1 // SPDX-License-Identifier: GPL-2.0-only
3 * net/sched/sch_netem.c Network emulator
5 * Many of the algorithms and ideas for this came from
6 * NIST Net which is not copyrighted.
8 * Authors: Stephen Hemminger <shemminger@osdl.org>
9 * Catalin(ux aka Dino) BOIE <catab at umbrella dot ro>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/types.h>
16 #include <linux/kernel.h>
17 #include <linux/errno.h>
18 #include <linux/skbuff.h>
19 #include <linux/vmalloc.h>
20 #include <linux/prandom.h>
21 #include <linux/rtnetlink.h>
22 #include <linux/reciprocal_div.h>
23 #include <linux/rbtree.h>
26 #include <net/netlink.h>
27 #include <net/pkt_sched.h>
28 #include <net/inet_ecn.h>
32 /* Network Emulation Queuing algorithm.
33 ====================================
35 Sources: [1] Mark Carson, Darrin Santay, "NIST Net - A Linux-based
36 Network Emulation Tool
37 [2] Luigi Rizzo, DummyNet for FreeBSD
39 ----------------------------------------------------------------
41 This started out as a simple way to delay outgoing packets to
42 test TCP but has grown to include most of the functionality
43 of a full blown network emulator like NISTnet. It can delay
44 packets and add random jitter (and correlation). The random
45 distribution can be loaded from a table as well to provide
46 normal, Pareto, or experimental curves. Packet loss,
47 duplication, and reordering can also be emulated.
49 This qdisc does not do classification that can be handled in
50 layering other disciplines. It does not need to do bandwidth
51 control either since that can be handled by using token
52 bucket or other rate control.
54 Correlated Loss Generator models
56 Added generation of correlated loss according to the
57 "Gilbert-Elliot" model, a 4-state markov model.
60 [1] NetemCLG Home http://netgroup.uniroma2.it/NetemCLG
61 [2] S. Salsano, F. Ludovici, A. Ordine, "Definition of a general
62 and intuitive loss model for packet networks and its implementation
63 in the Netem module in the Linux kernel", available in [1]
65 Authors: Stefano Salsano <stefano.salsano at uniroma2.it
66 Fabio Ludovici <fabio.ludovici at yahoo.it>
71 s16 table
[] __counted_by(size
);
74 struct netem_sched_data
{
75 /* internal t(ime)fifo qdisc uses t_root and sch->limit */
76 struct rb_root t_root
;
78 /* a linear queue; reduces rbtree rebalancing when jitter is low */
79 struct sk_buff
*t_head
;
80 struct sk_buff
*t_tail
;
82 /* optional qdisc for classful handling (NULL at netem init) */
85 struct qdisc_watchdog watchdog
;
101 struct reciprocal_value cell_size_reciprocal
;
107 } delay_cor
, loss_cor
, dup_cor
, reorder_cor
, corrupt_cor
;
111 struct rnd_state prng_state
;
114 struct disttable
*delay_dist
;
123 TX_IN_GAP_PERIOD
= 1,
126 LOST_IN_BURST_PERIOD
,
134 /* Correlated Loss Generation models */
136 /* state of the Markov chain */
139 /* 4-states and Gilbert-Elliot models */
140 u32 a1
; /* p13 for 4-states or p for GE */
141 u32 a2
; /* p31 for 4-states or r for GE */
142 u32 a3
; /* p32 for 4-states or h for GE */
143 u32 a4
; /* p14 for 4-states or 1-k for GE */
144 u32 a5
; /* p23 used only in 4-states */
147 struct tc_netem_slot slot_config
;
154 struct disttable
*slot_dist
;
157 /* Time stamp put into socket buffer control block
158 * Only valid when skbs are in our internal t(ime)fifo queue.
160 * As skb->rbnode uses same storage than skb->next, skb->prev and skb->tstamp,
161 * and skb->next & skb->prev are scratch space for a qdisc,
162 * we save skb->tstamp value in skb->cb[] before destroying it.
164 struct netem_skb_cb
{
168 static inline struct netem_skb_cb
*netem_skb_cb(struct sk_buff
*skb
)
170 /* we assume we can use skb next/prev/tstamp as storage for rb_node */
171 qdisc_cb_private_validate(skb
, sizeof(struct netem_skb_cb
));
172 return (struct netem_skb_cb
*)qdisc_skb_cb(skb
)->data
;
175 /* init_crandom - initialize correlated random number generator
176 * Use entropy source for initial seed.
178 static void init_crandom(struct crndstate
*state
, unsigned long rho
)
181 state
->last
= get_random_u32();
184 /* get_crandom - correlated random number generator
185 * Next number depends on last value.
186 * rho is scaled to avoid floating point.
188 static u32
get_crandom(struct crndstate
*state
, struct prng
*p
)
191 unsigned long answer
;
192 struct rnd_state
*s
= &p
->prng_state
;
194 if (!state
|| state
->rho
== 0) /* no correlation */
195 return prandom_u32_state(s
);
197 value
= prandom_u32_state(s
);
198 rho
= (u64
)state
->rho
+ 1;
199 answer
= (value
* ((1ull<<32) - rho
) + state
->last
* rho
) >> 32;
200 state
->last
= answer
;
204 /* loss_4state - 4-state model loss generator
205 * Generates losses according to the 4-state Markov chain adopted in
206 * the GI (General and Intuitive) loss model.
208 static bool loss_4state(struct netem_sched_data
*q
)
210 struct clgstate
*clg
= &q
->clg
;
211 u32 rnd
= prandom_u32_state(&q
->prng
.prng_state
);
214 * Makes a comparison between rnd and the transition
215 * probabilities outgoing from the current state, then decides the
216 * next state and if the next packet has to be transmitted or lost.
217 * The four states correspond to:
218 * TX_IN_GAP_PERIOD => successfully transmitted packets within a gap period
219 * LOST_IN_GAP_PERIOD => isolated losses within a gap period
220 * LOST_IN_BURST_PERIOD => lost packets within a burst period
221 * TX_IN_BURST_PERIOD => successfully transmitted packets within a burst period
223 switch (clg
->state
) {
224 case TX_IN_GAP_PERIOD
:
226 clg
->state
= LOST_IN_GAP_PERIOD
;
228 } else if (clg
->a4
< rnd
&& rnd
< clg
->a1
+ clg
->a4
) {
229 clg
->state
= LOST_IN_BURST_PERIOD
;
231 } else if (clg
->a1
+ clg
->a4
< rnd
) {
232 clg
->state
= TX_IN_GAP_PERIOD
;
236 case TX_IN_BURST_PERIOD
:
238 clg
->state
= LOST_IN_BURST_PERIOD
;
241 clg
->state
= TX_IN_BURST_PERIOD
;
245 case LOST_IN_BURST_PERIOD
:
247 clg
->state
= TX_IN_BURST_PERIOD
;
248 else if (clg
->a3
< rnd
&& rnd
< clg
->a2
+ clg
->a3
) {
249 clg
->state
= TX_IN_GAP_PERIOD
;
250 } else if (clg
->a2
+ clg
->a3
< rnd
) {
251 clg
->state
= LOST_IN_BURST_PERIOD
;
255 case LOST_IN_GAP_PERIOD
:
256 clg
->state
= TX_IN_GAP_PERIOD
;
263 /* loss_gilb_ell - Gilbert-Elliot model loss generator
264 * Generates losses according to the Gilbert-Elliot loss model or
265 * its special cases (Gilbert or Simple Gilbert)
267 * Makes a comparison between random number and the transition
268 * probabilities outgoing from the current state, then decides the
269 * next state. A second random number is extracted and the comparison
270 * with the loss probability of the current state decides if the next
271 * packet will be transmitted or lost.
273 static bool loss_gilb_ell(struct netem_sched_data
*q
)
275 struct clgstate
*clg
= &q
->clg
;
276 struct rnd_state
*s
= &q
->prng
.prng_state
;
278 switch (clg
->state
) {
280 if (prandom_u32_state(s
) < clg
->a1
)
281 clg
->state
= BAD_STATE
;
282 if (prandom_u32_state(s
) < clg
->a4
)
286 if (prandom_u32_state(s
) < clg
->a2
)
287 clg
->state
= GOOD_STATE
;
288 if (prandom_u32_state(s
) > clg
->a3
)
295 static bool loss_event(struct netem_sched_data
*q
)
297 switch (q
->loss_model
) {
299 /* Random packet drop 0 => none, ~0 => all */
300 return q
->loss
&& q
->loss
>= get_crandom(&q
->loss_cor
, &q
->prng
);
303 /* 4state loss model algorithm (used also for GI model)
304 * Extracts a value from the markov 4 state loss generator,
305 * if it is 1 drops a packet and if needed writes the event in
308 return loss_4state(q
);
311 /* Gilbert-Elliot loss model algorithm
312 * Extracts a value from the Gilbert-Elliot loss generator,
313 * if it is 1 drops a packet and if needed writes the event in
316 return loss_gilb_ell(q
);
319 return false; /* not reached */
323 /* tabledist - return a pseudo-randomly distributed value with mean mu and
324 * std deviation sigma. Uses table lookup to approximate the desired
325 * distribution, and a uniformly-distributed pseudo-random source.
327 static s64
tabledist(s64 mu
, s32 sigma
,
328 struct crndstate
*state
,
330 const struct disttable
*dist
)
339 rnd
= get_crandom(state
, prng
);
341 /* default uniform distribution */
343 return ((rnd
% (2 * (u32
)sigma
)) + mu
) - sigma
;
345 t
= dist
->table
[rnd
% dist
->size
];
346 x
= (sigma
% NETEM_DIST_SCALE
) * t
;
348 x
+= NETEM_DIST_SCALE
/2;
350 x
-= NETEM_DIST_SCALE
/2;
352 return x
/ NETEM_DIST_SCALE
+ (sigma
/ NETEM_DIST_SCALE
) * t
+ mu
;
355 static u64
packet_time_ns(u64 len
, const struct netem_sched_data
*q
)
357 len
+= q
->packet_overhead
;
360 u32 cells
= reciprocal_divide(len
, q
->cell_size_reciprocal
);
362 if (len
> cells
* q
->cell_size
) /* extra cell needed for remainder */
364 len
= cells
* (q
->cell_size
+ q
->cell_overhead
);
367 return div64_u64(len
* NSEC_PER_SEC
, q
->rate
);
370 static void tfifo_reset(struct Qdisc
*sch
)
372 struct netem_sched_data
*q
= qdisc_priv(sch
);
373 struct rb_node
*p
= rb_first(&q
->t_root
);
376 struct sk_buff
*skb
= rb_to_skb(p
);
379 rb_erase(&skb
->rbnode
, &q
->t_root
);
380 rtnl_kfree_skbs(skb
, skb
);
383 rtnl_kfree_skbs(q
->t_head
, q
->t_tail
);
388 static void tfifo_enqueue(struct sk_buff
*nskb
, struct Qdisc
*sch
)
390 struct netem_sched_data
*q
= qdisc_priv(sch
);
391 u64 tnext
= netem_skb_cb(nskb
)->time_to_send
;
393 if (!q
->t_tail
|| tnext
>= netem_skb_cb(q
->t_tail
)->time_to_send
) {
395 q
->t_tail
->next
= nskb
;
400 struct rb_node
**p
= &q
->t_root
.rb_node
, *parent
= NULL
;
406 skb
= rb_to_skb(parent
);
407 if (tnext
>= netem_skb_cb(skb
)->time_to_send
)
408 p
= &parent
->rb_right
;
410 p
= &parent
->rb_left
;
412 rb_link_node(&nskb
->rbnode
, parent
, p
);
413 rb_insert_color(&nskb
->rbnode
, &q
->t_root
);
418 /* netem can't properly corrupt a megapacket (like we get from GSO), so instead
419 * when we statistically choose to corrupt one, we instead segment it, returning
420 * the first packet to be corrupted, and re-enqueue the remaining frames
422 static struct sk_buff
*netem_segment(struct sk_buff
*skb
, struct Qdisc
*sch
,
423 struct sk_buff
**to_free
)
425 struct sk_buff
*segs
;
426 netdev_features_t features
= netif_skb_features(skb
);
428 segs
= skb_gso_segment(skb
, features
& ~NETIF_F_GSO_MASK
);
430 if (IS_ERR_OR_NULL(segs
)) {
431 qdisc_drop(skb
, sch
, to_free
);
439 * Insert one skb into qdisc.
440 * Note: parent depends on return value to account for queue length.
441 * NET_XMIT_DROP: queue length didn't change.
442 * NET_XMIT_SUCCESS: one skb was queued.
444 static int netem_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
,
445 struct sk_buff
**to_free
)
447 struct netem_sched_data
*q
= qdisc_priv(sch
);
448 /* We don't fill cb now as skb_unshare() may invalidate it */
449 struct netem_skb_cb
*cb
;
450 struct sk_buff
*skb2
= NULL
;
451 struct sk_buff
*segs
= NULL
;
452 unsigned int prev_len
= qdisc_pkt_len(skb
);
455 /* Do not fool qdisc_drop_all() */
458 /* Random duplication */
459 if (q
->duplicate
&& q
->duplicate
>= get_crandom(&q
->dup_cor
, &q
->prng
))
464 if (q
->ecn
&& INET_ECN_set_ce(skb
))
465 qdisc_qstats_drop(sch
); /* mark packet */
470 qdisc_qstats_drop(sch
);
471 __qdisc_drop(skb
, to_free
);
472 return NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
475 /* If a delay is expected, orphan the skb. (orphaning usually takes
476 * place at TX completion time, so _before_ the link transit delay)
478 if (q
->latency
|| q
->jitter
|| q
->rate
)
479 skb_orphan_partial(skb
);
482 * If we need to duplicate packet, then clone it before
483 * original is modified.
486 skb2
= skb_clone(skb
, GFP_ATOMIC
);
489 * Randomized packet corruption.
490 * Make copy if needed since we are modifying
491 * If packet is going to be hardware checksummed, then
492 * do it now in software before we mangle it.
494 if (q
->corrupt
&& q
->corrupt
>= get_crandom(&q
->corrupt_cor
, &q
->prng
)) {
495 if (skb_is_gso(skb
)) {
496 skb
= netem_segment(skb
, sch
, to_free
);
501 skb_mark_not_on_list(skb
);
502 qdisc_skb_cb(skb
)->pkt_len
= skb
->len
;
505 skb
= skb_unshare(skb
, GFP_ATOMIC
);
506 if (unlikely(!skb
)) {
507 qdisc_qstats_drop(sch
);
510 if (skb
->ip_summed
== CHECKSUM_PARTIAL
&&
511 skb_checksum_help(skb
)) {
512 qdisc_drop(skb
, sch
, to_free
);
517 skb
->data
[get_random_u32_below(skb_headlen(skb
))] ^=
518 1<<get_random_u32_below(8);
521 if (unlikely(sch
->q
.qlen
>= sch
->limit
)) {
522 /* re-link segs, so that qdisc_drop_all() frees them all */
524 qdisc_drop_all(skb
, sch
, to_free
);
526 __qdisc_drop(skb2
, to_free
);
527 return NET_XMIT_DROP
;
531 * If doing duplication then re-insert at top of the
532 * qdisc tree, since parent queuer expects that only one
533 * skb will be queued.
536 struct Qdisc
*rootq
= qdisc_root_bh(sch
);
537 u32 dupsave
= q
->duplicate
; /* prevent duplicating a dup... */
540 rootq
->enqueue(skb2
, rootq
, to_free
);
541 q
->duplicate
= dupsave
;
545 qdisc_qstats_backlog_inc(sch
, skb
);
547 cb
= netem_skb_cb(skb
);
548 if (q
->gap
== 0 || /* not doing reordering */
549 q
->counter
< q
->gap
- 1 || /* inside last reordering gap */
550 q
->reorder
< get_crandom(&q
->reorder_cor
, &q
->prng
)) {
554 delay
= tabledist(q
->latency
, q
->jitter
,
555 &q
->delay_cor
, &q
->prng
, q
->delay_dist
);
557 now
= ktime_get_ns();
560 struct netem_skb_cb
*last
= NULL
;
563 last
= netem_skb_cb(sch
->q
.tail
);
564 if (q
->t_root
.rb_node
) {
565 struct sk_buff
*t_skb
;
566 struct netem_skb_cb
*t_last
;
568 t_skb
= skb_rb_last(&q
->t_root
);
569 t_last
= netem_skb_cb(t_skb
);
571 t_last
->time_to_send
> last
->time_to_send
)
575 struct netem_skb_cb
*t_last
=
576 netem_skb_cb(q
->t_tail
);
579 t_last
->time_to_send
> last
->time_to_send
)
585 * Last packet in queue is reference point (now),
586 * calculate this time bonus and subtract
589 delay
-= last
->time_to_send
- now
;
590 delay
= max_t(s64
, 0, delay
);
591 now
= last
->time_to_send
;
594 delay
+= packet_time_ns(qdisc_pkt_len(skb
), q
);
597 cb
->time_to_send
= now
+ delay
;
599 tfifo_enqueue(skb
, sch
);
602 * Do re-ordering by putting one out of N packets at the front
605 cb
->time_to_send
= ktime_get_ns();
608 __qdisc_enqueue_head(skb
, &sch
->q
);
609 sch
->qstats
.requeues
++;
614 __qdisc_drop(skb2
, to_free
);
617 unsigned int len
, last_len
;
620 len
= skb
? skb
->len
: 0;
625 skb_mark_not_on_list(segs
);
626 qdisc_skb_cb(segs
)->pkt_len
= segs
->len
;
627 last_len
= segs
->len
;
628 rc
= qdisc_enqueue(segs
, sch
, to_free
);
629 if (rc
!= NET_XMIT_SUCCESS
) {
630 if (net_xmit_drop_count(rc
))
631 qdisc_qstats_drop(sch
);
638 /* Parent qdiscs accounted for 1 skb of size @prev_len */
639 qdisc_tree_reduce_backlog(sch
, -(nb
- 1), -(len
- prev_len
));
641 return NET_XMIT_DROP
;
643 return NET_XMIT_SUCCESS
;
646 /* Delay the next round with a new future slot with a
647 * correct number of bytes and packets.
650 static void get_slot_next(struct netem_sched_data
*q
, u64 now
)
655 next_delay
= q
->slot_config
.min_delay
+
657 (q
->slot_config
.max_delay
-
658 q
->slot_config
.min_delay
) >> 32);
660 next_delay
= tabledist(q
->slot_config
.dist_delay
,
661 (s32
)(q
->slot_config
.dist_jitter
),
662 NULL
, &q
->prng
, q
->slot_dist
);
664 q
->slot
.slot_next
= now
+ next_delay
;
665 q
->slot
.packets_left
= q
->slot_config
.max_packets
;
666 q
->slot
.bytes_left
= q
->slot_config
.max_bytes
;
669 static struct sk_buff
*netem_peek(struct netem_sched_data
*q
)
671 struct sk_buff
*skb
= skb_rb_first(&q
->t_root
);
679 t1
= netem_skb_cb(skb
)->time_to_send
;
680 t2
= netem_skb_cb(q
->t_head
)->time_to_send
;
686 static void netem_erase_head(struct netem_sched_data
*q
, struct sk_buff
*skb
)
688 if (skb
== q
->t_head
) {
689 q
->t_head
= skb
->next
;
693 rb_erase(&skb
->rbnode
, &q
->t_root
);
697 static struct sk_buff
*netem_dequeue(struct Qdisc
*sch
)
699 struct netem_sched_data
*q
= qdisc_priv(sch
);
703 skb
= __qdisc_dequeue_head(&sch
->q
);
705 qdisc_qstats_backlog_dec(sch
, skb
);
707 qdisc_bstats_update(sch
, skb
);
713 u64 now
= ktime_get_ns();
715 /* if more time remaining? */
716 time_to_send
= netem_skb_cb(skb
)->time_to_send
;
717 if (q
->slot
.slot_next
&& q
->slot
.slot_next
< time_to_send
)
718 get_slot_next(q
, now
);
720 if (time_to_send
<= now
&& q
->slot
.slot_next
<= now
) {
721 netem_erase_head(q
, skb
);
723 qdisc_qstats_backlog_dec(sch
, skb
);
726 /* skb->dev shares skb->rbnode area,
727 * we need to restore its value.
729 skb
->dev
= qdisc_dev(sch
);
731 if (q
->slot
.slot_next
) {
732 q
->slot
.packets_left
--;
733 q
->slot
.bytes_left
-= qdisc_pkt_len(skb
);
734 if (q
->slot
.packets_left
<= 0 ||
735 q
->slot
.bytes_left
<= 0)
736 get_slot_next(q
, now
);
740 unsigned int pkt_len
= qdisc_pkt_len(skb
);
741 struct sk_buff
*to_free
= NULL
;
744 err
= qdisc_enqueue(skb
, q
->qdisc
, &to_free
);
745 kfree_skb_list(to_free
);
746 if (err
!= NET_XMIT_SUCCESS
) {
747 if (net_xmit_drop_count(err
))
748 qdisc_qstats_drop(sch
);
749 qdisc_tree_reduce_backlog(sch
, 1, pkt_len
);
757 skb
= q
->qdisc
->ops
->dequeue(q
->qdisc
);
762 qdisc_watchdog_schedule_ns(&q
->watchdog
,
768 skb
= q
->qdisc
->ops
->dequeue(q
->qdisc
);
775 static void netem_reset(struct Qdisc
*sch
)
777 struct netem_sched_data
*q
= qdisc_priv(sch
);
779 qdisc_reset_queue(sch
);
782 qdisc_reset(q
->qdisc
);
783 qdisc_watchdog_cancel(&q
->watchdog
);
786 static void dist_free(struct disttable
*d
)
792 * Distribution data is a variable size payload containing
793 * signed 16 bit values.
796 static int get_dist_table(struct disttable
**tbl
, const struct nlattr
*attr
)
798 size_t n
= nla_len(attr
)/sizeof(__s16
);
799 const __s16
*data
= nla_data(attr
);
803 if (!n
|| n
> NETEM_DIST_MAX
)
806 d
= kvmalloc(struct_size(d
, table
, n
), GFP_KERNEL
);
811 for (i
= 0; i
< n
; i
++)
812 d
->table
[i
] = data
[i
];
818 static void get_slot(struct netem_sched_data
*q
, const struct nlattr
*attr
)
820 const struct tc_netem_slot
*c
= nla_data(attr
);
823 if (q
->slot_config
.max_packets
== 0)
824 q
->slot_config
.max_packets
= INT_MAX
;
825 if (q
->slot_config
.max_bytes
== 0)
826 q
->slot_config
.max_bytes
= INT_MAX
;
828 /* capping dist_jitter to the range acceptable by tabledist() */
829 q
->slot_config
.dist_jitter
= min_t(__s64
, INT_MAX
, abs(q
->slot_config
.dist_jitter
));
831 q
->slot
.packets_left
= q
->slot_config
.max_packets
;
832 q
->slot
.bytes_left
= q
->slot_config
.max_bytes
;
833 if (q
->slot_config
.min_delay
| q
->slot_config
.max_delay
|
834 q
->slot_config
.dist_jitter
)
835 q
->slot
.slot_next
= ktime_get_ns();
837 q
->slot
.slot_next
= 0;
840 static void get_correlation(struct netem_sched_data
*q
, const struct nlattr
*attr
)
842 const struct tc_netem_corr
*c
= nla_data(attr
);
844 init_crandom(&q
->delay_cor
, c
->delay_corr
);
845 init_crandom(&q
->loss_cor
, c
->loss_corr
);
846 init_crandom(&q
->dup_cor
, c
->dup_corr
);
849 static void get_reorder(struct netem_sched_data
*q
, const struct nlattr
*attr
)
851 const struct tc_netem_reorder
*r
= nla_data(attr
);
853 q
->reorder
= r
->probability
;
854 init_crandom(&q
->reorder_cor
, r
->correlation
);
857 static void get_corrupt(struct netem_sched_data
*q
, const struct nlattr
*attr
)
859 const struct tc_netem_corrupt
*r
= nla_data(attr
);
861 q
->corrupt
= r
->probability
;
862 init_crandom(&q
->corrupt_cor
, r
->correlation
);
865 static void get_rate(struct netem_sched_data
*q
, const struct nlattr
*attr
)
867 const struct tc_netem_rate
*r
= nla_data(attr
);
870 q
->packet_overhead
= r
->packet_overhead
;
871 q
->cell_size
= r
->cell_size
;
872 q
->cell_overhead
= r
->cell_overhead
;
874 q
->cell_size_reciprocal
= reciprocal_value(q
->cell_size
);
876 q
->cell_size_reciprocal
= (struct reciprocal_value
) { 0 };
879 static int get_loss_clg(struct netem_sched_data
*q
, const struct nlattr
*attr
)
881 const struct nlattr
*la
;
884 nla_for_each_nested(la
, attr
, rem
) {
885 u16 type
= nla_type(la
);
888 case NETEM_LOSS_GI
: {
889 const struct tc_netem_gimodel
*gi
= nla_data(la
);
891 if (nla_len(la
) < sizeof(struct tc_netem_gimodel
)) {
892 pr_info("netem: incorrect gi model size\n");
896 q
->loss_model
= CLG_4_STATES
;
898 q
->clg
.state
= TX_IN_GAP_PERIOD
;
907 case NETEM_LOSS_GE
: {
908 const struct tc_netem_gemodel
*ge
= nla_data(la
);
910 if (nla_len(la
) < sizeof(struct tc_netem_gemodel
)) {
911 pr_info("netem: incorrect ge model size\n");
915 q
->loss_model
= CLG_GILB_ELL
;
916 q
->clg
.state
= GOOD_STATE
;
925 pr_info("netem: unknown loss type %u\n", type
);
933 static const struct nla_policy netem_policy
[TCA_NETEM_MAX
+ 1] = {
934 [TCA_NETEM_CORR
] = { .len
= sizeof(struct tc_netem_corr
) },
935 [TCA_NETEM_REORDER
] = { .len
= sizeof(struct tc_netem_reorder
) },
936 [TCA_NETEM_CORRUPT
] = { .len
= sizeof(struct tc_netem_corrupt
) },
937 [TCA_NETEM_RATE
] = { .len
= sizeof(struct tc_netem_rate
) },
938 [TCA_NETEM_LOSS
] = { .type
= NLA_NESTED
},
939 [TCA_NETEM_ECN
] = { .type
= NLA_U32
},
940 [TCA_NETEM_RATE64
] = { .type
= NLA_U64
},
941 [TCA_NETEM_LATENCY64
] = { .type
= NLA_S64
},
942 [TCA_NETEM_JITTER64
] = { .type
= NLA_S64
},
943 [TCA_NETEM_SLOT
] = { .len
= sizeof(struct tc_netem_slot
) },
944 [TCA_NETEM_PRNG_SEED
] = { .type
= NLA_U64
},
947 static int parse_attr(struct nlattr
*tb
[], int maxtype
, struct nlattr
*nla
,
948 const struct nla_policy
*policy
, int len
)
950 int nested_len
= nla_len(nla
) - NLA_ALIGN(len
);
952 if (nested_len
< 0) {
953 pr_info("netem: invalid attributes len %d\n", nested_len
);
957 if (nested_len
>= nla_attr_size(0))
958 return nla_parse_deprecated(tb
, maxtype
,
959 nla_data(nla
) + NLA_ALIGN(len
),
960 nested_len
, policy
, NULL
);
962 memset(tb
, 0, sizeof(struct nlattr
*) * (maxtype
+ 1));
966 /* Parse netlink message to set options */
967 static int netem_change(struct Qdisc
*sch
, struct nlattr
*opt
,
968 struct netlink_ext_ack
*extack
)
970 struct netem_sched_data
*q
= qdisc_priv(sch
);
971 struct nlattr
*tb
[TCA_NETEM_MAX
+ 1];
972 struct disttable
*delay_dist
= NULL
;
973 struct disttable
*slot_dist
= NULL
;
974 struct tc_netem_qopt
*qopt
;
975 struct clgstate old_clg
;
976 int old_loss_model
= CLG_RANDOM
;
979 qopt
= nla_data(opt
);
980 ret
= parse_attr(tb
, TCA_NETEM_MAX
, opt
, netem_policy
, sizeof(*qopt
));
984 if (tb
[TCA_NETEM_DELAY_DIST
]) {
985 ret
= get_dist_table(&delay_dist
, tb
[TCA_NETEM_DELAY_DIST
]);
990 if (tb
[TCA_NETEM_SLOT_DIST
]) {
991 ret
= get_dist_table(&slot_dist
, tb
[TCA_NETEM_SLOT_DIST
]);
997 /* backup q->clg and q->loss_model */
999 old_loss_model
= q
->loss_model
;
1001 if (tb
[TCA_NETEM_LOSS
]) {
1002 ret
= get_loss_clg(q
, tb
[TCA_NETEM_LOSS
]);
1004 q
->loss_model
= old_loss_model
;
1009 q
->loss_model
= CLG_RANDOM
;
1013 swap(q
->delay_dist
, delay_dist
);
1015 swap(q
->slot_dist
, slot_dist
);
1016 sch
->limit
= qopt
->limit
;
1018 q
->latency
= PSCHED_TICKS2NS(qopt
->latency
);
1019 q
->jitter
= PSCHED_TICKS2NS(qopt
->jitter
);
1020 q
->limit
= qopt
->limit
;
1023 q
->loss
= qopt
->loss
;
1024 q
->duplicate
= qopt
->duplicate
;
1026 /* for compatibility with earlier versions.
1027 * if gap is set, need to assume 100% probability
1032 if (tb
[TCA_NETEM_CORR
])
1033 get_correlation(q
, tb
[TCA_NETEM_CORR
]);
1035 if (tb
[TCA_NETEM_REORDER
])
1036 get_reorder(q
, tb
[TCA_NETEM_REORDER
]);
1038 if (tb
[TCA_NETEM_CORRUPT
])
1039 get_corrupt(q
, tb
[TCA_NETEM_CORRUPT
]);
1041 if (tb
[TCA_NETEM_RATE
])
1042 get_rate(q
, tb
[TCA_NETEM_RATE
]);
1044 if (tb
[TCA_NETEM_RATE64
])
1045 q
->rate
= max_t(u64
, q
->rate
,
1046 nla_get_u64(tb
[TCA_NETEM_RATE64
]));
1048 if (tb
[TCA_NETEM_LATENCY64
])
1049 q
->latency
= nla_get_s64(tb
[TCA_NETEM_LATENCY64
]);
1051 if (tb
[TCA_NETEM_JITTER64
])
1052 q
->jitter
= nla_get_s64(tb
[TCA_NETEM_JITTER64
]);
1054 if (tb
[TCA_NETEM_ECN
])
1055 q
->ecn
= nla_get_u32(tb
[TCA_NETEM_ECN
]);
1057 if (tb
[TCA_NETEM_SLOT
])
1058 get_slot(q
, tb
[TCA_NETEM_SLOT
]);
1060 /* capping jitter to the range acceptable by tabledist() */
1061 q
->jitter
= min_t(s64
, abs(q
->jitter
), INT_MAX
);
1063 if (tb
[TCA_NETEM_PRNG_SEED
])
1064 q
->prng
.seed
= nla_get_u64(tb
[TCA_NETEM_PRNG_SEED
]);
1066 q
->prng
.seed
= get_random_u64();
1067 prandom_seed_state(&q
->prng
.prng_state
, q
->prng
.seed
);
1070 sch_tree_unlock(sch
);
1073 dist_free(delay_dist
);
1074 dist_free(slot_dist
);
1078 static int netem_init(struct Qdisc
*sch
, struct nlattr
*opt
,
1079 struct netlink_ext_ack
*extack
)
1081 struct netem_sched_data
*q
= qdisc_priv(sch
);
1084 qdisc_watchdog_init(&q
->watchdog
, sch
);
1089 q
->loss_model
= CLG_RANDOM
;
1090 ret
= netem_change(sch
, opt
, extack
);
1092 pr_info("netem: change failed\n");
1096 static void netem_destroy(struct Qdisc
*sch
)
1098 struct netem_sched_data
*q
= qdisc_priv(sch
);
1100 qdisc_watchdog_cancel(&q
->watchdog
);
1102 qdisc_put(q
->qdisc
);
1103 dist_free(q
->delay_dist
);
1104 dist_free(q
->slot_dist
);
1107 static int dump_loss_model(const struct netem_sched_data
*q
,
1108 struct sk_buff
*skb
)
1110 struct nlattr
*nest
;
1112 nest
= nla_nest_start_noflag(skb
, TCA_NETEM_LOSS
);
1114 goto nla_put_failure
;
1116 switch (q
->loss_model
) {
1118 /* legacy loss model */
1119 nla_nest_cancel(skb
, nest
);
1120 return 0; /* no data */
1122 case CLG_4_STATES
: {
1123 struct tc_netem_gimodel gi
= {
1131 if (nla_put(skb
, NETEM_LOSS_GI
, sizeof(gi
), &gi
))
1132 goto nla_put_failure
;
1135 case CLG_GILB_ELL
: {
1136 struct tc_netem_gemodel ge
= {
1143 if (nla_put(skb
, NETEM_LOSS_GE
, sizeof(ge
), &ge
))
1144 goto nla_put_failure
;
1149 nla_nest_end(skb
, nest
);
1153 nla_nest_cancel(skb
, nest
);
1157 static int netem_dump(struct Qdisc
*sch
, struct sk_buff
*skb
)
1159 const struct netem_sched_data
*q
= qdisc_priv(sch
);
1160 struct nlattr
*nla
= (struct nlattr
*) skb_tail_pointer(skb
);
1161 struct tc_netem_qopt qopt
;
1162 struct tc_netem_corr cor
;
1163 struct tc_netem_reorder reorder
;
1164 struct tc_netem_corrupt corrupt
;
1165 struct tc_netem_rate rate
;
1166 struct tc_netem_slot slot
;
1168 qopt
.latency
= min_t(psched_time_t
, PSCHED_NS2TICKS(q
->latency
),
1170 qopt
.jitter
= min_t(psched_time_t
, PSCHED_NS2TICKS(q
->jitter
),
1172 qopt
.limit
= q
->limit
;
1173 qopt
.loss
= q
->loss
;
1175 qopt
.duplicate
= q
->duplicate
;
1176 if (nla_put(skb
, TCA_OPTIONS
, sizeof(qopt
), &qopt
))
1177 goto nla_put_failure
;
1179 if (nla_put(skb
, TCA_NETEM_LATENCY64
, sizeof(q
->latency
), &q
->latency
))
1180 goto nla_put_failure
;
1182 if (nla_put(skb
, TCA_NETEM_JITTER64
, sizeof(q
->jitter
), &q
->jitter
))
1183 goto nla_put_failure
;
1185 cor
.delay_corr
= q
->delay_cor
.rho
;
1186 cor
.loss_corr
= q
->loss_cor
.rho
;
1187 cor
.dup_corr
= q
->dup_cor
.rho
;
1188 if (nla_put(skb
, TCA_NETEM_CORR
, sizeof(cor
), &cor
))
1189 goto nla_put_failure
;
1191 reorder
.probability
= q
->reorder
;
1192 reorder
.correlation
= q
->reorder_cor
.rho
;
1193 if (nla_put(skb
, TCA_NETEM_REORDER
, sizeof(reorder
), &reorder
))
1194 goto nla_put_failure
;
1196 corrupt
.probability
= q
->corrupt
;
1197 corrupt
.correlation
= q
->corrupt_cor
.rho
;
1198 if (nla_put(skb
, TCA_NETEM_CORRUPT
, sizeof(corrupt
), &corrupt
))
1199 goto nla_put_failure
;
1201 if (q
->rate
>= (1ULL << 32)) {
1202 if (nla_put_u64_64bit(skb
, TCA_NETEM_RATE64
, q
->rate
,
1204 goto nla_put_failure
;
1207 rate
.rate
= q
->rate
;
1209 rate
.packet_overhead
= q
->packet_overhead
;
1210 rate
.cell_size
= q
->cell_size
;
1211 rate
.cell_overhead
= q
->cell_overhead
;
1212 if (nla_put(skb
, TCA_NETEM_RATE
, sizeof(rate
), &rate
))
1213 goto nla_put_failure
;
1215 if (q
->ecn
&& nla_put_u32(skb
, TCA_NETEM_ECN
, q
->ecn
))
1216 goto nla_put_failure
;
1218 if (dump_loss_model(q
, skb
) != 0)
1219 goto nla_put_failure
;
1221 if (q
->slot_config
.min_delay
| q
->slot_config
.max_delay
|
1222 q
->slot_config
.dist_jitter
) {
1223 slot
= q
->slot_config
;
1224 if (slot
.max_packets
== INT_MAX
)
1225 slot
.max_packets
= 0;
1226 if (slot
.max_bytes
== INT_MAX
)
1228 if (nla_put(skb
, TCA_NETEM_SLOT
, sizeof(slot
), &slot
))
1229 goto nla_put_failure
;
1232 if (nla_put_u64_64bit(skb
, TCA_NETEM_PRNG_SEED
, q
->prng
.seed
,
1234 goto nla_put_failure
;
1236 return nla_nest_end(skb
, nla
);
1239 nlmsg_trim(skb
, nla
);
1243 static int netem_dump_class(struct Qdisc
*sch
, unsigned long cl
,
1244 struct sk_buff
*skb
, struct tcmsg
*tcm
)
1246 struct netem_sched_data
*q
= qdisc_priv(sch
);
1248 if (cl
!= 1 || !q
->qdisc
) /* only one class */
1251 tcm
->tcm_handle
|= TC_H_MIN(1);
1252 tcm
->tcm_info
= q
->qdisc
->handle
;
1257 static int netem_graft(struct Qdisc
*sch
, unsigned long arg
, struct Qdisc
*new,
1258 struct Qdisc
**old
, struct netlink_ext_ack
*extack
)
1260 struct netem_sched_data
*q
= qdisc_priv(sch
);
1262 *old
= qdisc_replace(sch
, new, &q
->qdisc
);
1266 static struct Qdisc
*netem_leaf(struct Qdisc
*sch
, unsigned long arg
)
1268 struct netem_sched_data
*q
= qdisc_priv(sch
);
1272 static unsigned long netem_find(struct Qdisc
*sch
, u32 classid
)
1277 static void netem_walk(struct Qdisc
*sch
, struct qdisc_walker
*walker
)
1279 if (!walker
->stop
) {
1280 if (!tc_qdisc_stats_dump(sch
, 1, walker
))
1285 static const struct Qdisc_class_ops netem_class_ops
= {
1286 .graft
= netem_graft
,
1290 .dump
= netem_dump_class
,
1293 static struct Qdisc_ops netem_qdisc_ops __read_mostly
= {
1295 .cl_ops
= &netem_class_ops
,
1296 .priv_size
= sizeof(struct netem_sched_data
),
1297 .enqueue
= netem_enqueue
,
1298 .dequeue
= netem_dequeue
,
1299 .peek
= qdisc_peek_dequeued
,
1301 .reset
= netem_reset
,
1302 .destroy
= netem_destroy
,
1303 .change
= netem_change
,
1305 .owner
= THIS_MODULE
,
1307 MODULE_ALIAS_NET_SCH("netem");
1310 static int __init
netem_module_init(void)
1312 pr_info("netem: version " VERSION
"\n");
1313 return register_qdisc(&netem_qdisc_ops
);
1315 static void __exit
netem_module_exit(void)
1317 unregister_qdisc(&netem_qdisc_ops
);
1319 module_init(netem_module_init
)
1320 module_exit(netem_module_exit
)
1321 MODULE_LICENSE("GPL");
1322 MODULE_DESCRIPTION("Network characteristics emulator qdisc");