1 // SPDX-License-Identifier: GPL-2.0-only
3 * net/sched/sch_qfq.c Quick Fair Queueing Plus Scheduler.
5 * Copyright (c) 2009 Fabio Checconi, Luigi Rizzo, and Paolo Valente.
6 * Copyright (c) 2012 Paolo Valente.
9 #include <linux/module.h>
10 #include <linux/init.h>
11 #include <linux/bitops.h>
12 #include <linux/errno.h>
13 #include <linux/netdevice.h>
14 #include <linux/pkt_sched.h>
15 #include <net/sch_generic.h>
16 #include <net/pkt_sched.h>
17 #include <net/pkt_cls.h>
20 /* Quick Fair Queueing Plus
21 ========================
26 "Reducing the Execution Time of Fair-Queueing Schedulers."
27 http://algo.ing.unimo.it/people/paolo/agg-sched/agg-sched.pdf
31 [2] Fabio Checconi, Luigi Rizzo, and Paolo Valente: "QFQ: Efficient
32 Packet Scheduling with Tight Bandwidth Distribution Guarantees."
35 http://retis.sssup.it/~fabio/linux/qfq/
40 QFQ+ divides classes into aggregates of at most MAX_AGG_CLASSES
41 classes. Each aggregate is timestamped with a virtual start time S
42 and a virtual finish time F, and scheduled according to its
43 timestamps. S and F are computed as a function of a system virtual
44 time function V. The classes within each aggregate are instead
47 To speed up operations, QFQ+ divides also aggregates into a limited
48 number of groups. Which group a class belongs to depends on the
49 ratio between the maximum packet length for the class and the weight
50 of the class. Groups have their own S and F. In the end, QFQ+
51 schedules groups, then aggregates within groups, then classes within
52 aggregates. See [1] and [2] for a full description.
54 Virtual time computations.
56 S, F and V are all computed in fixed point arithmetic with
57 FRAC_BITS decimal bits.
59 QFQ_MAX_INDEX is the maximum index allowed for a group. We need
61 QFQ_MAX_WSHIFT is the maximum power of two supported as a weight.
63 The layout of the bits is as below:
65 [ MTU_SHIFT ][ FRAC_BITS ]
66 [ MAX_INDEX ][ MIN_SLOT_SHIFT ]
70 where MIN_SLOT_SHIFT is derived by difference from the others.
72 The max group index corresponds to Lmax/w_min, where
73 Lmax=1<<MTU_SHIFT, w_min = 1 .
74 From this, and knowing how many groups (MAX_INDEX) we want,
75 we can derive the shift corresponding to each group.
77 Because we often need to compute
78 F = S + len/w_i and V = V + len/wsum
79 instead of storing w_i store the value
80 inv_w = (1<<FRAC_BITS)/w_i
81 so we can do F = S + len * inv_w * wsum.
82 We use W_TOT in the formulas so we can easily move between
83 static and adaptive weight sum.
85 The per-scheduler-instance data contain all the data structures
86 for the scheduler: bitmaps and bucket lists.
91 * Maximum number of consecutive slots occupied by backlogged classes
94 #define QFQ_MAX_SLOTS 32
97 * Shifts used for aggregate<->group mapping. We allow class weights that are
98 * in the range [1, 2^MAX_WSHIFT], and we try to map each aggregate i to the
99 * group with the smallest index that can support the L_i / r_i configured
100 * for the classes in the aggregate.
102 * grp->index is the index of the group; and grp->slot_shift
103 * is the shift for the corresponding (scaled) sigma_i.
105 #define QFQ_MAX_INDEX 24
106 #define QFQ_MAX_WSHIFT 10
108 #define QFQ_MAX_WEIGHT (1<<QFQ_MAX_WSHIFT) /* see qfq_slot_insert */
109 #define QFQ_MAX_WSUM (64*QFQ_MAX_WEIGHT)
111 #define FRAC_BITS 30 /* fixed point arithmetic */
112 #define ONE_FP (1UL << FRAC_BITS)
114 #define QFQ_MTU_SHIFT 16 /* to support TSO/GSO */
115 #define QFQ_MIN_LMAX 512 /* see qfq_slot_insert */
116 #define QFQ_MAX_LMAX (1UL << QFQ_MTU_SHIFT)
118 #define QFQ_MAX_AGG_CLASSES 8 /* max num classes per aggregate allowed */
121 * Possible group states. These values are used as indexes for the bitmaps
122 * array of struct qfq_queue.
124 enum qfq_state
{ ER
, IR
, EB
, IB
, QFQ_MAX_STATE
};
128 struct qfq_aggregate
;
131 struct Qdisc_class_common common
;
133 struct gnet_stats_basic_sync bstats
;
134 struct gnet_stats_queue qstats
;
135 struct net_rate_estimator __rcu
*rate_est
;
137 struct list_head alist
; /* Link for active-classes list. */
138 struct qfq_aggregate
*agg
; /* Parent aggregate. */
139 int deficit
; /* DRR deficit counter. */
142 struct qfq_aggregate
{
143 struct hlist_node next
; /* Link for the slot list. */
144 u64 S
, F
; /* flow timestamps (exact) */
146 /* group we belong to. In principle we would need the index,
147 * which is log_2(lmax/weight), but we never reference it
148 * directly, only the group.
150 struct qfq_group
*grp
;
152 /* these are copied from the flowset. */
153 u32 class_weight
; /* Weight of each class in this aggregate. */
154 /* Max pkt size for the classes in this aggregate, DRR quantum. */
157 u32 inv_w
; /* ONE_FP/(sum of weights of classes in aggr.). */
158 u32 budgetmax
; /* Max budget for this aggregate. */
159 u32 initial_budget
, budget
; /* Initial and current budget. */
161 int num_classes
; /* Number of classes in this aggr. */
162 struct list_head active
; /* DRR queue of active classes. */
164 struct hlist_node nonfull_next
; /* See nonfull_aggs in qfq_sched. */
168 u64 S
, F
; /* group timestamps (approx). */
169 unsigned int slot_shift
; /* Slot shift. */
170 unsigned int index
; /* Group index. */
171 unsigned int front
; /* Index of the front slot. */
172 unsigned long full_slots
; /* non-empty slots */
174 /* Array of RR lists of active aggregates. */
175 struct hlist_head slots
[QFQ_MAX_SLOTS
];
179 struct tcf_proto __rcu
*filter_list
;
180 struct tcf_block
*block
;
181 struct Qdisc_class_hash clhash
;
183 u64 oldV
, V
; /* Precise virtual times. */
184 struct qfq_aggregate
*in_serv_agg
; /* Aggregate being served. */
185 u32 wsum
; /* weight sum */
186 u32 iwsum
; /* inverse weight sum */
188 unsigned long bitmaps
[QFQ_MAX_STATE
]; /* Group bitmaps. */
189 struct qfq_group groups
[QFQ_MAX_INDEX
+ 1]; /* The groups. */
190 u32 min_slot_shift
; /* Index of the group-0 bit in the bitmaps. */
192 u32 max_agg_classes
; /* Max number of classes per aggr. */
193 struct hlist_head nonfull_aggs
; /* Aggs with room for more classes. */
197 * Possible reasons why the timestamps of an aggregate are updated
198 * enqueue: the aggregate switches from idle to active and must scheduled
200 * requeue: the aggregate finishes its budget, so it stops being served and
201 * must be rescheduled for service
203 enum update_reason
{enqueue
, requeue
};
205 static struct qfq_class
*qfq_find_class(struct Qdisc
*sch
, u32 classid
)
207 struct qfq_sched
*q
= qdisc_priv(sch
);
208 struct Qdisc_class_common
*clc
;
210 clc
= qdisc_class_find(&q
->clhash
, classid
);
213 return container_of(clc
, struct qfq_class
, common
);
216 static const struct netlink_range_validation lmax_range
= {
221 static const struct nla_policy qfq_policy
[TCA_QFQ_MAX
+ 1] = {
222 [TCA_QFQ_WEIGHT
] = NLA_POLICY_RANGE(NLA_U32
, 1, QFQ_MAX_WEIGHT
),
223 [TCA_QFQ_LMAX
] = NLA_POLICY_FULL_RANGE(NLA_U32
, &lmax_range
),
227 * Calculate a flow index, given its weight and maximum packet length.
228 * index = log_2(maxlen/weight) but we need to apply the scaling.
229 * This is used only once at flow creation.
231 static int qfq_calc_index(u32 inv_w
, unsigned int maxlen
, u32 min_slot_shift
)
233 u64 slot_size
= (u64
)maxlen
* inv_w
;
234 unsigned long size_map
;
237 size_map
= slot_size
>> min_slot_shift
;
241 index
= __fls(size_map
) + 1; /* basically a log_2 */
242 index
-= !(slot_size
- (1ULL << (index
+ min_slot_shift
- 1)));
247 pr_debug("qfq calc_index: W = %lu, L = %u, I = %d\n",
248 (unsigned long) ONE_FP
/inv_w
, maxlen
, index
);
253 static void qfq_deactivate_agg(struct qfq_sched
*, struct qfq_aggregate
*);
254 static void qfq_activate_agg(struct qfq_sched
*, struct qfq_aggregate
*,
257 static void qfq_init_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
,
258 u32 lmax
, u32 weight
)
260 INIT_LIST_HEAD(&agg
->active
);
261 hlist_add_head(&agg
->nonfull_next
, &q
->nonfull_aggs
);
264 agg
->class_weight
= weight
;
267 static struct qfq_aggregate
*qfq_find_agg(struct qfq_sched
*q
,
268 u32 lmax
, u32 weight
)
270 struct qfq_aggregate
*agg
;
272 hlist_for_each_entry(agg
, &q
->nonfull_aggs
, nonfull_next
)
273 if (agg
->lmax
== lmax
&& agg
->class_weight
== weight
)
280 /* Update aggregate as a function of the new number of classes. */
281 static void qfq_update_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
,
286 if (new_num_classes
== q
->max_agg_classes
)
287 hlist_del_init(&agg
->nonfull_next
);
289 if (agg
->num_classes
> new_num_classes
&&
290 new_num_classes
== q
->max_agg_classes
- 1) /* agg no more full */
291 hlist_add_head(&agg
->nonfull_next
, &q
->nonfull_aggs
);
293 /* The next assignment may let
294 * agg->initial_budget > agg->budgetmax
295 * hold, we will take it into account in charge_actual_service().
297 agg
->budgetmax
= new_num_classes
* agg
->lmax
;
298 new_agg_weight
= agg
->class_weight
* new_num_classes
;
299 agg
->inv_w
= ONE_FP
/new_agg_weight
;
301 if (agg
->grp
== NULL
) {
302 int i
= qfq_calc_index(agg
->inv_w
, agg
->budgetmax
,
304 agg
->grp
= &q
->groups
[i
];
308 (int) agg
->class_weight
* (new_num_classes
- agg
->num_classes
);
309 q
->iwsum
= ONE_FP
/ q
->wsum
;
311 agg
->num_classes
= new_num_classes
;
314 /* Add class to aggregate. */
315 static void qfq_add_to_agg(struct qfq_sched
*q
,
316 struct qfq_aggregate
*agg
,
317 struct qfq_class
*cl
)
321 qfq_update_agg(q
, agg
, agg
->num_classes
+1);
322 if (cl
->qdisc
->q
.qlen
> 0) { /* adding an active class */
323 list_add_tail(&cl
->alist
, &agg
->active
);
324 if (list_first_entry(&agg
->active
, struct qfq_class
, alist
) ==
325 cl
&& q
->in_serv_agg
!= agg
) /* agg was inactive */
326 qfq_activate_agg(q
, agg
, enqueue
); /* schedule agg */
330 static struct qfq_aggregate
*qfq_choose_next_agg(struct qfq_sched
*);
332 static void qfq_destroy_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
)
334 hlist_del_init(&agg
->nonfull_next
);
335 q
->wsum
-= agg
->class_weight
;
337 q
->iwsum
= ONE_FP
/ q
->wsum
;
339 if (q
->in_serv_agg
== agg
)
340 q
->in_serv_agg
= qfq_choose_next_agg(q
);
344 /* Deschedule class from within its parent aggregate. */
345 static void qfq_deactivate_class(struct qfq_sched
*q
, struct qfq_class
*cl
)
347 struct qfq_aggregate
*agg
= cl
->agg
;
350 list_del(&cl
->alist
); /* remove from RR queue of the aggregate */
351 if (list_empty(&agg
->active
)) /* agg is now inactive */
352 qfq_deactivate_agg(q
, agg
);
355 /* Remove class from its parent aggregate. */
356 static void qfq_rm_from_agg(struct qfq_sched
*q
, struct qfq_class
*cl
)
358 struct qfq_aggregate
*agg
= cl
->agg
;
361 if (agg
->num_classes
== 1) { /* agg being emptied, destroy it */
362 qfq_destroy_agg(q
, agg
);
365 qfq_update_agg(q
, agg
, agg
->num_classes
-1);
368 /* Deschedule class and remove it from its parent aggregate. */
369 static void qfq_deact_rm_from_agg(struct qfq_sched
*q
, struct qfq_class
*cl
)
371 if (cl
->qdisc
->q
.qlen
> 0) /* class is active */
372 qfq_deactivate_class(q
, cl
);
374 qfq_rm_from_agg(q
, cl
);
377 /* Move class to a new aggregate, matching the new class weight and/or lmax */
378 static int qfq_change_agg(struct Qdisc
*sch
, struct qfq_class
*cl
, u32 weight
,
381 struct qfq_sched
*q
= qdisc_priv(sch
);
382 struct qfq_aggregate
*new_agg
;
384 /* 'lmax' can range from [QFQ_MIN_LMAX, pktlen + stab overhead] */
385 if (lmax
> QFQ_MAX_LMAX
)
388 new_agg
= qfq_find_agg(q
, lmax
, weight
);
389 if (new_agg
== NULL
) { /* create new aggregate */
390 new_agg
= kzalloc(sizeof(*new_agg
), GFP_ATOMIC
);
393 qfq_init_agg(q
, new_agg
, lmax
, weight
);
395 qfq_deact_rm_from_agg(q
, cl
);
396 qfq_add_to_agg(q
, new_agg
, cl
);
401 static int qfq_change_class(struct Qdisc
*sch
, u32 classid
, u32 parentid
,
402 struct nlattr
**tca
, unsigned long *arg
,
403 struct netlink_ext_ack
*extack
)
405 struct qfq_sched
*q
= qdisc_priv(sch
);
406 struct qfq_class
*cl
= (struct qfq_class
*)*arg
;
407 bool existing
= false;
408 struct nlattr
*tb
[TCA_QFQ_MAX
+ 1];
409 struct qfq_aggregate
*new_agg
= NULL
;
410 u32 weight
, lmax
, inv_w
;
414 if (NL_REQ_ATTR_CHECK(extack
, NULL
, tca
, TCA_OPTIONS
)) {
415 NL_SET_ERR_MSG_MOD(extack
, "missing options");
419 err
= nla_parse_nested_deprecated(tb
, TCA_QFQ_MAX
, tca
[TCA_OPTIONS
],
424 weight
= nla_get_u32_default(tb
[TCA_QFQ_WEIGHT
], 1);
426 if (tb
[TCA_QFQ_LMAX
]) {
427 lmax
= nla_get_u32(tb
[TCA_QFQ_LMAX
]);
429 /* MTU size is user controlled */
430 lmax
= psched_mtu(qdisc_dev(sch
));
431 if (lmax
< QFQ_MIN_LMAX
|| lmax
> QFQ_MAX_LMAX
) {
432 NL_SET_ERR_MSG_MOD(extack
,
433 "MTU size out of bounds for qfq");
438 inv_w
= ONE_FP
/ weight
;
439 weight
= ONE_FP
/ inv_w
;
442 lmax
== cl
->agg
->lmax
&&
443 weight
== cl
->agg
->class_weight
)
444 return 0; /* nothing to change */
446 delta_w
= weight
- (cl
? cl
->agg
->class_weight
: 0);
448 if (q
->wsum
+ delta_w
> QFQ_MAX_WSUM
) {
449 NL_SET_ERR_MSG_FMT_MOD(extack
,
450 "total weight out of range (%d + %u)\n",
455 if (cl
!= NULL
) { /* modify existing class */
457 err
= gen_replace_estimator(&cl
->bstats
, NULL
,
469 /* create and init new class */
470 cl
= kzalloc(sizeof(struct qfq_class
), GFP_KERNEL
);
474 gnet_stats_basic_sync_init(&cl
->bstats
);
475 cl
->common
.classid
= classid
;
478 cl
->qdisc
= qdisc_create_dflt(sch
->dev_queue
, &pfifo_qdisc_ops
,
480 if (cl
->qdisc
== NULL
)
481 cl
->qdisc
= &noop_qdisc
;
484 err
= gen_new_estimator(&cl
->bstats
, NULL
,
493 if (cl
->qdisc
!= &noop_qdisc
)
494 qdisc_hash_add(cl
->qdisc
, true);
498 new_agg
= qfq_find_agg(q
, lmax
, weight
);
499 if (new_agg
== NULL
) { /* create new aggregate */
500 sch_tree_unlock(sch
);
501 new_agg
= kzalloc(sizeof(*new_agg
), GFP_KERNEL
);
502 if (new_agg
== NULL
) {
504 gen_kill_estimator(&cl
->rate_est
);
508 qfq_init_agg(q
, new_agg
, lmax
, weight
);
511 qfq_deact_rm_from_agg(q
, cl
);
513 qdisc_class_hash_insert(&q
->clhash
, &cl
->common
);
514 qfq_add_to_agg(q
, new_agg
, cl
);
515 sch_tree_unlock(sch
);
516 qdisc_class_hash_grow(sch
, &q
->clhash
);
518 *arg
= (unsigned long)cl
;
522 qdisc_put(cl
->qdisc
);
527 static void qfq_destroy_class(struct Qdisc
*sch
, struct qfq_class
*cl
)
529 struct qfq_sched
*q
= qdisc_priv(sch
);
531 qfq_rm_from_agg(q
, cl
);
532 gen_kill_estimator(&cl
->rate_est
);
533 qdisc_put(cl
->qdisc
);
537 static int qfq_delete_class(struct Qdisc
*sch
, unsigned long arg
,
538 struct netlink_ext_ack
*extack
)
540 struct qfq_sched
*q
= qdisc_priv(sch
);
541 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
543 if (qdisc_class_in_use(&cl
->common
)) {
544 NL_SET_ERR_MSG_MOD(extack
, "QFQ class in use");
550 qdisc_purge_queue(cl
->qdisc
);
551 qdisc_class_hash_remove(&q
->clhash
, &cl
->common
);
553 sch_tree_unlock(sch
);
555 qfq_destroy_class(sch
, cl
);
559 static unsigned long qfq_search_class(struct Qdisc
*sch
, u32 classid
)
561 return (unsigned long)qfq_find_class(sch
, classid
);
564 static struct tcf_block
*qfq_tcf_block(struct Qdisc
*sch
, unsigned long cl
,
565 struct netlink_ext_ack
*extack
)
567 struct qfq_sched
*q
= qdisc_priv(sch
);
575 static unsigned long qfq_bind_tcf(struct Qdisc
*sch
, unsigned long parent
,
578 struct qfq_class
*cl
= qfq_find_class(sch
, classid
);
581 qdisc_class_get(&cl
->common
);
583 return (unsigned long)cl
;
586 static void qfq_unbind_tcf(struct Qdisc
*sch
, unsigned long arg
)
588 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
590 qdisc_class_put(&cl
->common
);
593 static int qfq_graft_class(struct Qdisc
*sch
, unsigned long arg
,
594 struct Qdisc
*new, struct Qdisc
**old
,
595 struct netlink_ext_ack
*extack
)
597 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
600 new = qdisc_create_dflt(sch
->dev_queue
, &pfifo_qdisc_ops
,
601 cl
->common
.classid
, NULL
);
606 *old
= qdisc_replace(sch
, new, &cl
->qdisc
);
610 static struct Qdisc
*qfq_class_leaf(struct Qdisc
*sch
, unsigned long arg
)
612 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
617 static int qfq_dump_class(struct Qdisc
*sch
, unsigned long arg
,
618 struct sk_buff
*skb
, struct tcmsg
*tcm
)
620 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
623 tcm
->tcm_parent
= TC_H_ROOT
;
624 tcm
->tcm_handle
= cl
->common
.classid
;
625 tcm
->tcm_info
= cl
->qdisc
->handle
;
627 nest
= nla_nest_start_noflag(skb
, TCA_OPTIONS
);
629 goto nla_put_failure
;
630 if (nla_put_u32(skb
, TCA_QFQ_WEIGHT
, cl
->agg
->class_weight
) ||
631 nla_put_u32(skb
, TCA_QFQ_LMAX
, cl
->agg
->lmax
))
632 goto nla_put_failure
;
633 return nla_nest_end(skb
, nest
);
636 nla_nest_cancel(skb
, nest
);
640 static int qfq_dump_class_stats(struct Qdisc
*sch
, unsigned long arg
,
643 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
644 struct tc_qfq_stats xstats
;
646 memset(&xstats
, 0, sizeof(xstats
));
648 xstats
.weight
= cl
->agg
->class_weight
;
649 xstats
.lmax
= cl
->agg
->lmax
;
651 if (gnet_stats_copy_basic(d
, NULL
, &cl
->bstats
, true) < 0 ||
652 gnet_stats_copy_rate_est(d
, &cl
->rate_est
) < 0 ||
653 qdisc_qstats_copy(d
, cl
->qdisc
) < 0)
656 return gnet_stats_copy_app(d
, &xstats
, sizeof(xstats
));
659 static void qfq_walk(struct Qdisc
*sch
, struct qdisc_walker
*arg
)
661 struct qfq_sched
*q
= qdisc_priv(sch
);
662 struct qfq_class
*cl
;
668 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
669 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], common
.hnode
) {
670 if (!tc_qdisc_stats_dump(sch
, (unsigned long)cl
, arg
))
676 static struct qfq_class
*qfq_classify(struct sk_buff
*skb
, struct Qdisc
*sch
,
679 struct qfq_sched
*q
= qdisc_priv(sch
);
680 struct qfq_class
*cl
;
681 struct tcf_result res
;
682 struct tcf_proto
*fl
;
685 if (TC_H_MAJ(skb
->priority
^ sch
->handle
) == 0) {
686 pr_debug("qfq_classify: found %d\n", skb
->priority
);
687 cl
= qfq_find_class(sch
, skb
->priority
);
692 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_BYPASS
;
693 fl
= rcu_dereference_bh(q
->filter_list
);
694 result
= tcf_classify(skb
, NULL
, fl
, &res
, false);
696 #ifdef CONFIG_NET_CLS_ACT
701 *qerr
= NET_XMIT_SUCCESS
| __NET_XMIT_STOLEN
;
707 cl
= (struct qfq_class
*)res
.class;
709 cl
= qfq_find_class(sch
, res
.classid
);
716 /* Generic comparison function, handling wraparound. */
717 static inline int qfq_gt(u64 a
, u64 b
)
719 return (s64
)(a
- b
) > 0;
722 /* Round a precise timestamp to its slotted value. */
723 static inline u64
qfq_round_down(u64 ts
, unsigned int shift
)
725 return ts
& ~((1ULL << shift
) - 1);
728 /* return the pointer to the group with lowest index in the bitmap */
729 static inline struct qfq_group
*qfq_ffs(struct qfq_sched
*q
,
730 unsigned long bitmap
)
732 int index
= __ffs(bitmap
);
733 return &q
->groups
[index
];
735 /* Calculate a mask to mimic what would be ffs_from(). */
736 static inline unsigned long mask_from(unsigned long bitmap
, int from
)
738 return bitmap
& ~((1UL << from
) - 1);
742 * The state computation relies on ER=0, IR=1, EB=2, IB=3
743 * First compute eligibility comparing grp->S, q->V,
744 * then check if someone is blocking us and possibly add EB
746 static int qfq_calc_state(struct qfq_sched
*q
, const struct qfq_group
*grp
)
748 /* if S > V we are not eligible */
749 unsigned int state
= qfq_gt(grp
->S
, q
->V
);
750 unsigned long mask
= mask_from(q
->bitmaps
[ER
], grp
->index
);
751 struct qfq_group
*next
;
754 next
= qfq_ffs(q
, mask
);
755 if (qfq_gt(grp
->F
, next
->F
))
765 * q->bitmaps[dst] |= q->bitmaps[src] & mask;
766 * q->bitmaps[src] &= ~mask;
767 * but we should make sure that src != dst
769 static inline void qfq_move_groups(struct qfq_sched
*q
, unsigned long mask
,
772 q
->bitmaps
[dst
] |= q
->bitmaps
[src
] & mask
;
773 q
->bitmaps
[src
] &= ~mask
;
776 static void qfq_unblock_groups(struct qfq_sched
*q
, int index
, u64 old_F
)
778 unsigned long mask
= mask_from(q
->bitmaps
[ER
], index
+ 1);
779 struct qfq_group
*next
;
782 next
= qfq_ffs(q
, mask
);
783 if (!qfq_gt(next
->F
, old_F
))
787 mask
= (1UL << index
) - 1;
788 qfq_move_groups(q
, mask
, EB
, ER
);
789 qfq_move_groups(q
, mask
, IB
, IR
);
796 old_V >>= q->min_slot_shift;
802 static void qfq_make_eligible(struct qfq_sched
*q
)
804 unsigned long vslot
= q
->V
>> q
->min_slot_shift
;
805 unsigned long old_vslot
= q
->oldV
>> q
->min_slot_shift
;
807 if (vslot
!= old_vslot
) {
809 int last_flip_pos
= fls(vslot
^ old_vslot
);
811 if (last_flip_pos
> 31) /* higher than the number of groups */
812 mask
= ~0UL; /* make all groups eligible */
814 mask
= (1UL << last_flip_pos
) - 1;
816 qfq_move_groups(q
, mask
, IR
, ER
);
817 qfq_move_groups(q
, mask
, IB
, EB
);
822 * The index of the slot in which the input aggregate agg is to be
823 * inserted must not be higher than QFQ_MAX_SLOTS-2. There is a '-2'
824 * and not a '-1' because the start time of the group may be moved
825 * backward by one slot after the aggregate has been inserted, and
826 * this would cause non-empty slots to be right-shifted by one
829 * QFQ+ fully satisfies this bound to the slot index if the parameters
830 * of the classes are not changed dynamically, and if QFQ+ never
831 * happens to postpone the service of agg unjustly, i.e., it never
832 * happens that the aggregate becomes backlogged and eligible, or just
833 * eligible, while an aggregate with a higher approximated finish time
834 * is being served. In particular, in this case QFQ+ guarantees that
835 * the timestamps of agg are low enough that the slot index is never
836 * higher than 2. Unfortunately, QFQ+ cannot provide the same
837 * guarantee if it happens to unjustly postpone the service of agg, or
838 * if the parameters of some class are changed.
840 * As for the first event, i.e., an out-of-order service, the
841 * upper bound to the slot index guaranteed by QFQ+ grows to
843 * QFQ_MAX_AGG_CLASSES * ((1<<QFQ_MTU_SHIFT)/QFQ_MIN_LMAX) *
844 * (current_max_weight/current_wsum) <= 2 + 8 * 128 * 1.
846 * The following function deals with this problem by backward-shifting
847 * the timestamps of agg, if needed, so as to guarantee that the slot
848 * index is never higher than QFQ_MAX_SLOTS-2. This backward-shift may
849 * cause the service of other aggregates to be postponed, yet the
850 * worst-case guarantees of these aggregates are not violated. In
851 * fact, in case of no out-of-order service, the timestamps of agg
852 * would have been even lower than they are after the backward shift,
853 * because QFQ+ would have guaranteed a maximum value equal to 2 for
854 * the slot index, and 2 < QFQ_MAX_SLOTS-2. Hence the aggregates whose
855 * service is postponed because of the backward-shift would have
856 * however waited for the service of agg before being served.
858 * The other event that may cause the slot index to be higher than 2
859 * for agg is a recent change of the parameters of some class. If the
860 * weight of a class is increased or the lmax (max_pkt_size) of the
861 * class is decreased, then a new aggregate with smaller slot size
862 * than the original parent aggregate of the class may happen to be
863 * activated. The activation of this aggregate should be properly
864 * delayed to when the service of the class has finished in the ideal
865 * system tracked by QFQ+. If the activation of the aggregate is not
866 * delayed to this reference time instant, then this aggregate may be
867 * unjustly served before other aggregates waiting for service. This
868 * may cause the above bound to the slot index to be violated for some
869 * of these unlucky aggregates.
871 * Instead of delaying the activation of the new aggregate, which is
872 * quite complex, the above-discussed capping of the slot index is
873 * used to handle also the consequences of a change of the parameters
876 static void qfq_slot_insert(struct qfq_group
*grp
, struct qfq_aggregate
*agg
,
879 u64 slot
= (roundedS
- grp
->S
) >> grp
->slot_shift
;
880 unsigned int i
; /* slot index in the bucket list */
882 if (unlikely(slot
> QFQ_MAX_SLOTS
- 2)) {
883 u64 deltaS
= roundedS
- grp
->S
-
884 ((u64
)(QFQ_MAX_SLOTS
- 2)<<grp
->slot_shift
);
887 slot
= QFQ_MAX_SLOTS
- 2;
890 i
= (grp
->front
+ slot
) % QFQ_MAX_SLOTS
;
892 hlist_add_head(&agg
->next
, &grp
->slots
[i
]);
893 __set_bit(slot
, &grp
->full_slots
);
896 /* Maybe introduce hlist_first_entry?? */
897 static struct qfq_aggregate
*qfq_slot_head(struct qfq_group
*grp
)
899 return hlist_entry(grp
->slots
[grp
->front
].first
,
900 struct qfq_aggregate
, next
);
904 * remove the entry from the slot
906 static void qfq_front_slot_remove(struct qfq_group
*grp
)
908 struct qfq_aggregate
*agg
= qfq_slot_head(grp
);
911 hlist_del(&agg
->next
);
912 if (hlist_empty(&grp
->slots
[grp
->front
]))
913 __clear_bit(0, &grp
->full_slots
);
917 * Returns the first aggregate in the first non-empty bucket of the
918 * group. As a side effect, adjusts the bucket list so the first
919 * non-empty bucket is at position 0 in full_slots.
921 static struct qfq_aggregate
*qfq_slot_scan(struct qfq_group
*grp
)
925 pr_debug("qfq slot_scan: grp %u full %#lx\n",
926 grp
->index
, grp
->full_slots
);
928 if (grp
->full_slots
== 0)
931 i
= __ffs(grp
->full_slots
); /* zero based */
933 grp
->front
= (grp
->front
+ i
) % QFQ_MAX_SLOTS
;
934 grp
->full_slots
>>= i
;
937 return qfq_slot_head(grp
);
941 * adjust the bucket list. When the start time of a group decreases,
942 * we move the index down (modulo QFQ_MAX_SLOTS) so we don't need to
943 * move the objects. The mask of occupied slots must be shifted
944 * because we use ffs() to find the first non-empty slot.
945 * This covers decreases in the group's start time, but what about
946 * increases of the start time ?
947 * Here too we should make sure that i is less than 32
949 static void qfq_slot_rotate(struct qfq_group
*grp
, u64 roundedS
)
951 unsigned int i
= (grp
->S
- roundedS
) >> grp
->slot_shift
;
953 grp
->full_slots
<<= i
;
954 grp
->front
= (grp
->front
- i
) % QFQ_MAX_SLOTS
;
957 static void qfq_update_eligible(struct qfq_sched
*q
)
959 struct qfq_group
*grp
;
960 unsigned long ineligible
;
962 ineligible
= q
->bitmaps
[IR
] | q
->bitmaps
[IB
];
964 if (!q
->bitmaps
[ER
]) {
965 grp
= qfq_ffs(q
, ineligible
);
966 if (qfq_gt(grp
->S
, q
->V
))
969 qfq_make_eligible(q
);
973 /* Dequeue head packet of the head class in the DRR queue of the aggregate. */
974 static struct sk_buff
*agg_dequeue(struct qfq_aggregate
*agg
,
975 struct qfq_class
*cl
, unsigned int len
)
977 struct sk_buff
*skb
= qdisc_dequeue_peeked(cl
->qdisc
);
982 cl
->deficit
-= (int) len
;
984 if (cl
->qdisc
->q
.qlen
== 0) /* no more packets, remove from list */
985 list_del(&cl
->alist
);
986 else if (cl
->deficit
< qdisc_pkt_len(cl
->qdisc
->ops
->peek(cl
->qdisc
))) {
987 cl
->deficit
+= agg
->lmax
;
988 list_move_tail(&cl
->alist
, &agg
->active
);
994 static inline struct sk_buff
*qfq_peek_skb(struct qfq_aggregate
*agg
,
995 struct qfq_class
**cl
,
1000 *cl
= list_first_entry(&agg
->active
, struct qfq_class
, alist
);
1001 skb
= (*cl
)->qdisc
->ops
->peek((*cl
)->qdisc
);
1003 qdisc_warn_nonwc("qfq_dequeue", (*cl
)->qdisc
);
1005 *len
= qdisc_pkt_len(skb
);
1010 /* Update F according to the actual service received by the aggregate. */
1011 static inline void charge_actual_service(struct qfq_aggregate
*agg
)
1013 /* Compute the service received by the aggregate, taking into
1014 * account that, after decreasing the number of classes in
1015 * agg, it may happen that
1016 * agg->initial_budget - agg->budget > agg->bugdetmax
1018 u32 service_received
= min(agg
->budgetmax
,
1019 agg
->initial_budget
- agg
->budget
);
1021 agg
->F
= agg
->S
+ (u64
)service_received
* agg
->inv_w
;
1024 /* Assign a reasonable start time for a new aggregate in group i.
1025 * Admissible values for \hat(F) are multiples of \sigma_i
1026 * no greater than V+\sigma_i . Larger values mean that
1027 * we had a wraparound so we consider the timestamp to be stale.
1029 * If F is not stale and F >= V then we set S = F.
1030 * Otherwise we should assign S = V, but this may violate
1031 * the ordering in EB (see [2]). So, if we have groups in ER,
1032 * set S to the F_j of the first group j which would be blocking us.
1033 * We are guaranteed not to move S backward because
1034 * otherwise our group i would still be blocked.
1036 static void qfq_update_start(struct qfq_sched
*q
, struct qfq_aggregate
*agg
)
1039 u64 limit
, roundedF
;
1040 int slot_shift
= agg
->grp
->slot_shift
;
1042 roundedF
= qfq_round_down(agg
->F
, slot_shift
);
1043 limit
= qfq_round_down(q
->V
, slot_shift
) + (1ULL << slot_shift
);
1045 if (!qfq_gt(agg
->F
, q
->V
) || qfq_gt(roundedF
, limit
)) {
1046 /* timestamp was stale */
1047 mask
= mask_from(q
->bitmaps
[ER
], agg
->grp
->index
);
1049 struct qfq_group
*next
= qfq_ffs(q
, mask
);
1050 if (qfq_gt(roundedF
, next
->F
)) {
1051 if (qfq_gt(limit
, next
->F
))
1053 else /* preserve timestamp correctness */
1059 } else /* timestamp is not stale */
1063 /* Update the timestamps of agg before scheduling/rescheduling it for
1064 * service. In particular, assign to agg->F its maximum possible
1065 * value, i.e., the virtual finish time with which the aggregate
1066 * should be labeled if it used all its budget once in service.
1069 qfq_update_agg_ts(struct qfq_sched
*q
,
1070 struct qfq_aggregate
*agg
, enum update_reason reason
)
1072 if (reason
!= requeue
)
1073 qfq_update_start(q
, agg
);
1074 else /* just charge agg for the service received */
1077 agg
->F
= agg
->S
+ (u64
)agg
->budgetmax
* agg
->inv_w
;
1080 static void qfq_schedule_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
);
1082 static struct sk_buff
*qfq_dequeue(struct Qdisc
*sch
)
1084 struct qfq_sched
*q
= qdisc_priv(sch
);
1085 struct qfq_aggregate
*in_serv_agg
= q
->in_serv_agg
;
1086 struct qfq_class
*cl
;
1087 struct sk_buff
*skb
= NULL
;
1088 /* next-packet len, 0 means no more active classes in in-service agg */
1089 unsigned int len
= 0;
1091 if (in_serv_agg
== NULL
)
1094 if (!list_empty(&in_serv_agg
->active
))
1095 skb
= qfq_peek_skb(in_serv_agg
, &cl
, &len
);
1098 * If there are no active classes in the in-service aggregate,
1099 * or if the aggregate has not enough budget to serve its next
1100 * class, then choose the next aggregate to serve.
1102 if (len
== 0 || in_serv_agg
->budget
< len
) {
1103 charge_actual_service(in_serv_agg
);
1105 /* recharge the budget of the aggregate */
1106 in_serv_agg
->initial_budget
= in_serv_agg
->budget
=
1107 in_serv_agg
->budgetmax
;
1109 if (!list_empty(&in_serv_agg
->active
)) {
1111 * Still active: reschedule for
1112 * service. Possible optimization: if no other
1113 * aggregate is active, then there is no point
1114 * in rescheduling this aggregate, and we can
1115 * just keep it as the in-service one. This
1116 * should be however a corner case, and to
1117 * handle it, we would need to maintain an
1118 * extra num_active_aggs field.
1120 qfq_update_agg_ts(q
, in_serv_agg
, requeue
);
1121 qfq_schedule_agg(q
, in_serv_agg
);
1122 } else if (sch
->q
.qlen
== 0) { /* no aggregate to serve */
1123 q
->in_serv_agg
= NULL
;
1128 * If we get here, there are other aggregates queued:
1129 * choose the new aggregate to serve.
1131 in_serv_agg
= q
->in_serv_agg
= qfq_choose_next_agg(q
);
1132 skb
= qfq_peek_skb(in_serv_agg
, &cl
, &len
);
1139 skb
= agg_dequeue(in_serv_agg
, cl
, len
);
1146 qdisc_qstats_backlog_dec(sch
, skb
);
1147 qdisc_bstats_update(sch
, skb
);
1149 /* If lmax is lowered, through qfq_change_class, for a class
1150 * owning pending packets with larger size than the new value
1151 * of lmax, then the following condition may hold.
1153 if (unlikely(in_serv_agg
->budget
< len
))
1154 in_serv_agg
->budget
= 0;
1156 in_serv_agg
->budget
-= len
;
1158 q
->V
+= (u64
)len
* q
->iwsum
;
1159 pr_debug("qfq dequeue: len %u F %lld now %lld\n",
1160 len
, (unsigned long long) in_serv_agg
->F
,
1161 (unsigned long long) q
->V
);
1166 static struct qfq_aggregate
*qfq_choose_next_agg(struct qfq_sched
*q
)
1168 struct qfq_group
*grp
;
1169 struct qfq_aggregate
*agg
, *new_front_agg
;
1172 qfq_update_eligible(q
);
1175 if (!q
->bitmaps
[ER
])
1178 grp
= qfq_ffs(q
, q
->bitmaps
[ER
]);
1181 agg
= qfq_slot_head(grp
);
1183 /* agg starts to be served, remove it from schedule */
1184 qfq_front_slot_remove(grp
);
1186 new_front_agg
= qfq_slot_scan(grp
);
1188 if (new_front_agg
== NULL
) /* group is now inactive, remove from ER */
1189 __clear_bit(grp
->index
, &q
->bitmaps
[ER
]);
1191 u64 roundedS
= qfq_round_down(new_front_agg
->S
,
1195 if (grp
->S
== roundedS
)
1198 grp
->F
= roundedS
+ (2ULL << grp
->slot_shift
);
1199 __clear_bit(grp
->index
, &q
->bitmaps
[ER
]);
1200 s
= qfq_calc_state(q
, grp
);
1201 __set_bit(grp
->index
, &q
->bitmaps
[s
]);
1204 qfq_unblock_groups(q
, grp
->index
, old_F
);
1209 static int qfq_enqueue(struct sk_buff
*skb
, struct Qdisc
*sch
,
1210 struct sk_buff
**to_free
)
1212 unsigned int len
= qdisc_pkt_len(skb
), gso_segs
;
1213 struct qfq_sched
*q
= qdisc_priv(sch
);
1214 struct qfq_class
*cl
;
1215 struct qfq_aggregate
*agg
;
1219 cl
= qfq_classify(skb
, sch
, &err
);
1221 if (err
& __NET_XMIT_BYPASS
)
1222 qdisc_qstats_drop(sch
);
1223 __qdisc_drop(skb
, to_free
);
1226 pr_debug("qfq_enqueue: cl = %x\n", cl
->common
.classid
);
1228 if (unlikely(cl
->agg
->lmax
< len
)) {
1229 pr_debug("qfq: increasing maxpkt from %u to %u for class %u",
1230 cl
->agg
->lmax
, len
, cl
->common
.classid
);
1231 err
= qfq_change_agg(sch
, cl
, cl
->agg
->class_weight
, len
);
1234 return qdisc_drop(skb
, sch
, to_free
);
1238 gso_segs
= skb_is_gso(skb
) ? skb_shinfo(skb
)->gso_segs
: 1;
1239 first
= !cl
->qdisc
->q
.qlen
;
1240 err
= qdisc_enqueue(skb
, cl
->qdisc
, to_free
);
1241 if (unlikely(err
!= NET_XMIT_SUCCESS
)) {
1242 pr_debug("qfq_enqueue: enqueue failed %d\n", err
);
1243 if (net_xmit_drop_count(err
)) {
1245 qdisc_qstats_drop(sch
);
1250 _bstats_update(&cl
->bstats
, len
, gso_segs
);
1251 sch
->qstats
.backlog
+= len
;
1255 /* if the queue was not empty, then done here */
1257 if (unlikely(skb
== cl
->qdisc
->ops
->peek(cl
->qdisc
)) &&
1258 list_first_entry(&agg
->active
, struct qfq_class
, alist
)
1259 == cl
&& cl
->deficit
< len
)
1260 list_move_tail(&cl
->alist
, &agg
->active
);
1265 /* schedule class for service within the aggregate */
1266 cl
->deficit
= agg
->lmax
;
1267 list_add_tail(&cl
->alist
, &agg
->active
);
1269 if (list_first_entry(&agg
->active
, struct qfq_class
, alist
) != cl
||
1270 q
->in_serv_agg
== agg
)
1271 return err
; /* non-empty or in service, nothing else to do */
1273 qfq_activate_agg(q
, agg
, enqueue
);
1279 * Schedule aggregate according to its timestamps.
1281 static void qfq_schedule_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
)
1283 struct qfq_group
*grp
= agg
->grp
;
1287 roundedS
= qfq_round_down(agg
->S
, grp
->slot_shift
);
1290 * Insert agg in the correct bucket.
1291 * If agg->S >= grp->S we don't need to adjust the
1292 * bucket list and simply go to the insertion phase.
1293 * Otherwise grp->S is decreasing, we must make room
1294 * in the bucket list, and also recompute the group state.
1295 * Finally, if there were no flows in this group and nobody
1296 * was in ER make sure to adjust V.
1298 if (grp
->full_slots
) {
1299 if (!qfq_gt(grp
->S
, agg
->S
))
1302 /* create a slot for this agg->S */
1303 qfq_slot_rotate(grp
, roundedS
);
1304 /* group was surely ineligible, remove */
1305 __clear_bit(grp
->index
, &q
->bitmaps
[IR
]);
1306 __clear_bit(grp
->index
, &q
->bitmaps
[IB
]);
1307 } else if (!q
->bitmaps
[ER
] && qfq_gt(roundedS
, q
->V
) &&
1308 q
->in_serv_agg
== NULL
)
1312 grp
->F
= roundedS
+ (2ULL << grp
->slot_shift
);
1313 s
= qfq_calc_state(q
, grp
);
1314 __set_bit(grp
->index
, &q
->bitmaps
[s
]);
1316 pr_debug("qfq enqueue: new state %d %#lx S %lld F %lld V %lld\n",
1318 (unsigned long long) agg
->S
,
1319 (unsigned long long) agg
->F
,
1320 (unsigned long long) q
->V
);
1323 qfq_slot_insert(grp
, agg
, roundedS
);
1327 /* Update agg ts and schedule agg for service */
1328 static void qfq_activate_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
,
1329 enum update_reason reason
)
1331 agg
->initial_budget
= agg
->budget
= agg
->budgetmax
; /* recharge budg. */
1333 qfq_update_agg_ts(q
, agg
, reason
);
1334 if (q
->in_serv_agg
== NULL
) { /* no aggr. in service or scheduled */
1335 q
->in_serv_agg
= agg
; /* start serving this aggregate */
1336 /* update V: to be in service, agg must be eligible */
1337 q
->oldV
= q
->V
= agg
->S
;
1338 } else if (agg
!= q
->in_serv_agg
)
1339 qfq_schedule_agg(q
, agg
);
1342 static void qfq_slot_remove(struct qfq_sched
*q
, struct qfq_group
*grp
,
1343 struct qfq_aggregate
*agg
)
1345 unsigned int i
, offset
;
1348 roundedS
= qfq_round_down(agg
->S
, grp
->slot_shift
);
1349 offset
= (roundedS
- grp
->S
) >> grp
->slot_shift
;
1351 i
= (grp
->front
+ offset
) % QFQ_MAX_SLOTS
;
1353 hlist_del(&agg
->next
);
1354 if (hlist_empty(&grp
->slots
[i
]))
1355 __clear_bit(offset
, &grp
->full_slots
);
1359 * Called to forcibly deschedule an aggregate. If the aggregate is
1360 * not in the front bucket, or if the latter has other aggregates in
1361 * the front bucket, we can simply remove the aggregate with no other
1363 * Otherwise we must propagate the event up.
1365 static void qfq_deactivate_agg(struct qfq_sched
*q
, struct qfq_aggregate
*agg
)
1367 struct qfq_group
*grp
= agg
->grp
;
1372 if (agg
== q
->in_serv_agg
) {
1373 charge_actual_service(agg
);
1374 q
->in_serv_agg
= qfq_choose_next_agg(q
);
1379 qfq_slot_remove(q
, grp
, agg
);
1381 if (!grp
->full_slots
) {
1382 __clear_bit(grp
->index
, &q
->bitmaps
[IR
]);
1383 __clear_bit(grp
->index
, &q
->bitmaps
[EB
]);
1384 __clear_bit(grp
->index
, &q
->bitmaps
[IB
]);
1386 if (test_bit(grp
->index
, &q
->bitmaps
[ER
]) &&
1387 !(q
->bitmaps
[ER
] & ~((1UL << grp
->index
) - 1))) {
1388 mask
= q
->bitmaps
[ER
] & ((1UL << grp
->index
) - 1);
1390 mask
= ~((1UL << __fls(mask
)) - 1);
1393 qfq_move_groups(q
, mask
, EB
, ER
);
1394 qfq_move_groups(q
, mask
, IB
, IR
);
1396 __clear_bit(grp
->index
, &q
->bitmaps
[ER
]);
1397 } else if (hlist_empty(&grp
->slots
[grp
->front
])) {
1398 agg
= qfq_slot_scan(grp
);
1399 roundedS
= qfq_round_down(agg
->S
, grp
->slot_shift
);
1400 if (grp
->S
!= roundedS
) {
1401 __clear_bit(grp
->index
, &q
->bitmaps
[ER
]);
1402 __clear_bit(grp
->index
, &q
->bitmaps
[IR
]);
1403 __clear_bit(grp
->index
, &q
->bitmaps
[EB
]);
1404 __clear_bit(grp
->index
, &q
->bitmaps
[IB
]);
1406 grp
->F
= roundedS
+ (2ULL << grp
->slot_shift
);
1407 s
= qfq_calc_state(q
, grp
);
1408 __set_bit(grp
->index
, &q
->bitmaps
[s
]);
1413 static void qfq_qlen_notify(struct Qdisc
*sch
, unsigned long arg
)
1415 struct qfq_sched
*q
= qdisc_priv(sch
);
1416 struct qfq_class
*cl
= (struct qfq_class
*)arg
;
1418 qfq_deactivate_class(q
, cl
);
1421 static int qfq_init_qdisc(struct Qdisc
*sch
, struct nlattr
*opt
,
1422 struct netlink_ext_ack
*extack
)
1424 struct qfq_sched
*q
= qdisc_priv(sch
);
1425 struct qfq_group
*grp
;
1427 u32 max_cl_shift
, maxbudg_shift
, max_classes
;
1429 err
= tcf_block_get(&q
->block
, &q
->filter_list
, sch
, extack
);
1433 err
= qdisc_class_hash_init(&q
->clhash
);
1437 max_classes
= min_t(u64
, (u64
)qdisc_dev(sch
)->tx_queue_len
+ 1,
1438 QFQ_MAX_AGG_CLASSES
);
1439 /* max_cl_shift = floor(log_2(max_classes)) */
1440 max_cl_shift
= __fls(max_classes
);
1441 q
->max_agg_classes
= 1<<max_cl_shift
;
1443 /* maxbudg_shift = log2(max_len * max_classes_per_agg) */
1444 maxbudg_shift
= QFQ_MTU_SHIFT
+ max_cl_shift
;
1445 q
->min_slot_shift
= FRAC_BITS
+ maxbudg_shift
- QFQ_MAX_INDEX
;
1447 for (i
= 0; i
<= QFQ_MAX_INDEX
; i
++) {
1448 grp
= &q
->groups
[i
];
1450 grp
->slot_shift
= q
->min_slot_shift
+ i
;
1451 for (j
= 0; j
< QFQ_MAX_SLOTS
; j
++)
1452 INIT_HLIST_HEAD(&grp
->slots
[j
]);
1455 INIT_HLIST_HEAD(&q
->nonfull_aggs
);
1460 static void qfq_reset_qdisc(struct Qdisc
*sch
)
1462 struct qfq_sched
*q
= qdisc_priv(sch
);
1463 struct qfq_class
*cl
;
1466 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1467 hlist_for_each_entry(cl
, &q
->clhash
.hash
[i
], common
.hnode
) {
1468 if (cl
->qdisc
->q
.qlen
> 0)
1469 qfq_deactivate_class(q
, cl
);
1471 qdisc_reset(cl
->qdisc
);
1476 static void qfq_destroy_qdisc(struct Qdisc
*sch
)
1478 struct qfq_sched
*q
= qdisc_priv(sch
);
1479 struct qfq_class
*cl
;
1480 struct hlist_node
*next
;
1483 tcf_block_put(q
->block
);
1485 for (i
= 0; i
< q
->clhash
.hashsize
; i
++) {
1486 hlist_for_each_entry_safe(cl
, next
, &q
->clhash
.hash
[i
],
1488 qfq_destroy_class(sch
, cl
);
1491 qdisc_class_hash_destroy(&q
->clhash
);
1494 static const struct Qdisc_class_ops qfq_class_ops
= {
1495 .change
= qfq_change_class
,
1496 .delete = qfq_delete_class
,
1497 .find
= qfq_search_class
,
1498 .tcf_block
= qfq_tcf_block
,
1499 .bind_tcf
= qfq_bind_tcf
,
1500 .unbind_tcf
= qfq_unbind_tcf
,
1501 .graft
= qfq_graft_class
,
1502 .leaf
= qfq_class_leaf
,
1503 .qlen_notify
= qfq_qlen_notify
,
1504 .dump
= qfq_dump_class
,
1505 .dump_stats
= qfq_dump_class_stats
,
1509 static struct Qdisc_ops qfq_qdisc_ops __read_mostly
= {
1510 .cl_ops
= &qfq_class_ops
,
1512 .priv_size
= sizeof(struct qfq_sched
),
1513 .enqueue
= qfq_enqueue
,
1514 .dequeue
= qfq_dequeue
,
1515 .peek
= qdisc_peek_dequeued
,
1516 .init
= qfq_init_qdisc
,
1517 .reset
= qfq_reset_qdisc
,
1518 .destroy
= qfq_destroy_qdisc
,
1519 .owner
= THIS_MODULE
,
1521 MODULE_ALIAS_NET_SCH("qfq");
1523 static int __init
qfq_init(void)
1525 return register_qdisc(&qfq_qdisc_ops
);
1528 static void __exit
qfq_exit(void)
1530 unregister_qdisc(&qfq_qdisc_ops
);
1533 module_init(qfq_init
);
1534 module_exit(qfq_exit
);
1535 MODULE_LICENSE("GPL");
1536 MODULE_DESCRIPTION("Quick Fair Queueing Plus qdisc");