drm/panel-edp: Add BOE NV140FHM-NZ panel entry
[drm/drm-misc.git] / net / rds / ib.c
blob9826fe7f9d00868576f4411b31cd52f5de5d8f6d
1 /*
2 * Copyright (c) 2006, 2019 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/in.h>
35 #include <linux/if.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/if_arp.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 #include <net/addrconf.h>
44 #include "rds_single_path.h"
45 #include "rds.h"
46 #include "ib.h"
47 #include "ib_mr.h"
49 static unsigned int rds_ib_mr_1m_pool_size = RDS_MR_1M_POOL_SIZE;
50 static unsigned int rds_ib_mr_8k_pool_size = RDS_MR_8K_POOL_SIZE;
51 unsigned int rds_ib_retry_count = RDS_IB_DEFAULT_RETRY_COUNT;
52 static atomic_t rds_ib_unloading;
54 module_param(rds_ib_mr_1m_pool_size, int, 0444);
55 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size, " Max number of 1M mr per HCA");
56 module_param(rds_ib_mr_8k_pool_size, int, 0444);
57 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size, " Max number of 8K mr per HCA");
58 module_param(rds_ib_retry_count, int, 0444);
59 MODULE_PARM_DESC(rds_ib_retry_count, " Number of hw retries before reporting an error");
62 * we have a clumsy combination of RCU and a rwsem protecting this list
63 * because it is used both in the get_mr fast path and while blocking in
64 * the FMR flushing path.
66 DECLARE_RWSEM(rds_ib_devices_lock);
67 struct list_head rds_ib_devices;
69 /* NOTE: if also grabbing ibdev lock, grab this first */
70 DEFINE_SPINLOCK(ib_nodev_conns_lock);
71 LIST_HEAD(ib_nodev_conns);
73 static void rds_ib_nodev_connect(void)
75 struct rds_ib_connection *ic;
77 spin_lock(&ib_nodev_conns_lock);
78 list_for_each_entry(ic, &ib_nodev_conns, ib_node)
79 rds_conn_connect_if_down(ic->conn);
80 spin_unlock(&ib_nodev_conns_lock);
83 static void rds_ib_dev_shutdown(struct rds_ib_device *rds_ibdev)
85 struct rds_ib_connection *ic;
86 unsigned long flags;
88 spin_lock_irqsave(&rds_ibdev->spinlock, flags);
89 list_for_each_entry(ic, &rds_ibdev->conn_list, ib_node)
90 rds_conn_path_drop(&ic->conn->c_path[0], true);
91 spin_unlock_irqrestore(&rds_ibdev->spinlock, flags);
95 * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
96 * from interrupt context so we push freing off into a work struct in krdsd.
98 static void rds_ib_dev_free(struct work_struct *work)
100 struct rds_ib_ipaddr *i_ipaddr, *i_next;
101 struct rds_ib_device *rds_ibdev = container_of(work,
102 struct rds_ib_device, free_work);
104 if (rds_ibdev->mr_8k_pool)
105 rds_ib_destroy_mr_pool(rds_ibdev->mr_8k_pool);
106 if (rds_ibdev->mr_1m_pool)
107 rds_ib_destroy_mr_pool(rds_ibdev->mr_1m_pool);
108 if (rds_ibdev->pd)
109 ib_dealloc_pd(rds_ibdev->pd);
111 list_for_each_entry_safe(i_ipaddr, i_next, &rds_ibdev->ipaddr_list, list) {
112 list_del(&i_ipaddr->list);
113 kfree(i_ipaddr);
116 kfree(rds_ibdev->vector_load);
118 kfree(rds_ibdev);
121 void rds_ib_dev_put(struct rds_ib_device *rds_ibdev)
123 BUG_ON(refcount_read(&rds_ibdev->refcount) == 0);
124 if (refcount_dec_and_test(&rds_ibdev->refcount))
125 queue_work(rds_wq, &rds_ibdev->free_work);
128 static int rds_ib_add_one(struct ib_device *device)
130 struct rds_ib_device *rds_ibdev;
131 int ret;
133 /* Only handle IB (no iWARP) devices */
134 if (device->node_type != RDMA_NODE_IB_CA)
135 return -EOPNOTSUPP;
137 /* Device must support FRWR */
138 if (!(device->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS))
139 return -EOPNOTSUPP;
141 rds_ibdev = kzalloc_node(sizeof(struct rds_ib_device), GFP_KERNEL,
142 ibdev_to_node(device));
143 if (!rds_ibdev)
144 return -ENOMEM;
146 spin_lock_init(&rds_ibdev->spinlock);
147 refcount_set(&rds_ibdev->refcount, 1);
148 INIT_WORK(&rds_ibdev->free_work, rds_ib_dev_free);
150 INIT_LIST_HEAD(&rds_ibdev->ipaddr_list);
151 INIT_LIST_HEAD(&rds_ibdev->conn_list);
153 rds_ibdev->max_wrs = device->attrs.max_qp_wr;
154 rds_ibdev->max_sge = min(device->attrs.max_send_sge, RDS_IB_MAX_SGE);
156 rds_ibdev->odp_capable =
157 !!(device->attrs.kernel_cap_flags &
158 IBK_ON_DEMAND_PAGING) &&
159 !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps &
160 IB_ODP_SUPPORT_WRITE) &&
161 !!(device->attrs.odp_caps.per_transport_caps.rc_odp_caps &
162 IB_ODP_SUPPORT_READ);
164 rds_ibdev->max_1m_mrs = device->attrs.max_mr ?
165 min_t(unsigned int, (device->attrs.max_mr / 2),
166 rds_ib_mr_1m_pool_size) : rds_ib_mr_1m_pool_size;
168 rds_ibdev->max_8k_mrs = device->attrs.max_mr ?
169 min_t(unsigned int, ((device->attrs.max_mr / 2) * RDS_MR_8K_SCALE),
170 rds_ib_mr_8k_pool_size) : rds_ib_mr_8k_pool_size;
172 rds_ibdev->max_initiator_depth = device->attrs.max_qp_init_rd_atom;
173 rds_ibdev->max_responder_resources = device->attrs.max_qp_rd_atom;
175 rds_ibdev->vector_load = kcalloc(device->num_comp_vectors,
176 sizeof(int),
177 GFP_KERNEL);
178 if (!rds_ibdev->vector_load) {
179 pr_err("RDS/IB: %s failed to allocate vector memory\n",
180 __func__);
181 ret = -ENOMEM;
182 goto put_dev;
185 rds_ibdev->dev = device;
186 rds_ibdev->pd = ib_alloc_pd(device, 0);
187 if (IS_ERR(rds_ibdev->pd)) {
188 ret = PTR_ERR(rds_ibdev->pd);
189 rds_ibdev->pd = NULL;
190 goto put_dev;
193 rds_ibdev->mr_1m_pool =
194 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_1M_POOL);
195 if (IS_ERR(rds_ibdev->mr_1m_pool)) {
196 ret = PTR_ERR(rds_ibdev->mr_1m_pool);
197 rds_ibdev->mr_1m_pool = NULL;
198 goto put_dev;
201 rds_ibdev->mr_8k_pool =
202 rds_ib_create_mr_pool(rds_ibdev, RDS_IB_MR_8K_POOL);
203 if (IS_ERR(rds_ibdev->mr_8k_pool)) {
204 ret = PTR_ERR(rds_ibdev->mr_8k_pool);
205 rds_ibdev->mr_8k_pool = NULL;
206 goto put_dev;
209 rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
210 device->attrs.max_mr, rds_ibdev->max_wrs, rds_ibdev->max_sge,
211 rds_ibdev->max_1m_mrs, rds_ibdev->max_8k_mrs);
213 pr_info("RDS/IB: %s: added\n", device->name);
215 down_write(&rds_ib_devices_lock);
216 list_add_tail_rcu(&rds_ibdev->list, &rds_ib_devices);
217 up_write(&rds_ib_devices_lock);
218 refcount_inc(&rds_ibdev->refcount);
220 ib_set_client_data(device, &rds_ib_client, rds_ibdev);
222 rds_ib_nodev_connect();
223 return 0;
225 put_dev:
226 rds_ib_dev_put(rds_ibdev);
227 return ret;
231 * New connections use this to find the device to associate with the
232 * connection. It's not in the fast path so we're not concerned about the
233 * performance of the IB call. (As of this writing, it uses an interrupt
234 * blocking spinlock to serialize walking a per-device list of all registered
235 * clients.)
237 * RCU is used to handle incoming connections racing with device teardown.
238 * Rather than use a lock to serialize removal from the client_data and
239 * getting a new reference, we use an RCU grace period. The destruction
240 * path removes the device from client_data and then waits for all RCU
241 * readers to finish.
243 * A new connection can get NULL from this if its arriving on a
244 * device that is in the process of being removed.
246 struct rds_ib_device *rds_ib_get_client_data(struct ib_device *device)
248 struct rds_ib_device *rds_ibdev;
250 rcu_read_lock();
251 rds_ibdev = ib_get_client_data(device, &rds_ib_client);
252 if (rds_ibdev)
253 refcount_inc(&rds_ibdev->refcount);
254 rcu_read_unlock();
255 return rds_ibdev;
259 * The IB stack is letting us know that a device is going away. This can
260 * happen if the underlying HCA driver is removed or if PCI hotplug is removing
261 * the pci function, for example.
263 * This can be called at any time and can be racing with any other RDS path.
265 static void rds_ib_remove_one(struct ib_device *device, void *client_data)
267 struct rds_ib_device *rds_ibdev = client_data;
269 rds_ib_dev_shutdown(rds_ibdev);
271 /* stop connection attempts from getting a reference to this device. */
272 ib_set_client_data(device, &rds_ib_client, NULL);
274 down_write(&rds_ib_devices_lock);
275 list_del_rcu(&rds_ibdev->list);
276 up_write(&rds_ib_devices_lock);
279 * This synchronize rcu is waiting for readers of both the ib
280 * client data and the devices list to finish before we drop
281 * both of those references.
283 synchronize_rcu();
284 rds_ib_dev_put(rds_ibdev);
285 rds_ib_dev_put(rds_ibdev);
288 struct ib_client rds_ib_client = {
289 .name = "rds_ib",
290 .add = rds_ib_add_one,
291 .remove = rds_ib_remove_one
294 static int rds_ib_conn_info_visitor(struct rds_connection *conn,
295 void *buffer)
297 struct rds_info_rdma_connection *iinfo = buffer;
298 struct rds_ib_connection *ic = conn->c_transport_data;
300 /* We will only ever look at IB transports */
301 if (conn->c_trans != &rds_ib_transport)
302 return 0;
303 if (conn->c_isv6)
304 return 0;
306 iinfo->src_addr = conn->c_laddr.s6_addr32[3];
307 iinfo->dst_addr = conn->c_faddr.s6_addr32[3];
308 if (ic) {
309 iinfo->tos = conn->c_tos;
310 iinfo->sl = ic->i_sl;
313 memset(&iinfo->src_gid, 0, sizeof(iinfo->src_gid));
314 memset(&iinfo->dst_gid, 0, sizeof(iinfo->dst_gid));
315 if (rds_conn_state(conn) == RDS_CONN_UP) {
316 struct rds_ib_device *rds_ibdev;
318 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo->src_gid,
319 (union ib_gid *)&iinfo->dst_gid);
321 rds_ibdev = ic->rds_ibdev;
322 iinfo->max_send_wr = ic->i_send_ring.w_nr;
323 iinfo->max_recv_wr = ic->i_recv_ring.w_nr;
324 iinfo->max_send_sge = rds_ibdev->max_sge;
325 rds_ib_get_mr_info(rds_ibdev, iinfo);
326 iinfo->cache_allocs = atomic_read(&ic->i_cache_allocs);
328 return 1;
331 #if IS_ENABLED(CONFIG_IPV6)
332 /* IPv6 version of rds_ib_conn_info_visitor(). */
333 static int rds6_ib_conn_info_visitor(struct rds_connection *conn,
334 void *buffer)
336 struct rds6_info_rdma_connection *iinfo6 = buffer;
337 struct rds_ib_connection *ic = conn->c_transport_data;
339 /* We will only ever look at IB transports */
340 if (conn->c_trans != &rds_ib_transport)
341 return 0;
343 iinfo6->src_addr = conn->c_laddr;
344 iinfo6->dst_addr = conn->c_faddr;
345 if (ic) {
346 iinfo6->tos = conn->c_tos;
347 iinfo6->sl = ic->i_sl;
350 memset(&iinfo6->src_gid, 0, sizeof(iinfo6->src_gid));
351 memset(&iinfo6->dst_gid, 0, sizeof(iinfo6->dst_gid));
353 if (rds_conn_state(conn) == RDS_CONN_UP) {
354 struct rds_ib_device *rds_ibdev;
356 rdma_read_gids(ic->i_cm_id, (union ib_gid *)&iinfo6->src_gid,
357 (union ib_gid *)&iinfo6->dst_gid);
358 rds_ibdev = ic->rds_ibdev;
359 iinfo6->max_send_wr = ic->i_send_ring.w_nr;
360 iinfo6->max_recv_wr = ic->i_recv_ring.w_nr;
361 iinfo6->max_send_sge = rds_ibdev->max_sge;
362 rds6_ib_get_mr_info(rds_ibdev, iinfo6);
363 iinfo6->cache_allocs = atomic_read(&ic->i_cache_allocs);
365 return 1;
367 #endif
369 static void rds_ib_ic_info(struct socket *sock, unsigned int len,
370 struct rds_info_iterator *iter,
371 struct rds_info_lengths *lens)
373 u64 buffer[(sizeof(struct rds_info_rdma_connection) + 7) / 8];
375 rds_for_each_conn_info(sock, len, iter, lens,
376 rds_ib_conn_info_visitor,
377 buffer,
378 sizeof(struct rds_info_rdma_connection));
381 #if IS_ENABLED(CONFIG_IPV6)
382 /* IPv6 version of rds_ib_ic_info(). */
383 static void rds6_ib_ic_info(struct socket *sock, unsigned int len,
384 struct rds_info_iterator *iter,
385 struct rds_info_lengths *lens)
387 u64 buffer[(sizeof(struct rds6_info_rdma_connection) + 7) / 8];
389 rds_for_each_conn_info(sock, len, iter, lens,
390 rds6_ib_conn_info_visitor,
391 buffer,
392 sizeof(struct rds6_info_rdma_connection));
394 #endif
397 * Early RDS/IB was built to only bind to an address if there is an IPoIB
398 * device with that address set.
400 * If it were me, I'd advocate for something more flexible. Sending and
401 * receiving should be device-agnostic. Transports would try and maintain
402 * connections between peers who have messages queued. Userspace would be
403 * allowed to influence which paths have priority. We could call userspace
404 * asserting this policy "routing".
406 static int rds_ib_laddr_check(struct net *net, const struct in6_addr *addr,
407 __u32 scope_id)
409 int ret;
410 struct rdma_cm_id *cm_id;
411 #if IS_ENABLED(CONFIG_IPV6)
412 struct sockaddr_in6 sin6;
413 #endif
414 struct sockaddr_in sin;
415 struct sockaddr *sa;
416 bool isv4;
418 isv4 = ipv6_addr_v4mapped(addr);
419 /* Create a CMA ID and try to bind it. This catches both
420 * IB and iWARP capable NICs.
422 cm_id = rdma_create_id(&init_net, rds_rdma_cm_event_handler,
423 NULL, RDMA_PS_TCP, IB_QPT_RC);
424 if (IS_ERR(cm_id))
425 return PTR_ERR(cm_id);
427 if (isv4) {
428 memset(&sin, 0, sizeof(sin));
429 sin.sin_family = AF_INET;
430 sin.sin_addr.s_addr = addr->s6_addr32[3];
431 sa = (struct sockaddr *)&sin;
432 } else {
433 #if IS_ENABLED(CONFIG_IPV6)
434 memset(&sin6, 0, sizeof(sin6));
435 sin6.sin6_family = AF_INET6;
436 sin6.sin6_addr = *addr;
437 sin6.sin6_scope_id = scope_id;
438 sa = (struct sockaddr *)&sin6;
440 /* XXX Do a special IPv6 link local address check here. The
441 * reason is that rdma_bind_addr() always succeeds with IPv6
442 * link local address regardless it is indeed configured in a
443 * system.
445 if (ipv6_addr_type(addr) & IPV6_ADDR_LINKLOCAL) {
446 struct net_device *dev;
448 if (scope_id == 0) {
449 ret = -EADDRNOTAVAIL;
450 goto out;
453 /* Use init_net for now as RDS is not network
454 * name space aware.
456 dev = dev_get_by_index(&init_net, scope_id);
457 if (!dev) {
458 ret = -EADDRNOTAVAIL;
459 goto out;
461 if (!ipv6_chk_addr(&init_net, addr, dev, 1)) {
462 dev_put(dev);
463 ret = -EADDRNOTAVAIL;
464 goto out;
466 dev_put(dev);
468 #else
469 ret = -EADDRNOTAVAIL;
470 goto out;
471 #endif
474 /* rdma_bind_addr will only succeed for IB & iWARP devices */
475 ret = rdma_bind_addr(cm_id, sa);
476 /* due to this, we will claim to support iWARP devices unless we
477 check node_type. */
478 if (ret || !cm_id->device ||
479 cm_id->device->node_type != RDMA_NODE_IB_CA)
480 ret = -EADDRNOTAVAIL;
482 rdsdebug("addr %pI6c%%%u ret %d node type %d\n",
483 addr, scope_id, ret,
484 cm_id->device ? cm_id->device->node_type : -1);
486 out:
487 rdma_destroy_id(cm_id);
489 return ret;
492 static void rds_ib_unregister_client(void)
494 ib_unregister_client(&rds_ib_client);
495 /* wait for rds_ib_dev_free() to complete */
496 flush_workqueue(rds_wq);
499 static void rds_ib_set_unloading(void)
501 atomic_set(&rds_ib_unloading, 1);
504 static bool rds_ib_is_unloading(struct rds_connection *conn)
506 struct rds_conn_path *cp = &conn->c_path[0];
508 return (test_bit(RDS_DESTROY_PENDING, &cp->cp_flags) ||
509 atomic_read(&rds_ib_unloading) != 0);
512 void rds_ib_exit(void)
514 rds_ib_set_unloading();
515 synchronize_rcu();
516 rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
517 #if IS_ENABLED(CONFIG_IPV6)
518 rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
519 #endif
520 rds_ib_unregister_client();
521 rds_ib_destroy_nodev_conns();
522 rds_ib_sysctl_exit();
523 rds_ib_recv_exit();
524 rds_trans_unregister(&rds_ib_transport);
525 rds_ib_mr_exit();
528 static u8 rds_ib_get_tos_map(u8 tos)
530 /* 1:1 user to transport map for RDMA transport.
531 * In future, if custom map is desired, hook can export
532 * user configurable map.
534 return tos;
537 struct rds_transport rds_ib_transport = {
538 .laddr_check = rds_ib_laddr_check,
539 .xmit_path_complete = rds_ib_xmit_path_complete,
540 .xmit = rds_ib_xmit,
541 .xmit_rdma = rds_ib_xmit_rdma,
542 .xmit_atomic = rds_ib_xmit_atomic,
543 .recv_path = rds_ib_recv_path,
544 .conn_alloc = rds_ib_conn_alloc,
545 .conn_free = rds_ib_conn_free,
546 .conn_path_connect = rds_ib_conn_path_connect,
547 .conn_path_shutdown = rds_ib_conn_path_shutdown,
548 .inc_copy_to_user = rds_ib_inc_copy_to_user,
549 .inc_free = rds_ib_inc_free,
550 .cm_initiate_connect = rds_ib_cm_initiate_connect,
551 .cm_handle_connect = rds_ib_cm_handle_connect,
552 .cm_connect_complete = rds_ib_cm_connect_complete,
553 .stats_info_copy = rds_ib_stats_info_copy,
554 .exit = rds_ib_exit,
555 .get_mr = rds_ib_get_mr,
556 .sync_mr = rds_ib_sync_mr,
557 .free_mr = rds_ib_free_mr,
558 .flush_mrs = rds_ib_flush_mrs,
559 .get_tos_map = rds_ib_get_tos_map,
560 .t_owner = THIS_MODULE,
561 .t_name = "infiniband",
562 .t_unloading = rds_ib_is_unloading,
563 .t_type = RDS_TRANS_IB
566 int rds_ib_init(void)
568 int ret;
570 INIT_LIST_HEAD(&rds_ib_devices);
572 ret = rds_ib_mr_init();
573 if (ret)
574 goto out;
576 ret = ib_register_client(&rds_ib_client);
577 if (ret)
578 goto out_mr_exit;
580 ret = rds_ib_sysctl_init();
581 if (ret)
582 goto out_ibreg;
584 ret = rds_ib_recv_init();
585 if (ret)
586 goto out_sysctl;
588 rds_trans_register(&rds_ib_transport);
590 rds_info_register_func(RDS_INFO_IB_CONNECTIONS, rds_ib_ic_info);
591 #if IS_ENABLED(CONFIG_IPV6)
592 rds_info_register_func(RDS6_INFO_IB_CONNECTIONS, rds6_ib_ic_info);
593 #endif
595 goto out;
597 out_sysctl:
598 rds_ib_sysctl_exit();
599 out_ibreg:
600 rds_ib_unregister_client();
601 out_mr_exit:
602 rds_ib_mr_exit();
603 out:
604 return ret;
607 MODULE_LICENSE("GPL");