1 // SPDX-License-Identifier: GPL-2.0-or-later
4 * Robert Olsson <robert.olsson@its.uu.se> Uppsala Universitet
5 * & Swedish University of Agricultural Sciences.
7 * Jens Laas <jens.laas@data.slu.se> Swedish University of
8 * Agricultural Sciences.
10 * Hans Liss <hans.liss@its.uu.se> Uppsala Universitet
12 * This work is based on the LPC-trie which is originally described in:
14 * An experimental study of compression methods for dynamic tries
15 * Stefan Nilsson and Matti Tikkanen. Algorithmica, 33(1):19-33, 2002.
16 * https://www.csc.kth.se/~snilsson/software/dyntrie2/
18 * IP-address lookup using LC-tries. Stefan Nilsson and Gunnar Karlsson
19 * IEEE Journal on Selected Areas in Communications, 17(6):1083-1092, June 1999
21 * Code from fib_hash has been reused which includes the following header:
23 * INET An implementation of the TCP/IP protocol suite for the LINUX
24 * operating system. INET is implemented using the BSD Socket
25 * interface as the means of communication with the user level.
27 * IPv4 FIB: lookup engine and maintenance routines.
29 * Authors: Alexey Kuznetsov, <kuznet@ms2.inr.ac.ru>
31 * Substantial contributions to this work comes from:
33 * David S. Miller, <davem@davemloft.net>
34 * Stephen Hemminger <shemminger@osdl.org>
35 * Paul E. McKenney <paulmck@us.ibm.com>
36 * Patrick McHardy <kaber@trash.net>
38 #include <linux/cache.h>
39 #include <linux/uaccess.h>
40 #include <linux/bitops.h>
41 #include <linux/types.h>
42 #include <linux/kernel.h>
44 #include <linux/string.h>
45 #include <linux/socket.h>
46 #include <linux/sockios.h>
47 #include <linux/errno.h>
49 #include <linux/inet.h>
50 #include <linux/inetdevice.h>
51 #include <linux/netdevice.h>
52 #include <linux/if_arp.h>
53 #include <linux/proc_fs.h>
54 #include <linux/rcupdate.h>
55 #include <linux/rcupdate_wait.h>
56 #include <linux/skbuff.h>
57 #include <linux/netlink.h>
58 #include <linux/init.h>
59 #include <linux/list.h>
60 #include <linux/slab.h>
61 #include <linux/export.h>
62 #include <linux/vmalloc.h>
63 #include <linux/notifier.h>
64 #include <net/net_namespace.h>
65 #include <net/inet_dscp.h>
67 #include <net/protocol.h>
68 #include <net/route.h>
71 #include <net/ip_fib.h>
72 #include <net/fib_notifier.h>
73 #include <trace/events/fib.h>
74 #include "fib_lookup.h"
76 static int call_fib_entry_notifier(struct notifier_block
*nb
,
77 enum fib_event_type event_type
, u32 dst
,
78 int dst_len
, struct fib_alias
*fa
,
79 struct netlink_ext_ack
*extack
)
81 struct fib_entry_notifier_info info
= {
82 .info
.extack
= extack
,
90 return call_fib4_notifier(nb
, event_type
, &info
.info
);
93 static int call_fib_entry_notifiers(struct net
*net
,
94 enum fib_event_type event_type
, u32 dst
,
95 int dst_len
, struct fib_alias
*fa
,
96 struct netlink_ext_ack
*extack
)
98 struct fib_entry_notifier_info info
= {
99 .info
.extack
= extack
,
107 return call_fib4_notifiers(net
, event_type
, &info
.info
);
110 #define MAX_STAT_DEPTH 32
112 #define KEYLENGTH (8*sizeof(t_key))
113 #define KEY_MAX ((t_key)~0)
115 typedef unsigned int t_key
;
117 #define IS_TRIE(n) ((n)->pos >= KEYLENGTH)
118 #define IS_TNODE(n) ((n)->bits)
119 #define IS_LEAF(n) (!(n)->bits)
123 unsigned char pos
; /* 2log(KEYLENGTH) bits needed */
124 unsigned char bits
; /* 2log(KEYLENGTH) bits needed */
127 /* This list pointer if valid if (pos | bits) == 0 (LEAF) */
128 struct hlist_head leaf
;
129 /* This array is valid if (pos | bits) > 0 (TNODE) */
130 DECLARE_FLEX_ARRAY(struct key_vector __rcu
*, tnode
);
136 t_key empty_children
; /* KEYLENGTH bits needed */
137 t_key full_children
; /* KEYLENGTH bits needed */
138 struct key_vector __rcu
*parent
;
139 struct key_vector kv
[1];
140 #define tn_bits kv[0].bits
143 #define TNODE_SIZE(n) offsetof(struct tnode, kv[0].tnode[n])
144 #define LEAF_SIZE TNODE_SIZE(1)
146 #ifdef CONFIG_IP_FIB_TRIE_STATS
147 struct trie_use_stats
{
149 unsigned int backtrack
;
150 unsigned int semantic_match_passed
;
151 unsigned int semantic_match_miss
;
152 unsigned int null_node_hit
;
153 unsigned int resize_node_skipped
;
158 unsigned int totdepth
;
159 unsigned int maxdepth
;
162 unsigned int nullpointers
;
163 unsigned int prefixes
;
164 unsigned int nodesizes
[MAX_STAT_DEPTH
];
168 struct key_vector kv
[1];
169 #ifdef CONFIG_IP_FIB_TRIE_STATS
170 struct trie_use_stats __percpu
*stats
;
174 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
);
175 static unsigned int tnode_free_size
;
178 * synchronize_rcu after call_rcu for outstanding dirty memory; it should be
179 * especially useful before resizing the root node with PREEMPT_NONE configs;
180 * the value was obtained experimentally, aiming to avoid visible slowdown.
182 unsigned int sysctl_fib_sync_mem
= 512 * 1024;
183 unsigned int sysctl_fib_sync_mem_min
= 64 * 1024;
184 unsigned int sysctl_fib_sync_mem_max
= 64 * 1024 * 1024;
186 static struct kmem_cache
*fn_alias_kmem __ro_after_init
;
187 static struct kmem_cache
*trie_leaf_kmem __ro_after_init
;
189 static inline struct tnode
*tn_info(struct key_vector
*kv
)
191 return container_of(kv
, struct tnode
, kv
[0]);
194 /* caller must hold RTNL */
195 #define node_parent(tn) rtnl_dereference(tn_info(tn)->parent)
196 #define get_child(tn, i) rtnl_dereference((tn)->tnode[i])
198 /* caller must hold RCU read lock or RTNL */
199 #define node_parent_rcu(tn) rcu_dereference_rtnl(tn_info(tn)->parent)
200 #define get_child_rcu(tn, i) rcu_dereference_rtnl((tn)->tnode[i])
202 /* wrapper for rcu_assign_pointer */
203 static inline void node_set_parent(struct key_vector
*n
, struct key_vector
*tp
)
206 rcu_assign_pointer(tn_info(n
)->parent
, tp
);
209 #define NODE_INIT_PARENT(n, p) RCU_INIT_POINTER(tn_info(n)->parent, p)
211 /* This provides us with the number of children in this node, in the case of a
212 * leaf this will return 0 meaning none of the children are accessible.
214 static inline unsigned long child_length(const struct key_vector
*tn
)
216 return (1ul << tn
->bits
) & ~(1ul);
219 #define get_cindex(key, kv) (((key) ^ (kv)->key) >> (kv)->pos)
221 static inline unsigned long get_index(t_key key
, struct key_vector
*kv
)
223 unsigned long index
= key
^ kv
->key
;
225 if ((BITS_PER_LONG
<= KEYLENGTH
) && (KEYLENGTH
== kv
->pos
))
228 return index
>> kv
->pos
;
231 /* To understand this stuff, an understanding of keys and all their bits is
232 * necessary. Every node in the trie has a key associated with it, but not
233 * all of the bits in that key are significant.
235 * Consider a node 'n' and its parent 'tp'.
237 * If n is a leaf, every bit in its key is significant. Its presence is
238 * necessitated by path compression, since during a tree traversal (when
239 * searching for a leaf - unless we are doing an insertion) we will completely
240 * ignore all skipped bits we encounter. Thus we need to verify, at the end of
241 * a potentially successful search, that we have indeed been walking the
244 * Note that we can never "miss" the correct key in the tree if present by
245 * following the wrong path. Path compression ensures that segments of the key
246 * that are the same for all keys with a given prefix are skipped, but the
247 * skipped part *is* identical for each node in the subtrie below the skipped
248 * bit! trie_insert() in this implementation takes care of that.
250 * if n is an internal node - a 'tnode' here, the various parts of its key
251 * have many different meanings.
254 * _________________________________________________________________
255 * | i | i | i | i | i | i | i | N | N | N | S | S | S | S | S | C |
256 * -----------------------------------------------------------------
257 * 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
259 * _________________________________________________________________
260 * | C | C | C | u | u | u | u | u | u | u | u | u | u | u | u | u |
261 * -----------------------------------------------------------------
262 * 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
269 * First, let's just ignore the bits that come before the parent tp, that is
270 * the bits from (tp->pos + tp->bits) to 31. They are *known* but at this
271 * point we do not use them for anything.
273 * The bits from (tp->pos) to (tp->pos + tp->bits - 1) - "N", above - are the
274 * index into the parent's child array. That is, they will be used to find
275 * 'n' among tp's children.
277 * The bits from (n->pos + n->bits) to (tp->pos - 1) - "S" - are skipped bits
280 * All the bits we have seen so far are significant to the node n. The rest
281 * of the bits are really not needed or indeed known in n->key.
283 * The bits from (n->pos) to (n->pos + n->bits - 1) - "C" - are the index into
284 * n's child array, and will of course be different for each child.
286 * The rest of the bits, from 0 to (n->pos -1) - "u" - are completely unknown
290 static const int halve_threshold
= 25;
291 static const int inflate_threshold
= 50;
292 static const int halve_threshold_root
= 15;
293 static const int inflate_threshold_root
= 30;
295 static inline void alias_free_mem_rcu(struct fib_alias
*fa
)
300 #define TNODE_VMALLOC_MAX \
301 ilog2((SIZE_MAX - TNODE_SIZE(0)) / sizeof(struct key_vector *))
303 static void __node_free_rcu(struct rcu_head
*head
)
305 struct tnode
*n
= container_of(head
, struct tnode
, rcu
);
308 kmem_cache_free(trie_leaf_kmem
, n
);
313 #define node_free(n) call_rcu(&tn_info(n)->rcu, __node_free_rcu)
315 static struct tnode
*tnode_alloc(int bits
)
319 /* verify bits is within bounds */
320 if (bits
> TNODE_VMALLOC_MAX
)
323 /* determine size and verify it is non-zero and didn't overflow */
324 size
= TNODE_SIZE(1ul << bits
);
326 if (size
<= PAGE_SIZE
)
327 return kzalloc(size
, GFP_KERNEL
);
329 return vzalloc(size
);
332 static inline void empty_child_inc(struct key_vector
*n
)
334 tn_info(n
)->empty_children
++;
336 if (!tn_info(n
)->empty_children
)
337 tn_info(n
)->full_children
++;
340 static inline void empty_child_dec(struct key_vector
*n
)
342 if (!tn_info(n
)->empty_children
)
343 tn_info(n
)->full_children
--;
345 tn_info(n
)->empty_children
--;
348 static struct key_vector
*leaf_new(t_key key
, struct fib_alias
*fa
)
350 struct key_vector
*l
;
353 kv
= kmem_cache_alloc(trie_leaf_kmem
, GFP_KERNEL
);
357 /* initialize key vector */
362 l
->slen
= fa
->fa_slen
;
364 /* link leaf to fib alias */
365 INIT_HLIST_HEAD(&l
->leaf
);
366 hlist_add_head(&fa
->fa_list
, &l
->leaf
);
371 static struct key_vector
*tnode_new(t_key key
, int pos
, int bits
)
373 unsigned int shift
= pos
+ bits
;
374 struct key_vector
*tn
;
377 /* verify bits and pos their msb bits clear and values are valid */
378 BUG_ON(!bits
|| (shift
> KEYLENGTH
));
380 tnode
= tnode_alloc(bits
);
384 pr_debug("AT %p s=%zu %zu\n", tnode
, TNODE_SIZE(0),
385 sizeof(struct key_vector
*) << bits
);
387 if (bits
== KEYLENGTH
)
388 tnode
->full_children
= 1;
390 tnode
->empty_children
= 1ul << bits
;
393 tn
->key
= (shift
< KEYLENGTH
) ? (key
>> shift
) << shift
: 0;
401 /* Check whether a tnode 'n' is "full", i.e. it is an internal node
402 * and no bits are skipped. See discussion in dyntree paper p. 6
404 static inline int tnode_full(struct key_vector
*tn
, struct key_vector
*n
)
406 return n
&& ((n
->pos
+ n
->bits
) == tn
->pos
) && IS_TNODE(n
);
409 /* Add a child at position i overwriting the old value.
410 * Update the value of full_children and empty_children.
412 static void put_child(struct key_vector
*tn
, unsigned long i
,
413 struct key_vector
*n
)
415 struct key_vector
*chi
= get_child(tn
, i
);
418 BUG_ON(i
>= child_length(tn
));
420 /* update emptyChildren, overflow into fullChildren */
426 /* update fullChildren */
427 wasfull
= tnode_full(tn
, chi
);
428 isfull
= tnode_full(tn
, n
);
430 if (wasfull
&& !isfull
)
431 tn_info(tn
)->full_children
--;
432 else if (!wasfull
&& isfull
)
433 tn_info(tn
)->full_children
++;
435 if (n
&& (tn
->slen
< n
->slen
))
438 rcu_assign_pointer(tn
->tnode
[i
], n
);
441 static void update_children(struct key_vector
*tn
)
445 /* update all of the child parent pointers */
446 for (i
= child_length(tn
); i
;) {
447 struct key_vector
*inode
= get_child(tn
, --i
);
452 /* Either update the children of a tnode that
453 * already belongs to us or update the child
454 * to point to ourselves.
456 if (node_parent(inode
) == tn
)
457 update_children(inode
);
459 node_set_parent(inode
, tn
);
463 static inline void put_child_root(struct key_vector
*tp
, t_key key
,
464 struct key_vector
*n
)
467 rcu_assign_pointer(tp
->tnode
[0], n
);
469 put_child(tp
, get_index(key
, tp
), n
);
472 static inline void tnode_free_init(struct key_vector
*tn
)
474 tn_info(tn
)->rcu
.next
= NULL
;
477 static inline void tnode_free_append(struct key_vector
*tn
,
478 struct key_vector
*n
)
480 tn_info(n
)->rcu
.next
= tn_info(tn
)->rcu
.next
;
481 tn_info(tn
)->rcu
.next
= &tn_info(n
)->rcu
;
484 static void tnode_free(struct key_vector
*tn
)
486 struct callback_head
*head
= &tn_info(tn
)->rcu
;
490 tnode_free_size
+= TNODE_SIZE(1ul << tn
->bits
);
493 tn
= container_of(head
, struct tnode
, rcu
)->kv
;
496 if (tnode_free_size
>= READ_ONCE(sysctl_fib_sync_mem
)) {
502 static struct key_vector
*replace(struct trie
*t
,
503 struct key_vector
*oldtnode
,
504 struct key_vector
*tn
)
506 struct key_vector
*tp
= node_parent(oldtnode
);
509 /* setup the parent pointer out of and back into this node */
510 NODE_INIT_PARENT(tn
, tp
);
511 put_child_root(tp
, tn
->key
, tn
);
513 /* update all of the child parent pointers */
516 /* all pointers should be clean so we are done */
517 tnode_free(oldtnode
);
519 /* resize children now that oldtnode is freed */
520 for (i
= child_length(tn
); i
;) {
521 struct key_vector
*inode
= get_child(tn
, --i
);
523 /* resize child node */
524 if (tnode_full(tn
, inode
))
525 tn
= resize(t
, inode
);
531 static struct key_vector
*inflate(struct trie
*t
,
532 struct key_vector
*oldtnode
)
534 struct key_vector
*tn
;
538 pr_debug("In inflate\n");
540 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
- 1, oldtnode
->bits
+ 1);
544 /* prepare oldtnode to be freed */
545 tnode_free_init(oldtnode
);
547 /* Assemble all of the pointers in our cluster, in this case that
548 * represents all of the pointers out of our allocated nodes that
549 * point to existing tnodes and the links between our allocated
552 for (i
= child_length(oldtnode
), m
= 1u << tn
->pos
; i
;) {
553 struct key_vector
*inode
= get_child(oldtnode
, --i
);
554 struct key_vector
*node0
, *node1
;
561 /* A leaf or an internal node with skipped bits */
562 if (!tnode_full(oldtnode
, inode
)) {
563 put_child(tn
, get_index(inode
->key
, tn
), inode
);
567 /* drop the node in the old tnode free list */
568 tnode_free_append(oldtnode
, inode
);
570 /* An internal node with two children */
571 if (inode
->bits
== 1) {
572 put_child(tn
, 2 * i
+ 1, get_child(inode
, 1));
573 put_child(tn
, 2 * i
, get_child(inode
, 0));
577 /* We will replace this node 'inode' with two new
578 * ones, 'node0' and 'node1', each with half of the
579 * original children. The two new nodes will have
580 * a position one bit further down the key and this
581 * means that the "significant" part of their keys
582 * (see the discussion near the top of this file)
583 * will differ by one bit, which will be "0" in
584 * node0's key and "1" in node1's key. Since we are
585 * moving the key position by one step, the bit that
586 * we are moving away from - the bit at position
587 * (tn->pos) - is the one that will differ between
588 * node0 and node1. So... we synthesize that bit in the
591 node1
= tnode_new(inode
->key
| m
, inode
->pos
, inode
->bits
- 1);
594 node0
= tnode_new(inode
->key
, inode
->pos
, inode
->bits
- 1);
596 tnode_free_append(tn
, node1
);
599 tnode_free_append(tn
, node0
);
601 /* populate child pointers in new nodes */
602 for (k
= child_length(inode
), j
= k
/ 2; j
;) {
603 put_child(node1
, --j
, get_child(inode
, --k
));
604 put_child(node0
, j
, get_child(inode
, j
));
605 put_child(node1
, --j
, get_child(inode
, --k
));
606 put_child(node0
, j
, get_child(inode
, j
));
609 /* link new nodes to parent */
610 NODE_INIT_PARENT(node1
, tn
);
611 NODE_INIT_PARENT(node0
, tn
);
613 /* link parent to nodes */
614 put_child(tn
, 2 * i
+ 1, node1
);
615 put_child(tn
, 2 * i
, node0
);
618 /* setup the parent pointers into and out of this node */
619 return replace(t
, oldtnode
, tn
);
621 /* all pointers should be clean so we are done */
627 static struct key_vector
*halve(struct trie
*t
,
628 struct key_vector
*oldtnode
)
630 struct key_vector
*tn
;
633 pr_debug("In halve\n");
635 tn
= tnode_new(oldtnode
->key
, oldtnode
->pos
+ 1, oldtnode
->bits
- 1);
639 /* prepare oldtnode to be freed */
640 tnode_free_init(oldtnode
);
642 /* Assemble all of the pointers in our cluster, in this case that
643 * represents all of the pointers out of our allocated nodes that
644 * point to existing tnodes and the links between our allocated
647 for (i
= child_length(oldtnode
); i
;) {
648 struct key_vector
*node1
= get_child(oldtnode
, --i
);
649 struct key_vector
*node0
= get_child(oldtnode
, --i
);
650 struct key_vector
*inode
;
652 /* At least one of the children is empty */
653 if (!node1
|| !node0
) {
654 put_child(tn
, i
/ 2, node1
? : node0
);
658 /* Two nonempty children */
659 inode
= tnode_new(node0
->key
, oldtnode
->pos
, 1);
662 tnode_free_append(tn
, inode
);
664 /* initialize pointers out of node */
665 put_child(inode
, 1, node1
);
666 put_child(inode
, 0, node0
);
667 NODE_INIT_PARENT(inode
, tn
);
669 /* link parent to node */
670 put_child(tn
, i
/ 2, inode
);
673 /* setup the parent pointers into and out of this node */
674 return replace(t
, oldtnode
, tn
);
676 /* all pointers should be clean so we are done */
682 static struct key_vector
*collapse(struct trie
*t
,
683 struct key_vector
*oldtnode
)
685 struct key_vector
*n
, *tp
;
688 /* scan the tnode looking for that one child that might still exist */
689 for (n
= NULL
, i
= child_length(oldtnode
); !n
&& i
;)
690 n
= get_child(oldtnode
, --i
);
692 /* compress one level */
693 tp
= node_parent(oldtnode
);
694 put_child_root(tp
, oldtnode
->key
, n
);
695 node_set_parent(n
, tp
);
703 static unsigned char update_suffix(struct key_vector
*tn
)
705 unsigned char slen
= tn
->pos
;
706 unsigned long stride
, i
;
707 unsigned char slen_max
;
709 /* only vector 0 can have a suffix length greater than or equal to
710 * tn->pos + tn->bits, the second highest node will have a suffix
711 * length at most of tn->pos + tn->bits - 1
713 slen_max
= min_t(unsigned char, tn
->pos
+ tn
->bits
- 1, tn
->slen
);
715 /* search though the list of children looking for nodes that might
716 * have a suffix greater than the one we currently have. This is
717 * why we start with a stride of 2 since a stride of 1 would
718 * represent the nodes with suffix length equal to tn->pos
720 for (i
= 0, stride
= 0x2ul
; i
< child_length(tn
); i
+= stride
) {
721 struct key_vector
*n
= get_child(tn
, i
);
723 if (!n
|| (n
->slen
<= slen
))
726 /* update stride and slen based on new value */
727 stride
<<= (n
->slen
- slen
);
731 /* stop searching if we have hit the maximum possible value */
732 if (slen
>= slen_max
)
741 /* From "Implementing a dynamic compressed trie" by Stefan Nilsson of
742 * the Helsinki University of Technology and Matti Tikkanen of Nokia
743 * Telecommunications, page 6:
744 * "A node is doubled if the ratio of non-empty children to all
745 * children in the *doubled* node is at least 'high'."
747 * 'high' in this instance is the variable 'inflate_threshold'. It
748 * is expressed as a percentage, so we multiply it with
749 * child_length() and instead of multiplying by 2 (since the
750 * child array will be doubled by inflate()) and multiplying
751 * the left-hand side by 100 (to handle the percentage thing) we
752 * multiply the left-hand side by 50.
754 * The left-hand side may look a bit weird: child_length(tn)
755 * - tn->empty_children is of course the number of non-null children
756 * in the current node. tn->full_children is the number of "full"
757 * children, that is non-null tnodes with a skip value of 0.
758 * All of those will be doubled in the resulting inflated tnode, so
759 * we just count them one extra time here.
761 * A clearer way to write this would be:
763 * to_be_doubled = tn->full_children;
764 * not_to_be_doubled = child_length(tn) - tn->empty_children -
767 * new_child_length = child_length(tn) * 2;
769 * new_fill_factor = 100 * (not_to_be_doubled + 2*to_be_doubled) /
771 * if (new_fill_factor >= inflate_threshold)
773 * ...and so on, tho it would mess up the while () loop.
776 * 100 * (not_to_be_doubled + 2*to_be_doubled) / new_child_length >=
780 * 100 * (not_to_be_doubled + 2*to_be_doubled) >=
781 * inflate_threshold * new_child_length
783 * expand not_to_be_doubled and to_be_doubled, and shorten:
784 * 100 * (child_length(tn) - tn->empty_children +
785 * tn->full_children) >= inflate_threshold * new_child_length
787 * expand new_child_length:
788 * 100 * (child_length(tn) - tn->empty_children +
789 * tn->full_children) >=
790 * inflate_threshold * child_length(tn) * 2
793 * 50 * (tn->full_children + child_length(tn) -
794 * tn->empty_children) >= inflate_threshold *
798 static inline bool should_inflate(struct key_vector
*tp
, struct key_vector
*tn
)
800 unsigned long used
= child_length(tn
);
801 unsigned long threshold
= used
;
803 /* Keep root node larger */
804 threshold
*= IS_TRIE(tp
) ? inflate_threshold_root
: inflate_threshold
;
805 used
-= tn_info(tn
)->empty_children
;
806 used
+= tn_info(tn
)->full_children
;
808 /* if bits == KEYLENGTH then pos = 0, and will fail below */
810 return (used
> 1) && tn
->pos
&& ((50 * used
) >= threshold
);
813 static inline bool should_halve(struct key_vector
*tp
, struct key_vector
*tn
)
815 unsigned long used
= child_length(tn
);
816 unsigned long threshold
= used
;
818 /* Keep root node larger */
819 threshold
*= IS_TRIE(tp
) ? halve_threshold_root
: halve_threshold
;
820 used
-= tn_info(tn
)->empty_children
;
822 /* if bits == KEYLENGTH then used = 100% on wrap, and will fail below */
824 return (used
> 1) && (tn
->bits
> 1) && ((100 * used
) < threshold
);
827 static inline bool should_collapse(struct key_vector
*tn
)
829 unsigned long used
= child_length(tn
);
831 used
-= tn_info(tn
)->empty_children
;
833 /* account for bits == KEYLENGTH case */
834 if ((tn
->bits
== KEYLENGTH
) && tn_info(tn
)->full_children
)
837 /* One child or none, time to drop us from the trie */
842 static struct key_vector
*resize(struct trie
*t
, struct key_vector
*tn
)
844 #ifdef CONFIG_IP_FIB_TRIE_STATS
845 struct trie_use_stats __percpu
*stats
= t
->stats
;
847 struct key_vector
*tp
= node_parent(tn
);
848 unsigned long cindex
= get_index(tn
->key
, tp
);
849 int max_work
= MAX_WORK
;
851 pr_debug("In tnode_resize %p inflate_threshold=%d threshold=%d\n",
852 tn
, inflate_threshold
, halve_threshold
);
854 /* track the tnode via the pointer from the parent instead of
855 * doing it ourselves. This way we can let RCU fully do its
856 * thing without us interfering
858 BUG_ON(tn
!= get_child(tp
, cindex
));
860 /* Double as long as the resulting node has a number of
861 * nonempty nodes that are above the threshold.
863 while (should_inflate(tp
, tn
) && max_work
) {
866 #ifdef CONFIG_IP_FIB_TRIE_STATS
867 this_cpu_inc(stats
->resize_node_skipped
);
873 tn
= get_child(tp
, cindex
);
876 /* update parent in case inflate failed */
877 tp
= node_parent(tn
);
879 /* Return if at least one inflate is run */
880 if (max_work
!= MAX_WORK
)
883 /* Halve as long as the number of empty children in this
884 * node is above threshold.
886 while (should_halve(tp
, tn
) && max_work
) {
889 #ifdef CONFIG_IP_FIB_TRIE_STATS
890 this_cpu_inc(stats
->resize_node_skipped
);
896 tn
= get_child(tp
, cindex
);
899 /* Only one child remains */
900 if (should_collapse(tn
))
901 return collapse(t
, tn
);
903 /* update parent in case halve failed */
904 return node_parent(tn
);
907 static void node_pull_suffix(struct key_vector
*tn
, unsigned char slen
)
909 unsigned char node_slen
= tn
->slen
;
911 while ((node_slen
> tn
->pos
) && (node_slen
> slen
)) {
912 slen
= update_suffix(tn
);
913 if (node_slen
== slen
)
916 tn
= node_parent(tn
);
917 node_slen
= tn
->slen
;
921 static void node_push_suffix(struct key_vector
*tn
, unsigned char slen
)
923 while (tn
->slen
< slen
) {
925 tn
= node_parent(tn
);
929 /* rcu_read_lock needs to be hold by caller from readside */
930 static struct key_vector
*fib_find_node(struct trie
*t
,
931 struct key_vector
**tp
, u32 key
)
933 struct key_vector
*pn
, *n
= t
->kv
;
934 unsigned long index
= 0;
938 n
= get_child_rcu(n
, index
);
943 index
= get_cindex(key
, n
);
945 /* This bit of code is a bit tricky but it combines multiple
946 * checks into a single check. The prefix consists of the
947 * prefix plus zeros for the bits in the cindex. The index
948 * is the difference between the key and this value. From
949 * this we can actually derive several pieces of data.
950 * if (index >= (1ul << bits))
951 * we have a mismatch in skip bits and failed
953 * we know the value is cindex
955 * This check is safe even if bits == KEYLENGTH due to the
956 * fact that we can only allocate a node with 32 bits if a
957 * long is greater than 32 bits.
959 if (index
>= (1ul << n
->bits
)) {
964 /* keep searching until we find a perfect match leaf or NULL */
965 } while (IS_TNODE(n
));
972 /* Return the first fib alias matching DSCP with
973 * priority less than or equal to PRIO.
974 * If 'find_first' is set, return the first matching
975 * fib alias, regardless of DSCP and priority.
977 static struct fib_alias
*fib_find_alias(struct hlist_head
*fah
, u8 slen
,
978 dscp_t dscp
, u32 prio
, u32 tb_id
,
981 struct fib_alias
*fa
;
986 hlist_for_each_entry(fa
, fah
, fa_list
) {
987 /* Avoid Sparse warning when using dscp_t in inequalities */
988 u8 __fa_dscp
= inet_dscp_to_dsfield(fa
->fa_dscp
);
989 u8 __dscp
= inet_dscp_to_dsfield(dscp
);
991 if (fa
->fa_slen
< slen
)
993 if (fa
->fa_slen
!= slen
)
995 if (fa
->tb_id
> tb_id
)
997 if (fa
->tb_id
!= tb_id
)
1001 if (__fa_dscp
> __dscp
)
1003 if (fa
->fa_info
->fib_priority
>= prio
|| __fa_dscp
< __dscp
)
1010 static struct fib_alias
*
1011 fib_find_matching_alias(struct net
*net
, const struct fib_rt_info
*fri
)
1013 u8 slen
= KEYLENGTH
- fri
->dst_len
;
1014 struct key_vector
*l
, *tp
;
1015 struct fib_table
*tb
;
1016 struct fib_alias
*fa
;
1019 tb
= fib_get_table(net
, fri
->tb_id
);
1023 t
= (struct trie
*)tb
->tb_data
;
1024 l
= fib_find_node(t
, &tp
, be32_to_cpu(fri
->dst
));
1028 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
1029 if (fa
->fa_slen
== slen
&& fa
->tb_id
== fri
->tb_id
&&
1030 fa
->fa_dscp
== fri
->dscp
&& fa
->fa_info
== fri
->fi
&&
1031 fa
->fa_type
== fri
->type
)
1038 void fib_alias_hw_flags_set(struct net
*net
, const struct fib_rt_info
*fri
)
1040 u8 fib_notify_on_flag_change
;
1041 struct fib_alias
*fa_match
;
1042 struct sk_buff
*skb
;
1047 fa_match
= fib_find_matching_alias(net
, fri
);
1051 /* These are paired with the WRITE_ONCE() happening in this function.
1052 * The reason is that we are only protected by RCU at this point.
1054 if (READ_ONCE(fa_match
->offload
) == fri
->offload
&&
1055 READ_ONCE(fa_match
->trap
) == fri
->trap
&&
1056 READ_ONCE(fa_match
->offload_failed
) == fri
->offload_failed
)
1059 WRITE_ONCE(fa_match
->offload
, fri
->offload
);
1060 WRITE_ONCE(fa_match
->trap
, fri
->trap
);
1062 fib_notify_on_flag_change
= READ_ONCE(net
->ipv4
.sysctl_fib_notify_on_flag_change
);
1064 /* 2 means send notifications only if offload_failed was changed. */
1065 if (fib_notify_on_flag_change
== 2 &&
1066 READ_ONCE(fa_match
->offload_failed
) == fri
->offload_failed
)
1069 WRITE_ONCE(fa_match
->offload_failed
, fri
->offload_failed
);
1071 if (!fib_notify_on_flag_change
)
1074 skb
= nlmsg_new(fib_nlmsg_size(fa_match
->fa_info
), GFP_ATOMIC
);
1080 err
= fib_dump_info(skb
, 0, 0, RTM_NEWROUTE
, fri
, 0);
1082 /* -EMSGSIZE implies BUG in fib_nlmsg_size() */
1083 WARN_ON(err
== -EMSGSIZE
);
1088 rtnl_notify(skb
, net
, 0, RTNLGRP_IPV4_ROUTE
, NULL
, GFP_ATOMIC
);
1092 rtnl_set_sk_err(net
, RTNLGRP_IPV4_ROUTE
, err
);
1096 EXPORT_SYMBOL_GPL(fib_alias_hw_flags_set
);
1098 static void trie_rebalance(struct trie
*t
, struct key_vector
*tn
)
1100 while (!IS_TRIE(tn
))
1104 static int fib_insert_node(struct trie
*t
, struct key_vector
*tp
,
1105 struct fib_alias
*new, t_key key
)
1107 struct key_vector
*n
, *l
;
1109 l
= leaf_new(key
, new);
1113 /* retrieve child from parent node */
1114 n
= get_child(tp
, get_index(key
, tp
));
1116 /* Case 2: n is a LEAF or a TNODE and the key doesn't match.
1118 * Add a new tnode here
1119 * first tnode need some special handling
1120 * leaves us in position for handling as case 3
1123 struct key_vector
*tn
;
1125 tn
= tnode_new(key
, __fls(key
^ n
->key
), 1);
1129 /* initialize routes out of node */
1130 NODE_INIT_PARENT(tn
, tp
);
1131 put_child(tn
, get_index(key
, tn
) ^ 1, n
);
1133 /* start adding routes into the node */
1134 put_child_root(tp
, key
, tn
);
1135 node_set_parent(n
, tn
);
1137 /* parent now has a NULL spot where the leaf can go */
1141 /* Case 3: n is NULL, and will just insert a new leaf */
1142 node_push_suffix(tp
, new->fa_slen
);
1143 NODE_INIT_PARENT(l
, tp
);
1144 put_child_root(tp
, key
, l
);
1145 trie_rebalance(t
, tp
);
1154 static int fib_insert_alias(struct trie
*t
, struct key_vector
*tp
,
1155 struct key_vector
*l
, struct fib_alias
*new,
1156 struct fib_alias
*fa
, t_key key
)
1159 return fib_insert_node(t
, tp
, new, key
);
1162 hlist_add_before_rcu(&new->fa_list
, &fa
->fa_list
);
1164 struct fib_alias
*last
;
1166 hlist_for_each_entry(last
, &l
->leaf
, fa_list
) {
1167 if (new->fa_slen
< last
->fa_slen
)
1169 if ((new->fa_slen
== last
->fa_slen
) &&
1170 (new->tb_id
> last
->tb_id
))
1176 hlist_add_behind_rcu(&new->fa_list
, &fa
->fa_list
);
1178 hlist_add_head_rcu(&new->fa_list
, &l
->leaf
);
1181 /* if we added to the tail node then we need to update slen */
1182 if (l
->slen
< new->fa_slen
) {
1183 l
->slen
= new->fa_slen
;
1184 node_push_suffix(tp
, new->fa_slen
);
1190 static bool fib_valid_key_len(u32 key
, u8 plen
, struct netlink_ext_ack
*extack
)
1192 if (plen
> KEYLENGTH
) {
1193 NL_SET_ERR_MSG(extack
, "Invalid prefix length");
1197 if ((plen
< KEYLENGTH
) && (key
<< plen
)) {
1198 NL_SET_ERR_MSG(extack
,
1199 "Invalid prefix for given prefix length");
1206 static void fib_remove_alias(struct trie
*t
, struct key_vector
*tp
,
1207 struct key_vector
*l
, struct fib_alias
*old
);
1209 /* Caller must hold RTNL. */
1210 int fib_table_insert(struct net
*net
, struct fib_table
*tb
,
1211 struct fib_config
*cfg
, struct netlink_ext_ack
*extack
)
1213 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1214 struct fib_alias
*fa
, *new_fa
;
1215 struct key_vector
*l
, *tp
;
1216 u16 nlflags
= NLM_F_EXCL
;
1217 struct fib_info
*fi
;
1218 u8 plen
= cfg
->fc_dst_len
;
1219 u8 slen
= KEYLENGTH
- plen
;
1224 key
= ntohl(cfg
->fc_dst
);
1226 if (!fib_valid_key_len(key
, plen
, extack
))
1229 pr_debug("Insert table=%u %08x/%d\n", tb
->tb_id
, key
, plen
);
1231 fi
= fib_create_info(cfg
, extack
);
1237 dscp
= cfg
->fc_dscp
;
1238 l
= fib_find_node(t
, &tp
, key
);
1239 fa
= l
? fib_find_alias(&l
->leaf
, slen
, dscp
, fi
->fib_priority
,
1240 tb
->tb_id
, false) : NULL
;
1242 /* Now fa, if non-NULL, points to the first fib alias
1243 * with the same keys [prefix,dscp,priority], if such key already
1244 * exists or to the node before which we will insert new one.
1246 * If fa is NULL, we will need to allocate a new one and
1247 * insert to the tail of the section matching the suffix length
1251 if (fa
&& fa
->fa_dscp
== dscp
&&
1252 fa
->fa_info
->fib_priority
== fi
->fib_priority
) {
1253 struct fib_alias
*fa_first
, *fa_match
;
1256 if (cfg
->fc_nlflags
& NLM_F_EXCL
)
1259 nlflags
&= ~NLM_F_EXCL
;
1262 * 1. Find exact match for type, scope, fib_info to avoid
1264 * 2. Find next 'fa' (or head), NLM_F_APPEND inserts before it
1268 hlist_for_each_entry_from(fa
, fa_list
) {
1269 if ((fa
->fa_slen
!= slen
) ||
1270 (fa
->tb_id
!= tb
->tb_id
) ||
1271 (fa
->fa_dscp
!= dscp
))
1273 if (fa
->fa_info
->fib_priority
!= fi
->fib_priority
)
1275 if (fa
->fa_type
== cfg
->fc_type
&&
1276 fa
->fa_info
== fi
) {
1282 if (cfg
->fc_nlflags
& NLM_F_REPLACE
) {
1283 struct fib_info
*fi_drop
;
1286 nlflags
|= NLM_F_REPLACE
;
1294 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1298 fi_drop
= fa
->fa_info
;
1299 new_fa
->fa_dscp
= fa
->fa_dscp
;
1300 new_fa
->fa_info
= fi
;
1301 new_fa
->fa_type
= cfg
->fc_type
;
1302 state
= fa
->fa_state
;
1303 new_fa
->fa_state
= state
& ~FA_S_ACCESSED
;
1304 new_fa
->fa_slen
= fa
->fa_slen
;
1305 new_fa
->tb_id
= tb
->tb_id
;
1306 new_fa
->fa_default
= -1;
1307 new_fa
->offload
= 0;
1309 new_fa
->offload_failed
= 0;
1311 hlist_replace_rcu(&fa
->fa_list
, &new_fa
->fa_list
);
1313 if (fib_find_alias(&l
->leaf
, fa
->fa_slen
, 0, 0,
1314 tb
->tb_id
, true) == new_fa
) {
1315 enum fib_event_type fib_event
;
1317 fib_event
= FIB_EVENT_ENTRY_REPLACE
;
1318 err
= call_fib_entry_notifiers(net
, fib_event
,
1322 hlist_replace_rcu(&new_fa
->fa_list
,
1324 goto out_free_new_fa
;
1328 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
,
1329 tb
->tb_id
, &cfg
->fc_nlinfo
, nlflags
);
1331 alias_free_mem_rcu(fa
);
1333 fib_release_info(fi_drop
);
1334 if (state
& FA_S_ACCESSED
)
1335 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1339 /* Error if we find a perfect match which
1340 * uses the same scope, type, and nexthop
1346 if (cfg
->fc_nlflags
& NLM_F_APPEND
)
1347 nlflags
|= NLM_F_APPEND
;
1352 if (!(cfg
->fc_nlflags
& NLM_F_CREATE
))
1355 nlflags
|= NLM_F_CREATE
;
1357 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1361 new_fa
->fa_info
= fi
;
1362 new_fa
->fa_dscp
= dscp
;
1363 new_fa
->fa_type
= cfg
->fc_type
;
1364 new_fa
->fa_state
= 0;
1365 new_fa
->fa_slen
= slen
;
1366 new_fa
->tb_id
= tb
->tb_id
;
1367 new_fa
->fa_default
= -1;
1368 new_fa
->offload
= 0;
1370 new_fa
->offload_failed
= 0;
1372 /* Insert new entry to the list. */
1373 err
= fib_insert_alias(t
, tp
, l
, new_fa
, fa
, key
);
1375 goto out_free_new_fa
;
1377 /* The alias was already inserted, so the node must exist. */
1378 l
= l
? l
: fib_find_node(t
, &tp
, key
);
1379 if (WARN_ON_ONCE(!l
)) {
1381 goto out_free_new_fa
;
1384 if (fib_find_alias(&l
->leaf
, new_fa
->fa_slen
, 0, 0, tb
->tb_id
, true) ==
1386 enum fib_event_type fib_event
;
1388 fib_event
= FIB_EVENT_ENTRY_REPLACE
;
1389 err
= call_fib_entry_notifiers(net
, fib_event
, key
, plen
,
1392 goto out_remove_new_fa
;
1396 tb
->tb_num_default
++;
1398 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1399 rtmsg_fib(RTM_NEWROUTE
, htonl(key
), new_fa
, plen
, new_fa
->tb_id
,
1400 &cfg
->fc_nlinfo
, nlflags
);
1405 fib_remove_alias(t
, tp
, l
, new_fa
);
1407 kmem_cache_free(fn_alias_kmem
, new_fa
);
1409 fib_release_info(fi
);
1414 static inline t_key
prefix_mismatch(t_key key
, struct key_vector
*n
)
1416 t_key prefix
= n
->key
;
1418 return (key
^ prefix
) & (prefix
| -prefix
);
1421 bool fib_lookup_good_nhc(const struct fib_nh_common
*nhc
, int fib_flags
,
1422 const struct flowi4
*flp
)
1424 if (nhc
->nhc_flags
& RTNH_F_DEAD
)
1427 if (ip_ignore_linkdown(nhc
->nhc_dev
) &&
1428 nhc
->nhc_flags
& RTNH_F_LINKDOWN
&&
1429 !(fib_flags
& FIB_LOOKUP_IGNORE_LINKSTATE
))
1432 if (flp
->flowi4_oif
&& flp
->flowi4_oif
!= nhc
->nhc_oif
)
1438 /* should be called with rcu_read_lock */
1439 int fib_table_lookup(struct fib_table
*tb
, const struct flowi4
*flp
,
1440 struct fib_result
*res
, int fib_flags
)
1442 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1443 #ifdef CONFIG_IP_FIB_TRIE_STATS
1444 struct trie_use_stats __percpu
*stats
= t
->stats
;
1446 const t_key key
= ntohl(flp
->daddr
);
1447 struct key_vector
*n
, *pn
;
1448 struct fib_alias
*fa
;
1449 unsigned long index
;
1455 n
= get_child_rcu(pn
, cindex
);
1457 trace_fib_table_lookup(tb
->tb_id
, flp
, NULL
, -EAGAIN
);
1461 #ifdef CONFIG_IP_FIB_TRIE_STATS
1462 this_cpu_inc(stats
->gets
);
1465 /* Step 1: Travel to the longest prefix match in the trie */
1467 index
= get_cindex(key
, n
);
1469 /* This bit of code is a bit tricky but it combines multiple
1470 * checks into a single check. The prefix consists of the
1471 * prefix plus zeros for the "bits" in the prefix. The index
1472 * is the difference between the key and this value. From
1473 * this we can actually derive several pieces of data.
1474 * if (index >= (1ul << bits))
1475 * we have a mismatch in skip bits and failed
1477 * we know the value is cindex
1479 * This check is safe even if bits == KEYLENGTH due to the
1480 * fact that we can only allocate a node with 32 bits if a
1481 * long is greater than 32 bits.
1483 if (index
>= (1ul << n
->bits
))
1486 /* we have found a leaf. Prefixes have already been compared */
1490 /* only record pn and cindex if we are going to be chopping
1491 * bits later. Otherwise we are just wasting cycles.
1493 if (n
->slen
> n
->pos
) {
1498 n
= get_child_rcu(n
, index
);
1503 /* Step 2: Sort out leaves and begin backtracing for longest prefix */
1505 /* record the pointer where our next node pointer is stored */
1506 struct key_vector __rcu
**cptr
= n
->tnode
;
1508 /* This test verifies that none of the bits that differ
1509 * between the key and the prefix exist in the region of
1510 * the lsb and higher in the prefix.
1512 if (unlikely(prefix_mismatch(key
, n
)) || (n
->slen
== n
->pos
))
1515 /* exit out and process leaf */
1516 if (unlikely(IS_LEAF(n
)))
1519 /* Don't bother recording parent info. Since we are in
1520 * prefix match mode we will have to come back to wherever
1521 * we started this traversal anyway
1524 while ((n
= rcu_dereference(*cptr
)) == NULL
) {
1526 #ifdef CONFIG_IP_FIB_TRIE_STATS
1528 this_cpu_inc(stats
->null_node_hit
);
1530 /* If we are at cindex 0 there are no more bits for
1531 * us to strip at this level so we must ascend back
1532 * up one level to see if there are any more bits to
1533 * be stripped there.
1536 t_key pkey
= pn
->key
;
1538 /* If we don't have a parent then there is
1539 * nothing for us to do as we do not have any
1540 * further nodes to parse.
1543 trace_fib_table_lookup(tb
->tb_id
, flp
,
1547 #ifdef CONFIG_IP_FIB_TRIE_STATS
1548 this_cpu_inc(stats
->backtrack
);
1550 /* Get Child's index */
1551 pn
= node_parent_rcu(pn
);
1552 cindex
= get_index(pkey
, pn
);
1555 /* strip the least significant bit from the cindex */
1556 cindex
&= cindex
- 1;
1558 /* grab pointer for next child node */
1559 cptr
= &pn
->tnode
[cindex
];
1564 /* this line carries forward the xor from earlier in the function */
1565 index
= key
^ n
->key
;
1567 /* Step 3: Process the leaf, if that fails fall back to backtracing */
1568 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
1569 struct fib_info
*fi
= fa
->fa_info
;
1570 struct fib_nh_common
*nhc
;
1573 if ((BITS_PER_LONG
> KEYLENGTH
) || (fa
->fa_slen
< KEYLENGTH
)) {
1574 if (index
>= (1ul << fa
->fa_slen
))
1577 if (fa
->fa_dscp
&& !fib_dscp_masked_match(fa
->fa_dscp
, flp
))
1579 /* Paired with WRITE_ONCE() in fib_release_info() */
1580 if (READ_ONCE(fi
->fib_dead
))
1582 if (fa
->fa_info
->fib_scope
< flp
->flowi4_scope
)
1584 fib_alias_accessed(fa
);
1585 err
= fib_props
[fa
->fa_type
].error
;
1586 if (unlikely(err
< 0)) {
1588 #ifdef CONFIG_IP_FIB_TRIE_STATS
1589 this_cpu_inc(stats
->semantic_match_passed
);
1591 trace_fib_table_lookup(tb
->tb_id
, flp
, NULL
, err
);
1594 if (fi
->fib_flags
& RTNH_F_DEAD
)
1597 if (unlikely(fi
->nh
)) {
1598 if (nexthop_is_blackhole(fi
->nh
)) {
1599 err
= fib_props
[RTN_BLACKHOLE
].error
;
1603 nhc
= nexthop_get_nhc_lookup(fi
->nh
, fib_flags
, flp
,
1610 for (nhsel
= 0; nhsel
< fib_info_num_path(fi
); nhsel
++) {
1611 nhc
= fib_info_nhc(fi
, nhsel
);
1613 if (!fib_lookup_good_nhc(nhc
, fib_flags
, flp
))
1616 if (!(fib_flags
& FIB_LOOKUP_NOREF
))
1617 refcount_inc(&fi
->fib_clntref
);
1619 res
->prefix
= htonl(n
->key
);
1620 res
->prefixlen
= KEYLENGTH
- fa
->fa_slen
;
1621 res
->nh_sel
= nhsel
;
1623 res
->type
= fa
->fa_type
;
1624 res
->scope
= fi
->fib_scope
;
1625 res
->dscp
= fa
->fa_dscp
;
1628 res
->fa_head
= &n
->leaf
;
1629 #ifdef CONFIG_IP_FIB_TRIE_STATS
1630 this_cpu_inc(stats
->semantic_match_passed
);
1632 trace_fib_table_lookup(tb
->tb_id
, flp
, nhc
, err
);
1638 #ifdef CONFIG_IP_FIB_TRIE_STATS
1639 this_cpu_inc(stats
->semantic_match_miss
);
1643 EXPORT_SYMBOL_GPL(fib_table_lookup
);
1645 static void fib_remove_alias(struct trie
*t
, struct key_vector
*tp
,
1646 struct key_vector
*l
, struct fib_alias
*old
)
1648 /* record the location of the previous list_info entry */
1649 struct hlist_node
**pprev
= old
->fa_list
.pprev
;
1650 struct fib_alias
*fa
= hlist_entry(pprev
, typeof(*fa
), fa_list
.next
);
1652 /* remove the fib_alias from the list */
1653 hlist_del_rcu(&old
->fa_list
);
1655 /* if we emptied the list this leaf will be freed and we can sort
1656 * out parent suffix lengths as a part of trie_rebalance
1658 if (hlist_empty(&l
->leaf
)) {
1659 if (tp
->slen
== l
->slen
)
1660 node_pull_suffix(tp
, tp
->pos
);
1661 put_child_root(tp
, l
->key
, NULL
);
1663 trie_rebalance(t
, tp
);
1667 /* only access fa if it is pointing at the last valid hlist_node */
1671 /* update the trie with the latest suffix length */
1672 l
->slen
= fa
->fa_slen
;
1673 node_pull_suffix(tp
, fa
->fa_slen
);
1676 static void fib_notify_alias_delete(struct net
*net
, u32 key
,
1677 struct hlist_head
*fah
,
1678 struct fib_alias
*fa_to_delete
,
1679 struct netlink_ext_ack
*extack
)
1681 struct fib_alias
*fa_next
, *fa_to_notify
;
1682 u32 tb_id
= fa_to_delete
->tb_id
;
1683 u8 slen
= fa_to_delete
->fa_slen
;
1684 enum fib_event_type fib_event
;
1686 /* Do not notify if we do not care about the route. */
1687 if (fib_find_alias(fah
, slen
, 0, 0, tb_id
, true) != fa_to_delete
)
1690 /* Determine if the route should be replaced by the next route in the
1693 fa_next
= hlist_entry_safe(fa_to_delete
->fa_list
.next
,
1694 struct fib_alias
, fa_list
);
1695 if (fa_next
&& fa_next
->fa_slen
== slen
&& fa_next
->tb_id
== tb_id
) {
1696 fib_event
= FIB_EVENT_ENTRY_REPLACE
;
1697 fa_to_notify
= fa_next
;
1699 fib_event
= FIB_EVENT_ENTRY_DEL
;
1700 fa_to_notify
= fa_to_delete
;
1702 call_fib_entry_notifiers(net
, fib_event
, key
, KEYLENGTH
- slen
,
1703 fa_to_notify
, extack
);
1706 /* Caller must hold RTNL. */
1707 int fib_table_delete(struct net
*net
, struct fib_table
*tb
,
1708 struct fib_config
*cfg
, struct netlink_ext_ack
*extack
)
1710 struct trie
*t
= (struct trie
*) tb
->tb_data
;
1711 struct fib_alias
*fa
, *fa_to_delete
;
1712 struct key_vector
*l
, *tp
;
1713 u8 plen
= cfg
->fc_dst_len
;
1714 u8 slen
= KEYLENGTH
- plen
;
1718 key
= ntohl(cfg
->fc_dst
);
1720 if (!fib_valid_key_len(key
, plen
, extack
))
1723 l
= fib_find_node(t
, &tp
, key
);
1727 dscp
= cfg
->fc_dscp
;
1728 fa
= fib_find_alias(&l
->leaf
, slen
, dscp
, 0, tb
->tb_id
, false);
1732 pr_debug("Deleting %08x/%d dsfield=0x%02x t=%p\n", key
, plen
,
1733 inet_dscp_to_dsfield(dscp
), t
);
1735 fa_to_delete
= NULL
;
1736 hlist_for_each_entry_from(fa
, fa_list
) {
1737 struct fib_info
*fi
= fa
->fa_info
;
1739 if ((fa
->fa_slen
!= slen
) ||
1740 (fa
->tb_id
!= tb
->tb_id
) ||
1741 (fa
->fa_dscp
!= dscp
))
1744 if ((!cfg
->fc_type
|| fa
->fa_type
== cfg
->fc_type
) &&
1745 (cfg
->fc_scope
== RT_SCOPE_NOWHERE
||
1746 fa
->fa_info
->fib_scope
== cfg
->fc_scope
) &&
1747 (!cfg
->fc_prefsrc
||
1748 fi
->fib_prefsrc
== cfg
->fc_prefsrc
) &&
1749 (!cfg
->fc_protocol
||
1750 fi
->fib_protocol
== cfg
->fc_protocol
) &&
1751 fib_nh_match(net
, cfg
, fi
, extack
) == 0 &&
1752 fib_metrics_match(cfg
, fi
)) {
1761 fib_notify_alias_delete(net
, key
, &l
->leaf
, fa_to_delete
, extack
);
1762 rtmsg_fib(RTM_DELROUTE
, htonl(key
), fa_to_delete
, plen
, tb
->tb_id
,
1763 &cfg
->fc_nlinfo
, 0);
1766 tb
->tb_num_default
--;
1768 fib_remove_alias(t
, tp
, l
, fa_to_delete
);
1770 if (fa_to_delete
->fa_state
& FA_S_ACCESSED
)
1771 rt_cache_flush(cfg
->fc_nlinfo
.nl_net
);
1773 fib_release_info(fa_to_delete
->fa_info
);
1774 alias_free_mem_rcu(fa_to_delete
);
1778 /* Scan for the next leaf starting at the provided key value */
1779 static struct key_vector
*leaf_walk_rcu(struct key_vector
**tn
, t_key key
)
1781 struct key_vector
*pn
, *n
= *tn
;
1782 unsigned long cindex
;
1784 /* this loop is meant to try and find the key in the trie */
1786 /* record parent and next child index */
1788 cindex
= (key
> pn
->key
) ? get_index(key
, pn
) : 0;
1790 if (cindex
>> pn
->bits
)
1793 /* descend into the next child */
1794 n
= get_child_rcu(pn
, cindex
++);
1798 /* guarantee forward progress on the keys */
1799 if (IS_LEAF(n
) && (n
->key
>= key
))
1801 } while (IS_TNODE(n
));
1803 /* this loop will search for the next leaf with a greater key */
1804 while (!IS_TRIE(pn
)) {
1805 /* if we exhausted the parent node we will need to climb */
1806 if (cindex
>= (1ul << pn
->bits
)) {
1807 t_key pkey
= pn
->key
;
1809 pn
= node_parent_rcu(pn
);
1810 cindex
= get_index(pkey
, pn
) + 1;
1814 /* grab the next available node */
1815 n
= get_child_rcu(pn
, cindex
++);
1819 /* no need to compare keys since we bumped the index */
1823 /* Rescan start scanning in new node */
1829 return NULL
; /* Root of trie */
1831 /* if we are at the limit for keys just return NULL for the tnode */
1836 static void fib_trie_free(struct fib_table
*tb
)
1838 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1839 struct key_vector
*pn
= t
->kv
;
1840 unsigned long cindex
= 1;
1841 struct hlist_node
*tmp
;
1842 struct fib_alias
*fa
;
1844 /* walk trie in reverse order and free everything */
1846 struct key_vector
*n
;
1849 t_key pkey
= pn
->key
;
1855 pn
= node_parent(pn
);
1857 /* drop emptied tnode */
1858 put_child_root(pn
, n
->key
, NULL
);
1861 cindex
= get_index(pkey
, pn
);
1866 /* grab the next available node */
1867 n
= get_child(pn
, cindex
);
1872 /* record pn and cindex for leaf walking */
1874 cindex
= 1ul << n
->bits
;
1879 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1880 hlist_del_rcu(&fa
->fa_list
);
1881 alias_free_mem_rcu(fa
);
1884 put_child_root(pn
, n
->key
, NULL
);
1888 #ifdef CONFIG_IP_FIB_TRIE_STATS
1889 free_percpu(t
->stats
);
1894 struct fib_table
*fib_trie_unmerge(struct fib_table
*oldtb
)
1896 struct trie
*ot
= (struct trie
*)oldtb
->tb_data
;
1897 struct key_vector
*l
, *tp
= ot
->kv
;
1898 struct fib_table
*local_tb
;
1899 struct fib_alias
*fa
;
1903 if (oldtb
->tb_data
== oldtb
->__data
)
1906 local_tb
= fib_trie_table(RT_TABLE_LOCAL
, NULL
);
1910 lt
= (struct trie
*)local_tb
->tb_data
;
1912 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
1913 struct key_vector
*local_l
= NULL
, *local_tp
;
1915 hlist_for_each_entry(fa
, &l
->leaf
, fa_list
) {
1916 struct fib_alias
*new_fa
;
1918 if (local_tb
->tb_id
!= fa
->tb_id
)
1921 /* clone fa for new local table */
1922 new_fa
= kmem_cache_alloc(fn_alias_kmem
, GFP_KERNEL
);
1926 memcpy(new_fa
, fa
, sizeof(*fa
));
1928 /* insert clone into table */
1930 local_l
= fib_find_node(lt
, &local_tp
, l
->key
);
1932 if (fib_insert_alias(lt
, local_tp
, local_l
, new_fa
,
1934 kmem_cache_free(fn_alias_kmem
, new_fa
);
1939 /* stop loop if key wrapped back to 0 */
1947 fib_trie_free(local_tb
);
1952 /* Caller must hold RTNL */
1953 void fib_table_flush_external(struct fib_table
*tb
)
1955 struct trie
*t
= (struct trie
*)tb
->tb_data
;
1956 struct key_vector
*pn
= t
->kv
;
1957 unsigned long cindex
= 1;
1958 struct hlist_node
*tmp
;
1959 struct fib_alias
*fa
;
1961 /* walk trie in reverse order */
1963 unsigned char slen
= 0;
1964 struct key_vector
*n
;
1967 t_key pkey
= pn
->key
;
1969 /* cannot resize the trie vector */
1973 /* update the suffix to address pulled leaves */
1974 if (pn
->slen
> pn
->pos
)
1977 /* resize completed node */
1979 cindex
= get_index(pkey
, pn
);
1984 /* grab the next available node */
1985 n
= get_child(pn
, cindex
);
1990 /* record pn and cindex for leaf walking */
1992 cindex
= 1ul << n
->bits
;
1997 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
1998 /* if alias was cloned to local then we just
1999 * need to remove the local copy from main
2001 if (tb
->tb_id
!= fa
->tb_id
) {
2002 hlist_del_rcu(&fa
->fa_list
);
2003 alias_free_mem_rcu(fa
);
2007 /* record local slen */
2011 /* update leaf slen */
2014 if (hlist_empty(&n
->leaf
)) {
2015 put_child_root(pn
, n
->key
, NULL
);
2021 /* Caller must hold RTNL. */
2022 int fib_table_flush(struct net
*net
, struct fib_table
*tb
, bool flush_all
)
2024 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2025 struct nl_info info
= { .nl_net
= net
};
2026 struct key_vector
*pn
= t
->kv
;
2027 unsigned long cindex
= 1;
2028 struct hlist_node
*tmp
;
2029 struct fib_alias
*fa
;
2032 /* walk trie in reverse order */
2034 unsigned char slen
= 0;
2035 struct key_vector
*n
;
2038 t_key pkey
= pn
->key
;
2040 /* cannot resize the trie vector */
2044 /* update the suffix to address pulled leaves */
2045 if (pn
->slen
> pn
->pos
)
2048 /* resize completed node */
2050 cindex
= get_index(pkey
, pn
);
2055 /* grab the next available node */
2056 n
= get_child(pn
, cindex
);
2061 /* record pn and cindex for leaf walking */
2063 cindex
= 1ul << n
->bits
;
2068 hlist_for_each_entry_safe(fa
, tmp
, &n
->leaf
, fa_list
) {
2069 struct fib_info
*fi
= fa
->fa_info
;
2071 if (!fi
|| tb
->tb_id
!= fa
->tb_id
||
2072 (!(fi
->fib_flags
& RTNH_F_DEAD
) &&
2073 !fib_props
[fa
->fa_type
].error
)) {
2078 /* Do not flush error routes if network namespace is
2079 * not being dismantled
2081 if (!flush_all
&& fib_props
[fa
->fa_type
].error
) {
2086 fib_notify_alias_delete(net
, n
->key
, &n
->leaf
, fa
,
2088 if (fi
->pfsrc_removed
)
2089 rtmsg_fib(RTM_DELROUTE
, htonl(n
->key
), fa
,
2090 KEYLENGTH
- fa
->fa_slen
, tb
->tb_id
, &info
, 0);
2091 hlist_del_rcu(&fa
->fa_list
);
2092 fib_release_info(fa
->fa_info
);
2093 alias_free_mem_rcu(fa
);
2097 /* update leaf slen */
2100 if (hlist_empty(&n
->leaf
)) {
2101 put_child_root(pn
, n
->key
, NULL
);
2106 pr_debug("trie_flush found=%d\n", found
);
2110 /* derived from fib_trie_free */
2111 static void __fib_info_notify_update(struct net
*net
, struct fib_table
*tb
,
2112 struct nl_info
*info
)
2114 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2115 struct key_vector
*pn
= t
->kv
;
2116 unsigned long cindex
= 1;
2117 struct fib_alias
*fa
;
2120 struct key_vector
*n
;
2123 t_key pkey
= pn
->key
;
2128 pn
= node_parent(pn
);
2129 cindex
= get_index(pkey
, pn
);
2133 /* grab the next available node */
2134 n
= get_child(pn
, cindex
);
2139 /* record pn and cindex for leaf walking */
2141 cindex
= 1ul << n
->bits
;
2146 hlist_for_each_entry(fa
, &n
->leaf
, fa_list
) {
2147 struct fib_info
*fi
= fa
->fa_info
;
2149 if (!fi
|| !fi
->nh_updated
|| fa
->tb_id
!= tb
->tb_id
)
2152 rtmsg_fib(RTM_NEWROUTE
, htonl(n
->key
), fa
,
2153 KEYLENGTH
- fa
->fa_slen
, tb
->tb_id
,
2154 info
, NLM_F_REPLACE
);
2159 void fib_info_notify_update(struct net
*net
, struct nl_info
*info
)
2163 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2164 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2165 struct fib_table
*tb
;
2167 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
,
2168 lockdep_rtnl_is_held())
2169 __fib_info_notify_update(net
, tb
, info
);
2173 static int fib_leaf_notify(struct key_vector
*l
, struct fib_table
*tb
,
2174 struct notifier_block
*nb
,
2175 struct netlink_ext_ack
*extack
)
2177 struct fib_alias
*fa
;
2181 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2182 struct fib_info
*fi
= fa
->fa_info
;
2187 /* local and main table can share the same trie,
2188 * so don't notify twice for the same entry.
2190 if (tb
->tb_id
!= fa
->tb_id
)
2193 if (fa
->fa_slen
== last_slen
)
2196 last_slen
= fa
->fa_slen
;
2197 err
= call_fib_entry_notifier(nb
, FIB_EVENT_ENTRY_REPLACE
,
2198 l
->key
, KEYLENGTH
- fa
->fa_slen
,
2206 static int fib_table_notify(struct fib_table
*tb
, struct notifier_block
*nb
,
2207 struct netlink_ext_ack
*extack
)
2209 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2210 struct key_vector
*l
, *tp
= t
->kv
;
2214 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
2215 err
= fib_leaf_notify(l
, tb
, nb
, extack
);
2220 /* stop in case of wrap around */
2227 int fib_notify(struct net
*net
, struct notifier_block
*nb
,
2228 struct netlink_ext_ack
*extack
)
2233 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2234 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2235 struct fib_table
*tb
;
2237 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2238 err
= fib_table_notify(tb
, nb
, extack
);
2246 static void __trie_free_rcu(struct rcu_head
*head
)
2248 struct fib_table
*tb
= container_of(head
, struct fib_table
, rcu
);
2249 #ifdef CONFIG_IP_FIB_TRIE_STATS
2250 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2252 if (tb
->tb_data
== tb
->__data
)
2253 free_percpu(t
->stats
);
2254 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2258 void fib_free_table(struct fib_table
*tb
)
2260 call_rcu(&tb
->rcu
, __trie_free_rcu
);
2263 static int fn_trie_dump_leaf(struct key_vector
*l
, struct fib_table
*tb
,
2264 struct sk_buff
*skb
, struct netlink_callback
*cb
,
2265 struct fib_dump_filter
*filter
)
2267 unsigned int flags
= NLM_F_MULTI
;
2268 __be32 xkey
= htonl(l
->key
);
2269 int i
, s_i
, i_fa
, s_fa
, err
;
2270 struct fib_alias
*fa
;
2272 if (filter
->filter_set
||
2273 !filter
->dump_exceptions
|| !filter
->dump_routes
)
2274 flags
|= NLM_F_DUMP_FILTERED
;
2280 /* rcu_read_lock is hold by caller */
2281 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2282 struct fib_info
*fi
= fa
->fa_info
;
2289 if (tb
->tb_id
!= fa
->tb_id
)
2292 if (filter
->filter_set
) {
2293 if (filter
->rt_type
&& fa
->fa_type
!= filter
->rt_type
)
2296 if ((filter
->protocol
&&
2297 fi
->fib_protocol
!= filter
->protocol
))
2301 !fib_info_nh_uses_dev(fi
, filter
->dev
))
2305 if (filter
->dump_routes
) {
2307 struct fib_rt_info fri
;
2310 fri
.tb_id
= tb
->tb_id
;
2312 fri
.dst_len
= KEYLENGTH
- fa
->fa_slen
;
2313 fri
.dscp
= fa
->fa_dscp
;
2314 fri
.type
= fa
->fa_type
;
2315 fri
.offload
= READ_ONCE(fa
->offload
);
2316 fri
.trap
= READ_ONCE(fa
->trap
);
2317 fri
.offload_failed
= READ_ONCE(fa
->offload_failed
);
2318 err
= fib_dump_info(skb
,
2319 NETLINK_CB(cb
->skb
).portid
,
2321 RTM_NEWROUTE
, &fri
, flags
);
2329 if (filter
->dump_exceptions
) {
2330 err
= fib_dump_info_fnhe(skb
, cb
, tb
->tb_id
, fi
,
2331 &i_fa
, s_fa
, flags
);
2349 /* rcu_read_lock needs to be hold by caller from readside */
2350 int fib_table_dump(struct fib_table
*tb
, struct sk_buff
*skb
,
2351 struct netlink_callback
*cb
, struct fib_dump_filter
*filter
)
2353 struct trie
*t
= (struct trie
*)tb
->tb_data
;
2354 struct key_vector
*l
, *tp
= t
->kv
;
2355 /* Dump starting at last key.
2356 * Note: 0.0.0.0/0 (ie default) is first key.
2358 int count
= cb
->args
[2];
2359 t_key key
= cb
->args
[3];
2361 /* First time here, count and key are both always 0. Count > 0
2362 * and key == 0 means the dump has wrapped around and we are done.
2367 while ((l
= leaf_walk_rcu(&tp
, key
)) != NULL
) {
2370 err
= fn_trie_dump_leaf(l
, tb
, skb
, cb
, filter
);
2373 cb
->args
[2] = count
;
2380 memset(&cb
->args
[4], 0,
2381 sizeof(cb
->args
) - 4*sizeof(cb
->args
[0]));
2383 /* stop loop if key wrapped back to 0 */
2389 cb
->args
[2] = count
;
2394 void __init
fib_trie_init(void)
2396 fn_alias_kmem
= kmem_cache_create("ip_fib_alias",
2397 sizeof(struct fib_alias
),
2398 0, SLAB_PANIC
| SLAB_ACCOUNT
, NULL
);
2400 trie_leaf_kmem
= kmem_cache_create("ip_fib_trie",
2402 0, SLAB_PANIC
| SLAB_ACCOUNT
, NULL
);
2405 struct fib_table
*fib_trie_table(u32 id
, struct fib_table
*alias
)
2407 struct fib_table
*tb
;
2409 size_t sz
= sizeof(*tb
);
2412 sz
+= sizeof(struct trie
);
2414 tb
= kzalloc(sz
, GFP_KERNEL
);
2419 tb
->tb_num_default
= 0;
2420 tb
->tb_data
= (alias
? alias
->__data
: tb
->__data
);
2425 t
= (struct trie
*) tb
->tb_data
;
2426 t
->kv
[0].pos
= KEYLENGTH
;
2427 t
->kv
[0].slen
= KEYLENGTH
;
2428 #ifdef CONFIG_IP_FIB_TRIE_STATS
2429 t
->stats
= alloc_percpu(struct trie_use_stats
);
2439 #ifdef CONFIG_PROC_FS
2440 /* Depth first Trie walk iterator */
2441 struct fib_trie_iter
{
2442 struct seq_net_private p
;
2443 struct fib_table
*tb
;
2444 struct key_vector
*tnode
;
2449 static struct key_vector
*fib_trie_get_next(struct fib_trie_iter
*iter
)
2451 unsigned long cindex
= iter
->index
;
2452 struct key_vector
*pn
= iter
->tnode
;
2455 pr_debug("get_next iter={node=%p index=%d depth=%d}\n",
2456 iter
->tnode
, iter
->index
, iter
->depth
);
2458 while (!IS_TRIE(pn
)) {
2459 while (cindex
< child_length(pn
)) {
2460 struct key_vector
*n
= get_child_rcu(pn
, cindex
++);
2467 iter
->index
= cindex
;
2469 /* push down one level */
2478 /* Current node exhausted, pop back up */
2480 pn
= node_parent_rcu(pn
);
2481 cindex
= get_index(pkey
, pn
) + 1;
2485 /* record root node so further searches know we are done */
2492 static struct key_vector
*fib_trie_get_first(struct fib_trie_iter
*iter
,
2495 struct key_vector
*n
, *pn
;
2501 n
= rcu_dereference(pn
->tnode
[0]);
2518 static void trie_collect_stats(struct trie
*t
, struct trie_stat
*s
)
2520 struct key_vector
*n
;
2521 struct fib_trie_iter iter
;
2523 memset(s
, 0, sizeof(*s
));
2526 for (n
= fib_trie_get_first(&iter
, t
); n
; n
= fib_trie_get_next(&iter
)) {
2528 struct fib_alias
*fa
;
2531 s
->totdepth
+= iter
.depth
;
2532 if (iter
.depth
> s
->maxdepth
)
2533 s
->maxdepth
= iter
.depth
;
2535 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
)
2539 if (n
->bits
< MAX_STAT_DEPTH
)
2540 s
->nodesizes
[n
->bits
]++;
2541 s
->nullpointers
+= tn_info(n
)->empty_children
;
2548 * This outputs /proc/net/fib_triestats
2550 static void trie_show_stats(struct seq_file
*seq
, struct trie_stat
*stat
)
2552 unsigned int i
, max
, pointers
, bytes
, avdepth
;
2555 avdepth
= stat
->totdepth
*100 / stat
->leaves
;
2559 seq_printf(seq
, "\tAver depth: %u.%02d\n",
2560 avdepth
/ 100, avdepth
% 100);
2561 seq_printf(seq
, "\tMax depth: %u\n", stat
->maxdepth
);
2563 seq_printf(seq
, "\tLeaves: %u\n", stat
->leaves
);
2564 bytes
= LEAF_SIZE
* stat
->leaves
;
2566 seq_printf(seq
, "\tPrefixes: %u\n", stat
->prefixes
);
2567 bytes
+= sizeof(struct fib_alias
) * stat
->prefixes
;
2569 seq_printf(seq
, "\tInternal nodes: %u\n\t", stat
->tnodes
);
2570 bytes
+= TNODE_SIZE(0) * stat
->tnodes
;
2572 max
= MAX_STAT_DEPTH
;
2573 while (max
> 0 && stat
->nodesizes
[max
-1] == 0)
2577 for (i
= 1; i
< max
; i
++)
2578 if (stat
->nodesizes
[i
] != 0) {
2579 seq_printf(seq
, " %u: %u", i
, stat
->nodesizes
[i
]);
2580 pointers
+= (1<<i
) * stat
->nodesizes
[i
];
2582 seq_putc(seq
, '\n');
2583 seq_printf(seq
, "\tPointers: %u\n", pointers
);
2585 bytes
+= sizeof(struct key_vector
*) * pointers
;
2586 seq_printf(seq
, "Null ptrs: %u\n", stat
->nullpointers
);
2587 seq_printf(seq
, "Total size: %u kB\n", (bytes
+ 1023) / 1024);
2590 #ifdef CONFIG_IP_FIB_TRIE_STATS
2591 static void trie_show_usage(struct seq_file
*seq
,
2592 const struct trie_use_stats __percpu
*stats
)
2594 struct trie_use_stats s
= { 0 };
2597 /* loop through all of the CPUs and gather up the stats */
2598 for_each_possible_cpu(cpu
) {
2599 const struct trie_use_stats
*pcpu
= per_cpu_ptr(stats
, cpu
);
2601 s
.gets
+= pcpu
->gets
;
2602 s
.backtrack
+= pcpu
->backtrack
;
2603 s
.semantic_match_passed
+= pcpu
->semantic_match_passed
;
2604 s
.semantic_match_miss
+= pcpu
->semantic_match_miss
;
2605 s
.null_node_hit
+= pcpu
->null_node_hit
;
2606 s
.resize_node_skipped
+= pcpu
->resize_node_skipped
;
2609 seq_printf(seq
, "\nCounters:\n---------\n");
2610 seq_printf(seq
, "gets = %u\n", s
.gets
);
2611 seq_printf(seq
, "backtracks = %u\n", s
.backtrack
);
2612 seq_printf(seq
, "semantic match passed = %u\n",
2613 s
.semantic_match_passed
);
2614 seq_printf(seq
, "semantic match miss = %u\n", s
.semantic_match_miss
);
2615 seq_printf(seq
, "null node hit= %u\n", s
.null_node_hit
);
2616 seq_printf(seq
, "skipped node resize = %u\n\n", s
.resize_node_skipped
);
2618 #endif /* CONFIG_IP_FIB_TRIE_STATS */
2620 static void fib_table_print(struct seq_file
*seq
, struct fib_table
*tb
)
2622 if (tb
->tb_id
== RT_TABLE_LOCAL
)
2623 seq_puts(seq
, "Local:\n");
2624 else if (tb
->tb_id
== RT_TABLE_MAIN
)
2625 seq_puts(seq
, "Main:\n");
2627 seq_printf(seq
, "Id %d:\n", tb
->tb_id
);
2631 static int fib_triestat_seq_show(struct seq_file
*seq
, void *v
)
2633 struct net
*net
= seq
->private;
2637 "Basic info: size of leaf:"
2638 " %zd bytes, size of tnode: %zd bytes.\n",
2639 LEAF_SIZE
, TNODE_SIZE(0));
2642 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2643 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2644 struct fib_table
*tb
;
2646 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2647 struct trie
*t
= (struct trie
*) tb
->tb_data
;
2648 struct trie_stat stat
;
2653 fib_table_print(seq
, tb
);
2655 trie_collect_stats(t
, &stat
);
2656 trie_show_stats(seq
, &stat
);
2657 #ifdef CONFIG_IP_FIB_TRIE_STATS
2658 trie_show_usage(seq
, t
->stats
);
2668 static struct key_vector
*fib_trie_get_idx(struct seq_file
*seq
, loff_t pos
)
2670 struct fib_trie_iter
*iter
= seq
->private;
2671 struct net
*net
= seq_file_net(seq
);
2675 for (h
= 0; h
< FIB_TABLE_HASHSZ
; h
++) {
2676 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2677 struct fib_table
*tb
;
2679 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2680 struct key_vector
*n
;
2682 for (n
= fib_trie_get_first(iter
,
2683 (struct trie
*) tb
->tb_data
);
2684 n
; n
= fib_trie_get_next(iter
))
2695 static void *fib_trie_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2699 return fib_trie_get_idx(seq
, *pos
);
2702 static void *fib_trie_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2704 struct fib_trie_iter
*iter
= seq
->private;
2705 struct net
*net
= seq_file_net(seq
);
2706 struct fib_table
*tb
= iter
->tb
;
2707 struct hlist_node
*tb_node
;
2709 struct key_vector
*n
;
2712 /* next node in same table */
2713 n
= fib_trie_get_next(iter
);
2717 /* walk rest of this hash chain */
2718 h
= tb
->tb_id
& (FIB_TABLE_HASHSZ
- 1);
2719 while ((tb_node
= rcu_dereference(hlist_next_rcu(&tb
->tb_hlist
)))) {
2720 tb
= hlist_entry(tb_node
, struct fib_table
, tb_hlist
);
2721 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2726 /* new hash chain */
2727 while (++h
< FIB_TABLE_HASHSZ
) {
2728 struct hlist_head
*head
= &net
->ipv4
.fib_table_hash
[h
];
2729 hlist_for_each_entry_rcu(tb
, head
, tb_hlist
) {
2730 n
= fib_trie_get_first(iter
, (struct trie
*) tb
->tb_data
);
2742 static void fib_trie_seq_stop(struct seq_file
*seq
, void *v
)
2748 static void seq_indent(struct seq_file
*seq
, int n
)
2754 static inline const char *rtn_scope(char *buf
, size_t len
, enum rt_scope_t s
)
2757 case RT_SCOPE_UNIVERSE
: return "universe";
2758 case RT_SCOPE_SITE
: return "site";
2759 case RT_SCOPE_LINK
: return "link";
2760 case RT_SCOPE_HOST
: return "host";
2761 case RT_SCOPE_NOWHERE
: return "nowhere";
2763 snprintf(buf
, len
, "scope=%d", s
);
2768 static const char *const rtn_type_names
[__RTN_MAX
] = {
2769 [RTN_UNSPEC
] = "UNSPEC",
2770 [RTN_UNICAST
] = "UNICAST",
2771 [RTN_LOCAL
] = "LOCAL",
2772 [RTN_BROADCAST
] = "BROADCAST",
2773 [RTN_ANYCAST
] = "ANYCAST",
2774 [RTN_MULTICAST
] = "MULTICAST",
2775 [RTN_BLACKHOLE
] = "BLACKHOLE",
2776 [RTN_UNREACHABLE
] = "UNREACHABLE",
2777 [RTN_PROHIBIT
] = "PROHIBIT",
2778 [RTN_THROW
] = "THROW",
2780 [RTN_XRESOLVE
] = "XRESOLVE",
2783 static inline const char *rtn_type(char *buf
, size_t len
, unsigned int t
)
2785 if (t
< __RTN_MAX
&& rtn_type_names
[t
])
2786 return rtn_type_names
[t
];
2787 snprintf(buf
, len
, "type %u", t
);
2791 /* Pretty print the trie */
2792 static int fib_trie_seq_show(struct seq_file
*seq
, void *v
)
2794 const struct fib_trie_iter
*iter
= seq
->private;
2795 struct key_vector
*n
= v
;
2797 if (IS_TRIE(node_parent_rcu(n
)))
2798 fib_table_print(seq
, iter
->tb
);
2801 __be32 prf
= htonl(n
->key
);
2803 seq_indent(seq
, iter
->depth
-1);
2804 seq_printf(seq
, " +-- %pI4/%zu %u %u %u\n",
2805 &prf
, KEYLENGTH
- n
->pos
- n
->bits
, n
->bits
,
2806 tn_info(n
)->full_children
,
2807 tn_info(n
)->empty_children
);
2809 __be32 val
= htonl(n
->key
);
2810 struct fib_alias
*fa
;
2812 seq_indent(seq
, iter
->depth
);
2813 seq_printf(seq
, " |-- %pI4\n", &val
);
2815 hlist_for_each_entry_rcu(fa
, &n
->leaf
, fa_list
) {
2816 char buf1
[32], buf2
[32];
2818 seq_indent(seq
, iter
->depth
+ 1);
2819 seq_printf(seq
, " /%zu %s %s",
2820 KEYLENGTH
- fa
->fa_slen
,
2821 rtn_scope(buf1
, sizeof(buf1
),
2822 fa
->fa_info
->fib_scope
),
2823 rtn_type(buf2
, sizeof(buf2
),
2826 seq_printf(seq
, " tos=%d",
2827 inet_dscp_to_dsfield(fa
->fa_dscp
));
2828 seq_putc(seq
, '\n');
2835 static const struct seq_operations fib_trie_seq_ops
= {
2836 .start
= fib_trie_seq_start
,
2837 .next
= fib_trie_seq_next
,
2838 .stop
= fib_trie_seq_stop
,
2839 .show
= fib_trie_seq_show
,
2842 struct fib_route_iter
{
2843 struct seq_net_private p
;
2844 struct fib_table
*main_tb
;
2845 struct key_vector
*tnode
;
2850 static struct key_vector
*fib_route_get_idx(struct fib_route_iter
*iter
,
2853 struct key_vector
*l
, **tp
= &iter
->tnode
;
2856 /* use cached location of previously found key */
2857 if (iter
->pos
> 0 && pos
>= iter
->pos
) {
2866 while ((l
= leaf_walk_rcu(tp
, key
)) && (pos
-- > 0)) {
2871 /* handle unlikely case of a key wrap */
2877 iter
->key
= l
->key
; /* remember it */
2879 iter
->pos
= 0; /* forget it */
2884 static void *fib_route_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2887 struct fib_route_iter
*iter
= seq
->private;
2888 struct fib_table
*tb
;
2893 tb
= fib_get_table(seq_file_net(seq
), RT_TABLE_MAIN
);
2898 t
= (struct trie
*)tb
->tb_data
;
2899 iter
->tnode
= t
->kv
;
2902 return fib_route_get_idx(iter
, *pos
);
2905 iter
->key
= KEY_MAX
;
2907 return SEQ_START_TOKEN
;
2910 static void *fib_route_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2912 struct fib_route_iter
*iter
= seq
->private;
2913 struct key_vector
*l
= NULL
;
2914 t_key key
= iter
->key
+ 1;
2918 /* only allow key of 0 for start of sequence */
2919 if ((v
== SEQ_START_TOKEN
) || key
)
2920 l
= leaf_walk_rcu(&iter
->tnode
, key
);
2932 static void fib_route_seq_stop(struct seq_file
*seq
, void *v
)
2938 static unsigned int fib_flag_trans(int type
, __be32 mask
, struct fib_info
*fi
)
2940 unsigned int flags
= 0;
2942 if (type
== RTN_UNREACHABLE
|| type
== RTN_PROHIBIT
)
2945 const struct fib_nh_common
*nhc
= fib_info_nhc(fi
, 0);
2947 if (nhc
->nhc_gw
.ipv4
)
2948 flags
|= RTF_GATEWAY
;
2950 if (mask
== htonl(0xFFFFFFFF))
2957 * This outputs /proc/net/route.
2958 * The format of the file is not supposed to be changed
2959 * and needs to be same as fib_hash output to avoid breaking
2962 static int fib_route_seq_show(struct seq_file
*seq
, void *v
)
2964 struct fib_route_iter
*iter
= seq
->private;
2965 struct fib_table
*tb
= iter
->main_tb
;
2966 struct fib_alias
*fa
;
2967 struct key_vector
*l
= v
;
2970 if (v
== SEQ_START_TOKEN
) {
2971 seq_printf(seq
, "%-127s\n", "Iface\tDestination\tGateway "
2972 "\tFlags\tRefCnt\tUse\tMetric\tMask\t\tMTU"
2977 prefix
= htonl(l
->key
);
2979 hlist_for_each_entry_rcu(fa
, &l
->leaf
, fa_list
) {
2980 struct fib_info
*fi
= fa
->fa_info
;
2981 __be32 mask
= inet_make_mask(KEYLENGTH
- fa
->fa_slen
);
2982 unsigned int flags
= fib_flag_trans(fa
->fa_type
, mask
, fi
);
2984 if ((fa
->fa_type
== RTN_BROADCAST
) ||
2985 (fa
->fa_type
== RTN_MULTICAST
))
2988 if (fa
->tb_id
!= tb
->tb_id
)
2991 seq_setwidth(seq
, 127);
2994 struct fib_nh_common
*nhc
= fib_info_nhc(fi
, 0);
2997 if (nhc
->nhc_gw_family
== AF_INET
)
2998 gw
= nhc
->nhc_gw
.ipv4
;
3001 "%s\t%08X\t%08X\t%04X\t%d\t%u\t"
3002 "%d\t%08X\t%d\t%u\t%u",
3003 nhc
->nhc_dev
? nhc
->nhc_dev
->name
: "*",
3004 prefix
, gw
, flags
, 0, 0,
3008 fi
->fib_advmss
+ 40 : 0),
3013 "*\t%08X\t%08X\t%04X\t%d\t%u\t"
3014 "%d\t%08X\t%d\t%u\t%u",
3015 prefix
, 0, flags
, 0, 0, 0,
3024 static const struct seq_operations fib_route_seq_ops
= {
3025 .start
= fib_route_seq_start
,
3026 .next
= fib_route_seq_next
,
3027 .stop
= fib_route_seq_stop
,
3028 .show
= fib_route_seq_show
,
3031 int __net_init
fib_proc_init(struct net
*net
)
3033 if (!proc_create_net("fib_trie", 0444, net
->proc_net
, &fib_trie_seq_ops
,
3034 sizeof(struct fib_trie_iter
)))
3037 if (!proc_create_net_single("fib_triestat", 0444, net
->proc_net
,
3038 fib_triestat_seq_show
, NULL
))
3041 if (!proc_create_net("route", 0444, net
->proc_net
, &fib_route_seq_ops
,
3042 sizeof(struct fib_route_iter
)))
3048 remove_proc_entry("fib_triestat", net
->proc_net
);
3050 remove_proc_entry("fib_trie", net
->proc_net
);
3055 void __net_exit
fib_proc_exit(struct net
*net
)
3057 remove_proc_entry("fib_trie", net
->proc_net
);
3058 remove_proc_entry("fib_triestat", net
->proc_net
);
3059 remove_proc_entry("route", net
->proc_net
);
3062 #endif /* CONFIG_PROC_FS */