drm/modes: Fix drm_mode_vrefres() docs
[drm/drm-misc.git] / net / sched / sch_qfq.c
blob6a07cdbdb9e12ea9ffa074f00314db49eff3a3d4
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
6 * Copyright (c) 2012 Paolo Valente.
7 */
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/netdevice.h>
14 #include <linux/pkt_sched.h>
15 #include <net/sch_generic.h>
16 #include <net/pkt_sched.h>
17 #include <net/pkt_cls.h>
20 /* Quick Fair Queueing Plus
21 ========================
23 Sources:
25 [1] Paolo Valente,
26 "Reducing the Execution Time of Fair-Queueing Schedulers."
27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
29 Sources for QFQ:
31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
32 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
34 See also:
35 http://retis.sssup.it/~fabio/linux/qfq/
40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
41 classes. Each aggregate is timestamped with a virtual start time S
42 and a virtual finish time F, and scheduled according to its
43 timestamps. S and F are computed as a function of a system virtual
44 time function V. The classes within each aggregate are instead
45 scheduled with DRR.
47 To speed up operations, QFQ+ divides also aggregates into a limited
48 number of groups. Which group a class belongs to depends on the
49 ratio between the maximum packet length for the class and the weight
50 of the class. Groups have their own S and F. In the end, QFQ+
51 schedules groups, then aggregates within groups, then classes within
52 aggregates. See [1] and [2] for a full description.
54 Virtual time computations.
56 S, F and V are all computed in fixed point arithmetic with
57 FRAC_BITS decimal bits.
59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
60 one bit per index.
61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
63 The layout of the bits is as below:
65 [ MTU_SHIFT ][ FRAC_BITS ]
66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
67 ^.__grp->index = 0
68 *.__grp->slot_shift
70 where MIN_SLOT_SHIFT is derived by difference from the others.
72 The max group index corresponds to Lmax/w_min, where
73 Lmax=1<<MTU_SHIFT, w_min = 1 .
74 From this, and knowing how many groups (MAX_INDEX) we want,
75 we can derive the shift corresponding to each group.
77 Because we often need to compute
78 F = S + len/w_i and V = V + len/wsum
79 instead of storing w_i store the value
80 inv_w = (1<<FRAC_BITS)/w_i
81 so we can do F = S + len * inv_w * wsum.
82 We use W_TOT in the formulas so we can easily move between
83 static and adaptive weight sum.
85 The per-scheduler-instance data contain all the data structures
86 for the scheduler: bitmaps and bucket lists.
91 * Maximum number of consecutive slots occupied by backlogged classes
92 * inside a group.
94 #define QFQ_MAX_SLOTS 32
97 * Shifts used for aggregate<->group mapping. We allow class weights that are
98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
99 * group with the smallest index that can support the L_i / r_i configured
100 * for the classes in the aggregate.
102 * grp->index is the index of the group; and grp->slot_shift
103 * is the shift for the corresponding (scaled) sigma_i.
105 #define QFQ_MAX_INDEX 24
106 #define QFQ_MAX_WSHIFT 10
108 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
109 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
111 #define FRAC_BITS 30 /* fixed point arithmetic */
112 #define ONE_FP (1UL << FRAC_BITS)
114 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
115 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
116 #define QFQ_MAX_LMAX (1UL << QFQ_MTU_SHIFT)
118 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
121 * Possible group states. These values are used as indexes for the bitmaps
122 * array of struct qfq_queue.
124 enum qfq_state { ER, IR, EB, IB, QFQ_MAX_STATE };
126 struct qfq_group;
128 struct qfq_aggregate;
130 struct qfq_class {
131 struct Qdisc_class_common common;
133 struct gnet_stats_basic_sync bstats;
134 struct gnet_stats_queue qstats;
135 struct net_rate_estimator __rcu *rate_est;
136 struct Qdisc *qdisc;
137 struct list_head alist; /* Link for active-classes list. */
138 struct qfq_aggregate *agg; /* Parent aggregate. */
139 int deficit; /* DRR deficit counter. */
142 struct qfq_aggregate {
143 struct hlist_node next; /* Link for the slot list. */
144 u64 S, F; /* flow timestamps (exact) */
146 /* group we belong to. In principle we would need the index,
147 * which is log_2(lmax/weight), but we never reference it
148 * directly, only the group.
150 struct qfq_group *grp;
152 /* these are copied from the flowset. */
153 u32 class_weight; /* Weight of each class in this aggregate. */
154 /* Max pkt size for the classes in this aggregate, DRR quantum. */
155 int lmax;
157 u32 inv_w; /* ONE_FP/(sum of weights of classes in aggr.). */
158 u32 budgetmax; /* Max budget for this aggregate. */
159 u32 initial_budget, budget; /* Initial and current budget. */
161 int num_classes; /* Number of classes in this aggr. */
162 struct list_head active; /* DRR queue of active classes. */
164 struct hlist_node nonfull_next; /* See nonfull_aggs in qfq_sched. */
167 struct qfq_group {
168 u64 S, F; /* group timestamps (approx). */
169 unsigned int slot_shift; /* Slot shift. */
170 unsigned int index; /* Group index. */
171 unsigned int front; /* Index of the front slot. */
172 unsigned long full_slots; /* non-empty slots */
174 /* Array of RR lists of active aggregates. */
175 struct hlist_head slots[QFQ_MAX_SLOTS];
178 struct qfq_sched {
179 struct tcf_proto __rcu *filter_list;
180 struct tcf_block *block;
181 struct Qdisc_class_hash clhash;
183 u64 oldV, V; /* Precise virtual times. */
184 struct qfq_aggregate *in_serv_agg; /* Aggregate being served. */
185 u32 wsum; /* weight sum */
186 u32 iwsum; /* inverse weight sum */
188 unsigned long bitmaps[QFQ_MAX_STATE]; /* Group bitmaps. */
189 struct qfq_group groups[QFQ_MAX_INDEX + 1]; /* The groups. */
190 u32 min_slot_shift; /* Index of the group-0 bit in the bitmaps. */
192 u32 max_agg_classes; /* Max number of classes per aggr. */
193 struct hlist_head nonfull_aggs; /* Aggs with room for more classes. */
197 * Possible reasons why the timestamps of an aggregate are updated
198 * enqueue: the aggregate switches from idle to active and must scheduled
199 * for service
200 * requeue: the aggregate finishes its budget, so it stops being served and
201 * must be rescheduled for service
203 enum update_reason {enqueue, requeue};
205 static struct qfq_class *qfq_find_class(struct Qdisc *sch, u32 classid)
207 struct qfq_sched *q = qdisc_priv(sch);
208 struct Qdisc_class_common *clc;
210 clc = qdisc_class_find(&q->clhash, classid);
211 if (clc == NULL)
212 return NULL;
213 return container_of(clc, struct qfq_class, common);
216 static const struct netlink_range_validation lmax_range = {
217 .min = QFQ_MIN_LMAX,
218 .max = QFQ_MAX_LMAX,
221 static const struct nla_policy qfq_policy[TCA_QFQ_MAX + 1] = {
222 [TCA_QFQ_WEIGHT] = NLA_POLICY_RANGE(NLA_U32, 1, QFQ_MAX_WEIGHT),
223 [TCA_QFQ_LMAX] = NLA_POLICY_FULL_RANGE(NLA_U32, &lmax_range),
227 * Calculate a flow index, given its weight and maximum packet length.
228 * index = log_2(maxlen/weight) but we need to apply the scaling.
229 * This is used only once at flow creation.
231 static int qfq_calc_index(u32 inv_w, unsigned int maxlen, u32 min_slot_shift)
233 u64 slot_size = (u64)maxlen * inv_w;
234 unsigned long size_map;
235 int index = 0;
237 size_map = slot_size >> min_slot_shift;
238 if (!size_map)
239 goto out;
241 index = __fls(size_map) + 1; /* basically a log_2 */
242 index -= !(slot_size - (1ULL << (index + min_slot_shift - 1)));
244 if (index < 0)
245 index = 0;
246 out:
247 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
248 (unsigned long) ONE_FP/inv_w, maxlen, index);
250 return index;
253 static void qfq_deactivate_agg(struct qfq_sched *, struct qfq_aggregate *);
254 static void qfq_activate_agg(struct qfq_sched *, struct qfq_aggregate *,
255 enum update_reason);
257 static void qfq_init_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
258 u32 lmax, u32 weight)
260 INIT_LIST_HEAD(&agg->active);
261 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
263 agg->lmax = lmax;
264 agg->class_weight = weight;
267 static struct qfq_aggregate *qfq_find_agg(struct qfq_sched *q,
268 u32 lmax, u32 weight)
270 struct qfq_aggregate *agg;
272 hlist_for_each_entry(agg, &q->nonfull_aggs, nonfull_next)
273 if (agg->lmax == lmax && agg->class_weight == weight)
274 return agg;
276 return NULL;
280 /* Update aggregate as a function of the new number of classes. */
281 static void qfq_update_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
282 int new_num_classes)
284 u32 new_agg_weight;
286 if (new_num_classes == q->max_agg_classes)
287 hlist_del_init(&agg->nonfull_next);
289 if (agg->num_classes > new_num_classes &&
290 new_num_classes == q->max_agg_classes - 1) /* agg no more full */
291 hlist_add_head(&agg->nonfull_next, &q->nonfull_aggs);
293 /* The next assignment may let
294 * agg->initial_budget > agg->budgetmax
295 * hold, we will take it into account in charge_actual_service().
297 agg->budgetmax = new_num_classes * agg->lmax;
298 new_agg_weight = agg->class_weight * new_num_classes;
299 agg->inv_w = ONE_FP/new_agg_weight;
301 if (agg->grp == NULL) {
302 int i = qfq_calc_index(agg->inv_w, agg->budgetmax,
303 q->min_slot_shift);
304 agg->grp = &q->groups[i];
307 q->wsum +=
308 (int) agg->class_weight * (new_num_classes - agg->num_classes);
309 q->iwsum = ONE_FP / q->wsum;
311 agg->num_classes = new_num_classes;
314 /* Add class to aggregate. */
315 static void qfq_add_to_agg(struct qfq_sched *q,
316 struct qfq_aggregate *agg,
317 struct qfq_class *cl)
319 cl->agg = agg;
321 qfq_update_agg(q, agg, agg->num_classes+1);
322 if (cl->qdisc->q.qlen > 0) { /* adding an active class */
323 list_add_tail(&cl->alist, &agg->active);
324 if (list_first_entry(&agg->active, struct qfq_class, alist) ==
325 cl && q->in_serv_agg != agg) /* agg was inactive */
326 qfq_activate_agg(q, agg, enqueue); /* schedule agg */
330 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *);
332 static void qfq_destroy_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
334 hlist_del_init(&agg->nonfull_next);
335 q->wsum -= agg->class_weight;
336 if (q->wsum != 0)
337 q->iwsum = ONE_FP / q->wsum;
339 if (q->in_serv_agg == agg)
340 q->in_serv_agg = qfq_choose_next_agg(q);
341 kfree(agg);
344 /* Deschedule class from within its parent aggregate. */
345 static void qfq_deactivate_class(struct qfq_sched *q, struct qfq_class *cl)
347 struct qfq_aggregate *agg = cl->agg;
350 list_del(&cl->alist); /* remove from RR queue of the aggregate */
351 if (list_empty(&agg->active)) /* agg is now inactive */
352 qfq_deactivate_agg(q, agg);
355 /* Remove class from its parent aggregate. */
356 static void qfq_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
358 struct qfq_aggregate *agg = cl->agg;
360 cl->agg = NULL;
361 if (agg->num_classes == 1) { /* agg being emptied, destroy it */
362 qfq_destroy_agg(q, agg);
363 return;
365 qfq_update_agg(q, agg, agg->num_classes-1);
368 /* Deschedule class and remove it from its parent aggregate. */
369 static void qfq_deact_rm_from_agg(struct qfq_sched *q, struct qfq_class *cl)
371 if (cl->qdisc->q.qlen > 0) /* class is active */
372 qfq_deactivate_class(q, cl);
374 qfq_rm_from_agg(q, cl);
377 /* Move class to a new aggregate, matching the new class weight and/or lmax */
378 static int qfq_change_agg(struct Qdisc *sch, struct qfq_class *cl, u32 weight,
379 u32 lmax)
381 struct qfq_sched *q = qdisc_priv(sch);
382 struct qfq_aggregate *new_agg;
384 /* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */
385 if (lmax > QFQ_MAX_LMAX)
386 return -EINVAL;
388 new_agg = qfq_find_agg(q, lmax, weight);
389 if (new_agg == NULL) { /* create new aggregate */
390 new_agg = kzalloc(sizeof(*new_agg), GFP_ATOMIC);
391 if (new_agg == NULL)
392 return -ENOBUFS;
393 qfq_init_agg(q, new_agg, lmax, weight);
395 qfq_deact_rm_from_agg(q, cl);
396 qfq_add_to_agg(q, new_agg, cl);
398 return 0;
401 static int qfq_change_class(struct Qdisc *sch, u32 classid, u32 parentid,
402 struct nlattr **tca, unsigned long *arg,
403 struct netlink_ext_ack *extack)
405 struct qfq_sched *q = qdisc_priv(sch);
406 struct qfq_class *cl = (struct qfq_class *)*arg;
407 bool existing = false;
408 struct nlattr *tb[TCA_QFQ_MAX + 1];
409 struct qfq_aggregate *new_agg = NULL;
410 u32 weight, lmax, inv_w;
411 int err;
412 int delta_w;
414 if (NL_REQ_ATTR_CHECK(extack, NULL, tca, TCA_OPTIONS)) {
415 NL_SET_ERR_MSG_MOD(extack, "missing options");
416 return -EINVAL;
419 err = nla_parse_nested_deprecated(tb, TCA_QFQ_MAX, tca[TCA_OPTIONS],
420 qfq_policy, extack);
421 if (err < 0)
422 return err;
424 weight = nla_get_u32_default(tb[TCA_QFQ_WEIGHT], 1);
426 if (tb[TCA_QFQ_LMAX]) {
427 lmax = nla_get_u32(tb[TCA_QFQ_LMAX]);
428 } else {
429 /* MTU size is user controlled */
430 lmax = psched_mtu(qdisc_dev(sch));
431 if (lmax < QFQ_MIN_LMAX || lmax > QFQ_MAX_LMAX) {
432 NL_SET_ERR_MSG_MOD(extack,
433 "MTU size out of bounds for qfq");
434 return -EINVAL;
438 inv_w = ONE_FP / weight;
439 weight = ONE_FP / inv_w;
441 if (cl != NULL &&
442 lmax == cl->agg->lmax &&
443 weight == cl->agg->class_weight)
444 return 0; /* nothing to change */
446 delta_w = weight - (cl ? cl->agg->class_weight : 0);
448 if (q->wsum + delta_w > QFQ_MAX_WSUM) {
449 NL_SET_ERR_MSG_FMT_MOD(extack,
450 "total weight out of range (%d + %u)\n",
451 delta_w, q->wsum);
452 return -EINVAL;
455 if (cl != NULL) { /* modify existing class */
456 if (tca[TCA_RATE]) {
457 err = gen_replace_estimator(&cl->bstats, NULL,
458 &cl->rate_est,
459 NULL,
460 true,
461 tca[TCA_RATE]);
462 if (err)
463 return err;
465 existing = true;
466 goto set_change_agg;
469 /* create and init new class */
470 cl = kzalloc(sizeof(struct qfq_class), GFP_KERNEL);
471 if (cl == NULL)
472 return -ENOBUFS;
474 gnet_stats_basic_sync_init(&cl->bstats);
475 cl->common.classid = classid;
476 cl->deficit = lmax;
478 cl->qdisc = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
479 classid, NULL);
480 if (cl->qdisc == NULL)
481 cl->qdisc = &noop_qdisc;
483 if (tca[TCA_RATE]) {
484 err = gen_new_estimator(&cl->bstats, NULL,
485 &cl->rate_est,
486 NULL,
487 true,
488 tca[TCA_RATE]);
489 if (err)
490 goto destroy_class;
493 if (cl->qdisc != &noop_qdisc)
494 qdisc_hash_add(cl->qdisc, true);
496 set_change_agg:
497 sch_tree_lock(sch);
498 new_agg = qfq_find_agg(q, lmax, weight);
499 if (new_agg == NULL) { /* create new aggregate */
500 sch_tree_unlock(sch);
501 new_agg = kzalloc(sizeof(*new_agg), GFP_KERNEL);
502 if (new_agg == NULL) {
503 err = -ENOBUFS;
504 gen_kill_estimator(&cl->rate_est);
505 goto destroy_class;
507 sch_tree_lock(sch);
508 qfq_init_agg(q, new_agg, lmax, weight);
510 if (existing)
511 qfq_deact_rm_from_agg(q, cl);
512 else
513 qdisc_class_hash_insert(&q->clhash, &cl->common);
514 qfq_add_to_agg(q, new_agg, cl);
515 sch_tree_unlock(sch);
516 qdisc_class_hash_grow(sch, &q->clhash);
518 *arg = (unsigned long)cl;
519 return 0;
521 destroy_class:
522 qdisc_put(cl->qdisc);
523 kfree(cl);
524 return err;
527 static void qfq_destroy_class(struct Qdisc *sch, struct qfq_class *cl)
529 struct qfq_sched *q = qdisc_priv(sch);
531 qfq_rm_from_agg(q, cl);
532 gen_kill_estimator(&cl->rate_est);
533 qdisc_put(cl->qdisc);
534 kfree(cl);
537 static int qfq_delete_class(struct Qdisc *sch, unsigned long arg,
538 struct netlink_ext_ack *extack)
540 struct qfq_sched *q = qdisc_priv(sch);
541 struct qfq_class *cl = (struct qfq_class *)arg;
543 if (qdisc_class_in_use(&cl->common)) {
544 NL_SET_ERR_MSG_MOD(extack, "QFQ class in use");
545 return -EBUSY;
548 sch_tree_lock(sch);
550 qdisc_purge_queue(cl->qdisc);
551 qdisc_class_hash_remove(&q->clhash, &cl->common);
553 sch_tree_unlock(sch);
555 qfq_destroy_class(sch, cl);
556 return 0;
559 static unsigned long qfq_search_class(struct Qdisc *sch, u32 classid)
561 return (unsigned long)qfq_find_class(sch, classid);
564 static struct tcf_block *qfq_tcf_block(struct Qdisc *sch, unsigned long cl,
565 struct netlink_ext_ack *extack)
567 struct qfq_sched *q = qdisc_priv(sch);
569 if (cl)
570 return NULL;
572 return q->block;
575 static unsigned long qfq_bind_tcf(struct Qdisc *sch, unsigned long parent,
576 u32 classid)
578 struct qfq_class *cl = qfq_find_class(sch, classid);
580 if (cl)
581 qdisc_class_get(&cl->common);
583 return (unsigned long)cl;
586 static void qfq_unbind_tcf(struct Qdisc *sch, unsigned long arg)
588 struct qfq_class *cl = (struct qfq_class *)arg;
590 qdisc_class_put(&cl->common);
593 static int qfq_graft_class(struct Qdisc *sch, unsigned long arg,
594 struct Qdisc *new, struct Qdisc **old,
595 struct netlink_ext_ack *extack)
597 struct qfq_class *cl = (struct qfq_class *)arg;
599 if (new == NULL) {
600 new = qdisc_create_dflt(sch->dev_queue, &pfifo_qdisc_ops,
601 cl->common.classid, NULL);
602 if (new == NULL)
603 new = &noop_qdisc;
606 *old = qdisc_replace(sch, new, &cl->qdisc);
607 return 0;
610 static struct Qdisc *qfq_class_leaf(struct Qdisc *sch, unsigned long arg)
612 struct qfq_class *cl = (struct qfq_class *)arg;
614 return cl->qdisc;
617 static int qfq_dump_class(struct Qdisc *sch, unsigned long arg,
618 struct sk_buff *skb, struct tcmsg *tcm)
620 struct qfq_class *cl = (struct qfq_class *)arg;
621 struct nlattr *nest;
623 tcm->tcm_parent = TC_H_ROOT;
624 tcm->tcm_handle = cl->common.classid;
625 tcm->tcm_info = cl->qdisc->handle;
627 nest = nla_nest_start_noflag(skb, TCA_OPTIONS);
628 if (nest == NULL)
629 goto nla_put_failure;
630 if (nla_put_u32(skb, TCA_QFQ_WEIGHT, cl->agg->class_weight) ||
631 nla_put_u32(skb, TCA_QFQ_LMAX, cl->agg->lmax))
632 goto nla_put_failure;
633 return nla_nest_end(skb, nest);
635 nla_put_failure:
636 nla_nest_cancel(skb, nest);
637 return -EMSGSIZE;
640 static int qfq_dump_class_stats(struct Qdisc *sch, unsigned long arg,
641 struct gnet_dump *d)
643 struct qfq_class *cl = (struct qfq_class *)arg;
644 struct tc_qfq_stats xstats;
646 memset(&xstats, 0, sizeof(xstats));
648 xstats.weight = cl->agg->class_weight;
649 xstats.lmax = cl->agg->lmax;
651 if (gnet_stats_copy_basic(d, NULL, &cl->bstats, true) < 0 ||
652 gnet_stats_copy_rate_est(d, &cl->rate_est) < 0 ||
653 qdisc_qstats_copy(d, cl->qdisc) < 0)
654 return -1;
656 return gnet_stats_copy_app(d, &xstats, sizeof(xstats));
659 static void qfq_walk(struct Qdisc *sch, struct qdisc_walker *arg)
661 struct qfq_sched *q = qdisc_priv(sch);
662 struct qfq_class *cl;
663 unsigned int i;
665 if (arg->stop)
666 return;
668 for (i = 0; i < q->clhash.hashsize; i++) {
669 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
670 if (!tc_qdisc_stats_dump(sch, (unsigned long)cl, arg))
671 return;
676 static struct qfq_class *qfq_classify(struct sk_buff *skb, struct Qdisc *sch,
677 int *qerr)
679 struct qfq_sched *q = qdisc_priv(sch);
680 struct qfq_class *cl;
681 struct tcf_result res;
682 struct tcf_proto *fl;
683 int result;
685 if (TC_H_MAJ(skb->priority ^ sch->handle) == 0) {
686 pr_debug("qfq_classify: found %d\n", skb->priority);
687 cl = qfq_find_class(sch, skb->priority);
688 if (cl != NULL)
689 return cl;
692 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_BYPASS;
693 fl = rcu_dereference_bh(q->filter_list);
694 result = tcf_classify(skb, NULL, fl, &res, false);
695 if (result >= 0) {
696 #ifdef CONFIG_NET_CLS_ACT
697 switch (result) {
698 case TC_ACT_QUEUED:
699 case TC_ACT_STOLEN:
700 case TC_ACT_TRAP:
701 *qerr = NET_XMIT_SUCCESS | __NET_XMIT_STOLEN;
702 fallthrough;
703 case TC_ACT_SHOT:
704 return NULL;
706 #endif
707 cl = (struct qfq_class *)res.class;
708 if (cl == NULL)
709 cl = qfq_find_class(sch, res.classid);
710 return cl;
713 return NULL;
716 /* Generic comparison function, handling wraparound. */
717 static inline int qfq_gt(u64 a, u64 b)
719 return (s64)(a - b) > 0;
722 /* Round a precise timestamp to its slotted value. */
723 static inline u64 qfq_round_down(u64 ts, unsigned int shift)
725 return ts & ~((1ULL << shift) - 1);
728 /* return the pointer to the group with lowest index in the bitmap */
729 static inline struct qfq_group *qfq_ffs(struct qfq_sched *q,
730 unsigned long bitmap)
732 int index = __ffs(bitmap);
733 return &q->groups[index];
735 /* Calculate a mask to mimic what would be ffs_from(). */
736 static inline unsigned long mask_from(unsigned long bitmap, int from)
738 return bitmap & ~((1UL << from) - 1);
742 * The state computation relies on ER=0, IR=1, EB=2, IB=3
743 * First compute eligibility comparing grp->S, q->V,
744 * then check if someone is blocking us and possibly add EB
746 static int qfq_calc_state(struct qfq_sched *q, const struct qfq_group *grp)
748 /* if S > V we are not eligible */
749 unsigned int state = qfq_gt(grp->S, q->V);
750 unsigned long mask = mask_from(q->bitmaps[ER], grp->index);
751 struct qfq_group *next;
753 if (mask) {
754 next = qfq_ffs(q, mask);
755 if (qfq_gt(grp->F, next->F))
756 state |= EB;
759 return state;
764 * In principle
765 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
766 * q->bitmaps[src] &= ~mask;
767 * but we should make sure that src != dst
769 static inline void qfq_move_groups(struct qfq_sched *q, unsigned long mask,
770 int src, int dst)
772 q->bitmaps[dst] |= q->bitmaps[src] & mask;
773 q->bitmaps[src] &= ~mask;
776 static void qfq_unblock_groups(struct qfq_sched *q, int index, u64 old_F)
778 unsigned long mask = mask_from(q->bitmaps[ER], index + 1);
779 struct qfq_group *next;
781 if (mask) {
782 next = qfq_ffs(q, mask);
783 if (!qfq_gt(next->F, old_F))
784 return;
787 mask = (1UL << index) - 1;
788 qfq_move_groups(q, mask, EB, ER);
789 qfq_move_groups(q, mask, IB, IR);
793 * perhaps
795 old_V ^= q->V;
796 old_V >>= q->min_slot_shift;
797 if (old_V) {
802 static void qfq_make_eligible(struct qfq_sched *q)
804 unsigned long vslot = q->V >> q->min_slot_shift;
805 unsigned long old_vslot = q->oldV >> q->min_slot_shift;
807 if (vslot != old_vslot) {
808 unsigned long mask;
809 int last_flip_pos = fls(vslot ^ old_vslot);
811 if (last_flip_pos > 31) /* higher than the number of groups */
812 mask = ~0UL; /* make all groups eligible */
813 else
814 mask = (1UL << last_flip_pos) - 1;
816 qfq_move_groups(q, mask, IR, ER);
817 qfq_move_groups(q, mask, IB, EB);
822 * The index of the slot in which the input aggregate agg is to be
823 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
824 * and not a '-1' because the start time of the group may be moved
825 * backward by one slot after the aggregate has been inserted, and
826 * this would cause non-empty slots to be right-shifted by one
827 * position.
829 * QFQ+ fully satisfies this bound to the slot index if the parameters
830 * of the classes are not changed dynamically, and if QFQ+ never
831 * happens to postpone the service of agg unjustly, i.e., it never
832 * happens that the aggregate becomes backlogged and eligible, or just
833 * eligible, while an aggregate with a higher approximated finish time
834 * is being served. In particular, in this case QFQ+ guarantees that
835 * the timestamps of agg are low enough that the slot index is never
836 * higher than 2. Unfortunately, QFQ+ cannot provide the same
837 * guarantee if it happens to unjustly postpone the service of agg, or
838 * if the parameters of some class are changed.
840 * As for the first event, i.e., an out-of-order service, the
841 * upper bound to the slot index guaranteed by QFQ+ grows to
842 * 2 +
843 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
844 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
846 * The following function deals with this problem by backward-shifting
847 * the timestamps of agg, if needed, so as to guarantee that the slot
848 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
849 * cause the service of other aggregates to be postponed, yet the
850 * worst-case guarantees of these aggregates are not violated. In
851 * fact, in case of no out-of-order service, the timestamps of agg
852 * would have been even lower than they are after the backward shift,
853 * because QFQ+ would have guaranteed a maximum value equal to 2 for
854 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
855 * service is postponed because of the backward-shift would have
856 * however waited for the service of agg before being served.
858 * The other event that may cause the slot index to be higher than 2
859 * for agg is a recent change of the parameters of some class. If the
860 * weight of a class is increased or the lmax (max_pkt_size) of the
861 * class is decreased, then a new aggregate with smaller slot size
862 * than the original parent aggregate of the class may happen to be
863 * activated. The activation of this aggregate should be properly
864 * delayed to when the service of the class has finished in the ideal
865 * system tracked by QFQ+. If the activation of the aggregate is not
866 * delayed to this reference time instant, then this aggregate may be
867 * unjustly served before other aggregates waiting for service. This
868 * may cause the above bound to the slot index to be violated for some
869 * of these unlucky aggregates.
871 * Instead of delaying the activation of the new aggregate, which is
872 * quite complex, the above-discussed capping of the slot index is
873 * used to handle also the consequences of a change of the parameters
874 * of a class.
876 static void qfq_slot_insert(struct qfq_group *grp, struct qfq_aggregate *agg,
877 u64 roundedS)
879 u64 slot = (roundedS - grp->S) >> grp->slot_shift;
880 unsigned int i; /* slot index in the bucket list */
882 if (unlikely(slot > QFQ_MAX_SLOTS - 2)) {
883 u64 deltaS = roundedS - grp->S -
884 ((u64)(QFQ_MAX_SLOTS - 2)<<grp->slot_shift);
885 agg->S -= deltaS;
886 agg->F -= deltaS;
887 slot = QFQ_MAX_SLOTS - 2;
890 i = (grp->front + slot) % QFQ_MAX_SLOTS;
892 hlist_add_head(&agg->next, &grp->slots[i]);
893 __set_bit(slot, &grp->full_slots);
896 /* Maybe introduce hlist_first_entry?? */
897 static struct qfq_aggregate *qfq_slot_head(struct qfq_group *grp)
899 return hlist_entry(grp->slots[grp->front].first,
900 struct qfq_aggregate, next);
904 * remove the entry from the slot
906 static void qfq_front_slot_remove(struct qfq_group *grp)
908 struct qfq_aggregate *agg = qfq_slot_head(grp);
910 BUG_ON(!agg);
911 hlist_del(&agg->next);
912 if (hlist_empty(&grp->slots[grp->front]))
913 __clear_bit(0, &grp->full_slots);
917 * Returns the first aggregate in the first non-empty bucket of the
918 * group. As a side effect, adjusts the bucket list so the first
919 * non-empty bucket is at position 0 in full_slots.
921 static struct qfq_aggregate *qfq_slot_scan(struct qfq_group *grp)
923 unsigned int i;
925 pr_debug("qfq slot_scan: grp %u full %#lx\n",
926 grp->index, grp->full_slots);
928 if (grp->full_slots == 0)
929 return NULL;
931 i = __ffs(grp->full_slots); /* zero based */
932 if (i > 0) {
933 grp->front = (grp->front + i) % QFQ_MAX_SLOTS;
934 grp->full_slots >>= i;
937 return qfq_slot_head(grp);
941 * adjust the bucket list. When the start time of a group decreases,
942 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
943 * move the objects. The mask of occupied slots must be shifted
944 * because we use ffs() to find the first non-empty slot.
945 * This covers decreases in the group's start time, but what about
946 * increases of the start time ?
947 * Here too we should make sure that i is less than 32
949 static void qfq_slot_rotate(struct qfq_group *grp, u64 roundedS)
951 unsigned int i = (grp->S - roundedS) >> grp->slot_shift;
953 grp->full_slots <<= i;
954 grp->front = (grp->front - i) % QFQ_MAX_SLOTS;
957 static void qfq_update_eligible(struct qfq_sched *q)
959 struct qfq_group *grp;
960 unsigned long ineligible;
962 ineligible = q->bitmaps[IR] | q->bitmaps[IB];
963 if (ineligible) {
964 if (!q->bitmaps[ER]) {
965 grp = qfq_ffs(q, ineligible);
966 if (qfq_gt(grp->S, q->V))
967 q->V = grp->S;
969 qfq_make_eligible(q);
973 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
974 static struct sk_buff *agg_dequeue(struct qfq_aggregate *agg,
975 struct qfq_class *cl, unsigned int len)
977 struct sk_buff *skb = qdisc_dequeue_peeked(cl->qdisc);
979 if (!skb)
980 return NULL;
982 cl->deficit -= (int) len;
984 if (cl->qdisc->q.qlen == 0) /* no more packets, remove from list */
985 list_del(&cl->alist);
986 else if (cl->deficit < qdisc_pkt_len(cl->qdisc->ops->peek(cl->qdisc))) {
987 cl->deficit += agg->lmax;
988 list_move_tail(&cl->alist, &agg->active);
991 return skb;
994 static inline struct sk_buff *qfq_peek_skb(struct qfq_aggregate *agg,
995 struct qfq_class **cl,
996 unsigned int *len)
998 struct sk_buff *skb;
1000 *cl = list_first_entry(&agg->active, struct qfq_class, alist);
1001 skb = (*cl)->qdisc->ops->peek((*cl)->qdisc);
1002 if (skb == NULL)
1003 qdisc_warn_nonwc("qfq_dequeue", (*cl)->qdisc);
1004 else
1005 *len = qdisc_pkt_len(skb);
1007 return skb;
1010 /* Update F according to the actual service received by the aggregate. */
1011 static inline void charge_actual_service(struct qfq_aggregate *agg)
1013 /* Compute the service received by the aggregate, taking into
1014 * account that, after decreasing the number of classes in
1015 * agg, it may happen that
1016 * agg->initial_budget - agg->budget > agg->bugdetmax
1018 u32 service_received = min(agg->budgetmax,
1019 agg->initial_budget - agg->budget);
1021 agg->F = agg->S + (u64)service_received * agg->inv_w;
1024 /* Assign a reasonable start time for a new aggregate in group i.
1025 * Admissible values for \hat(F) are multiples of \sigma_i
1026 * no greater than V+\sigma_i . Larger values mean that
1027 * we had a wraparound so we consider the timestamp to be stale.
1029 * If F is not stale and F >= V then we set S = F.
1030 * Otherwise we should assign S = V, but this may violate
1031 * the ordering in EB (see [2]). So, if we have groups in ER,
1032 * set S to the F_j of the first group j which would be blocking us.
1033 * We are guaranteed not to move S backward because
1034 * otherwise our group i would still be blocked.
1036 static void qfq_update_start(struct qfq_sched *q, struct qfq_aggregate *agg)
1038 unsigned long mask;
1039 u64 limit, roundedF;
1040 int slot_shift = agg->grp->slot_shift;
1042 roundedF = qfq_round_down(agg->F, slot_shift);
1043 limit = qfq_round_down(q->V, slot_shift) + (1ULL << slot_shift);
1045 if (!qfq_gt(agg->F, q->V) || qfq_gt(roundedF, limit)) {
1046 /* timestamp was stale */
1047 mask = mask_from(q->bitmaps[ER], agg->grp->index);
1048 if (mask) {
1049 struct qfq_group *next = qfq_ffs(q, mask);
1050 if (qfq_gt(roundedF, next->F)) {
1051 if (qfq_gt(limit, next->F))
1052 agg->S = next->F;
1053 else /* preserve timestamp correctness */
1054 agg->S = limit;
1055 return;
1058 agg->S = q->V;
1059 } else /* timestamp is not stale */
1060 agg->S = agg->F;
1063 /* Update the timestamps of agg before scheduling/rescheduling it for
1064 * service. In particular, assign to agg->F its maximum possible
1065 * value, i.e., the virtual finish time with which the aggregate
1066 * should be labeled if it used all its budget once in service.
1068 static inline void
1069 qfq_update_agg_ts(struct qfq_sched *q,
1070 struct qfq_aggregate *agg, enum update_reason reason)
1072 if (reason != requeue)
1073 qfq_update_start(q, agg);
1074 else /* just charge agg for the service received */
1075 agg->S = agg->F;
1077 agg->F = agg->S + (u64)agg->budgetmax * agg->inv_w;
1080 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg);
1082 static struct sk_buff *qfq_dequeue(struct Qdisc *sch)
1084 struct qfq_sched *q = qdisc_priv(sch);
1085 struct qfq_aggregate *in_serv_agg = q->in_serv_agg;
1086 struct qfq_class *cl;
1087 struct sk_buff *skb = NULL;
1088 /* next-packet len, 0 means no more active classes in in-service agg */
1089 unsigned int len = 0;
1091 if (in_serv_agg == NULL)
1092 return NULL;
1094 if (!list_empty(&in_serv_agg->active))
1095 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1098 * If there are no active classes in the in-service aggregate,
1099 * or if the aggregate has not enough budget to serve its next
1100 * class, then choose the next aggregate to serve.
1102 if (len == 0 || in_serv_agg->budget < len) {
1103 charge_actual_service(in_serv_agg);
1105 /* recharge the budget of the aggregate */
1106 in_serv_agg->initial_budget = in_serv_agg->budget =
1107 in_serv_agg->budgetmax;
1109 if (!list_empty(&in_serv_agg->active)) {
1111 * Still active: reschedule for
1112 * service. Possible optimization: if no other
1113 * aggregate is active, then there is no point
1114 * in rescheduling this aggregate, and we can
1115 * just keep it as the in-service one. This
1116 * should be however a corner case, and to
1117 * handle it, we would need to maintain an
1118 * extra num_active_aggs field.
1120 qfq_update_agg_ts(q, in_serv_agg, requeue);
1121 qfq_schedule_agg(q, in_serv_agg);
1122 } else if (sch->q.qlen == 0) { /* no aggregate to serve */
1123 q->in_serv_agg = NULL;
1124 return NULL;
1128 * If we get here, there are other aggregates queued:
1129 * choose the new aggregate to serve.
1131 in_serv_agg = q->in_serv_agg = qfq_choose_next_agg(q);
1132 skb = qfq_peek_skb(in_serv_agg, &cl, &len);
1134 if (!skb)
1135 return NULL;
1137 sch->q.qlen--;
1139 skb = agg_dequeue(in_serv_agg, cl, len);
1141 if (!skb) {
1142 sch->q.qlen++;
1143 return NULL;
1146 qdisc_qstats_backlog_dec(sch, skb);
1147 qdisc_bstats_update(sch, skb);
1149 /* If lmax is lowered, through qfq_change_class, for a class
1150 * owning pending packets with larger size than the new value
1151 * of lmax, then the following condition may hold.
1153 if (unlikely(in_serv_agg->budget < len))
1154 in_serv_agg->budget = 0;
1155 else
1156 in_serv_agg->budget -= len;
1158 q->V += (u64)len * q->iwsum;
1159 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1160 len, (unsigned long long) in_serv_agg->F,
1161 (unsigned long long) q->V);
1163 return skb;
1166 static struct qfq_aggregate *qfq_choose_next_agg(struct qfq_sched *q)
1168 struct qfq_group *grp;
1169 struct qfq_aggregate *agg, *new_front_agg;
1170 u64 old_F;
1172 qfq_update_eligible(q);
1173 q->oldV = q->V;
1175 if (!q->bitmaps[ER])
1176 return NULL;
1178 grp = qfq_ffs(q, q->bitmaps[ER]);
1179 old_F = grp->F;
1181 agg = qfq_slot_head(grp);
1183 /* agg starts to be served, remove it from schedule */
1184 qfq_front_slot_remove(grp);
1186 new_front_agg = qfq_slot_scan(grp);
1188 if (new_front_agg == NULL) /* group is now inactive, remove from ER */
1189 __clear_bit(grp->index, &q->bitmaps[ER]);
1190 else {
1191 u64 roundedS = qfq_round_down(new_front_agg->S,
1192 grp->slot_shift);
1193 unsigned int s;
1195 if (grp->S == roundedS)
1196 return agg;
1197 grp->S = roundedS;
1198 grp->F = roundedS + (2ULL << grp->slot_shift);
1199 __clear_bit(grp->index, &q->bitmaps[ER]);
1200 s = qfq_calc_state(q, grp);
1201 __set_bit(grp->index, &q->bitmaps[s]);
1204 qfq_unblock_groups(q, grp->index, old_F);
1206 return agg;
1209 static int qfq_enqueue(struct sk_buff *skb, struct Qdisc *sch,
1210 struct sk_buff **to_free)
1212 unsigned int len = qdisc_pkt_len(skb), gso_segs;
1213 struct qfq_sched *q = qdisc_priv(sch);
1214 struct qfq_class *cl;
1215 struct qfq_aggregate *agg;
1216 int err = 0;
1217 bool first;
1219 cl = qfq_classify(skb, sch, &err);
1220 if (cl == NULL) {
1221 if (err & __NET_XMIT_BYPASS)
1222 qdisc_qstats_drop(sch);
1223 __qdisc_drop(skb, to_free);
1224 return err;
1226 pr_debug("qfq_enqueue: cl = %x\n", cl->common.classid);
1228 if (unlikely(cl->agg->lmax < len)) {
1229 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1230 cl->agg->lmax, len, cl->common.classid);
1231 err = qfq_change_agg(sch, cl, cl->agg->class_weight, len);
1232 if (err) {
1233 cl->qstats.drops++;
1234 return qdisc_drop(skb, sch, to_free);
1238 gso_segs = skb_is_gso(skb) ? skb_shinfo(skb)->gso_segs : 1;
1239 first = !cl->qdisc->q.qlen;
1240 err = qdisc_enqueue(skb, cl->qdisc, to_free);
1241 if (unlikely(err != NET_XMIT_SUCCESS)) {
1242 pr_debug("qfq_enqueue: enqueue failed %d\n", err);
1243 if (net_xmit_drop_count(err)) {
1244 cl->qstats.drops++;
1245 qdisc_qstats_drop(sch);
1247 return err;
1250 _bstats_update(&cl->bstats, len, gso_segs);
1251 sch->qstats.backlog += len;
1252 ++sch->q.qlen;
1254 agg = cl->agg;
1255 /* if the queue was not empty, then done here */
1256 if (!first) {
1257 if (unlikely(skb == cl->qdisc->ops->peek(cl->qdisc)) &&
1258 list_first_entry(&agg->active, struct qfq_class, alist)
1259 == cl && cl->deficit < len)
1260 list_move_tail(&cl->alist, &agg->active);
1262 return err;
1265 /* schedule class for service within the aggregate */
1266 cl->deficit = agg->lmax;
1267 list_add_tail(&cl->alist, &agg->active);
1269 if (list_first_entry(&agg->active, struct qfq_class, alist) != cl ||
1270 q->in_serv_agg == agg)
1271 return err; /* non-empty or in service, nothing else to do */
1273 qfq_activate_agg(q, agg, enqueue);
1275 return err;
1279 * Schedule aggregate according to its timestamps.
1281 static void qfq_schedule_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1283 struct qfq_group *grp = agg->grp;
1284 u64 roundedS;
1285 int s;
1287 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1290 * Insert agg in the correct bucket.
1291 * If agg->S >= grp->S we don't need to adjust the
1292 * bucket list and simply go to the insertion phase.
1293 * Otherwise grp->S is decreasing, we must make room
1294 * in the bucket list, and also recompute the group state.
1295 * Finally, if there were no flows in this group and nobody
1296 * was in ER make sure to adjust V.
1298 if (grp->full_slots) {
1299 if (!qfq_gt(grp->S, agg->S))
1300 goto skip_update;
1302 /* create a slot for this agg->S */
1303 qfq_slot_rotate(grp, roundedS);
1304 /* group was surely ineligible, remove */
1305 __clear_bit(grp->index, &q->bitmaps[IR]);
1306 __clear_bit(grp->index, &q->bitmaps[IB]);
1307 } else if (!q->bitmaps[ER] && qfq_gt(roundedS, q->V) &&
1308 q->in_serv_agg == NULL)
1309 q->V = roundedS;
1311 grp->S = roundedS;
1312 grp->F = roundedS + (2ULL << grp->slot_shift);
1313 s = qfq_calc_state(q, grp);
1314 __set_bit(grp->index, &q->bitmaps[s]);
1316 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1317 s, q->bitmaps[s],
1318 (unsigned long long) agg->S,
1319 (unsigned long long) agg->F,
1320 (unsigned long long) q->V);
1322 skip_update:
1323 qfq_slot_insert(grp, agg, roundedS);
1327 /* Update agg ts and schedule agg for service */
1328 static void qfq_activate_agg(struct qfq_sched *q, struct qfq_aggregate *agg,
1329 enum update_reason reason)
1331 agg->initial_budget = agg->budget = agg->budgetmax; /* recharge budg. */
1333 qfq_update_agg_ts(q, agg, reason);
1334 if (q->in_serv_agg == NULL) { /* no aggr. in service or scheduled */
1335 q->in_serv_agg = agg; /* start serving this aggregate */
1336 /* update V: to be in service, agg must be eligible */
1337 q->oldV = q->V = agg->S;
1338 } else if (agg != q->in_serv_agg)
1339 qfq_schedule_agg(q, agg);
1342 static void qfq_slot_remove(struct qfq_sched *q, struct qfq_group *grp,
1343 struct qfq_aggregate *agg)
1345 unsigned int i, offset;
1346 u64 roundedS;
1348 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1349 offset = (roundedS - grp->S) >> grp->slot_shift;
1351 i = (grp->front + offset) % QFQ_MAX_SLOTS;
1353 hlist_del(&agg->next);
1354 if (hlist_empty(&grp->slots[i]))
1355 __clear_bit(offset, &grp->full_slots);
1359 * Called to forcibly deschedule an aggregate. If the aggregate is
1360 * not in the front bucket, or if the latter has other aggregates in
1361 * the front bucket, we can simply remove the aggregate with no other
1362 * side effects.
1363 * Otherwise we must propagate the event up.
1365 static void qfq_deactivate_agg(struct qfq_sched *q, struct qfq_aggregate *agg)
1367 struct qfq_group *grp = agg->grp;
1368 unsigned long mask;
1369 u64 roundedS;
1370 int s;
1372 if (agg == q->in_serv_agg) {
1373 charge_actual_service(agg);
1374 q->in_serv_agg = qfq_choose_next_agg(q);
1375 return;
1378 agg->F = agg->S;
1379 qfq_slot_remove(q, grp, agg);
1381 if (!grp->full_slots) {
1382 __clear_bit(grp->index, &q->bitmaps[IR]);
1383 __clear_bit(grp->index, &q->bitmaps[EB]);
1384 __clear_bit(grp->index, &q->bitmaps[IB]);
1386 if (test_bit(grp->index, &q->bitmaps[ER]) &&
1387 !(q->bitmaps[ER] & ~((1UL << grp->index) - 1))) {
1388 mask = q->bitmaps[ER] & ((1UL << grp->index) - 1);
1389 if (mask)
1390 mask = ~((1UL << __fls(mask)) - 1);
1391 else
1392 mask = ~0UL;
1393 qfq_move_groups(q, mask, EB, ER);
1394 qfq_move_groups(q, mask, IB, IR);
1396 __clear_bit(grp->index, &q->bitmaps[ER]);
1397 } else if (hlist_empty(&grp->slots[grp->front])) {
1398 agg = qfq_slot_scan(grp);
1399 roundedS = qfq_round_down(agg->S, grp->slot_shift);
1400 if (grp->S != roundedS) {
1401 __clear_bit(grp->index, &q->bitmaps[ER]);
1402 __clear_bit(grp->index, &q->bitmaps[IR]);
1403 __clear_bit(grp->index, &q->bitmaps[EB]);
1404 __clear_bit(grp->index, &q->bitmaps[IB]);
1405 grp->S = roundedS;
1406 grp->F = roundedS + (2ULL << grp->slot_shift);
1407 s = qfq_calc_state(q, grp);
1408 __set_bit(grp->index, &q->bitmaps[s]);
1413 static void qfq_qlen_notify(struct Qdisc *sch, unsigned long arg)
1415 struct qfq_sched *q = qdisc_priv(sch);
1416 struct qfq_class *cl = (struct qfq_class *)arg;
1418 qfq_deactivate_class(q, cl);
1421 static int qfq_init_qdisc(struct Qdisc *sch, struct nlattr *opt,
1422 struct netlink_ext_ack *extack)
1424 struct qfq_sched *q = qdisc_priv(sch);
1425 struct qfq_group *grp;
1426 int i, j, err;
1427 u32 max_cl_shift, maxbudg_shift, max_classes;
1429 err = tcf_block_get(&q->block, &q->filter_list, sch, extack);
1430 if (err)
1431 return err;
1433 err = qdisc_class_hash_init(&q->clhash);
1434 if (err < 0)
1435 return err;
1437 max_classes = min_t(u64, (u64)qdisc_dev(sch)->tx_queue_len + 1,
1438 QFQ_MAX_AGG_CLASSES);
1439 /* max_cl_shift = floor(log_2(max_classes)) */
1440 max_cl_shift = __fls(max_classes);
1441 q->max_agg_classes = 1<<max_cl_shift;
1443 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1444 maxbudg_shift = QFQ_MTU_SHIFT + max_cl_shift;
1445 q->min_slot_shift = FRAC_BITS + maxbudg_shift - QFQ_MAX_INDEX;
1447 for (i = 0; i <= QFQ_MAX_INDEX; i++) {
1448 grp = &q->groups[i];
1449 grp->index = i;
1450 grp->slot_shift = q->min_slot_shift + i;
1451 for (j = 0; j < QFQ_MAX_SLOTS; j++)
1452 INIT_HLIST_HEAD(&grp->slots[j]);
1455 INIT_HLIST_HEAD(&q->nonfull_aggs);
1457 return 0;
1460 static void qfq_reset_qdisc(struct Qdisc *sch)
1462 struct qfq_sched *q = qdisc_priv(sch);
1463 struct qfq_class *cl;
1464 unsigned int i;
1466 for (i = 0; i < q->clhash.hashsize; i++) {
1467 hlist_for_each_entry(cl, &q->clhash.hash[i], common.hnode) {
1468 if (cl->qdisc->q.qlen > 0)
1469 qfq_deactivate_class(q, cl);
1471 qdisc_reset(cl->qdisc);
1476 static void qfq_destroy_qdisc(struct Qdisc *sch)
1478 struct qfq_sched *q = qdisc_priv(sch);
1479 struct qfq_class *cl;
1480 struct hlist_node *next;
1481 unsigned int i;
1483 tcf_block_put(q->block);
1485 for (i = 0; i < q->clhash.hashsize; i++) {
1486 hlist_for_each_entry_safe(cl, next, &q->clhash.hash[i],
1487 common.hnode) {
1488 qfq_destroy_class(sch, cl);
1491 qdisc_class_hash_destroy(&q->clhash);
1494 static const struct Qdisc_class_ops qfq_class_ops = {
1495 .change = qfq_change_class,
1496 .delete = qfq_delete_class,
1497 .find = qfq_search_class,
1498 .tcf_block = qfq_tcf_block,
1499 .bind_tcf = qfq_bind_tcf,
1500 .unbind_tcf = qfq_unbind_tcf,
1501 .graft = qfq_graft_class,
1502 .leaf = qfq_class_leaf,
1503 .qlen_notify = qfq_qlen_notify,
1504 .dump = qfq_dump_class,
1505 .dump_stats = qfq_dump_class_stats,
1506 .walk = qfq_walk,
1509 static struct Qdisc_ops qfq_qdisc_ops __read_mostly = {
1510 .cl_ops = &qfq_class_ops,
1511 .id = "qfq",
1512 .priv_size = sizeof(struct qfq_sched),
1513 .enqueue = qfq_enqueue,
1514 .dequeue = qfq_dequeue,
1515 .peek = qdisc_peek_dequeued,
1516 .init = qfq_init_qdisc,
1517 .reset = qfq_reset_qdisc,
1518 .destroy = qfq_destroy_qdisc,
1519 .owner = THIS_MODULE,
1521 MODULE_ALIAS_NET_SCH("qfq");
1523 static int __init qfq_init(void)
1525 return register_qdisc(&qfq_qdisc_ops);
1528 static void __exit qfq_exit(void)
1530 unregister_qdisc(&qfq_qdisc_ops);
1533 module_init(qfq_init);
1534 module_exit(qfq_exit);
1535 MODULE_LICENSE("GPL");
1536 MODULE_DESCRIPTION("Quick Fair Queueing Plus qdisc");