drm/ast: Fix ast_dp connection status
[drm/drm-misc.git] / net / openvswitch / actions.c
blob16e26001468449ab0a5e9ac6aa8704c6f9228549
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2007-2017 Nicira, Inc.
4 */
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 #include <linux/skbuff.h>
9 #include <linux/in.h>
10 #include <linux/ip.h>
11 #include <linux/openvswitch.h>
12 #include <linux/sctp.h>
13 #include <linux/tcp.h>
14 #include <linux/udp.h>
15 #include <linux/in6.h>
16 #include <linux/if_arp.h>
17 #include <linux/if_vlan.h>
19 #include <net/dst.h>
20 #include <net/gso.h>
21 #include <net/ip.h>
22 #include <net/ipv6.h>
23 #include <net/ip6_fib.h>
24 #include <net/checksum.h>
25 #include <net/dsfield.h>
26 #include <net/mpls.h>
28 #if IS_ENABLED(CONFIG_PSAMPLE)
29 #include <net/psample.h>
30 #endif
32 #include <net/sctp/checksum.h>
34 #include "datapath.h"
35 #include "drop.h"
36 #include "flow.h"
37 #include "conntrack.h"
38 #include "vport.h"
39 #include "flow_netlink.h"
40 #include "openvswitch_trace.h"
42 struct deferred_action {
43 struct sk_buff *skb;
44 const struct nlattr *actions;
45 int actions_len;
47 /* Store pkt_key clone when creating deferred action. */
48 struct sw_flow_key pkt_key;
51 #define MAX_L2_LEN (VLAN_ETH_HLEN + 3 * MPLS_HLEN)
52 struct ovs_frag_data {
53 unsigned long dst;
54 struct vport *vport;
55 struct ovs_skb_cb cb;
56 __be16 inner_protocol;
57 u16 network_offset; /* valid only for MPLS */
58 u16 vlan_tci;
59 __be16 vlan_proto;
60 unsigned int l2_len;
61 u8 mac_proto;
62 u8 l2_data[MAX_L2_LEN];
65 static DEFINE_PER_CPU(struct ovs_frag_data, ovs_frag_data_storage);
67 #define DEFERRED_ACTION_FIFO_SIZE 10
68 #define OVS_RECURSION_LIMIT 5
69 #define OVS_DEFERRED_ACTION_THRESHOLD (OVS_RECURSION_LIMIT - 2)
70 struct action_fifo {
71 int head;
72 int tail;
73 /* Deferred action fifo queue storage. */
74 struct deferred_action fifo[DEFERRED_ACTION_FIFO_SIZE];
77 struct action_flow_keys {
78 struct sw_flow_key key[OVS_DEFERRED_ACTION_THRESHOLD];
81 static struct action_fifo __percpu *action_fifos;
82 static struct action_flow_keys __percpu *flow_keys;
83 static DEFINE_PER_CPU(int, exec_actions_level);
85 /* Make a clone of the 'key', using the pre-allocated percpu 'flow_keys'
86 * space. Return NULL if out of key spaces.
88 static struct sw_flow_key *clone_key(const struct sw_flow_key *key_)
90 struct action_flow_keys *keys = this_cpu_ptr(flow_keys);
91 int level = this_cpu_read(exec_actions_level);
92 struct sw_flow_key *key = NULL;
94 if (level <= OVS_DEFERRED_ACTION_THRESHOLD) {
95 key = &keys->key[level - 1];
96 *key = *key_;
99 return key;
102 static void action_fifo_init(struct action_fifo *fifo)
104 fifo->head = 0;
105 fifo->tail = 0;
108 static bool action_fifo_is_empty(const struct action_fifo *fifo)
110 return (fifo->head == fifo->tail);
113 static struct deferred_action *action_fifo_get(struct action_fifo *fifo)
115 if (action_fifo_is_empty(fifo))
116 return NULL;
118 return &fifo->fifo[fifo->tail++];
121 static struct deferred_action *action_fifo_put(struct action_fifo *fifo)
123 if (fifo->head >= DEFERRED_ACTION_FIFO_SIZE - 1)
124 return NULL;
126 return &fifo->fifo[fifo->head++];
129 /* Return true if fifo is not full */
130 static struct deferred_action *add_deferred_actions(struct sk_buff *skb,
131 const struct sw_flow_key *key,
132 const struct nlattr *actions,
133 const int actions_len)
135 struct action_fifo *fifo;
136 struct deferred_action *da;
138 fifo = this_cpu_ptr(action_fifos);
139 da = action_fifo_put(fifo);
140 if (da) {
141 da->skb = skb;
142 da->actions = actions;
143 da->actions_len = actions_len;
144 da->pkt_key = *key;
147 return da;
150 static void invalidate_flow_key(struct sw_flow_key *key)
152 key->mac_proto |= SW_FLOW_KEY_INVALID;
155 static bool is_flow_key_valid(const struct sw_flow_key *key)
157 return !(key->mac_proto & SW_FLOW_KEY_INVALID);
160 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
161 struct sw_flow_key *key,
162 u32 recirc_id,
163 const struct nlattr *actions, int len,
164 bool last, bool clone_flow_key);
166 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
167 struct sw_flow_key *key,
168 const struct nlattr *attr, int len);
170 static int push_mpls(struct sk_buff *skb, struct sw_flow_key *key,
171 __be32 mpls_lse, __be16 mpls_ethertype, __u16 mac_len)
173 int err;
175 err = skb_mpls_push(skb, mpls_lse, mpls_ethertype, mac_len, !!mac_len);
176 if (err)
177 return err;
179 if (!mac_len)
180 key->mac_proto = MAC_PROTO_NONE;
182 invalidate_flow_key(key);
183 return 0;
186 static int pop_mpls(struct sk_buff *skb, struct sw_flow_key *key,
187 const __be16 ethertype)
189 int err;
191 err = skb_mpls_pop(skb, ethertype, skb->mac_len,
192 ovs_key_mac_proto(key) == MAC_PROTO_ETHERNET);
193 if (err)
194 return err;
196 if (ethertype == htons(ETH_P_TEB))
197 key->mac_proto = MAC_PROTO_ETHERNET;
199 invalidate_flow_key(key);
200 return 0;
203 static int set_mpls(struct sk_buff *skb, struct sw_flow_key *flow_key,
204 const __be32 *mpls_lse, const __be32 *mask)
206 struct mpls_shim_hdr *stack;
207 __be32 lse;
208 int err;
210 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
211 return -ENOMEM;
213 stack = mpls_hdr(skb);
214 lse = OVS_MASKED(stack->label_stack_entry, *mpls_lse, *mask);
215 err = skb_mpls_update_lse(skb, lse);
216 if (err)
217 return err;
219 flow_key->mpls.lse[0] = lse;
220 return 0;
223 static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
225 int err;
227 err = skb_vlan_pop(skb);
228 if (skb_vlan_tag_present(skb)) {
229 invalidate_flow_key(key);
230 } else {
231 key->eth.vlan.tci = 0;
232 key->eth.vlan.tpid = 0;
234 return err;
237 static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
238 const struct ovs_action_push_vlan *vlan)
240 int err;
242 if (skb_vlan_tag_present(skb)) {
243 invalidate_flow_key(key);
244 } else {
245 key->eth.vlan.tci = vlan->vlan_tci;
246 key->eth.vlan.tpid = vlan->vlan_tpid;
248 err = skb_vlan_push(skb, vlan->vlan_tpid,
249 ntohs(vlan->vlan_tci) & ~VLAN_CFI_MASK);
250 skb_reset_mac_len(skb);
251 return err;
254 /* 'src' is already properly masked. */
255 static void ether_addr_copy_masked(u8 *dst_, const u8 *src_, const u8 *mask_)
257 u16 *dst = (u16 *)dst_;
258 const u16 *src = (const u16 *)src_;
259 const u16 *mask = (const u16 *)mask_;
261 OVS_SET_MASKED(dst[0], src[0], mask[0]);
262 OVS_SET_MASKED(dst[1], src[1], mask[1]);
263 OVS_SET_MASKED(dst[2], src[2], mask[2]);
266 static int set_eth_addr(struct sk_buff *skb, struct sw_flow_key *flow_key,
267 const struct ovs_key_ethernet *key,
268 const struct ovs_key_ethernet *mask)
270 int err;
272 err = skb_ensure_writable(skb, ETH_HLEN);
273 if (unlikely(err))
274 return err;
276 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
278 ether_addr_copy_masked(eth_hdr(skb)->h_source, key->eth_src,
279 mask->eth_src);
280 ether_addr_copy_masked(eth_hdr(skb)->h_dest, key->eth_dst,
281 mask->eth_dst);
283 skb_postpush_rcsum(skb, eth_hdr(skb), ETH_ALEN * 2);
285 ether_addr_copy(flow_key->eth.src, eth_hdr(skb)->h_source);
286 ether_addr_copy(flow_key->eth.dst, eth_hdr(skb)->h_dest);
287 return 0;
290 /* pop_eth does not support VLAN packets as this action is never called
291 * for them.
293 static int pop_eth(struct sk_buff *skb, struct sw_flow_key *key)
295 int err;
297 err = skb_eth_pop(skb);
298 if (err)
299 return err;
301 /* safe right before invalidate_flow_key */
302 key->mac_proto = MAC_PROTO_NONE;
303 invalidate_flow_key(key);
304 return 0;
307 static int push_eth(struct sk_buff *skb, struct sw_flow_key *key,
308 const struct ovs_action_push_eth *ethh)
310 int err;
312 err = skb_eth_push(skb, ethh->addresses.eth_dst,
313 ethh->addresses.eth_src);
314 if (err)
315 return err;
317 /* safe right before invalidate_flow_key */
318 key->mac_proto = MAC_PROTO_ETHERNET;
319 invalidate_flow_key(key);
320 return 0;
323 static noinline_for_stack int push_nsh(struct sk_buff *skb,
324 struct sw_flow_key *key,
325 const struct nlattr *a)
327 u8 buffer[NSH_HDR_MAX_LEN];
328 struct nshhdr *nh = (struct nshhdr *)buffer;
329 int err;
331 err = nsh_hdr_from_nlattr(a, nh, NSH_HDR_MAX_LEN);
332 if (err)
333 return err;
335 err = nsh_push(skb, nh);
336 if (err)
337 return err;
339 /* safe right before invalidate_flow_key */
340 key->mac_proto = MAC_PROTO_NONE;
341 invalidate_flow_key(key);
342 return 0;
345 static int pop_nsh(struct sk_buff *skb, struct sw_flow_key *key)
347 int err;
349 err = nsh_pop(skb);
350 if (err)
351 return err;
353 /* safe right before invalidate_flow_key */
354 if (skb->protocol == htons(ETH_P_TEB))
355 key->mac_proto = MAC_PROTO_ETHERNET;
356 else
357 key->mac_proto = MAC_PROTO_NONE;
358 invalidate_flow_key(key);
359 return 0;
362 static void update_ip_l4_checksum(struct sk_buff *skb, struct iphdr *nh,
363 __be32 addr, __be32 new_addr)
365 int transport_len = skb->len - skb_transport_offset(skb);
367 if (nh->frag_off & htons(IP_OFFSET))
368 return;
370 if (nh->protocol == IPPROTO_TCP) {
371 if (likely(transport_len >= sizeof(struct tcphdr)))
372 inet_proto_csum_replace4(&tcp_hdr(skb)->check, skb,
373 addr, new_addr, true);
374 } else if (nh->protocol == IPPROTO_UDP) {
375 if (likely(transport_len >= sizeof(struct udphdr))) {
376 struct udphdr *uh = udp_hdr(skb);
378 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
379 inet_proto_csum_replace4(&uh->check, skb,
380 addr, new_addr, true);
381 if (!uh->check)
382 uh->check = CSUM_MANGLED_0;
388 static void set_ip_addr(struct sk_buff *skb, struct iphdr *nh,
389 __be32 *addr, __be32 new_addr)
391 update_ip_l4_checksum(skb, nh, *addr, new_addr);
392 csum_replace4(&nh->check, *addr, new_addr);
393 skb_clear_hash(skb);
394 ovs_ct_clear(skb, NULL);
395 *addr = new_addr;
398 static void update_ipv6_checksum(struct sk_buff *skb, u8 l4_proto,
399 __be32 addr[4], const __be32 new_addr[4])
401 int transport_len = skb->len - skb_transport_offset(skb);
403 if (l4_proto == NEXTHDR_TCP) {
404 if (likely(transport_len >= sizeof(struct tcphdr)))
405 inet_proto_csum_replace16(&tcp_hdr(skb)->check, skb,
406 addr, new_addr, true);
407 } else if (l4_proto == NEXTHDR_UDP) {
408 if (likely(transport_len >= sizeof(struct udphdr))) {
409 struct udphdr *uh = udp_hdr(skb);
411 if (uh->check || skb->ip_summed == CHECKSUM_PARTIAL) {
412 inet_proto_csum_replace16(&uh->check, skb,
413 addr, new_addr, true);
414 if (!uh->check)
415 uh->check = CSUM_MANGLED_0;
418 } else if (l4_proto == NEXTHDR_ICMP) {
419 if (likely(transport_len >= sizeof(struct icmp6hdr)))
420 inet_proto_csum_replace16(&icmp6_hdr(skb)->icmp6_cksum,
421 skb, addr, new_addr, true);
425 static void mask_ipv6_addr(const __be32 old[4], const __be32 addr[4],
426 const __be32 mask[4], __be32 masked[4])
428 masked[0] = OVS_MASKED(old[0], addr[0], mask[0]);
429 masked[1] = OVS_MASKED(old[1], addr[1], mask[1]);
430 masked[2] = OVS_MASKED(old[2], addr[2], mask[2]);
431 masked[3] = OVS_MASKED(old[3], addr[3], mask[3]);
434 static void set_ipv6_addr(struct sk_buff *skb, u8 l4_proto,
435 __be32 addr[4], const __be32 new_addr[4],
436 bool recalculate_csum)
438 if (recalculate_csum)
439 update_ipv6_checksum(skb, l4_proto, addr, new_addr);
441 skb_clear_hash(skb);
442 ovs_ct_clear(skb, NULL);
443 memcpy(addr, new_addr, sizeof(__be32[4]));
446 static void set_ipv6_dsfield(struct sk_buff *skb, struct ipv6hdr *nh, u8 ipv6_tclass, u8 mask)
448 u8 old_ipv6_tclass = ipv6_get_dsfield(nh);
450 ipv6_tclass = OVS_MASKED(old_ipv6_tclass, ipv6_tclass, mask);
452 if (skb->ip_summed == CHECKSUM_COMPLETE)
453 csum_replace(&skb->csum, (__force __wsum)(old_ipv6_tclass << 12),
454 (__force __wsum)(ipv6_tclass << 12));
456 ipv6_change_dsfield(nh, ~mask, ipv6_tclass);
459 static void set_ipv6_fl(struct sk_buff *skb, struct ipv6hdr *nh, u32 fl, u32 mask)
461 u32 ofl;
463 ofl = nh->flow_lbl[0] << 16 | nh->flow_lbl[1] << 8 | nh->flow_lbl[2];
464 fl = OVS_MASKED(ofl, fl, mask);
466 /* Bits 21-24 are always unmasked, so this retains their values. */
467 nh->flow_lbl[0] = (u8)(fl >> 16);
468 nh->flow_lbl[1] = (u8)(fl >> 8);
469 nh->flow_lbl[2] = (u8)fl;
471 if (skb->ip_summed == CHECKSUM_COMPLETE)
472 csum_replace(&skb->csum, (__force __wsum)htonl(ofl), (__force __wsum)htonl(fl));
475 static void set_ipv6_ttl(struct sk_buff *skb, struct ipv6hdr *nh, u8 new_ttl, u8 mask)
477 new_ttl = OVS_MASKED(nh->hop_limit, new_ttl, mask);
479 if (skb->ip_summed == CHECKSUM_COMPLETE)
480 csum_replace(&skb->csum, (__force __wsum)(nh->hop_limit << 8),
481 (__force __wsum)(new_ttl << 8));
482 nh->hop_limit = new_ttl;
485 static void set_ip_ttl(struct sk_buff *skb, struct iphdr *nh, u8 new_ttl,
486 u8 mask)
488 new_ttl = OVS_MASKED(nh->ttl, new_ttl, mask);
490 csum_replace2(&nh->check, htons(nh->ttl << 8), htons(new_ttl << 8));
491 nh->ttl = new_ttl;
494 static int set_ipv4(struct sk_buff *skb, struct sw_flow_key *flow_key,
495 const struct ovs_key_ipv4 *key,
496 const struct ovs_key_ipv4 *mask)
498 struct iphdr *nh;
499 __be32 new_addr;
500 int err;
502 err = skb_ensure_writable(skb, skb_network_offset(skb) +
503 sizeof(struct iphdr));
504 if (unlikely(err))
505 return err;
507 nh = ip_hdr(skb);
509 /* Setting an IP addresses is typically only a side effect of
510 * matching on them in the current userspace implementation, so it
511 * makes sense to check if the value actually changed.
513 if (mask->ipv4_src) {
514 new_addr = OVS_MASKED(nh->saddr, key->ipv4_src, mask->ipv4_src);
516 if (unlikely(new_addr != nh->saddr)) {
517 set_ip_addr(skb, nh, &nh->saddr, new_addr);
518 flow_key->ipv4.addr.src = new_addr;
521 if (mask->ipv4_dst) {
522 new_addr = OVS_MASKED(nh->daddr, key->ipv4_dst, mask->ipv4_dst);
524 if (unlikely(new_addr != nh->daddr)) {
525 set_ip_addr(skb, nh, &nh->daddr, new_addr);
526 flow_key->ipv4.addr.dst = new_addr;
529 if (mask->ipv4_tos) {
530 ipv4_change_dsfield(nh, ~mask->ipv4_tos, key->ipv4_tos);
531 flow_key->ip.tos = nh->tos;
533 if (mask->ipv4_ttl) {
534 set_ip_ttl(skb, nh, key->ipv4_ttl, mask->ipv4_ttl);
535 flow_key->ip.ttl = nh->ttl;
538 return 0;
541 static bool is_ipv6_mask_nonzero(const __be32 addr[4])
543 return !!(addr[0] | addr[1] | addr[2] | addr[3]);
546 static int set_ipv6(struct sk_buff *skb, struct sw_flow_key *flow_key,
547 const struct ovs_key_ipv6 *key,
548 const struct ovs_key_ipv6 *mask)
550 struct ipv6hdr *nh;
551 int err;
553 err = skb_ensure_writable(skb, skb_network_offset(skb) +
554 sizeof(struct ipv6hdr));
555 if (unlikely(err))
556 return err;
558 nh = ipv6_hdr(skb);
560 /* Setting an IP addresses is typically only a side effect of
561 * matching on them in the current userspace implementation, so it
562 * makes sense to check if the value actually changed.
564 if (is_ipv6_mask_nonzero(mask->ipv6_src)) {
565 __be32 *saddr = (__be32 *)&nh->saddr;
566 __be32 masked[4];
568 mask_ipv6_addr(saddr, key->ipv6_src, mask->ipv6_src, masked);
570 if (unlikely(memcmp(saddr, masked, sizeof(masked)))) {
571 set_ipv6_addr(skb, flow_key->ip.proto, saddr, masked,
572 true);
573 memcpy(&flow_key->ipv6.addr.src, masked,
574 sizeof(flow_key->ipv6.addr.src));
577 if (is_ipv6_mask_nonzero(mask->ipv6_dst)) {
578 unsigned int offset = 0;
579 int flags = IP6_FH_F_SKIP_RH;
580 bool recalc_csum = true;
581 __be32 *daddr = (__be32 *)&nh->daddr;
582 __be32 masked[4];
584 mask_ipv6_addr(daddr, key->ipv6_dst, mask->ipv6_dst, masked);
586 if (unlikely(memcmp(daddr, masked, sizeof(masked)))) {
587 if (ipv6_ext_hdr(nh->nexthdr))
588 recalc_csum = (ipv6_find_hdr(skb, &offset,
589 NEXTHDR_ROUTING,
590 NULL, &flags)
591 != NEXTHDR_ROUTING);
593 set_ipv6_addr(skb, flow_key->ip.proto, daddr, masked,
594 recalc_csum);
595 memcpy(&flow_key->ipv6.addr.dst, masked,
596 sizeof(flow_key->ipv6.addr.dst));
599 if (mask->ipv6_tclass) {
600 set_ipv6_dsfield(skb, nh, key->ipv6_tclass, mask->ipv6_tclass);
601 flow_key->ip.tos = ipv6_get_dsfield(nh);
603 if (mask->ipv6_label) {
604 set_ipv6_fl(skb, nh, ntohl(key->ipv6_label),
605 ntohl(mask->ipv6_label));
606 flow_key->ipv6.label =
607 *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL);
609 if (mask->ipv6_hlimit) {
610 set_ipv6_ttl(skb, nh, key->ipv6_hlimit, mask->ipv6_hlimit);
611 flow_key->ip.ttl = nh->hop_limit;
613 return 0;
616 static int set_nsh(struct sk_buff *skb, struct sw_flow_key *flow_key,
617 const struct nlattr *a)
619 struct nshhdr *nh;
620 size_t length;
621 int err;
622 u8 flags;
623 u8 ttl;
624 int i;
626 struct ovs_key_nsh key;
627 struct ovs_key_nsh mask;
629 err = nsh_key_from_nlattr(a, &key, &mask);
630 if (err)
631 return err;
633 /* Make sure the NSH base header is there */
634 if (!pskb_may_pull(skb, skb_network_offset(skb) + NSH_BASE_HDR_LEN))
635 return -ENOMEM;
637 nh = nsh_hdr(skb);
638 length = nsh_hdr_len(nh);
640 /* Make sure the whole NSH header is there */
641 err = skb_ensure_writable(skb, skb_network_offset(skb) +
642 length);
643 if (unlikely(err))
644 return err;
646 nh = nsh_hdr(skb);
647 skb_postpull_rcsum(skb, nh, length);
648 flags = nsh_get_flags(nh);
649 flags = OVS_MASKED(flags, key.base.flags, mask.base.flags);
650 flow_key->nsh.base.flags = flags;
651 ttl = nsh_get_ttl(nh);
652 ttl = OVS_MASKED(ttl, key.base.ttl, mask.base.ttl);
653 flow_key->nsh.base.ttl = ttl;
654 nsh_set_flags_and_ttl(nh, flags, ttl);
655 nh->path_hdr = OVS_MASKED(nh->path_hdr, key.base.path_hdr,
656 mask.base.path_hdr);
657 flow_key->nsh.base.path_hdr = nh->path_hdr;
658 switch (nh->mdtype) {
659 case NSH_M_TYPE1:
660 for (i = 0; i < NSH_MD1_CONTEXT_SIZE; i++) {
661 nh->md1.context[i] =
662 OVS_MASKED(nh->md1.context[i], key.context[i],
663 mask.context[i]);
665 memcpy(flow_key->nsh.context, nh->md1.context,
666 sizeof(nh->md1.context));
667 break;
668 case NSH_M_TYPE2:
669 memset(flow_key->nsh.context, 0,
670 sizeof(flow_key->nsh.context));
671 break;
672 default:
673 return -EINVAL;
675 skb_postpush_rcsum(skb, nh, length);
676 return 0;
679 /* Must follow skb_ensure_writable() since that can move the skb data. */
680 static void set_tp_port(struct sk_buff *skb, __be16 *port,
681 __be16 new_port, __sum16 *check)
683 ovs_ct_clear(skb, NULL);
684 inet_proto_csum_replace2(check, skb, *port, new_port, false);
685 *port = new_port;
688 static int set_udp(struct sk_buff *skb, struct sw_flow_key *flow_key,
689 const struct ovs_key_udp *key,
690 const struct ovs_key_udp *mask)
692 struct udphdr *uh;
693 __be16 src, dst;
694 int err;
696 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
697 sizeof(struct udphdr));
698 if (unlikely(err))
699 return err;
701 uh = udp_hdr(skb);
702 /* Either of the masks is non-zero, so do not bother checking them. */
703 src = OVS_MASKED(uh->source, key->udp_src, mask->udp_src);
704 dst = OVS_MASKED(uh->dest, key->udp_dst, mask->udp_dst);
706 if (uh->check && skb->ip_summed != CHECKSUM_PARTIAL) {
707 if (likely(src != uh->source)) {
708 set_tp_port(skb, &uh->source, src, &uh->check);
709 flow_key->tp.src = src;
711 if (likely(dst != uh->dest)) {
712 set_tp_port(skb, &uh->dest, dst, &uh->check);
713 flow_key->tp.dst = dst;
716 if (unlikely(!uh->check))
717 uh->check = CSUM_MANGLED_0;
718 } else {
719 uh->source = src;
720 uh->dest = dst;
721 flow_key->tp.src = src;
722 flow_key->tp.dst = dst;
723 ovs_ct_clear(skb, NULL);
726 skb_clear_hash(skb);
728 return 0;
731 static int set_tcp(struct sk_buff *skb, struct sw_flow_key *flow_key,
732 const struct ovs_key_tcp *key,
733 const struct ovs_key_tcp *mask)
735 struct tcphdr *th;
736 __be16 src, dst;
737 int err;
739 err = skb_ensure_writable(skb, skb_transport_offset(skb) +
740 sizeof(struct tcphdr));
741 if (unlikely(err))
742 return err;
744 th = tcp_hdr(skb);
745 src = OVS_MASKED(th->source, key->tcp_src, mask->tcp_src);
746 if (likely(src != th->source)) {
747 set_tp_port(skb, &th->source, src, &th->check);
748 flow_key->tp.src = src;
750 dst = OVS_MASKED(th->dest, key->tcp_dst, mask->tcp_dst);
751 if (likely(dst != th->dest)) {
752 set_tp_port(skb, &th->dest, dst, &th->check);
753 flow_key->tp.dst = dst;
755 skb_clear_hash(skb);
757 return 0;
760 static int set_sctp(struct sk_buff *skb, struct sw_flow_key *flow_key,
761 const struct ovs_key_sctp *key,
762 const struct ovs_key_sctp *mask)
764 unsigned int sctphoff = skb_transport_offset(skb);
765 struct sctphdr *sh;
766 __le32 old_correct_csum, new_csum, old_csum;
767 int err;
769 err = skb_ensure_writable(skb, sctphoff + sizeof(struct sctphdr));
770 if (unlikely(err))
771 return err;
773 sh = sctp_hdr(skb);
774 old_csum = sh->checksum;
775 old_correct_csum = sctp_compute_cksum(skb, sctphoff);
777 sh->source = OVS_MASKED(sh->source, key->sctp_src, mask->sctp_src);
778 sh->dest = OVS_MASKED(sh->dest, key->sctp_dst, mask->sctp_dst);
780 new_csum = sctp_compute_cksum(skb, sctphoff);
782 /* Carry any checksum errors through. */
783 sh->checksum = old_csum ^ old_correct_csum ^ new_csum;
785 skb_clear_hash(skb);
786 ovs_ct_clear(skb, NULL);
788 flow_key->tp.src = sh->source;
789 flow_key->tp.dst = sh->dest;
791 return 0;
794 static int ovs_vport_output(struct net *net, struct sock *sk,
795 struct sk_buff *skb)
797 struct ovs_frag_data *data = this_cpu_ptr(&ovs_frag_data_storage);
798 struct vport *vport = data->vport;
800 if (skb_cow_head(skb, data->l2_len) < 0) {
801 kfree_skb_reason(skb, SKB_DROP_REASON_NOMEM);
802 return -ENOMEM;
805 __skb_dst_copy(skb, data->dst);
806 *OVS_CB(skb) = data->cb;
807 skb->inner_protocol = data->inner_protocol;
808 if (data->vlan_tci & VLAN_CFI_MASK)
809 __vlan_hwaccel_put_tag(skb, data->vlan_proto, data->vlan_tci & ~VLAN_CFI_MASK);
810 else
811 __vlan_hwaccel_clear_tag(skb);
813 /* Reconstruct the MAC header. */
814 skb_push(skb, data->l2_len);
815 memcpy(skb->data, &data->l2_data, data->l2_len);
816 skb_postpush_rcsum(skb, skb->data, data->l2_len);
817 skb_reset_mac_header(skb);
819 if (eth_p_mpls(skb->protocol)) {
820 skb->inner_network_header = skb->network_header;
821 skb_set_network_header(skb, data->network_offset);
822 skb_reset_mac_len(skb);
825 ovs_vport_send(vport, skb, data->mac_proto);
826 return 0;
829 static unsigned int
830 ovs_dst_get_mtu(const struct dst_entry *dst)
832 return dst->dev->mtu;
835 static struct dst_ops ovs_dst_ops = {
836 .family = AF_UNSPEC,
837 .mtu = ovs_dst_get_mtu,
840 /* prepare_frag() is called once per (larger-than-MTU) frame; its inverse is
841 * ovs_vport_output(), which is called once per fragmented packet.
843 static void prepare_frag(struct vport *vport, struct sk_buff *skb,
844 u16 orig_network_offset, u8 mac_proto)
846 unsigned int hlen = skb_network_offset(skb);
847 struct ovs_frag_data *data;
849 data = this_cpu_ptr(&ovs_frag_data_storage);
850 data->dst = skb->_skb_refdst;
851 data->vport = vport;
852 data->cb = *OVS_CB(skb);
853 data->inner_protocol = skb->inner_protocol;
854 data->network_offset = orig_network_offset;
855 if (skb_vlan_tag_present(skb))
856 data->vlan_tci = skb_vlan_tag_get(skb) | VLAN_CFI_MASK;
857 else
858 data->vlan_tci = 0;
859 data->vlan_proto = skb->vlan_proto;
860 data->mac_proto = mac_proto;
861 data->l2_len = hlen;
862 memcpy(&data->l2_data, skb->data, hlen);
864 memset(IPCB(skb), 0, sizeof(struct inet_skb_parm));
865 skb_pull(skb, hlen);
868 static void ovs_fragment(struct net *net, struct vport *vport,
869 struct sk_buff *skb, u16 mru,
870 struct sw_flow_key *key)
872 enum ovs_drop_reason reason;
873 u16 orig_network_offset = 0;
875 if (eth_p_mpls(skb->protocol)) {
876 orig_network_offset = skb_network_offset(skb);
877 skb->network_header = skb->inner_network_header;
880 if (skb_network_offset(skb) > MAX_L2_LEN) {
881 OVS_NLERR(1, "L2 header too long to fragment");
882 reason = OVS_DROP_FRAG_L2_TOO_LONG;
883 goto err;
886 if (key->eth.type == htons(ETH_P_IP)) {
887 struct rtable ovs_rt = { 0 };
888 unsigned long orig_dst;
890 prepare_frag(vport, skb, orig_network_offset,
891 ovs_key_mac_proto(key));
892 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
893 DST_OBSOLETE_NONE, DST_NOCOUNT);
894 ovs_rt.dst.dev = vport->dev;
896 orig_dst = skb->_skb_refdst;
897 skb_dst_set_noref(skb, &ovs_rt.dst);
898 IPCB(skb)->frag_max_size = mru;
900 ip_do_fragment(net, skb->sk, skb, ovs_vport_output);
901 refdst_drop(orig_dst);
902 } else if (key->eth.type == htons(ETH_P_IPV6)) {
903 unsigned long orig_dst;
904 struct rt6_info ovs_rt;
906 prepare_frag(vport, skb, orig_network_offset,
907 ovs_key_mac_proto(key));
908 memset(&ovs_rt, 0, sizeof(ovs_rt));
909 dst_init(&ovs_rt.dst, &ovs_dst_ops, NULL,
910 DST_OBSOLETE_NONE, DST_NOCOUNT);
911 ovs_rt.dst.dev = vport->dev;
913 orig_dst = skb->_skb_refdst;
914 skb_dst_set_noref(skb, &ovs_rt.dst);
915 IP6CB(skb)->frag_max_size = mru;
917 ipv6_stub->ipv6_fragment(net, skb->sk, skb, ovs_vport_output);
918 refdst_drop(orig_dst);
919 } else {
920 WARN_ONCE(1, "Failed fragment ->%s: eth=%04x, MRU=%d, MTU=%d.",
921 ovs_vport_name(vport), ntohs(key->eth.type), mru,
922 vport->dev->mtu);
923 reason = OVS_DROP_FRAG_INVALID_PROTO;
924 goto err;
927 return;
928 err:
929 ovs_kfree_skb_reason(skb, reason);
932 static void do_output(struct datapath *dp, struct sk_buff *skb, int out_port,
933 struct sw_flow_key *key)
935 struct vport *vport = ovs_vport_rcu(dp, out_port);
937 if (likely(vport && netif_carrier_ok(vport->dev))) {
938 u16 mru = OVS_CB(skb)->mru;
939 u32 cutlen = OVS_CB(skb)->cutlen;
941 if (unlikely(cutlen > 0)) {
942 if (skb->len - cutlen > ovs_mac_header_len(key))
943 pskb_trim(skb, skb->len - cutlen);
944 else
945 pskb_trim(skb, ovs_mac_header_len(key));
948 /* Need to set the pkt_type to involve the routing layer. The
949 * packet movement through the OVS datapath doesn't generally
950 * use routing, but this is needed for tunnel cases.
952 skb->pkt_type = PACKET_OUTGOING;
954 if (likely(!mru ||
955 (skb->len <= mru + vport->dev->hard_header_len))) {
956 ovs_vport_send(vport, skb, ovs_key_mac_proto(key));
957 } else if (mru <= vport->dev->mtu) {
958 struct net *net = read_pnet(&dp->net);
960 ovs_fragment(net, vport, skb, mru, key);
961 } else {
962 kfree_skb_reason(skb, SKB_DROP_REASON_PKT_TOO_BIG);
964 } else {
965 kfree_skb_reason(skb, SKB_DROP_REASON_DEV_READY);
969 static int output_userspace(struct datapath *dp, struct sk_buff *skb,
970 struct sw_flow_key *key, const struct nlattr *attr,
971 const struct nlattr *actions, int actions_len,
972 uint32_t cutlen)
974 struct dp_upcall_info upcall;
975 const struct nlattr *a;
976 int rem;
978 memset(&upcall, 0, sizeof(upcall));
979 upcall.cmd = OVS_PACKET_CMD_ACTION;
980 upcall.mru = OVS_CB(skb)->mru;
982 for (a = nla_data(attr), rem = nla_len(attr); rem > 0;
983 a = nla_next(a, &rem)) {
984 switch (nla_type(a)) {
985 case OVS_USERSPACE_ATTR_USERDATA:
986 upcall.userdata = a;
987 break;
989 case OVS_USERSPACE_ATTR_PID:
990 if (dp->user_features &
991 OVS_DP_F_DISPATCH_UPCALL_PER_CPU)
992 upcall.portid =
993 ovs_dp_get_upcall_portid(dp,
994 smp_processor_id());
995 else
996 upcall.portid = nla_get_u32(a);
997 break;
999 case OVS_USERSPACE_ATTR_EGRESS_TUN_PORT: {
1000 /* Get out tunnel info. */
1001 struct vport *vport;
1003 vport = ovs_vport_rcu(dp, nla_get_u32(a));
1004 if (vport) {
1005 int err;
1007 err = dev_fill_metadata_dst(vport->dev, skb);
1008 if (!err)
1009 upcall.egress_tun_info = skb_tunnel_info(skb);
1012 break;
1015 case OVS_USERSPACE_ATTR_ACTIONS: {
1016 /* Include actions. */
1017 upcall.actions = actions;
1018 upcall.actions_len = actions_len;
1019 break;
1022 } /* End of switch. */
1025 return ovs_dp_upcall(dp, skb, key, &upcall, cutlen);
1028 static int dec_ttl_exception_handler(struct datapath *dp, struct sk_buff *skb,
1029 struct sw_flow_key *key,
1030 const struct nlattr *attr)
1032 /* The first attribute is always 'OVS_DEC_TTL_ATTR_ACTION'. */
1033 struct nlattr *actions = nla_data(attr);
1035 if (nla_len(actions))
1036 return clone_execute(dp, skb, key, 0, nla_data(actions),
1037 nla_len(actions), true, false);
1039 ovs_kfree_skb_reason(skb, OVS_DROP_IP_TTL);
1040 return 0;
1043 /* When 'last' is true, sample() should always consume the 'skb'.
1044 * Otherwise, sample() should keep 'skb' intact regardless what
1045 * actions are executed within sample().
1047 static int sample(struct datapath *dp, struct sk_buff *skb,
1048 struct sw_flow_key *key, const struct nlattr *attr,
1049 bool last)
1051 struct nlattr *actions;
1052 struct nlattr *sample_arg;
1053 int rem = nla_len(attr);
1054 const struct sample_arg *arg;
1055 u32 init_probability;
1056 bool clone_flow_key;
1057 int err;
1059 /* The first action is always 'OVS_SAMPLE_ATTR_ARG'. */
1060 sample_arg = nla_data(attr);
1061 arg = nla_data(sample_arg);
1062 actions = nla_next(sample_arg, &rem);
1063 init_probability = OVS_CB(skb)->probability;
1065 if ((arg->probability != U32_MAX) &&
1066 (!arg->probability || get_random_u32() > arg->probability)) {
1067 if (last)
1068 ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1069 return 0;
1072 OVS_CB(skb)->probability = arg->probability;
1074 clone_flow_key = !arg->exec;
1075 err = clone_execute(dp, skb, key, 0, actions, rem, last,
1076 clone_flow_key);
1078 if (!last)
1079 OVS_CB(skb)->probability = init_probability;
1081 return err;
1084 /* When 'last' is true, clone() should always consume the 'skb'.
1085 * Otherwise, clone() should keep 'skb' intact regardless what
1086 * actions are executed within clone().
1088 static int clone(struct datapath *dp, struct sk_buff *skb,
1089 struct sw_flow_key *key, const struct nlattr *attr,
1090 bool last)
1092 struct nlattr *actions;
1093 struct nlattr *clone_arg;
1094 int rem = nla_len(attr);
1095 bool dont_clone_flow_key;
1097 /* The first action is always 'OVS_CLONE_ATTR_EXEC'. */
1098 clone_arg = nla_data(attr);
1099 dont_clone_flow_key = nla_get_u32(clone_arg);
1100 actions = nla_next(clone_arg, &rem);
1102 return clone_execute(dp, skb, key, 0, actions, rem, last,
1103 !dont_clone_flow_key);
1106 static void execute_hash(struct sk_buff *skb, struct sw_flow_key *key,
1107 const struct nlattr *attr)
1109 struct ovs_action_hash *hash_act = nla_data(attr);
1110 u32 hash = 0;
1112 if (hash_act->hash_alg == OVS_HASH_ALG_L4) {
1113 /* OVS_HASH_ALG_L4 hasing type. */
1114 hash = skb_get_hash(skb);
1115 } else if (hash_act->hash_alg == OVS_HASH_ALG_SYM_L4) {
1116 /* OVS_HASH_ALG_SYM_L4 hashing type. NOTE: this doesn't
1117 * extend past an encapsulated header.
1119 hash = __skb_get_hash_symmetric(skb);
1122 hash = jhash_1word(hash, hash_act->hash_basis);
1123 if (!hash)
1124 hash = 0x1;
1126 key->ovs_flow_hash = hash;
1129 static int execute_set_action(struct sk_buff *skb,
1130 struct sw_flow_key *flow_key,
1131 const struct nlattr *a)
1133 /* Only tunnel set execution is supported without a mask. */
1134 if (nla_type(a) == OVS_KEY_ATTR_TUNNEL_INFO) {
1135 struct ovs_tunnel_info *tun = nla_data(a);
1137 skb_dst_drop(skb);
1138 dst_hold((struct dst_entry *)tun->tun_dst);
1139 skb_dst_set(skb, (struct dst_entry *)tun->tun_dst);
1140 return 0;
1143 return -EINVAL;
1146 /* Mask is at the midpoint of the data. */
1147 #define get_mask(a, type) ((const type)nla_data(a) + 1)
1149 static int execute_masked_set_action(struct sk_buff *skb,
1150 struct sw_flow_key *flow_key,
1151 const struct nlattr *a)
1153 int err = 0;
1155 switch (nla_type(a)) {
1156 case OVS_KEY_ATTR_PRIORITY:
1157 OVS_SET_MASKED(skb->priority, nla_get_u32(a),
1158 *get_mask(a, u32 *));
1159 flow_key->phy.priority = skb->priority;
1160 break;
1162 case OVS_KEY_ATTR_SKB_MARK:
1163 OVS_SET_MASKED(skb->mark, nla_get_u32(a), *get_mask(a, u32 *));
1164 flow_key->phy.skb_mark = skb->mark;
1165 break;
1167 case OVS_KEY_ATTR_TUNNEL_INFO:
1168 /* Masked data not supported for tunnel. */
1169 err = -EINVAL;
1170 break;
1172 case OVS_KEY_ATTR_ETHERNET:
1173 err = set_eth_addr(skb, flow_key, nla_data(a),
1174 get_mask(a, struct ovs_key_ethernet *));
1175 break;
1177 case OVS_KEY_ATTR_NSH:
1178 err = set_nsh(skb, flow_key, a);
1179 break;
1181 case OVS_KEY_ATTR_IPV4:
1182 err = set_ipv4(skb, flow_key, nla_data(a),
1183 get_mask(a, struct ovs_key_ipv4 *));
1184 break;
1186 case OVS_KEY_ATTR_IPV6:
1187 err = set_ipv6(skb, flow_key, nla_data(a),
1188 get_mask(a, struct ovs_key_ipv6 *));
1189 break;
1191 case OVS_KEY_ATTR_TCP:
1192 err = set_tcp(skb, flow_key, nla_data(a),
1193 get_mask(a, struct ovs_key_tcp *));
1194 break;
1196 case OVS_KEY_ATTR_UDP:
1197 err = set_udp(skb, flow_key, nla_data(a),
1198 get_mask(a, struct ovs_key_udp *));
1199 break;
1201 case OVS_KEY_ATTR_SCTP:
1202 err = set_sctp(skb, flow_key, nla_data(a),
1203 get_mask(a, struct ovs_key_sctp *));
1204 break;
1206 case OVS_KEY_ATTR_MPLS:
1207 err = set_mpls(skb, flow_key, nla_data(a), get_mask(a,
1208 __be32 *));
1209 break;
1211 case OVS_KEY_ATTR_CT_STATE:
1212 case OVS_KEY_ATTR_CT_ZONE:
1213 case OVS_KEY_ATTR_CT_MARK:
1214 case OVS_KEY_ATTR_CT_LABELS:
1215 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV4:
1216 case OVS_KEY_ATTR_CT_ORIG_TUPLE_IPV6:
1217 err = -EINVAL;
1218 break;
1221 return err;
1224 static int execute_recirc(struct datapath *dp, struct sk_buff *skb,
1225 struct sw_flow_key *key,
1226 const struct nlattr *a, bool last)
1228 u32 recirc_id;
1230 if (!is_flow_key_valid(key)) {
1231 int err;
1233 err = ovs_flow_key_update(skb, key);
1234 if (err)
1235 return err;
1237 BUG_ON(!is_flow_key_valid(key));
1239 recirc_id = nla_get_u32(a);
1240 return clone_execute(dp, skb, key, recirc_id, NULL, 0, last, true);
1243 static int execute_check_pkt_len(struct datapath *dp, struct sk_buff *skb,
1244 struct sw_flow_key *key,
1245 const struct nlattr *attr, bool last)
1247 struct ovs_skb_cb *ovs_cb = OVS_CB(skb);
1248 const struct nlattr *actions, *cpl_arg;
1249 int len, max_len, rem = nla_len(attr);
1250 const struct check_pkt_len_arg *arg;
1251 bool clone_flow_key;
1253 /* The first netlink attribute in 'attr' is always
1254 * 'OVS_CHECK_PKT_LEN_ATTR_ARG'.
1256 cpl_arg = nla_data(attr);
1257 arg = nla_data(cpl_arg);
1259 len = ovs_cb->mru ? ovs_cb->mru + skb->mac_len : skb->len;
1260 max_len = arg->pkt_len;
1262 if ((skb_is_gso(skb) && skb_gso_validate_mac_len(skb, max_len)) ||
1263 len <= max_len) {
1264 /* Second netlink attribute in 'attr' is always
1265 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_LESS_EQUAL'.
1267 actions = nla_next(cpl_arg, &rem);
1268 clone_flow_key = !arg->exec_for_lesser_equal;
1269 } else {
1270 /* Third netlink attribute in 'attr' is always
1271 * 'OVS_CHECK_PKT_LEN_ATTR_ACTIONS_IF_GREATER'.
1273 actions = nla_next(cpl_arg, &rem);
1274 actions = nla_next(actions, &rem);
1275 clone_flow_key = !arg->exec_for_greater;
1278 return clone_execute(dp, skb, key, 0, nla_data(actions),
1279 nla_len(actions), last, clone_flow_key);
1282 static int execute_dec_ttl(struct sk_buff *skb, struct sw_flow_key *key)
1284 int err;
1286 if (skb->protocol == htons(ETH_P_IPV6)) {
1287 struct ipv6hdr *nh;
1289 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1290 sizeof(*nh));
1291 if (unlikely(err))
1292 return err;
1294 nh = ipv6_hdr(skb);
1296 if (nh->hop_limit <= 1)
1297 return -EHOSTUNREACH;
1299 key->ip.ttl = --nh->hop_limit;
1300 } else if (skb->protocol == htons(ETH_P_IP)) {
1301 struct iphdr *nh;
1302 u8 old_ttl;
1304 err = skb_ensure_writable(skb, skb_network_offset(skb) +
1305 sizeof(*nh));
1306 if (unlikely(err))
1307 return err;
1309 nh = ip_hdr(skb);
1310 if (nh->ttl <= 1)
1311 return -EHOSTUNREACH;
1313 old_ttl = nh->ttl--;
1314 csum_replace2(&nh->check, htons(old_ttl << 8),
1315 htons(nh->ttl << 8));
1316 key->ip.ttl = nh->ttl;
1318 return 0;
1321 #if IS_ENABLED(CONFIG_PSAMPLE)
1322 static void execute_psample(struct datapath *dp, struct sk_buff *skb,
1323 const struct nlattr *attr)
1325 struct psample_group psample_group = {};
1326 struct psample_metadata md = {};
1327 const struct nlattr *a;
1328 u32 rate;
1329 int rem;
1331 nla_for_each_attr(a, nla_data(attr), nla_len(attr), rem) {
1332 switch (nla_type(a)) {
1333 case OVS_PSAMPLE_ATTR_GROUP:
1334 psample_group.group_num = nla_get_u32(a);
1335 break;
1337 case OVS_PSAMPLE_ATTR_COOKIE:
1338 md.user_cookie = nla_data(a);
1339 md.user_cookie_len = nla_len(a);
1340 break;
1344 psample_group.net = ovs_dp_get_net(dp);
1345 md.in_ifindex = OVS_CB(skb)->input_vport->dev->ifindex;
1346 md.trunc_size = skb->len - OVS_CB(skb)->cutlen;
1347 md.rate_as_probability = 1;
1349 rate = OVS_CB(skb)->probability ? OVS_CB(skb)->probability : U32_MAX;
1351 psample_sample_packet(&psample_group, skb, rate, &md);
1353 #else
1354 static void execute_psample(struct datapath *dp, struct sk_buff *skb,
1355 const struct nlattr *attr)
1357 #endif
1359 /* Execute a list of actions against 'skb'. */
1360 static int do_execute_actions(struct datapath *dp, struct sk_buff *skb,
1361 struct sw_flow_key *key,
1362 const struct nlattr *attr, int len)
1364 const struct nlattr *a;
1365 int rem;
1367 for (a = attr, rem = len; rem > 0;
1368 a = nla_next(a, &rem)) {
1369 int err = 0;
1371 if (trace_ovs_do_execute_action_enabled())
1372 trace_ovs_do_execute_action(dp, skb, key, a, rem);
1374 /* Actions that rightfully have to consume the skb should do it
1375 * and return directly.
1377 switch (nla_type(a)) {
1378 case OVS_ACTION_ATTR_OUTPUT: {
1379 int port = nla_get_u32(a);
1380 struct sk_buff *clone;
1382 /* Every output action needs a separate clone
1383 * of 'skb', In case the output action is the
1384 * last action, cloning can be avoided.
1386 if (nla_is_last(a, rem)) {
1387 do_output(dp, skb, port, key);
1388 /* 'skb' has been used for output.
1390 return 0;
1393 clone = skb_clone(skb, GFP_ATOMIC);
1394 if (clone)
1395 do_output(dp, clone, port, key);
1396 OVS_CB(skb)->cutlen = 0;
1397 break;
1400 case OVS_ACTION_ATTR_TRUNC: {
1401 struct ovs_action_trunc *trunc = nla_data(a);
1403 if (skb->len > trunc->max_len)
1404 OVS_CB(skb)->cutlen = skb->len - trunc->max_len;
1405 break;
1408 case OVS_ACTION_ATTR_USERSPACE:
1409 output_userspace(dp, skb, key, a, attr,
1410 len, OVS_CB(skb)->cutlen);
1411 OVS_CB(skb)->cutlen = 0;
1412 if (nla_is_last(a, rem)) {
1413 consume_skb(skb);
1414 return 0;
1416 break;
1418 case OVS_ACTION_ATTR_HASH:
1419 execute_hash(skb, key, a);
1420 break;
1422 case OVS_ACTION_ATTR_PUSH_MPLS: {
1423 struct ovs_action_push_mpls *mpls = nla_data(a);
1425 err = push_mpls(skb, key, mpls->mpls_lse,
1426 mpls->mpls_ethertype, skb->mac_len);
1427 break;
1429 case OVS_ACTION_ATTR_ADD_MPLS: {
1430 struct ovs_action_add_mpls *mpls = nla_data(a);
1431 __u16 mac_len = 0;
1433 if (mpls->tun_flags & OVS_MPLS_L3_TUNNEL_FLAG_MASK)
1434 mac_len = skb->mac_len;
1436 err = push_mpls(skb, key, mpls->mpls_lse,
1437 mpls->mpls_ethertype, mac_len);
1438 break;
1440 case OVS_ACTION_ATTR_POP_MPLS:
1441 err = pop_mpls(skb, key, nla_get_be16(a));
1442 break;
1444 case OVS_ACTION_ATTR_PUSH_VLAN:
1445 err = push_vlan(skb, key, nla_data(a));
1446 break;
1448 case OVS_ACTION_ATTR_POP_VLAN:
1449 err = pop_vlan(skb, key);
1450 break;
1452 case OVS_ACTION_ATTR_RECIRC: {
1453 bool last = nla_is_last(a, rem);
1455 err = execute_recirc(dp, skb, key, a, last);
1456 if (last) {
1457 /* If this is the last action, the skb has
1458 * been consumed or freed.
1459 * Return immediately.
1461 return err;
1463 break;
1466 case OVS_ACTION_ATTR_SET:
1467 err = execute_set_action(skb, key, nla_data(a));
1468 break;
1470 case OVS_ACTION_ATTR_SET_MASKED:
1471 case OVS_ACTION_ATTR_SET_TO_MASKED:
1472 err = execute_masked_set_action(skb, key, nla_data(a));
1473 break;
1475 case OVS_ACTION_ATTR_SAMPLE: {
1476 bool last = nla_is_last(a, rem);
1478 err = sample(dp, skb, key, a, last);
1479 if (last)
1480 return err;
1482 break;
1485 case OVS_ACTION_ATTR_CT:
1486 if (!is_flow_key_valid(key)) {
1487 err = ovs_flow_key_update(skb, key);
1488 if (err)
1489 return err;
1492 err = ovs_ct_execute(ovs_dp_get_net(dp), skb, key,
1493 nla_data(a));
1495 /* Hide stolen IP fragments from user space. */
1496 if (err)
1497 return err == -EINPROGRESS ? 0 : err;
1498 break;
1500 case OVS_ACTION_ATTR_CT_CLEAR:
1501 err = ovs_ct_clear(skb, key);
1502 break;
1504 case OVS_ACTION_ATTR_PUSH_ETH:
1505 err = push_eth(skb, key, nla_data(a));
1506 break;
1508 case OVS_ACTION_ATTR_POP_ETH:
1509 err = pop_eth(skb, key);
1510 break;
1512 case OVS_ACTION_ATTR_PUSH_NSH:
1513 err = push_nsh(skb, key, nla_data(a));
1514 break;
1516 case OVS_ACTION_ATTR_POP_NSH:
1517 err = pop_nsh(skb, key);
1518 break;
1520 case OVS_ACTION_ATTR_METER:
1521 if (ovs_meter_execute(dp, skb, key, nla_get_u32(a))) {
1522 ovs_kfree_skb_reason(skb, OVS_DROP_METER);
1523 return 0;
1525 break;
1527 case OVS_ACTION_ATTR_CLONE: {
1528 bool last = nla_is_last(a, rem);
1530 err = clone(dp, skb, key, a, last);
1531 if (last)
1532 return err;
1534 break;
1537 case OVS_ACTION_ATTR_CHECK_PKT_LEN: {
1538 bool last = nla_is_last(a, rem);
1540 err = execute_check_pkt_len(dp, skb, key, a, last);
1541 if (last)
1542 return err;
1544 break;
1547 case OVS_ACTION_ATTR_DEC_TTL:
1548 err = execute_dec_ttl(skb, key);
1549 if (err == -EHOSTUNREACH)
1550 return dec_ttl_exception_handler(dp, skb,
1551 key, a);
1552 break;
1554 case OVS_ACTION_ATTR_DROP: {
1555 enum ovs_drop_reason reason = nla_get_u32(a)
1556 ? OVS_DROP_EXPLICIT_WITH_ERROR
1557 : OVS_DROP_EXPLICIT;
1559 ovs_kfree_skb_reason(skb, reason);
1560 return 0;
1563 case OVS_ACTION_ATTR_PSAMPLE:
1564 execute_psample(dp, skb, a);
1565 OVS_CB(skb)->cutlen = 0;
1566 if (nla_is_last(a, rem)) {
1567 consume_skb(skb);
1568 return 0;
1570 break;
1573 if (unlikely(err)) {
1574 ovs_kfree_skb_reason(skb, OVS_DROP_ACTION_ERROR);
1575 return err;
1579 ovs_kfree_skb_reason(skb, OVS_DROP_LAST_ACTION);
1580 return 0;
1583 /* Execute the actions on the clone of the packet. The effect of the
1584 * execution does not affect the original 'skb' nor the original 'key'.
1586 * The execution may be deferred in case the actions can not be executed
1587 * immediately.
1589 static int clone_execute(struct datapath *dp, struct sk_buff *skb,
1590 struct sw_flow_key *key, u32 recirc_id,
1591 const struct nlattr *actions, int len,
1592 bool last, bool clone_flow_key)
1594 struct deferred_action *da;
1595 struct sw_flow_key *clone;
1597 skb = last ? skb : skb_clone(skb, GFP_ATOMIC);
1598 if (!skb) {
1599 /* Out of memory, skip this action.
1601 return 0;
1604 /* When clone_flow_key is false, the 'key' will not be change
1605 * by the actions, then the 'key' can be used directly.
1606 * Otherwise, try to clone key from the next recursion level of
1607 * 'flow_keys'. If clone is successful, execute the actions
1608 * without deferring.
1610 clone = clone_flow_key ? clone_key(key) : key;
1611 if (clone) {
1612 int err = 0;
1614 if (actions) { /* Sample action */
1615 if (clone_flow_key)
1616 __this_cpu_inc(exec_actions_level);
1618 err = do_execute_actions(dp, skb, clone,
1619 actions, len);
1621 if (clone_flow_key)
1622 __this_cpu_dec(exec_actions_level);
1623 } else { /* Recirc action */
1624 clone->recirc_id = recirc_id;
1625 ovs_dp_process_packet(skb, clone);
1627 return err;
1630 /* Out of 'flow_keys' space. Defer actions */
1631 da = add_deferred_actions(skb, key, actions, len);
1632 if (da) {
1633 if (!actions) { /* Recirc action */
1634 key = &da->pkt_key;
1635 key->recirc_id = recirc_id;
1637 } else {
1638 /* Out of per CPU action FIFO space. Drop the 'skb' and
1639 * log an error.
1641 ovs_kfree_skb_reason(skb, OVS_DROP_DEFERRED_LIMIT);
1643 if (net_ratelimit()) {
1644 if (actions) { /* Sample action */
1645 pr_warn("%s: deferred action limit reached, drop sample action\n",
1646 ovs_dp_name(dp));
1647 } else { /* Recirc action */
1648 pr_warn("%s: deferred action limit reached, drop recirc action (recirc_id=%#x)\n",
1649 ovs_dp_name(dp), recirc_id);
1653 return 0;
1656 static void process_deferred_actions(struct datapath *dp)
1658 struct action_fifo *fifo = this_cpu_ptr(action_fifos);
1660 /* Do not touch the FIFO in case there is no deferred actions. */
1661 if (action_fifo_is_empty(fifo))
1662 return;
1664 /* Finishing executing all deferred actions. */
1665 do {
1666 struct deferred_action *da = action_fifo_get(fifo);
1667 struct sk_buff *skb = da->skb;
1668 struct sw_flow_key *key = &da->pkt_key;
1669 const struct nlattr *actions = da->actions;
1670 int actions_len = da->actions_len;
1672 if (actions)
1673 do_execute_actions(dp, skb, key, actions, actions_len);
1674 else
1675 ovs_dp_process_packet(skb, key);
1676 } while (!action_fifo_is_empty(fifo));
1678 /* Reset FIFO for the next packet. */
1679 action_fifo_init(fifo);
1682 /* Execute a list of actions against 'skb'. */
1683 int ovs_execute_actions(struct datapath *dp, struct sk_buff *skb,
1684 const struct sw_flow_actions *acts,
1685 struct sw_flow_key *key)
1687 int err, level;
1689 level = __this_cpu_inc_return(exec_actions_level);
1690 if (unlikely(level > OVS_RECURSION_LIMIT)) {
1691 net_crit_ratelimited("ovs: recursion limit reached on datapath %s, probable configuration error\n",
1692 ovs_dp_name(dp));
1693 ovs_kfree_skb_reason(skb, OVS_DROP_RECURSION_LIMIT);
1694 err = -ENETDOWN;
1695 goto out;
1698 OVS_CB(skb)->acts_origlen = acts->orig_len;
1699 err = do_execute_actions(dp, skb, key,
1700 acts->actions, acts->actions_len);
1702 if (level == 1)
1703 process_deferred_actions(dp);
1705 out:
1706 __this_cpu_dec(exec_actions_level);
1707 return err;
1710 int action_fifos_init(void)
1712 action_fifos = alloc_percpu(struct action_fifo);
1713 if (!action_fifos)
1714 return -ENOMEM;
1716 flow_keys = alloc_percpu(struct action_flow_keys);
1717 if (!flow_keys) {
1718 free_percpu(action_fifos);
1719 return -ENOMEM;
1722 return 0;
1725 void action_fifos_exit(void)
1727 free_percpu(action_fifos);
1728 free_percpu(flow_keys);