node
->name
, name
))
330 bool netdev_name_in_use(struct net
*net
, const char *name
)
332 return netdev_name_node_lookup(net
, name
);
334 EXPORT_SYMBOL(netdev_name_in_use
);
336 int netdev_name_node_alt_create(struct net_device
*dev
, const char *name
)
338 struct netdev_name_node
*name_node
;
339 struct net
*net
= dev_net(dev
);
341 name_node
= netdev_name_node_lookup(net
, name
);
344 name_node
= netdev_name_node_alloc(dev
, name
);
347 netdev_name_node_add(net
, name_node
);
348 /* The node that holds dev->name acts as a head of per-device list. */
349 list_add_tail_rcu(&name_node
->list
, &dev
->name_node
->list
);
354 static void netdev_name_node_alt_free(struct rcu_head
*head
)
356 struct netdev_name_node
*name_node
=
357 container_of(head
, struct netdev_name_node
, rcu
);
359 kfree(name_node
->name
);
360 netdev_name_node_free(name_node
);
363 static void __netdev_name_node_alt_destroy(struct netdev_name_node
*name_node
)
365 netdev_name_node_del(name_node
);
366 list_del(&name_node
->list
);
367 call_rcu(&name_node
->rcu
, netdev_name_node_alt_free
);
370 int netdev_name_node_alt_destroy(struct net_device
*dev
, const char *name
)
372 struct netdev_name_node
*name_node
;
373 struct net
*net
= dev_net(dev
);
375 name_node
= netdev_name_node_lookup(net
, name
);
378 /* lookup might have found our primary name or a name belonging
381 if (name_node
== dev
->name_node
|| name_node
->dev
!= dev
)
384 __netdev_name_node_alt_destroy(name_node
);
388 static void netdev_name_node_alt_flush(struct net_device
*dev
)
390 struct netdev_name_node
*name_node
, *tmp
;
392 list_for_each_entry_safe(name_node
, tmp
, &dev
->name_node
->list
, list
) {
393 list_del(&name_node
->list
);
394 netdev_name_node_alt_free(&name_node
->rcu
);
398 /* Device list insertion */
399 static void list_netdevice(struct net_device
*dev
)
401 struct netdev_name_node
*name_node
;
402 struct net
*net
= dev_net(dev
);
406 list_add_tail_rcu(&dev
->dev_list
, &net
->dev_base_head
);
407 netdev_name_node_add(net
, dev
->name_node
);
408 hlist_add_head_rcu(&dev
->index_hlist
,
409 dev_index_hash(net
, dev
->ifindex
));
411 netdev_for_each_altname(dev
, name_node
)
412 netdev_name_node_add(net
, name_node
);
414 /* We reserved the ifindex, this can't fail */
415 WARN_ON(xa_store(&net
->dev_by_index
, dev
->ifindex
, dev
, GFP_KERNEL
));
417 dev_base_seq_inc(net
);
420 /* Device list removal
421 * caller must respect a RCU grace period before freeing/reusing dev
423 static void unlist_netdevice(struct net_device
*dev
)
425 struct netdev_name_node
*name_node
;
426 struct net
*net
= dev_net(dev
);
430 xa_erase(&net
->dev_by_index
, dev
->ifindex
);
432 netdev_for_each_altname(dev
, name_node
)
433 netdev_name_node_del(name_node
);
435 /* Unlink dev from the device chain */
436 list_del_rcu(&dev
->dev_list
);
437 netdev_name_node_del(dev
->name_node
);
438 hlist_del_rcu(&dev
->index_hlist
);
440 dev_base_seq_inc(dev_net(dev
));
447 static RAW_NOTIFIER_HEAD(netdev_chain
);
450 * Device drivers call our routines to queue packets here. We empty the
451 * queue in the local softnet handler.
454 DEFINE_PER_CPU_ALIGNED(struct softnet_data
, softnet_data
) = {
455 .process_queue_bh_lock
= INIT_LOCAL_LOCK(process_queue_bh_lock
),
457 EXPORT_PER_CPU_SYMBOL(softnet_data
);
459 /* Page_pool has a lockless array/stack to alloc/recycle pages.
460 * PP consumers must pay attention to run APIs in the appropriate context
461 * (e.g. NAPI context).
463 static DEFINE_PER_CPU(struct page_pool
*, system_page_pool
);
465 #ifdef CONFIG_LOCKDEP
467 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
468 * according to dev->type
470 static const unsigned short netdev_lock_type
[] = {
471 ARPHRD_NETROM
, ARPHRD_ETHER
, ARPHRD_EETHER
, ARPHRD_AX25
,
472 ARPHRD_PRONET
, ARPHRD_CHAOS
, ARPHRD_IEEE802
, ARPHRD_ARCNET
,
473 ARPHRD_APPLETLK
, ARPHRD_DLCI
, ARPHRD_ATM
, ARPHRD_METRICOM
,
474 ARPHRD_IEEE1394
, ARPHRD_EUI64
, ARPHRD_INFINIBAND
, ARPHRD_SLIP
,
475 ARPHRD_CSLIP
, ARPHRD_SLIP6
, ARPHRD_CSLIP6
, ARPHRD_RSRVD
,
476 ARPHRD_ADAPT
, ARPHRD_ROSE
, ARPHRD_X25
, ARPHRD_HWX25
,
477 ARPHRD_PPP
, ARPHRD_CISCO
, ARPHRD_LAPB
, ARPHRD_DDCMP
,
478 ARPHRD_RAWHDLC
, ARPHRD_TUNNEL
, ARPHRD_TUNNEL6
, ARPHRD_FRAD
,
479 ARPHRD_SKIP
, ARPHRD_LOOPBACK
, ARPHRD_LOCALTLK
, ARPHRD_FDDI
,
480 ARPHRD_BIF
, ARPHRD_SIT
, ARPHRD_IPDDP
, ARPHRD_IPGRE
,
481 ARPHRD_PIMREG
, ARPHRD_HIPPI
, ARPHRD_ASH
, ARPHRD_ECONET
,
482 ARPHRD_IRDA
, ARPHRD_FCPP
, ARPHRD_FCAL
, ARPHRD_FCPL
,
483 ARPHRD_FCFABRIC
, ARPHRD_IEEE80211
, ARPHRD_IEEE80211_PRISM
,
484 ARPHRD_IEEE80211_RADIOTAP
, ARPHRD_PHONET
, ARPHRD_PHONET_PIPE
,
485 ARPHRD_IEEE802154
, ARPHRD_VOID
, ARPHRD_NONE
};
487 static const char *const netdev_lock_name
[] = {
488 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
489 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
490 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
491 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
492 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
493 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
494 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
495 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
496 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
497 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
498 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
499 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
500 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
501 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
502 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
504 static struct lock_class_key netdev_xmit_lock_key
[ARRAY_SIZE(netdev_lock_type
)];
505 static struct lock_class_key netdev_addr_lock_key
[ARRAY_SIZE(netdev_lock_type
)];
507 static inline unsigned short netdev_lock_pos(unsigned short dev_type
)
511 for (i
= 0; i
< ARRAY_SIZE(netdev_lock_type
); i
++)
512 if (netdev_lock_type
[i
] == dev_type
)
514 /* the last key is used by default */
515 return ARRAY_SIZE(netdev_lock_type
) - 1;
518 static inline void netdev_set_xmit_lockdep_class(spinlock_t
*lock
,
519 unsigned short dev_type
)
523 i
= netdev_lock_pos(dev_type
);
524 lockdep_set_class_and_name(lock
, &netdev_xmit_lock_key
[i
],
525 netdev_lock_name
[i
]);
528 static inline void netdev_set_addr_lockdep_class(struct net_device
*dev
)
532 i
= netdev_lock_pos(dev
->type
);
533 lockdep_set_class_and_name(&dev
->addr_list_lock
,
534 &netdev_addr_lock_key
[i
],
535 netdev_lock_name
[i
]);
538 static inline void netdev_set_xmit_lockdep_class(spinlock_t
*lock
,
539 unsigned short dev_type
)
543 static inline void netdev_set_addr_lockdep_class(struct net_device
*dev
)
548 /*******************************************************************************
550 * Protocol management and registration routines
552 *******************************************************************************/
556 * Add a protocol ID to the list. Now that the input handler is
557 * smarter we can dispense with all the messy stuff that used to be
560 * BEWARE!!! Protocol handlers, mangling input packets,
561 * MUST BE last in hash buckets and checking protocol handlers
562 * MUST start from promiscuous ptype_all chain in net_bh.
563 * It is true now, do not change it.
564 * Explanation follows: if protocol handler, mangling packet, will
565 * be the first on list, it is not able to sense, that packet
566 * is cloned and should be copied-on-write, so that it will
567 * change it and subsequent readers will get broken packet.
571 static inline struct list_head
*ptype_head(const struct packet_type
*pt
)
573 if (pt
->type
== htons(ETH_P_ALL
))
574 return pt
->dev
? &pt
->dev
->ptype_all
: &net_hotdata
.ptype_all
;
576 return pt
->dev
? &pt
->dev
->ptype_specific
:
577 &ptype_base
[ntohs(pt
->type
) & PTYPE_HASH_MASK
];
581 * dev_add_pack - add packet handler
582 * @pt: packet type declaration
584 * Add a protocol handler to the networking stack. The passed &packet_type
585 * is linked into kernel lists and may not be freed until it has been
586 * removed from the kernel lists.
588 * This call does not sleep therefore it can not
589 * guarantee all CPU's that are in middle of receiving packets
590 * will see the new packet type (until the next received packet).
593 void dev_add_pack(struct packet_type
*pt
)
595 struct list_head
*head
= ptype_head(pt
);
597 spin_lock(&ptype_lock
);
598 list_add_rcu(&pt
->list
, head
);
599 spin_unlock(&ptype_lock
);
601 EXPORT_SYMBOL(dev_add_pack
);
604 * __dev_remove_pack - remove packet handler
605 * @pt: packet type declaration
607 * Remove a protocol handler that was previously added to the kernel
608 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
609 * from the kernel lists and can be freed or reused once this function
612 * The packet type might still be in use by receivers
613 * and must not be freed until after all the CPU's have gone
614 * through a quiescent state.
616 void __dev_remove_pack(struct packet_type
*pt
)
618 struct list_head
*head
= ptype_head(pt
);
619 struct packet_type
*pt1
;
621 spin_lock(&ptype_lock
);
623 list_for_each_entry(pt1
, head
, list
) {
625 list_del_rcu(&pt
->list
);
630 pr_warn("dev_remove_pack: %p not found\n", pt
);
632 spin_unlock(&ptype_lock
);
634 EXPORT_SYMBOL(__dev_remove_pack
);
637 * dev_remove_pack - remove packet handler
638 * @pt: packet type declaration
640 * Remove a protocol handler that was previously added to the kernel
641 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
642 * from the kernel lists and can be freed or reused once this function
645 * This call sleeps to guarantee that no CPU is looking at the packet
648 void dev_remove_pack(struct packet_type
*pt
)
650 __dev_remove_pack(pt
);
654 EXPORT_SYMBOL(dev_remove_pack
);
657 /*******************************************************************************
659 * Device Interface Subroutines
661 *******************************************************************************/
664 * dev_get_iflink - get 'iflink' value of a interface
665 * @dev: targeted interface
667 * Indicates the ifindex the interface is linked to.
668 * Physical interfaces have the same 'ifindex' and 'iflink' values.
671 int dev_get_iflink(const struct net_device
*dev
)
673 if (dev
->netdev_ops
&& dev
->netdev_ops
->ndo_get_iflink
)
674 return dev
->netdev_ops
->ndo_get_iflink(dev
);
676 return READ_ONCE(dev
->ifindex
);
678 EXPORT_SYMBOL(dev_get_iflink
);
681 * dev_fill_metadata_dst - Retrieve tunnel egress information.
682 * @dev: targeted interface
685 * For better visibility of tunnel traffic OVS needs to retrieve
686 * egress tunnel information for a packet. Following API allows
687 * user to get this info.
689 int dev_fill_metadata_dst(struct net_device
*dev
, struct sk_buff
*skb
)
691 struct ip_tunnel_info
*info
;
693 if (!dev
->netdev_ops
|| !dev
->netdev_ops
->ndo_fill_metadata_dst
)
696 info
= skb_tunnel_info_unclone(skb
);
699 if (unlikely(!(info
->mode
& IP_TUNNEL_INFO_TX
)))
702 return dev
->netdev_ops
->ndo_fill_metadata_dst(dev
, skb
);
704 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst
);
706 static struct net_device_path
*dev_fwd_path(struct net_device_path_stack
*stack
)
708 int k
= stack
->num_paths
++;
710 if (WARN_ON_ONCE(k
>= NET_DEVICE_PATH_STACK_MAX
))
713 return &stack
->path
[k
];
716 int dev_fill_forward_path(const struct net_device
*dev
, const u8
*daddr
,
717 struct net_device_path_stack
*stack
)
719 const struct net_device
*last_dev
;
720 struct net_device_path_ctx ctx
= {
723 struct net_device_path
*path
;
726 memcpy(ctx
.daddr
, daddr
, sizeof(ctx
.daddr
));
727 stack
->num_paths
= 0;
728 while (ctx
.dev
&& ctx
.dev
->netdev_ops
->ndo_fill_forward_path
) {
730 path
= dev_fwd_path(stack
);
734 memset(path
, 0, sizeof(struct net_device_path
));
735 ret
= ctx
.dev
->netdev_ops
->ndo_fill_forward_path(&ctx
, path
);
739 if (WARN_ON_ONCE(last_dev
== ctx
.dev
))
746 path
= dev_fwd_path(stack
);
749 path
->type
= DEV_PATH_ETHERNET
;
754 EXPORT_SYMBOL_GPL(dev_fill_forward_path
);
757 * __dev_get_by_name - find a device by its name
758 * @net: the applicable net namespace
759 * @name: name to find
761 * Find an interface by name. Must be called under RTNL semaphore.
762 * If the name is found a pointer to the device is returned.
763 * If the name is not found then %NULL is returned. The
764 * reference counters are not incremented so the caller must be
765 * careful with locks.
768 struct net_device
*__dev_get_by_name(struct net
*net
, const char *name
)
770 struct netdev_name_node
*node_name
;
772 node_name
= netdev_name_node_lookup(net
, name
);
773 return node_name
? node_name
->dev
: NULL
;
775 EXPORT_SYMBOL(__dev_get_by_name
);
778 * dev_get_by_name_rcu - find a device by its name
779 * @net: the applicable net namespace
780 * @name: name to find
782 * Find an interface by name.
783 * If the name is found a pointer to the device is returned.
784 * If the name is not found then %NULL is returned.
785 * The reference counters are not incremented so the caller must be
786 * careful with locks. The caller must hold RCU lock.
789 struct net_device
*dev_get_by_name_rcu(struct net
*net
, const char *name
)
791 struct netdev_name_node
*node_name
;
793 node_name
= netdev_name_node_lookup_rcu(net
, name
);
794 return node_name
? node_name
->dev
: NULL
;
796 EXPORT_SYMBOL(dev_get_by_name_rcu
);
798 /* Deprecated for new users, call netdev_get_by_name() instead */
799 struct net_device
*dev_get_by_name(struct net
*net
, const char *name
)
801 struct net_device
*dev
;
804 dev
= dev_get_by_name_rcu(net
, name
);
809 EXPORT_SYMBOL(dev_get_by_name
);
812 * netdev_get_by_name() - find a device by its name
813 * @net: the applicable net namespace
814 * @name: name to find
815 * @tracker: tracking object for the acquired reference
816 * @gfp: allocation flags for the tracker
818 * Find an interface by name. This can be called from any
819 * context and does its own locking. The returned handle has
820 * the usage count incremented and the caller must use netdev_put() to
821 * release it when it is no longer needed. %NULL is returned if no
822 * matching device is found.
824 struct net_device
*netdev_get_by_name(struct net
*net
, const char *name
,
825 netdevice_tracker
*tracker
, gfp_t gfp
)
827 struct net_device
*dev
;
829 dev
= dev_get_by_name(net
, name
);
831 netdev_tracker_alloc(dev
, tracker
, gfp
);
834 EXPORT_SYMBOL(netdev_get_by_name
);
837 * __dev_get_by_index - find a device by its ifindex
838 * @net: the applicable net namespace
839 * @ifindex: index of device
841 * Search for an interface by index. Returns %NULL if the device
842 * is not found or a pointer to the device. The device has not
843 * had its reference counter increased so the caller must be careful
844 * about locking. The caller must hold the RTNL semaphore.
847 struct net_device
*__dev_get_by_index(struct net
*net
, int ifindex
)
849 struct net_device
*dev
;
850 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
852 hlist_for_each_entry(dev
, head
, index_hlist
)
853 if (dev
->ifindex
== ifindex
)
858 EXPORT_SYMBOL(__dev_get_by_index
);
861 * dev_get_by_index_rcu - find a device by its ifindex
862 * @net: the applicable net namespace
863 * @ifindex: index of device
865 * Search for an interface by index. Returns %NULL if the device
866 * is not found or a pointer to the device. The device has not
867 * had its reference counter increased so the caller must be careful
868 * about locking. The caller must hold RCU lock.
871 struct net_device
*dev_get_by_index_rcu(struct net
*net
, int ifindex
)
873 struct net_device
*dev
;
874 struct hlist_head
*head
= dev_index_hash(net
, ifindex
);
876 hlist_for_each_entry_rcu(dev
, head
, index_hlist
)
877 if (dev
->ifindex
== ifindex
)
882 EXPORT_SYMBOL(dev_get_by_index_rcu
);
884 /* Deprecated for new users, call netdev_get_by_index() instead */
885 struct net_device
*dev_get_by_index(struct net
*net
, int ifindex
)
887 struct net_device
*dev
;
890 dev
= dev_get_by_index_rcu(net
, ifindex
);
895 EXPORT_SYMBOL(dev_get_by_index
);
898 * netdev_get_by_index() - find a device by its ifindex
899 * @net: the applicable net namespace
900 * @ifindex: index of device
901 * @tracker: tracking object for the acquired reference
902 * @gfp: allocation flags for the tracker
904 * Search for an interface by index. Returns NULL if the device
905 * is not found or a pointer to the device. The device returned has
906 * had a reference added and the pointer is safe until the user calls
907 * netdev_put() to indicate they have finished with it.
909 struct net_device
*netdev_get_by_index(struct net
*net
, int ifindex
,
910 netdevice_tracker
*tracker
, gfp_t gfp
)
912 struct net_device
*dev
;
914 dev
= dev_get_by_index(net
, ifindex
);
916 netdev_tracker_alloc(dev
, tracker
, gfp
);
919 EXPORT_SYMBOL(netdev_get_by_index
);
922 * dev_get_by_napi_id - find a device by napi_id
923 * @napi_id: ID of the NAPI struct
925 * Search for an interface by NAPI ID. Returns %NULL if the device
926 * is not found or a pointer to the device. The device has not had
927 * its reference counter increased so the caller must be careful
928 * about locking. The caller must hold RCU lock.
931 struct net_device
*dev_get_by_napi_id(unsigned int napi_id
)
933 struct napi_struct
*napi
;
935 WARN_ON_ONCE(!rcu_read_lock_held());
937 if (napi_id
< MIN_NAPI_ID
)
940 napi
= napi_by_id(napi_id
);
942 return napi
? napi
->dev
: NULL
;
944 EXPORT_SYMBOL(dev_get_by_napi_id
);
946 static DEFINE_SEQLOCK(netdev_rename_lock
);
948 void netdev_copy_name(struct net_device
*dev
, char *name
)
953 seq
= read_seqbegin(&netdev_rename_lock
);
954 strscpy(name
, dev
->name
, IFNAMSIZ
);
955 } while (read_seqretry(&netdev_rename_lock
, seq
));
959 * netdev_get_name - get a netdevice name, knowing its ifindex.
960 * @net: network namespace
961 * @name: a pointer to the buffer where the name will be stored.
962 * @ifindex: the ifindex of the interface to get the name from.
964 int netdev_get_name(struct net
*net
, char *name
, int ifindex
)
966 struct net_device
*dev
;
971 dev
= dev_get_by_index_rcu(net
, ifindex
);
977 netdev_copy_name(dev
, name
);
986 * dev_getbyhwaddr_rcu - find a device by its hardware address
987 * @net: the applicable net namespace
988 * @type: media type of device
989 * @ha: hardware address
991 * Search for an interface by MAC address. Returns NULL if the device
992 * is not found or a pointer to the device.
993 * The caller must hold RCU or RTNL.
994 * The returned device has not had its ref count increased
995 * and the caller must therefore be careful about locking
999 struct net_device
*dev_getbyhwaddr_rcu(struct net
*net
, unsigned short type
,
1002 struct net_device
*dev
;
1004 for_each_netdev_rcu(net
, dev
)
1005 if (dev
->type
== type
&&
1006 !memcmp(dev
->dev_addr
, ha
, dev
->addr_len
))
1011 EXPORT_SYMBOL(dev_getbyhwaddr_rcu
);
1013 struct net_device
*dev_getfirstbyhwtype(struct net
*net
, unsigned short type
)
1015 struct net_device
*dev
, *ret
= NULL
;
1018 for_each_netdev_rcu(net
, dev
)
1019 if (dev
->type
== type
) {
1027 EXPORT_SYMBOL(dev_getfirstbyhwtype
);
1030 * __dev_get_by_flags - find any device with given flags
1031 * @net: the applicable net namespace
1032 * @if_flags: IFF_* values
1033 * @mask: bitmask of bits in if_flags to check
1035 * Search for any interface with the given flags. Returns NULL if a device
1036 * is not found or a pointer to the device. Must be called inside
1037 * rtnl_lock(), and result refcount is unchanged.
1040 struct net_device
*__dev_get_by_flags(struct net
*net
, unsigned short if_flags
,
1041 unsigned short mask
)
1043 struct net_device
*dev
, *ret
;
1048 for_each_netdev(net
, dev
) {
1049 if (((dev
->flags
^ if_flags
) & mask
) == 0) {
1056 EXPORT_SYMBOL(__dev_get_by_flags
);
1059 * dev_valid_name - check if name is okay for network device
1060 * @name: name string
1062 * Network device names need to be valid file names to
1063 * allow sysfs to work. We also disallow any kind of
1066 bool dev_valid_name(const char *name
)
1070 if (strnlen(name
, IFNAMSIZ
) == IFNAMSIZ
)
1072 if (!strcmp(name
, ".") || !strcmp(name
, ".."))
1076 if (*name
== '/' || *name
== ':' || isspace(*name
))
1082 EXPORT_SYMBOL(dev_valid_name
);
1085 * __dev_alloc_name - allocate a name for a device
1086 * @net: network namespace to allocate the device name in
1087 * @name: name format string
1088 * @res: result name string
1090 * Passed a format string - eg "lt%d" it will try and find a suitable
1091 * id. It scans list of devices to build up a free map, then chooses
1092 * the first empty slot. The caller must hold the dev_base or rtnl lock
1093 * while allocating the name and adding the device in order to avoid
1095 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1096 * Returns the number of the unit assigned or a negative errno code.
1099 static int __dev_alloc_name(struct net
*net
, const char *name
, char *res
)
1103 const int max_netdevices
= 8*PAGE_SIZE
;
1104 unsigned long *inuse
;
1105 struct net_device
*d
;
1108 /* Verify the string as this thing may have come from the user.
1109 * There must be one "%d" and no other "%" characters.
1111 p
= strchr(name
, '%');
1112 if (!p
|| p
[1] != 'd' || strchr(p
+ 2, '%'))
1115 /* Use one page as a bit array of possible slots */
1116 inuse
= bitmap_zalloc(max_netdevices
, GFP_ATOMIC
);
1120 for_each_netdev(net
, d
) {
1121 struct netdev_name_node
*name_node
;
1123 netdev_for_each_altname(d
, name_node
) {
1124 if (!sscanf(name_node
->name
, name
, &i
))
1126 if (i
< 0 || i
>= max_netdevices
)
1129 /* avoid cases where sscanf is not exact inverse of printf */
1130 snprintf(buf
, IFNAMSIZ
, name
, i
);
1131 if (!strncmp(buf
, name_node
->name
, IFNAMSIZ
))
1132 __set_bit(i
, inuse
);
1134 if (!sscanf(d
->name
, name
, &i
))
1136 if (i
< 0 || i
>= max_netdevices
)
1139 /* avoid cases where sscanf is not exact inverse of printf */
1140 snprintf(buf
, IFNAMSIZ
, name
, i
);
1141 if (!strncmp(buf
, d
->name
, IFNAMSIZ
))
1142 __set_bit(i
, inuse
);
1145 i
= find_first_zero_bit(inuse
, max_netdevices
);
1147 if (i
== max_netdevices
)
1150 /* 'res' and 'name' could overlap, use 'buf' as an intermediate buffer */
1151 strscpy(buf
, name
, IFNAMSIZ
);
1152 snprintf(res
, IFNAMSIZ
, buf
, i
);
1156 /* Returns negative errno or allocated unit id (see __dev_alloc_name()) */
1157 static int dev_prep_valid_name(struct net
*net
, struct net_device
*dev
,
1158 const char *want_name
, char *out_name
,
1161 if (!dev_valid_name(want_name
))
1164 if (strchr(want_name
, '%'))
1165 return __dev_alloc_name(net
, want_name
, out_name
);
1167 if (netdev_name_in_use(net
, want_name
))
1169 if (out_name
!= want_name
)
1170 strscpy(out_name
, want_name
, IFNAMSIZ
);
1175 * dev_alloc_name - allocate a name for a device
1177 * @name: name format string
1179 * Passed a format string - eg "lt%d" it will try and find a suitable
1180 * id. It scans list of devices to build up a free map, then chooses
1181 * the first empty slot. The caller must hold the dev_base or rtnl lock
1182 * while allocating the name and adding the device in order to avoid
1184 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1185 * Returns the number of the unit assigned or a negative errno code.
1188 int dev_alloc_name(struct net_device
*dev
, const char *name
)
1190 return dev_prep_valid_name(dev_net(dev
), dev
, name
, dev
->name
, ENFILE
);
1192 EXPORT_SYMBOL(dev_alloc_name
);
1194 static int dev_get_valid_name(struct net
*net
, struct net_device
*dev
,
1199 ret
= dev_prep_valid_name(net
, dev
, name
, dev
->name
, EEXIST
);
1200 return ret
< 0 ? ret
: 0;
1204 * dev_change_name - change name of a device
1206 * @newname: name (or format string) must be at least IFNAMSIZ
1208 * Change name of a device, can pass format strings "eth%d".
1211 int dev_change_name(struct net_device
*dev
, const char *newname
)
1213 unsigned char old_assign_type
;
1214 char oldname
[IFNAMSIZ
];
1220 BUG_ON(!dev_net(dev
));
1224 down_write(&devnet_rename_sem
);
1226 if (strncmp(newname
, dev
->name
, IFNAMSIZ
) == 0) {
1227 up_write(&devnet_rename_sem
);
1231 memcpy(oldname
, dev
->name
, IFNAMSIZ
);
1233 write_seqlock_bh(&netdev_rename_lock
);
1234 err
= dev_get_valid_name(net
, dev
, newname
);
1235 write_sequnlock_bh(&netdev_rename_lock
);
1238 up_write(&devnet_rename_sem
);
1242 if (oldname
[0] && !strchr(oldname
, '%'))
1243 netdev_info(dev
, "renamed from %s%s\n", oldname
,
1244 dev
->flags
& IFF_UP
? " (while UP)" : "");
1246 old_assign_type
= dev
->name_assign_type
;
1247 WRITE_ONCE(dev
->name_assign_type
, NET_NAME_RENAMED
);
1250 ret
= device_rename(&dev
->dev
, dev
->name
);
1252 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1253 WRITE_ONCE(dev
->name_assign_type
, old_assign_type
);
1254 up_write(&devnet_rename_sem
);
1258 up_write(&devnet_rename_sem
);
1260 netdev_adjacent_rename_links(dev
, oldname
);
1262 netdev_name_node_del(dev
->name_node
);
1266 netdev_name_node_add(net
, dev
->name_node
);
1268 ret
= call_netdevice_notifiers(NETDEV_CHANGENAME
, dev
);
1269 ret
= notifier_to_errno(ret
);
1272 /* err >= 0 after dev_alloc_name() or stores the first errno */
1275 down_write(&devnet_rename_sem
);
1276 write_seqlock_bh(&netdev_rename_lock
);
1277 memcpy(dev
->name
, oldname
, IFNAMSIZ
);
1278 write_sequnlock_bh(&netdev_rename_lock
);
1279 memcpy(oldname
, newname
, IFNAMSIZ
);
1280 WRITE_ONCE(dev
->name_assign_type
, old_assign_type
);
1281 old_assign_type
= NET_NAME_RENAMED
;
1284 netdev_err(dev
, "name change rollback failed: %d\n",
1293 * dev_set_alias - change ifalias of a device
1295 * @alias: name up to IFALIASZ
1296 * @len: limit of bytes to copy from info
1298 * Set ifalias for a device,
1300 int dev_set_alias(struct net_device
*dev
, const char *alias
, size_t len
)
1302 struct dev_ifalias
*new_alias
= NULL
;
1304 if (len
>= IFALIASZ
)
1308 new_alias
= kmalloc(sizeof(*new_alias
) + len
+ 1, GFP_KERNEL
);
1312 memcpy(new_alias
->ifalias
, alias
, len
);
1313 new_alias
->ifalias
[len
] = 0;
1316 mutex_lock(&ifalias_mutex
);
1317 new_alias
= rcu_replace_pointer(dev
->ifalias
, new_alias
,
1318 mutex_is_locked(&ifalias_mutex
));
1319 mutex_unlock(&ifalias_mutex
);
1322 kfree_rcu(new_alias
, rcuhead
);
1326 EXPORT_SYMBOL(dev_set_alias
);
1329 * dev_get_alias - get ifalias of a device
1331 * @name: buffer to store name of ifalias
1332 * @len: size of buffer
1334 * get ifalias for a device. Caller must make sure dev cannot go
1335 * away, e.g. rcu read lock or own a reference count to device.
1337 int dev_get_alias(const struct net_device
*dev
, char *name
, size_t len
)
1339 const struct dev_ifalias
*alias
;
1343 alias
= rcu_dereference(dev
->ifalias
);
1345 ret
= snprintf(name
, len
, "%s", alias
->ifalias
);
1352 * netdev_features_change - device changes features
1353 * @dev: device to cause notification
1355 * Called to indicate a device has changed features.
1357 void netdev_features_change(struct net_device
*dev
)
1359 call_netdevice_notifiers(NETDEV_FEAT_CHANGE
, dev
);
1361 EXPORT_SYMBOL(netdev_features_change
);
1364 * netdev_state_change - device changes state
1365 * @dev: device to cause notification
1367 * Called to indicate a device has changed state. This function calls
1368 * the notifier chains for netdev_chain and sends a NEWLINK message
1369 * to the routing socket.
1371 void netdev_state_change(struct net_device
*dev
)
1373 if (dev
->flags
& IFF_UP
) {
1374 struct netdev_notifier_change_info change_info
= {
1378 call_netdevice_notifiers_info(NETDEV_CHANGE
,
1380 rtmsg_ifinfo(RTM_NEWLINK
, dev
, 0, GFP_KERNEL
, 0, NULL
);
1383 EXPORT_SYMBOL(netdev_state_change
);
1386 * __netdev_notify_peers - notify network peers about existence of @dev,
1387 * to be called when rtnl lock is already held.
1388 * @dev: network device
1390 * Generate traffic such that interested network peers are aware of
1391 * @dev, such as by generating a gratuitous ARP. This may be used when
1392 * a device wants to inform the rest of the network about some sort of
1393 * reconfiguration such as a failover event or virtual machine
1396 void __netdev_notify_peers(struct net_device
*dev
)
1399 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS
, dev
);
1400 call_netdevice_notifiers(NETDEV_RESEND_IGMP
, dev
);
1402 EXPORT_SYMBOL(__netdev_notify_peers
);
1405 * netdev_notify_peers - notify network peers about existence of @dev
1406 * @dev: network device
1408 * Generate traffic such that interested network peers are aware of
1409 * @dev, such as by generating a gratuitous ARP. This may be used when
1410 * a device wants to inform the rest of the network about some sort of
1411 * reconfiguration such as a failover event or virtual machine
1414 void netdev_notify_peers(struct net_device
*dev
)
1417 __netdev_notify_peers(dev
);
1420 EXPORT_SYMBOL(netdev_notify_peers
);
1422 static int napi_threaded_poll(void *data
);
1424 static int napi_kthread_create(struct napi_struct
*n
)
1428 /* Create and wake up the kthread once to put it in
1429 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1430 * warning and work with loadavg.
1432 n
->thread
= kthread_run(napi_threaded_poll
, n
, "napi/%s-%d",
1433 n
->dev
->name
, n
->napi_id
);
1434 if (IS_ERR(n
->thread
)) {
1435 err
= PTR_ERR(n
->thread
);
1436 pr_err("kthread_run failed with err %d\n", err
);
1443 static int __dev_open(struct net_device
*dev
, struct netlink_ext_ack
*extack
)
1445 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1449 dev_addr_check(dev
);
1451 if (!netif_device_present(dev
)) {
1452 /* may be detached because parent is runtime-suspended */
1453 if (dev
->dev
.parent
)
1454 pm_runtime_resume(dev
->dev
.parent
);
1455 if (!netif_device_present(dev
))
1459 /* Block netpoll from trying to do any rx path servicing.
1460 * If we don't do this there is a chance ndo_poll_controller
1461 * or ndo_poll may be running while we open the device
1463 netpoll_poll_disable(dev
);
1465 ret
= call_netdevice_notifiers_extack(NETDEV_PRE_UP
, dev
, extack
);
1466 ret
= notifier_to_errno(ret
);
1470 set_bit(__LINK_STATE_START
, &dev
->state
);
1472 if (ops
->ndo_validate_addr
)
1473 ret
= ops
->ndo_validate_addr(dev
);
1475 if (!ret
&& ops
->ndo_open
)
1476 ret
= ops
->ndo_open(dev
);
1478 netpoll_poll_enable(dev
);
1481 clear_bit(__LINK_STATE_START
, &dev
->state
);
1483 dev
->flags
|= IFF_UP
;
1484 dev_set_rx_mode(dev
);
1486 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
1493 * dev_open - prepare an interface for use.
1494 * @dev: device to open
1495 * @extack: netlink extended ack
1497 * Takes a device from down to up state. The device's private open
1498 * function is invoked and then the multicast lists are loaded. Finally
1499 * the device is moved into the up state and a %NETDEV_UP message is
1500 * sent to the netdev notifier chain.
1502 * Calling this function on an active interface is a nop. On a failure
1503 * a negative errno code is returned.
1505 int dev_open(struct net_device
*dev
, struct netlink_ext_ack
*extack
)
1509 if (dev
->flags
& IFF_UP
)
1512 ret
= __dev_open(dev
, extack
);
1516 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
| IFF_RUNNING
, GFP_KERNEL
, 0, NULL
);
1517 call_netdevice_notifiers(NETDEV_UP
, dev
);
1521 EXPORT_SYMBOL(dev_open
);
1523 static void __dev_close_many(struct list_head
*head
)
1525 struct net_device
*dev
;
1530 list_for_each_entry(dev
, head
, close_list
) {
1531 /* Temporarily disable netpoll until the interface is down */
1532 netpoll_poll_disable(dev
);
1534 call_netdevice_notifiers(NETDEV_GOING_DOWN
, dev
);
1536 clear_bit(__LINK_STATE_START
, &dev
->state
);
1538 /* Synchronize to scheduled poll. We cannot touch poll list, it
1539 * can be even on different cpu. So just clear netif_running().
1541 * dev->stop() will invoke napi_disable() on all of it's
1542 * napi_struct instances on this device.
1544 smp_mb__after_atomic(); /* Commit netif_running(). */
1547 dev_deactivate_many(head
);
1549 list_for_each_entry(dev
, head
, close_list
) {
1550 const struct net_device_ops
*ops
= dev
->netdev_ops
;
1553 * Call the device specific close. This cannot fail.
1554 * Only if device is UP
1556 * We allow it to be called even after a DETACH hot-plug
1562 dev
->flags
&= ~IFF_UP
;
1563 netpoll_poll_enable(dev
);
1567 static void __dev_close(struct net_device
*dev
)
1571 list_add(&dev
->close_list
, &single
);
1572 __dev_close_many(&single
);
1576 void dev_close_many(struct list_head
*head
, bool unlink
)
1578 struct net_device
*dev
, *tmp
;
1580 /* Remove the devices that don't need to be closed */
1581 list_for_each_entry_safe(dev
, tmp
, head
, close_list
)
1582 if (!(dev
->flags
& IFF_UP
))
1583 list_del_init(&dev
->close_list
);
1585 __dev_close_many(head
);
1587 list_for_each_entry_safe(dev
, tmp
, head
, close_list
) {
1588 rtmsg_ifinfo(RTM_NEWLINK
, dev
, IFF_UP
| IFF_RUNNING
, GFP_KERNEL
, 0, NULL
);
1589 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
1591 list_del_init(&dev
->close_list
);
1594 EXPORT_SYMBOL(dev_close_many
);
1597 * dev_close - shutdown an interface.
1598 * @dev: device to shutdown
1600 * This function moves an active device into down state. A
1601 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1602 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1605 void dev_close(struct net_device
*dev
)
1607 if (dev
->flags
& IFF_UP
) {
1610 list_add(&dev
->close_list
, &single
);
1611 dev_close_many(&single
, true);
1615 EXPORT_SYMBOL(dev_close
);
1619 * dev_disable_lro - disable Large Receive Offload on a device
1622 * Disable Large Receive Offload (LRO) on a net device. Must be
1623 * called under RTNL. This is needed if received packets may be
1624 * forwarded to another interface.
1626 void dev_disable_lro(struct net_device
*dev
)
1628 struct net_device
*lower_dev
;
1629 struct list_head
*iter
;
1631 dev
->wanted_features
&= ~NETIF_F_LRO
;
1632 netdev_update_features(dev
);
1634 if (unlikely(dev
->features
& NETIF_F_LRO
))
1635 netdev_WARN(dev
, "failed to disable LRO!\n");
1637 netdev_for_each_lower_dev(dev
, lower_dev
, iter
)
1638 dev_disable_lro(lower_dev
);
1640 EXPORT_SYMBOL(dev_disable_lro
);
1643 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1646 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1647 * called under RTNL. This is needed if Generic XDP is installed on
1650 static void dev_disable_gro_hw(struct net_device
*dev
)
1652 dev
->wanted_features
&= ~NETIF_F_GRO_HW
;
1653 netdev_update_features(dev
);
1655 if (unlikely(dev
->features
& NETIF_F_GRO_HW
))
1656 netdev_WARN(dev
, "failed to disable GRO_HW!\n");
1659 const char *netdev_cmd_to_name(enum netdev_cmd cmd
)
1662 case NETDEV_##val: \
1663 return "NETDEV_" __stringify(val);
1665 N(UP
) N(DOWN
) N(REBOOT
) N(CHANGE
) N(REGISTER
) N(UNREGISTER
)
1666 N(CHANGEMTU
) N(CHANGEADDR
) N(GOING_DOWN
) N(CHANGENAME
) N(FEAT_CHANGE
)
1667 N(BONDING_FAILOVER
) N(PRE_UP
) N(PRE_TYPE_CHANGE
) N(POST_TYPE_CHANGE
)
1668 N(POST_INIT
) N(PRE_UNINIT
) N(RELEASE
) N(NOTIFY_PEERS
) N(JOIN
)
1669 N(CHANGEUPPER
) N(RESEND_IGMP
) N(PRECHANGEMTU
) N(CHANGEINFODATA
)
1670 N(BONDING_INFO
) N(PRECHANGEUPPER
) N(CHANGELOWERSTATE
)
1671 N(UDP_TUNNEL_PUSH_INFO
) N(UDP_TUNNEL_DROP_INFO
) N(CHANGE_TX_QUEUE_LEN
)
1672 N(CVLAN_FILTER_PUSH_INFO
) N(CVLAN_FILTER_DROP_INFO
)
1673 N(SVLAN_FILTER_PUSH_INFO
) N(SVLAN_FILTER_DROP_INFO
)
1674 N(PRE_CHANGEADDR
) N(OFFLOAD_XSTATS_ENABLE
) N(OFFLOAD_XSTATS_DISABLE
)
1675 N(OFFLOAD_XSTATS_REPORT_USED
) N(OFFLOAD_XSTATS_REPORT_DELTA
)
1679 return "UNKNOWN_NETDEV_EVENT";
1681 EXPORT_SYMBOL_GPL(netdev_cmd_to_name
);
1683 static int call_netdevice_notifier(struct notifier_block
*nb
, unsigned long val
,
1684 struct net_device
*dev
)
1686 struct netdev_notifier_info info
= {
1690 return nb
->notifier_call(nb
, val
, &info
);
1693 static int call_netdevice_register_notifiers(struct notifier_block
*nb
,
1694 struct net_device
*dev
)
1698 err
= call_netdevice_notifier(nb
, NETDEV_REGISTER
, dev
);
1699 err
= notifier_to_errno(err
);
1703 if (!(dev
->flags
& IFF_UP
))
1706 call_netdevice_notifier(nb
, NETDEV_UP
, dev
);
1710 static void call_netdevice_unregister_notifiers(struct notifier_block
*nb
,
1711 struct net_device
*dev
)
1713 if (dev
->flags
& IFF_UP
) {
1714 call_netdevice_notifier(nb
, NETDEV_GOING_DOWN
,
1716 call_netdevice_notifier(nb
, NETDEV_DOWN
, dev
);
1718 call_netdevice_notifier(nb
, NETDEV_UNREGISTER
, dev
);
1721 static int call_netdevice_register_net_notifiers(struct notifier_block
*nb
,
1724 struct net_device
*dev
;
1727 for_each_netdev(net
, dev
) {
1728 err
= call_netdevice_register_notifiers(nb
, dev
);
1735 for_each_netdev_continue_reverse(net
, dev
)
1736 call_netdevice_unregister_notifiers(nb
, dev
);
1740 static void call_netdevice_unregister_net_notifiers(struct notifier_block
*nb
,
1743 struct net_device
*dev
;
1745 for_each_netdev(net
, dev
)
1746 call_netdevice_unregister_notifiers(nb
, dev
);
1749 static int dev_boot_phase
= 1;
1752 * register_netdevice_notifier - register a network notifier block
1755 * Register a notifier to be called when network device events occur.
1756 * The notifier passed is linked into the kernel structures and must
1757 * not be reused until it has been unregistered. A negative errno code
1758 * is returned on a failure.
1760 * When registered all registration and up events are replayed
1761 * to the new notifier to allow device to have a race free
1762 * view of the network device list.
1765 int register_netdevice_notifier(struct notifier_block
*nb
)
1770 /* Close race with setup_net() and cleanup_net() */
1771 down_write(&pernet_ops_rwsem
);
1773 err
= raw_notifier_chain_register(&netdev_chain
, nb
);
1779 err
= call_netdevice_register_net_notifiers(nb
, net
);
1786 up_write(&pernet_ops_rwsem
);
1790 for_each_net_continue_reverse(net
)
1791 call_netdevice_unregister_net_notifiers(nb
, net
);
1793 raw_notifier_chain_unregister(&netdev_chain
, nb
);
1796 EXPORT_SYMBOL(register_netdevice_notifier
);
1799 * unregister_netdevice_notifier - unregister a network notifier block
1802 * Unregister a notifier previously registered by
1803 * register_netdevice_notifier(). The notifier is unlinked into the
1804 * kernel structures and may then be reused. A negative errno code
1805 * is returned on a failure.
1807 * After unregistering unregister and down device events are synthesized
1808 * for all devices on the device list to the removed notifier to remove
1809 * the need for special case cleanup code.
1812 int unregister_netdevice_notifier(struct notifier_block
*nb
)
1817 /* Close race with setup_net() and cleanup_net() */
1818 down_write(&pernet_ops_rwsem
);
1820 err
= raw_notifier_chain_unregister(&netdev_chain
, nb
);
1825 call_netdevice_unregister_net_notifiers(nb
, net
);
1829 up_write(&pernet_ops_rwsem
);
1832 EXPORT_SYMBOL(unregister_netdevice_notifier
);
1834 static int __register_netdevice_notifier_net(struct net
*net
,
1835 struct notifier_block
*nb
,
1836 bool ignore_call_fail
)
1840 err
= raw_notifier_chain_register(&net
->netdev_chain
, nb
);
1846 err
= call_netdevice_register_net_notifiers(nb
, net
);
1847 if (err
&& !ignore_call_fail
)
1848 goto chain_unregister
;
1853 raw_notifier_chain_unregister(&net
->netdev_chain
, nb
);
1857 static int __unregister_netdevice_notifier_net(struct net
*net
,
1858 struct notifier_block
*nb
)
1862 err
= raw_notifier_chain_unregister(&net
->netdev_chain
, nb
);
1866 call_netdevice_unregister_net_notifiers(nb
, net
);
1871 * register_netdevice_notifier_net - register a per-netns network notifier block
1872 * @net: network namespace
1875 * Register a notifier to be called when network device events occur.
1876 * The notifier passed is linked into the kernel structures and must
1877 * not be reused until it has been unregistered. A negative errno code
1878 * is returned on a failure.
1880 * When registered all registration and up events are replayed
1881 * to the new notifier to allow device to have a race free
1882 * view of the network device list.
1885 int register_netdevice_notifier_net(struct net
*net
, struct notifier_block
*nb
)
1890 err
= __register_netdevice_notifier_net(net
, nb
, false);
1894 EXPORT_SYMBOL(register_netdevice_notifier_net
);
1897 * unregister_netdevice_notifier_net - unregister a per-netns
1898 * network notifier block
1899 * @net: network namespace
1902 * Unregister a notifier previously registered by
1903 * register_netdevice_notifier_net(). The notifier is unlinked from the
1904 * kernel structures and may then be reused. A negative errno code
1905 * is returned on a failure.
1907 * After unregistering unregister and down device events are synthesized
1908 * for all devices on the device list to the removed notifier to remove
1909 * the need for special case cleanup code.
1912 int unregister_netdevice_notifier_net(struct net
*net
,
1913 struct notifier_block
*nb
)
1918 err
= __unregister_netdevice_notifier_net(net
, nb
);
1922 EXPORT_SYMBOL(unregister_netdevice_notifier_net
);
1924 static void __move_netdevice_notifier_net(struct net
*src_net
,
1925 struct net
*dst_net
,
1926 struct notifier_block
*nb
)
1928 __unregister_netdevice_notifier_net(src_net
, nb
);
1929 __register_netdevice_notifier_net(dst_net
, nb
, true);
1932 int register_netdevice_notifier_dev_net(struct net_device
*dev
,
1933 struct notifier_block
*nb
,
1934 struct netdev_net_notifier
*nn
)
1939 err
= __register_netdevice_notifier_net(dev_net(dev
), nb
, false);
1942 list_add(&nn
->list
, &dev
->net_notifier_list
);
1947 EXPORT_SYMBOL(register_netdevice_notifier_dev_net
);
1949 int unregister_netdevice_notifier_dev_net(struct net_device
*dev
,
1950 struct notifier_block
*nb
,
1951 struct netdev_net_notifier
*nn
)
1956 list_del(&nn
->list
);
1957 err
= __unregister_netdevice_notifier_net(dev_net(dev
), nb
);
1961 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net
);
1963 static void move_netdevice_notifiers_dev_net(struct net_device
*dev
,
1966 struct netdev_net_notifier
*nn
;
1968 list_for_each_entry(nn
, &dev
->net_notifier_list
, list
)
1969 __move_netdevice_notifier_net(dev_net(dev
), net
, nn
->nb
);
1973 * call_netdevice_notifiers_info - call all network notifier blocks
1974 * @val: value passed unmodified to notifier function
1975 * @info: notifier information data
1977 * Call all network notifier blocks. Parameters and return value
1978 * are as for raw_notifier_call_chain().
1981 int call_netdevice_notifiers_info(unsigned long val
,
1982 struct netdev_notifier_info
*info
)
1984 struct net
*net
= dev_net(info
->dev
);
1989 /* Run per-netns notifier block chain first, then run the global one.
1990 * Hopefully, one day, the global one is going to be removed after
1991 * all notifier block registrators get converted to be per-netns.
1993 ret
= raw_notifier_call_chain(&net
->netdev_chain
, val
, info
);
1994 if (ret
& NOTIFY_STOP_MASK
)
1996 return raw_notifier_call_chain(&netdev_chain
, val
, info
);
2000 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2001 * for and rollback on error
2002 * @val_up: value passed unmodified to notifier function
2003 * @val_down: value passed unmodified to the notifier function when
2004 * recovering from an error on @val_up
2005 * @info: notifier information data
2007 * Call all per-netns network notifier blocks, but not notifier blocks on
2008 * the global notifier chain. Parameters and return value are as for
2009 * raw_notifier_call_chain_robust().
2013 call_netdevice_notifiers_info_robust(unsigned long val_up
,
2014 unsigned long val_down
,
2015 struct netdev_notifier_info
*info
)
2017 struct net
*net
= dev_net(info
->dev
);
2021 return raw_notifier_call_chain_robust(&net
->netdev_chain
,
2022 val_up
, val_down
, info
);
2025 static int call_netdevice_notifiers_extack(unsigned long val
,
2026 struct net_device
*dev
,
2027 struct netlink_ext_ack
*extack
)
2029 struct netdev_notifier_info info
= {
2034 return call_netdevice_notifiers_info(val
, &info
);
2038 * call_netdevice_notifiers - call all network notifier blocks
2039 * @val: value passed unmodified to notifier function
2040 * @dev: net_device pointer passed unmodified to notifier function
2042 * Call all network notifier blocks. Parameters and return value
2043 * are as for raw_notifier_call_chain().
2046 int call_netdevice_notifiers(unsigned long val
, struct net_device
*dev
)
2048 return call_netdevice_notifiers_extack(val
, dev
, NULL
);
2050 EXPORT_SYMBOL(call_netdevice_notifiers
);
2053 * call_netdevice_notifiers_mtu - call all network notifier blocks
2054 * @val: value passed unmodified to notifier function
2055 * @dev: net_device pointer passed unmodified to notifier function
2056 * @arg: additional u32 argument passed to the notifier function
2058 * Call all network notifier blocks. Parameters and return value
2059 * are as for raw_notifier_call_chain().
2061 static int call_netdevice_notifiers_mtu(unsigned long val
,
2062 struct net_device
*dev
, u32 arg
)
2064 struct netdev_notifier_info_ext info
= {
2069 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext
, info
) != 0);
2071 return call_netdevice_notifiers_info(val
, &info
.info
);
2074 #ifdef CONFIG_NET_INGRESS
2075 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key
);
2077 void net_inc_ingress_queue(void)
2079 static_branch_inc(&ingress_needed_key
);
2081 EXPORT_SYMBOL_GPL(net_inc_ingress_queue
);
2083 void net_dec_ingress_queue(void)
2085 static_branch_dec(&ingress_needed_key
);
2087 EXPORT_SYMBOL_GPL(net_dec_ingress_queue
);
2090 #ifdef CONFIG_NET_EGRESS
2091 static DEFINE_STATIC_KEY_FALSE(egress_needed_key
);
2093 void net_inc_egress_queue(void)
2095 static_branch_inc(&egress_needed_key
);
2097 EXPORT_SYMBOL_GPL(net_inc_egress_queue
);
2099 void net_dec_egress_queue(void)
2101 static_branch_dec(&egress_needed_key
);
2103 EXPORT_SYMBOL_GPL(net_dec_egress_queue
);
2106 #ifdef CONFIG_NET_CLS_ACT
2107 DEFINE_STATIC_KEY_FALSE(tcf_bypass_check_needed_key
);
2108 EXPORT_SYMBOL(tcf_bypass_check_needed_key
);
2111 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key
);
2112 EXPORT_SYMBOL(netstamp_needed_key
);
2113 #ifdef CONFIG_JUMP_LABEL
2114 static atomic_t netstamp_needed_deferred
;
2115 static atomic_t netstamp_wanted
;
2116 static void netstamp_clear(struct work_struct
*work
)
2118 int deferred
= atomic_xchg(&netstamp_needed_deferred
, 0);
2121 wanted
= atomic_add_return(deferred
, &netstamp_wanted
);
2123 static_branch_enable(&netstamp_needed_key
);
2125 static_branch_disable(&netstamp_needed_key
);
2127 static DECLARE_WORK(netstamp_work
, netstamp_clear
);
2130 void net_enable_timestamp(void)
2132 #ifdef CONFIG_JUMP_LABEL
2133 int wanted
= atomic_read(&netstamp_wanted
);
2135 while (wanted
> 0) {
2136 if (atomic_try_cmpxchg(&netstamp_wanted
, &wanted
, wanted
+ 1))
2139 atomic_inc(&netstamp_needed_deferred
);
2140 schedule_work(&netstamp_work
);
2142 static_branch_inc(&netstamp_needed_key
);
2145 EXPORT_SYMBOL(net_enable_timestamp
);
2147 void net_disable_timestamp(void)
2149 #ifdef CONFIG_JUMP_LABEL
2150 int wanted
= atomic_read(&netstamp_wanted
);
2152 while (wanted
> 1) {
2153 if (atomic_try_cmpxchg(&netstamp_wanted
, &wanted
, wanted
- 1))
2156 atomic_dec(&netstamp_needed_deferred
);
2157 schedule_work(&netstamp_work
);
2159 static_branch_dec(&netstamp_needed_key
);
2162 EXPORT_SYMBOL(net_disable_timestamp
);
2164 static inline void net_timestamp_set(struct sk_buff
*skb
)
2167 skb
->tstamp_type
= SKB_CLOCK_REALTIME
;
2168 if (static_branch_unlikely(&netstamp_needed_key
))
2169 skb
->tstamp
= ktime_get_real();
2172 #define net_timestamp_check(COND, SKB) \
2173 if (static_branch_unlikely(&netstamp_needed_key)) { \
2174 if ((COND) && !(SKB)->tstamp) \
2175 (SKB)->tstamp = ktime_get_real(); \
2178 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2180 return __is_skb_forwardable(dev
, skb
, true);
2182 EXPORT_SYMBOL_GPL(is_skb_forwardable
);
2184 static int __dev_forward_skb2(struct net_device
*dev
, struct sk_buff
*skb
,
2187 int ret
= ____dev_forward_skb(dev
, skb
, check_mtu
);
2190 skb
->protocol
= eth_type_trans(skb
, dev
);
2191 skb_postpull_rcsum(skb
, eth_hdr(skb
), ETH_HLEN
);
2197 int __dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
2199 return __dev_forward_skb2(dev
, skb
, true);
2201 EXPORT_SYMBOL_GPL(__dev_forward_skb
);
2204 * dev_forward_skb - loopback an skb to another netif
2206 * @dev: destination network device
2207 * @skb: buffer to forward
2210 * NET_RX_SUCCESS (no congestion)
2211 * NET_RX_DROP (packet was dropped, but freed)
2213 * dev_forward_skb can be used for injecting an skb from the
2214 * start_xmit function of one device into the receive queue
2215 * of another device.
2217 * The receiving device may be in another namespace, so
2218 * we have to clear all information in the skb that could
2219 * impact namespace isolation.
2221 int dev_forward_skb(struct net_device
*dev
, struct sk_buff
*skb
)
2223 return __dev_forward_skb(dev
, skb
) ?: netif_rx_internal(skb
);
2225 EXPORT_SYMBOL_GPL(dev_forward_skb
);
2227 int dev_forward_skb_nomtu(struct net_device
*dev
, struct sk_buff
*skb
)
2229 return __dev_forward_skb2(dev
, skb
, false) ?: netif_rx_internal(skb
);
2232 static inline int deliver_skb(struct sk_buff
*skb
,
2233 struct packet_type
*pt_prev
,
2234 struct net_device
*orig_dev
)
2236 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
2238 refcount_inc(&skb
->users
);
2239 return pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
2242 static inline void deliver_ptype_list_skb(struct sk_buff
*skb
,
2243 struct packet_type
**pt
,
2244 struct net_device
*orig_dev
,
2246 struct list_head
*ptype_list
)
2248 struct packet_type
*ptype
, *pt_prev
= *pt
;
2250 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
2251 if (ptype
->type
!= type
)
2254 deliver_skb(skb
, pt_prev
, orig_dev
);
2260 static inline bool skb_loop_sk(struct packet_type
*ptype
, struct sk_buff
*skb
)
2262 if (!ptype
->af_packet_priv
|| !skb
->sk
)
2265 if (ptype
->id_match
)
2266 return ptype
->id_match(ptype
, skb
->sk
);
2267 else if ((struct sock
*)ptype
->af_packet_priv
== skb
->sk
)
2274 * dev_nit_active - return true if any network interface taps are in use
2276 * @dev: network device to check for the presence of taps
2278 bool dev_nit_active(struct net_device
*dev
)
2280 return !list_empty(&net_hotdata
.ptype_all
) ||
2281 !list_empty(&dev
->ptype_all
);
2283 EXPORT_SYMBOL_GPL(dev_nit_active
);
2286 * Support routine. Sends outgoing frames to any network
2287 * taps currently in use.
2290 void dev_queue_xmit_nit(struct sk_buff
*skb
, struct net_device
*dev
)
2292 struct list_head
*ptype_list
= &net_hotdata
.ptype_all
;
2293 struct packet_type
*ptype
, *pt_prev
= NULL
;
2294 struct sk_buff
*skb2
= NULL
;
2298 list_for_each_entry_rcu(ptype
, ptype_list
, list
) {
2299 if (READ_ONCE(ptype
->ignore_outgoing
))
2302 /* Never send packets back to the socket
2303 * they originated from - MvS (miquels@drinkel.ow.org)
2305 if (skb_loop_sk(ptype
, skb
))
2309 deliver_skb(skb2
, pt_prev
, skb
->dev
);
2314 /* need to clone skb, done only once */
2315 skb2
= skb_clone(skb
, GFP_ATOMIC
);
2319 net_timestamp_set(skb2
);
2321 /* skb->nh should be correctly
2322 * set by sender, so that the second statement is
2323 * just protection against buggy protocols.
2325 skb_reset_mac_header(skb2
);
2327 if (skb_network_header(skb2
) < skb2
->data
||
2328 skb_network_header(skb2
) > skb_tail_pointer(skb2
)) {
2329 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2330 ntohs(skb2
->protocol
),
2332 skb_reset_network_header(skb2
);
2335 skb2
->transport_header
= skb2
->network_header
;
2336 skb2
->pkt_type
= PACKET_OUTGOING
;
2340 if (ptype_list
== &net_hotdata
.ptype_all
) {
2341 ptype_list
= &dev
->ptype_all
;
2346 if (!skb_orphan_frags_rx(skb2
, GFP_ATOMIC
))
2347 pt_prev
->func(skb2
, skb
->dev
, pt_prev
, skb
->dev
);
2353 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit
);
2356 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2357 * @dev: Network device
2358 * @txq: number of queues available
2360 * If real_num_tx_queues is changed the tc mappings may no longer be
2361 * valid. To resolve this verify the tc mapping remains valid and if
2362 * not NULL the mapping. With no priorities mapping to this
2363 * offset/count pair it will no longer be used. In the worst case TC0
2364 * is invalid nothing can be done so disable priority mappings. If is
2365 * expected that drivers will fix this mapping if they can before
2366 * calling netif_set_real_num_tx_queues.
2368 static void netif_setup_tc(struct net_device
*dev
, unsigned int txq
)
2371 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2373 /* If TC0 is invalidated disable TC mapping */
2374 if (tc
->offset
+ tc
->count
> txq
) {
2375 netdev_warn(dev
, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2380 /* Invalidated prio to tc mappings set to TC0 */
2381 for (i
= 1; i
< TC_BITMASK
+ 1; i
++) {
2382 int q
= netdev_get_prio_tc_map(dev
, i
);
2384 tc
= &dev
->tc_to_txq
[q
];
2385 if (tc
->offset
+ tc
->count
> txq
) {
2386 netdev_warn(dev
, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2388 netdev_set_prio_tc_map(dev
, i
, 0);
2393 int netdev_txq_to_tc(struct net_device
*dev
, unsigned int txq
)
2396 struct netdev_tc_txq
*tc
= &dev
->tc_to_txq
[0];
2399 /* walk through the TCs and see if it falls into any of them */
2400 for (i
= 0; i
< TC_MAX_QUEUE
; i
++, tc
++) {
2401 if ((txq
- tc
->offset
) < tc
->count
)
2405 /* didn't find it, just return -1 to indicate no match */
2411 EXPORT_SYMBOL(netdev_txq_to_tc
);
2414 static struct static_key xps_needed __read_mostly
;
2415 static struct static_key xps_rxqs_needed __read_mostly
;
2416 static DEFINE_MUTEX(xps_map_mutex
);
2417 #define xmap_dereference(P) \
2418 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2420 static bool remove_xps_queue(struct xps_dev_maps
*dev_maps
,
2421 struct xps_dev_maps
*old_maps
, int tci
, u16 index
)
2423 struct xps_map
*map
= NULL
;
2426 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2430 for (pos
= map
->len
; pos
--;) {
2431 if (map
->queues
[pos
] != index
)
2435 map
->queues
[pos
] = map
->queues
[--map
->len
];
2440 RCU_INIT_POINTER(old_maps
->attr_map
[tci
], NULL
);
2441 RCU_INIT_POINTER(dev_maps
->attr_map
[tci
], NULL
);
2442 kfree_rcu(map
, rcu
);
2449 static bool remove_xps_queue_cpu(struct net_device
*dev
,
2450 struct xps_dev_maps
*dev_maps
,
2451 int cpu
, u16 offset
, u16 count
)
2453 int num_tc
= dev_maps
->num_tc
;
2454 bool active
= false;
2457 for (tci
= cpu
* num_tc
; num_tc
--; tci
++) {
2460 for (i
= count
, j
= offset
; i
--; j
++) {
2461 if (!remove_xps_queue(dev_maps
, NULL
, tci
, j
))
2471 static void reset_xps_maps(struct net_device
*dev
,
2472 struct xps_dev_maps
*dev_maps
,
2473 enum xps_map_type type
)
2475 static_key_slow_dec_cpuslocked(&xps_needed
);
2476 if (type
== XPS_RXQS
)
2477 static_key_slow_dec_cpuslocked(&xps_rxqs_needed
);
2479 RCU_INIT_POINTER(dev
->xps_maps
[type
], NULL
);
2481 kfree_rcu(dev_maps
, rcu
);
2484 static void clean_xps_maps(struct net_device
*dev
, enum xps_map_type type
,
2485 u16 offset
, u16 count
)
2487 struct xps_dev_maps
*dev_maps
;
2488 bool active
= false;
2491 dev_maps
= xmap_dereference(dev
->xps_maps
[type
]);
2495 for (j
= 0; j
< dev_maps
->nr_ids
; j
++)
2496 active
|= remove_xps_queue_cpu(dev
, dev_maps
, j
, offset
, count
);
2498 reset_xps_maps(dev
, dev_maps
, type
);
2500 if (type
== XPS_CPUS
) {
2501 for (i
= offset
+ (count
- 1); count
--; i
--)
2502 netdev_queue_numa_node_write(
2503 netdev_get_tx_queue(dev
, i
), NUMA_NO_NODE
);
2507 static void netif_reset_xps_queues(struct net_device
*dev
, u16 offset
,
2510 if (!static_key_false(&xps_needed
))
2514 mutex_lock(&xps_map_mutex
);
2516 if (static_key_false(&xps_rxqs_needed
))
2517 clean_xps_maps(dev
, XPS_RXQS
, offset
, count
);
2519 clean_xps_maps(dev
, XPS_CPUS
, offset
, count
);
2521 mutex_unlock(&xps_map_mutex
);
2525 static void netif_reset_xps_queues_gt(struct net_device
*dev
, u16 index
)
2527 netif_reset_xps_queues(dev
, index
, dev
->num_tx_queues
- index
);
2530 static struct xps_map
*expand_xps_map(struct xps_map
*map
, int attr_index
,
2531 u16 index
, bool is_rxqs_map
)
2533 struct xps_map
*new_map
;
2534 int alloc_len
= XPS_MIN_MAP_ALLOC
;
2537 for (pos
= 0; map
&& pos
< map
->len
; pos
++) {
2538 if (map
->queues
[pos
] != index
)
2543 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2545 if (pos
< map
->alloc_len
)
2548 alloc_len
= map
->alloc_len
* 2;
2551 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2555 new_map
= kzalloc(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
);
2557 new_map
= kzalloc_node(XPS_MAP_SIZE(alloc_len
), GFP_KERNEL
,
2558 cpu_to_node(attr_index
));
2562 for (i
= 0; i
< pos
; i
++)
2563 new_map
->queues
[i
] = map
->queues
[i
];
2564 new_map
->alloc_len
= alloc_len
;
2570 /* Copy xps maps at a given index */
2571 static void xps_copy_dev_maps(struct xps_dev_maps
*dev_maps
,
2572 struct xps_dev_maps
*new_dev_maps
, int index
,
2573 int tc
, bool skip_tc
)
2575 int i
, tci
= index
* dev_maps
->num_tc
;
2576 struct xps_map
*map
;
2578 /* copy maps belonging to foreign traffic classes */
2579 for (i
= 0; i
< dev_maps
->num_tc
; i
++, tci
++) {
2580 if (i
== tc
&& skip_tc
)
2583 /* fill in the new device map from the old device map */
2584 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2585 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2589 /* Must be called under cpus_read_lock */
2590 int __netif_set_xps_queue(struct net_device
*dev
, const unsigned long *mask
,
2591 u16 index
, enum xps_map_type type
)
2593 struct xps_dev_maps
*dev_maps
, *new_dev_maps
= NULL
, *old_dev_maps
= NULL
;
2594 const unsigned long *online_mask
= NULL
;
2595 bool active
= false, copy
= false;
2596 int i
, j
, tci
, numa_node_id
= -2;
2597 int maps_sz
, num_tc
= 1, tc
= 0;
2598 struct xps_map
*map
, *new_map
;
2599 unsigned int nr_ids
;
2601 WARN_ON_ONCE(index
>= dev
->num_tx_queues
);
2604 /* Do not allow XPS on subordinate device directly */
2605 num_tc
= dev
->num_tc
;
2609 /* If queue belongs to subordinate dev use its map */
2610 dev
= netdev_get_tx_queue(dev
, index
)->sb_dev
? : dev
;
2612 tc
= netdev_txq_to_tc(dev
, index
);
2617 mutex_lock(&xps_map_mutex
);
2619 dev_maps
= xmap_dereference(dev
->xps_maps
[type
]);
2620 if (type
== XPS_RXQS
) {
2621 maps_sz
= XPS_RXQ_DEV_MAPS_SIZE(num_tc
, dev
->num_rx_queues
);
2622 nr_ids
= dev
->num_rx_queues
;
2624 maps_sz
= XPS_CPU_DEV_MAPS_SIZE(num_tc
);
2625 if (num_possible_cpus() > 1)
2626 online_mask
= cpumask_bits(cpu_online_mask
);
2627 nr_ids
= nr_cpu_ids
;
2630 if (maps_sz
< L1_CACHE_BYTES
)
2631 maps_sz
= L1_CACHE_BYTES
;
2633 /* The old dev_maps could be larger or smaller than the one we're
2634 * setting up now, as dev->num_tc or nr_ids could have been updated in
2635 * between. We could try to be smart, but let's be safe instead and only
2636 * copy foreign traffic classes if the two map sizes match.
2639 dev_maps
->num_tc
== num_tc
&& dev_maps
->nr_ids
== nr_ids
)
2642 /* allocate memory for queue storage */
2643 for (j
= -1; j
= netif_attrmask_next_and(j
, online_mask
, mask
, nr_ids
),
2645 if (!new_dev_maps
) {
2646 new_dev_maps
= kzalloc(maps_sz
, GFP_KERNEL
);
2647 if (!new_dev_maps
) {
2648 mutex_unlock(&xps_map_mutex
);
2652 new_dev_maps
->nr_ids
= nr_ids
;
2653 new_dev_maps
->num_tc
= num_tc
;
2656 tci
= j
* num_tc
+ tc
;
2657 map
= copy
? xmap_dereference(dev_maps
->attr_map
[tci
]) : NULL
;
2659 map
= expand_xps_map(map
, j
, index
, type
== XPS_RXQS
);
2663 RCU_INIT_POINTER(new_dev_maps
->attr_map
[tci
], map
);
2667 goto out_no_new_maps
;
2670 /* Increment static keys at most once per type */
2671 static_key_slow_inc_cpuslocked(&xps_needed
);
2672 if (type
== XPS_RXQS
)
2673 static_key_slow_inc_cpuslocked(&xps_rxqs_needed
);
2676 for (j
= 0; j
< nr_ids
; j
++) {
2677 bool skip_tc
= false;
2679 tci
= j
* num_tc
+ tc
;
2680 if (netif_attr_test_mask(j
, mask
, nr_ids
) &&
2681 netif_attr_test_online(j
, online_mask
, nr_ids
)) {
2682 /* add tx-queue to CPU/rx-queue maps */
2687 map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2688 while ((pos
< map
->len
) && (map
->queues
[pos
] != index
))
2691 if (pos
== map
->len
)
2692 map
->queues
[map
->len
++] = index
;
2694 if (type
== XPS_CPUS
) {
2695 if (numa_node_id
== -2)
2696 numa_node_id
= cpu_to_node(j
);
2697 else if (numa_node_id
!= cpu_to_node(j
))
2704 xps_copy_dev_maps(dev_maps
, new_dev_maps
, j
, tc
,
2708 rcu_assign_pointer(dev
->xps_maps
[type
], new_dev_maps
);
2710 /* Cleanup old maps */
2712 goto out_no_old_maps
;
2714 for (j
= 0; j
< dev_maps
->nr_ids
; j
++) {
2715 for (i
= num_tc
, tci
= j
* dev_maps
->num_tc
; i
--; tci
++) {
2716 map
= xmap_dereference(dev_maps
->attr_map
[tci
]);
2721 new_map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2726 RCU_INIT_POINTER(dev_maps
->attr_map
[tci
], NULL
);
2727 kfree_rcu(map
, rcu
);
2731 old_dev_maps
= dev_maps
;
2734 dev_maps
= new_dev_maps
;
2738 if (type
== XPS_CPUS
)
2739 /* update Tx queue numa node */
2740 netdev_queue_numa_node_write(netdev_get_tx_queue(dev
, index
),
2741 (numa_node_id
>= 0) ?
2742 numa_node_id
: NUMA_NO_NODE
);
2747 /* removes tx-queue from unused CPUs/rx-queues */
2748 for (j
= 0; j
< dev_maps
->nr_ids
; j
++) {
2749 tci
= j
* dev_maps
->num_tc
;
2751 for (i
= 0; i
< dev_maps
->num_tc
; i
++, tci
++) {
2753 netif_attr_test_mask(j
, mask
, dev_maps
->nr_ids
) &&
2754 netif_attr_test_online(j
, online_mask
, dev_maps
->nr_ids
))
2757 active
|= remove_xps_queue(dev_maps
,
2758 copy
? old_dev_maps
: NULL
,
2764 kfree_rcu(old_dev_maps
, rcu
);
2766 /* free map if not active */
2768 reset_xps_maps(dev
, dev_maps
, type
);
2771 mutex_unlock(&xps_map_mutex
);
2775 /* remove any maps that we added */
2776 for (j
= 0; j
< nr_ids
; j
++) {
2777 for (i
= num_tc
, tci
= j
* num_tc
; i
--; tci
++) {
2778 new_map
= xmap_dereference(new_dev_maps
->attr_map
[tci
]);
2780 xmap_dereference(dev_maps
->attr_map
[tci
]) :
2782 if (new_map
&& new_map
!= map
)
2787 mutex_unlock(&xps_map_mutex
);
2789 kfree(new_dev_maps
);
2792 EXPORT_SYMBOL_GPL(__netif_set_xps_queue
);
2794 int netif_set_xps_queue(struct net_device
*dev
, const struct cpumask
*mask
,
2800 ret
= __netif_set_xps_queue(dev
, cpumask_bits(mask
), index
, XPS_CPUS
);
2805 EXPORT_SYMBOL(netif_set_xps_queue
);
2808 static void netdev_unbind_all_sb_channels(struct net_device
*dev
)
2810 struct netdev_queue
*txq
= &dev
->_tx
[dev
->num_tx_queues
];
2812 /* Unbind any subordinate channels */
2813 while (txq
-- != &dev
->_tx
[0]) {
2815 netdev_unbind_sb_channel(dev
, txq
->sb_dev
);
2819 void netdev_reset_tc(struct net_device
*dev
)
2822 netif_reset_xps_queues_gt(dev
, 0);
2824 netdev_unbind_all_sb_channels(dev
);
2826 /* Reset TC configuration of device */
2828 memset(dev
->tc_to_txq
, 0, sizeof(dev
->tc_to_txq
));
2829 memset(dev
->prio_tc_map
, 0, sizeof(dev
->prio_tc_map
));
2831 EXPORT_SYMBOL(netdev_reset_tc
);
2833 int netdev_set_tc_queue(struct net_device
*dev
, u8 tc
, u16 count
, u16 offset
)
2835 if (tc
>= dev
->num_tc
)
2839 netif_reset_xps_queues(dev
, offset
, count
);
2841 dev
->tc_to_txq
[tc
].count
= count
;
2842 dev
->tc_to_txq
[tc
].offset
= offset
;
2845 EXPORT_SYMBOL(netdev_set_tc_queue
);
2847 int netdev_set_num_tc(struct net_device
*dev
, u8 num_tc
)
2849 if (num_tc
> TC_MAX_QUEUE
)
2853 netif_reset_xps_queues_gt(dev
, 0);
2855 netdev_unbind_all_sb_channels(dev
);
2857 dev
->num_tc
= num_tc
;
2860 EXPORT_SYMBOL(netdev_set_num_tc
);
2862 void netdev_unbind_sb_channel(struct net_device
*dev
,
2863 struct net_device
*sb_dev
)
2865 struct netdev_queue
*txq
= &dev
->_tx
[dev
->num_tx_queues
];
2868 netif_reset_xps_queues_gt(sb_dev
, 0);
2870 memset(sb_dev
->tc_to_txq
, 0, sizeof(sb_dev
->tc_to_txq
));
2871 memset(sb_dev
->prio_tc_map
, 0, sizeof(sb_dev
->prio_tc_map
));
2873 while (txq
-- != &dev
->_tx
[0]) {
2874 if (txq
->sb_dev
== sb_dev
)
2878 EXPORT_SYMBOL(netdev_unbind_sb_channel
);
2880 int netdev_bind_sb_channel_queue(struct net_device
*dev
,
2881 struct net_device
*sb_dev
,
2882 u8 tc
, u16 count
, u16 offset
)
2884 /* Make certain the sb_dev and dev are already configured */
2885 if (sb_dev
->num_tc
>= 0 || tc
>= dev
->num_tc
)
2888 /* We cannot hand out queues we don't have */
2889 if ((offset
+ count
) > dev
->real_num_tx_queues
)
2892 /* Record the mapping */
2893 sb_dev
->tc_to_txq
[tc
].count
= count
;
2894 sb_dev
->tc_to_txq
[tc
].offset
= offset
;
2896 /* Provide a way for Tx queue to find the tc_to_txq map or
2897 * XPS map for itself.
2900 netdev_get_tx_queue(dev
, count
+ offset
)->sb_dev
= sb_dev
;
2904 EXPORT_SYMBOL(netdev_bind_sb_channel_queue
);
2906 int netdev_set_sb_channel(struct net_device
*dev
, u16 channel
)
2908 /* Do not use a multiqueue device to represent a subordinate channel */
2909 if (netif_is_multiqueue(dev
))
2912 /* We allow channels 1 - 32767 to be used for subordinate channels.
2913 * Channel 0 is meant to be "native" mode and used only to represent
2914 * the main root device. We allow writing 0 to reset the device back
2915 * to normal mode after being used as a subordinate channel.
2917 if (channel
> S16_MAX
)
2920 dev
->num_tc
= -channel
;
2924 EXPORT_SYMBOL(netdev_set_sb_channel
);
2927 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2928 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2930 int netif_set_real_num_tx_queues(struct net_device
*dev
, unsigned int txq
)
2935 disabling
= txq
< dev
->real_num_tx_queues
;
2937 if (txq
< 1 || txq
> dev
->num_tx_queues
)
2940 if (dev
->reg_state
== NETREG_REGISTERED
||
2941 dev
->reg_state
== NETREG_UNREGISTERING
) {
2944 rc
= netdev_queue_update_kobjects(dev
, dev
->real_num_tx_queues
,
2950 netif_setup_tc(dev
, txq
);
2952 net_shaper_set_real_num_tx_queues(dev
, txq
);
2954 dev_qdisc_change_real_num_tx(dev
, txq
);
2956 dev
->real_num_tx_queues
= txq
;
2960 qdisc_reset_all_tx_gt(dev
, txq
);
2962 netif_reset_xps_queues_gt(dev
, txq
);
2966 dev
->real_num_tx_queues
= txq
;
2971 EXPORT_SYMBOL(netif_set_real_num_tx_queues
);
2975 * netif_set_real_num_rx_queues - set actual number of RX queues used
2976 * @dev: Network device
2977 * @rxq: Actual number of RX queues
2979 * This must be called either with the rtnl_lock held or before
2980 * registration of the net device. Returns 0 on success, or a
2981 * negative error code. If called before registration, it always
2984 int netif_set_real_num_rx_queues(struct net_device
*dev
, unsigned int rxq
)
2988 if (rxq
< 1 || rxq
> dev
->num_rx_queues
)
2991 if (dev
->reg_state
== NETREG_REGISTERED
) {
2994 rc
= net_rx_queue_update_kobjects(dev
, dev
->real_num_rx_queues
,
3000 dev
->real_num_rx_queues
= rxq
;
3003 EXPORT_SYMBOL(netif_set_real_num_rx_queues
);
3007 * netif_set_real_num_queues - set actual number of RX and TX queues used
3008 * @dev: Network device
3009 * @txq: Actual number of TX queues
3010 * @rxq: Actual number of RX queues
3012 * Set the real number of both TX and RX queues.
3013 * Does nothing if the number of queues is already correct.
3015 int netif_set_real_num_queues(struct net_device
*dev
,
3016 unsigned int txq
, unsigned int rxq
)
3018 unsigned int old_rxq
= dev
->real_num_rx_queues
;
3021 if (txq
< 1 || txq
> dev
->num_tx_queues
||
3022 rxq
< 1 || rxq
> dev
->num_rx_queues
)
3025 /* Start from increases, so the error path only does decreases -
3026 * decreases can't fail.
3028 if (rxq
> dev
->real_num_rx_queues
) {
3029 err
= netif_set_real_num_rx_queues(dev
, rxq
);
3033 if (txq
> dev
->real_num_tx_queues
) {
3034 err
= netif_set_real_num_tx_queues(dev
, txq
);
3038 if (rxq
< dev
->real_num_rx_queues
)
3039 WARN_ON(netif_set_real_num_rx_queues(dev
, rxq
));
3040 if (txq
< dev
->real_num_tx_queues
)
3041 WARN_ON(netif_set_real_num_tx_queues(dev
, txq
));
3045 WARN_ON(netif_set_real_num_rx_queues(dev
, old_rxq
));
3048 EXPORT_SYMBOL(netif_set_real_num_queues
);
3051 * netif_set_tso_max_size() - set the max size of TSO frames supported
3052 * @dev: netdev to update
3053 * @size: max skb->len of a TSO frame
3055 * Set the limit on the size of TSO super-frames the device can handle.
3056 * Unless explicitly set the stack will assume the value of
3057 * %GSO_LEGACY_MAX_SIZE.
3059 void netif_set_tso_max_size(struct net_device
*dev
, unsigned int size
)
3061 dev
->tso_max_size
= min(GSO_MAX_SIZE
, size
);
3062 if (size
< READ_ONCE(dev
->gso_max_size
))
3063 netif_set_gso_max_size(dev
, size
);
3064 if (size
< READ_ONCE(dev
->gso_ipv4_max_size
))
3065 netif_set_gso_ipv4_max_size(dev
, size
);
3067 EXPORT_SYMBOL(netif_set_tso_max_size
);
3070 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3071 * @dev: netdev to update
3072 * @segs: max number of TCP segments
3074 * Set the limit on the number of TCP segments the device can generate from
3075 * a single TSO super-frame.
3076 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3078 void netif_set_tso_max_segs(struct net_device
*dev
, unsigned int segs
)
3080 dev
->tso_max_segs
= segs
;
3081 if (segs
< READ_ONCE(dev
->gso_max_segs
))
3082 netif_set_gso_max_segs(dev
, segs
);
3084 EXPORT_SYMBOL(netif_set_tso_max_segs
);
3087 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3088 * @to: netdev to update
3089 * @from: netdev from which to copy the limits
3091 void netif_inherit_tso_max(struct net_device
*to
, const struct net_device
*from
)
3093 netif_set_tso_max_size(to
, from
->tso_max_size
);
3094 netif_set_tso_max_segs(to
, from
->tso_max_segs
);
3096 EXPORT_SYMBOL(netif_inherit_tso_max
);
3099 * netif_get_num_default_rss_queues - default number of RSS queues
3101 * Default value is the number of physical cores if there are only 1 or 2, or
3102 * divided by 2 if there are more.
3104 int netif_get_num_default_rss_queues(void)
3109 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus
, GFP_KERNEL
)))
3112 cpumask_copy(cpus
, cpu_online_mask
);
3113 for_each_cpu(cpu
, cpus
) {
3115 cpumask_andnot(cpus
, cpus
, topology_sibling_cpumask(cpu
));
3117 free_cpumask_var(cpus
);
3119 return count
> 2 ? DIV_ROUND_UP(count
, 2) : count
;
3121 EXPORT_SYMBOL(netif_get_num_default_rss_queues
);
3123 static void __netif_reschedule(struct Qdisc
*q
)
3125 struct softnet_data
*sd
;
3126 unsigned long flags
;
3128 local_irq_save(flags
);
3129 sd
= this_cpu_ptr(&softnet_data
);
3130 q
->next_sched
= NULL
;
3131 *sd
->output_queue_tailp
= q
;
3132 sd
->output_queue_tailp
= &q
->next_sched
;
3133 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
3134 local_irq_restore(flags
);
3137 void __netif_schedule(struct Qdisc
*q
)
3139 if (!test_and_set_bit(__QDISC_STATE_SCHED
, &q
->state
))
3140 __netif_reschedule(q
);
3142 EXPORT_SYMBOL(__netif_schedule
);
3144 struct dev_kfree_skb_cb
{
3145 enum skb_drop_reason reason
;
3148 static struct dev_kfree_skb_cb
*get_kfree_skb_cb(const struct sk_buff
*skb
)
3150 return (struct dev_kfree_skb_cb
*)skb
->cb
;
3153 void netif_schedule_queue(struct netdev_queue
*txq
)
3156 if (!netif_xmit_stopped(txq
)) {
3157 struct Qdisc
*q
= rcu_dereference(txq
->qdisc
);
3159 __netif_schedule(q
);
3163 EXPORT_SYMBOL(netif_schedule_queue
);
3165 void netif_tx_wake_queue(struct netdev_queue
*dev_queue
)
3167 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF
, &dev_queue
->state
)) {
3171 q
= rcu_dereference(dev_queue
->qdisc
);
3172 __netif_schedule(q
);
3176 EXPORT_SYMBOL(netif_tx_wake_queue
);
3178 void dev_kfree_skb_irq_reason(struct sk_buff
*skb
, enum skb_drop_reason reason
)
3180 unsigned long flags
;
3185 if (likely(refcount_read(&skb
->users
) == 1)) {
3187 refcount_set(&skb
->users
, 0);
3188 } else if (likely(!refcount_dec_and_test(&skb
->users
))) {
3191 get_kfree_skb_cb(skb
)->reason
= reason
;
3192 local_irq_save(flags
);
3193 skb
->next
= __this_cpu_read(softnet_data
.completion_queue
);
3194 __this_cpu_write(softnet_data
.completion_queue
, skb
);
3195 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
3196 local_irq_restore(flags
);
3198 EXPORT_SYMBOL(dev_kfree_skb_irq_reason
);
3200 void dev_kfree_skb_any_reason(struct sk_buff
*skb
, enum skb_drop_reason reason
)
3202 if (in_hardirq() || irqs_disabled())
3203 dev_kfree_skb_irq_reason(skb
, reason
);
3205 kfree_skb_reason(skb
, reason
);
3207 EXPORT_SYMBOL(dev_kfree_skb_any_reason
);
3211 * netif_device_detach - mark device as removed
3212 * @dev: network device
3214 * Mark device as removed from system and therefore no longer available.
3216 void netif_device_detach(struct net_device
*dev
)
3218 if (test_and_clear_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
3219 netif_running(dev
)) {
3220 netif_tx_stop_all_queues(dev
);
3223 EXPORT_SYMBOL(netif_device_detach
);
3226 * netif_device_attach - mark device as attached
3227 * @dev: network device
3229 * Mark device as attached from system and restart if needed.
3231 void netif_device_attach(struct net_device
*dev
)
3233 if (!test_and_set_bit(__LINK_STATE_PRESENT
, &dev
->state
) &&
3234 netif_running(dev
)) {
3235 netif_tx_wake_all_queues(dev
);
3236 __netdev_watchdog_up(dev
);
3239 EXPORT_SYMBOL(netif_device_attach
);
3242 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3243 * to be used as a distribution range.
3245 static u16
skb_tx_hash(const struct net_device
*dev
,
3246 const struct net_device
*sb_dev
,
3247 struct sk_buff
*skb
)
3251 u16 qcount
= dev
->real_num_tx_queues
;
3254 u8 tc
= netdev_get_prio_tc_map(dev
, skb
->priority
);
3256 qoffset
= sb_dev
->tc_to_txq
[tc
].offset
;
3257 qcount
= sb_dev
->tc_to_txq
[tc
].count
;
3258 if (unlikely(!qcount
)) {
3259 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3260 sb_dev
->name
, qoffset
, tc
);
3262 qcount
= dev
->real_num_tx_queues
;
3266 if (skb_rx_queue_recorded(skb
)) {
3267 DEBUG_NET_WARN_ON_ONCE(qcount
== 0);
3268 hash
= skb_get_rx_queue(skb
);
3269 if (hash
>= qoffset
)
3271 while (unlikely(hash
>= qcount
))
3273 return hash
+ qoffset
;
3276 return (u16
) reciprocal_scale(skb_get_hash(skb
), qcount
) + qoffset
;
3279 void skb_warn_bad_offload(const struct sk_buff
*skb
)
3281 static const netdev_features_t null_features
;
3282 struct net_device
*dev
= skb
->dev
;
3283 const char *name
= "";
3285 if (!net_ratelimit())
3289 if (dev
->dev
.parent
)
3290 name
= dev_driver_string(dev
->dev
.parent
);
3292 name
= netdev_name(dev
);
3294 skb_dump(KERN_WARNING
, skb
, false);
3295 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3296 name
, dev
? &dev
->features
: &null_features
,
3297 skb
->sk
? &skb
->sk
->sk_route_caps
: &null_features
);
3301 * Invalidate hardware checksum when packet is to be mangled, and
3302 * complete checksum manually on outgoing path.
3304 int skb_checksum_help(struct sk_buff
*skb
)
3307 int ret
= 0, offset
;
3309 if (skb
->ip_summed
== CHECKSUM_COMPLETE
)
3310 goto out_set_summed
;
3312 if (unlikely(skb_is_gso(skb
))) {
3313 skb_warn_bad_offload(skb
);
3317 if (!skb_frags_readable(skb
)) {
3321 /* Before computing a checksum, we should make sure no frag could
3322 * be modified by an external entity : checksum could be wrong.
3324 if (skb_has_shared_frag(skb
)) {
3325 ret
= __skb_linearize(skb
);
3330 offset
= skb_checksum_start_offset(skb
);
3332 if (unlikely(offset
>= skb_headlen(skb
))) {
3333 DO_ONCE_LITE(skb_dump
, KERN_ERR
, skb
, false);
3334 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3335 offset
, skb_headlen(skb
));
3338 csum
= skb_checksum(skb
, offset
, skb
->len
- offset
, 0);
3340 offset
+= skb
->csum_offset
;
3341 if (unlikely(offset
+ sizeof(__sum16
) > skb_headlen(skb
))) {
3342 DO_ONCE_LITE(skb_dump
, KERN_ERR
, skb
, false);
3343 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3344 offset
+ sizeof(__sum16
), skb_headlen(skb
));
3347 ret
= skb_ensure_writable(skb
, offset
+ sizeof(__sum16
));
3351 *(__sum16
*)(skb
->data
+ offset
) = csum_fold(csum
) ?: CSUM_MANGLED_0
;
3353 skb
->ip_summed
= CHECKSUM_NONE
;
3357 EXPORT_SYMBOL(skb_checksum_help
);
3359 int skb_crc32c_csum_help(struct sk_buff
*skb
)
3362 int ret
= 0, offset
, start
;
3364 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
3367 if (unlikely(skb_is_gso(skb
)))
3370 /* Before computing a checksum, we should make sure no frag could
3371 * be modified by an external entity : checksum could be wrong.
3373 if (unlikely(skb_has_shared_frag(skb
))) {
3374 ret
= __skb_linearize(skb
);
3378 start
= skb_checksum_start_offset(skb
);
3379 offset
= start
+ offsetof(struct sctphdr
, checksum
);
3380 if (WARN_ON_ONCE(offset
>= skb_headlen(skb
))) {
3385 ret
= skb_ensure_writable(skb
, offset
+ sizeof(__le32
));
3389 crc32c_csum
= cpu_to_le32(~__skb_checksum(skb
, start
,
3390 skb
->len
- start
, ~(__u32
)0,
3392 *(__le32
*)(skb
->data
+ offset
) = crc32c_csum
;
3393 skb_reset_csum_not_inet(skb
);
3397 EXPORT_SYMBOL(skb_crc32c_csum_help
);
3399 __be16
skb_network_protocol(struct sk_buff
*skb
, int *depth
)
3401 __be16 type
= skb
->protocol
;
3403 /* Tunnel gso handlers can set protocol to ethernet. */
3404 if (type
== htons(ETH_P_TEB
)) {
3407 if (unlikely(!pskb_may_pull(skb
, sizeof(struct ethhdr
))))
3410 eth
= (struct ethhdr
*)skb
->data
;
3411 type
= eth
->h_proto
;
3414 return vlan_get_protocol_and_depth(skb
, type
, depth
);
3418 /* Take action when hardware reception checksum errors are detected. */
3420 static void do_netdev_rx_csum_fault(struct net_device
*dev
, struct sk_buff
*skb
)
3422 netdev_err(dev
, "hw csum failure\n");
3423 skb_dump(KERN_ERR
, skb
, true);
3427 void netdev_rx_csum_fault(struct net_device
*dev
, struct sk_buff
*skb
)
3429 DO_ONCE_LITE(do_netdev_rx_csum_fault
, dev
, skb
);
3431 EXPORT_SYMBOL(netdev_rx_csum_fault
);
3434 /* XXX: check that highmem exists at all on the given machine. */
3435 static int illegal_highdma(struct net_device
*dev
, struct sk_buff
*skb
)
3437 #ifdef CONFIG_HIGHMEM
3440 if (!(dev
->features
& NETIF_F_HIGHDMA
)) {
3441 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
3442 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
3443 struct page
*page
= skb_frag_page(frag
);
3445 if (page
&& PageHighMem(page
))
3453 /* If MPLS offload request, verify we are testing hardware MPLS features
3454 * instead of standard features for the netdev.
3456 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3457 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
3458 netdev_features_t features
,
3461 if (eth_p_mpls(type
))
3462 features
&= skb
->dev
->mpls_features
;
3467 static netdev_features_t
net_mpls_features(struct sk_buff
*skb
,
3468 netdev_features_t features
,
3475 static netdev_features_t
harmonize_features(struct sk_buff
*skb
,
3476 netdev_features_t features
)
3480 type
= skb_network_protocol(skb
, NULL
);
3481 features
= net_mpls_features(skb
, features
, type
);
3483 if (skb
->ip_summed
!= CHECKSUM_NONE
&&
3484 !can_checksum_protocol(features
, type
)) {
3485 features
&= ~(NETIF_F_CSUM_MASK
| NETIF_F_GSO_MASK
);
3487 if (illegal_highdma(skb
->dev
, skb
))
3488 features
&= ~NETIF_F_SG
;
3493 netdev_features_t
passthru_features_check(struct sk_buff
*skb
,
3494 struct net_device
*dev
,
3495 netdev_features_t features
)
3499 EXPORT_SYMBOL(passthru_features_check
);
3501 static netdev_features_t
dflt_features_check(struct sk_buff
*skb
,
3502 struct net_device
*dev
,
3503 netdev_features_t features
)
3505 return vlan_features_check(skb
, features
);
3508 static netdev_features_t
gso_features_check(const struct sk_buff
*skb
,
3509 struct net_device
*dev
,
3510 netdev_features_t features
)
3512 u16 gso_segs
= skb_shinfo(skb
)->gso_segs
;
3514 if (gso_segs
> READ_ONCE(dev
->gso_max_segs
))
3515 return features
& ~NETIF_F_GSO_MASK
;
3517 if (unlikely(skb
->len
>= netif_get_gso_max_size(dev
, skb
)))
3518 return features
& ~NETIF_F_GSO_MASK
;
3520 if (!skb_shinfo(skb
)->gso_type
) {
3521 skb_warn_bad_offload(skb
);
3522 return features
& ~NETIF_F_GSO_MASK
;
3525 /* Support for GSO partial features requires software
3526 * intervention before we can actually process the packets
3527 * so we need to strip support for any partial features now
3528 * and we can pull them back in after we have partially
3529 * segmented the frame.
3531 if (!(skb_shinfo(skb
)->gso_type
& SKB_GSO_PARTIAL
))
3532 features
&= ~dev
->gso_partial_features
;
3534 /* Make sure to clear the IPv4 ID mangling feature if the
3535 * IPv4 header has the potential to be fragmented.
3537 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_TCPV4
) {
3538 struct iphdr
*iph
= skb
->encapsulation
?
3539 inner_ip_hdr(skb
) : ip_hdr(skb
);
3541 if (!(iph
->frag_off
& htons(IP_DF
)))
3542 features
&= ~NETIF_F_TSO_MANGLEID
;
3548 netdev_features_t
netif_skb_features(struct sk_buff
*skb
)
3550 struct net_device
*dev
= skb
->dev
;
3551 netdev_features_t features
= dev
->features
;
3553 if (skb_is_gso(skb
))
3554 features
= gso_features_check(skb
, dev
, features
);
3556 /* If encapsulation offload request, verify we are testing
3557 * hardware encapsulation features instead of standard
3558 * features for the netdev
3560 if (skb
->encapsulation
)
3561 features
&= dev
->hw_enc_features
;
3563 if (skb_vlan_tagged(skb
))
3564 features
= netdev_intersect_features(features
,
3565 dev
->vlan_features
|
3566 NETIF_F_HW_VLAN_CTAG_TX
|
3567 NETIF_F_HW_VLAN_STAG_TX
);
3569 if (dev
->netdev_ops
->ndo_features_check
)
3570 features
&= dev
->netdev_ops
->ndo_features_check(skb
, dev
,
3573 features
&= dflt_features_check(skb
, dev
, features
);
3575 return harmonize_features(skb
, features
);
3577 EXPORT_SYMBOL(netif_skb_features
);
3579 static int xmit_one(struct sk_buff
*skb
, struct net_device
*dev
,
3580 struct netdev_queue
*txq
, bool more
)
3585 if (dev_nit_active(dev
))
3586 dev_queue_xmit_nit(skb
, dev
);
3589 trace_net_dev_start_xmit(skb
, dev
);
3590 rc
= netdev_start_xmit(skb
, dev
, txq
, more
);
3591 trace_net_dev_xmit(skb
, rc
, dev
, len
);
3596 struct sk_buff
*dev_hard_start_xmit(struct sk_buff
*first
, struct net_device
*dev
,
3597 struct netdev_queue
*txq
, int *ret
)
3599 struct sk_buff
*skb
= first
;
3600 int rc
= NETDEV_TX_OK
;
3603 struct sk_buff
*next
= skb
->next
;
3605 skb_mark_not_on_list(skb
);
3606 rc
= xmit_one(skb
, dev
, txq
, next
!= NULL
);
3607 if (unlikely(!dev_xmit_complete(rc
))) {
3613 if (netif_tx_queue_stopped(txq
) && skb
) {
3614 rc
= NETDEV_TX_BUSY
;
3624 static struct sk_buff
*validate_xmit_vlan(struct sk_buff
*skb
,
3625 netdev_features_t features
)
3627 if (skb_vlan_tag_present(skb
) &&
3628 !vlan_hw_offload_capable(features
, skb
->vlan_proto
))
3629 skb
= __vlan_hwaccel_push_inside(skb
);
3633 int skb_csum_hwoffload_help(struct sk_buff
*skb
,
3634 const netdev_features_t features
)
3636 if (unlikely(skb_csum_is_sctp(skb
)))
3637 return !!(features
& NETIF_F_SCTP_CRC
) ? 0 :
3638 skb_crc32c_csum_help(skb
);
3640 if (features
& NETIF_F_HW_CSUM
)
3643 if (features
& (NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
)) {
3644 if (vlan_get_protocol(skb
) == htons(ETH_P_IPV6
) &&
3645 skb_network_header_len(skb
) != sizeof(struct ipv6hdr
))
3647 switch (skb
->csum_offset
) {
3648 case offsetof(struct tcphdr
, check
):
3649 case offsetof(struct udphdr
, check
):
3655 return skb_checksum_help(skb
);
3657 EXPORT_SYMBOL(skb_csum_hwoffload_help
);
3659 static struct sk_buff
*validate_xmit_skb(struct sk_buff
*skb
, struct net_device
*dev
, bool *again
)
3661 netdev_features_t features
;
3663 features
= netif_skb_features(skb
);
3664 skb
= validate_xmit_vlan(skb
, features
);
3668 skb
= sk_validate_xmit_skb(skb
, dev
);
3672 if (netif_needs_gso(skb
, features
)) {
3673 struct sk_buff
*segs
;
3675 segs
= skb_gso_segment(skb
, features
);
3683 if (skb_needs_linearize(skb
, features
) &&
3684 __skb_linearize(skb
))
3687 /* If packet is not checksummed and device does not
3688 * support checksumming for this protocol, complete
3689 * checksumming here.
3691 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
3692 if (skb
->encapsulation
)
3693 skb_set_inner_transport_header(skb
,
3694 skb_checksum_start_offset(skb
));
3696 skb_set_transport_header(skb
,
3697 skb_checksum_start_offset(skb
));
3698 if (skb_csum_hwoffload_help(skb
, features
))
3703 skb
= validate_xmit_xfrm(skb
, features
, again
);
3710 dev_core_stats_tx_dropped_inc(dev
);
3714 struct sk_buff
*validate_xmit_skb_list(struct sk_buff
*skb
, struct net_device
*dev
, bool *again
)
3716 struct sk_buff
*next
, *head
= NULL
, *tail
;
3718 for (; skb
!= NULL
; skb
= next
) {
3720 skb_mark_not_on_list(skb
);
3722 /* in case skb won't be segmented, point to itself */
3725 skb
= validate_xmit_skb(skb
, dev
, again
);
3733 /* If skb was segmented, skb->prev points to
3734 * the last segment. If not, it still contains skb.
3740 EXPORT_SYMBOL_GPL(validate_xmit_skb_list
);
3742 static void qdisc_pkt_len_init(struct sk_buff
*skb
)
3744 const struct skb_shared_info
*shinfo
= skb_shinfo(skb
);
3746 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
3748 /* To get more precise estimation of bytes sent on wire,
3749 * we add to pkt_len the headers size of all segments
3751 if (shinfo
->gso_size
&& skb_transport_header_was_set(skb
)) {
3752 u16 gso_segs
= shinfo
->gso_segs
;
3753 unsigned int hdr_len
;
3755 /* mac layer + network layer */
3756 hdr_len
= skb_transport_offset(skb
);
3758 /* + transport layer */
3759 if (likely(shinfo
->gso_type
& (SKB_GSO_TCPV4
| SKB_GSO_TCPV6
))) {
3760 const struct tcphdr
*th
;
3761 struct tcphdr _tcphdr
;
3763 th
= skb_header_pointer(skb
, hdr_len
,
3764 sizeof(_tcphdr
), &_tcphdr
);
3766 hdr_len
+= __tcp_hdrlen(th
);
3767 } else if (shinfo
->gso_type
& SKB_GSO_UDP_L4
) {
3768 struct udphdr _udphdr
;
3770 if (skb_header_pointer(skb
, hdr_len
,
3771 sizeof(_udphdr
), &_udphdr
))
3772 hdr_len
+= sizeof(struct udphdr
);
3775 if (unlikely(shinfo
->gso_type
& SKB_GSO_DODGY
)) {
3776 int payload
= skb
->len
- hdr_len
;
3778 /* Malicious packet. */
3781 gso_segs
= DIV_ROUND_UP(payload
, shinfo
->gso_size
);
3783 qdisc_skb_cb(skb
)->pkt_len
+= (gso_segs
- 1) * hdr_len
;
3787 static int dev_qdisc_enqueue(struct sk_buff
*skb
, struct Qdisc
*q
,
3788 struct sk_buff
**to_free
,
3789 struct netdev_queue
*txq
)
3793 rc
= q
->enqueue(skb
, q
, to_free
) & NET_XMIT_MASK
;
3794 if (rc
== NET_XMIT_SUCCESS
)
3795 trace_qdisc_enqueue(q
, txq
, skb
);
3799 static inline int __dev_xmit_skb(struct sk_buff
*skb
, struct Qdisc
*q
,
3800 struct net_device
*dev
,
3801 struct netdev_queue
*txq
)
3803 spinlock_t
*root_lock
= qdisc_lock(q
);
3804 struct sk_buff
*to_free
= NULL
;
3808 qdisc_calculate_pkt_len(skb
, q
);
3810 tcf_set_drop_reason(skb
, SKB_DROP_REASON_QDISC_DROP
);
3812 if (q
->flags
& TCQ_F_NOLOCK
) {
3813 if (q
->flags
& TCQ_F_CAN_BYPASS
&& nolock_qdisc_is_empty(q
) &&
3814 qdisc_run_begin(q
)) {
3815 /* Retest nolock_qdisc_is_empty() within the protection
3816 * of q->seqlock to protect from racing with requeuing.
3818 if (unlikely(!nolock_qdisc_is_empty(q
))) {
3819 rc
= dev_qdisc_enqueue(skb
, q
, &to_free
, txq
);
3826 qdisc_bstats_cpu_update(q
, skb
);
3827 if (sch_direct_xmit(skb
, q
, dev
, txq
, NULL
, true) &&
3828 !nolock_qdisc_is_empty(q
))
3832 return NET_XMIT_SUCCESS
;
3835 rc
= dev_qdisc_enqueue(skb
, q
, &to_free
, txq
);
3839 if (unlikely(to_free
))
3840 kfree_skb_list_reason(to_free
,
3841 tcf_get_drop_reason(to_free
));
3845 if (unlikely(READ_ONCE(q
->owner
) == smp_processor_id())) {
3846 kfree_skb_reason(skb
, SKB_DROP_REASON_TC_RECLASSIFY_LOOP
);
3847 return NET_XMIT_DROP
;
3850 * Heuristic to force contended enqueues to serialize on a
3851 * separate lock before trying to get qdisc main lock.
3852 * This permits qdisc->running owner to get the lock more
3853 * often and dequeue packets faster.
3854 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3855 * and then other tasks will only enqueue packets. The packets will be
3856 * sent after the qdisc owner is scheduled again. To prevent this
3857 * scenario the task always serialize on the lock.
3859 contended
= qdisc_is_running(q
) || IS_ENABLED(CONFIG_PREEMPT_RT
);
3860 if (unlikely(contended
))
3861 spin_lock(&q
->busylock
);
3863 spin_lock(root_lock
);
3864 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
, &q
->state
))) {
3865 __qdisc_drop(skb
, &to_free
);
3867 } else if ((q
->flags
& TCQ_F_CAN_BYPASS
) && !qdisc_qlen(q
) &&
3868 qdisc_run_begin(q
)) {
3870 * This is a work-conserving queue; there are no old skbs
3871 * waiting to be sent out; and the qdisc is not running -
3872 * xmit the skb directly.
3875 qdisc_bstats_update(q
, skb
);
3877 if (sch_direct_xmit(skb
, q
, dev
, txq
, root_lock
, true)) {
3878 if (unlikely(contended
)) {
3879 spin_unlock(&q
->busylock
);
3886 rc
= NET_XMIT_SUCCESS
;
3888 WRITE_ONCE(q
->owner
, smp_processor_id());
3889 rc
= dev_qdisc_enqueue(skb
, q
, &to_free
, txq
);
3890 WRITE_ONCE(q
->owner
, -1);
3891 if (qdisc_run_begin(q
)) {
3892 if (unlikely(contended
)) {
3893 spin_unlock(&q
->busylock
);
3900 spin_unlock(root_lock
);
3901 if (unlikely(to_free
))
3902 kfree_skb_list_reason(to_free
,
3903 tcf_get_drop_reason(to_free
));
3904 if (unlikely(contended
))
3905 spin_unlock(&q
->busylock
);
3909 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3910 static void skb_update_prio(struct sk_buff
*skb
)
3912 const struct netprio_map
*map
;
3913 const struct sock
*sk
;
3914 unsigned int prioidx
;
3918 map
= rcu_dereference_bh(skb
->dev
->priomap
);
3921 sk
= skb_to_full_sk(skb
);
3925 prioidx
= sock_cgroup_prioidx(&sk
->sk_cgrp_data
);
3927 if (prioidx
< map
->priomap_len
)
3928 skb
->priority
= map
->priomap
[prioidx
];
3931 #define skb_update_prio(skb)
3935 * dev_loopback_xmit - loop back @skb
3936 * @net: network namespace this loopback is happening in
3937 * @sk: sk needed to be a netfilter okfn
3938 * @skb: buffer to transmit
3940 int dev_loopback_xmit(struct net
*net
, struct sock
*sk
, struct sk_buff
*skb
)
3942 skb_reset_mac_header(skb
);
3943 __skb_pull(skb
, skb_network_offset(skb
));
3944 skb
->pkt_type
= PACKET_LOOPBACK
;
3945 if (skb
->ip_summed
== CHECKSUM_NONE
)
3946 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3947 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb
));
3952 EXPORT_SYMBOL(dev_loopback_xmit
);
3954 #ifdef CONFIG_NET_EGRESS
3955 static struct netdev_queue
*
3956 netdev_tx_queue_mapping(struct net_device
*dev
, struct sk_buff
*skb
)
3958 int qm
= skb_get_queue_mapping(skb
);
3960 return netdev_get_tx_queue(dev
, netdev_cap_txqueue(dev
, qm
));
3963 #ifndef CONFIG_PREEMPT_RT
3964 static bool netdev_xmit_txqueue_skipped(void)
3966 return __this_cpu_read(softnet_data
.xmit
.skip_txqueue
);
3969 void netdev_xmit_skip_txqueue(bool skip
)
3971 __this_cpu_write(softnet_data
.xmit
.skip_txqueue
, skip
);
3973 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue
);
3976 static bool netdev_xmit_txqueue_skipped(void)
3978 return current
->net_xmit
.skip_txqueue
;
3981 void netdev_xmit_skip_txqueue(bool skip
)
3983 current
->net_xmit
.skip_txqueue
= skip
;
3985 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue
);
3987 #endif /* CONFIG_NET_EGRESS */
3989 #ifdef CONFIG_NET_XGRESS
3990 static int tc_run(struct tcx_entry
*entry
, struct sk_buff
*skb
,
3991 enum skb_drop_reason
*drop_reason
)
3993 int ret
= TC_ACT_UNSPEC
;
3994 #ifdef CONFIG_NET_CLS_ACT
3995 struct mini_Qdisc
*miniq
= rcu_dereference_bh(entry
->miniq
);
3996 struct tcf_result res
;
4001 if (static_branch_unlikely(&tcf_bypass_check_needed_key
)) {
4002 if (tcf_block_bypass_sw(miniq
->block
))
4006 tc_skb_cb(skb
)->mru
= 0;
4007 tc_skb_cb(skb
)->post_ct
= false;
4008 tcf_set_drop_reason(skb
, *drop_reason
);
4010 mini_qdisc_bstats_cpu_update(miniq
, skb
);
4011 ret
= tcf_classify(skb
, miniq
->block
, miniq
->filter_list
, &res
, false);
4012 /* Only tcf related quirks below. */
4015 *drop_reason
= tcf_get_drop_reason(skb
);
4016 mini_qdisc_qstats_cpu_drop(miniq
);
4019 case TC_ACT_RECLASSIFY
:
4020 skb
->tc_index
= TC_H_MIN(res
.classid
);
4023 #endif /* CONFIG_NET_CLS_ACT */
4027 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key
);
4031 static_branch_inc(&tcx_needed_key
);
4036 static_branch_dec(&tcx_needed_key
);
4039 static __always_inline
enum tcx_action_base
4040 tcx_run(const struct bpf_mprog_entry
*entry
, struct sk_buff
*skb
,
4041 const bool needs_mac
)
4043 const struct bpf_mprog_fp
*fp
;
4044 const struct bpf_prog
*prog
;
4048 __skb_push(skb
, skb
->mac_len
);
4049 bpf_mprog_foreach_prog(entry
, fp
, prog
) {
4050 bpf_compute_data_pointers(skb
);
4051 ret
= bpf_prog_run(prog
, skb
);
4052 if (ret
!= TCX_NEXT
)
4056 __skb_pull(skb
, skb
->mac_len
);
4057 return tcx_action_code(skb
, ret
);
4060 static __always_inline
struct sk_buff
*
4061 sch_handle_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
, int *ret
,
4062 struct net_device
*orig_dev
, bool *another
)
4064 struct bpf_mprog_entry
*entry
= rcu_dereference_bh(skb
->dev
->tcx_ingress
);
4065 enum skb_drop_reason drop_reason
= SKB_DROP_REASON_TC_INGRESS
;
4066 struct bpf_net_context __bpf_net_ctx
, *bpf_net_ctx
;
4072 bpf_net_ctx
= bpf_net_ctx_set(&__bpf_net_ctx
);
4074 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
4078 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
4079 tcx_set_ingress(skb
, true);
4081 if (static_branch_unlikely(&tcx_needed_key
)) {
4082 sch_ret
= tcx_run(entry
, skb
, true);
4083 if (sch_ret
!= TC_ACT_UNSPEC
)
4084 goto ingress_verdict
;
4086 sch_ret
= tc_run(tcx_entry(entry
), skb
, &drop_reason
);
4089 case TC_ACT_REDIRECT
:
4090 /* skb_mac_header check was done by BPF, so we can safely
4091 * push the L2 header back before redirecting to another
4094 __skb_push(skb
, skb
->mac_len
);
4095 if (skb_do_redirect(skb
) == -EAGAIN
) {
4096 __skb_pull(skb
, skb
->mac_len
);
4100 *ret
= NET_RX_SUCCESS
;
4101 bpf_net_ctx_clear(bpf_net_ctx
);
4104 kfree_skb_reason(skb
, drop_reason
);
4106 bpf_net_ctx_clear(bpf_net_ctx
);
4108 /* used by tc_run */
4114 case TC_ACT_CONSUMED
:
4115 *ret
= NET_RX_SUCCESS
;
4116 bpf_net_ctx_clear(bpf_net_ctx
);
4119 bpf_net_ctx_clear(bpf_net_ctx
);
4124 static __always_inline
struct sk_buff
*
4125 sch_handle_egress(struct sk_buff
*skb
, int *ret
, struct net_device
*dev
)
4127 struct bpf_mprog_entry
*entry
= rcu_dereference_bh(dev
->tcx_egress
);
4128 enum skb_drop_reason drop_reason
= SKB_DROP_REASON_TC_EGRESS
;
4129 struct bpf_net_context __bpf_net_ctx
, *bpf_net_ctx
;
4135 bpf_net_ctx
= bpf_net_ctx_set(&__bpf_net_ctx
);
4137 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4138 * already set by the caller.
4140 if (static_branch_unlikely(&tcx_needed_key
)) {
4141 sch_ret
= tcx_run(entry
, skb
, false);
4142 if (sch_ret
!= TC_ACT_UNSPEC
)
4143 goto egress_verdict
;
4145 sch_ret
= tc_run(tcx_entry(entry
), skb
, &drop_reason
);
4148 case TC_ACT_REDIRECT
:
4149 /* No need to push/pop skb's mac_header here on egress! */
4150 skb_do_redirect(skb
);
4151 *ret
= NET_XMIT_SUCCESS
;
4152 bpf_net_ctx_clear(bpf_net_ctx
);
4155 kfree_skb_reason(skb
, drop_reason
);
4156 *ret
= NET_XMIT_DROP
;
4157 bpf_net_ctx_clear(bpf_net_ctx
);
4159 /* used by tc_run */
4165 case TC_ACT_CONSUMED
:
4166 *ret
= NET_XMIT_SUCCESS
;
4167 bpf_net_ctx_clear(bpf_net_ctx
);
4170 bpf_net_ctx_clear(bpf_net_ctx
);
4175 static __always_inline
struct sk_buff
*
4176 sch_handle_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
, int *ret
,
4177 struct net_device
*orig_dev
, bool *another
)
4182 static __always_inline
struct sk_buff
*
4183 sch_handle_egress(struct sk_buff
*skb
, int *ret
, struct net_device
*dev
)
4187 #endif /* CONFIG_NET_XGRESS */
4190 static int __get_xps_queue_idx(struct net_device
*dev
, struct sk_buff
*skb
,
4191 struct xps_dev_maps
*dev_maps
, unsigned int tci
)
4193 int tc
= netdev_get_prio_tc_map(dev
, skb
->priority
);
4194 struct xps_map
*map
;
4195 int queue_index
= -1;
4197 if (tc
>= dev_maps
->num_tc
|| tci
>= dev_maps
->nr_ids
)
4200 tci
*= dev_maps
->num_tc
;
4203 map
= rcu_dereference(dev_maps
->attr_map
[tci
]);
4206 queue_index
= map
->queues
[0];
4208 queue_index
= map
->queues
[reciprocal_scale(
4209 skb_get_hash(skb
), map
->len
)];
4210 if (unlikely(queue_index
>= dev
->real_num_tx_queues
))
4217 static int get_xps_queue(struct net_device
*dev
, struct net_device
*sb_dev
,
4218 struct sk_buff
*skb
)
4221 struct xps_dev_maps
*dev_maps
;
4222 struct sock
*sk
= skb
->sk
;
4223 int queue_index
= -1;
4225 if (!static_key_false(&xps_needed
))
4229 if (!static_key_false(&xps_rxqs_needed
))
4232 dev_maps
= rcu_dereference(sb_dev
->xps_maps
[XPS_RXQS
]);
4234 int tci
= sk_rx_queue_get(sk
);
4237 queue_index
= __get_xps_queue_idx(dev
, skb
, dev_maps
,
4242 if (queue_index
< 0) {
4243 dev_maps
= rcu_dereference(sb_dev
->xps_maps
[XPS_CPUS
]);
4245 unsigned int tci
= skb
->sender_cpu
- 1;
4247 queue_index
= __get_xps_queue_idx(dev
, skb
, dev_maps
,
4259 u16
dev_pick_tx_zero(struct net_device
*dev
, struct sk_buff
*skb
,
4260 struct net_device
*sb_dev
)
4264 EXPORT_SYMBOL(dev_pick_tx_zero
);
4266 u16
netdev_pick_tx(struct net_device
*dev
, struct sk_buff
*skb
,
4267 struct net_device
*sb_dev
)
4269 struct sock
*sk
= skb
->sk
;
4270 int queue_index
= sk_tx_queue_get(sk
);
4272 sb_dev
= sb_dev
? : dev
;
4274 if (queue_index
< 0 || skb
->ooo_okay
||
4275 queue_index
>= dev
->real_num_tx_queues
) {
4276 int new_index
= get_xps_queue(dev
, sb_dev
, skb
);
4279 new_index
= skb_tx_hash(dev
, sb_dev
, skb
);
4281 if (queue_index
!= new_index
&& sk
&&
4283 rcu_access_pointer(sk
->sk_dst_cache
))
4284 sk_tx_queue_set(sk
, new_index
);
4286 queue_index
= new_index
;
4291 EXPORT_SYMBOL(netdev_pick_tx
);
4293 struct netdev_queue
*netdev_core_pick_tx(struct net_device
*dev
,
4294 struct sk_buff
*skb
,
4295 struct net_device
*sb_dev
)
4297 int queue_index
= 0;
4300 u32 sender_cpu
= skb
->sender_cpu
- 1;
4302 if (sender_cpu
>= (u32
)NR_CPUS
)
4303 skb
->sender_cpu
= raw_smp_processor_id() + 1;
4306 if (dev
->real_num_tx_queues
!= 1) {
4307 const struct net_device_ops
*ops
= dev
->netdev_ops
;
4309 if (ops
->ndo_select_queue
)
4310 queue_index
= ops
->ndo_select_queue(dev
, skb
, sb_dev
);
4312 queue_index
= netdev_pick_tx(dev
, skb
, sb_dev
);
4314 queue_index
= netdev_cap_txqueue(dev
, queue_index
);
4317 skb_set_queue_mapping(skb
, queue_index
);
4318 return netdev_get_tx_queue(dev
, queue_index
);
4322 * __dev_queue_xmit() - transmit a buffer
4323 * @skb: buffer to transmit
4324 * @sb_dev: suboordinate device used for L2 forwarding offload
4326 * Queue a buffer for transmission to a network device. The caller must
4327 * have set the device and priority and built the buffer before calling
4328 * this function. The function can be called from an interrupt.
4330 * When calling this method, interrupts MUST be enabled. This is because
4331 * the BH enable code must have IRQs enabled so that it will not deadlock.
4333 * Regardless of the return value, the skb is consumed, so it is currently
4334 * difficult to retry a send to this method. (You can bump the ref count
4335 * before sending to hold a reference for retry if you are careful.)
4338 * * 0 - buffer successfully transmitted
4339 * * positive qdisc return code - NET_XMIT_DROP etc.
4340 * * negative errno - other errors
4342 int __dev_queue_xmit(struct sk_buff
*skb
, struct net_device
*sb_dev
)
4344 struct net_device
*dev
= skb
->dev
;
4345 struct netdev_queue
*txq
= NULL
;
4350 skb_reset_mac_header(skb
);
4351 skb_assert_len(skb
);
4353 if (unlikely(skb_shinfo(skb
)->tx_flags
& SKBTX_SCHED_TSTAMP
))
4354 __skb_tstamp_tx(skb
, NULL
, NULL
, skb
->sk
, SCM_TSTAMP_SCHED
);
4356 /* Disable soft irqs for various locks below. Also
4357 * stops preemption for RCU.
4361 skb_update_prio(skb
);
4363 qdisc_pkt_len_init(skb
);
4364 tcx_set_ingress(skb
, false);
4365 #ifdef CONFIG_NET_EGRESS
4366 if (static_branch_unlikely(&egress_needed_key
)) {
4367 if (nf_hook_egress_active()) {
4368 skb
= nf_hook_egress(skb
, &rc
, dev
);
4373 netdev_xmit_skip_txqueue(false);
4375 nf_skip_egress(skb
, true);
4376 skb
= sch_handle_egress(skb
, &rc
, dev
);
4379 nf_skip_egress(skb
, false);
4381 if (netdev_xmit_txqueue_skipped())
4382 txq
= netdev_tx_queue_mapping(dev
, skb
);
4385 /* If device/qdisc don't need skb->dst, release it right now while
4386 * its hot in this cpu cache.
4388 if (dev
->priv_flags
& IFF_XMIT_DST_RELEASE
)
4394 txq
= netdev_core_pick_tx(dev
, skb
, sb_dev
);
4396 q
= rcu_dereference_bh(txq
->qdisc
);
4398 trace_net_dev_queue(skb
);
4400 rc
= __dev_xmit_skb(skb
, q
, dev
, txq
);
4404 /* The device has no queue. Common case for software devices:
4405 * loopback, all the sorts of tunnels...
4407 * Really, it is unlikely that netif_tx_lock protection is necessary
4408 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4410 * However, it is possible, that they rely on protection
4413 * Check this and shot the lock. It is not prone from deadlocks.
4414 *Either shot noqueue qdisc, it is even simpler 8)
4416 if (dev
->flags
& IFF_UP
) {
4417 int cpu
= smp_processor_id(); /* ok because BHs are off */
4419 /* Other cpus might concurrently change txq->xmit_lock_owner
4420 * to -1 or to their cpu id, but not to our id.
4422 if (READ_ONCE(txq
->xmit_lock_owner
) != cpu
) {
4423 if (dev_xmit_recursion())
4424 goto recursion_alert
;
4426 skb
= validate_xmit_skb(skb
, dev
, &again
);
4430 HARD_TX_LOCK(dev
, txq
, cpu
);
4432 if (!netif_xmit_stopped(txq
)) {
4433 dev_xmit_recursion_inc();
4434 skb
= dev_hard_start_xmit(skb
, dev
, txq
, &rc
);
4435 dev_xmit_recursion_dec();
4436 if (dev_xmit_complete(rc
)) {
4437 HARD_TX_UNLOCK(dev
, txq
);
4441 HARD_TX_UNLOCK(dev
, txq
);
4442 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4445 /* Recursion is detected! It is possible,
4449 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4455 rcu_read_unlock_bh();
4457 dev_core_stats_tx_dropped_inc(dev
);
4458 kfree_skb_list(skb
);
4461 rcu_read_unlock_bh();
4464 EXPORT_SYMBOL(__dev_queue_xmit
);
4466 int __dev_direct_xmit(struct sk_buff
*skb
, u16 queue_id
)
4468 struct net_device
*dev
= skb
->dev
;
4469 struct sk_buff
*orig_skb
= skb
;
4470 struct netdev_queue
*txq
;
4471 int ret
= NETDEV_TX_BUSY
;
4474 if (unlikely(!netif_running(dev
) ||
4475 !netif_carrier_ok(dev
)))
4478 skb
= validate_xmit_skb_list(skb
, dev
, &again
);
4479 if (skb
!= orig_skb
)
4482 skb_set_queue_mapping(skb
, queue_id
);
4483 txq
= skb_get_tx_queue(dev
, skb
);
4487 dev_xmit_recursion_inc();
4488 HARD_TX_LOCK(dev
, txq
, smp_processor_id());
4489 if (!netif_xmit_frozen_or_drv_stopped(txq
))
4490 ret
= netdev_start_xmit(skb
, dev
, txq
, false);
4491 HARD_TX_UNLOCK(dev
, txq
);
4492 dev_xmit_recursion_dec();
4497 dev_core_stats_tx_dropped_inc(dev
);
4498 kfree_skb_list(skb
);
4499 return NET_XMIT_DROP
;
4501 EXPORT_SYMBOL(__dev_direct_xmit
);
4503 /*************************************************************************
4505 *************************************************************************/
4506 static DEFINE_PER_CPU(struct task_struct
*, backlog_napi
);
4508 int weight_p __read_mostly
= 64; /* old backlog weight */
4509 int dev_weight_rx_bias __read_mostly
= 1; /* bias for backlog weight */
4510 int dev_weight_tx_bias __read_mostly
= 1; /* bias for output_queue quota */
4512 /* Called with irq disabled */
4513 static inline void ____napi_schedule(struct softnet_data
*sd
,
4514 struct napi_struct
*napi
)
4516 struct task_struct
*thread
;
4518 lockdep_assert_irqs_disabled();
4520 if (test_bit(NAPI_STATE_THREADED
, &napi
->state
)) {
4521 /* Paired with smp_mb__before_atomic() in
4522 * napi_enable()/dev_set_threaded().
4523 * Use READ_ONCE() to guarantee a complete
4524 * read on napi->thread. Only call
4525 * wake_up_process() when it's not NULL.
4527 thread
= READ_ONCE(napi
->thread
);
4529 if (use_backlog_threads() && thread
== raw_cpu_read(backlog_napi
))
4530 goto use_local_napi
;
4532 set_bit(NAPI_STATE_SCHED_THREADED
, &napi
->state
);
4533 wake_up_process(thread
);
4539 list_add_tail(&napi
->poll_list
, &sd
->poll_list
);
4540 WRITE_ONCE(napi
->list_owner
, smp_processor_id());
4541 /* If not called from net_rx_action()
4542 * we have to raise NET_RX_SOFTIRQ.
4544 if (!sd
->in_net_rx_action
)
4545 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
4550 struct static_key_false rps_needed __read_mostly
;
4551 EXPORT_SYMBOL(rps_needed
);
4552 struct static_key_false rfs_needed __read_mostly
;
4553 EXPORT_SYMBOL(rfs_needed
);
4555 static struct rps_dev_flow
*
4556 set_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
4557 struct rps_dev_flow
*rflow
, u16 next_cpu
)
4559 if (next_cpu
< nr_cpu_ids
) {
4561 #ifdef CONFIG_RFS_ACCEL
4562 struct netdev_rx_queue
*rxqueue
;
4563 struct rps_dev_flow_table
*flow_table
;
4564 struct rps_dev_flow
*old_rflow
;
4569 /* Should we steer this flow to a different hardware queue? */
4570 if (!skb_rx_queue_recorded(skb
) || !dev
->rx_cpu_rmap
||
4571 !(dev
->features
& NETIF_F_NTUPLE
))
4573 rxq_index
= cpu_rmap_lookup_index(dev
->rx_cpu_rmap
, next_cpu
);
4574 if (rxq_index
== skb_get_rx_queue(skb
))
4577 rxqueue
= dev
->_rx
+ rxq_index
;
4578 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4581 flow_id
= skb_get_hash(skb
) & flow_table
->mask
;
4582 rc
= dev
->netdev_ops
->ndo_rx_flow_steer(dev
, skb
,
4583 rxq_index
, flow_id
);
4587 rflow
= &flow_table
->flows
[flow_id
];
4588 WRITE_ONCE(rflow
->filter
, rc
);
4589 if (old_rflow
->filter
== rc
)
4590 WRITE_ONCE(old_rflow
->filter
, RPS_NO_FILTER
);
4593 head
= READ_ONCE(per_cpu(softnet_data
, next_cpu
).input_queue_head
);
4594 rps_input_queue_tail_save(&rflow
->last_qtail
, head
);
4597 WRITE_ONCE(rflow
->cpu
, next_cpu
);
4602 * get_rps_cpu is called from netif_receive_skb and returns the target
4603 * CPU from the RPS map of the receiving queue for a given skb.
4604 * rcu_read_lock must be held on entry.
4606 static int get_rps_cpu(struct net_device
*dev
, struct sk_buff
*skb
,
4607 struct rps_dev_flow
**rflowp
)
4609 const struct rps_sock_flow_table
*sock_flow_table
;
4610 struct netdev_rx_queue
*rxqueue
= dev
->_rx
;
4611 struct rps_dev_flow_table
*flow_table
;
4612 struct rps_map
*map
;
4617 if (skb_rx_queue_recorded(skb
)) {
4618 u16 index
= skb_get_rx_queue(skb
);
4620 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
4621 WARN_ONCE(dev
->real_num_rx_queues
> 1,
4622 "%s received packet on queue %u, but number "
4623 "of RX queues is %u\n",
4624 dev
->name
, index
, dev
->real_num_rx_queues
);
4630 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4632 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4633 map
= rcu_dereference(rxqueue
->rps_map
);
4634 if (!flow_table
&& !map
)
4637 skb_reset_network_header(skb
);
4638 hash
= skb_get_hash(skb
);
4642 sock_flow_table
= rcu_dereference(net_hotdata
.rps_sock_flow_table
);
4643 if (flow_table
&& sock_flow_table
) {
4644 struct rps_dev_flow
*rflow
;
4648 /* First check into global flow table if there is a match.
4649 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4651 ident
= READ_ONCE(sock_flow_table
->ents
[hash
& sock_flow_table
->mask
]);
4652 if ((ident
^ hash
) & ~net_hotdata
.rps_cpu_mask
)
4655 next_cpu
= ident
& net_hotdata
.rps_cpu_mask
;
4657 /* OK, now we know there is a match,
4658 * we can look at the local (per receive queue) flow table
4660 rflow
= &flow_table
->flows
[hash
& flow_table
->mask
];
4664 * If the desired CPU (where last recvmsg was done) is
4665 * different from current CPU (one in the rx-queue flow
4666 * table entry), switch if one of the following holds:
4667 * - Current CPU is unset (>= nr_cpu_ids).
4668 * - Current CPU is offline.
4669 * - The current CPU's queue tail has advanced beyond the
4670 * last packet that was enqueued using this table entry.
4671 * This guarantees that all previous packets for the flow
4672 * have been dequeued, thus preserving in order delivery.
4674 if (unlikely(tcpu
!= next_cpu
) &&
4675 (tcpu
>= nr_cpu_ids
|| !cpu_online(tcpu
) ||
4676 ((int)(READ_ONCE(per_cpu(softnet_data
, tcpu
).input_queue_head
) -
4677 rflow
->last_qtail
)) >= 0)) {
4679 rflow
= set_rps_cpu(dev
, skb
, rflow
, next_cpu
);
4682 if (tcpu
< nr_cpu_ids
&& cpu_online(tcpu
)) {
4692 tcpu
= map
->cpus
[reciprocal_scale(hash
, map
->len
)];
4693 if (cpu_online(tcpu
)) {
4703 #ifdef CONFIG_RFS_ACCEL
4706 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4707 * @dev: Device on which the filter was set
4708 * @rxq_index: RX queue index
4709 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4710 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4712 * Drivers that implement ndo_rx_flow_steer() should periodically call
4713 * this function for each installed filter and remove the filters for
4714 * which it returns %true.
4716 bool rps_may_expire_flow(struct net_device
*dev
, u16 rxq_index
,
4717 u32 flow_id
, u16 filter_id
)
4719 struct netdev_rx_queue
*rxqueue
= dev
->_rx
+ rxq_index
;
4720 struct rps_dev_flow_table
*flow_table
;
4721 struct rps_dev_flow
*rflow
;
4726 flow_table
= rcu_dereference(rxqueue
->rps_flow_table
);
4727 if (flow_table
&& flow_id
<= flow_table
->mask
) {
4728 rflow
= &flow_table
->flows
[flow_id
];
4729 cpu
= READ_ONCE(rflow
->cpu
);
4730 if (READ_ONCE(rflow
->filter
) == filter_id
&& cpu
< nr_cpu_ids
&&
4731 ((int)(READ_ONCE(per_cpu(softnet_data
, cpu
).input_queue_head
) -
4732 READ_ONCE(rflow
->last_qtail
)) <
4733 (int)(10 * flow_table
->mask
)))
4739 EXPORT_SYMBOL(rps_may_expire_flow
);
4741 #endif /* CONFIG_RFS_ACCEL */
4743 /* Called from hardirq (IPI) context */
4744 static void rps_trigger_softirq(void *data
)
4746 struct softnet_data
*sd
= data
;
4748 ____napi_schedule(sd
, &sd
->backlog
);
4752 #endif /* CONFIG_RPS */
4754 /* Called from hardirq (IPI) context */
4755 static void trigger_rx_softirq(void *data
)
4757 struct softnet_data
*sd
= data
;
4759 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
4760 smp_store_release(&sd
->defer_ipi_scheduled
, 0);
4764 * After we queued a packet into sd->input_pkt_queue,
4765 * we need to make sure this queue is serviced soon.
4767 * - If this is another cpu queue, link it to our rps_ipi_list,
4768 * and make sure we will process rps_ipi_list from net_rx_action().
4770 * - If this is our own queue, NAPI schedule our backlog.
4771 * Note that this also raises NET_RX_SOFTIRQ.
4773 static void napi_schedule_rps(struct softnet_data
*sd
)
4775 struct softnet_data
*mysd
= this_cpu_ptr(&softnet_data
);
4779 if (use_backlog_threads()) {
4780 __napi_schedule_irqoff(&sd
->backlog
);
4784 sd
->rps_ipi_next
= mysd
->rps_ipi_list
;
4785 mysd
->rps_ipi_list
= sd
;
4787 /* If not called from net_rx_action() or napi_threaded_poll()
4788 * we have to raise NET_RX_SOFTIRQ.
4790 if (!mysd
->in_net_rx_action
&& !mysd
->in_napi_threaded_poll
)
4791 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
4794 #endif /* CONFIG_RPS */
4795 __napi_schedule_irqoff(&mysd
->backlog
);
4798 void kick_defer_list_purge(struct softnet_data
*sd
, unsigned int cpu
)
4800 unsigned long flags
;
4802 if (use_backlog_threads()) {
4803 backlog_lock_irq_save(sd
, &flags
);
4805 if (!__test_and_set_bit(NAPI_STATE_SCHED
, &sd
->backlog
.state
))
4806 __napi_schedule_irqoff(&sd
->backlog
);
4808 backlog_unlock_irq_restore(sd
, &flags
);
4810 } else if (!cmpxchg(&sd
->defer_ipi_scheduled
, 0, 1)) {
4811 smp_call_function_single_async(cpu
, &sd
->defer_csd
);
4815 #ifdef CONFIG_NET_FLOW_LIMIT
4816 int netdev_flow_limit_table_len __read_mostly
= (1 << 12);
4819 static bool skb_flow_limit(struct sk_buff
*skb
, unsigned int qlen
)
4821 #ifdef CONFIG_NET_FLOW_LIMIT
4822 struct sd_flow_limit
*fl
;
4823 struct softnet_data
*sd
;
4824 unsigned int old_flow
, new_flow
;
4826 if (qlen
< (READ_ONCE(net_hotdata
.max_backlog
) >> 1))
4829 sd
= this_cpu_ptr(&softnet_data
);
4832 fl
= rcu_dereference(sd
->flow_limit
);
4834 new_flow
= skb_get_hash(skb
) & (fl
->num_buckets
- 1);
4835 old_flow
= fl
->history
[fl
->history_head
];
4836 fl
->history
[fl
->history_head
] = new_flow
;
4839 fl
->history_head
&= FLOW_LIMIT_HISTORY
- 1;
4841 if (likely(fl
->buckets
[old_flow
]))
4842 fl
->buckets
[old_flow
]--;
4844 if (++fl
->buckets
[new_flow
] > (FLOW_LIMIT_HISTORY
>> 1)) {
4856 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4857 * queue (may be a remote CPU queue).
4859 static int enqueue_to_backlog(struct sk_buff
*skb
, int cpu
,
4860 unsigned int *qtail
)
4862 enum skb_drop_reason reason
;
4863 struct softnet_data
*sd
;
4864 unsigned long flags
;
4869 reason
= SKB_DROP_REASON_DEV_READY
;
4870 if (!netif_running(skb
->dev
))
4873 reason
= SKB_DROP_REASON_CPU_BACKLOG
;
4874 sd
= &per_cpu(softnet_data
, cpu
);
4876 qlen
= skb_queue_len_lockless(&sd
->input_pkt_queue
);
4877 max_backlog
= READ_ONCE(net_hotdata
.max_backlog
);
4878 if (unlikely(qlen
> max_backlog
))
4879 goto cpu_backlog_drop
;
4880 backlog_lock_irq_save(sd
, &flags
);
4881 qlen
= skb_queue_len(&sd
->input_pkt_queue
);
4882 if (qlen
<= max_backlog
&& !skb_flow_limit(skb
, qlen
)) {
4884 /* Schedule NAPI for backlog device. We can use
4885 * non atomic operation as we own the queue lock.
4887 if (!__test_and_set_bit(NAPI_STATE_SCHED
,
4888 &sd
->backlog
.state
))
4889 napi_schedule_rps(sd
);
4891 __skb_queue_tail(&sd
->input_pkt_queue
, skb
);
4892 tail
= rps_input_queue_tail_incr(sd
);
4893 backlog_unlock_irq_restore(sd
, &flags
);
4895 /* save the tail outside of the critical section */
4896 rps_input_queue_tail_save(qtail
, tail
);
4897 return NET_RX_SUCCESS
;
4900 backlog_unlock_irq_restore(sd
, &flags
);
4903 atomic_inc(&sd
->dropped
);
4905 dev_core_stats_rx_dropped_inc(skb
->dev
);
4906 kfree_skb_reason(skb
, reason
);
4910 static struct netdev_rx_queue
*netif_get_rxqueue(struct sk_buff
*skb
)
4912 struct net_device
*dev
= skb
->dev
;
4913 struct netdev_rx_queue
*rxqueue
;
4917 if (skb_rx_queue_recorded(skb
)) {
4918 u16 index
= skb_get_rx_queue(skb
);
4920 if (unlikely(index
>= dev
->real_num_rx_queues
)) {
4921 WARN_ONCE(dev
->real_num_rx_queues
> 1,
4922 "%s received packet on queue %u, but number "
4923 "of RX queues is %u\n",
4924 dev
->name
, index
, dev
->real_num_rx_queues
);
4926 return rxqueue
; /* Return first rxqueue */
4933 u32
bpf_prog_run_generic_xdp(struct sk_buff
*skb
, struct xdp_buff
*xdp
,
4934 struct bpf_prog
*xdp_prog
)
4936 void *orig_data
, *orig_data_end
, *hard_start
;
4937 struct netdev_rx_queue
*rxqueue
;
4938 bool orig_bcast
, orig_host
;
4939 u32 mac_len
, frame_sz
;
4940 __be16 orig_eth_type
;
4945 /* The XDP program wants to see the packet starting at the MAC
4948 mac_len
= skb
->data
- skb_mac_header(skb
);
4949 hard_start
= skb
->data
- skb_headroom(skb
);
4951 /* SKB "head" area always have tailroom for skb_shared_info */
4952 frame_sz
= (void *)skb_end_pointer(skb
) - hard_start
;
4953 frame_sz
+= SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
4955 rxqueue
= netif_get_rxqueue(skb
);
4956 xdp_init_buff(xdp
, frame_sz
, &rxqueue
->xdp_rxq
);
4957 xdp_prepare_buff(xdp
, hard_start
, skb_headroom(skb
) - mac_len
,
4958 skb_headlen(skb
) + mac_len
, true);
4959 if (skb_is_nonlinear(skb
)) {
4960 skb_shinfo(skb
)->xdp_frags_size
= skb
->data_len
;
4961 xdp_buff_set_frags_flag(xdp
);
4963 xdp_buff_clear_frags_flag(xdp
);
4966 orig_data_end
= xdp
->data_end
;
4967 orig_data
= xdp
->data
;
4968 eth
= (struct ethhdr
*)xdp
->data
;
4969 orig_host
= ether_addr_equal_64bits(eth
->h_dest
, skb
->dev
->dev_addr
);
4970 orig_bcast
= is_multicast_ether_addr_64bits(eth
->h_dest
);
4971 orig_eth_type
= eth
->h_proto
;
4973 act
= bpf_prog_run_xdp(xdp_prog
, xdp
);
4975 /* check if bpf_xdp_adjust_head was used */
4976 off
= xdp
->data
- orig_data
;
4979 __skb_pull(skb
, off
);
4981 __skb_push(skb
, -off
);
4983 skb
->mac_header
+= off
;
4984 skb_reset_network_header(skb
);
4987 /* check if bpf_xdp_adjust_tail was used */
4988 off
= xdp
->data_end
- orig_data_end
;
4990 skb_set_tail_pointer(skb
, xdp
->data_end
- xdp
->data
);
4991 skb
->len
+= off
; /* positive on grow, negative on shrink */
4994 /* XDP frag metadata (e.g. nr_frags) are updated in eBPF helpers
4995 * (e.g. bpf_xdp_adjust_tail), we need to update data_len here.
4997 if (xdp_buff_has_frags(xdp
))
4998 skb
->data_len
= skb_shinfo(skb
)->xdp_frags_size
;
5002 /* check if XDP changed eth hdr such SKB needs update */
5003 eth
= (struct ethhdr
*)xdp
->data
;
5004 if ((orig_eth_type
!= eth
->h_proto
) ||
5005 (orig_host
!= ether_addr_equal_64bits(eth
->h_dest
,
5006 skb
->dev
->dev_addr
)) ||
5007 (orig_bcast
!= is_multicast_ether_addr_64bits(eth
->h_dest
))) {
5008 __skb_push(skb
, ETH_HLEN
);
5009 skb
->pkt_type
= PACKET_HOST
;
5010 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
5013 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
5014 * before calling us again on redirect path. We do not call do_redirect
5015 * as we leave that up to the caller.
5017 * Caller is responsible for managing lifetime of skb (i.e. calling
5018 * kfree_skb in response to actions it cannot handle/XDP_DROP).
5023 __skb_push(skb
, mac_len
);
5026 metalen
= xdp
->data
- xdp
->data_meta
;
5028 skb_metadata_set(skb
, metalen
);
5036 netif_skb_check_for_xdp(struct sk_buff
**pskb
, struct bpf_prog
*prog
)
5038 struct sk_buff
*skb
= *pskb
;
5039 int err
, hroom
, troom
;
5041 if (!skb_cow_data_for_xdp(this_cpu_read(system_page_pool
), pskb
, prog
))
5044 /* In case we have to go down the path and also linearize,
5045 * then lets do the pskb_expand_head() work just once here.
5047 hroom
= XDP_PACKET_HEADROOM
- skb_headroom(skb
);
5048 troom
= skb
->tail
+ skb
->data_len
- skb
->end
;
5049 err
= pskb_expand_head(skb
,
5050 hroom
> 0 ? ALIGN(hroom
, NET_SKB_PAD
) : 0,
5051 troom
> 0 ? troom
+ 128 : 0, GFP_ATOMIC
);
5055 return skb_linearize(skb
);
5058 static u32
netif_receive_generic_xdp(struct sk_buff
**pskb
,
5059 struct xdp_buff
*xdp
,
5060 struct bpf_prog
*xdp_prog
)
5062 struct sk_buff
*skb
= *pskb
;
5063 u32 mac_len
, act
= XDP_DROP
;
5065 /* Reinjected packets coming from act_mirred or similar should
5066 * not get XDP generic processing.
5068 if (skb_is_redirected(skb
))
5071 /* XDP packets must have sufficient headroom of XDP_PACKET_HEADROOM
5072 * bytes. This is the guarantee that also native XDP provides,
5073 * thus we need to do it here as well.
5075 mac_len
= skb
->data
- skb_mac_header(skb
);
5076 __skb_push(skb
, mac_len
);
5078 if (skb_cloned(skb
) || skb_is_nonlinear(skb
) ||
5079 skb_headroom(skb
) < XDP_PACKET_HEADROOM
) {
5080 if (netif_skb_check_for_xdp(pskb
, xdp_prog
))
5084 __skb_pull(*pskb
, mac_len
);
5086 act
= bpf_prog_run_generic_xdp(*pskb
, xdp
, xdp_prog
);
5093 bpf_warn_invalid_xdp_action((*pskb
)->dev
, xdp_prog
, act
);
5096 trace_xdp_exception((*pskb
)->dev
, xdp_prog
, act
);
5107 /* When doing generic XDP we have to bypass the qdisc layer and the
5108 * network taps in order to match in-driver-XDP behavior. This also means
5109 * that XDP packets are able to starve other packets going through a qdisc,
5110 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5111 * queues, so they do not have this starvation issue.
5113 void generic_xdp_tx(struct sk_buff
*skb
, struct bpf_prog
*xdp_prog
)
5115 struct net_device
*dev
= skb
->dev
;
5116 struct netdev_queue
*txq
;
5117 bool free_skb
= true;
5120 txq
= netdev_core_pick_tx(dev
, skb
, NULL
);
5121 cpu
= smp_processor_id();
5122 HARD_TX_LOCK(dev
, txq
, cpu
);
5123 if (!netif_xmit_frozen_or_drv_stopped(txq
)) {
5124 rc
= netdev_start_xmit(skb
, dev
, txq
, 0);
5125 if (dev_xmit_complete(rc
))
5128 HARD_TX_UNLOCK(dev
, txq
);
5130 trace_xdp_exception(dev
, xdp_prog
, XDP_TX
);
5131 dev_core_stats_tx_dropped_inc(dev
);
5136 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key
);
5138 int do_xdp_generic(struct bpf_prog
*xdp_prog
, struct sk_buff
**pskb
)
5140 struct bpf_net_context __bpf_net_ctx
, *bpf_net_ctx
;
5143 struct xdp_buff xdp
;
5147 bpf_net_ctx
= bpf_net_ctx_set(&__bpf_net_ctx
);
5148 act
= netif_receive_generic_xdp(pskb
, &xdp
, xdp_prog
);
5149 if (act
!= XDP_PASS
) {
5152 err
= xdp_do_generic_redirect((*pskb
)->dev
, *pskb
,
5158 generic_xdp_tx(*pskb
, xdp_prog
);
5161 bpf_net_ctx_clear(bpf_net_ctx
);
5164 bpf_net_ctx_clear(bpf_net_ctx
);
5168 bpf_net_ctx_clear(bpf_net_ctx
);
5169 kfree_skb_reason(*pskb
, SKB_DROP_REASON_XDP
);
5172 EXPORT_SYMBOL_GPL(do_xdp_generic
);
5174 static int netif_rx_internal(struct sk_buff
*skb
)
5178 net_timestamp_check(READ_ONCE(net_hotdata
.tstamp_prequeue
), skb
);
5180 trace_netif_rx(skb
);
5183 if (static_branch_unlikely(&rps_needed
)) {
5184 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
5189 cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
5191 cpu
= smp_processor_id();
5193 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
5201 ret
= enqueue_to_backlog(skb
, smp_processor_id(), &qtail
);
5207 * __netif_rx - Slightly optimized version of netif_rx
5208 * @skb: buffer to post
5210 * This behaves as netif_rx except that it does not disable bottom halves.
5211 * As a result this function may only be invoked from the interrupt context
5212 * (either hard or soft interrupt).
5214 int __netif_rx(struct sk_buff
*skb
)
5218 lockdep_assert_once(hardirq_count() | softirq_count());
5220 trace_netif_rx_entry(skb
);
5221 ret
= netif_rx_internal(skb
);
5222 trace_netif_rx_exit(ret
);
5225 EXPORT_SYMBOL(__netif_rx
);
5228 * netif_rx - post buffer to the network code
5229 * @skb: buffer to post
5231 * This function receives a packet from a device driver and queues it for
5232 * the upper (protocol) levels to process via the backlog NAPI device. It
5233 * always succeeds. The buffer may be dropped during processing for
5234 * congestion control or by the protocol layers.
5235 * The network buffer is passed via the backlog NAPI device. Modern NIC
5236 * driver should use NAPI and GRO.
5237 * This function can used from interrupt and from process context. The
5238 * caller from process context must not disable interrupts before invoking
5242 * NET_RX_SUCCESS (no congestion)
5243 * NET_RX_DROP (packet was dropped)
5246 int netif_rx(struct sk_buff
*skb
)
5248 bool need_bh_off
= !(hardirq_count() | softirq_count());
5253 trace_netif_rx_entry(skb
);
5254 ret
= netif_rx_internal(skb
);
5255 trace_netif_rx_exit(ret
);
5260 EXPORT_SYMBOL(netif_rx
);
5262 static __latent_entropy
void net_tx_action(void)
5264 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
5266 if (sd
->completion_queue
) {
5267 struct sk_buff
*clist
;
5269 local_irq_disable();
5270 clist
= sd
->completion_queue
;
5271 sd
->completion_queue
= NULL
;
5275 struct sk_buff
*skb
= clist
;
5277 clist
= clist
->next
;
5279 WARN_ON(refcount_read(&skb
->users
));
5280 if (likely(get_kfree_skb_cb(skb
)->reason
== SKB_CONSUMED
))
5281 trace_consume_skb(skb
, net_tx_action
);
5283 trace_kfree_skb(skb
, net_tx_action
,
5284 get_kfree_skb_cb(skb
)->reason
, NULL
);
5286 if (skb
->fclone
!= SKB_FCLONE_UNAVAILABLE
)
5289 __napi_kfree_skb(skb
,
5290 get_kfree_skb_cb(skb
)->reason
);
5294 if (sd
->output_queue
) {
5297 local_irq_disable();
5298 head
= sd
->output_queue
;
5299 sd
->output_queue
= NULL
;
5300 sd
->output_queue_tailp
= &sd
->output_queue
;
5306 struct Qdisc
*q
= head
;
5307 spinlock_t
*root_lock
= NULL
;
5309 head
= head
->next_sched
;
5311 /* We need to make sure head->next_sched is read
5312 * before clearing __QDISC_STATE_SCHED
5314 smp_mb__before_atomic();
5316 if (!(q
->flags
& TCQ_F_NOLOCK
)) {
5317 root_lock
= qdisc_lock(q
);
5318 spin_lock(root_lock
);
5319 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED
,
5321 /* There is a synchronize_net() between
5322 * STATE_DEACTIVATED flag being set and
5323 * qdisc_reset()/some_qdisc_is_busy() in
5324 * dev_deactivate(), so we can safely bail out
5325 * early here to avoid data race between
5326 * qdisc_deactivate() and some_qdisc_is_busy()
5327 * for lockless qdisc.
5329 clear_bit(__QDISC_STATE_SCHED
, &q
->state
);
5333 clear_bit(__QDISC_STATE_SCHED
, &q
->state
);
5336 spin_unlock(root_lock
);
5342 xfrm_dev_backlog(sd
);
5345 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5346 /* This hook is defined here for ATM LANE */
5347 int (*br_fdb_test_addr_hook
)(struct net_device
*dev
,
5348 unsigned char *addr
) __read_mostly
;
5349 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook
);
5353 * netdev_is_rx_handler_busy - check if receive handler is registered
5354 * @dev: device to check
5356 * Check if a receive handler is already registered for a given device.
5357 * Return true if there one.
5359 * The caller must hold the rtnl_mutex.
5361 bool netdev_is_rx_handler_busy(struct net_device
*dev
)
5364 return dev
&& rtnl_dereference(dev
->rx_handler
);
5366 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy
);
5369 * netdev_rx_handler_register - register receive handler
5370 * @dev: device to register a handler for
5371 * @rx_handler: receive handler to register
5372 * @rx_handler_data: data pointer that is used by rx handler
5374 * Register a receive handler for a device. This handler will then be
5375 * called from __netif_receive_skb. A negative errno code is returned
5378 * The caller must hold the rtnl_mutex.
5380 * For a general description of rx_handler, see enum rx_handler_result.
5382 int netdev_rx_handler_register(struct net_device
*dev
,
5383 rx_handler_func_t
*rx_handler
,
5384 void *rx_handler_data
)
5386 if (netdev_is_rx_handler_busy(dev
))
5389 if (dev
->priv_flags
& IFF_NO_RX_HANDLER
)
5392 /* Note: rx_handler_data must be set before rx_handler */
5393 rcu_assign_pointer(dev
->rx_handler_data
, rx_handler_data
);
5394 rcu_assign_pointer(dev
->rx_handler
, rx_handler
);
5398 EXPORT_SYMBOL_GPL(netdev_rx_handler_register
);
5401 * netdev_rx_handler_unregister - unregister receive handler
5402 * @dev: device to unregister a handler from
5404 * Unregister a receive handler from a device.
5406 * The caller must hold the rtnl_mutex.
5408 void netdev_rx_handler_unregister(struct net_device
*dev
)
5412 RCU_INIT_POINTER(dev
->rx_handler
, NULL
);
5413 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5414 * section has a guarantee to see a non NULL rx_handler_data
5418 RCU_INIT_POINTER(dev
->rx_handler_data
, NULL
);
5420 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister
);
5423 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5424 * the special handling of PFMEMALLOC skbs.
5426 static bool skb_pfmemalloc_protocol(struct sk_buff
*skb
)
5428 switch (skb
->protocol
) {
5429 case htons(ETH_P_ARP
):
5430 case htons(ETH_P_IP
):
5431 case htons(ETH_P_IPV6
):
5432 case htons(ETH_P_8021Q
):
5433 case htons(ETH_P_8021AD
):
5440 static inline int nf_ingress(struct sk_buff
*skb
, struct packet_type
**pt_prev
,
5441 int *ret
, struct net_device
*orig_dev
)
5443 if (nf_hook_ingress_active(skb
)) {
5447 *ret
= deliver_skb(skb
, *pt_prev
, orig_dev
);
5452 ingress_retval
= nf_hook_ingress(skb
);
5454 return ingress_retval
;
5459 static int __netif_receive_skb_core(struct sk_buff
**pskb
, bool pfmemalloc
,
5460 struct packet_type
**ppt_prev
)
5462 struct packet_type
*ptype
, *pt_prev
;
5463 rx_handler_func_t
*rx_handler
;
5464 struct sk_buff
*skb
= *pskb
;
5465 struct net_device
*orig_dev
;
5466 bool deliver_exact
= false;
5467 int ret
= NET_RX_DROP
;
5470 net_timestamp_check(!READ_ONCE(net_hotdata
.tstamp_prequeue
), skb
);
5472 trace_netif_receive_skb(skb
);
5474 orig_dev
= skb
->dev
;
5476 skb_reset_network_header(skb
);
5477 if (!skb_transport_header_was_set(skb
))
5478 skb_reset_transport_header(skb
);
5479 skb_reset_mac_len(skb
);
5484 skb
->skb_iif
= skb
->dev
->ifindex
;
5486 __this_cpu_inc(softnet_data
.processed
);
5488 if (static_branch_unlikely(&generic_xdp_needed_key
)) {
5492 ret2
= do_xdp_generic(rcu_dereference(skb
->dev
->xdp_prog
),
5496 if (ret2
!= XDP_PASS
) {
5502 if (eth_type_vlan(skb
->protocol
)) {
5503 skb
= skb_vlan_untag(skb
);
5508 if (skb_skip_tc_classify(skb
))
5514 list_for_each_entry_rcu(ptype
, &net_hotdata
.ptype_all
, list
) {
5516 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
5520 list_for_each_entry_rcu(ptype
, &skb
->dev
->ptype_all
, list
) {
5522 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
5527 #ifdef CONFIG_NET_INGRESS
5528 if (static_branch_unlikely(&ingress_needed_key
)) {
5529 bool another
= false;
5531 nf_skip_egress(skb
, true);
5532 skb
= sch_handle_ingress(skb
, &pt_prev
, &ret
, orig_dev
,
5539 nf_skip_egress(skb
, false);
5540 if (nf_ingress(skb
, &pt_prev
, &ret
, orig_dev
) < 0)
5544 skb_reset_redirect(skb
);
5546 if (pfmemalloc
&& !skb_pfmemalloc_protocol(skb
))
5549 if (skb_vlan_tag_present(skb
)) {
5551 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
5554 if (vlan_do_receive(&skb
))
5556 else if (unlikely(!skb
))
5560 rx_handler
= rcu_dereference(skb
->dev
->rx_handler
);
5563 ret
= deliver_skb(skb
, pt_prev
, orig_dev
);
5566 switch (rx_handler(&skb
)) {
5567 case RX_HANDLER_CONSUMED
:
5568 ret
= NET_RX_SUCCESS
;
5570 case RX_HANDLER_ANOTHER
:
5572 case RX_HANDLER_EXACT
:
5573 deliver_exact
= true;
5575 case RX_HANDLER_PASS
:
5582 if (unlikely(skb_vlan_tag_present(skb
)) && !netdev_uses_dsa(skb
->dev
)) {
5584 if (skb_vlan_tag_get_id(skb
)) {
5585 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5588 skb
->pkt_type
= PACKET_OTHERHOST
;
5589 } else if (eth_type_vlan(skb
->protocol
)) {
5590 /* Outer header is 802.1P with vlan 0, inner header is
5591 * 802.1Q or 802.1AD and vlan_do_receive() above could
5592 * not find vlan dev for vlan id 0.
5594 __vlan_hwaccel_clear_tag(skb
);
5595 skb
= skb_vlan_untag(skb
);
5598 if (vlan_do_receive(&skb
))
5599 /* After stripping off 802.1P header with vlan 0
5600 * vlan dev is found for inner header.
5603 else if (unlikely(!skb
))
5606 /* We have stripped outer 802.1P vlan 0 header.
5607 * But could not find vlan dev.
5608 * check again for vlan id to set OTHERHOST.
5612 /* Note: we might in the future use prio bits
5613 * and set skb->priority like in vlan_do_receive()
5614 * For the time being, just ignore Priority Code Point
5616 __vlan_hwaccel_clear_tag(skb
);
5619 type
= skb
->protocol
;
5621 /* deliver only exact match when indicated */
5622 if (likely(!deliver_exact
)) {
5623 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
5624 &ptype_base
[ntohs(type
) &
5628 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
5629 &orig_dev
->ptype_specific
);
5631 if (unlikely(skb
->dev
!= orig_dev
)) {
5632 deliver_ptype_list_skb(skb
, &pt_prev
, orig_dev
, type
,
5633 &skb
->dev
->ptype_specific
);
5637 if (unlikely(skb_orphan_frags_rx(skb
, GFP_ATOMIC
)))
5639 *ppt_prev
= pt_prev
;
5643 dev_core_stats_rx_dropped_inc(skb
->dev
);
5645 dev_core_stats_rx_nohandler_inc(skb
->dev
);
5646 kfree_skb_reason(skb
, SKB_DROP_REASON_UNHANDLED_PROTO
);
5647 /* Jamal, now you will not able to escape explaining
5648 * me how you were going to use this. :-)
5654 /* The invariant here is that if *ppt_prev is not NULL
5655 * then skb should also be non-NULL.
5657 * Apparently *ppt_prev assignment above holds this invariant due to
5658 * skb dereferencing near it.
5664 static int __netif_receive_skb_one_core(struct sk_buff
*skb
, bool pfmemalloc
)
5666 struct net_device
*orig_dev
= skb
->dev
;
5667 struct packet_type
*pt_prev
= NULL
;
5670 ret
= __netif_receive_skb_core(&skb
, pfmemalloc
, &pt_prev
);
5672 ret
= INDIRECT_CALL_INET(pt_prev
->func
, ipv6_rcv
, ip_rcv
, skb
,
5673 skb
->dev
, pt_prev
, orig_dev
);
5678 * netif_receive_skb_core - special purpose version of netif_receive_skb
5679 * @skb: buffer to process
5681 * More direct receive version of netif_receive_skb(). It should
5682 * only be used by callers that have a need to skip RPS and Generic XDP.
5683 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5685 * This function may only be called from softirq context and interrupts
5686 * should be enabled.
5688 * Return values (usually ignored):
5689 * NET_RX_SUCCESS: no congestion
5690 * NET_RX_DROP: packet was dropped
5692 int netif_receive_skb_core(struct sk_buff
*skb
)
5697 ret
= __netif_receive_skb_one_core(skb
, false);
5702 EXPORT_SYMBOL(netif_receive_skb_core
);
5704 static inline void __netif_receive_skb_list_ptype(struct list_head
*head
,
5705 struct packet_type
*pt_prev
,
5706 struct net_device
*orig_dev
)
5708 struct sk_buff
*skb
, *next
;
5712 if (list_empty(head
))
5714 if (pt_prev
->list_func
!= NULL
)
5715 INDIRECT_CALL_INET(pt_prev
->list_func
, ipv6_list_rcv
,
5716 ip_list_rcv
, head
, pt_prev
, orig_dev
);
5718 list_for_each_entry_safe(skb
, next
, head
, list
) {
5719 skb_list_del_init(skb
);
5720 pt_prev
->func(skb
, skb
->dev
, pt_prev
, orig_dev
);
5724 static void __netif_receive_skb_list_core(struct list_head
*head
, bool pfmemalloc
)
5726 /* Fast-path assumptions:
5727 * - There is no RX handler.
5728 * - Only one packet_type matches.
5729 * If either of these fails, we will end up doing some per-packet
5730 * processing in-line, then handling the 'last ptype' for the whole
5731 * sublist. This can't cause out-of-order delivery to any single ptype,
5732 * because the 'last ptype' must be constant across the sublist, and all
5733 * other ptypes are handled per-packet.
5735 /* Current (common) ptype of sublist */
5736 struct packet_type
*pt_curr
= NULL
;
5737 /* Current (common) orig_dev of sublist */
5738 struct net_device
*od_curr
= NULL
;
5739 struct sk_buff
*skb
, *next
;
5742 list_for_each_entry_safe(skb
, next
, head
, list
) {
5743 struct net_device
*orig_dev
= skb
->dev
;
5744 struct packet_type
*pt_prev
= NULL
;
5746 skb_list_del_init(skb
);
5747 __netif_receive_skb_core(&skb
, pfmemalloc
, &pt_prev
);
5750 if (pt_curr
!= pt_prev
|| od_curr
!= orig_dev
) {
5751 /* dispatch old sublist */
5752 __netif_receive_skb_list_ptype(&sublist
, pt_curr
, od_curr
);
5753 /* start new sublist */
5754 INIT_LIST_HEAD(&sublist
);
5758 list_add_tail(&skb
->list
, &sublist
);
5761 /* dispatch final sublist */
5762 __netif_receive_skb_list_ptype(&sublist
, pt_curr
, od_curr
);
5765 static int __netif_receive_skb(struct sk_buff
*skb
)
5769 if (sk_memalloc_socks() && skb_pfmemalloc(skb
)) {
5770 unsigned int noreclaim_flag
;
5773 * PFMEMALLOC skbs are special, they should
5774 * - be delivered to SOCK_MEMALLOC sockets only
5775 * - stay away from userspace
5776 * - have bounded memory usage
5778 * Use PF_MEMALLOC as this saves us from propagating the allocation
5779 * context down to all allocation sites.
5781 noreclaim_flag
= memalloc_noreclaim_save();
5782 ret
= __netif_receive_skb_one_core(skb
, true);
5783 memalloc_noreclaim_restore(noreclaim_flag
);
5785 ret
= __netif_receive_skb_one_core(skb
, false);
5790 static void __netif_receive_skb_list(struct list_head
*head
)
5792 unsigned long noreclaim_flag
= 0;
5793 struct sk_buff
*skb
, *next
;
5794 bool pfmemalloc
= false; /* Is current sublist PF_MEMALLOC? */
5796 list_for_each_entry_safe(skb
, next
, head
, list
) {
5797 if ((sk_memalloc_socks() && skb_pfmemalloc(skb
)) != pfmemalloc
) {
5798 struct list_head sublist
;
5800 /* Handle the previous sublist */
5801 list_cut_before(&sublist
, head
, &skb
->list
);
5802 if (!list_empty(&sublist
))
5803 __netif_receive_skb_list_core(&sublist
, pfmemalloc
);
5804 pfmemalloc
= !pfmemalloc
;
5805 /* See comments in __netif_receive_skb */
5807 noreclaim_flag
= memalloc_noreclaim_save();
5809 memalloc_noreclaim_restore(noreclaim_flag
);
5812 /* Handle the remaining sublist */
5813 if (!list_empty(head
))
5814 __netif_receive_skb_list_core(head
, pfmemalloc
);
5815 /* Restore pflags */
5817 memalloc_noreclaim_restore(noreclaim_flag
);
5820 static int generic_xdp_install(struct net_device
*dev
, struct netdev_bpf
*xdp
)
5822 struct bpf_prog
*old
= rtnl_dereference(dev
->xdp_prog
);
5823 struct bpf_prog
*new = xdp
->prog
;
5826 switch (xdp
->command
) {
5827 case XDP_SETUP_PROG
:
5828 rcu_assign_pointer(dev
->xdp_prog
, new);
5833 static_branch_dec(&generic_xdp_needed_key
);
5834 } else if (new && !old
) {
5835 static_branch_inc(&generic_xdp_needed_key
);
5836 dev_disable_lro(dev
);
5837 dev_disable_gro_hw(dev
);
5849 static int netif_receive_skb_internal(struct sk_buff
*skb
)
5853 net_timestamp_check(READ_ONCE(net_hotdata
.tstamp_prequeue
), skb
);
5855 if (skb_defer_rx_timestamp(skb
))
5856 return NET_RX_SUCCESS
;
5860 if (static_branch_unlikely(&rps_needed
)) {
5861 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
5862 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
5865 ret
= enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
5871 ret
= __netif_receive_skb(skb
);
5876 void netif_receive_skb_list_internal(struct list_head
*head
)
5878 struct sk_buff
*skb
, *next
;
5881 list_for_each_entry_safe(skb
, next
, head
, list
) {
5882 net_timestamp_check(READ_ONCE(net_hotdata
.tstamp_prequeue
),
5884 skb_list_del_init(skb
);
5885 if (!skb_defer_rx_timestamp(skb
))
5886 list_add_tail(&skb
->list
, &sublist
);
5888 list_splice_init(&sublist
, head
);
5892 if (static_branch_unlikely(&rps_needed
)) {
5893 list_for_each_entry_safe(skb
, next
, head
, list
) {
5894 struct rps_dev_flow voidflow
, *rflow
= &voidflow
;
5895 int cpu
= get_rps_cpu(skb
->dev
, skb
, &rflow
);
5898 /* Will be handled, remove from list */
5899 skb_list_del_init(skb
);
5900 enqueue_to_backlog(skb
, cpu
, &rflow
->last_qtail
);
5905 __netif_receive_skb_list(head
);
5910 * netif_receive_skb - process receive buffer from network
5911 * @skb: buffer to process
5913 * netif_receive_skb() is the main receive data processing function.
5914 * It always succeeds. The buffer may be dropped during processing
5915 * for congestion control or by the protocol layers.
5917 * This function may only be called from softirq context and interrupts
5918 * should be enabled.
5920 * Return values (usually ignored):
5921 * NET_RX_SUCCESS: no congestion
5922 * NET_RX_DROP: packet was dropped
5924 int netif_receive_skb(struct sk_buff
*skb
)
5928 trace_netif_receive_skb_entry(skb
);
5930 ret
= netif_receive_skb_internal(skb
);
5931 trace_netif_receive_skb_exit(ret
);
5935 EXPORT_SYMBOL(netif_receive_skb
);
5938 * netif_receive_skb_list - process many receive buffers from network
5939 * @head: list of skbs to process.
5941 * Since return value of netif_receive_skb() is normally ignored, and
5942 * wouldn't be meaningful for a list, this function returns void.
5944 * This function may only be called from softirq context and interrupts
5945 * should be enabled.
5947 void netif_receive_skb_list(struct list_head
*head
)
5949 struct sk_buff
*skb
;
5951 if (list_empty(head
))
5953 if (trace_netif_receive_skb_list_entry_enabled()) {
5954 list_for_each_entry(skb
, head
, list
)
5955 trace_netif_receive_skb_list_entry(skb
);
5957 netif_receive_skb_list_internal(head
);
5958 trace_netif_receive_skb_list_exit(0);
5960 EXPORT_SYMBOL(netif_receive_skb_list
);
5962 static DEFINE_PER_CPU(struct work_struct
, flush_works
);
5964 /* Network device is going away, flush any packets still pending */
5965 static void flush_backlog(struct work_struct
*work
)
5967 struct sk_buff
*skb
, *tmp
;
5968 struct softnet_data
*sd
;
5971 sd
= this_cpu_ptr(&softnet_data
);
5973 backlog_lock_irq_disable(sd
);
5974 skb_queue_walk_safe(&sd
->input_pkt_queue
, skb
, tmp
) {
5975 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
5976 __skb_unlink(skb
, &sd
->input_pkt_queue
);
5977 dev_kfree_skb_irq(skb
);
5978 rps_input_queue_head_incr(sd
);
5981 backlog_unlock_irq_enable(sd
);
5983 local_lock_nested_bh(&softnet_data
.process_queue_bh_lock
);
5984 skb_queue_walk_safe(&sd
->process_queue
, skb
, tmp
) {
5985 if (skb
->dev
->reg_state
== NETREG_UNREGISTERING
) {
5986 __skb_unlink(skb
, &sd
->process_queue
);
5988 rps_input_queue_head_incr(sd
);
5991 local_unlock_nested_bh(&softnet_data
.process_queue_bh_lock
);
5995 static bool flush_required(int cpu
)
5997 #if IS_ENABLED(CONFIG_RPS)
5998 struct softnet_data
*sd
= &per_cpu(softnet_data
, cpu
);
6001 backlog_lock_irq_disable(sd
);
6003 /* as insertion into process_queue happens with the rps lock held,
6004 * process_queue access may race only with dequeue
6006 do_flush
= !skb_queue_empty(&sd
->input_pkt_queue
) ||
6007 !skb_queue_empty_lockless(&sd
->process_queue
);
6008 backlog_unlock_irq_enable(sd
);
6012 /* without RPS we can't safely check input_pkt_queue: during a
6013 * concurrent remote skb_queue_splice() we can detect as empty both
6014 * input_pkt_queue and process_queue even if the latter could end-up
6015 * containing a lot of packets.
6020 static void flush_all_backlogs(void)
6022 static cpumask_t flush_cpus
;
6025 /* since we are under rtnl lock protection we can use static data
6026 * for the cpumask and avoid allocating on stack the possibly
6033 cpumask_clear(&flush_cpus
);
6034 for_each_online_cpu(cpu
) {
6035 if (flush_required(cpu
)) {
6036 queue_work_on(cpu
, system_highpri_wq
,
6037 per_cpu_ptr(&flush_works
, cpu
));
6038 cpumask_set_cpu(cpu
, &flush_cpus
);
6042 /* we can have in flight packet[s] on the cpus we are not flushing,
6043 * synchronize_net() in unregister_netdevice_many() will take care of
6046 for_each_cpu(cpu
, &flush_cpus
)
6047 flush_work(per_cpu_ptr(&flush_works
, cpu
));
6052 static void net_rps_send_ipi(struct softnet_data
*remsd
)
6056 struct softnet_data
*next
= remsd
->rps_ipi_next
;
6058 if (cpu_online(remsd
->cpu
))
6059 smp_call_function_single_async(remsd
->cpu
, &remsd
->csd
);
6066 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
6067 * Note: called with local irq disabled, but exits with local irq enabled.
6069 static void net_rps_action_and_irq_enable(struct softnet_data
*sd
)
6072 struct softnet_data
*remsd
= sd
->rps_ipi_list
;
6074 if (!use_backlog_threads() && remsd
) {
6075 sd
->rps_ipi_list
= NULL
;
6079 /* Send pending IPI's to kick RPS processing on remote cpus. */
6080 net_rps_send_ipi(remsd
);
6086 static bool sd_has_rps_ipi_waiting(struct softnet_data
*sd
)
6089 return !use_backlog_threads() && sd
->rps_ipi_list
;
6095 static int process_backlog(struct napi_struct
*napi
, int quota
)
6097 struct softnet_data
*sd
= container_of(napi
, struct softnet_data
, backlog
);
6101 /* Check if we have pending ipi, its better to send them now,
6102 * not waiting net_rx_action() end.
6104 if (sd_has_rps_ipi_waiting(sd
)) {
6105 local_irq_disable();
6106 net_rps_action_and_irq_enable(sd
);
6109 napi
->weight
= READ_ONCE(net_hotdata
.dev_rx_weight
);
6111 struct sk_buff
*skb
;
6113 local_lock_nested_bh(&softnet_data
.process_queue_bh_lock
);
6114 while ((skb
= __skb_dequeue(&sd
->process_queue
))) {
6115 local_unlock_nested_bh(&softnet_data
.process_queue_bh_lock
);
6117 __netif_receive_skb(skb
);
6119 if (++work
>= quota
) {
6120 rps_input_queue_head_add(sd
, work
);
6124 local_lock_nested_bh(&softnet_data
.process_queue_bh_lock
);
6126 local_unlock_nested_bh(&softnet_data
.process_queue_bh_lock
);
6128 backlog_lock_irq_disable(sd
);
6129 if (skb_queue_empty(&sd
->input_pkt_queue
)) {
6131 * Inline a custom version of __napi_complete().
6132 * only current cpu owns and manipulates this napi,
6133 * and NAPI_STATE_SCHED is the only possible flag set
6135 * We can use a plain write instead of clear_bit(),
6136 * and we dont need an smp_mb() memory barrier.
6138 napi
->state
&= NAPIF_STATE_THREADED
;
6141 local_lock_nested_bh(&softnet_data
.process_queue_bh_lock
);
6142 skb_queue_splice_tail_init(&sd
->input_pkt_queue
,
6143 &sd
->process_queue
);
6144 local_unlock_nested_bh(&softnet_data
.process_queue_bh_lock
);
6146 backlog_unlock_irq_enable(sd
);
6150 rps_input_queue_head_add(sd
, work
);
6155 * __napi_schedule - schedule for receive
6156 * @n: entry to schedule
6158 * The entry's receive function will be scheduled to run.
6159 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6161 void __napi_schedule(struct napi_struct
*n
)
6163 unsigned long flags
;
6165 local_irq_save(flags
);
6166 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
6167 local_irq_restore(flags
);
6169 EXPORT_SYMBOL(__napi_schedule
);
6172 * napi_schedule_prep - check if napi can be scheduled
6175 * Test if NAPI routine is already running, and if not mark
6176 * it as running. This is used as a condition variable to
6177 * insure only one NAPI poll instance runs. We also make
6178 * sure there is no pending NAPI disable.
6180 bool napi_schedule_prep(struct napi_struct
*n
)
6182 unsigned long new, val
= READ_ONCE(n
->state
);
6185 if (unlikely(val
& NAPIF_STATE_DISABLE
))
6187 new = val
| NAPIF_STATE_SCHED
;
6189 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6190 * This was suggested by Alexander Duyck, as compiler
6191 * emits better code than :
6192 * if (val & NAPIF_STATE_SCHED)
6193 * new |= NAPIF_STATE_MISSED;
6195 new |= (val
& NAPIF_STATE_SCHED
) / NAPIF_STATE_SCHED
*
6197 } while (!try_cmpxchg(&n
->state
, &val
, new));
6199 return !(val
& NAPIF_STATE_SCHED
);
6201 EXPORT_SYMBOL(napi_schedule_prep
);
6204 * __napi_schedule_irqoff - schedule for receive
6205 * @n: entry to schedule
6207 * Variant of __napi_schedule() assuming hard irqs are masked.
6209 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6210 * because the interrupt disabled assumption might not be true
6211 * due to force-threaded interrupts and spinlock substitution.
6213 void __napi_schedule_irqoff(struct napi_struct
*n
)
6215 if (!IS_ENABLED(CONFIG_PREEMPT_RT
))
6216 ____napi_schedule(this_cpu_ptr(&softnet_data
), n
);
6220 EXPORT_SYMBOL(__napi_schedule_irqoff
);
6222 bool napi_complete_done(struct napi_struct
*n
, int work_done
)
6224 unsigned long flags
, val
, new, timeout
= 0;
6228 * 1) Don't let napi dequeue from the cpu poll list
6229 * just in case its running on a different cpu.
6230 * 2) If we are busy polling, do nothing here, we have
6231 * the guarantee we will be called later.
6233 if (unlikely(n
->state
& (NAPIF_STATE_NPSVC
|
6234 NAPIF_STATE_IN_BUSY_POLL
)))
6239 timeout
= napi_get_gro_flush_timeout(n
);
6240 n
->defer_hard_irqs_count
= napi_get_defer_hard_irqs(n
);
6242 if (n
->defer_hard_irqs_count
> 0) {
6243 n
->defer_hard_irqs_count
--;
6244 timeout
= napi_get_gro_flush_timeout(n
);
6248 if (n
->gro_bitmask
) {
6249 /* When the NAPI instance uses a timeout and keeps postponing
6250 * it, we need to bound somehow the time packets are kept in
6253 napi_gro_flush(n
, !!timeout
);
6258 if (unlikely(!list_empty(&n
->poll_list
))) {
6259 /* If n->poll_list is not empty, we need to mask irqs */
6260 local_irq_save(flags
);
6261 list_del_init(&n
->poll_list
);
6262 local_irq_restore(flags
);
6264 WRITE_ONCE(n
->list_owner
, -1);
6266 val
= READ_ONCE(n
->state
);
6268 WARN_ON_ONCE(!(val
& NAPIF_STATE_SCHED
));
6270 new = val
& ~(NAPIF_STATE_MISSED
| NAPIF_STATE_SCHED
|
6271 NAPIF_STATE_SCHED_THREADED
|
6272 NAPIF_STATE_PREFER_BUSY_POLL
);
6274 /* If STATE_MISSED was set, leave STATE_SCHED set,
6275 * because we will call napi->poll() one more time.
6276 * This C code was suggested by Alexander Duyck to help gcc.
6278 new |= (val
& NAPIF_STATE_MISSED
) / NAPIF_STATE_MISSED
*
6280 } while (!try_cmpxchg(&n
->state
, &val
, new));
6282 if (unlikely(val
& NAPIF_STATE_MISSED
)) {
6288 hrtimer_start(&n
->timer
, ns_to_ktime(timeout
),
6289 HRTIMER_MODE_REL_PINNED
);
6292 EXPORT_SYMBOL(napi_complete_done
);
6294 /* must be called under rcu_read_lock(), as we dont take a reference */
6295 struct napi_struct
*napi_by_id(unsigned int napi_id
)
6297 unsigned int hash
= napi_id
% HASH_SIZE(napi_hash
);
6298 struct napi_struct
*napi
;
6300 hlist_for_each_entry_rcu(napi
, &napi_hash
[hash
], napi_hash_node
)
6301 if (napi
->napi_id
== napi_id
)
6307 static void skb_defer_free_flush(struct softnet_data
*sd
)
6309 struct sk_buff
*skb
, *next
;
6311 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6312 if (!READ_ONCE(sd
->defer_list
))
6315 spin_lock(&sd
->defer_lock
);
6316 skb
= sd
->defer_list
;
6317 sd
->defer_list
= NULL
;
6318 sd
->defer_count
= 0;
6319 spin_unlock(&sd
->defer_lock
);
6321 while (skb
!= NULL
) {
6323 napi_consume_skb(skb
, 1);
6328 #if defined(CONFIG_NET_RX_BUSY_POLL)
6330 static void __busy_poll_stop(struct napi_struct
*napi
, bool skip_schedule
)
6332 if (!skip_schedule
) {
6333 gro_normal_list(napi
);
6334 __napi_schedule(napi
);
6338 if (napi
->gro_bitmask
) {
6339 /* flush too old packets
6340 * If HZ < 1000, flush all packets.
6342 napi_gro_flush(napi
, HZ
>= 1000);
6345 gro_normal_list(napi
);
6346 clear_bit(NAPI_STATE_SCHED
, &napi
->state
);
6350 NAPI_F_PREFER_BUSY_POLL
= 1,
6351 NAPI_F_END_ON_RESCHED
= 2,
6354 static void busy_poll_stop(struct napi_struct
*napi
, void *have_poll_lock
,
6355 unsigned flags
, u16 budget
)
6357 struct bpf_net_context __bpf_net_ctx
, *bpf_net_ctx
;
6358 bool skip_schedule
= false;
6359 unsigned long timeout
;
6362 /* Busy polling means there is a high chance device driver hard irq
6363 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6364 * set in napi_schedule_prep().
6365 * Since we are about to call napi->poll() once more, we can safely
6366 * clear NAPI_STATE_MISSED.
6368 * Note: x86 could use a single "lock and ..." instruction
6369 * to perform these two clear_bit()
6371 clear_bit(NAPI_STATE_MISSED
, &napi
->state
);
6372 clear_bit(NAPI_STATE_IN_BUSY_POLL
, &napi
->state
);
6375 bpf_net_ctx
= bpf_net_ctx_set(&__bpf_net_ctx
);
6377 if (flags
& NAPI_F_PREFER_BUSY_POLL
) {
6378 napi
->defer_hard_irqs_count
= napi_get_defer_hard_irqs(napi
);
6379 timeout
= napi_get_gro_flush_timeout(napi
);
6380 if (napi
->defer_hard_irqs_count
&& timeout
) {
6381 hrtimer_start(&napi
->timer
, ns_to_ktime(timeout
), HRTIMER_MODE_REL_PINNED
);
6382 skip_schedule
= true;
6386 /* All we really want here is to re-enable device interrupts.
6387 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6389 rc
= napi
->poll(napi
, budget
);
6390 /* We can't gro_normal_list() here, because napi->poll() might have
6391 * rearmed the napi (napi_complete_done()) in which case it could
6392 * already be running on another CPU.
6394 trace_napi_poll(napi
, rc
, budget
);
6395 netpoll_poll_unlock(have_poll_lock
);
6397 __busy_poll_stop(napi
, skip_schedule
);
6398 bpf_net_ctx_clear(bpf_net_ctx
);
6402 static void __napi_busy_loop(unsigned int napi_id
,
6403 bool (*loop_end
)(void *, unsigned long),
6404 void *loop_end_arg
, unsigned flags
, u16 budget
)
6406 unsigned long start_time
= loop_end
? busy_loop_current_time() : 0;
6407 int (*napi_poll
)(struct napi_struct
*napi
, int budget
);
6408 struct bpf_net_context __bpf_net_ctx
, *bpf_net_ctx
;
6409 void *have_poll_lock
= NULL
;
6410 struct napi_struct
*napi
;
6412 WARN_ON_ONCE(!rcu_read_lock_held());
6417 napi
= napi_by_id(napi_id
);
6421 if (!IS_ENABLED(CONFIG_PREEMPT_RT
))
6427 bpf_net_ctx
= bpf_net_ctx_set(&__bpf_net_ctx
);
6429 unsigned long val
= READ_ONCE(napi
->state
);
6431 /* If multiple threads are competing for this napi,
6432 * we avoid dirtying napi->state as much as we can.
6434 if (val
& (NAPIF_STATE_DISABLE
| NAPIF_STATE_SCHED
|
6435 NAPIF_STATE_IN_BUSY_POLL
)) {
6436 if (flags
& NAPI_F_PREFER_BUSY_POLL
)
6437 set_bit(NAPI_STATE_PREFER_BUSY_POLL
, &napi
->state
);
6440 if (cmpxchg(&napi
->state
, val
,
6441 val
| NAPIF_STATE_IN_BUSY_POLL
|
6442 NAPIF_STATE_SCHED
) != val
) {
6443 if (flags
& NAPI_F_PREFER_BUSY_POLL
)
6444 set_bit(NAPI_STATE_PREFER_BUSY_POLL
, &napi
->state
);
6447 have_poll_lock
= netpoll_poll_lock(napi
);
6448 napi_poll
= napi
->poll
;
6450 work
= napi_poll(napi
, budget
);
6451 trace_napi_poll(napi
, work
, budget
);
6452 gro_normal_list(napi
);
6455 __NET_ADD_STATS(dev_net(napi
->dev
),
6456 LINUX_MIB_BUSYPOLLRXPACKETS
, work
);
6457 skb_defer_free_flush(this_cpu_ptr(&softnet_data
));
6458 bpf_net_ctx_clear(bpf_net_ctx
);
6461 if (!loop_end
|| loop_end(loop_end_arg
, start_time
))
6464 if (unlikely(need_resched())) {
6465 if (flags
& NAPI_F_END_ON_RESCHED
)
6468 busy_poll_stop(napi
, have_poll_lock
, flags
, budget
);
6469 if (!IS_ENABLED(CONFIG_PREEMPT_RT
))
6474 if (loop_end(loop_end_arg
, start_time
))
6481 busy_poll_stop(napi
, have_poll_lock
, flags
, budget
);
6482 if (!IS_ENABLED(CONFIG_PREEMPT_RT
))
6486 void napi_busy_loop_rcu(unsigned int napi_id
,
6487 bool (*loop_end
)(void *, unsigned long),
6488 void *loop_end_arg
, bool prefer_busy_poll
, u16 budget
)
6490 unsigned flags
= NAPI_F_END_ON_RESCHED
;
6492 if (prefer_busy_poll
)
6493 flags
|= NAPI_F_PREFER_BUSY_POLL
;
6495 __napi_busy_loop(napi_id
, loop_end
, loop_end_arg
, flags
, budget
);
6498 void napi_busy_loop(unsigned int napi_id
,
6499 bool (*loop_end
)(void *, unsigned long),
6500 void *loop_end_arg
, bool prefer_busy_poll
, u16 budget
)
6502 unsigned flags
= prefer_busy_poll
? NAPI_F_PREFER_BUSY_POLL
: 0;
6505 __napi_busy_loop(napi_id
, loop_end
, loop_end_arg
, flags
, budget
);
6508 EXPORT_SYMBOL(napi_busy_loop
);
6510 void napi_suspend_irqs(unsigned int napi_id
)
6512 struct napi_struct
*napi
;
6515 napi
= napi_by_id(napi_id
);
6517 unsigned long timeout
= napi_get_irq_suspend_timeout(napi
);
6520 hrtimer_start(&napi
->timer
, ns_to_ktime(timeout
),
6521 HRTIMER_MODE_REL_PINNED
);
6526 void napi_resume_irqs(unsigned int napi_id
)
6528 struct napi_struct
*napi
;
6531 napi
= napi_by_id(napi_id
);
6533 /* If irq_suspend_timeout is set to 0 between the call to
6534 * napi_suspend_irqs and now, the original value still
6535 * determines the safety timeout as intended and napi_watchdog
6536 * will resume irq processing.
6538 if (napi_get_irq_suspend_timeout(napi
)) {
6540 napi_schedule(napi
);
6547 #endif /* CONFIG_NET_RX_BUSY_POLL */
6549 static void __napi_hash_add_with_id(struct napi_struct
*napi
,
6550 unsigned int napi_id
)
6552 napi
->napi_id
= napi_id
;
6553 hlist_add_head_rcu(&napi
->napi_hash_node
,
6554 &napi_hash
[napi
->napi_id
% HASH_SIZE(napi_hash
)]);
6557 static void napi_hash_add_with_id(struct napi_struct
*napi
,
6558 unsigned int napi_id
)
6560 unsigned long flags
;
6562 spin_lock_irqsave(&napi_hash_lock
, flags
);
6563 WARN_ON_ONCE(napi_by_id(napi_id
));
6564 __napi_hash_add_with_id(napi
, napi_id
);
6565 spin_unlock_irqrestore(&napi_hash_lock
, flags
);
6568 static void napi_hash_add(struct napi_struct
*napi
)
6570 unsigned long flags
;
6572 if (test_bit(NAPI_STATE_NO_BUSY_POLL
, &napi
->state
))
6575 spin_lock_irqsave(&napi_hash_lock
, flags
);
6577 /* 0..NR_CPUS range is reserved for sender_cpu use */
6579 if (unlikely(++napi_gen_id
< MIN_NAPI_ID
))
6580 napi_gen_id
= MIN_NAPI_ID
;
6581 } while (napi_by_id(napi_gen_id
));
6583 __napi_hash_add_with_id(napi
, napi_gen_id
);
6585 spin_unlock_irqrestore(&napi_hash_lock
, flags
);
6588 /* Warning : caller is responsible to make sure rcu grace period
6589 * is respected before freeing memory containing @napi
6591 static void napi_hash_del(struct napi_struct
*napi
)
6593 unsigned long flags
;
6595 spin_lock_irqsave(&napi_hash_lock
, flags
);
6597 hlist_del_init_rcu(&napi
->napi_hash_node
);
6599 spin_unlock_irqrestore(&napi_hash_lock
, flags
);
6602 static enum hrtimer_restart
napi_watchdog(struct hrtimer
*timer
)
6604 struct napi_struct
*napi
;
6606 napi
= container_of(timer
, struct napi_struct
, timer
);
6608 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6609 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6611 if (!napi_disable_pending(napi
) &&
6612 !test_and_set_bit(NAPI_STATE_SCHED
, &napi
->state
)) {
6613 clear_bit(NAPI_STATE_PREFER_BUSY_POLL
, &napi
->state
);
6614 __napi_schedule_irqoff(napi
);
6617 return HRTIMER_NORESTART
;
6620 static void init_gro_hash(struct napi_struct
*napi
)
6624 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
6625 INIT_LIST_HEAD(&napi
->gro_hash
[i
].list
);
6626 napi
->gro_hash
[i
].count
= 0;
6628 napi
->gro_bitmask
= 0;
6631 int dev_set_threaded(struct net_device
*dev
, bool threaded
)
6633 struct napi_struct
*napi
;
6636 if (dev
->threaded
== threaded
)
6640 list_for_each_entry(napi
, &dev
->napi_list
, dev_list
) {
6641 if (!napi
->thread
) {
6642 err
= napi_kthread_create(napi
);
6651 WRITE_ONCE(dev
->threaded
, threaded
);
6653 /* Make sure kthread is created before THREADED bit
6656 smp_mb__before_atomic();
6658 /* Setting/unsetting threaded mode on a napi might not immediately
6659 * take effect, if the current napi instance is actively being
6660 * polled. In this case, the switch between threaded mode and
6661 * softirq mode will happen in the next round of napi_schedule().
6662 * This should not cause hiccups/stalls to the live traffic.
6664 list_for_each_entry(napi
, &dev
->napi_list
, dev_list
)
6665 assign_bit(NAPI_STATE_THREADED
, &napi
->state
, threaded
);
6669 EXPORT_SYMBOL(dev_set_threaded
);
6672 * netif_queue_set_napi - Associate queue with the napi
6673 * @dev: device to which NAPI and queue belong
6674 * @queue_index: Index of queue
6675 * @type: queue type as RX or TX
6676 * @napi: NAPI context, pass NULL to clear previously set NAPI
6678 * Set queue with its corresponding napi context. This should be done after
6679 * registering the NAPI handler for the queue-vector and the queues have been
6680 * mapped to the corresponding interrupt vector.
6682 void netif_queue_set_napi(struct net_device
*dev
, unsigned int queue_index
,
6683 enum netdev_queue_type type
, struct napi_struct
*napi
)
6685 struct netdev_rx_queue
*rxq
;
6686 struct netdev_queue
*txq
;
6688 if (WARN_ON_ONCE(napi
&& !napi
->dev
))
6690 if (dev
->reg_state
>= NETREG_REGISTERED
)
6694 case NETDEV_QUEUE_TYPE_RX
:
6695 rxq
= __netif_get_rx_queue(dev
, queue_index
);
6698 case NETDEV_QUEUE_TYPE_TX
:
6699 txq
= netdev_get_tx_queue(dev
, queue_index
);
6706 EXPORT_SYMBOL(netif_queue_set_napi
);
6708 static void napi_restore_config(struct napi_struct
*n
)
6710 n
->defer_hard_irqs
= n
->config
->defer_hard_irqs
;
6711 n
->gro_flush_timeout
= n
->config
->gro_flush_timeout
;
6712 n
->irq_suspend_timeout
= n
->config
->irq_suspend_timeout
;
6713 /* a NAPI ID might be stored in the config, if so use it. if not, use
6714 * napi_hash_add to generate one for us. It will be saved to the config
6717 if (n
->config
->napi_id
)
6718 napi_hash_add_with_id(n
, n
->config
->napi_id
);
6723 static void napi_save_config(struct napi_struct
*n
)
6725 n
->config
->defer_hard_irqs
= n
->defer_hard_irqs
;
6726 n
->config
->gro_flush_timeout
= n
->gro_flush_timeout
;
6727 n
->config
->irq_suspend_timeout
= n
->irq_suspend_timeout
;
6728 n
->config
->napi_id
= n
->napi_id
;
6732 void netif_napi_add_weight(struct net_device
*dev
, struct napi_struct
*napi
,
6733 int (*poll
)(struct napi_struct
*, int), int weight
)
6735 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED
, &napi
->state
)))
6738 INIT_LIST_HEAD(&napi
->poll_list
);
6739 INIT_HLIST_NODE(&napi
->napi_hash_node
);
6740 hrtimer_init(&napi
->timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL_PINNED
);
6741 napi
->timer
.function
= napi_watchdog
;
6742 init_gro_hash(napi
);
6744 INIT_LIST_HEAD(&napi
->rx_list
);
6747 if (weight
> NAPI_POLL_WEIGHT
)
6748 netdev_err_once(dev
, "%s() called with weight %d\n", __func__
,
6750 napi
->weight
= weight
;
6752 #ifdef CONFIG_NETPOLL
6753 napi
->poll_owner
= -1;
6755 napi
->list_owner
= -1;
6756 set_bit(NAPI_STATE_SCHED
, &napi
->state
);
6757 set_bit(NAPI_STATE_NPSVC
, &napi
->state
);
6758 list_add_rcu(&napi
->dev_list
, &dev
->napi_list
);
6760 /* default settings from sysfs are applied to all NAPIs. any per-NAPI
6761 * configuration will be loaded in napi_enable
6763 napi_set_defer_hard_irqs(napi
, READ_ONCE(dev
->napi_defer_hard_irqs
));
6764 napi_set_gro_flush_timeout(napi
, READ_ONCE(dev
->gro_flush_timeout
));
6766 napi_get_frags_check(napi
);
6767 /* Create kthread for this napi if dev->threaded is set.
6768 * Clear dev->threaded if kthread creation failed so that
6769 * threaded mode will not be enabled in napi_enable().
6771 if (dev
->threaded
&& napi_kthread_create(napi
))
6772 dev
->threaded
= false;
6773 netif_napi_set_irq(napi
, -1);
6775 EXPORT_SYMBOL(netif_napi_add_weight
);
6777 void napi_disable(struct napi_struct
*n
)
6779 unsigned long val
, new;
6782 set_bit(NAPI_STATE_DISABLE
, &n
->state
);
6784 val
= READ_ONCE(n
->state
);
6786 while (val
& (NAPIF_STATE_SCHED
| NAPIF_STATE_NPSVC
)) {
6787 usleep_range(20, 200);
6788 val
= READ_ONCE(n
->state
);
6791 new = val
| NAPIF_STATE_SCHED
| NAPIF_STATE_NPSVC
;
6792 new &= ~(NAPIF_STATE_THREADED
| NAPIF_STATE_PREFER_BUSY_POLL
);
6793 } while (!try_cmpxchg(&n
->state
, &val
, new));
6795 hrtimer_cancel(&n
->timer
);
6798 napi_save_config(n
);
6802 clear_bit(NAPI_STATE_DISABLE
, &n
->state
);
6804 EXPORT_SYMBOL(napi_disable
);
6807 * napi_enable - enable NAPI scheduling
6810 * Resume NAPI from being scheduled on this context.
6811 * Must be paired with napi_disable.
6813 void napi_enable(struct napi_struct
*n
)
6815 unsigned long new, val
= READ_ONCE(n
->state
);
6818 napi_restore_config(n
);
6823 BUG_ON(!test_bit(NAPI_STATE_SCHED
, &val
));
6825 new = val
& ~(NAPIF_STATE_SCHED
| NAPIF_STATE_NPSVC
);
6826 if (n
->dev
->threaded
&& n
->thread
)
6827 new |= NAPIF_STATE_THREADED
;
6828 } while (!try_cmpxchg(&n
->state
, &val
, new));
6830 EXPORT_SYMBOL(napi_enable
);
6832 static void flush_gro_hash(struct napi_struct
*napi
)
6836 for (i
= 0; i
< GRO_HASH_BUCKETS
; i
++) {
6837 struct sk_buff
*skb
, *n
;
6839 list_for_each_entry_safe(skb
, n
, &napi
->gro_hash
[i
].list
, list
)
6841 napi
->gro_hash
[i
].count
= 0;
6845 /* Must be called in process context */
6846 void __netif_napi_del(struct napi_struct
*napi
)
6848 if (!test_and_clear_bit(NAPI_STATE_LISTED
, &napi
->state
))
6853 napi
->config
= NULL
;
6856 list_del_rcu(&napi
->dev_list
);
6857 napi_free_frags(napi
);
6859 flush_gro_hash(napi
);
6860 napi
->gro_bitmask
= 0;
6863 kthread_stop(napi
->thread
);
6864 napi
->thread
= NULL
;
6867 EXPORT_SYMBOL(__netif_napi_del
);
6869 static int __napi_poll(struct napi_struct
*n
, bool *repoll
)
6875 /* This NAPI_STATE_SCHED test is for avoiding a race
6876 * with netpoll's poll_napi(). Only the entity which
6877 * obtains the lock and sees NAPI_STATE_SCHED set will
6878 * actually make the ->poll() call. Therefore we avoid
6879 * accidentally calling ->poll() when NAPI is not scheduled.
6882 if (napi_is_scheduled(n
)) {
6883 work
= n
->poll(n
, weight
);
6884 trace_napi_poll(n
, work
, weight
);
6886 xdp_do_check_flushed(n
);
6889 if (unlikely(work
> weight
))
6890 netdev_err_once(n
->dev
, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6891 n
->poll
, work
, weight
);
6893 if (likely(work
< weight
))
6896 /* Drivers must not modify the NAPI state if they
6897 * consume the entire weight. In such cases this code
6898 * still "owns" the NAPI instance and therefore can
6899 * move the instance around on the list at-will.
6901 if (unlikely(napi_disable_pending(n
))) {
6906 /* The NAPI context has more processing work, but busy-polling
6907 * is preferred. Exit early.
6909 if (napi_prefer_busy_poll(n
)) {
6910 if (napi_complete_done(n
, work
)) {
6911 /* If timeout is not set, we need to make sure
6912 * that the NAPI is re-scheduled.
6919 if (n
->gro_bitmask
) {
6920 /* flush too old packets
6921 * If HZ < 1000, flush all packets.
6923 napi_gro_flush(n
, HZ
>= 1000);
6928 /* Some drivers may have called napi_schedule
6929 * prior to exhausting their budget.
6931 if (unlikely(!list_empty(&n
->poll_list
))) {
6932 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6933 n
->dev
? n
->dev
->name
: "backlog");
6942 static int napi_poll(struct napi_struct
*n
, struct list_head
*repoll
)
6944 bool do_repoll
= false;
6948 list_del_init(&n
->poll_list
);
6950 have
= netpoll_poll_lock(n
);
6952 work
= __napi_poll(n
, &do_repoll
);
6955 list_add_tail(&n
->poll_list
, repoll
);
6957 netpoll_poll_unlock(have
);
6962 static int napi_thread_wait(struct napi_struct
*napi
)
6964 set_current_state(TASK_INTERRUPTIBLE
);
6966 while (!kthread_should_stop()) {
6967 /* Testing SCHED_THREADED bit here to make sure the current
6968 * kthread owns this napi and could poll on this napi.
6969 * Testing SCHED bit is not enough because SCHED bit might be
6970 * set by some other busy poll thread or by napi_disable().
6972 if (test_bit(NAPI_STATE_SCHED_THREADED
, &napi
->state
)) {
6973 WARN_ON(!list_empty(&napi
->poll_list
));
6974 __set_current_state(TASK_RUNNING
);
6979 set_current_state(TASK_INTERRUPTIBLE
);
6981 __set_current_state(TASK_RUNNING
);
6986 static void napi_threaded_poll_loop(struct napi_struct
*napi
)
6988 struct bpf_net_context __bpf_net_ctx
, *bpf_net_ctx
;
6989 struct softnet_data
*sd
;
6990 unsigned long last_qs
= jiffies
;
6993 bool repoll
= false;
6997 bpf_net_ctx
= bpf_net_ctx_set(&__bpf_net_ctx
);
6999 sd
= this_cpu_ptr(&softnet_data
);
7000 sd
->in_napi_threaded_poll
= true;
7002 have
= netpoll_poll_lock(napi
);
7003 __napi_poll(napi
, &repoll
);
7004 netpoll_poll_unlock(have
);
7006 sd
->in_napi_threaded_poll
= false;
7009 if (sd_has_rps_ipi_waiting(sd
)) {
7010 local_irq_disable();
7011 net_rps_action_and_irq_enable(sd
);
7013 skb_defer_free_flush(sd
);
7014 bpf_net_ctx_clear(bpf_net_ctx
);
7020 rcu_softirq_qs_periodic(last_qs
);
7025 static int napi_threaded_poll(void *data
)
7027 struct napi_struct
*napi
= data
;
7029 while (!napi_thread_wait(napi
))
7030 napi_threaded_poll_loop(napi
);
7035 static __latent_entropy
void net_rx_action(void)
7037 struct softnet_data
*sd
= this_cpu_ptr(&softnet_data
);
7038 unsigned long time_limit
= jiffies
+
7039 usecs_to_jiffies(READ_ONCE(net_hotdata
.netdev_budget_usecs
));
7040 struct bpf_net_context __bpf_net_ctx
, *bpf_net_ctx
;
7041 int budget
= READ_ONCE(net_hotdata
.netdev_budget
);
7045 bpf_net_ctx
= bpf_net_ctx_set(&__bpf_net_ctx
);
7047 sd
->in_net_rx_action
= true;
7048 local_irq_disable();
7049 list_splice_init(&sd
->poll_list
, &list
);
7053 struct napi_struct
*n
;
7055 skb_defer_free_flush(sd
);
7057 if (list_empty(&list
)) {
7058 if (list_empty(&repoll
)) {
7059 sd
->in_net_rx_action
= false;
7061 /* We need to check if ____napi_schedule()
7062 * had refilled poll_list while
7063 * sd->in_net_rx_action was true.
7065 if (!list_empty(&sd
->poll_list
))
7067 if (!sd_has_rps_ipi_waiting(sd
))
7073 n
= list_first_entry(&list
, struct napi_struct
, poll_list
);
7074 budget
-= napi_poll(n
, &repoll
);
7076 /* If softirq window is exhausted then punt.
7077 * Allow this to run for 2 jiffies since which will allow
7078 * an average latency of 1.5/HZ.
7080 if (unlikely(budget
<= 0 ||
7081 time_after_eq(jiffies
, time_limit
))) {
7087 local_irq_disable();
7089 list_splice_tail_init(&sd
->poll_list
, &list
);
7090 list_splice_tail(&repoll
, &list
);
7091 list_splice(&list
, &sd
->poll_list
);
7092 if (!list_empty(&sd
->poll_list
))
7093 __raise_softirq_irqoff(NET_RX_SOFTIRQ
);
7095 sd
->in_net_rx_action
= false;
7097 net_rps_action_and_irq_enable(sd
);
7099 bpf_net_ctx_clear(bpf_net_ctx
);
7102 struct netdev_adjacent
{
7103 struct net_device
*dev
;
7104 netdevice_tracker dev_tracker
;
7106 /* upper master flag, there can only be one master device per list */
7109 /* lookup ignore flag */
7112 /* counter for the number of times this device was added to us */
7115 /* private field for the users */
7118 struct list_head list
;
7119 struct rcu_head rcu
;
7122 static struct netdev_adjacent
*__netdev_find_adj(struct net_device
*adj_dev
,
7123 struct list_head
*adj_list
)
7125 struct netdev_adjacent
*adj
;
7127 list_for_each_entry(adj
, adj_list
, list
) {
7128 if (adj
->dev
== adj_dev
)
7134 static int ____netdev_has_upper_dev(struct net_device
*upper_dev
,
7135 struct netdev_nested_priv
*priv
)
7137 struct net_device
*dev
= (struct net_device
*)priv
->data
;
7139 return upper_dev
== dev
;
7143 * netdev_has_upper_dev - Check if device is linked to an upper device
7145 * @upper_dev: upper device to check
7147 * Find out if a device is linked to specified upper device and return true
7148 * in case it is. Note that this checks only immediate upper device,
7149 * not through a complete stack of devices. The caller must hold the RTNL lock.
7151 bool netdev_has_upper_dev(struct net_device
*dev
,
7152 struct net_device
*upper_dev
)
7154 struct netdev_nested_priv priv
= {
7155 .data
= (void *)upper_dev
,
7160 return netdev_walk_all_upper_dev_rcu(dev
, ____netdev_has_upper_dev
,
7163 EXPORT_SYMBOL(netdev_has_upper_dev
);
7166 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
7168 * @upper_dev: upper device to check
7170 * Find out if a device is linked to specified upper device and return true
7171 * in case it is. Note that this checks the entire upper device chain.
7172 * The caller must hold rcu lock.
7175 bool netdev_has_upper_dev_all_rcu(struct net_device
*dev
,
7176 struct net_device
*upper_dev
)
7178 struct netdev_nested_priv priv
= {
7179 .data
= (void *)upper_dev
,
7182 return !!netdev_walk_all_upper_dev_rcu(dev
, ____netdev_has_upper_dev
,
7185 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu
);
7188 * netdev_has_any_upper_dev - Check if device is linked to some device
7191 * Find out if a device is linked to an upper device and return true in case
7192 * it is. The caller must hold the RTNL lock.
7194 bool netdev_has_any_upper_dev(struct net_device
*dev
)
7198 return !list_empty(&dev
->adj_list
.upper
);
7200 EXPORT_SYMBOL(netdev_has_any_upper_dev
);
7203 * netdev_master_upper_dev_get - Get master upper device
7206 * Find a master upper device and return pointer to it or NULL in case
7207 * it's not there. The caller must hold the RTNL lock.
7209 struct net_device
*netdev_master_upper_dev_get(struct net_device
*dev
)
7211 struct netdev_adjacent
*upper
;
7215 if (list_empty(&dev
->adj_list
.upper
))
7218 upper
= list_first_entry(&dev
->adj_list
.upper
,
7219 struct netdev_adjacent
, list
);
7220 if (likely(upper
->master
))
7224 EXPORT_SYMBOL(netdev_master_upper_dev_get
);
7226 static struct net_device
*__netdev_master_upper_dev_get(struct net_device
*dev
)
7228 struct netdev_adjacent
*upper
;
7232 if (list_empty(&dev
->adj_list
.upper
))
7235 upper
= list_first_entry(&dev
->adj_list
.upper
,
7236 struct netdev_adjacent
, list
);
7237 if (likely(upper
->master
) && !upper
->ignore
)
7243 * netdev_has_any_lower_dev - Check if device is linked to some device
7246 * Find out if a device is linked to a lower device and return true in case
7247 * it is. The caller must hold the RTNL lock.
7249 static bool netdev_has_any_lower_dev(struct net_device
*dev
)
7253 return !list_empty(&dev
->adj_list
.lower
);
7256 void *netdev_adjacent_get_private(struct list_head
*adj_list
)
7258 struct netdev_adjacent
*adj
;
7260 adj
= list_entry(adj_list
, struct netdev_adjacent
, list
);
7262 return adj
->private;
7264 EXPORT_SYMBOL(netdev_adjacent_get_private
);
7267 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
7269 * @iter: list_head ** of the current position
7271 * Gets the next device from the dev's upper list, starting from iter
7272 * position. The caller must hold RCU read lock.
7274 struct net_device
*netdev_upper_get_next_dev_rcu(struct net_device
*dev
,
7275 struct list_head
**iter
)
7277 struct netdev_adjacent
*upper
;
7279 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7281 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
7283 if (&upper
->list
== &dev
->adj_list
.upper
)
7286 *iter
= &upper
->list
;
7290 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu
);
7292 static struct net_device
*__netdev_next_upper_dev(struct net_device
*dev
,
7293 struct list_head
**iter
,
7296 struct netdev_adjacent
*upper
;
7298 upper
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
7300 if (&upper
->list
== &dev
->adj_list
.upper
)
7303 *iter
= &upper
->list
;
7304 *ignore
= upper
->ignore
;
7309 static struct net_device
*netdev_next_upper_dev_rcu(struct net_device
*dev
,
7310 struct list_head
**iter
)
7312 struct netdev_adjacent
*upper
;
7314 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
7316 upper
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
7318 if (&upper
->list
== &dev
->adj_list
.upper
)
7321 *iter
= &upper
->list
;
7326 static int __netdev_walk_all_upper_dev(struct net_device
*dev
,
7327 int (*fn
)(struct net_device
*dev
,
7328 struct netdev_nested_priv
*priv
),
7329 struct netdev_nested_priv
*priv
)
7331 struct net_device
*udev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
7332 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
7337 iter
= &dev
->adj_list
.upper
;
7341 ret
= fn(now
, priv
);
7348 udev
= __netdev_next_upper_dev(now
, &iter
, &ignore
);
7355 niter
= &udev
->adj_list
.upper
;
7356 dev_stack
[cur
] = now
;
7357 iter_stack
[cur
++] = iter
;
7364 next
= dev_stack
[--cur
];
7365 niter
= iter_stack
[cur
];
7375 int netdev_walk_all_upper_dev_rcu(struct net_device
*dev
,
7376 int (*fn
)(struct net_device
*dev
,
7377 struct netdev_nested_priv
*priv
),
7378 struct netdev_nested_priv
*priv
)
7380 struct net_device
*udev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
7381 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
7385 iter
= &dev
->adj_list
.upper
;
7389 ret
= fn(now
, priv
);
7396 udev
= netdev_next_upper_dev_rcu(now
, &iter
);
7401 niter
= &udev
->adj_list
.upper
;
7402 dev_stack
[cur
] = now
;
7403 iter_stack
[cur
++] = iter
;
7410 next
= dev_stack
[--cur
];
7411 niter
= iter_stack
[cur
];
7420 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu
);
7422 static bool __netdev_has_upper_dev(struct net_device
*dev
,
7423 struct net_device
*upper_dev
)
7425 struct netdev_nested_priv priv
= {
7427 .data
= (void *)upper_dev
,
7432 return __netdev_walk_all_upper_dev(dev
, ____netdev_has_upper_dev
,
7437 * netdev_lower_get_next_private - Get the next ->private from the
7438 * lower neighbour list
7440 * @iter: list_head ** of the current position
7442 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7443 * list, starting from iter position. The caller must hold either hold the
7444 * RTNL lock or its own locking that guarantees that the neighbour lower
7445 * list will remain unchanged.
7447 void *netdev_lower_get_next_private(struct net_device
*dev
,
7448 struct list_head
**iter
)
7450 struct netdev_adjacent
*lower
;
7452 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
7454 if (&lower
->list
== &dev
->adj_list
.lower
)
7457 *iter
= lower
->list
.next
;
7459 return lower
->private;
7461 EXPORT_SYMBOL(netdev_lower_get_next_private
);
7464 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7465 * lower neighbour list, RCU
7468 * @iter: list_head ** of the current position
7470 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7471 * list, starting from iter position. The caller must hold RCU read lock.
7473 void *netdev_lower_get_next_private_rcu(struct net_device
*dev
,
7474 struct list_head
**iter
)
7476 struct netdev_adjacent
*lower
;
7478 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7480 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
7482 if (&lower
->list
== &dev
->adj_list
.lower
)
7485 *iter
= &lower
->list
;
7487 return lower
->private;
7489 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu
);
7492 * netdev_lower_get_next - Get the next device from the lower neighbour
7495 * @iter: list_head ** of the current position
7497 * Gets the next netdev_adjacent from the dev's lower neighbour
7498 * list, starting from iter position. The caller must hold RTNL lock or
7499 * its own locking that guarantees that the neighbour lower
7500 * list will remain unchanged.
7502 void *netdev_lower_get_next(struct net_device
*dev
, struct list_head
**iter
)
7504 struct netdev_adjacent
*lower
;
7506 lower
= list_entry(*iter
, struct netdev_adjacent
, list
);
7508 if (&lower
->list
== &dev
->adj_list
.lower
)
7511 *iter
= lower
->list
.next
;
7515 EXPORT_SYMBOL(netdev_lower_get_next
);
7517 static struct net_device
*netdev_next_lower_dev(struct net_device
*dev
,
7518 struct list_head
**iter
)
7520 struct netdev_adjacent
*lower
;
7522 lower
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
7524 if (&lower
->list
== &dev
->adj_list
.lower
)
7527 *iter
= &lower
->list
;
7532 static struct net_device
*__netdev_next_lower_dev(struct net_device
*dev
,
7533 struct list_head
**iter
,
7536 struct netdev_adjacent
*lower
;
7538 lower
= list_entry((*iter
)->next
, struct netdev_adjacent
, list
);
7540 if (&lower
->list
== &dev
->adj_list
.lower
)
7543 *iter
= &lower
->list
;
7544 *ignore
= lower
->ignore
;
7549 int netdev_walk_all_lower_dev(struct net_device
*dev
,
7550 int (*fn
)(struct net_device
*dev
,
7551 struct netdev_nested_priv
*priv
),
7552 struct netdev_nested_priv
*priv
)
7554 struct net_device
*ldev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
7555 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
7559 iter
= &dev
->adj_list
.lower
;
7563 ret
= fn(now
, priv
);
7570 ldev
= netdev_next_lower_dev(now
, &iter
);
7575 niter
= &ldev
->adj_list
.lower
;
7576 dev_stack
[cur
] = now
;
7577 iter_stack
[cur
++] = iter
;
7584 next
= dev_stack
[--cur
];
7585 niter
= iter_stack
[cur
];
7594 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev
);
7596 static int __netdev_walk_all_lower_dev(struct net_device
*dev
,
7597 int (*fn
)(struct net_device
*dev
,
7598 struct netdev_nested_priv
*priv
),
7599 struct netdev_nested_priv
*priv
)
7601 struct net_device
*ldev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
7602 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
7607 iter
= &dev
->adj_list
.lower
;
7611 ret
= fn(now
, priv
);
7618 ldev
= __netdev_next_lower_dev(now
, &iter
, &ignore
);
7625 niter
= &ldev
->adj_list
.lower
;
7626 dev_stack
[cur
] = now
;
7627 iter_stack
[cur
++] = iter
;
7634 next
= dev_stack
[--cur
];
7635 niter
= iter_stack
[cur
];
7645 struct net_device
*netdev_next_lower_dev_rcu(struct net_device
*dev
,
7646 struct list_head
**iter
)
7648 struct netdev_adjacent
*lower
;
7650 lower
= list_entry_rcu((*iter
)->next
, struct netdev_adjacent
, list
);
7651 if (&lower
->list
== &dev
->adj_list
.lower
)
7654 *iter
= &lower
->list
;
7658 EXPORT_SYMBOL(netdev_next_lower_dev_rcu
);
7660 static u8
__netdev_upper_depth(struct net_device
*dev
)
7662 struct net_device
*udev
;
7663 struct list_head
*iter
;
7667 for (iter
= &dev
->adj_list
.upper
,
7668 udev
= __netdev_next_upper_dev(dev
, &iter
, &ignore
);
7670 udev
= __netdev_next_upper_dev(dev
, &iter
, &ignore
)) {
7673 if (max_depth
< udev
->upper_level
)
7674 max_depth
= udev
->upper_level
;
7680 static u8
__netdev_lower_depth(struct net_device
*dev
)
7682 struct net_device
*ldev
;
7683 struct list_head
*iter
;
7687 for (iter
= &dev
->adj_list
.lower
,
7688 ldev
= __netdev_next_lower_dev(dev
, &iter
, &ignore
);
7690 ldev
= __netdev_next_lower_dev(dev
, &iter
, &ignore
)) {
7693 if (max_depth
< ldev
->lower_level
)
7694 max_depth
= ldev
->lower_level
;
7700 static int __netdev_update_upper_level(struct net_device
*dev
,
7701 struct netdev_nested_priv
*__unused
)
7703 dev
->upper_level
= __netdev_upper_depth(dev
) + 1;
7707 #ifdef CONFIG_LOCKDEP
7708 static LIST_HEAD(net_unlink_list
);
7710 static void net_unlink_todo(struct net_device
*dev
)
7712 if (list_empty(&dev
->unlink_list
))
7713 list_add_tail(&dev
->unlink_list
, &net_unlink_list
);
7717 static int __netdev_update_lower_level(struct net_device
*dev
,
7718 struct netdev_nested_priv
*priv
)
7720 dev
->lower_level
= __netdev_lower_depth(dev
) + 1;
7722 #ifdef CONFIG_LOCKDEP
7726 if (priv
->flags
& NESTED_SYNC_IMM
)
7727 dev
->nested_level
= dev
->lower_level
- 1;
7728 if (priv
->flags
& NESTED_SYNC_TODO
)
7729 net_unlink_todo(dev
);
7734 int netdev_walk_all_lower_dev_rcu(struct net_device
*dev
,
7735 int (*fn
)(struct net_device
*dev
,
7736 struct netdev_nested_priv
*priv
),
7737 struct netdev_nested_priv
*priv
)
7739 struct net_device
*ldev
, *next
, *now
, *dev_stack
[MAX_NEST_DEV
+ 1];
7740 struct list_head
*niter
, *iter
, *iter_stack
[MAX_NEST_DEV
+ 1];
7744 iter
= &dev
->adj_list
.lower
;
7748 ret
= fn(now
, priv
);
7755 ldev
= netdev_next_lower_dev_rcu(now
, &iter
);
7760 niter
= &ldev
->adj_list
.lower
;
7761 dev_stack
[cur
] = now
;
7762 iter_stack
[cur
++] = iter
;
7769 next
= dev_stack
[--cur
];
7770 niter
= iter_stack
[cur
];
7779 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu
);
7782 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7783 * lower neighbour list, RCU
7787 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7788 * list. The caller must hold RCU read lock.
7790 void *netdev_lower_get_first_private_rcu(struct net_device
*dev
)
7792 struct netdev_adjacent
*lower
;
7794 lower
= list_first_or_null_rcu(&dev
->adj_list
.lower
,
7795 struct netdev_adjacent
, list
);
7797 return lower
->private;
7800 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu
);
7803 * netdev_master_upper_dev_get_rcu - Get master upper device
7806 * Find a master upper device and return pointer to it or NULL in case
7807 * it's not there. The caller must hold the RCU read lock.
7809 struct net_device
*netdev_master_upper_dev_get_rcu(struct net_device
*dev
)
7811 struct netdev_adjacent
*upper
;
7813 upper
= list_first_or_null_rcu(&dev
->adj_list
.upper
,
7814 struct netdev_adjacent
, list
);
7815 if (upper
&& likely(upper
->master
))
7819 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu
);
7821 static int netdev_adjacent_sysfs_add(struct net_device
*dev
,
7822 struct net_device
*adj_dev
,
7823 struct list_head
*dev_list
)
7825 char linkname
[IFNAMSIZ
+7];
7827 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
7828 "upper_%s" : "lower_%s", adj_dev
->name
);
7829 return sysfs_create_link(&(dev
->dev
.kobj
), &(adj_dev
->dev
.kobj
),
7832 static void netdev_adjacent_sysfs_del(struct net_device
*dev
,
7834 struct list_head
*dev_list
)
7836 char linkname
[IFNAMSIZ
+7];
7838 sprintf(linkname
, dev_list
== &dev
->adj_list
.upper
?
7839 "upper_%s" : "lower_%s", name
);
7840 sysfs_remove_link(&(dev
->dev
.kobj
), linkname
);
7843 static inline bool netdev_adjacent_is_neigh_list(struct net_device
*dev
,
7844 struct net_device
*adj_dev
,
7845 struct list_head
*dev_list
)
7847 return (dev_list
== &dev
->adj_list
.upper
||
7848 dev_list
== &dev
->adj_list
.lower
) &&
7849 net_eq(dev_net(dev
), dev_net(adj_dev
));
7852 static int __netdev_adjacent_dev_insert(struct net_device
*dev
,
7853 struct net_device
*adj_dev
,
7854 struct list_head
*dev_list
,
7855 void *private, bool master
)
7857 struct netdev_adjacent
*adj
;
7860 adj
= __netdev_find_adj(adj_dev
, dev_list
);
7864 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7865 dev
->name
, adj_dev
->name
, adj
->ref_nr
);
7870 adj
= kmalloc(sizeof(*adj
), GFP_KERNEL
);
7875 adj
->master
= master
;
7877 adj
->private = private;
7878 adj
->ignore
= false;
7879 netdev_hold(adj_dev
, &adj
->dev_tracker
, GFP_KERNEL
);
7881 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7882 dev
->name
, adj_dev
->name
, adj
->ref_nr
, adj_dev
->name
);
7884 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
)) {
7885 ret
= netdev_adjacent_sysfs_add(dev
, adj_dev
, dev_list
);
7890 /* Ensure that master link is always the first item in list. */
7892 ret
= sysfs_create_link(&(dev
->dev
.kobj
),
7893 &(adj_dev
->dev
.kobj
), "master");
7895 goto remove_symlinks
;
7897 list_add_rcu(&adj
->list
, dev_list
);
7899 list_add_tail_rcu(&adj
->list
, dev_list
);
7905 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
7906 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
7908 netdev_put(adj_dev
, &adj
->dev_tracker
);
7914 static void __netdev_adjacent_dev_remove(struct net_device
*dev
,
7915 struct net_device
*adj_dev
,
7917 struct list_head
*dev_list
)
7919 struct netdev_adjacent
*adj
;
7921 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7922 dev
->name
, adj_dev
->name
, ref_nr
);
7924 adj
= __netdev_find_adj(adj_dev
, dev_list
);
7927 pr_err("Adjacency does not exist for device %s from %s\n",
7928 dev
->name
, adj_dev
->name
);
7933 if (adj
->ref_nr
> ref_nr
) {
7934 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7935 dev
->name
, adj_dev
->name
, ref_nr
,
7936 adj
->ref_nr
- ref_nr
);
7937 adj
->ref_nr
-= ref_nr
;
7942 sysfs_remove_link(&(dev
->dev
.kobj
), "master");
7944 if (netdev_adjacent_is_neigh_list(dev
, adj_dev
, dev_list
))
7945 netdev_adjacent_sysfs_del(dev
, adj_dev
->name
, dev_list
);
7947 list_del_rcu(&adj
->list
);
7948 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7949 adj_dev
->name
, dev
->name
, adj_dev
->name
);
7950 netdev_put(adj_dev
, &adj
->dev_tracker
);
7951 kfree_rcu(adj
, rcu
);
7954 static int __netdev_adjacent_dev_link_lists(struct net_device
*dev
,
7955 struct net_device
*upper_dev
,
7956 struct list_head
*up_list
,
7957 struct list_head
*down_list
,
7958 void *private, bool master
)
7962 ret
= __netdev_adjacent_dev_insert(dev
, upper_dev
, up_list
,
7967 ret
= __netdev_adjacent_dev_insert(upper_dev
, dev
, down_list
,
7970 __netdev_adjacent_dev_remove(dev
, upper_dev
, 1, up_list
);
7977 static void __netdev_adjacent_dev_unlink_lists(struct net_device
*dev
,
7978 struct net_device
*upper_dev
,
7980 struct list_head
*up_list
,
7981 struct list_head
*down_list
)
7983 __netdev_adjacent_dev_remove(dev
, upper_dev
, ref_nr
, up_list
);
7984 __netdev_adjacent_dev_remove(upper_dev
, dev
, ref_nr
, down_list
);
7987 static int __netdev_adjacent_dev_link_neighbour(struct net_device
*dev
,
7988 struct net_device
*upper_dev
,
7989 void *private, bool master
)
7991 return __netdev_adjacent_dev_link_lists(dev
, upper_dev
,
7992 &dev
->adj_list
.upper
,
7993 &upper_dev
->adj_list
.lower
,
7997 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device
*dev
,
7998 struct net_device
*upper_dev
)
8000 __netdev_adjacent_dev_unlink_lists(dev
, upper_dev
, 1,
8001 &dev
->adj_list
.upper
,
8002 &upper_dev
->adj_list
.lower
);
8005 static int __netdev_upper_dev_link(struct net_device
*dev
,
8006 struct net_device
*upper_dev
, bool master
,
8007 void *upper_priv
, void *upper_info
,
8008 struct netdev_nested_priv
*priv
,
8009 struct netlink_ext_ack
*extack
)
8011 struct netdev_notifier_changeupper_info changeupper_info
= {
8016 .upper_dev
= upper_dev
,
8019 .upper_info
= upper_info
,
8021 struct net_device
*master_dev
;
8026 if (dev
== upper_dev
)
8029 /* To prevent loops, check if dev is not upper device to upper_dev. */
8030 if (__netdev_has_upper_dev(upper_dev
, dev
))
8033 if ((dev
->lower_level
+ upper_dev
->upper_level
) > MAX_NEST_DEV
)
8037 if (__netdev_has_upper_dev(dev
, upper_dev
))
8040 master_dev
= __netdev_master_upper_dev_get(dev
);
8042 return master_dev
== upper_dev
? -EEXIST
: -EBUSY
;
8045 ret
= call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
8046 &changeupper_info
.info
);
8047 ret
= notifier_to_errno(ret
);
8051 ret
= __netdev_adjacent_dev_link_neighbour(dev
, upper_dev
, upper_priv
,
8056 ret
= call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
8057 &changeupper_info
.info
);
8058 ret
= notifier_to_errno(ret
);
8062 __netdev_update_upper_level(dev
, NULL
);
8063 __netdev_walk_all_lower_dev(dev
, __netdev_update_upper_level
, NULL
);
8065 __netdev_update_lower_level(upper_dev
, priv
);
8066 __netdev_walk_all_upper_dev(upper_dev
, __netdev_update_lower_level
,
8072 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
8078 * netdev_upper_dev_link - Add a link to the upper device
8080 * @upper_dev: new upper device
8081 * @extack: netlink extended ack
8083 * Adds a link to device which is upper to this one. The caller must hold
8084 * the RTNL lock. On a failure a negative errno code is returned.
8085 * On success the reference counts are adjusted and the function
8088 int netdev_upper_dev_link(struct net_device
*dev
,
8089 struct net_device
*upper_dev
,
8090 struct netlink_ext_ack
*extack
)
8092 struct netdev_nested_priv priv
= {
8093 .flags
= NESTED_SYNC_IMM
| NESTED_SYNC_TODO
,
8097 return __netdev_upper_dev_link(dev
, upper_dev
, false,
8098 NULL
, NULL
, &priv
, extack
);
8100 EXPORT_SYMBOL(netdev_upper_dev_link
);
8103 * netdev_master_upper_dev_link - Add a master link to the upper device
8105 * @upper_dev: new upper device
8106 * @upper_priv: upper device private
8107 * @upper_info: upper info to be passed down via notifier
8108 * @extack: netlink extended ack
8110 * Adds a link to device which is upper to this one. In this case, only
8111 * one master upper device can be linked, although other non-master devices
8112 * might be linked as well. The caller must hold the RTNL lock.
8113 * On a failure a negative errno code is returned. On success the reference
8114 * counts are adjusted and the function returns zero.
8116 int netdev_master_upper_dev_link(struct net_device
*dev
,
8117 struct net_device
*upper_dev
,
8118 void *upper_priv
, void *upper_info
,
8119 struct netlink_ext_ack
*extack
)
8121 struct netdev_nested_priv priv
= {
8122 .flags
= NESTED_SYNC_IMM
| NESTED_SYNC_TODO
,
8126 return __netdev_upper_dev_link(dev
, upper_dev
, true,
8127 upper_priv
, upper_info
, &priv
, extack
);
8129 EXPORT_SYMBOL(netdev_master_upper_dev_link
);
8131 static void __netdev_upper_dev_unlink(struct net_device
*dev
,
8132 struct net_device
*upper_dev
,
8133 struct netdev_nested_priv
*priv
)
8135 struct netdev_notifier_changeupper_info changeupper_info
= {
8139 .upper_dev
= upper_dev
,
8145 changeupper_info
.master
= netdev_master_upper_dev_get(dev
) == upper_dev
;
8147 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER
,
8148 &changeupper_info
.info
);
8150 __netdev_adjacent_dev_unlink_neighbour(dev
, upper_dev
);
8152 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER
,
8153 &changeupper_info
.info
);
8155 __netdev_update_upper_level(dev
, NULL
);
8156 __netdev_walk_all_lower_dev(dev
, __netdev_update_upper_level
, NULL
);
8158 __netdev_update_lower_level(upper_dev
, priv
);
8159 __netdev_walk_all_upper_dev(upper_dev
, __netdev_update_lower_level
,
8164 * netdev_upper_dev_unlink - Removes a link to upper device
8166 * @upper_dev: new upper device
8168 * Removes a link to device which is upper to this one. The caller must hold
8171 void netdev_upper_dev_unlink(struct net_device
*dev
,
8172 struct net_device
*upper_dev
)
8174 struct netdev_nested_priv priv
= {
8175 .flags
= NESTED_SYNC_TODO
,
8179 __netdev_upper_dev_unlink(dev
, upper_dev
, &priv
);
8181 EXPORT_SYMBOL(netdev_upper_dev_unlink
);
8183 static void __netdev_adjacent_dev_set(struct net_device
*upper_dev
,
8184 struct net_device
*lower_dev
,
8187 struct netdev_adjacent
*adj
;
8189 adj
= __netdev_find_adj(lower_dev
, &upper_dev
->adj_list
.lower
);
8193 adj
= __netdev_find_adj(upper_dev
, &lower_dev
->adj_list
.upper
);
8198 static void netdev_adjacent_dev_disable(struct net_device
*upper_dev
,
8199 struct net_device
*lower_dev
)
8201 __netdev_adjacent_dev_set(upper_dev
, lower_dev
, true);
8204 static void netdev_adjacent_dev_enable(struct net_device
*upper_dev
,
8205 struct net_device
*lower_dev
)
8207 __netdev_adjacent_dev_set(upper_dev
, lower_dev
, false);
8210 int netdev_adjacent_change_prepare(struct net_device
*old_dev
,
8211 struct net_device
*new_dev
,
8212 struct net_device
*dev
,
8213 struct netlink_ext_ack
*extack
)
8215 struct netdev_nested_priv priv
= {
8224 if (old_dev
&& new_dev
!= old_dev
)
8225 netdev_adjacent_dev_disable(dev
, old_dev
);
8226 err
= __netdev_upper_dev_link(new_dev
, dev
, false, NULL
, NULL
, &priv
,
8229 if (old_dev
&& new_dev
!= old_dev
)
8230 netdev_adjacent_dev_enable(dev
, old_dev
);
8236 EXPORT_SYMBOL(netdev_adjacent_change_prepare
);
8238 void netdev_adjacent_change_commit(struct net_device
*old_dev
,
8239 struct net_device
*new_dev
,
8240 struct net_device
*dev
)
8242 struct netdev_nested_priv priv
= {
8243 .flags
= NESTED_SYNC_IMM
| NESTED_SYNC_TODO
,
8247 if (!new_dev
|| !old_dev
)
8250 if (new_dev
== old_dev
)
8253 netdev_adjacent_dev_enable(dev
, old_dev
);
8254 __netdev_upper_dev_unlink(old_dev
, dev
, &priv
);
8256 EXPORT_SYMBOL(netdev_adjacent_change_commit
);
8258 void netdev_adjacent_change_abort(struct net_device
*old_dev
,
8259 struct net_device
*new_dev
,
8260 struct net_device
*dev
)
8262 struct netdev_nested_priv priv
= {
8270 if (old_dev
&& new_dev
!= old_dev
)
8271 netdev_adjacent_dev_enable(dev
, old_dev
);
8273 __netdev_upper_dev_unlink(new_dev
, dev
, &priv
);
8275 EXPORT_SYMBOL(netdev_adjacent_change_abort
);
8278 * netdev_bonding_info_change - Dispatch event about slave change
8280 * @bonding_info: info to dispatch
8282 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
8283 * The caller must hold the RTNL lock.
8285 void netdev_bonding_info_change(struct net_device
*dev
,
8286 struct netdev_bonding_info
*bonding_info
)
8288 struct netdev_notifier_bonding_info info
= {
8292 memcpy(&info
.bonding_info
, bonding_info
,
8293 sizeof(struct netdev_bonding_info
));
8294 call_netdevice_notifiers_info(NETDEV_BONDING_INFO
,
8297 EXPORT_SYMBOL(netdev_bonding_info_change
);
8299 static int netdev_offload_xstats_enable_l3(struct net_device
*dev
,
8300 struct netlink_ext_ack
*extack
)
8302 struct netdev_notifier_offload_xstats_info info
= {
8304 .info
.extack
= extack
,
8305 .type
= NETDEV_OFFLOAD_XSTATS_TYPE_L3
,
8310 dev
->offload_xstats_l3
= kzalloc(sizeof(*dev
->offload_xstats_l3
),
8312 if (!dev
->offload_xstats_l3
)
8315 rc
= call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE
,
8316 NETDEV_OFFLOAD_XSTATS_DISABLE
,
8318 err
= notifier_to_errno(rc
);
8325 kfree(dev
->offload_xstats_l3
);
8326 dev
->offload_xstats_l3
= NULL
;
8330 int netdev_offload_xstats_enable(struct net_device
*dev
,
8331 enum netdev_offload_xstats_type type
,
8332 struct netlink_ext_ack
*extack
)
8336 if (netdev_offload_xstats_enabled(dev
, type
))
8340 case NETDEV_OFFLOAD_XSTATS_TYPE_L3
:
8341 return netdev_offload_xstats_enable_l3(dev
, extack
);
8347 EXPORT_SYMBOL(netdev_offload_xstats_enable
);
8349 static void netdev_offload_xstats_disable_l3(struct net_device
*dev
)
8351 struct netdev_notifier_offload_xstats_info info
= {
8353 .type
= NETDEV_OFFLOAD_XSTATS_TYPE_L3
,
8356 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE
,
8358 kfree(dev
->offload_xstats_l3
);
8359 dev
->offload_xstats_l3
= NULL
;
8362 int netdev_offload_xstats_disable(struct net_device
*dev
,
8363 enum netdev_offload_xstats_type type
)
8367 if (!netdev_offload_xstats_enabled(dev
, type
))
8371 case NETDEV_OFFLOAD_XSTATS_TYPE_L3
:
8372 netdev_offload_xstats_disable_l3(dev
);
8379 EXPORT_SYMBOL(netdev_offload_xstats_disable
);
8381 static void netdev_offload_xstats_disable_all(struct net_device
*dev
)
8383 netdev_offload_xstats_disable(dev
, NETDEV_OFFLOAD_XSTATS_TYPE_L3
);
8386 static struct rtnl_hw_stats64
*
8387 netdev_offload_xstats_get_ptr(const struct net_device
*dev
,
8388 enum netdev_offload_xstats_type type
)
8391 case NETDEV_OFFLOAD_XSTATS_TYPE_L3
:
8392 return dev
->offload_xstats_l3
;
8399 bool netdev_offload_xstats_enabled(const struct net_device
*dev
,
8400 enum netdev_offload_xstats_type type
)
8404 return netdev_offload_xstats_get_ptr(dev
, type
);
8406 EXPORT_SYMBOL(netdev_offload_xstats_enabled
);
8408 struct netdev_notifier_offload_xstats_ru
{
8412 struct netdev_notifier_offload_xstats_rd
{
8413 struct rtnl_hw_stats64 stats
;
8417 static void netdev_hw_stats64_add(struct rtnl_hw_stats64
*dest
,
8418 const struct rtnl_hw_stats64
*src
)
8420 dest
->rx_packets
+= src
->rx_packets
;
8421 dest
->tx_packets
+= src
->tx_packets
;
8422 dest
->rx_bytes
+= src
->rx_bytes
;
8423 dest
->tx_bytes
+= src
->tx_bytes
;
8424 dest
->rx_errors
+= src
->rx_errors
;
8425 dest
->tx_errors
+= src
->tx_errors
;
8426 dest
->rx_dropped
+= src
->rx_dropped
;
8427 dest
->tx_dropped
+= src
->tx_dropped
;
8428 dest
->multicast
+= src
->multicast
;
8431 static int netdev_offload_xstats_get_used(struct net_device
*dev
,
8432 enum netdev_offload_xstats_type type
,
8434 struct netlink_ext_ack
*extack
)
8436 struct netdev_notifier_offload_xstats_ru report_used
= {};
8437 struct netdev_notifier_offload_xstats_info info
= {
8439 .info
.extack
= extack
,
8441 .report_used
= &report_used
,
8445 WARN_ON(!netdev_offload_xstats_enabled(dev
, type
));
8446 rc
= call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED
,
8448 *p_used
= report_used
.used
;
8449 return notifier_to_errno(rc
);
8452 static int netdev_offload_xstats_get_stats(struct net_device
*dev
,
8453 enum netdev_offload_xstats_type type
,
8454 struct rtnl_hw_stats64
*p_stats
,
8456 struct netlink_ext_ack
*extack
)
8458 struct netdev_notifier_offload_xstats_rd report_delta
= {};
8459 struct netdev_notifier_offload_xstats_info info
= {
8461 .info
.extack
= extack
,
8463 .report_delta
= &report_delta
,
8465 struct rtnl_hw_stats64
*stats
;
8468 stats
= netdev_offload_xstats_get_ptr(dev
, type
);
8469 if (WARN_ON(!stats
))
8472 rc
= call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA
,
8475 /* Cache whatever we got, even if there was an error, otherwise the
8476 * successful stats retrievals would get lost.
8478 netdev_hw_stats64_add(stats
, &report_delta
.stats
);
8482 *p_used
= report_delta
.used
;
8484 return notifier_to_errno(rc
);
8487 int netdev_offload_xstats_get(struct net_device
*dev
,
8488 enum netdev_offload_xstats_type type
,
8489 struct rtnl_hw_stats64
*p_stats
, bool *p_used
,
8490 struct netlink_ext_ack
*extack
)
8495 return netdev_offload_xstats_get_stats(dev
, type
, p_stats
,
8498 return netdev_offload_xstats_get_used(dev
, type
, p_used
,
8501 EXPORT_SYMBOL(netdev_offload_xstats_get
);
8504 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd
*report_delta
,
8505 const struct rtnl_hw_stats64
*stats
)
8507 report_delta
->used
= true;
8508 netdev_hw_stats64_add(&report_delta
->stats
, stats
);
8510 EXPORT_SYMBOL(netdev_offload_xstats_report_delta
);
8513 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru
*report_used
)
8515 report_used
->used
= true;
8517 EXPORT_SYMBOL(netdev_offload_xstats_report_used
);
8519 void netdev_offload_xstats_push_delta(struct net_device
*dev
,
8520 enum netdev_offload_xstats_type type
,
8521 const struct rtnl_hw_stats64
*p_stats
)
8523 struct rtnl_hw_stats64
*stats
;
8527 stats
= netdev_offload_xstats_get_ptr(dev
, type
);
8528 if (WARN_ON(!stats
))
8531 netdev_hw_stats64_add(stats
, p_stats
);
8533 EXPORT_SYMBOL(netdev_offload_xstats_push_delta
);
8536 * netdev_get_xmit_slave - Get the xmit slave of master device
8539 * @all_slaves: assume all the slaves are active
8541 * The reference counters are not incremented so the caller must be
8542 * careful with locks. The caller must hold RCU lock.
8543 * %NULL is returned if no slave is found.
8546 struct net_device
*netdev_get_xmit_slave(struct net_device
*dev
,
8547 struct sk_buff
*skb
,
8550 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8552 if (!ops
->ndo_get_xmit_slave
)
8554 return ops
->ndo_get_xmit_slave(dev
, skb
, all_slaves
);
8556 EXPORT_SYMBOL(netdev_get_xmit_slave
);
8558 static struct net_device
*netdev_sk_get_lower_dev(struct net_device
*dev
,
8561 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8563 if (!ops
->ndo_sk_get_lower_dev
)
8565 return ops
->ndo_sk_get_lower_dev(dev
, sk
);
8569 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8573 * %NULL is returned if no lower device is found.
8576 struct net_device
*netdev_sk_get_lowest_dev(struct net_device
*dev
,
8579 struct net_device
*lower
;
8581 lower
= netdev_sk_get_lower_dev(dev
, sk
);
8584 lower
= netdev_sk_get_lower_dev(dev
, sk
);
8589 EXPORT_SYMBOL(netdev_sk_get_lowest_dev
);
8591 static void netdev_adjacent_add_links(struct net_device
*dev
)
8593 struct netdev_adjacent
*iter
;
8595 struct net
*net
= dev_net(dev
);
8597 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
8598 if (!net_eq(net
, dev_net(iter
->dev
)))
8600 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
8601 &iter
->dev
->adj_list
.lower
);
8602 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
8603 &dev
->adj_list
.upper
);
8606 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
8607 if (!net_eq(net
, dev_net(iter
->dev
)))
8609 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
8610 &iter
->dev
->adj_list
.upper
);
8611 netdev_adjacent_sysfs_add(dev
, iter
->dev
,
8612 &dev
->adj_list
.lower
);
8616 static void netdev_adjacent_del_links(struct net_device
*dev
)
8618 struct netdev_adjacent
*iter
;
8620 struct net
*net
= dev_net(dev
);
8622 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
8623 if (!net_eq(net
, dev_net(iter
->dev
)))
8625 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
8626 &iter
->dev
->adj_list
.lower
);
8627 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
8628 &dev
->adj_list
.upper
);
8631 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
8632 if (!net_eq(net
, dev_net(iter
->dev
)))
8634 netdev_adjacent_sysfs_del(iter
->dev
, dev
->name
,
8635 &iter
->dev
->adj_list
.upper
);
8636 netdev_adjacent_sysfs_del(dev
, iter
->dev
->name
,
8637 &dev
->adj_list
.lower
);
8641 void netdev_adjacent_rename_links(struct net_device
*dev
, char *oldname
)
8643 struct netdev_adjacent
*iter
;
8645 struct net
*net
= dev_net(dev
);
8647 list_for_each_entry(iter
, &dev
->adj_list
.upper
, list
) {
8648 if (!net_eq(net
, dev_net(iter
->dev
)))
8650 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
8651 &iter
->dev
->adj_list
.lower
);
8652 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
8653 &iter
->dev
->adj_list
.lower
);
8656 list_for_each_entry(iter
, &dev
->adj_list
.lower
, list
) {
8657 if (!net_eq(net
, dev_net(iter
->dev
)))
8659 netdev_adjacent_sysfs_del(iter
->dev
, oldname
,
8660 &iter
->dev
->adj_list
.upper
);
8661 netdev_adjacent_sysfs_add(iter
->dev
, dev
,
8662 &iter
->dev
->adj_list
.upper
);
8666 void *netdev_lower_dev_get_private(struct net_device
*dev
,
8667 struct net_device
*lower_dev
)
8669 struct netdev_adjacent
*lower
;
8673 lower
= __netdev_find_adj(lower_dev
, &dev
->adj_list
.lower
);
8677 return lower
->private;
8679 EXPORT_SYMBOL(netdev_lower_dev_get_private
);
8683 * netdev_lower_state_changed - Dispatch event about lower device state change
8684 * @lower_dev: device
8685 * @lower_state_info: state to dispatch
8687 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8688 * The caller must hold the RTNL lock.
8690 void netdev_lower_state_changed(struct net_device
*lower_dev
,
8691 void *lower_state_info
)
8693 struct netdev_notifier_changelowerstate_info changelowerstate_info
= {
8694 .info
.dev
= lower_dev
,
8698 changelowerstate_info
.lower_state_info
= lower_state_info
;
8699 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE
,
8700 &changelowerstate_info
.info
);
8702 EXPORT_SYMBOL(netdev_lower_state_changed
);
8704 static void dev_change_rx_flags(struct net_device
*dev
, int flags
)
8706 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8708 if (ops
->ndo_change_rx_flags
)
8709 ops
->ndo_change_rx_flags(dev
, flags
);
8712 static int __dev_set_promiscuity(struct net_device
*dev
, int inc
, bool notify
)
8714 unsigned int old_flags
= dev
->flags
;
8715 unsigned int promiscuity
, flags
;
8721 promiscuity
= dev
->promiscuity
+ inc
;
8722 if (promiscuity
== 0) {
8725 * If inc causes overflow, untouch promisc and return error.
8727 if (unlikely(inc
> 0)) {
8728 netdev_warn(dev
, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8731 flags
= old_flags
& ~IFF_PROMISC
;
8733 flags
= old_flags
| IFF_PROMISC
;
8735 WRITE_ONCE(dev
->promiscuity
, promiscuity
);
8736 if (flags
!= old_flags
) {
8737 WRITE_ONCE(dev
->flags
, flags
);
8738 netdev_info(dev
, "%s promiscuous mode\n",
8739 dev
->flags
& IFF_PROMISC
? "entered" : "left");
8740 if (audit_enabled
) {
8741 current_uid_gid(&uid
, &gid
);
8742 audit_log(audit_context(), GFP_ATOMIC
,
8743 AUDIT_ANOM_PROMISCUOUS
,
8744 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8745 dev
->name
, (dev
->flags
& IFF_PROMISC
),
8746 (old_flags
& IFF_PROMISC
),
8747 from_kuid(&init_user_ns
, audit_get_loginuid(current
)),
8748 from_kuid(&init_user_ns
, uid
),
8749 from_kgid(&init_user_ns
, gid
),
8750 audit_get_sessionid(current
));
8753 dev_change_rx_flags(dev
, IFF_PROMISC
);
8756 __dev_notify_flags(dev
, old_flags
, IFF_PROMISC
, 0, NULL
);
8761 * dev_set_promiscuity - update promiscuity count on a device
8765 * Add or remove promiscuity from a device. While the count in the device
8766 * remains above zero the interface remains promiscuous. Once it hits zero
8767 * the device reverts back to normal filtering operation. A negative inc
8768 * value is used to drop promiscuity on the device.
8769 * Return 0 if successful or a negative errno code on error.
8771 int dev_set_promiscuity(struct net_device
*dev
, int inc
)
8773 unsigned int old_flags
= dev
->flags
;
8776 err
= __dev_set_promiscuity(dev
, inc
, true);
8779 if (dev
->flags
!= old_flags
)
8780 dev_set_rx_mode(dev
);
8783 EXPORT_SYMBOL(dev_set_promiscuity
);
8785 static int __dev_set_allmulti(struct net_device
*dev
, int inc
, bool notify
)
8787 unsigned int old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
8788 unsigned int allmulti
, flags
;
8792 allmulti
= dev
->allmulti
+ inc
;
8793 if (allmulti
== 0) {
8796 * If inc causes overflow, untouch allmulti and return error.
8798 if (unlikely(inc
> 0)) {
8799 netdev_warn(dev
, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8802 flags
= old_flags
& ~IFF_ALLMULTI
;
8804 flags
= old_flags
| IFF_ALLMULTI
;
8806 WRITE_ONCE(dev
->allmulti
, allmulti
);
8807 if (flags
!= old_flags
) {
8808 WRITE_ONCE(dev
->flags
, flags
);
8809 netdev_info(dev
, "%s allmulticast mode\n",
8810 dev
->flags
& IFF_ALLMULTI
? "entered" : "left");
8811 dev_change_rx_flags(dev
, IFF_ALLMULTI
);
8812 dev_set_rx_mode(dev
);
8814 __dev_notify_flags(dev
, old_flags
,
8815 dev
->gflags
^ old_gflags
, 0, NULL
);
8821 * dev_set_allmulti - update allmulti count on a device
8825 * Add or remove reception of all multicast frames to a device. While the
8826 * count in the device remains above zero the interface remains listening
8827 * to all interfaces. Once it hits zero the device reverts back to normal
8828 * filtering operation. A negative @inc value is used to drop the counter
8829 * when releasing a resource needing all multicasts.
8830 * Return 0 if successful or a negative errno code on error.
8833 int dev_set_allmulti(struct net_device
*dev
, int inc
)
8835 return __dev_set_allmulti(dev
, inc
, true);
8837 EXPORT_SYMBOL(dev_set_allmulti
);
8840 * Upload unicast and multicast address lists to device and
8841 * configure RX filtering. When the device doesn't support unicast
8842 * filtering it is put in promiscuous mode while unicast addresses
8845 void __dev_set_rx_mode(struct net_device
*dev
)
8847 const struct net_device_ops
*ops
= dev
->netdev_ops
;
8849 /* dev_open will call this function so the list will stay sane. */
8850 if (!(dev
->flags
&IFF_UP
))
8853 if (!netif_device_present(dev
))
8856 if (!(dev
->priv_flags
& IFF_UNICAST_FLT
)) {
8857 /* Unicast addresses changes may only happen under the rtnl,
8858 * therefore calling __dev_set_promiscuity here is safe.
8860 if (!netdev_uc_empty(dev
) && !dev
->uc_promisc
) {
8861 __dev_set_promiscuity(dev
, 1, false);
8862 dev
->uc_promisc
= true;
8863 } else if (netdev_uc_empty(dev
) && dev
->uc_promisc
) {
8864 __dev_set_promiscuity(dev
, -1, false);
8865 dev
->uc_promisc
= false;
8869 if (ops
->ndo_set_rx_mode
)
8870 ops
->ndo_set_rx_mode(dev
);
8873 void dev_set_rx_mode(struct net_device
*dev
)
8875 netif_addr_lock_bh(dev
);
8876 __dev_set_rx_mode(dev
);
8877 netif_addr_unlock_bh(dev
);
8881 * dev_get_flags - get flags reported to userspace
8884 * Get the combination of flag bits exported through APIs to userspace.
8886 unsigned int dev_get_flags(const struct net_device
*dev
)
8890 flags
= (READ_ONCE(dev
->flags
) & ~(IFF_PROMISC
|
8895 (READ_ONCE(dev
->gflags
) & (IFF_PROMISC
|
8898 if (netif_running(dev
)) {
8899 if (netif_oper_up(dev
))
8900 flags
|= IFF_RUNNING
;
8901 if (netif_carrier_ok(dev
))
8902 flags
|= IFF_LOWER_UP
;
8903 if (netif_dormant(dev
))
8904 flags
|= IFF_DORMANT
;
8909 EXPORT_SYMBOL(dev_get_flags
);
8911 int __dev_change_flags(struct net_device
*dev
, unsigned int flags
,
8912 struct netlink_ext_ack
*extack
)
8914 unsigned int old_flags
= dev
->flags
;
8920 * Set the flags on our device.
8923 dev
->flags
= (flags
& (IFF_DEBUG
| IFF_NOTRAILERS
| IFF_NOARP
|
8924 IFF_DYNAMIC
| IFF_MULTICAST
| IFF_PORTSEL
|
8926 (dev
->flags
& (IFF_UP
| IFF_VOLATILE
| IFF_PROMISC
|
8930 * Load in the correct multicast list now the flags have changed.
8933 if ((old_flags
^ flags
) & IFF_MULTICAST
)
8934 dev_change_rx_flags(dev
, IFF_MULTICAST
);
8936 dev_set_rx_mode(dev
);
8939 * Have we downed the interface. We handle IFF_UP ourselves
8940 * according to user attempts to set it, rather than blindly
8945 if ((old_flags
^ flags
) & IFF_UP
) {
8946 if (old_flags
& IFF_UP
)
8949 ret
= __dev_open(dev
, extack
);
8952 if ((flags
^ dev
->gflags
) & IFF_PROMISC
) {
8953 int inc
= (flags
& IFF_PROMISC
) ? 1 : -1;
8954 unsigned int old_flags
= dev
->flags
;
8956 dev
->gflags
^= IFF_PROMISC
;
8958 if (__dev_set_promiscuity(dev
, inc
, false) >= 0)
8959 if (dev
->flags
!= old_flags
)
8960 dev_set_rx_mode(dev
);
8963 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8964 * is important. Some (broken) drivers set IFF_PROMISC, when
8965 * IFF_ALLMULTI is requested not asking us and not reporting.
8967 if ((flags
^ dev
->gflags
) & IFF_ALLMULTI
) {
8968 int inc
= (flags
& IFF_ALLMULTI
) ? 1 : -1;
8970 dev
->gflags
^= IFF_ALLMULTI
;
8971 __dev_set_allmulti(dev
, inc
, false);
8977 void __dev_notify_flags(struct net_device
*dev
, unsigned int old_flags
,
8978 unsigned int gchanges
, u32 portid
,
8979 const struct nlmsghdr
*nlh
)
8981 unsigned int changes
= dev
->flags
^ old_flags
;
8984 rtmsg_ifinfo(RTM_NEWLINK
, dev
, gchanges
, GFP_ATOMIC
, portid
, nlh
);
8986 if (changes
& IFF_UP
) {
8987 if (dev
->flags
& IFF_UP
)
8988 call_netdevice_notifiers(NETDEV_UP
, dev
);
8990 call_netdevice_notifiers(NETDEV_DOWN
, dev
);
8993 if (dev
->flags
& IFF_UP
&&
8994 (changes
& ~(IFF_UP
| IFF_PROMISC
| IFF_ALLMULTI
| IFF_VOLATILE
))) {
8995 struct netdev_notifier_change_info change_info
= {
8999 .flags_changed
= changes
,
9002 call_netdevice_notifiers_info(NETDEV_CHANGE
, &change_info
.info
);
9007 * dev_change_flags - change device settings
9009 * @flags: device state flags
9010 * @extack: netlink extended ack
9012 * Change settings on device based state flags. The flags are
9013 * in the userspace exported format.
9015 int dev_change_flags(struct net_device
*dev
, unsigned int flags
,
9016 struct netlink_ext_ack
*extack
)
9019 unsigned int changes
, old_flags
= dev
->flags
, old_gflags
= dev
->gflags
;
9021 ret
= __dev_change_flags(dev
, flags
, extack
);
9025 changes
= (old_flags
^ dev
->flags
) | (old_gflags
^ dev
->gflags
);
9026 __dev_notify_flags(dev
, old_flags
, changes
, 0, NULL
);
9029 EXPORT_SYMBOL(dev_change_flags
);
9031 int __dev_set_mtu(struct net_device
*dev
, int new_mtu
)
9033 const struct net_device_ops
*ops
= dev
->netdev_ops
;
9035 if (ops
->ndo_change_mtu
)
9036 return ops
->ndo_change_mtu(dev
, new_mtu
);
9038 /* Pairs with all the lockless reads of dev->mtu in the stack */
9039 WRITE_ONCE(dev
->mtu
, new_mtu
);
9042 EXPORT_SYMBOL(__dev_set_mtu
);
9044 int dev_validate_mtu(struct net_device
*dev
, int new_mtu
,
9045 struct netlink_ext_ack
*extack
)
9047 /* MTU must be positive, and in range */
9048 if (new_mtu
< 0 || new_mtu
< dev
->min_mtu
) {
9049 NL_SET_ERR_MSG(extack
, "mtu less than device minimum");
9053 if (dev
->max_mtu
> 0 && new_mtu
> dev
->max_mtu
) {
9054 NL_SET_ERR_MSG(extack
, "mtu greater than device maximum");
9061 * dev_set_mtu_ext - Change maximum transfer unit
9063 * @new_mtu: new transfer unit
9064 * @extack: netlink extended ack
9066 * Change the maximum transfer size of the network device.
9068 int dev_set_mtu_ext(struct net_device
*dev
, int new_mtu
,
9069 struct netlink_ext_ack
*extack
)
9073 if (new_mtu
== dev
->mtu
)
9076 err
= dev_validate_mtu(dev
, new_mtu
, extack
);
9080 if (!netif_device_present(dev
))
9083 err
= call_netdevice_notifiers(NETDEV_PRECHANGEMTU
, dev
);
9084 err
= notifier_to_errno(err
);
9088 orig_mtu
= dev
->mtu
;
9089 err
= __dev_set_mtu(dev
, new_mtu
);
9092 err
= call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU
, dev
,
9094 err
= notifier_to_errno(err
);
9096 /* setting mtu back and notifying everyone again,
9097 * so that they have a chance to revert changes.
9099 __dev_set_mtu(dev
, orig_mtu
);
9100 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU
, dev
,
9107 int dev_set_mtu(struct net_device
*dev
, int new_mtu
)
9109 struct netlink_ext_ack extack
;
9112 memset(&extack
, 0, sizeof(extack
));
9113 err
= dev_set_mtu_ext(dev
, new_mtu
, &extack
);
9114 if (err
&& extack
._msg
)
9115 net_err_ratelimited("%s: %s\n", dev
->name
, extack
._msg
);
9118 EXPORT_SYMBOL(dev_set_mtu
);
9121 * dev_change_tx_queue_len - Change TX queue length of a netdevice
9123 * @new_len: new tx queue length
9125 int dev_change_tx_queue_len(struct net_device
*dev
, unsigned long new_len
)
9127 unsigned int orig_len
= dev
->tx_queue_len
;
9130 if (new_len
!= (unsigned int)new_len
)
9133 if (new_len
!= orig_len
) {
9134 WRITE_ONCE(dev
->tx_queue_len
, new_len
);
9135 res
= call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN
, dev
);
9136 res
= notifier_to_errno(res
);
9139 res
= dev_qdisc_change_tx_queue_len(dev
);
9147 netdev_err(dev
, "refused to change device tx_queue_len\n");
9148 WRITE_ONCE(dev
->tx_queue_len
, orig_len
);
9153 * dev_set_group - Change group this device belongs to
9155 * @new_group: group this device should belong to
9157 void dev_set_group(struct net_device
*dev
, int new_group
)
9159 dev
->group
= new_group
;
9163 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
9165 * @addr: new address
9166 * @extack: netlink extended ack
9168 int dev_pre_changeaddr_notify(struct net_device
*dev
, const char *addr
,
9169 struct netlink_ext_ack
*extack
)
9171 struct netdev_notifier_pre_changeaddr_info info
= {
9173 .info
.extack
= extack
,
9178 rc
= call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR
, &info
.info
);
9179 return notifier_to_errno(rc
);
9181 EXPORT_SYMBOL(dev_pre_changeaddr_notify
);
9184 * dev_set_mac_address - Change Media Access Control Address
9187 * @extack: netlink extended ack
9189 * Change the hardware (MAC) address of the device
9191 int dev_set_mac_address(struct net_device
*dev
, struct sockaddr
*sa
,
9192 struct netlink_ext_ack
*extack
)
9194 const struct net_device_ops
*ops
= dev
->netdev_ops
;
9197 if (!ops
->ndo_set_mac_address
)
9199 if (sa
->sa_family
!= dev
->type
)
9201 if (!netif_device_present(dev
))
9203 err
= dev_pre_changeaddr_notify(dev
, sa
->sa_data
, extack
);
9206 if (memcmp(dev
->dev_addr
, sa
->sa_data
, dev
->addr_len
)) {
9207 err
= ops
->ndo_set_mac_address(dev
, sa
);
9211 dev
->addr_assign_type
= NET_ADDR_SET
;
9212 call_netdevice_notifiers(NETDEV_CHANGEADDR
, dev
);
9213 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
9216 EXPORT_SYMBOL(dev_set_mac_address
);
9218 DECLARE_RWSEM(dev_addr_sem
);
9220 int dev_set_mac_address_user(struct net_device
*dev
, struct sockaddr
*sa
,
9221 struct netlink_ext_ack
*extack
)
9225 down_write(&dev_addr_sem
);
9226 ret
= dev_set_mac_address(dev
, sa
, extack
);
9227 up_write(&dev_addr_sem
);
9230 EXPORT_SYMBOL(dev_set_mac_address_user
);
9232 int dev_get_mac_address(struct sockaddr
*sa
, struct net
*net
, char *dev_name
)
9234 size_t size
= sizeof(sa
->sa_data_min
);
9235 struct net_device
*dev
;
9238 down_read(&dev_addr_sem
);
9241 dev
= dev_get_by_name_rcu(net
, dev_name
);
9247 memset(sa
->sa_data
, 0, size
);
9249 memcpy(sa
->sa_data
, dev
->dev_addr
,
9250 min_t(size_t, size
, dev
->addr_len
));
9251 sa
->sa_family
= dev
->type
;
9255 up_read(&dev_addr_sem
);
9258 EXPORT_SYMBOL(dev_get_mac_address
);
9261 * dev_change_carrier - Change device carrier
9263 * @new_carrier: new value
9265 * Change device carrier
9267 int dev_change_carrier(struct net_device
*dev
, bool new_carrier
)
9269 const struct net_device_ops
*ops
= dev
->netdev_ops
;
9271 if (!ops
->ndo_change_carrier
)
9273 if (!netif_device_present(dev
))
9275 return ops
->ndo_change_carrier(dev
, new_carrier
);
9279 * dev_get_phys_port_id - Get device physical port ID
9283 * Get device physical port ID
9285 int dev_get_phys_port_id(struct net_device
*dev
,
9286 struct netdev_phys_item_id
*ppid
)
9288 const struct net_device_ops
*ops
= dev
->netdev_ops
;
9290 if (!ops
->ndo_get_phys_port_id
)
9292 return ops
->ndo_get_phys_port_id(dev
, ppid
);
9296 * dev_get_phys_port_name - Get device physical port name
9299 * @len: limit of bytes to copy to name
9301 * Get device physical port name
9303 int dev_get_phys_port_name(struct net_device
*dev
,
9304 char *name
, size_t len
)
9306 const struct net_device_ops
*ops
= dev
->netdev_ops
;
9309 if (ops
->ndo_get_phys_port_name
) {
9310 err
= ops
->ndo_get_phys_port_name(dev
, name
, len
);
9311 if (err
!= -EOPNOTSUPP
)
9314 return devlink_compat_phys_port_name_get(dev
, name
, len
);
9318 * dev_get_port_parent_id - Get the device's port parent identifier
9319 * @dev: network device
9320 * @ppid: pointer to a storage for the port's parent identifier
9321 * @recurse: allow/disallow recursion to lower devices
9323 * Get the devices's port parent identifier
9325 int dev_get_port_parent_id(struct net_device
*dev
,
9326 struct netdev_phys_item_id
*ppid
,
9329 const struct net_device_ops
*ops
= dev
->netdev_ops
;
9330 struct netdev_phys_item_id first
= { };
9331 struct net_device
*lower_dev
;
9332 struct list_head
*iter
;
9335 if (ops
->ndo_get_port_parent_id
) {
9336 err
= ops
->ndo_get_port_parent_id(dev
, ppid
);
9337 if (err
!= -EOPNOTSUPP
)
9341 err
= devlink_compat_switch_id_get(dev
, ppid
);
9342 if (!recurse
|| err
!= -EOPNOTSUPP
)
9345 netdev_for_each_lower_dev(dev
, lower_dev
, iter
) {
9346 err
= dev_get_port_parent_id(lower_dev
, ppid
, true);
9351 else if (memcmp(&first
, ppid
, sizeof(*ppid
)))
9357 EXPORT_SYMBOL(dev_get_port_parent_id
);
9360 * netdev_port_same_parent_id - Indicate if two network devices have
9361 * the same port parent identifier
9362 * @a: first network device
9363 * @b: second network device
9365 bool netdev_port_same_parent_id(struct net_device
*a
, struct net_device
*b
)
9367 struct netdev_phys_item_id a_id
= { };
9368 struct netdev_phys_item_id b_id
= { };
9370 if (dev_get_port_parent_id(a
, &a_id
, true) ||
9371 dev_get_port_parent_id(b
, &b_id
, true))
9374 return netdev_phys_item_id_same(&a_id
, &b_id
);
9376 EXPORT_SYMBOL(netdev_port_same_parent_id
);
9379 * dev_change_proto_down - set carrier according to proto_down.
9382 * @proto_down: new value
9384 int dev_change_proto_down(struct net_device
*dev
, bool proto_down
)
9386 if (!dev
->change_proto_down
)
9388 if (!netif_device_present(dev
))
9391 netif_carrier_off(dev
);
9393 netif_carrier_on(dev
);
9394 WRITE_ONCE(dev
->proto_down
, proto_down
);
9399 * dev_change_proto_down_reason - proto down reason
9402 * @mask: proto down mask
9403 * @value: proto down value
9405 void dev_change_proto_down_reason(struct net_device
*dev
, unsigned long mask
,
9408 u32 proto_down_reason
;
9412 proto_down_reason
= value
;
9414 proto_down_reason
= dev
->proto_down_reason
;
9415 for_each_set_bit(b
, &mask
, 32) {
9416 if (value
& (1 << b
))
9417 proto_down_reason
|= BIT(b
);
9419 proto_down_reason
&= ~BIT(b
);
9422 WRITE_ONCE(dev
->proto_down_reason
, proto_down_reason
);
9425 struct bpf_xdp_link
{
9426 struct bpf_link link
;
9427 struct net_device
*dev
; /* protected by rtnl_lock, no refcnt held */
9431 static enum bpf_xdp_mode
dev_xdp_mode(struct net_device
*dev
, u32 flags
)
9433 if (flags
& XDP_FLAGS_HW_MODE
)
9435 if (flags
& XDP_FLAGS_DRV_MODE
)
9436 return XDP_MODE_DRV
;
9437 if (flags
& XDP_FLAGS_SKB_MODE
)
9438 return XDP_MODE_SKB
;
9439 return dev
->netdev_ops
->ndo_bpf
? XDP_MODE_DRV
: XDP_MODE_SKB
;
9442 static bpf_op_t
dev_xdp_bpf_op(struct net_device
*dev
, enum bpf_xdp_mode mode
)
9446 return generic_xdp_install
;
9449 return dev
->netdev_ops
->ndo_bpf
;
9455 static struct bpf_xdp_link
*dev_xdp_link(struct net_device
*dev
,
9456 enum bpf_xdp_mode mode
)
9458 return dev
->xdp_state
[mode
].link
;
9461 static struct bpf_prog
*dev_xdp_prog(struct net_device
*dev
,
9462 enum bpf_xdp_mode mode
)
9464 struct bpf_xdp_link
*link
= dev_xdp_link(dev
, mode
);
9467 return link
->link
.prog
;
9468 return dev
->xdp_state
[mode
].prog
;
9471 u8
dev_xdp_prog_count(struct net_device
*dev
)
9476 for (i
= 0; i
< __MAX_XDP_MODE
; i
++)
9477 if (dev
->xdp_state
[i
].prog
|| dev
->xdp_state
[i
].link
)
9481 EXPORT_SYMBOL_GPL(dev_xdp_prog_count
);
9483 int dev_xdp_propagate(struct net_device
*dev
, struct netdev_bpf
*bpf
)
9485 if (!dev
->netdev_ops
->ndo_bpf
)
9488 if (dev_get_min_mp_channel_count(dev
)) {
9489 NL_SET_ERR_MSG(bpf
->extack
, "unable to propagate XDP to device using memory provider");
9493 return dev
->netdev_ops
->ndo_bpf(dev
, bpf
);
9495 EXPORT_SYMBOL_GPL(dev_xdp_propagate
);
9497 u32
dev_xdp_prog_id(struct net_device
*dev
, enum bpf_xdp_mode mode
)
9499 struct bpf_prog
*prog
= dev_xdp_prog(dev
, mode
);
9501 return prog
? prog
->aux
->id
: 0;
9504 static void dev_xdp_set_link(struct net_device
*dev
, enum bpf_xdp_mode mode
,
9505 struct bpf_xdp_link
*link
)
9507 dev
->xdp_state
[mode
].link
= link
;
9508 dev
->xdp_state
[mode
].prog
= NULL
;
9511 static void dev_xdp_set_prog(struct net_device
*dev
, enum bpf_xdp_mode mode
,
9512 struct bpf_prog
*prog
)
9514 dev
->xdp_state
[mode
].link
= NULL
;
9515 dev
->xdp_state
[mode
].prog
= prog
;
9518 static int dev_xdp_install(struct net_device
*dev
, enum bpf_xdp_mode mode
,
9519 bpf_op_t bpf_op
, struct netlink_ext_ack
*extack
,
9520 u32 flags
, struct bpf_prog
*prog
)
9522 struct netdev_bpf xdp
;
9525 if (dev_get_min_mp_channel_count(dev
)) {
9526 NL_SET_ERR_MSG(extack
, "unable to install XDP to device using memory provider");
9530 memset(&xdp
, 0, sizeof(xdp
));
9531 xdp
.command
= mode
== XDP_MODE_HW
? XDP_SETUP_PROG_HW
: XDP_SETUP_PROG
;
9532 xdp
.extack
= extack
;
9536 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9537 * "moved" into driver), so they don't increment it on their own, but
9538 * they do decrement refcnt when program is detached or replaced.
9539 * Given net_device also owns link/prog, we need to bump refcnt here
9540 * to prevent drivers from underflowing it.
9544 err
= bpf_op(dev
, &xdp
);
9551 if (mode
!= XDP_MODE_HW
)
9552 bpf_prog_change_xdp(dev_xdp_prog(dev
, mode
), prog
);
9557 static void dev_xdp_uninstall(struct net_device
*dev
)
9559 struct bpf_xdp_link
*link
;
9560 struct bpf_prog
*prog
;
9561 enum bpf_xdp_mode mode
;
9566 for (mode
= XDP_MODE_SKB
; mode
< __MAX_XDP_MODE
; mode
++) {
9567 prog
= dev_xdp_prog(dev
, mode
);
9571 bpf_op
= dev_xdp_bpf_op(dev
, mode
);
9575 WARN_ON(dev_xdp_install(dev
, mode
, bpf_op
, NULL
, 0, NULL
));
9577 /* auto-detach link from net device */
9578 link
= dev_xdp_link(dev
, mode
);
9584 dev_xdp_set_link(dev
, mode
, NULL
);
9588 static int dev_xdp_attach(struct net_device
*dev
, struct netlink_ext_ack
*extack
,
9589 struct bpf_xdp_link
*link
, struct bpf_prog
*new_prog
,
9590 struct bpf_prog
*old_prog
, u32 flags
)
9592 unsigned int num_modes
= hweight32(flags
& XDP_FLAGS_MODES
);
9593 struct bpf_prog
*cur_prog
;
9594 struct net_device
*upper
;
9595 struct list_head
*iter
;
9596 enum bpf_xdp_mode mode
;
9602 /* either link or prog attachment, never both */
9603 if (link
&& (new_prog
|| old_prog
))
9605 /* link supports only XDP mode flags */
9606 if (link
&& (flags
& ~XDP_FLAGS_MODES
)) {
9607 NL_SET_ERR_MSG(extack
, "Invalid XDP flags for BPF link attachment");
9610 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9611 if (num_modes
> 1) {
9612 NL_SET_ERR_MSG(extack
, "Only one XDP mode flag can be set");
9615 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9616 if (!num_modes
&& dev_xdp_prog_count(dev
) > 1) {
9617 NL_SET_ERR_MSG(extack
,
9618 "More than one program loaded, unset mode is ambiguous");
9621 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9622 if (old_prog
&& !(flags
& XDP_FLAGS_REPLACE
)) {
9623 NL_SET_ERR_MSG(extack
, "XDP_FLAGS_REPLACE is not specified");
9627 mode
= dev_xdp_mode(dev
, flags
);
9628 /* can't replace attached link */
9629 if (dev_xdp_link(dev
, mode
)) {
9630 NL_SET_ERR_MSG(extack
, "Can't replace active BPF XDP link");
9634 /* don't allow if an upper device already has a program */
9635 netdev_for_each_upper_dev_rcu(dev
, upper
, iter
) {
9636 if (dev_xdp_prog_count(upper
) > 0) {
9637 NL_SET_ERR_MSG(extack
, "Cannot attach when an upper device already has a program");
9642 cur_prog
= dev_xdp_prog(dev
, mode
);
9643 /* can't replace attached prog with link */
9644 if (link
&& cur_prog
) {
9645 NL_SET_ERR_MSG(extack
, "Can't replace active XDP program with BPF link");
9648 if ((flags
& XDP_FLAGS_REPLACE
) && cur_prog
!= old_prog
) {
9649 NL_SET_ERR_MSG(extack
, "Active program does not match expected");
9653 /* put effective new program into new_prog */
9655 new_prog
= link
->link
.prog
;
9658 bool offload
= mode
== XDP_MODE_HW
;
9659 enum bpf_xdp_mode other_mode
= mode
== XDP_MODE_SKB
9660 ? XDP_MODE_DRV
: XDP_MODE_SKB
;
9662 if ((flags
& XDP_FLAGS_UPDATE_IF_NOEXIST
) && cur_prog
) {
9663 NL_SET_ERR_MSG(extack
, "XDP program already attached");
9666 if (!offload
&& dev_xdp_prog(dev
, other_mode
)) {
9667 NL_SET_ERR_MSG(extack
, "Native and generic XDP can't be active at the same time");
9670 if (!offload
&& bpf_prog_is_offloaded(new_prog
->aux
)) {
9671 NL_SET_ERR_MSG(extack
, "Using offloaded program without HW_MODE flag is not supported");
9674 if (bpf_prog_is_dev_bound(new_prog
->aux
) && !bpf_offload_dev_match(new_prog
, dev
)) {
9675 NL_SET_ERR_MSG(extack
, "Program bound to different device");
9678 if (new_prog
->expected_attach_type
== BPF_XDP_DEVMAP
) {
9679 NL_SET_ERR_MSG(extack
, "BPF_XDP_DEVMAP programs can not be attached to a device");
9682 if (new_prog
->expected_attach_type
== BPF_XDP_CPUMAP
) {
9683 NL_SET_ERR_MSG(extack
, "BPF_XDP_CPUMAP programs can not be attached to a device");
9688 /* don't call drivers if the effective program didn't change */
9689 if (new_prog
!= cur_prog
) {
9690 bpf_op
= dev_xdp_bpf_op(dev
, mode
);
9692 NL_SET_ERR_MSG(extack
, "Underlying driver does not support XDP in native mode");
9696 err
= dev_xdp_install(dev
, mode
, bpf_op
, extack
, flags
, new_prog
);
9702 dev_xdp_set_link(dev
, mode
, link
);
9704 dev_xdp_set_prog(dev
, mode
, new_prog
);
9706 bpf_prog_put(cur_prog
);
9711 static int dev_xdp_attach_link(struct net_device
*dev
,
9712 struct netlink_ext_ack
*extack
,
9713 struct bpf_xdp_link
*link
)
9715 return dev_xdp_attach(dev
, extack
, link
, NULL
, NULL
, link
->flags
);
9718 static int dev_xdp_detach_link(struct net_device
*dev
,
9719 struct netlink_ext_ack
*extack
,
9720 struct bpf_xdp_link
*link
)
9722 enum bpf_xdp_mode mode
;
9727 mode
= dev_xdp_mode(dev
, link
->flags
);
9728 if (dev_xdp_link(dev
, mode
) != link
)
9731 bpf_op
= dev_xdp_bpf_op(dev
, mode
);
9732 WARN_ON(dev_xdp_install(dev
, mode
, bpf_op
, NULL
, 0, NULL
));
9733 dev_xdp_set_link(dev
, mode
, NULL
);
9737 static void bpf_xdp_link_release(struct bpf_link
*link
)
9739 struct bpf_xdp_link
*xdp_link
= container_of(link
, struct bpf_xdp_link
, link
);
9743 /* if racing with net_device's tear down, xdp_link->dev might be
9744 * already NULL, in which case link was already auto-detached
9746 if (xdp_link
->dev
) {
9747 WARN_ON(dev_xdp_detach_link(xdp_link
->dev
, NULL
, xdp_link
));
9748 xdp_link
->dev
= NULL
;
9754 static int bpf_xdp_link_detach(struct bpf_link
*link
)
9756 bpf_xdp_link_release(link
);
9760 static void bpf_xdp_link_dealloc(struct bpf_link
*link
)
9762 struct bpf_xdp_link
*xdp_link
= container_of(link
, struct bpf_xdp_link
, link
);
9767 static void bpf_xdp_link_show_fdinfo(const struct bpf_link
*link
,
9768 struct seq_file
*seq
)
9770 struct bpf_xdp_link
*xdp_link
= container_of(link
, struct bpf_xdp_link
, link
);
9775 ifindex
= xdp_link
->dev
->ifindex
;
9778 seq_printf(seq
, "ifindex:\t%u\n", ifindex
);
9781 static int bpf_xdp_link_fill_link_info(const struct bpf_link
*link
,
9782 struct bpf_link_info
*info
)
9784 struct bpf_xdp_link
*xdp_link
= container_of(link
, struct bpf_xdp_link
, link
);
9789 ifindex
= xdp_link
->dev
->ifindex
;
9792 info
->xdp
.ifindex
= ifindex
;
9796 static int bpf_xdp_link_update(struct bpf_link
*link
, struct bpf_prog
*new_prog
,
9797 struct bpf_prog
*old_prog
)
9799 struct bpf_xdp_link
*xdp_link
= container_of(link
, struct bpf_xdp_link
, link
);
9800 enum bpf_xdp_mode mode
;
9806 /* link might have been auto-released already, so fail */
9807 if (!xdp_link
->dev
) {
9812 if (old_prog
&& link
->prog
!= old_prog
) {
9816 old_prog
= link
->prog
;
9817 if (old_prog
->type
!= new_prog
->type
||
9818 old_prog
->expected_attach_type
!= new_prog
->expected_attach_type
) {
9823 if (old_prog
== new_prog
) {
9824 /* no-op, don't disturb drivers */
9825 bpf_prog_put(new_prog
);
9829 mode
= dev_xdp_mode(xdp_link
->dev
, xdp_link
->flags
);
9830 bpf_op
= dev_xdp_bpf_op(xdp_link
->dev
, mode
);
9831 err
= dev_xdp_install(xdp_link
->dev
, mode
, bpf_op
, NULL
,
9832 xdp_link
->flags
, new_prog
);
9836 old_prog
= xchg(&link
->prog
, new_prog
);
9837 bpf_prog_put(old_prog
);
9844 static const struct bpf_link_ops bpf_xdp_link_lops
= {
9845 .release
= bpf_xdp_link_release
,
9846 .dealloc
= bpf_xdp_link_dealloc
,
9847 .detach
= bpf_xdp_link_detach
,
9848 .show_fdinfo
= bpf_xdp_link_show_fdinfo
,
9849 .fill_link_info
= bpf_xdp_link_fill_link_info
,
9850 .update_prog
= bpf_xdp_link_update
,
9853 int bpf_xdp_link_attach(const union bpf_attr
*attr
, struct bpf_prog
*prog
)
9855 struct net
*net
= current
->nsproxy
->net_ns
;
9856 struct bpf_link_primer link_primer
;
9857 struct netlink_ext_ack extack
= {};
9858 struct bpf_xdp_link
*link
;
9859 struct net_device
*dev
;
9863 dev
= dev_get_by_index(net
, attr
->link_create
.target_ifindex
);
9869 link
= kzalloc(sizeof(*link
), GFP_USER
);
9875 bpf_link_init(&link
->link
, BPF_LINK_TYPE_XDP
, &bpf_xdp_link_lops
, prog
);
9877 link
->flags
= attr
->link_create
.flags
;
9879 err
= bpf_link_prime(&link
->link
, &link_primer
);
9885 err
= dev_xdp_attach_link(dev
, &extack
, link
);
9890 bpf_link_cleanup(&link_primer
);
9891 trace_bpf_xdp_link_attach_failed(extack
._msg
);
9895 fd
= bpf_link_settle(&link_primer
);
9896 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9909 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9911 * @extack: netlink extended ack
9912 * @fd: new program fd or negative value to clear
9913 * @expected_fd: old program fd that userspace expects to replace or clear
9914 * @flags: xdp-related flags
9916 * Set or clear a bpf program for a device
9918 int dev_change_xdp_fd(struct net_device
*dev
, struct netlink_ext_ack
*extack
,
9919 int fd
, int expected_fd
, u32 flags
)
9921 enum bpf_xdp_mode mode
= dev_xdp_mode(dev
, flags
);
9922 struct bpf_prog
*new_prog
= NULL
, *old_prog
= NULL
;
9928 new_prog
= bpf_prog_get_type_dev(fd
, BPF_PROG_TYPE_XDP
,
9929 mode
!= XDP_MODE_SKB
);
9930 if (IS_ERR(new_prog
))
9931 return PTR_ERR(new_prog
);
9934 if (expected_fd
>= 0) {
9935 old_prog
= bpf_prog_get_type_dev(expected_fd
, BPF_PROG_TYPE_XDP
,
9936 mode
!= XDP_MODE_SKB
);
9937 if (IS_ERR(old_prog
)) {
9938 err
= PTR_ERR(old_prog
);
9944 err
= dev_xdp_attach(dev
, extack
, NULL
, new_prog
, old_prog
, flags
);
9947 if (err
&& new_prog
)
9948 bpf_prog_put(new_prog
);
9950 bpf_prog_put(old_prog
);
9954 u32
dev_get_min_mp_channel_count(const struct net_device
*dev
)
9960 for (i
= dev
->real_num_rx_queues
- 1; i
>= 0; i
--)
9961 if (dev
->_rx
[i
].mp_params
.mp_priv
)
9962 /* The channel count is the idx plus 1. */
9969 * dev_index_reserve() - allocate an ifindex in a namespace
9970 * @net: the applicable net namespace
9971 * @ifindex: requested ifindex, pass %0 to get one allocated
9973 * Allocate a ifindex for a new device. Caller must either use the ifindex
9974 * to store the device (via list_netdevice()) or call dev_index_release()
9975 * to give the index up.
9977 * Return: a suitable unique value for a new device interface number or -errno.
9979 static int dev_index_reserve(struct net
*net
, u32 ifindex
)
9983 if (ifindex
> INT_MAX
) {
9984 DEBUG_NET_WARN_ON_ONCE(1);
9989 err
= xa_alloc_cyclic(&net
->dev_by_index
, &ifindex
, NULL
,
9990 xa_limit_31b
, &net
->ifindex
, GFP_KERNEL
);
9992 err
= xa_insert(&net
->dev_by_index
, ifindex
, NULL
, GFP_KERNEL
);
9999 static void dev_index_release(struct net
*net
, int ifindex
)
10001 /* Expect only unused indexes, unlist_netdevice() removes the used */
10002 WARN_ON(xa_erase(&net
->dev_by_index
, ifindex
));
10005 /* Delayed registration/unregisteration */
10006 LIST_HEAD(net_todo_list
);
10007 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq
);
10008 atomic_t dev_unreg_count
= ATOMIC_INIT(0);
10010 static void net_set_todo(struct net_device
*dev
)
10012 list_add_tail(&dev
->todo_list
, &net_todo_list
);
10015 static netdev_features_t
netdev_sync_upper_features(struct net_device
*lower
,
10016 struct net_device
*upper
, netdev_features_t features
)
10018 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
10019 netdev_features_t feature
;
10022 for_each_netdev_feature(upper_disables
, feature_bit
) {
10023 feature
= __NETIF_F_BIT(feature_bit
);
10024 if (!(upper
->wanted_features
& feature
)
10025 && (features
& feature
)) {
10026 netdev_dbg(lower
, "Dropping feature %pNF, upper dev %s has it off.\n",
10027 &feature
, upper
->name
);
10028 features
&= ~feature
;
10035 static void netdev_sync_lower_features(struct net_device
*upper
,
10036 struct net_device
*lower
, netdev_features_t features
)
10038 netdev_features_t upper_disables
= NETIF_F_UPPER_DISABLES
;
10039 netdev_features_t feature
;
10042 for_each_netdev_feature(upper_disables
, feature_bit
) {
10043 feature
= __NETIF_F_BIT(feature_bit
);
10044 if (!(features
& feature
) && (lower
->features
& feature
)) {
10045 netdev_dbg(upper
, "Disabling feature %pNF on lower dev %s.\n",
10046 &feature
, lower
->name
);
10047 lower
->wanted_features
&= ~feature
;
10048 __netdev_update_features(lower
);
10050 if (unlikely(lower
->features
& feature
))
10051 netdev_WARN(upper
, "failed to disable %pNF on %s!\n",
10052 &feature
, lower
->name
);
10054 netdev_features_change(lower
);
10059 static bool netdev_has_ip_or_hw_csum(netdev_features_t features
)
10061 netdev_features_t ip_csum_mask
= NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
;
10062 bool ip_csum
= (features
& ip_csum_mask
) == ip_csum_mask
;
10063 bool hw_csum
= features
& NETIF_F_HW_CSUM
;
10065 return ip_csum
|| hw_csum
;
10068 static netdev_features_t
netdev_fix_features(struct net_device
*dev
,
10069 netdev_features_t features
)
10071 /* Fix illegal checksum combinations */
10072 if ((features
& NETIF_F_HW_CSUM
) &&
10073 (features
& (NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
))) {
10074 netdev_warn(dev
, "mixed HW and IP checksum settings.\n");
10075 features
&= ~(NETIF_F_IP_CSUM
|NETIF_F_IPV6_CSUM
);
10078 /* TSO requires that SG is present as well. */
10079 if ((features
& NETIF_F_ALL_TSO
) && !(features
& NETIF_F_SG
)) {
10080 netdev_dbg(dev
, "Dropping TSO features since no SG feature.\n");
10081 features
&= ~NETIF_F_ALL_TSO
;
10084 if ((features
& NETIF_F_TSO
) && !(features
& NETIF_F_HW_CSUM
) &&
10085 !(features
& NETIF_F_IP_CSUM
)) {
10086 netdev_dbg(dev
, "Dropping TSO features since no CSUM feature.\n");
10087 features
&= ~NETIF_F_TSO
;
10088 features
&= ~NETIF_F_TSO_ECN
;
10091 if ((features
& NETIF_F_TSO6
) && !(features
& NETIF_F_HW_CSUM
) &&
10092 !(features
& NETIF_F_IPV6_CSUM
)) {
10093 netdev_dbg(dev
, "Dropping TSO6 features since no CSUM feature.\n");
10094 features
&= ~NETIF_F_TSO6
;
10097 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
10098 if ((features
& NETIF_F_TSO_MANGLEID
) && !(features
& NETIF_F_TSO
))
10099 features
&= ~NETIF_F_TSO_MANGLEID
;
10101 /* TSO ECN requires that TSO is present as well. */
10102 if ((features
& NETIF_F_ALL_TSO
) == NETIF_F_TSO_ECN
)
10103 features
&= ~NETIF_F_TSO_ECN
;
10105 /* Software GSO depends on SG. */
10106 if ((features
& NETIF_F_GSO
) && !(features
& NETIF_F_SG
)) {
10107 netdev_dbg(dev
, "Dropping NETIF_F_GSO since no SG feature.\n");
10108 features
&= ~NETIF_F_GSO
;
10111 /* GSO partial features require GSO partial be set */
10112 if ((features
& dev
->gso_partial_features
) &&
10113 !(features
& NETIF_F_GSO_PARTIAL
)) {
10115 "Dropping partially supported GSO features since no GSO partial.\n");
10116 features
&= ~dev
->gso_partial_features
;
10119 if (!(features
& NETIF_F_RXCSUM
)) {
10120 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
10121 * successfully merged by hardware must also have the
10122 * checksum verified by hardware. If the user does not
10123 * want to enable RXCSUM, logically, we should disable GRO_HW.
10125 if (features
& NETIF_F_GRO_HW
) {
10126 netdev_dbg(dev
, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
10127 features
&= ~NETIF_F_GRO_HW
;
10131 /* LRO/HW-GRO features cannot be combined with RX-FCS */
10132 if (features
& NETIF_F_RXFCS
) {
10133 if (features
& NETIF_F_LRO
) {
10134 netdev_dbg(dev
, "Dropping LRO feature since RX-FCS is requested.\n");
10135 features
&= ~NETIF_F_LRO
;
10138 if (features
& NETIF_F_GRO_HW
) {
10139 netdev_dbg(dev
, "Dropping HW-GRO feature since RX-FCS is requested.\n");
10140 features
&= ~NETIF_F_GRO_HW
;
10144 if ((features
& NETIF_F_GRO_HW
) && (features
& NETIF_F_LRO
)) {
10145 netdev_dbg(dev
, "Dropping LRO feature since HW-GRO is requested.\n");
10146 features
&= ~NETIF_F_LRO
;
10149 if ((features
& NETIF_F_HW_TLS_TX
) && !netdev_has_ip_or_hw_csum(features
)) {
10150 netdev_dbg(dev
, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
10151 features
&= ~NETIF_F_HW_TLS_TX
;
10154 if ((features
& NETIF_F_HW_TLS_RX
) && !(features
& NETIF_F_RXCSUM
)) {
10155 netdev_dbg(dev
, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
10156 features
&= ~NETIF_F_HW_TLS_RX
;
10159 if ((features
& NETIF_F_GSO_UDP_L4
) && !netdev_has_ip_or_hw_csum(features
)) {
10160 netdev_dbg(dev
, "Dropping USO feature since no CSUM feature.\n");
10161 features
&= ~NETIF_F_GSO_UDP_L4
;
10167 int __netdev_update_features(struct net_device
*dev
)
10169 struct net_device
*upper
, *lower
;
10170 netdev_features_t features
;
10171 struct list_head
*iter
;
10176 features
= netdev_get_wanted_features(dev
);
10178 if (dev
->netdev_ops
->ndo_fix_features
)
10179 features
= dev
->netdev_ops
->ndo_fix_features(dev
, features
);
10181 /* driver might be less strict about feature dependencies */
10182 features
= netdev_fix_features(dev
, features
);
10184 /* some features can't be enabled if they're off on an upper device */
10185 netdev_for_each_upper_dev_rcu(dev
, upper
, iter
)
10186 features
= netdev_sync_upper_features(dev
, upper
, features
);
10188 if (dev
->features
== features
)
10191 netdev_dbg(dev
, "Features changed: %pNF -> %pNF\n",
10192 &dev
->features
, &features
);
10194 if (dev
->netdev_ops
->ndo_set_features
)
10195 err
= dev
->netdev_ops
->ndo_set_features(dev
, features
);
10199 if (unlikely(err
< 0)) {
10201 "set_features() failed (%d); wanted %pNF, left %pNF\n",
10202 err
, &features
, &dev
->features
);
10203 /* return non-0 since some features might have changed and
10204 * it's better to fire a spurious notification than miss it
10210 /* some features must be disabled on lower devices when disabled
10211 * on an upper device (think: bonding master or bridge)
10213 netdev_for_each_lower_dev(dev
, lower
, iter
)
10214 netdev_sync_lower_features(dev
, lower
, features
);
10217 netdev_features_t diff
= features
^ dev
->features
;
10219 if (diff
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
10220 /* udp_tunnel_{get,drop}_rx_info both need
10221 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
10222 * device, or they won't do anything.
10223 * Thus we need to update dev->features
10224 * *before* calling udp_tunnel_get_rx_info,
10225 * but *after* calling udp_tunnel_drop_rx_info.
10227 if (features
& NETIF_F_RX_UDP_TUNNEL_PORT
) {
10228 dev
->features
= features
;
10229 udp_tunnel_get_rx_info(dev
);
10231 udp_tunnel_drop_rx_info(dev
);
10235 if (diff
& NETIF_F_HW_VLAN_CTAG_FILTER
) {
10236 if (features
& NETIF_F_HW_VLAN_CTAG_FILTER
) {
10237 dev
->features
= features
;
10238 err
|= vlan_get_rx_ctag_filter_info(dev
);
10240 vlan_drop_rx_ctag_filter_info(dev
);
10244 if (diff
& NETIF_F_HW_VLAN_STAG_FILTER
) {
10245 if (features
& NETIF_F_HW_VLAN_STAG_FILTER
) {
10246 dev
->features
= features
;
10247 err
|= vlan_get_rx_stag_filter_info(dev
);
10249 vlan_drop_rx_stag_filter_info(dev
);
10253 dev
->features
= features
;
10256 return err
< 0 ? 0 : 1;
10260 * netdev_update_features - recalculate device features
10261 * @dev: the device to check
10263 * Recalculate dev->features set and send notifications if it
10264 * has changed. Should be called after driver or hardware dependent
10265 * conditions might have changed that influence the features.
10267 void netdev_update_features(struct net_device
*dev
)
10269 if (__netdev_update_features(dev
))
10270 netdev_features_change(dev
);
10272 EXPORT_SYMBOL(netdev_update_features
);
10275 * netdev_change_features - recalculate device features
10276 * @dev: the device to check
10278 * Recalculate dev->features set and send notifications even
10279 * if they have not changed. Should be called instead of
10280 * netdev_update_features() if also dev->vlan_features might
10281 * have changed to allow the changes to be propagated to stacked
10284 void netdev_change_features(struct net_device
*dev
)
10286 __netdev_update_features(dev
);
10287 netdev_features_change(dev
);
10289 EXPORT_SYMBOL(netdev_change_features
);
10292 * netif_stacked_transfer_operstate - transfer operstate
10293 * @rootdev: the root or lower level device to transfer state from
10294 * @dev: the device to transfer operstate to
10296 * Transfer operational state from root to device. This is normally
10297 * called when a stacking relationship exists between the root
10298 * device and the device(a leaf device).
10300 void netif_stacked_transfer_operstate(const struct net_device
*rootdev
,
10301 struct net_device
*dev
)
10303 if (rootdev
->operstate
== IF_OPER_DORMANT
)
10304 netif_dormant_on(dev
);
10306 netif_dormant_off(dev
);
10308 if (rootdev
->operstate
== IF_OPER_TESTING
)
10309 netif_testing_on(dev
);
10311 netif_testing_off(dev
);
10313 if (netif_carrier_ok(rootdev
))
10314 netif_carrier_on(dev
);
10316 netif_carrier_off(dev
);
10318 EXPORT_SYMBOL(netif_stacked_transfer_operstate
);
10320 static int netif_alloc_rx_queues(struct net_device
*dev
)
10322 unsigned int i
, count
= dev
->num_rx_queues
;
10323 struct netdev_rx_queue
*rx
;
10324 size_t sz
= count
* sizeof(*rx
);
10329 rx
= kvzalloc(sz
, GFP_KERNEL_ACCOUNT
| __GFP_RETRY_MAYFAIL
);
10335 for (i
= 0; i
< count
; i
++) {
10338 /* XDP RX-queue setup */
10339 err
= xdp_rxq_info_reg(&rx
[i
].xdp_rxq
, dev
, i
, 0);
10346 /* Rollback successful reg's and free other resources */
10348 xdp_rxq_info_unreg(&rx
[i
].xdp_rxq
);
10354 static void netif_free_rx_queues(struct net_device
*dev
)
10356 unsigned int i
, count
= dev
->num_rx_queues
;
10358 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
10362 for (i
= 0; i
< count
; i
++)
10363 xdp_rxq_info_unreg(&dev
->_rx
[i
].xdp_rxq
);
10368 static void netdev_init_one_queue(struct net_device
*dev
,
10369 struct netdev_queue
*queue
, void *_unused
)
10371 /* Initialize queue lock */
10372 spin_lock_init(&queue
->_xmit_lock
);
10373 netdev_set_xmit_lockdep_class(&queue
->_xmit_lock
, dev
->type
);
10374 queue
->xmit_lock_owner
= -1;
10375 netdev_queue_numa_node_write(queue
, NUMA_NO_NODE
);
10378 dql_init(&queue
->dql
, HZ
);
10382 static void netif_free_tx_queues(struct net_device
*dev
)
10387 static int netif_alloc_netdev_queues(struct net_device
*dev
)
10389 unsigned int count
= dev
->num_tx_queues
;
10390 struct netdev_queue
*tx
;
10391 size_t sz
= count
* sizeof(*tx
);
10393 if (count
< 1 || count
> 0xffff)
10396 tx
= kvzalloc(sz
, GFP_KERNEL_ACCOUNT
| __GFP_RETRY_MAYFAIL
);
10402 netdev_for_each_tx_queue(dev
, netdev_init_one_queue
, NULL
);
10403 spin_lock_init(&dev
->tx_global_lock
);
10408 void netif_tx_stop_all_queues(struct net_device
*dev
)
10412 for (i
= 0; i
< dev
->num_tx_queues
; i
++) {
10413 struct netdev_queue
*txq
= netdev_get_tx_queue(dev
, i
);
10415 netif_tx_stop_queue(txq
);
10418 EXPORT_SYMBOL(netif_tx_stop_all_queues
);
10420 static int netdev_do_alloc_pcpu_stats(struct net_device
*dev
)
10424 /* Drivers implementing ndo_get_peer_dev must support tstat
10425 * accounting, so that skb_do_redirect() can bump the dev's
10426 * RX stats upon network namespace switch.
10428 if (dev
->netdev_ops
->ndo_get_peer_dev
&&
10429 dev
->pcpu_stat_type
!= NETDEV_PCPU_STAT_TSTATS
)
10430 return -EOPNOTSUPP
;
10432 switch (dev
->pcpu_stat_type
) {
10433 case NETDEV_PCPU_STAT_NONE
:
10435 case NETDEV_PCPU_STAT_LSTATS
:
10436 v
= dev
->lstats
= netdev_alloc_pcpu_stats(struct pcpu_lstats
);
10438 case NETDEV_PCPU_STAT_TSTATS
:
10439 v
= dev
->tstats
= netdev_alloc_pcpu_stats(struct pcpu_sw_netstats
);
10441 case NETDEV_PCPU_STAT_DSTATS
:
10442 v
= dev
->dstats
= netdev_alloc_pcpu_stats(struct pcpu_dstats
);
10448 return v
? 0 : -ENOMEM
;
10451 static void netdev_do_free_pcpu_stats(struct net_device
*dev
)
10453 switch (dev
->pcpu_stat_type
) {
10454 case NETDEV_PCPU_STAT_NONE
:
10456 case NETDEV_PCPU_STAT_LSTATS
:
10457 free_percpu(dev
->lstats
);
10459 case NETDEV_PCPU_STAT_TSTATS
:
10460 free_percpu(dev
->tstats
);
10462 case NETDEV_PCPU_STAT_DSTATS
:
10463 free_percpu(dev
->dstats
);
10468 static void netdev_free_phy_link_topology(struct net_device
*dev
)
10470 struct phy_link_topology
*topo
= dev
->link_topo
;
10472 if (IS_ENABLED(CONFIG_PHYLIB
) && topo
) {
10473 xa_destroy(&topo
->phys
);
10475 dev
->link_topo
= NULL
;
10480 * register_netdevice() - register a network device
10481 * @dev: device to register
10483 * Take a prepared network device structure and make it externally accessible.
10484 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10485 * Callers must hold the rtnl lock - you may want register_netdev()
10488 int register_netdevice(struct net_device
*dev
)
10491 struct net
*net
= dev_net(dev
);
10493 BUILD_BUG_ON(sizeof(netdev_features_t
) * BITS_PER_BYTE
<
10494 NETDEV_FEATURE_COUNT
);
10495 BUG_ON(dev_boot_phase
);
10500 /* When net_device's are persistent, this will be fatal. */
10501 BUG_ON(dev
->reg_state
!= NETREG_UNINITIALIZED
);
10504 ret
= ethtool_check_ops(dev
->ethtool_ops
);
10508 /* rss ctx ID 0 is reserved for the default context, start from 1 */
10509 xa_init_flags(&dev
->ethtool
->rss_ctx
, XA_FLAGS_ALLOC1
);
10510 mutex_init(&dev
->ethtool
->rss_lock
);
10512 spin_lock_init(&dev
->addr_list_lock
);
10513 netdev_set_addr_lockdep_class(dev
);
10515 ret
= dev_get_valid_name(net
, dev
, dev
->name
);
10520 dev
->name_node
= netdev_name_node_head_alloc(dev
);
10521 if (!dev
->name_node
)
10524 /* Init, if this function is available */
10525 if (dev
->netdev_ops
->ndo_init
) {
10526 ret
= dev
->netdev_ops
->ndo_init(dev
);
10530 goto err_free_name
;
10534 if (((dev
->hw_features
| dev
->features
) &
10535 NETIF_F_HW_VLAN_CTAG_FILTER
) &&
10536 (!dev
->netdev_ops
->ndo_vlan_rx_add_vid
||
10537 !dev
->netdev_ops
->ndo_vlan_rx_kill_vid
)) {
10538 netdev_WARN(dev
, "Buggy VLAN acceleration in driver!\n");
10543 ret
= netdev_do_alloc_pcpu_stats(dev
);
10547 ret
= dev_index_reserve(net
, dev
->ifindex
);
10549 goto err_free_pcpu
;
10550 dev
->ifindex
= ret
;
10552 /* Transfer changeable features to wanted_features and enable
10553 * software offloads (GSO and GRO).
10555 dev
->hw_features
|= (NETIF_F_SOFT_FEATURES
| NETIF_F_SOFT_FEATURES_OFF
);
10556 dev
->features
|= NETIF_F_SOFT_FEATURES
;
10558 if (dev
->udp_tunnel_nic_info
) {
10559 dev
->features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
10560 dev
->hw_features
|= NETIF_F_RX_UDP_TUNNEL_PORT
;
10563 dev
->wanted_features
= dev
->features
& dev
->hw_features
;
10565 if (!(dev
->flags
& IFF_LOOPBACK
))
10566 dev
->hw_features
|= NETIF_F_NOCACHE_COPY
;
10568 /* If IPv4 TCP segmentation offload is supported we should also
10569 * allow the device to enable segmenting the frame with the option
10570 * of ignoring a static IP ID value. This doesn't enable the
10571 * feature itself but allows the user to enable it later.
10573 if (dev
->hw_features
& NETIF_F_TSO
)
10574 dev
->hw_features
|= NETIF_F_TSO_MANGLEID
;
10575 if (dev
->vlan_features
& NETIF_F_TSO
)
10576 dev
->vlan_features
|= NETIF_F_TSO_MANGLEID
;
10577 if (dev
->mpls_features
& NETIF_F_TSO
)
10578 dev
->mpls_features
|= NETIF_F_TSO_MANGLEID
;
10579 if (dev
->hw_enc_features
& NETIF_F_TSO
)
10580 dev
->hw_enc_features
|= NETIF_F_TSO_MANGLEID
;
10582 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10584 dev
->vlan_features
|= NETIF_F_HIGHDMA
;
10586 /* Make NETIF_F_SG inheritable to tunnel devices.
10588 dev
->hw_enc_features
|= NETIF_F_SG
| NETIF_F_GSO_PARTIAL
;
10590 /* Make NETIF_F_SG inheritable to MPLS.
10592 dev
->mpls_features
|= NETIF_F_SG
;
10594 ret
= call_netdevice_notifiers(NETDEV_POST_INIT
, dev
);
10595 ret
= notifier_to_errno(ret
);
10597 goto err_ifindex_release
;
10599 ret
= netdev_register_kobject(dev
);
10601 WRITE_ONCE(dev
->reg_state
, ret
? NETREG_UNREGISTERED
: NETREG_REGISTERED
);
10604 goto err_uninit_notify
;
10606 __netdev_update_features(dev
);
10609 * Default initial state at registry is that the
10610 * device is present.
10613 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
10615 linkwatch_init_dev(dev
);
10617 dev_init_scheduler(dev
);
10619 netdev_hold(dev
, &dev
->dev_registered_tracker
, GFP_KERNEL
);
10620 list_netdevice(dev
);
10622 add_device_randomness(dev
->dev_addr
, dev
->addr_len
);
10624 /* If the device has permanent device address, driver should
10625 * set dev_addr and also addr_assign_type should be set to
10626 * NET_ADDR_PERM (default value).
10628 if (dev
->addr_assign_type
== NET_ADDR_PERM
)
10629 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
10631 /* Notify protocols, that a new device appeared. */
10632 ret
= call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
10633 ret
= notifier_to_errno(ret
);
10635 /* Expect explicit free_netdev() on failure */
10636 dev
->needs_free_netdev
= false;
10637 unregister_netdevice_queue(dev
, NULL
);
10641 * Prevent userspace races by waiting until the network
10642 * device is fully setup before sending notifications.
10644 if (!dev
->rtnl_link_ops
||
10645 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
10646 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
, 0, NULL
);
10652 call_netdevice_notifiers(NETDEV_PRE_UNINIT
, dev
);
10653 err_ifindex_release
:
10654 dev_index_release(net
, dev
->ifindex
);
10656 netdev_do_free_pcpu_stats(dev
);
10658 if (dev
->netdev_ops
->ndo_uninit
)
10659 dev
->netdev_ops
->ndo_uninit(dev
);
10660 if (dev
->priv_destructor
)
10661 dev
->priv_destructor(dev
);
10663 netdev_name_node_free(dev
->name_node
);
10666 EXPORT_SYMBOL(register_netdevice
);
10668 /* Initialize the core of a dummy net device.
10669 * This is useful if you are calling this function after alloc_netdev(),
10670 * since it does not memset the net_device fields.
10672 static void init_dummy_netdev_core(struct net_device
*dev
)
10674 /* make sure we BUG if trying to hit standard
10675 * register/unregister code path
10677 dev
->reg_state
= NETREG_DUMMY
;
10679 /* NAPI wants this */
10680 INIT_LIST_HEAD(&dev
->napi_list
);
10682 /* a dummy interface is started by default */
10683 set_bit(__LINK_STATE_PRESENT
, &dev
->state
);
10684 set_bit(__LINK_STATE_START
, &dev
->state
);
10686 /* napi_busy_loop stats accounting wants this */
10687 dev_net_set(dev
, &init_net
);
10689 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10690 * because users of this 'device' dont need to change
10696 * init_dummy_netdev - init a dummy network device for NAPI
10697 * @dev: device to init
10699 * This takes a network device structure and initializes the minimum
10700 * amount of fields so it can be used to schedule NAPI polls without
10701 * registering a full blown interface. This is to be used by drivers
10702 * that need to tie several hardware interfaces to a single NAPI
10703 * poll scheduler due to HW limitations.
10705 void init_dummy_netdev(struct net_device
*dev
)
10707 /* Clear everything. Note we don't initialize spinlocks
10708 * as they aren't supposed to be taken by any of the
10709 * NAPI code and this dummy netdev is supposed to be
10710 * only ever used for NAPI polls
10712 memset(dev
, 0, sizeof(struct net_device
));
10713 init_dummy_netdev_core(dev
);
10715 EXPORT_SYMBOL_GPL(init_dummy_netdev
);
10718 * register_netdev - register a network device
10719 * @dev: device to register
10721 * Take a completed network device structure and add it to the kernel
10722 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10723 * chain. 0 is returned on success. A negative errno code is returned
10724 * on a failure to set up the device, or if the name is a duplicate.
10726 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10727 * and expands the device name if you passed a format string to
10730 int register_netdev(struct net_device
*dev
)
10734 if (rtnl_lock_killable())
10736 err
= register_netdevice(dev
);
10740 EXPORT_SYMBOL(register_netdev
);
10742 int netdev_refcnt_read(const struct net_device
*dev
)
10744 #ifdef CONFIG_PCPU_DEV_REFCNT
10747 for_each_possible_cpu(i
)
10748 refcnt
+= *per_cpu_ptr(dev
->pcpu_refcnt
, i
);
10751 return refcount_read(&dev
->dev_refcnt
);
10754 EXPORT_SYMBOL(netdev_refcnt_read
);
10756 int netdev_unregister_timeout_secs __read_mostly
= 10;
10758 #define WAIT_REFS_MIN_MSECS 1
10759 #define WAIT_REFS_MAX_MSECS 250
10761 * netdev_wait_allrefs_any - wait until all references are gone.
10762 * @list: list of net_devices to wait on
10764 * This is called when unregistering network devices.
10766 * Any protocol or device that holds a reference should register
10767 * for netdevice notification, and cleanup and put back the
10768 * reference if they receive an UNREGISTER event.
10769 * We can get stuck here if buggy protocols don't correctly
10772 static struct net_device
*netdev_wait_allrefs_any(struct list_head
*list
)
10774 unsigned long rebroadcast_time
, warning_time
;
10775 struct net_device
*dev
;
10778 rebroadcast_time
= warning_time
= jiffies
;
10780 list_for_each_entry(dev
, list
, todo_list
)
10781 if (netdev_refcnt_read(dev
) == 1)
10785 if (time_after(jiffies
, rebroadcast_time
+ 1 * HZ
)) {
10788 /* Rebroadcast unregister notification */
10789 list_for_each_entry(dev
, list
, todo_list
)
10790 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
10796 list_for_each_entry(dev
, list
, todo_list
)
10797 if (test_bit(__LINK_STATE_LINKWATCH_PENDING
,
10799 /* We must not have linkwatch events
10800 * pending on unregister. If this
10801 * happens, we simply run the queue
10802 * unscheduled, resulting in a noop
10805 linkwatch_run_queue();
10811 rebroadcast_time
= jiffies
;
10817 wait
= WAIT_REFS_MIN_MSECS
;
10820 wait
= min(wait
<< 1, WAIT_REFS_MAX_MSECS
);
10823 list_for_each_entry(dev
, list
, todo_list
)
10824 if (netdev_refcnt_read(dev
) == 1)
10827 if (time_after(jiffies
, warning_time
+
10828 READ_ONCE(netdev_unregister_timeout_secs
) * HZ
)) {
10829 list_for_each_entry(dev
, list
, todo_list
) {
10830 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10831 dev
->name
, netdev_refcnt_read(dev
));
10832 ref_tracker_dir_print(&dev
->refcnt_tracker
, 10);
10835 warning_time
= jiffies
;
10840 /* The sequence is:
10844 * register_netdevice(x1);
10845 * register_netdevice(x2);
10847 * unregister_netdevice(y1);
10848 * unregister_netdevice(y2);
10854 * We are invoked by rtnl_unlock().
10855 * This allows us to deal with problems:
10856 * 1) We can delete sysfs objects which invoke hotplug
10857 * without deadlocking with linkwatch via keventd.
10858 * 2) Since we run with the RTNL semaphore not held, we can sleep
10859 * safely in order to wait for the netdev refcnt to drop to zero.
10861 * We must not return until all unregister events added during
10862 * the interval the lock was held have been completed.
10864 void netdev_run_todo(void)
10866 struct net_device
*dev
, *tmp
;
10867 struct list_head list
;
10869 #ifdef CONFIG_LOCKDEP
10870 struct list_head unlink_list
;
10872 list_replace_init(&net_unlink_list
, &unlink_list
);
10874 while (!list_empty(&unlink_list
)) {
10875 struct net_device
*dev
= list_first_entry(&unlink_list
,
10878 list_del_init(&dev
->unlink_list
);
10879 dev
->nested_level
= dev
->lower_level
- 1;
10883 /* Snapshot list, allow later requests */
10884 list_replace_init(&net_todo_list
, &list
);
10888 /* Wait for rcu callbacks to finish before next phase */
10889 if (!list_empty(&list
))
10892 list_for_each_entry_safe(dev
, tmp
, &list
, todo_list
) {
10893 if (unlikely(dev
->reg_state
!= NETREG_UNREGISTERING
)) {
10894 netdev_WARN(dev
, "run_todo but not unregistering\n");
10895 list_del(&dev
->todo_list
);
10899 WRITE_ONCE(dev
->reg_state
, NETREG_UNREGISTERED
);
10900 linkwatch_sync_dev(dev
);
10904 while (!list_empty(&list
)) {
10905 dev
= netdev_wait_allrefs_any(&list
);
10906 list_del(&dev
->todo_list
);
10909 BUG_ON(netdev_refcnt_read(dev
) != 1);
10910 BUG_ON(!list_empty(&dev
->ptype_all
));
10911 BUG_ON(!list_empty(&dev
->ptype_specific
));
10912 WARN_ON(rcu_access_pointer(dev
->ip_ptr
));
10913 WARN_ON(rcu_access_pointer(dev
->ip6_ptr
));
10915 netdev_do_free_pcpu_stats(dev
);
10916 if (dev
->priv_destructor
)
10917 dev
->priv_destructor(dev
);
10918 if (dev
->needs_free_netdev
)
10923 /* Free network device */
10924 kobject_put(&dev
->dev
.kobj
);
10926 if (cnt
&& atomic_sub_and_test(cnt
, &dev_unreg_count
))
10927 wake_up(&netdev_unregistering_wq
);
10930 /* Collate per-cpu network dstats statistics
10932 * Read per-cpu network statistics from dev->dstats and populate the related
10935 static void dev_fetch_dstats(struct rtnl_link_stats64
*s
,
10936 const struct pcpu_dstats __percpu
*dstats
)
10940 for_each_possible_cpu(cpu
) {
10941 u64 rx_packets
, rx_bytes
, rx_drops
;
10942 u64 tx_packets
, tx_bytes
, tx_drops
;
10943 const struct pcpu_dstats
*stats
;
10944 unsigned int start
;
10946 stats
= per_cpu_ptr(dstats
, cpu
);
10948 start
= u64_stats_fetch_begin(&stats
->syncp
);
10949 rx_packets
= u64_stats_read(&stats
->rx_packets
);
10950 rx_bytes
= u64_stats_read(&stats
->rx_bytes
);
10951 rx_drops
= u64_stats_read(&stats
->rx_drops
);
10952 tx_packets
= u64_stats_read(&stats
->tx_packets
);
10953 tx_bytes
= u64_stats_read(&stats
->tx_bytes
);
10954 tx_drops
= u64_stats_read(&stats
->tx_drops
);
10955 } while (u64_stats_fetch_retry(&stats
->syncp
, start
));
10957 s
->rx_packets
+= rx_packets
;
10958 s
->rx_bytes
+= rx_bytes
;
10959 s
->rx_dropped
+= rx_drops
;
10960 s
->tx_packets
+= tx_packets
;
10961 s
->tx_bytes
+= tx_bytes
;
10962 s
->tx_dropped
+= tx_drops
;
10966 /* ndo_get_stats64 implementation for dtstats-based accounting.
10968 * Populate @s from dev->stats and dev->dstats. This is used internally by the
10969 * core for NETDEV_PCPU_STAT_DSTAT-type stats collection.
10971 static void dev_get_dstats64(const struct net_device
*dev
,
10972 struct rtnl_link_stats64
*s
)
10974 netdev_stats_to_stats64(s
, &dev
->stats
);
10975 dev_fetch_dstats(s
, dev
->dstats
);
10978 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10979 * all the same fields in the same order as net_device_stats, with only
10980 * the type differing, but rtnl_link_stats64 may have additional fields
10981 * at the end for newer counters.
10983 void netdev_stats_to_stats64(struct rtnl_link_stats64
*stats64
,
10984 const struct net_device_stats
*netdev_stats
)
10986 size_t i
, n
= sizeof(*netdev_stats
) / sizeof(atomic_long_t
);
10987 const atomic_long_t
*src
= (atomic_long_t
*)netdev_stats
;
10988 u64
*dst
= (u64
*)stats64
;
10990 BUILD_BUG_ON(n
> sizeof(*stats64
) / sizeof(u64
));
10991 for (i
= 0; i
< n
; i
++)
10992 dst
[i
] = (unsigned long)atomic_long_read(&src
[i
]);
10993 /* zero out counters that only exist in rtnl_link_stats64 */
10994 memset((char *)stats64
+ n
* sizeof(u64
), 0,
10995 sizeof(*stats64
) - n
* sizeof(u64
));
10997 EXPORT_SYMBOL(netdev_stats_to_stats64
);
10999 static __cold
struct net_device_core_stats __percpu
*netdev_core_stats_alloc(
11000 struct net_device
*dev
)
11002 struct net_device_core_stats __percpu
*p
;
11004 p
= alloc_percpu_gfp(struct net_device_core_stats
,
11005 GFP_ATOMIC
| __GFP_NOWARN
);
11007 if (p
&& cmpxchg(&dev
->core_stats
, NULL
, p
))
11010 /* This READ_ONCE() pairs with the cmpxchg() above */
11011 return READ_ONCE(dev
->core_stats
);
11014 noinline
void netdev_core_stats_inc(struct net_device
*dev
, u32 offset
)
11016 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11017 struct net_device_core_stats __percpu
*p
= READ_ONCE(dev
->core_stats
);
11018 unsigned long __percpu
*field
;
11020 if (unlikely(!p
)) {
11021 p
= netdev_core_stats_alloc(dev
);
11026 field
= (unsigned long __percpu
*)((void __percpu
*)p
+ offset
);
11027 this_cpu_inc(*field
);
11029 EXPORT_SYMBOL_GPL(netdev_core_stats_inc
);
11032 * dev_get_stats - get network device statistics
11033 * @dev: device to get statistics from
11034 * @storage: place to store stats
11036 * Get network statistics from device. Return @storage.
11037 * The device driver may provide its own method by setting
11038 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
11039 * otherwise the internal statistics structure is used.
11041 struct rtnl_link_stats64
*dev_get_stats(struct net_device
*dev
,
11042 struct rtnl_link_stats64
*storage
)
11044 const struct net_device_ops
*ops
= dev
->netdev_ops
;
11045 const struct net_device_core_stats __percpu
*p
;
11047 if (ops
->ndo_get_stats64
) {
11048 memset(storage
, 0, sizeof(*storage
));
11049 ops
->ndo_get_stats64(dev
, storage
);
11050 } else if (ops
->ndo_get_stats
) {
11051 netdev_stats_to_stats64(storage
, ops
->ndo_get_stats(dev
));
11052 } else if (dev
->pcpu_stat_type
== NETDEV_PCPU_STAT_TSTATS
) {
11053 dev_get_tstats64(dev
, storage
);
11054 } else if (dev
->pcpu_stat_type
== NETDEV_PCPU_STAT_DSTATS
) {
11055 dev_get_dstats64(dev
, storage
);
11057 netdev_stats_to_stats64(storage
, &dev
->stats
);
11060 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
11061 p
= READ_ONCE(dev
->core_stats
);
11063 const struct net_device_core_stats
*core_stats
;
11066 for_each_possible_cpu(i
) {
11067 core_stats
= per_cpu_ptr(p
, i
);
11068 storage
->rx_dropped
+= READ_ONCE(core_stats
->rx_dropped
);
11069 storage
->tx_dropped
+= READ_ONCE(core_stats
->tx_dropped
);
11070 storage
->rx_nohandler
+= READ_ONCE(core_stats
->rx_nohandler
);
11071 storage
->rx_otherhost_dropped
+= READ_ONCE(core_stats
->rx_otherhost_dropped
);
11076 EXPORT_SYMBOL(dev_get_stats
);
11079 * dev_fetch_sw_netstats - get per-cpu network device statistics
11080 * @s: place to store stats
11081 * @netstats: per-cpu network stats to read from
11083 * Read per-cpu network statistics and populate the related fields in @s.
11085 void dev_fetch_sw_netstats(struct rtnl_link_stats64
*s
,
11086 const struct pcpu_sw_netstats __percpu
*netstats
)
11090 for_each_possible_cpu(cpu
) {
11091 u64 rx_packets
, rx_bytes
, tx_packets
, tx_bytes
;
11092 const struct pcpu_sw_netstats
*stats
;
11093 unsigned int start
;
11095 stats
= per_cpu_ptr(netstats
, cpu
);
11097 start
= u64_stats_fetch_begin(&stats
->syncp
);
11098 rx_packets
= u64_stats_read(&stats
->rx_packets
);
11099 rx_bytes
= u64_stats_read(&stats
->rx_bytes
);
11100 tx_packets
= u64_stats_read(&stats
->tx_packets
);
11101 tx_bytes
= u64_stats_read(&stats
->tx_bytes
);
11102 } while (u64_stats_fetch_retry(&stats
->syncp
, start
));
11104 s
->rx_packets
+= rx_packets
;
11105 s
->rx_bytes
+= rx_bytes
;
11106 s
->tx_packets
+= tx_packets
;
11107 s
->tx_bytes
+= tx_bytes
;
11110 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats
);
11113 * dev_get_tstats64 - ndo_get_stats64 implementation
11114 * @dev: device to get statistics from
11115 * @s: place to store stats
11117 * Populate @s from dev->stats and dev->tstats. Can be used as
11118 * ndo_get_stats64() callback.
11120 void dev_get_tstats64(struct net_device
*dev
, struct rtnl_link_stats64
*s
)
11122 netdev_stats_to_stats64(s
, &dev
->stats
);
11123 dev_fetch_sw_netstats(s
, dev
->tstats
);
11125 EXPORT_SYMBOL_GPL(dev_get_tstats64
);
11127 struct netdev_queue
*dev_ingress_queue_create(struct net_device
*dev
)
11129 struct netdev_queue
*queue
= dev_ingress_queue(dev
);
11131 #ifdef CONFIG_NET_CLS_ACT
11134 queue
= kzalloc(sizeof(*queue
), GFP_KERNEL
);
11137 netdev_init_one_queue(dev
, queue
, NULL
);
11138 RCU_INIT_POINTER(queue
->qdisc
, &noop_qdisc
);
11139 RCU_INIT_POINTER(queue
->qdisc_sleeping
, &noop_qdisc
);
11140 rcu_assign_pointer(dev
->ingress_queue
, queue
);
11145 static const struct ethtool_ops default_ethtool_ops
;
11147 void netdev_set_default_ethtool_ops(struct net_device
*dev
,
11148 const struct ethtool_ops
*ops
)
11150 if (dev
->ethtool_ops
== &default_ethtool_ops
)
11151 dev
->ethtool_ops
= ops
;
11153 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops
);
11156 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
11157 * @dev: netdev to enable the IRQ coalescing on
11159 * Sets a conservative default for SW IRQ coalescing. Users can use
11160 * sysfs attributes to override the default values.
11162 void netdev_sw_irq_coalesce_default_on(struct net_device
*dev
)
11164 WARN_ON(dev
->reg_state
== NETREG_REGISTERED
);
11166 if (!IS_ENABLED(CONFIG_PREEMPT_RT
)) {
11167 netdev_set_gro_flush_timeout(dev
, 20000);
11168 netdev_set_defer_hard_irqs(dev
, 1);
11171 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on
);
11174 * alloc_netdev_mqs - allocate network device
11175 * @sizeof_priv: size of private data to allocate space for
11176 * @name: device name format string
11177 * @name_assign_type: origin of device name
11178 * @setup: callback to initialize device
11179 * @txqs: the number of TX subqueues to allocate
11180 * @rxqs: the number of RX subqueues to allocate
11182 * Allocates a struct net_device with private data area for driver use
11183 * and performs basic initialization. Also allocates subqueue structs
11184 * for each queue on the device.
11186 struct net_device
*alloc_netdev_mqs(int sizeof_priv
, const char *name
,
11187 unsigned char name_assign_type
,
11188 void (*setup
)(struct net_device
*),
11189 unsigned int txqs
, unsigned int rxqs
)
11191 struct net_device
*dev
;
11192 size_t napi_config_sz
;
11193 unsigned int maxqs
;
11195 BUG_ON(strlen(name
) >= sizeof(dev
->name
));
11198 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
11203 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
11207 maxqs
= max(txqs
, rxqs
);
11209 dev
= kvzalloc(struct_size(dev
, priv
, sizeof_priv
),
11210 GFP_KERNEL_ACCOUNT
| __GFP_RETRY_MAYFAIL
);
11214 dev
->priv_len
= sizeof_priv
;
11216 ref_tracker_dir_init(&dev
->refcnt_tracker
, 128, name
);
11217 #ifdef CONFIG_PCPU_DEV_REFCNT
11218 dev
->pcpu_refcnt
= alloc_percpu(int);
11219 if (!dev
->pcpu_refcnt
)
11223 refcount_set(&dev
->dev_refcnt
, 1);
11226 if (dev_addr_init(dev
))
11232 dev_net_set(dev
, &init_net
);
11234 dev
->gso_max_size
= GSO_LEGACY_MAX_SIZE
;
11235 dev
->xdp_zc_max_segs
= 1;
11236 dev
->gso_max_segs
= GSO_MAX_SEGS
;
11237 dev
->gro_max_size
= GRO_LEGACY_MAX_SIZE
;
11238 dev
->gso_ipv4_max_size
= GSO_LEGACY_MAX_SIZE
;
11239 dev
->gro_ipv4_max_size
= GRO_LEGACY_MAX_SIZE
;
11240 dev
->tso_max_size
= TSO_LEGACY_MAX_SIZE
;
11241 dev
->tso_max_segs
= TSO_MAX_SEGS
;
11242 dev
->upper_level
= 1;
11243 dev
->lower_level
= 1;
11244 #ifdef CONFIG_LOCKDEP
11245 dev
->nested_level
= 0;
11246 INIT_LIST_HEAD(&dev
->unlink_list
);
11249 INIT_LIST_HEAD(&dev
->napi_list
);
11250 INIT_LIST_HEAD(&dev
->unreg_list
);
11251 INIT_LIST_HEAD(&dev
->close_list
);
11252 INIT_LIST_HEAD(&dev
->link_watch_list
);
11253 INIT_LIST_HEAD(&dev
->adj_list
.upper
);
11254 INIT_LIST_HEAD(&dev
->adj_list
.lower
);
11255 INIT_LIST_HEAD(&dev
->ptype_all
);
11256 INIT_LIST_HEAD(&dev
->ptype_specific
);
11257 INIT_LIST_HEAD(&dev
->net_notifier_list
);
11258 #ifdef CONFIG_NET_SCHED
11259 hash_init(dev
->qdisc_hash
);
11262 mutex_init(&dev
->lock
);
11264 dev
->priv_flags
= IFF_XMIT_DST_RELEASE
| IFF_XMIT_DST_RELEASE_PERM
;
11267 if (!dev
->tx_queue_len
) {
11268 dev
->priv_flags
|= IFF_NO_QUEUE
;
11269 dev
->tx_queue_len
= DEFAULT_TX_QUEUE_LEN
;
11272 dev
->num_tx_queues
= txqs
;
11273 dev
->real_num_tx_queues
= txqs
;
11274 if (netif_alloc_netdev_queues(dev
))
11277 dev
->num_rx_queues
= rxqs
;
11278 dev
->real_num_rx_queues
= rxqs
;
11279 if (netif_alloc_rx_queues(dev
))
11281 dev
->ethtool
= kzalloc(sizeof(*dev
->ethtool
), GFP_KERNEL_ACCOUNT
);
11285 napi_config_sz
= array_size(maxqs
, sizeof(*dev
->napi_config
));
11286 dev
->napi_config
= kvzalloc(napi_config_sz
, GFP_KERNEL_ACCOUNT
);
11287 if (!dev
->napi_config
)
11290 strscpy(dev
->name
, name
);
11291 dev
->name_assign_type
= name_assign_type
;
11292 dev
->group
= INIT_NETDEV_GROUP
;
11293 if (!dev
->ethtool_ops
)
11294 dev
->ethtool_ops
= &default_ethtool_ops
;
11296 nf_hook_netdev_init(dev
);
11305 #ifdef CONFIG_PCPU_DEV_REFCNT
11306 free_percpu(dev
->pcpu_refcnt
);
11312 EXPORT_SYMBOL(alloc_netdev_mqs
);
11315 * free_netdev - free network device
11318 * This function does the last stage of destroying an allocated device
11319 * interface. The reference to the device object is released. If this
11320 * is the last reference then it will be freed.Must be called in process
11323 void free_netdev(struct net_device
*dev
)
11325 struct napi_struct
*p
, *n
;
11329 /* When called immediately after register_netdevice() failed the unwind
11330 * handling may still be dismantling the device. Handle that case by
11331 * deferring the free.
11333 if (dev
->reg_state
== NETREG_UNREGISTERING
) {
11335 dev
->needs_free_netdev
= true;
11339 mutex_destroy(&dev
->lock
);
11341 kfree(dev
->ethtool
);
11342 netif_free_tx_queues(dev
);
11343 netif_free_rx_queues(dev
);
11345 kfree(rcu_dereference_protected(dev
->ingress_queue
, 1));
11347 /* Flush device addresses */
11348 dev_addr_flush(dev
);
11350 list_for_each_entry_safe(p
, n
, &dev
->napi_list
, dev_list
)
11353 kvfree(dev
->napi_config
);
11355 ref_tracker_dir_exit(&dev
->refcnt_tracker
);
11356 #ifdef CONFIG_PCPU_DEV_REFCNT
11357 free_percpu(dev
->pcpu_refcnt
);
11358 dev
->pcpu_refcnt
= NULL
;
11360 free_percpu(dev
->core_stats
);
11361 dev
->core_stats
= NULL
;
11362 free_percpu(dev
->xdp_bulkq
);
11363 dev
->xdp_bulkq
= NULL
;
11365 netdev_free_phy_link_topology(dev
);
11367 /* Compatibility with error handling in drivers */
11368 if (dev
->reg_state
== NETREG_UNINITIALIZED
||
11369 dev
->reg_state
== NETREG_DUMMY
) {
11374 BUG_ON(dev
->reg_state
!= NETREG_UNREGISTERED
);
11375 WRITE_ONCE(dev
->reg_state
, NETREG_RELEASED
);
11377 /* will free via device release */
11378 put_device(&dev
->dev
);
11380 EXPORT_SYMBOL(free_netdev
);
11383 * alloc_netdev_dummy - Allocate and initialize a dummy net device.
11384 * @sizeof_priv: size of private data to allocate space for
11386 * Return: the allocated net_device on success, NULL otherwise
11388 struct net_device
*alloc_netdev_dummy(int sizeof_priv
)
11390 return alloc_netdev(sizeof_priv
, "dummy#", NET_NAME_UNKNOWN
,
11391 init_dummy_netdev_core
);
11393 EXPORT_SYMBOL_GPL(alloc_netdev_dummy
);
11396 * synchronize_net - Synchronize with packet receive processing
11398 * Wait for packets currently being received to be done.
11399 * Does not block later packets from starting.
11401 void synchronize_net(void)
11404 if (rtnl_is_locked())
11405 synchronize_rcu_expedited();
11409 EXPORT_SYMBOL(synchronize_net
);
11411 static void netdev_rss_contexts_free(struct net_device
*dev
)
11413 struct ethtool_rxfh_context
*ctx
;
11414 unsigned long context
;
11416 mutex_lock(&dev
->ethtool
->rss_lock
);
11417 xa_for_each(&dev
->ethtool
->rss_ctx
, context
, ctx
) {
11418 struct ethtool_rxfh_param rxfh
;
11420 rxfh
.indir
= ethtool_rxfh_context_indir(ctx
);
11421 rxfh
.key
= ethtool_rxfh_context_key(ctx
);
11422 rxfh
.hfunc
= ctx
->hfunc
;
11423 rxfh
.input_xfrm
= ctx
->input_xfrm
;
11424 rxfh
.rss_context
= context
;
11425 rxfh
.rss_delete
= true;
11427 xa_erase(&dev
->ethtool
->rss_ctx
, context
);
11428 if (dev
->ethtool_ops
->create_rxfh_context
)
11429 dev
->ethtool_ops
->remove_rxfh_context(dev
, ctx
,
11432 dev
->ethtool_ops
->set_rxfh(dev
, &rxfh
, NULL
);
11435 xa_destroy(&dev
->ethtool
->rss_ctx
);
11436 mutex_unlock(&dev
->ethtool
->rss_lock
);
11440 * unregister_netdevice_queue - remove device from the kernel
11444 * This function shuts down a device interface and removes it
11445 * from the kernel tables.
11446 * If head not NULL, device is queued to be unregistered later.
11448 * Callers must hold the rtnl semaphore. You may want
11449 * unregister_netdev() instead of this.
11452 void unregister_netdevice_queue(struct net_device
*dev
, struct list_head
*head
)
11457 list_move_tail(&dev
->unreg_list
, head
);
11461 list_add(&dev
->unreg_list
, &single
);
11462 unregister_netdevice_many(&single
);
11465 EXPORT_SYMBOL(unregister_netdevice_queue
);
11467 void unregister_netdevice_many_notify(struct list_head
*head
,
11468 u32 portid
, const struct nlmsghdr
*nlh
)
11470 struct net_device
*dev
, *tmp
;
11471 LIST_HEAD(close_head
);
11474 BUG_ON(dev_boot_phase
);
11477 if (list_empty(head
))
11480 list_for_each_entry_safe(dev
, tmp
, head
, unreg_list
) {
11481 /* Some devices call without registering
11482 * for initialization unwind. Remove those
11483 * devices and proceed with the remaining.
11485 if (dev
->reg_state
== NETREG_UNINITIALIZED
) {
11486 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
11490 list_del(&dev
->unreg_list
);
11493 dev
->dismantle
= true;
11494 BUG_ON(dev
->reg_state
!= NETREG_REGISTERED
);
11497 /* If device is running, close it first. */
11498 list_for_each_entry(dev
, head
, unreg_list
)
11499 list_add_tail(&dev
->close_list
, &close_head
);
11500 dev_close_many(&close_head
, true);
11502 list_for_each_entry(dev
, head
, unreg_list
) {
11503 /* And unlink it from device chain. */
11504 unlist_netdevice(dev
);
11505 WRITE_ONCE(dev
->reg_state
, NETREG_UNREGISTERING
);
11507 flush_all_backlogs();
11511 list_for_each_entry(dev
, head
, unreg_list
) {
11512 struct sk_buff
*skb
= NULL
;
11514 /* Shutdown queueing discipline. */
11516 dev_tcx_uninstall(dev
);
11517 dev_xdp_uninstall(dev
);
11518 bpf_dev_bound_netdev_unregister(dev
);
11519 dev_dmabuf_uninstall(dev
);
11521 netdev_offload_xstats_disable_all(dev
);
11523 /* Notify protocols, that we are about to destroy
11524 * this device. They should clean all the things.
11526 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
11528 if (!dev
->rtnl_link_ops
||
11529 dev
->rtnl_link_state
== RTNL_LINK_INITIALIZED
)
11530 skb
= rtmsg_ifinfo_build_skb(RTM_DELLINK
, dev
, ~0U, 0,
11531 GFP_KERNEL
, NULL
, 0,
11535 * Flush the unicast and multicast chains
11540 netdev_name_node_alt_flush(dev
);
11541 netdev_name_node_free(dev
->name_node
);
11543 netdev_rss_contexts_free(dev
);
11545 call_netdevice_notifiers(NETDEV_PRE_UNINIT
, dev
);
11547 if (dev
->netdev_ops
->ndo_uninit
)
11548 dev
->netdev_ops
->ndo_uninit(dev
);
11550 mutex_destroy(&dev
->ethtool
->rss_lock
);
11552 net_shaper_flush_netdev(dev
);
11555 rtmsg_ifinfo_send(skb
, dev
, GFP_KERNEL
, portid
, nlh
);
11557 /* Notifier chain MUST detach us all upper devices. */
11558 WARN_ON(netdev_has_any_upper_dev(dev
));
11559 WARN_ON(netdev_has_any_lower_dev(dev
));
11561 /* Remove entries from kobject tree */
11562 netdev_unregister_kobject(dev
);
11564 /* Remove XPS queueing entries */
11565 netif_reset_xps_queues_gt(dev
, 0);
11571 list_for_each_entry(dev
, head
, unreg_list
) {
11572 netdev_put(dev
, &dev
->dev_registered_tracker
);
11576 atomic_add(cnt
, &dev_unreg_count
);
11582 * unregister_netdevice_many - unregister many devices
11583 * @head: list of devices
11585 * Note: As most callers use a stack allocated list_head,
11586 * we force a list_del() to make sure stack won't be corrupted later.
11588 void unregister_netdevice_many(struct list_head
*head
)
11590 unregister_netdevice_many_notify(head
, 0, NULL
);
11592 EXPORT_SYMBOL(unregister_netdevice_many
);
11595 * unregister_netdev - remove device from the kernel
11598 * This function shuts down a device interface and removes it
11599 * from the kernel tables.
11601 * This is just a wrapper for unregister_netdevice that takes
11602 * the rtnl semaphore. In general you want to use this and not
11603 * unregister_netdevice.
11605 void unregister_netdev(struct net_device
*dev
)
11608 unregister_netdevice(dev
);
11611 EXPORT_SYMBOL(unregister_netdev
);
11614 * __dev_change_net_namespace - move device to different nethost namespace
11616 * @net: network namespace
11617 * @pat: If not NULL name pattern to try if the current device name
11618 * is already taken in the destination network namespace.
11619 * @new_ifindex: If not zero, specifies device index in the target
11622 * This function shuts down a device interface and moves it
11623 * to a new network namespace. On success 0 is returned, on
11624 * a failure a netagive errno code is returned.
11626 * Callers must hold the rtnl semaphore.
11629 int __dev_change_net_namespace(struct net_device
*dev
, struct net
*net
,
11630 const char *pat
, int new_ifindex
)
11632 struct netdev_name_node
*name_node
;
11633 struct net
*net_old
= dev_net(dev
);
11634 char new_name
[IFNAMSIZ
] = {};
11639 /* Don't allow namespace local devices to be moved. */
11641 if (dev
->netns_local
)
11644 /* Ensure the device has been registered */
11645 if (dev
->reg_state
!= NETREG_REGISTERED
)
11648 /* Get out if there is nothing todo */
11650 if (net_eq(net_old
, net
))
11653 /* Pick the destination device name, and ensure
11654 * we can use it in the destination network namespace.
11657 if (netdev_name_in_use(net
, dev
->name
)) {
11658 /* We get here if we can't use the current device name */
11661 err
= dev_prep_valid_name(net
, dev
, pat
, new_name
, EEXIST
);
11665 /* Check that none of the altnames conflicts. */
11667 netdev_for_each_altname(dev
, name_node
)
11668 if (netdev_name_in_use(net
, name_node
->name
))
11671 /* Check that new_ifindex isn't used yet. */
11673 err
= dev_index_reserve(net
, new_ifindex
);
11677 /* If there is an ifindex conflict assign a new one */
11678 err
= dev_index_reserve(net
, dev
->ifindex
);
11680 err
= dev_index_reserve(net
, 0);
11687 * And now a mini version of register_netdevice unregister_netdevice.
11690 /* If device is running close it first. */
11693 /* And unlink it from device chain */
11694 unlist_netdevice(dev
);
11698 /* Shutdown queueing discipline. */
11701 /* Notify protocols, that we are about to destroy
11702 * this device. They should clean all the things.
11704 * Note that dev->reg_state stays at NETREG_REGISTERED.
11705 * This is wanted because this way 8021q and macvlan know
11706 * the device is just moving and can keep their slaves up.
11708 call_netdevice_notifiers(NETDEV_UNREGISTER
, dev
);
11711 new_nsid
= peernet2id_alloc(dev_net(dev
), net
, GFP_KERNEL
);
11713 rtmsg_ifinfo_newnet(RTM_DELLINK
, dev
, ~0U, GFP_KERNEL
, &new_nsid
,
11717 * Flush the unicast and multicast chains
11722 /* Send a netdev-removed uevent to the old namespace */
11723 kobject_uevent(&dev
->dev
.kobj
, KOBJ_REMOVE
);
11724 netdev_adjacent_del_links(dev
);
11726 /* Move per-net netdevice notifiers that are following the netdevice */
11727 move_netdevice_notifiers_dev_net(dev
, net
);
11729 /* Actually switch the network namespace */
11730 dev_net_set(dev
, net
);
11731 dev
->ifindex
= new_ifindex
;
11734 /* Rename the netdev to prepared name */
11735 write_seqlock_bh(&netdev_rename_lock
);
11736 strscpy(dev
->name
, new_name
, IFNAMSIZ
);
11737 write_sequnlock_bh(&netdev_rename_lock
);
11740 /* Fixup kobjects */
11741 dev_set_uevent_suppress(&dev
->dev
, 1);
11742 err
= device_rename(&dev
->dev
, dev
->name
);
11743 dev_set_uevent_suppress(&dev
->dev
, 0);
11746 /* Send a netdev-add uevent to the new namespace */
11747 kobject_uevent(&dev
->dev
.kobj
, KOBJ_ADD
);
11748 netdev_adjacent_add_links(dev
);
11750 /* Adapt owner in case owning user namespace of target network
11751 * namespace is different from the original one.
11753 err
= netdev_change_owner(dev
, net_old
, net
);
11756 /* Add the device back in the hashes */
11757 list_netdevice(dev
);
11759 /* Notify protocols, that a new device appeared. */
11760 call_netdevice_notifiers(NETDEV_REGISTER
, dev
);
11763 * Prevent userspace races by waiting until the network
11764 * device is fully setup before sending notifications.
11766 rtmsg_ifinfo(RTM_NEWLINK
, dev
, ~0U, GFP_KERNEL
, 0, NULL
);
11773 EXPORT_SYMBOL_GPL(__dev_change_net_namespace
);
11775 static int dev_cpu_dead(unsigned int oldcpu
)
11777 struct sk_buff
**list_skb
;
11778 struct sk_buff
*skb
;
11780 struct softnet_data
*sd
, *oldsd
, *remsd
= NULL
;
11782 local_irq_disable();
11783 cpu
= smp_processor_id();
11784 sd
= &per_cpu(softnet_data
, cpu
);
11785 oldsd
= &per_cpu(softnet_data
, oldcpu
);
11787 /* Find end of our completion_queue. */
11788 list_skb
= &sd
->completion_queue
;
11790 list_skb
= &(*list_skb
)->next
;
11791 /* Append completion queue from offline CPU. */
11792 *list_skb
= oldsd
->completion_queue
;
11793 oldsd
->completion_queue
= NULL
;
11795 /* Append output queue from offline CPU. */
11796 if (oldsd
->output_queue
) {
11797 *sd
->output_queue_tailp
= oldsd
->output_queue
;
11798 sd
->output_queue_tailp
= oldsd
->output_queue_tailp
;
11799 oldsd
->output_queue
= NULL
;
11800 oldsd
->output_queue_tailp
= &oldsd
->output_queue
;
11802 /* Append NAPI poll list from offline CPU, with one exception :
11803 * process_backlog() must be called by cpu owning percpu backlog.
11804 * We properly handle process_queue & input_pkt_queue later.
11806 while (!list_empty(&oldsd
->poll_list
)) {
11807 struct napi_struct
*napi
= list_first_entry(&oldsd
->poll_list
,
11808 struct napi_struct
,
11811 list_del_init(&napi
->poll_list
);
11812 if (napi
->poll
== process_backlog
)
11813 napi
->state
&= NAPIF_STATE_THREADED
;
11815 ____napi_schedule(sd
, napi
);
11818 raise_softirq_irqoff(NET_TX_SOFTIRQ
);
11819 local_irq_enable();
11821 if (!use_backlog_threads()) {
11823 remsd
= oldsd
->rps_ipi_list
;
11824 oldsd
->rps_ipi_list
= NULL
;
11826 /* send out pending IPI's on offline CPU */
11827 net_rps_send_ipi(remsd
);
11830 /* Process offline CPU's input_pkt_queue */
11831 while ((skb
= __skb_dequeue(&oldsd
->process_queue
))) {
11833 rps_input_queue_head_incr(oldsd
);
11835 while ((skb
= skb_dequeue(&oldsd
->input_pkt_queue
))) {
11837 rps_input_queue_head_incr(oldsd
);
11844 * netdev_increment_features - increment feature set by one
11845 * @all: current feature set
11846 * @one: new feature set
11847 * @mask: mask feature set
11849 * Computes a new feature set after adding a device with feature set
11850 * @one to the master device with current feature set @all. Will not
11851 * enable anything that is off in @mask. Returns the new feature set.
11853 netdev_features_t
netdev_increment_features(netdev_features_t all
,
11854 netdev_features_t one
, netdev_features_t mask
)
11856 if (mask
& NETIF_F_HW_CSUM
)
11857 mask
|= NETIF_F_CSUM_MASK
;
11858 mask
|= NETIF_F_VLAN_CHALLENGED
;
11860 all
|= one
& (NETIF_F_ONE_FOR_ALL
| NETIF_F_CSUM_MASK
) & mask
;
11861 all
&= one
| ~NETIF_F_ALL_FOR_ALL
;
11863 /* If one device supports hw checksumming, set for all. */
11864 if (all
& NETIF_F_HW_CSUM
)
11865 all
&= ~(NETIF_F_CSUM_MASK
& ~NETIF_F_HW_CSUM
);
11869 EXPORT_SYMBOL(netdev_increment_features
);
11871 static struct hlist_head
* __net_init
netdev_create_hash(void)
11874 struct hlist_head
*hash
;
11876 hash
= kmalloc_array(NETDEV_HASHENTRIES
, sizeof(*hash
), GFP_KERNEL
);
11878 for (i
= 0; i
< NETDEV_HASHENTRIES
; i
++)
11879 INIT_HLIST_HEAD(&hash
[i
]);
11884 /* Initialize per network namespace state */
11885 static int __net_init
netdev_init(struct net
*net
)
11887 BUILD_BUG_ON(GRO_HASH_BUCKETS
>
11888 8 * sizeof_field(struct napi_struct
, gro_bitmask
));
11890 INIT_LIST_HEAD(&net
->dev_base_head
);
11892 net
->dev_name_head
= netdev_create_hash();
11893 if (net
->dev_name_head
== NULL
)
11896 net
->dev_index_head
= netdev_create_hash();
11897 if (net
->dev_index_head
== NULL
)
11900 xa_init_flags(&net
->dev_by_index
, XA_FLAGS_ALLOC1
);
11902 RAW_INIT_NOTIFIER_HEAD(&net
->netdev_chain
);
11907 kfree(net
->dev_name_head
);
11913 * netdev_drivername - network driver for the device
11914 * @dev: network device
11916 * Determine network driver for device.
11918 const char *netdev_drivername(const struct net_device
*dev
)
11920 const struct device_driver
*driver
;
11921 const struct device
*parent
;
11922 const char *empty
= "";
11924 parent
= dev
->dev
.parent
;
11928 driver
= parent
->driver
;
11929 if (driver
&& driver
->name
)
11930 return driver
->name
;
11934 static void __netdev_printk(const char *level
, const struct net_device
*dev
,
11935 struct va_format
*vaf
)
11937 if (dev
&& dev
->dev
.parent
) {
11938 dev_printk_emit(level
[1] - '0',
11941 dev_driver_string(dev
->dev
.parent
),
11942 dev_name(dev
->dev
.parent
),
11943 netdev_name(dev
), netdev_reg_state(dev
),
11946 printk("%s%s%s: %pV",
11947 level
, netdev_name(dev
), netdev_reg_state(dev
), vaf
);
11949 printk("%s(NULL net_device): %pV", level
, vaf
);
11953 void netdev_printk(const char *level
, const struct net_device
*dev
,
11954 const char *format
, ...)
11956 struct va_format vaf
;
11959 va_start(args
, format
);
11964 __netdev_printk(level
, dev
, &vaf
);
11968 EXPORT_SYMBOL(netdev_printk
);
11970 #define define_netdev_printk_level(func, level) \
11971 void func(const struct net_device *dev, const char *fmt, ...) \
11973 struct va_format vaf; \
11976 va_start(args, fmt); \
11981 __netdev_printk(level, dev, &vaf); \
11985 EXPORT_SYMBOL(func);
11987 define_netdev_printk_level(netdev_emerg
, KERN_EMERG
);
11988 define_netdev_printk_level(netdev_alert
, KERN_ALERT
);
11989 define_netdev_printk_level(netdev_crit
, KERN_CRIT
);
11990 define_netdev_printk_level(netdev_err
, KERN_ERR
);
11991 define_netdev_printk_level(netdev_warn
, KERN_WARNING
);
11992 define_netdev_printk_level(netdev_notice
, KERN_NOTICE
);
11993 define_netdev_printk_level(netdev_info
, KERN_INFO
);
11995 static void __net_exit
netdev_exit(struct net
*net
)
11997 kfree(net
->dev_name_head
);
11998 kfree(net
->dev_index_head
);
11999 xa_destroy(&net
->dev_by_index
);
12000 if (net
!= &init_net
)
12001 WARN_ON_ONCE(!list_empty(&net
->dev_base_head
));
12004 static struct pernet_operations __net_initdata netdev_net_ops
= {
12005 .init
= netdev_init
,
12006 .exit
= netdev_exit
,
12009 static void __net_exit
default_device_exit_net(struct net
*net
)
12011 struct netdev_name_node
*name_node
, *tmp
;
12012 struct net_device
*dev
, *aux
;
12014 * Push all migratable network devices back to the
12015 * initial network namespace
12018 for_each_netdev_safe(net
, dev
, aux
) {
12020 char fb_name
[IFNAMSIZ
];
12022 /* Ignore unmoveable devices (i.e. loopback) */
12023 if (dev
->netns_local
)
12026 /* Leave virtual devices for the generic cleanup */
12027 if (dev
->rtnl_link_ops
&& !dev
->rtnl_link_ops
->netns_refund
)
12030 /* Push remaining network devices to init_net */
12031 snprintf(fb_name
, IFNAMSIZ
, "dev%d", dev
->ifindex
);
12032 if (netdev_name_in_use(&init_net
, fb_name
))
12033 snprintf(fb_name
, IFNAMSIZ
, "dev%%d");
12035 netdev_for_each_altname_safe(dev
, name_node
, tmp
)
12036 if (netdev_name_in_use(&init_net
, name_node
->name
))
12037 __netdev_name_node_alt_destroy(name_node
);
12039 err
= dev_change_net_namespace(dev
, &init_net
, fb_name
);
12041 pr_emerg("%s: failed to move %s to init_net: %d\n",
12042 __func__
, dev
->name
, err
);
12048 static void __net_exit
default_device_exit_batch(struct list_head
*net_list
)
12050 /* At exit all network devices most be removed from a network
12051 * namespace. Do this in the reverse order of registration.
12052 * Do this across as many network namespaces as possible to
12053 * improve batching efficiency.
12055 struct net_device
*dev
;
12057 LIST_HEAD(dev_kill_list
);
12060 list_for_each_entry(net
, net_list
, exit_list
) {
12061 default_device_exit_net(net
);
12065 list_for_each_entry(net
, net_list
, exit_list
) {
12066 for_each_netdev_reverse(net
, dev
) {
12067 if (dev
->rtnl_link_ops
&& dev
->rtnl_link_ops
->dellink
)
12068 dev
->rtnl_link_ops
->dellink(dev
, &dev_kill_list
);
12070 unregister_netdevice_queue(dev
, &dev_kill_list
);
12073 unregister_netdevice_many(&dev_kill_list
);
12077 static struct pernet_operations __net_initdata default_device_ops
= {
12078 .exit_batch
= default_device_exit_batch
,
12081 static void __init
net_dev_struct_check(void)
12083 /* TX read-mostly hotpath */
12084 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_tx
, priv_flags_fast
);
12085 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_tx
, netdev_ops
);
12086 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_tx
, header_ops
);
12087 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_tx
, _tx
);
12088 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_tx
, real_num_tx_queues
);
12089 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_tx
, gso_max_size
);
12090 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_tx
, gso_ipv4_max_size
);
12091 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_tx
, gso_max_segs
);
12092 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_tx
, gso_partial_features
);
12093 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_tx
, num_tc
);
12094 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_tx
, mtu
);
12095 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_tx
, needed_headroom
);
12096 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_tx
, tc_to_txq
);
12098 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_tx
, xps_maps
);
12100 #ifdef CONFIG_NETFILTER_EGRESS
12101 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_tx
, nf_hooks_egress
);
12103 #ifdef CONFIG_NET_XGRESS
12104 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_tx
, tcx_egress
);
12106 CACHELINE_ASSERT_GROUP_SIZE(struct net_device
, net_device_read_tx
, 160);
12108 /* TXRX read-mostly hotpath */
12109 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_txrx
, lstats
);
12110 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_txrx
, state
);
12111 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_txrx
, flags
);
12112 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_txrx
, hard_header_len
);
12113 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_txrx
, features
);
12114 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_txrx
, ip6_ptr
);
12115 CACHELINE_ASSERT_GROUP_SIZE(struct net_device
, net_device_read_txrx
, 46);
12117 /* RX read-mostly hotpath */
12118 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_rx
, ptype_specific
);
12119 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_rx
, ifindex
);
12120 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_rx
, real_num_rx_queues
);
12121 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_rx
, _rx
);
12122 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_rx
, gro_max_size
);
12123 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_rx
, gro_ipv4_max_size
);
12124 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_rx
, rx_handler
);
12125 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_rx
, rx_handler_data
);
12126 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_rx
, nd_net
);
12127 #ifdef CONFIG_NETPOLL
12128 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_rx
, npinfo
);
12130 #ifdef CONFIG_NET_XGRESS
12131 CACHELINE_ASSERT_GROUP_MEMBER(struct net_device
, net_device_read_rx
, tcx_ingress
);
12133 CACHELINE_ASSERT_GROUP_SIZE(struct net_device
, net_device_read_rx
, 92);
12137 * Initialize the DEV module. At boot time this walks the device list and
12138 * unhooks any devices that fail to initialise (normally hardware not
12139 * present) and leaves us with a valid list of present and active devices.
12143 /* We allocate 256 pages for each CPU if PAGE_SHIFT is 12 */
12144 #define SYSTEM_PERCPU_PAGE_POOL_SIZE ((1 << 20) / PAGE_SIZE)
12146 static int net_page_pool_create(int cpuid
)
12148 #if IS_ENABLED(CONFIG_PAGE_POOL)
12149 struct page_pool_params page_pool_params
= {
12150 .pool_size
= SYSTEM_PERCPU_PAGE_POOL_SIZE
,
12151 .flags
= PP_FLAG_SYSTEM_POOL
,
12152 .nid
= cpu_to_mem(cpuid
),
12154 struct page_pool
*pp_ptr
;
12156 pp_ptr
= page_pool_create_percpu(&page_pool_params
, cpuid
);
12157 if (IS_ERR(pp_ptr
))
12160 per_cpu(system_page_pool
, cpuid
) = pp_ptr
;
12165 static int backlog_napi_should_run(unsigned int cpu
)
12167 struct softnet_data
*sd
= per_cpu_ptr(&softnet_data
, cpu
);
12168 struct napi_struct
*napi
= &sd
->backlog
;
12170 return test_bit(NAPI_STATE_SCHED_THREADED
, &napi
->state
);
12173 static void run_backlog_napi(unsigned int cpu
)
12175 struct softnet_data
*sd
= per_cpu_ptr(&softnet_data
, cpu
);
12177 napi_threaded_poll_loop(&sd
->backlog
);
12180 static void backlog_napi_setup(unsigned int cpu
)
12182 struct softnet_data
*sd
= per_cpu_ptr(&softnet_data
, cpu
);
12183 struct napi_struct
*napi
= &sd
->backlog
;
12185 napi
->thread
= this_cpu_read(backlog_napi
);
12186 set_bit(NAPI_STATE_THREADED
, &napi
->state
);
12189 static struct smp_hotplug_thread backlog_threads
= {
12190 .store
= &backlog_napi
,
12191 .thread_should_run
= backlog_napi_should_run
,
12192 .thread_fn
= run_backlog_napi
,
12193 .thread_comm
= "backlog_napi/%u",
12194 .setup
= backlog_napi_setup
,
12198 * This is called single threaded during boot, so no need
12199 * to take the rtnl semaphore.
12201 static int __init
net_dev_init(void)
12203 int i
, rc
= -ENOMEM
;
12205 BUG_ON(!dev_boot_phase
);
12207 net_dev_struct_check();
12209 if (dev_proc_init())
12212 if (netdev_kobject_init())
12215 for (i
= 0; i
< PTYPE_HASH_SIZE
; i
++)
12216 INIT_LIST_HEAD(&ptype_base
[i
]);
12218 if (register_pernet_subsys(&netdev_net_ops
))
12222 * Initialise the packet receive queues.
12225 for_each_possible_cpu(i
) {
12226 struct work_struct
*flush
= per_cpu_ptr(&flush_works
, i
);
12227 struct softnet_data
*sd
= &per_cpu(softnet_data
, i
);
12229 INIT_WORK(flush
, flush_backlog
);
12231 skb_queue_head_init(&sd
->input_pkt_queue
);
12232 skb_queue_head_init(&sd
->process_queue
);
12233 #ifdef CONFIG_XFRM_OFFLOAD
12234 skb_queue_head_init(&sd
->xfrm_backlog
);
12236 INIT_LIST_HEAD(&sd
->poll_list
);
12237 sd
->output_queue_tailp
= &sd
->output_queue
;
12239 INIT_CSD(&sd
->csd
, rps_trigger_softirq
, sd
);
12242 INIT_CSD(&sd
->defer_csd
, trigger_rx_softirq
, sd
);
12243 spin_lock_init(&sd
->defer_lock
);
12245 init_gro_hash(&sd
->backlog
);
12246 sd
->backlog
.poll
= process_backlog
;
12247 sd
->backlog
.weight
= weight_p
;
12248 INIT_LIST_HEAD(&sd
->backlog
.poll_list
);
12250 if (net_page_pool_create(i
))
12253 if (use_backlog_threads())
12254 smpboot_register_percpu_thread(&backlog_threads
);
12256 dev_boot_phase
= 0;
12258 /* The loopback device is special if any other network devices
12259 * is present in a network namespace the loopback device must
12260 * be present. Since we now dynamically allocate and free the
12261 * loopback device ensure this invariant is maintained by
12262 * keeping the loopback device as the first device on the
12263 * list of network devices. Ensuring the loopback devices
12264 * is the first device that appears and the last network device
12267 if (register_pernet_device(&loopback_net_ops
))
12270 if (register_pernet_device(&default_device_ops
))
12273 open_softirq(NET_TX_SOFTIRQ
, net_tx_action
);
12274 open_softirq(NET_RX_SOFTIRQ
, net_rx_action
);
12276 rc
= cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD
, "net/dev:dead",
12277 NULL
, dev_cpu_dead
);
12281 /* avoid static key IPIs to isolated CPUs */
12282 if (housekeeping_enabled(HK_TYPE_MISC
))
12283 net_enable_timestamp();
12286 for_each_possible_cpu(i
) {
12287 struct page_pool
*pp_ptr
;
12289 pp_ptr
= per_cpu(system_page_pool
, i
);
12293 page_pool_destroy(pp_ptr
);
12294 per_cpu(system_page_pool
, i
) = NULL
;
12301 subsys_initcall(net_dev_init
);