1 // SPDX-License-Identifier: GPL-2.0
5 static u32
tcp_rack_reo_wnd(const struct sock
*sk
)
7 const struct tcp_sock
*tp
= tcp_sk(sk
);
10 /* If reordering has not been observed, be aggressive during
11 * the recovery or starting the recovery by DUPACK threshold.
13 if (inet_csk(sk
)->icsk_ca_state
>= TCP_CA_Recovery
)
16 if (tp
->sacked_out
>= tp
->reordering
&&
17 !(READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_recovery
) &
18 TCP_RACK_NO_DUPTHRESH
))
22 /* To be more reordering resilient, allow min_rtt/4 settling delay.
23 * Use min_rtt instead of the smoothed RTT because reordering is
24 * often a path property and less related to queuing or delayed ACKs.
25 * Upon receiving DSACKs, linearly increase the window up to the
28 return min((tcp_min_rtt(tp
) >> 2) * tp
->rack
.reo_wnd_steps
,
32 s32
tcp_rack_skb_timeout(struct tcp_sock
*tp
, struct sk_buff
*skb
, u32 reo_wnd
)
34 return tp
->rack
.rtt_us
+ reo_wnd
-
35 tcp_stamp_us_delta(tp
->tcp_mstamp
, tcp_skb_timestamp_us(skb
));
38 /* RACK loss detection (IETF draft draft-ietf-tcpm-rack-01):
40 * Marks a packet lost, if some packet sent later has been (s)acked.
41 * The underlying idea is similar to the traditional dupthresh and FACK
42 * but they look at different metrics:
44 * dupthresh: 3 OOO packets delivered (packet count)
45 * FACK: sequence delta to highest sacked sequence (sequence space)
46 * RACK: sent time delta to the latest delivered packet (time domain)
48 * The advantage of RACK is it applies to both original and retransmitted
49 * packet and therefore is robust against tail losses. Another advantage
50 * is being more resilient to reordering by simply allowing some
51 * "settling delay", instead of tweaking the dupthresh.
53 * When tcp_rack_detect_loss() detects some packets are lost and we
54 * are not already in the CA_Recovery state, either tcp_rack_reo_timeout()
55 * or tcp_time_to_recover()'s "Trick#1: the loss is proven" code path will
56 * make us enter the CA_Recovery state.
58 static void tcp_rack_detect_loss(struct sock
*sk
, u32
*reo_timeout
)
60 struct tcp_sock
*tp
= tcp_sk(sk
);
61 struct sk_buff
*skb
, *n
;
65 reo_wnd
= tcp_rack_reo_wnd(sk
);
66 list_for_each_entry_safe(skb
, n
, &tp
->tsorted_sent_queue
,
68 struct tcp_skb_cb
*scb
= TCP_SKB_CB(skb
);
71 /* Skip ones marked lost but not yet retransmitted */
72 if ((scb
->sacked
& TCPCB_LOST
) &&
73 !(scb
->sacked
& TCPCB_SACKED_RETRANS
))
76 if (!tcp_skb_sent_after(tp
->rack
.mstamp
,
77 tcp_skb_timestamp_us(skb
),
78 tp
->rack
.end_seq
, scb
->end_seq
))
81 /* A packet is lost if it has not been s/acked beyond
82 * the recent RTT plus the reordering window.
84 remaining
= tcp_rack_skb_timeout(tp
, skb
, reo_wnd
);
86 tcp_mark_skb_lost(sk
, skb
);
87 list_del_init(&skb
->tcp_tsorted_anchor
);
89 /* Record maximum wait time */
90 *reo_timeout
= max_t(u32
, *reo_timeout
, remaining
);
95 bool tcp_rack_mark_lost(struct sock
*sk
)
97 struct tcp_sock
*tp
= tcp_sk(sk
);
100 if (!tp
->rack
.advanced
)
103 /* Reset the advanced flag to avoid unnecessary queue scanning */
104 tp
->rack
.advanced
= 0;
105 tcp_rack_detect_loss(sk
, &timeout
);
107 timeout
= usecs_to_jiffies(timeout
+ TCP_TIMEOUT_MIN_US
);
108 inet_csk_reset_xmit_timer(sk
, ICSK_TIME_REO_TIMEOUT
,
109 timeout
, inet_csk(sk
)->icsk_rto
);
114 /* Record the most recently (re)sent time among the (s)acked packets
115 * This is "Step 3: Advance RACK.xmit_time and update RACK.RTT" from
116 * draft-cheng-tcpm-rack-00.txt
118 void tcp_rack_advance(struct tcp_sock
*tp
, u8 sacked
, u32 end_seq
,
123 rtt_us
= tcp_stamp_us_delta(tp
->tcp_mstamp
, xmit_time
);
124 if (rtt_us
< tcp_min_rtt(tp
) && (sacked
& TCPCB_RETRANS
)) {
125 /* If the sacked packet was retransmitted, it's ambiguous
126 * whether the retransmission or the original (or the prior
127 * retransmission) was sacked.
129 * If the original is lost, there is no ambiguity. Otherwise
130 * we assume the original can be delayed up to aRTT + min_rtt.
131 * the aRTT term is bounded by the fast recovery or timeout,
132 * so it's at least one RTT (i.e., retransmission is at least
137 tp
->rack
.advanced
= 1;
138 tp
->rack
.rtt_us
= rtt_us
;
139 if (tcp_skb_sent_after(xmit_time
, tp
->rack
.mstamp
,
140 end_seq
, tp
->rack
.end_seq
)) {
141 tp
->rack
.mstamp
= xmit_time
;
142 tp
->rack
.end_seq
= end_seq
;
146 /* We have waited long enough to accommodate reordering. Mark the expired
147 * packets lost and retransmit them.
149 void tcp_rack_reo_timeout(struct sock
*sk
)
151 struct tcp_sock
*tp
= tcp_sk(sk
);
152 u32 timeout
, prior_inflight
;
155 prior_inflight
= tcp_packets_in_flight(tp
);
156 tcp_rack_detect_loss(sk
, &timeout
);
157 if (prior_inflight
!= tcp_packets_in_flight(tp
)) {
158 if (inet_csk(sk
)->icsk_ca_state
!= TCP_CA_Recovery
) {
159 tcp_enter_recovery(sk
, false);
160 if (!inet_csk(sk
)->icsk_ca_ops
->cong_control
)
161 tcp_cwnd_reduction(sk
, 1, tp
->lost
- lost
, 0);
163 tcp_xmit_retransmit_queue(sk
);
165 if (inet_csk(sk
)->icsk_pending
!= ICSK_TIME_RETRANS
)
169 /* Updates the RACK's reo_wnd based on DSACK and no. of recoveries.
171 * If a DSACK is received that seems like it may have been due to reordering
172 * triggering fast recovery, increment reo_wnd by min_rtt/4 (upper bounded
173 * by srtt), since there is possibility that spurious retransmission was
174 * due to reordering delay longer than reo_wnd.
176 * Persist the current reo_wnd value for TCP_RACK_RECOVERY_THRESH (16)
177 * no. of successful recoveries (accounts for full DSACK-based loss
178 * recovery undo). After that, reset it to default (min_rtt/4).
180 * At max, reo_wnd is incremented only once per rtt. So that the new
181 * DSACK on which we are reacting, is due to the spurious retx (approx)
182 * after the reo_wnd has been updated last time.
184 * reo_wnd is tracked in terms of steps (of min_rtt/4), rather than
185 * absolute value to account for change in rtt.
187 void tcp_rack_update_reo_wnd(struct sock
*sk
, struct rate_sample
*rs
)
189 struct tcp_sock
*tp
= tcp_sk(sk
);
191 if ((READ_ONCE(sock_net(sk
)->ipv4
.sysctl_tcp_recovery
) &
192 TCP_RACK_STATIC_REO_WND
) ||
193 !rs
->prior_delivered
)
196 /* Disregard DSACK if a rtt has not passed since we adjusted reo_wnd */
197 if (before(rs
->prior_delivered
, tp
->rack
.last_delivered
))
198 tp
->rack
.dsack_seen
= 0;
200 /* Adjust the reo_wnd if update is pending */
201 if (tp
->rack
.dsack_seen
) {
202 tp
->rack
.reo_wnd_steps
= min_t(u32
, 0xFF,
203 tp
->rack
.reo_wnd_steps
+ 1);
204 tp
->rack
.dsack_seen
= 0;
205 tp
->rack
.last_delivered
= tp
->delivered
;
206 tp
->rack
.reo_wnd_persist
= TCP_RACK_RECOVERY_THRESH
;
207 } else if (!tp
->rack
.reo_wnd_persist
) {
208 tp
->rack
.reo_wnd_steps
= 1;
212 /* RFC6582 NewReno recovery for non-SACK connection. It simply retransmits
213 * the next unacked packet upon receiving
214 * a) three or more DUPACKs to start the fast recovery
215 * b) an ACK acknowledging new data during the fast recovery.
217 void tcp_newreno_mark_lost(struct sock
*sk
, bool snd_una_advanced
)
219 const u8 state
= inet_csk(sk
)->icsk_ca_state
;
220 struct tcp_sock
*tp
= tcp_sk(sk
);
222 if ((state
< TCP_CA_Recovery
&& tp
->sacked_out
>= tp
->reordering
) ||
223 (state
== TCP_CA_Recovery
&& snd_una_advanced
)) {
224 struct sk_buff
*skb
= tcp_rtx_queue_head(sk
);
227 if (TCP_SKB_CB(skb
)->sacked
& TCPCB_LOST
)
230 mss
= tcp_skb_mss(skb
);
231 if (tcp_skb_pcount(skb
) > 1 && skb
->len
> mss
)
232 tcp_fragment(sk
, TCP_FRAG_IN_RTX_QUEUE
, skb
,
233 mss
, mss
, GFP_ATOMIC
);
235 tcp_mark_skb_lost(sk
, skb
);