drm/modes: Fix drm_mode_vrefres() docs
[drm/drm-misc.git] / net / tls / tls_sw.c
blobbbf26cc4f6ee261a0e00d85dfed6cf0170757f3d
1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 * Copyright (c) 2016-2017, Lance Chao <lancerchao@fb.com>. All rights reserved.
5 * Copyright (c) 2016, Fridolin Pokorny <fridolin.pokorny@gmail.com>. All rights reserved.
6 * Copyright (c) 2016, Nikos Mavrogiannopoulos <nmav@gnutls.org>. All rights reserved.
7 * Copyright (c) 2018, Covalent IO, Inc. http://covalent.io
9 * This software is available to you under a choice of one of two
10 * licenses. You may choose to be licensed under the terms of the GNU
11 * General Public License (GPL) Version 2, available from the file
12 * COPYING in the main directory of this source tree, or the
13 * OpenIB.org BSD license below:
15 * Redistribution and use in source and binary forms, with or
16 * without modification, are permitted provided that the following
17 * conditions are met:
19 * - Redistributions of source code must retain the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer.
23 * - Redistributions in binary form must reproduce the above
24 * copyright notice, this list of conditions and the following
25 * disclaimer in the documentation and/or other materials
26 * provided with the distribution.
28 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
29 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
30 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
31 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
32 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
33 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
34 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 * SOFTWARE.
38 #include <linux/bug.h>
39 #include <linux/sched/signal.h>
40 #include <linux/module.h>
41 #include <linux/kernel.h>
42 #include <linux/splice.h>
43 #include <crypto/aead.h>
45 #include <net/strparser.h>
46 #include <net/tls.h>
47 #include <trace/events/sock.h>
49 #include "tls.h"
51 struct tls_decrypt_arg {
52 struct_group(inargs,
53 bool zc;
54 bool async;
55 bool async_done;
56 u8 tail;
59 struct sk_buff *skb;
62 struct tls_decrypt_ctx {
63 struct sock *sk;
64 u8 iv[TLS_MAX_IV_SIZE];
65 u8 aad[TLS_MAX_AAD_SIZE];
66 u8 tail;
67 bool free_sgout;
68 struct scatterlist sg[];
71 noinline void tls_err_abort(struct sock *sk, int err)
73 WARN_ON_ONCE(err >= 0);
74 /* sk->sk_err should contain a positive error code. */
75 WRITE_ONCE(sk->sk_err, -err);
76 /* Paired with smp_rmb() in tcp_poll() */
77 smp_wmb();
78 sk_error_report(sk);
81 static int __skb_nsg(struct sk_buff *skb, int offset, int len,
82 unsigned int recursion_level)
84 int start = skb_headlen(skb);
85 int i, chunk = start - offset;
86 struct sk_buff *frag_iter;
87 int elt = 0;
89 if (unlikely(recursion_level >= 24))
90 return -EMSGSIZE;
92 if (chunk > 0) {
93 if (chunk > len)
94 chunk = len;
95 elt++;
96 len -= chunk;
97 if (len == 0)
98 return elt;
99 offset += chunk;
102 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
103 int end;
105 WARN_ON(start > offset + len);
107 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
108 chunk = end - offset;
109 if (chunk > 0) {
110 if (chunk > len)
111 chunk = len;
112 elt++;
113 len -= chunk;
114 if (len == 0)
115 return elt;
116 offset += chunk;
118 start = end;
121 if (unlikely(skb_has_frag_list(skb))) {
122 skb_walk_frags(skb, frag_iter) {
123 int end, ret;
125 WARN_ON(start > offset + len);
127 end = start + frag_iter->len;
128 chunk = end - offset;
129 if (chunk > 0) {
130 if (chunk > len)
131 chunk = len;
132 ret = __skb_nsg(frag_iter, offset - start, chunk,
133 recursion_level + 1);
134 if (unlikely(ret < 0))
135 return ret;
136 elt += ret;
137 len -= chunk;
138 if (len == 0)
139 return elt;
140 offset += chunk;
142 start = end;
145 BUG_ON(len);
146 return elt;
149 /* Return the number of scatterlist elements required to completely map the
150 * skb, or -EMSGSIZE if the recursion depth is exceeded.
152 static int skb_nsg(struct sk_buff *skb, int offset, int len)
154 return __skb_nsg(skb, offset, len, 0);
157 static int tls_padding_length(struct tls_prot_info *prot, struct sk_buff *skb,
158 struct tls_decrypt_arg *darg)
160 struct strp_msg *rxm = strp_msg(skb);
161 struct tls_msg *tlm = tls_msg(skb);
162 int sub = 0;
164 /* Determine zero-padding length */
165 if (prot->version == TLS_1_3_VERSION) {
166 int offset = rxm->full_len - TLS_TAG_SIZE - 1;
167 char content_type = darg->zc ? darg->tail : 0;
168 int err;
170 while (content_type == 0) {
171 if (offset < prot->prepend_size)
172 return -EBADMSG;
173 err = skb_copy_bits(skb, rxm->offset + offset,
174 &content_type, 1);
175 if (err)
176 return err;
177 if (content_type)
178 break;
179 sub++;
180 offset--;
182 tlm->control = content_type;
184 return sub;
187 static void tls_decrypt_done(void *data, int err)
189 struct aead_request *aead_req = data;
190 struct crypto_aead *aead = crypto_aead_reqtfm(aead_req);
191 struct scatterlist *sgout = aead_req->dst;
192 struct tls_sw_context_rx *ctx;
193 struct tls_decrypt_ctx *dctx;
194 struct tls_context *tls_ctx;
195 struct scatterlist *sg;
196 unsigned int pages;
197 struct sock *sk;
198 int aead_size;
200 /* If requests get too backlogged crypto API returns -EBUSY and calls
201 * ->complete(-EINPROGRESS) immediately followed by ->complete(0)
202 * to make waiting for backlog to flush with crypto_wait_req() easier.
203 * First wait converts -EBUSY -> -EINPROGRESS, and the second one
204 * -EINPROGRESS -> 0.
205 * We have a single struct crypto_async_request per direction, this
206 * scheme doesn't help us, so just ignore the first ->complete().
208 if (err == -EINPROGRESS)
209 return;
211 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(aead);
212 aead_size = ALIGN(aead_size, __alignof__(*dctx));
213 dctx = (void *)((u8 *)aead_req + aead_size);
215 sk = dctx->sk;
216 tls_ctx = tls_get_ctx(sk);
217 ctx = tls_sw_ctx_rx(tls_ctx);
219 /* Propagate if there was an err */
220 if (err) {
221 if (err == -EBADMSG)
222 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
223 ctx->async_wait.err = err;
224 tls_err_abort(sk, err);
227 /* Free the destination pages if skb was not decrypted inplace */
228 if (dctx->free_sgout) {
229 /* Skip the first S/G entry as it points to AAD */
230 for_each_sg(sg_next(sgout), sg, UINT_MAX, pages) {
231 if (!sg)
232 break;
233 put_page(sg_page(sg));
237 kfree(aead_req);
239 if (atomic_dec_and_test(&ctx->decrypt_pending))
240 complete(&ctx->async_wait.completion);
243 static int tls_decrypt_async_wait(struct tls_sw_context_rx *ctx)
245 if (!atomic_dec_and_test(&ctx->decrypt_pending))
246 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
247 atomic_inc(&ctx->decrypt_pending);
249 return ctx->async_wait.err;
252 static int tls_do_decryption(struct sock *sk,
253 struct scatterlist *sgin,
254 struct scatterlist *sgout,
255 char *iv_recv,
256 size_t data_len,
257 struct aead_request *aead_req,
258 struct tls_decrypt_arg *darg)
260 struct tls_context *tls_ctx = tls_get_ctx(sk);
261 struct tls_prot_info *prot = &tls_ctx->prot_info;
262 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
263 int ret;
265 aead_request_set_tfm(aead_req, ctx->aead_recv);
266 aead_request_set_ad(aead_req, prot->aad_size);
267 aead_request_set_crypt(aead_req, sgin, sgout,
268 data_len + prot->tag_size,
269 (u8 *)iv_recv);
271 if (darg->async) {
272 aead_request_set_callback(aead_req,
273 CRYPTO_TFM_REQ_MAY_BACKLOG,
274 tls_decrypt_done, aead_req);
275 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->decrypt_pending) < 1);
276 atomic_inc(&ctx->decrypt_pending);
277 } else {
278 DECLARE_CRYPTO_WAIT(wait);
280 aead_request_set_callback(aead_req,
281 CRYPTO_TFM_REQ_MAY_BACKLOG,
282 crypto_req_done, &wait);
283 ret = crypto_aead_decrypt(aead_req);
284 if (ret == -EINPROGRESS || ret == -EBUSY)
285 ret = crypto_wait_req(ret, &wait);
286 return ret;
289 ret = crypto_aead_decrypt(aead_req);
290 if (ret == -EINPROGRESS)
291 return 0;
293 if (ret == -EBUSY) {
294 ret = tls_decrypt_async_wait(ctx);
295 darg->async_done = true;
296 /* all completions have run, we're not doing async anymore */
297 darg->async = false;
298 return ret;
301 atomic_dec(&ctx->decrypt_pending);
302 darg->async = false;
304 return ret;
307 static void tls_trim_both_msgs(struct sock *sk, int target_size)
309 struct tls_context *tls_ctx = tls_get_ctx(sk);
310 struct tls_prot_info *prot = &tls_ctx->prot_info;
311 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
312 struct tls_rec *rec = ctx->open_rec;
314 sk_msg_trim(sk, &rec->msg_plaintext, target_size);
315 if (target_size > 0)
316 target_size += prot->overhead_size;
317 sk_msg_trim(sk, &rec->msg_encrypted, target_size);
320 static int tls_alloc_encrypted_msg(struct sock *sk, int len)
322 struct tls_context *tls_ctx = tls_get_ctx(sk);
323 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
324 struct tls_rec *rec = ctx->open_rec;
325 struct sk_msg *msg_en = &rec->msg_encrypted;
327 return sk_msg_alloc(sk, msg_en, len, 0);
330 static int tls_clone_plaintext_msg(struct sock *sk, int required)
332 struct tls_context *tls_ctx = tls_get_ctx(sk);
333 struct tls_prot_info *prot = &tls_ctx->prot_info;
334 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
335 struct tls_rec *rec = ctx->open_rec;
336 struct sk_msg *msg_pl = &rec->msg_plaintext;
337 struct sk_msg *msg_en = &rec->msg_encrypted;
338 int skip, len;
340 /* We add page references worth len bytes from encrypted sg
341 * at the end of plaintext sg. It is guaranteed that msg_en
342 * has enough required room (ensured by caller).
344 len = required - msg_pl->sg.size;
346 /* Skip initial bytes in msg_en's data to be able to use
347 * same offset of both plain and encrypted data.
349 skip = prot->prepend_size + msg_pl->sg.size;
351 return sk_msg_clone(sk, msg_pl, msg_en, skip, len);
354 static struct tls_rec *tls_get_rec(struct sock *sk)
356 struct tls_context *tls_ctx = tls_get_ctx(sk);
357 struct tls_prot_info *prot = &tls_ctx->prot_info;
358 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
359 struct sk_msg *msg_pl, *msg_en;
360 struct tls_rec *rec;
361 int mem_size;
363 mem_size = sizeof(struct tls_rec) + crypto_aead_reqsize(ctx->aead_send);
365 rec = kzalloc(mem_size, sk->sk_allocation);
366 if (!rec)
367 return NULL;
369 msg_pl = &rec->msg_plaintext;
370 msg_en = &rec->msg_encrypted;
372 sk_msg_init(msg_pl);
373 sk_msg_init(msg_en);
375 sg_init_table(rec->sg_aead_in, 2);
376 sg_set_buf(&rec->sg_aead_in[0], rec->aad_space, prot->aad_size);
377 sg_unmark_end(&rec->sg_aead_in[1]);
379 sg_init_table(rec->sg_aead_out, 2);
380 sg_set_buf(&rec->sg_aead_out[0], rec->aad_space, prot->aad_size);
381 sg_unmark_end(&rec->sg_aead_out[1]);
383 rec->sk = sk;
385 return rec;
388 static void tls_free_rec(struct sock *sk, struct tls_rec *rec)
390 sk_msg_free(sk, &rec->msg_encrypted);
391 sk_msg_free(sk, &rec->msg_plaintext);
392 kfree(rec);
395 static void tls_free_open_rec(struct sock *sk)
397 struct tls_context *tls_ctx = tls_get_ctx(sk);
398 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
399 struct tls_rec *rec = ctx->open_rec;
401 if (rec) {
402 tls_free_rec(sk, rec);
403 ctx->open_rec = NULL;
407 int tls_tx_records(struct sock *sk, int flags)
409 struct tls_context *tls_ctx = tls_get_ctx(sk);
410 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
411 struct tls_rec *rec, *tmp;
412 struct sk_msg *msg_en;
413 int tx_flags, rc = 0;
415 if (tls_is_partially_sent_record(tls_ctx)) {
416 rec = list_first_entry(&ctx->tx_list,
417 struct tls_rec, list);
419 if (flags == -1)
420 tx_flags = rec->tx_flags;
421 else
422 tx_flags = flags;
424 rc = tls_push_partial_record(sk, tls_ctx, tx_flags);
425 if (rc)
426 goto tx_err;
428 /* Full record has been transmitted.
429 * Remove the head of tx_list
431 list_del(&rec->list);
432 sk_msg_free(sk, &rec->msg_plaintext);
433 kfree(rec);
436 /* Tx all ready records */
437 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
438 if (READ_ONCE(rec->tx_ready)) {
439 if (flags == -1)
440 tx_flags = rec->tx_flags;
441 else
442 tx_flags = flags;
444 msg_en = &rec->msg_encrypted;
445 rc = tls_push_sg(sk, tls_ctx,
446 &msg_en->sg.data[msg_en->sg.curr],
447 0, tx_flags);
448 if (rc)
449 goto tx_err;
451 list_del(&rec->list);
452 sk_msg_free(sk, &rec->msg_plaintext);
453 kfree(rec);
454 } else {
455 break;
459 tx_err:
460 if (rc < 0 && rc != -EAGAIN)
461 tls_err_abort(sk, -EBADMSG);
463 return rc;
466 static void tls_encrypt_done(void *data, int err)
468 struct tls_sw_context_tx *ctx;
469 struct tls_context *tls_ctx;
470 struct tls_prot_info *prot;
471 struct tls_rec *rec = data;
472 struct scatterlist *sge;
473 struct sk_msg *msg_en;
474 struct sock *sk;
476 if (err == -EINPROGRESS) /* see the comment in tls_decrypt_done() */
477 return;
479 msg_en = &rec->msg_encrypted;
481 sk = rec->sk;
482 tls_ctx = tls_get_ctx(sk);
483 prot = &tls_ctx->prot_info;
484 ctx = tls_sw_ctx_tx(tls_ctx);
486 sge = sk_msg_elem(msg_en, msg_en->sg.curr);
487 sge->offset -= prot->prepend_size;
488 sge->length += prot->prepend_size;
490 /* Check if error is previously set on socket */
491 if (err || sk->sk_err) {
492 rec = NULL;
494 /* If err is already set on socket, return the same code */
495 if (sk->sk_err) {
496 ctx->async_wait.err = -sk->sk_err;
497 } else {
498 ctx->async_wait.err = err;
499 tls_err_abort(sk, err);
503 if (rec) {
504 struct tls_rec *first_rec;
506 /* Mark the record as ready for transmission */
507 smp_store_mb(rec->tx_ready, true);
509 /* If received record is at head of tx_list, schedule tx */
510 first_rec = list_first_entry(&ctx->tx_list,
511 struct tls_rec, list);
512 if (rec == first_rec) {
513 /* Schedule the transmission */
514 if (!test_and_set_bit(BIT_TX_SCHEDULED,
515 &ctx->tx_bitmask))
516 schedule_delayed_work(&ctx->tx_work.work, 1);
520 if (atomic_dec_and_test(&ctx->encrypt_pending))
521 complete(&ctx->async_wait.completion);
524 static int tls_encrypt_async_wait(struct tls_sw_context_tx *ctx)
526 if (!atomic_dec_and_test(&ctx->encrypt_pending))
527 crypto_wait_req(-EINPROGRESS, &ctx->async_wait);
528 atomic_inc(&ctx->encrypt_pending);
530 return ctx->async_wait.err;
533 static int tls_do_encryption(struct sock *sk,
534 struct tls_context *tls_ctx,
535 struct tls_sw_context_tx *ctx,
536 struct aead_request *aead_req,
537 size_t data_len, u32 start)
539 struct tls_prot_info *prot = &tls_ctx->prot_info;
540 struct tls_rec *rec = ctx->open_rec;
541 struct sk_msg *msg_en = &rec->msg_encrypted;
542 struct scatterlist *sge = sk_msg_elem(msg_en, start);
543 int rc, iv_offset = 0;
545 /* For CCM based ciphers, first byte of IV is a constant */
546 switch (prot->cipher_type) {
547 case TLS_CIPHER_AES_CCM_128:
548 rec->iv_data[0] = TLS_AES_CCM_IV_B0_BYTE;
549 iv_offset = 1;
550 break;
551 case TLS_CIPHER_SM4_CCM:
552 rec->iv_data[0] = TLS_SM4_CCM_IV_B0_BYTE;
553 iv_offset = 1;
554 break;
557 memcpy(&rec->iv_data[iv_offset], tls_ctx->tx.iv,
558 prot->iv_size + prot->salt_size);
560 tls_xor_iv_with_seq(prot, rec->iv_data + iv_offset,
561 tls_ctx->tx.rec_seq);
563 sge->offset += prot->prepend_size;
564 sge->length -= prot->prepend_size;
566 msg_en->sg.curr = start;
568 aead_request_set_tfm(aead_req, ctx->aead_send);
569 aead_request_set_ad(aead_req, prot->aad_size);
570 aead_request_set_crypt(aead_req, rec->sg_aead_in,
571 rec->sg_aead_out,
572 data_len, rec->iv_data);
574 aead_request_set_callback(aead_req, CRYPTO_TFM_REQ_MAY_BACKLOG,
575 tls_encrypt_done, rec);
577 /* Add the record in tx_list */
578 list_add_tail((struct list_head *)&rec->list, &ctx->tx_list);
579 DEBUG_NET_WARN_ON_ONCE(atomic_read(&ctx->encrypt_pending) < 1);
580 atomic_inc(&ctx->encrypt_pending);
582 rc = crypto_aead_encrypt(aead_req);
583 if (rc == -EBUSY) {
584 rc = tls_encrypt_async_wait(ctx);
585 rc = rc ?: -EINPROGRESS;
587 if (!rc || rc != -EINPROGRESS) {
588 atomic_dec(&ctx->encrypt_pending);
589 sge->offset -= prot->prepend_size;
590 sge->length += prot->prepend_size;
593 if (!rc) {
594 WRITE_ONCE(rec->tx_ready, true);
595 } else if (rc != -EINPROGRESS) {
596 list_del(&rec->list);
597 return rc;
600 /* Unhook the record from context if encryption is not failure */
601 ctx->open_rec = NULL;
602 tls_advance_record_sn(sk, prot, &tls_ctx->tx);
603 return rc;
606 static int tls_split_open_record(struct sock *sk, struct tls_rec *from,
607 struct tls_rec **to, struct sk_msg *msg_opl,
608 struct sk_msg *msg_oen, u32 split_point,
609 u32 tx_overhead_size, u32 *orig_end)
611 u32 i, j, bytes = 0, apply = msg_opl->apply_bytes;
612 struct scatterlist *sge, *osge, *nsge;
613 u32 orig_size = msg_opl->sg.size;
614 struct scatterlist tmp = { };
615 struct sk_msg *msg_npl;
616 struct tls_rec *new;
617 int ret;
619 new = tls_get_rec(sk);
620 if (!new)
621 return -ENOMEM;
622 ret = sk_msg_alloc(sk, &new->msg_encrypted, msg_opl->sg.size +
623 tx_overhead_size, 0);
624 if (ret < 0) {
625 tls_free_rec(sk, new);
626 return ret;
629 *orig_end = msg_opl->sg.end;
630 i = msg_opl->sg.start;
631 sge = sk_msg_elem(msg_opl, i);
632 while (apply && sge->length) {
633 if (sge->length > apply) {
634 u32 len = sge->length - apply;
636 get_page(sg_page(sge));
637 sg_set_page(&tmp, sg_page(sge), len,
638 sge->offset + apply);
639 sge->length = apply;
640 bytes += apply;
641 apply = 0;
642 } else {
643 apply -= sge->length;
644 bytes += sge->length;
647 sk_msg_iter_var_next(i);
648 if (i == msg_opl->sg.end)
649 break;
650 sge = sk_msg_elem(msg_opl, i);
653 msg_opl->sg.end = i;
654 msg_opl->sg.curr = i;
655 msg_opl->sg.copybreak = 0;
656 msg_opl->apply_bytes = 0;
657 msg_opl->sg.size = bytes;
659 msg_npl = &new->msg_plaintext;
660 msg_npl->apply_bytes = apply;
661 msg_npl->sg.size = orig_size - bytes;
663 j = msg_npl->sg.start;
664 nsge = sk_msg_elem(msg_npl, j);
665 if (tmp.length) {
666 memcpy(nsge, &tmp, sizeof(*nsge));
667 sk_msg_iter_var_next(j);
668 nsge = sk_msg_elem(msg_npl, j);
671 osge = sk_msg_elem(msg_opl, i);
672 while (osge->length) {
673 memcpy(nsge, osge, sizeof(*nsge));
674 sg_unmark_end(nsge);
675 sk_msg_iter_var_next(i);
676 sk_msg_iter_var_next(j);
677 if (i == *orig_end)
678 break;
679 osge = sk_msg_elem(msg_opl, i);
680 nsge = sk_msg_elem(msg_npl, j);
683 msg_npl->sg.end = j;
684 msg_npl->sg.curr = j;
685 msg_npl->sg.copybreak = 0;
687 *to = new;
688 return 0;
691 static void tls_merge_open_record(struct sock *sk, struct tls_rec *to,
692 struct tls_rec *from, u32 orig_end)
694 struct sk_msg *msg_npl = &from->msg_plaintext;
695 struct sk_msg *msg_opl = &to->msg_plaintext;
696 struct scatterlist *osge, *nsge;
697 u32 i, j;
699 i = msg_opl->sg.end;
700 sk_msg_iter_var_prev(i);
701 j = msg_npl->sg.start;
703 osge = sk_msg_elem(msg_opl, i);
704 nsge = sk_msg_elem(msg_npl, j);
706 if (sg_page(osge) == sg_page(nsge) &&
707 osge->offset + osge->length == nsge->offset) {
708 osge->length += nsge->length;
709 put_page(sg_page(nsge));
712 msg_opl->sg.end = orig_end;
713 msg_opl->sg.curr = orig_end;
714 msg_opl->sg.copybreak = 0;
715 msg_opl->apply_bytes = msg_opl->sg.size + msg_npl->sg.size;
716 msg_opl->sg.size += msg_npl->sg.size;
718 sk_msg_free(sk, &to->msg_encrypted);
719 sk_msg_xfer_full(&to->msg_encrypted, &from->msg_encrypted);
721 kfree(from);
724 static int tls_push_record(struct sock *sk, int flags,
725 unsigned char record_type)
727 struct tls_context *tls_ctx = tls_get_ctx(sk);
728 struct tls_prot_info *prot = &tls_ctx->prot_info;
729 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
730 struct tls_rec *rec = ctx->open_rec, *tmp = NULL;
731 u32 i, split_point, orig_end;
732 struct sk_msg *msg_pl, *msg_en;
733 struct aead_request *req;
734 bool split;
735 int rc;
737 if (!rec)
738 return 0;
740 msg_pl = &rec->msg_plaintext;
741 msg_en = &rec->msg_encrypted;
743 split_point = msg_pl->apply_bytes;
744 split = split_point && split_point < msg_pl->sg.size;
745 if (unlikely((!split &&
746 msg_pl->sg.size +
747 prot->overhead_size > msg_en->sg.size) ||
748 (split &&
749 split_point +
750 prot->overhead_size > msg_en->sg.size))) {
751 split = true;
752 split_point = msg_en->sg.size;
754 if (split) {
755 rc = tls_split_open_record(sk, rec, &tmp, msg_pl, msg_en,
756 split_point, prot->overhead_size,
757 &orig_end);
758 if (rc < 0)
759 return rc;
760 /* This can happen if above tls_split_open_record allocates
761 * a single large encryption buffer instead of two smaller
762 * ones. In this case adjust pointers and continue without
763 * split.
765 if (!msg_pl->sg.size) {
766 tls_merge_open_record(sk, rec, tmp, orig_end);
767 msg_pl = &rec->msg_plaintext;
768 msg_en = &rec->msg_encrypted;
769 split = false;
771 sk_msg_trim(sk, msg_en, msg_pl->sg.size +
772 prot->overhead_size);
775 rec->tx_flags = flags;
776 req = &rec->aead_req;
778 i = msg_pl->sg.end;
779 sk_msg_iter_var_prev(i);
781 rec->content_type = record_type;
782 if (prot->version == TLS_1_3_VERSION) {
783 /* Add content type to end of message. No padding added */
784 sg_set_buf(&rec->sg_content_type, &rec->content_type, 1);
785 sg_mark_end(&rec->sg_content_type);
786 sg_chain(msg_pl->sg.data, msg_pl->sg.end + 1,
787 &rec->sg_content_type);
788 } else {
789 sg_mark_end(sk_msg_elem(msg_pl, i));
792 if (msg_pl->sg.end < msg_pl->sg.start) {
793 sg_chain(&msg_pl->sg.data[msg_pl->sg.start],
794 MAX_SKB_FRAGS - msg_pl->sg.start + 1,
795 msg_pl->sg.data);
798 i = msg_pl->sg.start;
799 sg_chain(rec->sg_aead_in, 2, &msg_pl->sg.data[i]);
801 i = msg_en->sg.end;
802 sk_msg_iter_var_prev(i);
803 sg_mark_end(sk_msg_elem(msg_en, i));
805 i = msg_en->sg.start;
806 sg_chain(rec->sg_aead_out, 2, &msg_en->sg.data[i]);
808 tls_make_aad(rec->aad_space, msg_pl->sg.size + prot->tail_size,
809 tls_ctx->tx.rec_seq, record_type, prot);
811 tls_fill_prepend(tls_ctx,
812 page_address(sg_page(&msg_en->sg.data[i])) +
813 msg_en->sg.data[i].offset,
814 msg_pl->sg.size + prot->tail_size,
815 record_type);
817 tls_ctx->pending_open_record_frags = false;
819 rc = tls_do_encryption(sk, tls_ctx, ctx, req,
820 msg_pl->sg.size + prot->tail_size, i);
821 if (rc < 0) {
822 if (rc != -EINPROGRESS) {
823 tls_err_abort(sk, -EBADMSG);
824 if (split) {
825 tls_ctx->pending_open_record_frags = true;
826 tls_merge_open_record(sk, rec, tmp, orig_end);
829 ctx->async_capable = 1;
830 return rc;
831 } else if (split) {
832 msg_pl = &tmp->msg_plaintext;
833 msg_en = &tmp->msg_encrypted;
834 sk_msg_trim(sk, msg_en, msg_pl->sg.size + prot->overhead_size);
835 tls_ctx->pending_open_record_frags = true;
836 ctx->open_rec = tmp;
839 return tls_tx_records(sk, flags);
842 static int bpf_exec_tx_verdict(struct sk_msg *msg, struct sock *sk,
843 bool full_record, u8 record_type,
844 ssize_t *copied, int flags)
846 struct tls_context *tls_ctx = tls_get_ctx(sk);
847 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
848 struct sk_msg msg_redir = { };
849 struct sk_psock *psock;
850 struct sock *sk_redir;
851 struct tls_rec *rec;
852 bool enospc, policy, redir_ingress;
853 int err = 0, send;
854 u32 delta = 0;
856 policy = !(flags & MSG_SENDPAGE_NOPOLICY);
857 psock = sk_psock_get(sk);
858 if (!psock || !policy) {
859 err = tls_push_record(sk, flags, record_type);
860 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
861 *copied -= sk_msg_free(sk, msg);
862 tls_free_open_rec(sk);
863 err = -sk->sk_err;
865 if (psock)
866 sk_psock_put(sk, psock);
867 return err;
869 more_data:
870 enospc = sk_msg_full(msg);
871 if (psock->eval == __SK_NONE) {
872 delta = msg->sg.size;
873 psock->eval = sk_psock_msg_verdict(sk, psock, msg);
874 delta -= msg->sg.size;
876 if (msg->cork_bytes && msg->cork_bytes > msg->sg.size &&
877 !enospc && !full_record) {
878 err = -ENOSPC;
879 goto out_err;
881 msg->cork_bytes = 0;
882 send = msg->sg.size;
883 if (msg->apply_bytes && msg->apply_bytes < send)
884 send = msg->apply_bytes;
886 switch (psock->eval) {
887 case __SK_PASS:
888 err = tls_push_record(sk, flags, record_type);
889 if (err && err != -EINPROGRESS && sk->sk_err == EBADMSG) {
890 *copied -= sk_msg_free(sk, msg);
891 tls_free_open_rec(sk);
892 err = -sk->sk_err;
893 goto out_err;
895 break;
896 case __SK_REDIRECT:
897 redir_ingress = psock->redir_ingress;
898 sk_redir = psock->sk_redir;
899 memcpy(&msg_redir, msg, sizeof(*msg));
900 if (msg->apply_bytes < send)
901 msg->apply_bytes = 0;
902 else
903 msg->apply_bytes -= send;
904 sk_msg_return_zero(sk, msg, send);
905 msg->sg.size -= send;
906 release_sock(sk);
907 err = tcp_bpf_sendmsg_redir(sk_redir, redir_ingress,
908 &msg_redir, send, flags);
909 lock_sock(sk);
910 if (err < 0) {
911 *copied -= sk_msg_free_nocharge(sk, &msg_redir);
912 msg->sg.size = 0;
914 if (msg->sg.size == 0)
915 tls_free_open_rec(sk);
916 break;
917 case __SK_DROP:
918 default:
919 sk_msg_free_partial(sk, msg, send);
920 if (msg->apply_bytes < send)
921 msg->apply_bytes = 0;
922 else
923 msg->apply_bytes -= send;
924 if (msg->sg.size == 0)
925 tls_free_open_rec(sk);
926 *copied -= (send + delta);
927 err = -EACCES;
930 if (likely(!err)) {
931 bool reset_eval = !ctx->open_rec;
933 rec = ctx->open_rec;
934 if (rec) {
935 msg = &rec->msg_plaintext;
936 if (!msg->apply_bytes)
937 reset_eval = true;
939 if (reset_eval) {
940 psock->eval = __SK_NONE;
941 if (psock->sk_redir) {
942 sock_put(psock->sk_redir);
943 psock->sk_redir = NULL;
946 if (rec)
947 goto more_data;
949 out_err:
950 sk_psock_put(sk, psock);
951 return err;
954 static int tls_sw_push_pending_record(struct sock *sk, int flags)
956 struct tls_context *tls_ctx = tls_get_ctx(sk);
957 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
958 struct tls_rec *rec = ctx->open_rec;
959 struct sk_msg *msg_pl;
960 size_t copied;
962 if (!rec)
963 return 0;
965 msg_pl = &rec->msg_plaintext;
966 copied = msg_pl->sg.size;
967 if (!copied)
968 return 0;
970 return bpf_exec_tx_verdict(msg_pl, sk, true, TLS_RECORD_TYPE_DATA,
971 &copied, flags);
974 static int tls_sw_sendmsg_splice(struct sock *sk, struct msghdr *msg,
975 struct sk_msg *msg_pl, size_t try_to_copy,
976 ssize_t *copied)
978 struct page *page = NULL, **pages = &page;
980 do {
981 ssize_t part;
982 size_t off;
984 part = iov_iter_extract_pages(&msg->msg_iter, &pages,
985 try_to_copy, 1, 0, &off);
986 if (part <= 0)
987 return part ?: -EIO;
989 if (WARN_ON_ONCE(!sendpage_ok(page))) {
990 iov_iter_revert(&msg->msg_iter, part);
991 return -EIO;
994 sk_msg_page_add(msg_pl, page, part, off);
995 msg_pl->sg.copybreak = 0;
996 msg_pl->sg.curr = msg_pl->sg.end;
997 sk_mem_charge(sk, part);
998 *copied += part;
999 try_to_copy -= part;
1000 } while (try_to_copy && !sk_msg_full(msg_pl));
1002 return 0;
1005 static int tls_sw_sendmsg_locked(struct sock *sk, struct msghdr *msg,
1006 size_t size)
1008 long timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1009 struct tls_context *tls_ctx = tls_get_ctx(sk);
1010 struct tls_prot_info *prot = &tls_ctx->prot_info;
1011 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1012 bool async_capable = ctx->async_capable;
1013 unsigned char record_type = TLS_RECORD_TYPE_DATA;
1014 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1015 bool eor = !(msg->msg_flags & MSG_MORE);
1016 size_t try_to_copy;
1017 ssize_t copied = 0;
1018 struct sk_msg *msg_pl, *msg_en;
1019 struct tls_rec *rec;
1020 int required_size;
1021 int num_async = 0;
1022 bool full_record;
1023 int record_room;
1024 int num_zc = 0;
1025 int orig_size;
1026 int ret = 0;
1028 if (!eor && (msg->msg_flags & MSG_EOR))
1029 return -EINVAL;
1031 if (unlikely(msg->msg_controllen)) {
1032 ret = tls_process_cmsg(sk, msg, &record_type);
1033 if (ret) {
1034 if (ret == -EINPROGRESS)
1035 num_async++;
1036 else if (ret != -EAGAIN)
1037 goto send_end;
1041 while (msg_data_left(msg)) {
1042 if (sk->sk_err) {
1043 ret = -sk->sk_err;
1044 goto send_end;
1047 if (ctx->open_rec)
1048 rec = ctx->open_rec;
1049 else
1050 rec = ctx->open_rec = tls_get_rec(sk);
1051 if (!rec) {
1052 ret = -ENOMEM;
1053 goto send_end;
1056 msg_pl = &rec->msg_plaintext;
1057 msg_en = &rec->msg_encrypted;
1059 orig_size = msg_pl->sg.size;
1060 full_record = false;
1061 try_to_copy = msg_data_left(msg);
1062 record_room = TLS_MAX_PAYLOAD_SIZE - msg_pl->sg.size;
1063 if (try_to_copy >= record_room) {
1064 try_to_copy = record_room;
1065 full_record = true;
1068 required_size = msg_pl->sg.size + try_to_copy +
1069 prot->overhead_size;
1071 if (!sk_stream_memory_free(sk))
1072 goto wait_for_sndbuf;
1074 alloc_encrypted:
1075 ret = tls_alloc_encrypted_msg(sk, required_size);
1076 if (ret) {
1077 if (ret != -ENOSPC)
1078 goto wait_for_memory;
1080 /* Adjust try_to_copy according to the amount that was
1081 * actually allocated. The difference is due
1082 * to max sg elements limit
1084 try_to_copy -= required_size - msg_en->sg.size;
1085 full_record = true;
1088 if (try_to_copy && (msg->msg_flags & MSG_SPLICE_PAGES)) {
1089 ret = tls_sw_sendmsg_splice(sk, msg, msg_pl,
1090 try_to_copy, &copied);
1091 if (ret < 0)
1092 goto send_end;
1093 tls_ctx->pending_open_record_frags = true;
1095 if (sk_msg_full(msg_pl))
1096 full_record = true;
1098 if (full_record || eor)
1099 goto copied;
1100 continue;
1103 if (!is_kvec && (full_record || eor) && !async_capable) {
1104 u32 first = msg_pl->sg.end;
1106 ret = sk_msg_zerocopy_from_iter(sk, &msg->msg_iter,
1107 msg_pl, try_to_copy);
1108 if (ret)
1109 goto fallback_to_reg_send;
1111 num_zc++;
1112 copied += try_to_copy;
1114 sk_msg_sg_copy_set(msg_pl, first);
1115 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1116 record_type, &copied,
1117 msg->msg_flags);
1118 if (ret) {
1119 if (ret == -EINPROGRESS)
1120 num_async++;
1121 else if (ret == -ENOMEM)
1122 goto wait_for_memory;
1123 else if (ctx->open_rec && ret == -ENOSPC)
1124 goto rollback_iter;
1125 else if (ret != -EAGAIN)
1126 goto send_end;
1128 continue;
1129 rollback_iter:
1130 copied -= try_to_copy;
1131 sk_msg_sg_copy_clear(msg_pl, first);
1132 iov_iter_revert(&msg->msg_iter,
1133 msg_pl->sg.size - orig_size);
1134 fallback_to_reg_send:
1135 sk_msg_trim(sk, msg_pl, orig_size);
1138 required_size = msg_pl->sg.size + try_to_copy;
1140 ret = tls_clone_plaintext_msg(sk, required_size);
1141 if (ret) {
1142 if (ret != -ENOSPC)
1143 goto send_end;
1145 /* Adjust try_to_copy according to the amount that was
1146 * actually allocated. The difference is due
1147 * to max sg elements limit
1149 try_to_copy -= required_size - msg_pl->sg.size;
1150 full_record = true;
1151 sk_msg_trim(sk, msg_en,
1152 msg_pl->sg.size + prot->overhead_size);
1155 if (try_to_copy) {
1156 ret = sk_msg_memcopy_from_iter(sk, &msg->msg_iter,
1157 msg_pl, try_to_copy);
1158 if (ret < 0)
1159 goto trim_sgl;
1162 /* Open records defined only if successfully copied, otherwise
1163 * we would trim the sg but not reset the open record frags.
1165 tls_ctx->pending_open_record_frags = true;
1166 copied += try_to_copy;
1167 copied:
1168 if (full_record || eor) {
1169 ret = bpf_exec_tx_verdict(msg_pl, sk, full_record,
1170 record_type, &copied,
1171 msg->msg_flags);
1172 if (ret) {
1173 if (ret == -EINPROGRESS)
1174 num_async++;
1175 else if (ret == -ENOMEM)
1176 goto wait_for_memory;
1177 else if (ret != -EAGAIN) {
1178 if (ret == -ENOSPC)
1179 ret = 0;
1180 goto send_end;
1185 continue;
1187 wait_for_sndbuf:
1188 set_bit(SOCK_NOSPACE, &sk->sk_socket->flags);
1189 wait_for_memory:
1190 ret = sk_stream_wait_memory(sk, &timeo);
1191 if (ret) {
1192 trim_sgl:
1193 if (ctx->open_rec)
1194 tls_trim_both_msgs(sk, orig_size);
1195 goto send_end;
1198 if (ctx->open_rec && msg_en->sg.size < required_size)
1199 goto alloc_encrypted;
1202 if (!num_async) {
1203 goto send_end;
1204 } else if (num_zc || eor) {
1205 int err;
1207 /* Wait for pending encryptions to get completed */
1208 err = tls_encrypt_async_wait(ctx);
1209 if (err) {
1210 ret = err;
1211 copied = 0;
1215 /* Transmit if any encryptions have completed */
1216 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1217 cancel_delayed_work(&ctx->tx_work.work);
1218 tls_tx_records(sk, msg->msg_flags);
1221 send_end:
1222 ret = sk_stream_error(sk, msg->msg_flags, ret);
1223 return copied > 0 ? copied : ret;
1226 int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
1228 struct tls_context *tls_ctx = tls_get_ctx(sk);
1229 int ret;
1231 if (msg->msg_flags & ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL |
1232 MSG_CMSG_COMPAT | MSG_SPLICE_PAGES | MSG_EOR |
1233 MSG_SENDPAGE_NOPOLICY))
1234 return -EOPNOTSUPP;
1236 ret = mutex_lock_interruptible(&tls_ctx->tx_lock);
1237 if (ret)
1238 return ret;
1239 lock_sock(sk);
1240 ret = tls_sw_sendmsg_locked(sk, msg, size);
1241 release_sock(sk);
1242 mutex_unlock(&tls_ctx->tx_lock);
1243 return ret;
1247 * Handle unexpected EOF during splice without SPLICE_F_MORE set.
1249 void tls_sw_splice_eof(struct socket *sock)
1251 struct sock *sk = sock->sk;
1252 struct tls_context *tls_ctx = tls_get_ctx(sk);
1253 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
1254 struct tls_rec *rec;
1255 struct sk_msg *msg_pl;
1256 ssize_t copied = 0;
1257 bool retrying = false;
1258 int ret = 0;
1260 if (!ctx->open_rec)
1261 return;
1263 mutex_lock(&tls_ctx->tx_lock);
1264 lock_sock(sk);
1266 retry:
1267 /* same checks as in tls_sw_push_pending_record() */
1268 rec = ctx->open_rec;
1269 if (!rec)
1270 goto unlock;
1272 msg_pl = &rec->msg_plaintext;
1273 if (msg_pl->sg.size == 0)
1274 goto unlock;
1276 /* Check the BPF advisor and perform transmission. */
1277 ret = bpf_exec_tx_verdict(msg_pl, sk, false, TLS_RECORD_TYPE_DATA,
1278 &copied, 0);
1279 switch (ret) {
1280 case 0:
1281 case -EAGAIN:
1282 if (retrying)
1283 goto unlock;
1284 retrying = true;
1285 goto retry;
1286 case -EINPROGRESS:
1287 break;
1288 default:
1289 goto unlock;
1292 /* Wait for pending encryptions to get completed */
1293 if (tls_encrypt_async_wait(ctx))
1294 goto unlock;
1296 /* Transmit if any encryptions have completed */
1297 if (test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
1298 cancel_delayed_work(&ctx->tx_work.work);
1299 tls_tx_records(sk, 0);
1302 unlock:
1303 release_sock(sk);
1304 mutex_unlock(&tls_ctx->tx_lock);
1307 static int
1308 tls_rx_rec_wait(struct sock *sk, struct sk_psock *psock, bool nonblock,
1309 bool released)
1311 struct tls_context *tls_ctx = tls_get_ctx(sk);
1312 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1313 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1314 int ret = 0;
1315 long timeo;
1317 timeo = sock_rcvtimeo(sk, nonblock);
1319 while (!tls_strp_msg_ready(ctx)) {
1320 if (!sk_psock_queue_empty(psock))
1321 return 0;
1323 if (sk->sk_err)
1324 return sock_error(sk);
1326 if (ret < 0)
1327 return ret;
1329 if (!skb_queue_empty(&sk->sk_receive_queue)) {
1330 tls_strp_check_rcv(&ctx->strp);
1331 if (tls_strp_msg_ready(ctx))
1332 break;
1335 if (sk->sk_shutdown & RCV_SHUTDOWN)
1336 return 0;
1338 if (sock_flag(sk, SOCK_DONE))
1339 return 0;
1341 if (!timeo)
1342 return -EAGAIN;
1344 released = true;
1345 add_wait_queue(sk_sleep(sk), &wait);
1346 sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1347 ret = sk_wait_event(sk, &timeo,
1348 tls_strp_msg_ready(ctx) ||
1349 !sk_psock_queue_empty(psock),
1350 &wait);
1351 sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
1352 remove_wait_queue(sk_sleep(sk), &wait);
1354 /* Handle signals */
1355 if (signal_pending(current))
1356 return sock_intr_errno(timeo);
1359 tls_strp_msg_load(&ctx->strp, released);
1361 return 1;
1364 static int tls_setup_from_iter(struct iov_iter *from,
1365 int length, int *pages_used,
1366 struct scatterlist *to,
1367 int to_max_pages)
1369 int rc = 0, i = 0, num_elem = *pages_used, maxpages;
1370 struct page *pages[MAX_SKB_FRAGS];
1371 unsigned int size = 0;
1372 ssize_t copied, use;
1373 size_t offset;
1375 while (length > 0) {
1376 i = 0;
1377 maxpages = to_max_pages - num_elem;
1378 if (maxpages == 0) {
1379 rc = -EFAULT;
1380 goto out;
1382 copied = iov_iter_get_pages2(from, pages,
1383 length,
1384 maxpages, &offset);
1385 if (copied <= 0) {
1386 rc = -EFAULT;
1387 goto out;
1390 length -= copied;
1391 size += copied;
1392 while (copied) {
1393 use = min_t(int, copied, PAGE_SIZE - offset);
1395 sg_set_page(&to[num_elem],
1396 pages[i], use, offset);
1397 sg_unmark_end(&to[num_elem]);
1398 /* We do not uncharge memory from this API */
1400 offset = 0;
1401 copied -= use;
1403 i++;
1404 num_elem++;
1407 /* Mark the end in the last sg entry if newly added */
1408 if (num_elem > *pages_used)
1409 sg_mark_end(&to[num_elem - 1]);
1410 out:
1411 if (rc)
1412 iov_iter_revert(from, size);
1413 *pages_used = num_elem;
1415 return rc;
1418 static struct sk_buff *
1419 tls_alloc_clrtxt_skb(struct sock *sk, struct sk_buff *skb,
1420 unsigned int full_len)
1422 struct strp_msg *clr_rxm;
1423 struct sk_buff *clr_skb;
1424 int err;
1426 clr_skb = alloc_skb_with_frags(0, full_len, TLS_PAGE_ORDER,
1427 &err, sk->sk_allocation);
1428 if (!clr_skb)
1429 return NULL;
1431 skb_copy_header(clr_skb, skb);
1432 clr_skb->len = full_len;
1433 clr_skb->data_len = full_len;
1435 clr_rxm = strp_msg(clr_skb);
1436 clr_rxm->offset = 0;
1438 return clr_skb;
1441 /* Decrypt handlers
1443 * tls_decrypt_sw() and tls_decrypt_device() are decrypt handlers.
1444 * They must transform the darg in/out argument are as follows:
1445 * | Input | Output
1446 * -------------------------------------------------------------------
1447 * zc | Zero-copy decrypt allowed | Zero-copy performed
1448 * async | Async decrypt allowed | Async crypto used / in progress
1449 * skb | * | Output skb
1451 * If ZC decryption was performed darg.skb will point to the input skb.
1454 /* This function decrypts the input skb into either out_iov or in out_sg
1455 * or in skb buffers itself. The input parameter 'darg->zc' indicates if
1456 * zero-copy mode needs to be tried or not. With zero-copy mode, either
1457 * out_iov or out_sg must be non-NULL. In case both out_iov and out_sg are
1458 * NULL, then the decryption happens inside skb buffers itself, i.e.
1459 * zero-copy gets disabled and 'darg->zc' is updated.
1461 static int tls_decrypt_sg(struct sock *sk, struct iov_iter *out_iov,
1462 struct scatterlist *out_sg,
1463 struct tls_decrypt_arg *darg)
1465 struct tls_context *tls_ctx = tls_get_ctx(sk);
1466 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1467 struct tls_prot_info *prot = &tls_ctx->prot_info;
1468 int n_sgin, n_sgout, aead_size, err, pages = 0;
1469 struct sk_buff *skb = tls_strp_msg(ctx);
1470 const struct strp_msg *rxm = strp_msg(skb);
1471 const struct tls_msg *tlm = tls_msg(skb);
1472 struct aead_request *aead_req;
1473 struct scatterlist *sgin = NULL;
1474 struct scatterlist *sgout = NULL;
1475 const int data_len = rxm->full_len - prot->overhead_size;
1476 int tail_pages = !!prot->tail_size;
1477 struct tls_decrypt_ctx *dctx;
1478 struct sk_buff *clear_skb;
1479 int iv_offset = 0;
1480 u8 *mem;
1482 n_sgin = skb_nsg(skb, rxm->offset + prot->prepend_size,
1483 rxm->full_len - prot->prepend_size);
1484 if (n_sgin < 1)
1485 return n_sgin ?: -EBADMSG;
1487 if (darg->zc && (out_iov || out_sg)) {
1488 clear_skb = NULL;
1490 if (out_iov)
1491 n_sgout = 1 + tail_pages +
1492 iov_iter_npages_cap(out_iov, INT_MAX, data_len);
1493 else
1494 n_sgout = sg_nents(out_sg);
1495 } else {
1496 darg->zc = false;
1498 clear_skb = tls_alloc_clrtxt_skb(sk, skb, rxm->full_len);
1499 if (!clear_skb)
1500 return -ENOMEM;
1502 n_sgout = 1 + skb_shinfo(clear_skb)->nr_frags;
1505 /* Increment to accommodate AAD */
1506 n_sgin = n_sgin + 1;
1508 /* Allocate a single block of memory which contains
1509 * aead_req || tls_decrypt_ctx.
1510 * Both structs are variable length.
1512 aead_size = sizeof(*aead_req) + crypto_aead_reqsize(ctx->aead_recv);
1513 aead_size = ALIGN(aead_size, __alignof__(*dctx));
1514 mem = kmalloc(aead_size + struct_size(dctx, sg, size_add(n_sgin, n_sgout)),
1515 sk->sk_allocation);
1516 if (!mem) {
1517 err = -ENOMEM;
1518 goto exit_free_skb;
1521 /* Segment the allocated memory */
1522 aead_req = (struct aead_request *)mem;
1523 dctx = (struct tls_decrypt_ctx *)(mem + aead_size);
1524 dctx->sk = sk;
1525 sgin = &dctx->sg[0];
1526 sgout = &dctx->sg[n_sgin];
1528 /* For CCM based ciphers, first byte of nonce+iv is a constant */
1529 switch (prot->cipher_type) {
1530 case TLS_CIPHER_AES_CCM_128:
1531 dctx->iv[0] = TLS_AES_CCM_IV_B0_BYTE;
1532 iv_offset = 1;
1533 break;
1534 case TLS_CIPHER_SM4_CCM:
1535 dctx->iv[0] = TLS_SM4_CCM_IV_B0_BYTE;
1536 iv_offset = 1;
1537 break;
1540 /* Prepare IV */
1541 if (prot->version == TLS_1_3_VERSION ||
1542 prot->cipher_type == TLS_CIPHER_CHACHA20_POLY1305) {
1543 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv,
1544 prot->iv_size + prot->salt_size);
1545 } else {
1546 err = skb_copy_bits(skb, rxm->offset + TLS_HEADER_SIZE,
1547 &dctx->iv[iv_offset] + prot->salt_size,
1548 prot->iv_size);
1549 if (err < 0)
1550 goto exit_free;
1551 memcpy(&dctx->iv[iv_offset], tls_ctx->rx.iv, prot->salt_size);
1553 tls_xor_iv_with_seq(prot, &dctx->iv[iv_offset], tls_ctx->rx.rec_seq);
1555 /* Prepare AAD */
1556 tls_make_aad(dctx->aad, rxm->full_len - prot->overhead_size +
1557 prot->tail_size,
1558 tls_ctx->rx.rec_seq, tlm->control, prot);
1560 /* Prepare sgin */
1561 sg_init_table(sgin, n_sgin);
1562 sg_set_buf(&sgin[0], dctx->aad, prot->aad_size);
1563 err = skb_to_sgvec(skb, &sgin[1],
1564 rxm->offset + prot->prepend_size,
1565 rxm->full_len - prot->prepend_size);
1566 if (err < 0)
1567 goto exit_free;
1569 if (clear_skb) {
1570 sg_init_table(sgout, n_sgout);
1571 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1573 err = skb_to_sgvec(clear_skb, &sgout[1], prot->prepend_size,
1574 data_len + prot->tail_size);
1575 if (err < 0)
1576 goto exit_free;
1577 } else if (out_iov) {
1578 sg_init_table(sgout, n_sgout);
1579 sg_set_buf(&sgout[0], dctx->aad, prot->aad_size);
1581 err = tls_setup_from_iter(out_iov, data_len, &pages, &sgout[1],
1582 (n_sgout - 1 - tail_pages));
1583 if (err < 0)
1584 goto exit_free_pages;
1586 if (prot->tail_size) {
1587 sg_unmark_end(&sgout[pages]);
1588 sg_set_buf(&sgout[pages + 1], &dctx->tail,
1589 prot->tail_size);
1590 sg_mark_end(&sgout[pages + 1]);
1592 } else if (out_sg) {
1593 memcpy(sgout, out_sg, n_sgout * sizeof(*sgout));
1595 dctx->free_sgout = !!pages;
1597 /* Prepare and submit AEAD request */
1598 err = tls_do_decryption(sk, sgin, sgout, dctx->iv,
1599 data_len + prot->tail_size, aead_req, darg);
1600 if (err) {
1601 if (darg->async_done)
1602 goto exit_free_skb;
1603 goto exit_free_pages;
1606 darg->skb = clear_skb ?: tls_strp_msg(ctx);
1607 clear_skb = NULL;
1609 if (unlikely(darg->async)) {
1610 err = tls_strp_msg_hold(&ctx->strp, &ctx->async_hold);
1611 if (err)
1612 __skb_queue_tail(&ctx->async_hold, darg->skb);
1613 return err;
1616 if (unlikely(darg->async_done))
1617 return 0;
1619 if (prot->tail_size)
1620 darg->tail = dctx->tail;
1622 exit_free_pages:
1623 /* Release the pages in case iov was mapped to pages */
1624 for (; pages > 0; pages--)
1625 put_page(sg_page(&sgout[pages]));
1626 exit_free:
1627 kfree(mem);
1628 exit_free_skb:
1629 consume_skb(clear_skb);
1630 return err;
1633 static int
1634 tls_decrypt_sw(struct sock *sk, struct tls_context *tls_ctx,
1635 struct msghdr *msg, struct tls_decrypt_arg *darg)
1637 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1638 struct tls_prot_info *prot = &tls_ctx->prot_info;
1639 struct strp_msg *rxm;
1640 int pad, err;
1642 err = tls_decrypt_sg(sk, &msg->msg_iter, NULL, darg);
1643 if (err < 0) {
1644 if (err == -EBADMSG)
1645 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTERROR);
1646 return err;
1648 /* keep going even for ->async, the code below is TLS 1.3 */
1650 /* If opportunistic TLS 1.3 ZC failed retry without ZC */
1651 if (unlikely(darg->zc && prot->version == TLS_1_3_VERSION &&
1652 darg->tail != TLS_RECORD_TYPE_DATA)) {
1653 darg->zc = false;
1654 if (!darg->tail)
1655 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXNOPADVIOL);
1656 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSDECRYPTRETRY);
1657 return tls_decrypt_sw(sk, tls_ctx, msg, darg);
1660 pad = tls_padding_length(prot, darg->skb, darg);
1661 if (pad < 0) {
1662 if (darg->skb != tls_strp_msg(ctx))
1663 consume_skb(darg->skb);
1664 return pad;
1667 rxm = strp_msg(darg->skb);
1668 rxm->full_len -= pad;
1670 return 0;
1673 static int
1674 tls_decrypt_device(struct sock *sk, struct msghdr *msg,
1675 struct tls_context *tls_ctx, struct tls_decrypt_arg *darg)
1677 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1678 struct tls_prot_info *prot = &tls_ctx->prot_info;
1679 struct strp_msg *rxm;
1680 int pad, err;
1682 if (tls_ctx->rx_conf != TLS_HW)
1683 return 0;
1685 err = tls_device_decrypted(sk, tls_ctx);
1686 if (err <= 0)
1687 return err;
1689 pad = tls_padding_length(prot, tls_strp_msg(ctx), darg);
1690 if (pad < 0)
1691 return pad;
1693 darg->async = false;
1694 darg->skb = tls_strp_msg(ctx);
1695 /* ->zc downgrade check, in case TLS 1.3 gets here */
1696 darg->zc &= !(prot->version == TLS_1_3_VERSION &&
1697 tls_msg(darg->skb)->control != TLS_RECORD_TYPE_DATA);
1699 rxm = strp_msg(darg->skb);
1700 rxm->full_len -= pad;
1702 if (!darg->zc) {
1703 /* Non-ZC case needs a real skb */
1704 darg->skb = tls_strp_msg_detach(ctx);
1705 if (!darg->skb)
1706 return -ENOMEM;
1707 } else {
1708 unsigned int off, len;
1710 /* In ZC case nobody cares about the output skb.
1711 * Just copy the data here. Note the skb is not fully trimmed.
1713 off = rxm->offset + prot->prepend_size;
1714 len = rxm->full_len - prot->overhead_size;
1716 err = skb_copy_datagram_msg(darg->skb, off, msg, len);
1717 if (err)
1718 return err;
1720 return 1;
1723 static int tls_rx_one_record(struct sock *sk, struct msghdr *msg,
1724 struct tls_decrypt_arg *darg)
1726 struct tls_context *tls_ctx = tls_get_ctx(sk);
1727 struct tls_prot_info *prot = &tls_ctx->prot_info;
1728 struct strp_msg *rxm;
1729 int err;
1731 err = tls_decrypt_device(sk, msg, tls_ctx, darg);
1732 if (!err)
1733 err = tls_decrypt_sw(sk, tls_ctx, msg, darg);
1734 if (err < 0)
1735 return err;
1737 rxm = strp_msg(darg->skb);
1738 rxm->offset += prot->prepend_size;
1739 rxm->full_len -= prot->overhead_size;
1740 tls_advance_record_sn(sk, prot, &tls_ctx->rx);
1742 return 0;
1745 int decrypt_skb(struct sock *sk, struct scatterlist *sgout)
1747 struct tls_decrypt_arg darg = { .zc = true, };
1749 return tls_decrypt_sg(sk, NULL, sgout, &darg);
1752 static int tls_record_content_type(struct msghdr *msg, struct tls_msg *tlm,
1753 u8 *control)
1755 int err;
1757 if (!*control) {
1758 *control = tlm->control;
1759 if (!*control)
1760 return -EBADMSG;
1762 err = put_cmsg(msg, SOL_TLS, TLS_GET_RECORD_TYPE,
1763 sizeof(*control), control);
1764 if (*control != TLS_RECORD_TYPE_DATA) {
1765 if (err || msg->msg_flags & MSG_CTRUNC)
1766 return -EIO;
1768 } else if (*control != tlm->control) {
1769 return 0;
1772 return 1;
1775 static void tls_rx_rec_done(struct tls_sw_context_rx *ctx)
1777 tls_strp_msg_done(&ctx->strp);
1780 /* This function traverses the rx_list in tls receive context to copies the
1781 * decrypted records into the buffer provided by caller zero copy is not
1782 * true. Further, the records are removed from the rx_list if it is not a peek
1783 * case and the record has been consumed completely.
1785 static int process_rx_list(struct tls_sw_context_rx *ctx,
1786 struct msghdr *msg,
1787 u8 *control,
1788 size_t skip,
1789 size_t len,
1790 bool is_peek,
1791 bool *more)
1793 struct sk_buff *skb = skb_peek(&ctx->rx_list);
1794 struct tls_msg *tlm;
1795 ssize_t copied = 0;
1796 int err;
1798 while (skip && skb) {
1799 struct strp_msg *rxm = strp_msg(skb);
1800 tlm = tls_msg(skb);
1802 err = tls_record_content_type(msg, tlm, control);
1803 if (err <= 0)
1804 goto more;
1806 if (skip < rxm->full_len)
1807 break;
1809 skip = skip - rxm->full_len;
1810 skb = skb_peek_next(skb, &ctx->rx_list);
1813 while (len && skb) {
1814 struct sk_buff *next_skb;
1815 struct strp_msg *rxm = strp_msg(skb);
1816 int chunk = min_t(unsigned int, rxm->full_len - skip, len);
1818 tlm = tls_msg(skb);
1820 err = tls_record_content_type(msg, tlm, control);
1821 if (err <= 0)
1822 goto more;
1824 err = skb_copy_datagram_msg(skb, rxm->offset + skip,
1825 msg, chunk);
1826 if (err < 0)
1827 goto more;
1829 len = len - chunk;
1830 copied = copied + chunk;
1832 /* Consume the data from record if it is non-peek case*/
1833 if (!is_peek) {
1834 rxm->offset = rxm->offset + chunk;
1835 rxm->full_len = rxm->full_len - chunk;
1837 /* Return if there is unconsumed data in the record */
1838 if (rxm->full_len - skip)
1839 break;
1842 /* The remaining skip-bytes must lie in 1st record in rx_list.
1843 * So from the 2nd record, 'skip' should be 0.
1845 skip = 0;
1847 if (msg)
1848 msg->msg_flags |= MSG_EOR;
1850 next_skb = skb_peek_next(skb, &ctx->rx_list);
1852 if (!is_peek) {
1853 __skb_unlink(skb, &ctx->rx_list);
1854 consume_skb(skb);
1857 skb = next_skb;
1859 err = 0;
1861 out:
1862 return copied ? : err;
1863 more:
1864 if (more)
1865 *more = true;
1866 goto out;
1869 static bool
1870 tls_read_flush_backlog(struct sock *sk, struct tls_prot_info *prot,
1871 size_t len_left, size_t decrypted, ssize_t done,
1872 size_t *flushed_at)
1874 size_t max_rec;
1876 if (len_left <= decrypted)
1877 return false;
1879 max_rec = prot->overhead_size - prot->tail_size + TLS_MAX_PAYLOAD_SIZE;
1880 if (done - *flushed_at < SZ_128K && tcp_inq(sk) > max_rec)
1881 return false;
1883 *flushed_at = done;
1884 return sk_flush_backlog(sk);
1887 static int tls_rx_reader_acquire(struct sock *sk, struct tls_sw_context_rx *ctx,
1888 bool nonblock)
1890 long timeo;
1891 int ret;
1893 timeo = sock_rcvtimeo(sk, nonblock);
1895 while (unlikely(ctx->reader_present)) {
1896 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1898 ctx->reader_contended = 1;
1900 add_wait_queue(&ctx->wq, &wait);
1901 ret = sk_wait_event(sk, &timeo,
1902 !READ_ONCE(ctx->reader_present), &wait);
1903 remove_wait_queue(&ctx->wq, &wait);
1905 if (timeo <= 0)
1906 return -EAGAIN;
1907 if (signal_pending(current))
1908 return sock_intr_errno(timeo);
1909 if (ret < 0)
1910 return ret;
1913 WRITE_ONCE(ctx->reader_present, 1);
1915 return 0;
1918 static int tls_rx_reader_lock(struct sock *sk, struct tls_sw_context_rx *ctx,
1919 bool nonblock)
1921 int err;
1923 lock_sock(sk);
1924 err = tls_rx_reader_acquire(sk, ctx, nonblock);
1925 if (err)
1926 release_sock(sk);
1927 return err;
1930 static void tls_rx_reader_release(struct sock *sk, struct tls_sw_context_rx *ctx)
1932 if (unlikely(ctx->reader_contended)) {
1933 if (wq_has_sleeper(&ctx->wq))
1934 wake_up(&ctx->wq);
1935 else
1936 ctx->reader_contended = 0;
1938 WARN_ON_ONCE(!ctx->reader_present);
1941 WRITE_ONCE(ctx->reader_present, 0);
1944 static void tls_rx_reader_unlock(struct sock *sk, struct tls_sw_context_rx *ctx)
1946 tls_rx_reader_release(sk, ctx);
1947 release_sock(sk);
1950 int tls_sw_recvmsg(struct sock *sk,
1951 struct msghdr *msg,
1952 size_t len,
1953 int flags,
1954 int *addr_len)
1956 struct tls_context *tls_ctx = tls_get_ctx(sk);
1957 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
1958 struct tls_prot_info *prot = &tls_ctx->prot_info;
1959 ssize_t decrypted = 0, async_copy_bytes = 0;
1960 struct sk_psock *psock;
1961 unsigned char control = 0;
1962 size_t flushed_at = 0;
1963 struct strp_msg *rxm;
1964 struct tls_msg *tlm;
1965 ssize_t copied = 0;
1966 ssize_t peeked = 0;
1967 bool async = false;
1968 int target, err;
1969 bool is_kvec = iov_iter_is_kvec(&msg->msg_iter);
1970 bool is_peek = flags & MSG_PEEK;
1971 bool rx_more = false;
1972 bool released = true;
1973 bool bpf_strp_enabled;
1974 bool zc_capable;
1976 if (unlikely(flags & MSG_ERRQUEUE))
1977 return sock_recv_errqueue(sk, msg, len, SOL_IP, IP_RECVERR);
1979 err = tls_rx_reader_lock(sk, ctx, flags & MSG_DONTWAIT);
1980 if (err < 0)
1981 return err;
1982 psock = sk_psock_get(sk);
1983 bpf_strp_enabled = sk_psock_strp_enabled(psock);
1985 /* If crypto failed the connection is broken */
1986 err = ctx->async_wait.err;
1987 if (err)
1988 goto end;
1990 /* Process pending decrypted records. It must be non-zero-copy */
1991 err = process_rx_list(ctx, msg, &control, 0, len, is_peek, &rx_more);
1992 if (err < 0)
1993 goto end;
1995 copied = err;
1996 if (len <= copied || (copied && control != TLS_RECORD_TYPE_DATA) || rx_more)
1997 goto end;
1999 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2000 len = len - copied;
2002 zc_capable = !bpf_strp_enabled && !is_kvec && !is_peek &&
2003 ctx->zc_capable;
2004 decrypted = 0;
2005 while (len && (decrypted + copied < target || tls_strp_msg_ready(ctx))) {
2006 struct tls_decrypt_arg darg;
2007 int to_decrypt, chunk;
2009 err = tls_rx_rec_wait(sk, psock, flags & MSG_DONTWAIT,
2010 released);
2011 if (err <= 0) {
2012 if (psock) {
2013 chunk = sk_msg_recvmsg(sk, psock, msg, len,
2014 flags);
2015 if (chunk > 0) {
2016 decrypted += chunk;
2017 len -= chunk;
2018 continue;
2021 goto recv_end;
2024 memset(&darg.inargs, 0, sizeof(darg.inargs));
2026 rxm = strp_msg(tls_strp_msg(ctx));
2027 tlm = tls_msg(tls_strp_msg(ctx));
2029 to_decrypt = rxm->full_len - prot->overhead_size;
2031 if (zc_capable && to_decrypt <= len &&
2032 tlm->control == TLS_RECORD_TYPE_DATA)
2033 darg.zc = true;
2035 /* Do not use async mode if record is non-data */
2036 if (tlm->control == TLS_RECORD_TYPE_DATA && !bpf_strp_enabled)
2037 darg.async = ctx->async_capable;
2038 else
2039 darg.async = false;
2041 err = tls_rx_one_record(sk, msg, &darg);
2042 if (err < 0) {
2043 tls_err_abort(sk, -EBADMSG);
2044 goto recv_end;
2047 async |= darg.async;
2049 /* If the type of records being processed is not known yet,
2050 * set it to record type just dequeued. If it is already known,
2051 * but does not match the record type just dequeued, go to end.
2052 * We always get record type here since for tls1.2, record type
2053 * is known just after record is dequeued from stream parser.
2054 * For tls1.3, we disable async.
2056 err = tls_record_content_type(msg, tls_msg(darg.skb), &control);
2057 if (err <= 0) {
2058 DEBUG_NET_WARN_ON_ONCE(darg.zc);
2059 tls_rx_rec_done(ctx);
2060 put_on_rx_list_err:
2061 __skb_queue_tail(&ctx->rx_list, darg.skb);
2062 goto recv_end;
2065 /* periodically flush backlog, and feed strparser */
2066 released = tls_read_flush_backlog(sk, prot, len, to_decrypt,
2067 decrypted + copied,
2068 &flushed_at);
2070 /* TLS 1.3 may have updated the length by more than overhead */
2071 rxm = strp_msg(darg.skb);
2072 chunk = rxm->full_len;
2073 tls_rx_rec_done(ctx);
2075 if (!darg.zc) {
2076 bool partially_consumed = chunk > len;
2077 struct sk_buff *skb = darg.skb;
2079 DEBUG_NET_WARN_ON_ONCE(darg.skb == ctx->strp.anchor);
2081 if (async) {
2082 /* TLS 1.2-only, to_decrypt must be text len */
2083 chunk = min_t(int, to_decrypt, len);
2084 async_copy_bytes += chunk;
2085 put_on_rx_list:
2086 decrypted += chunk;
2087 len -= chunk;
2088 __skb_queue_tail(&ctx->rx_list, skb);
2089 if (unlikely(control != TLS_RECORD_TYPE_DATA))
2090 break;
2091 continue;
2094 if (bpf_strp_enabled) {
2095 released = true;
2096 err = sk_psock_tls_strp_read(psock, skb);
2097 if (err != __SK_PASS) {
2098 rxm->offset = rxm->offset + rxm->full_len;
2099 rxm->full_len = 0;
2100 if (err == __SK_DROP)
2101 consume_skb(skb);
2102 continue;
2106 if (partially_consumed)
2107 chunk = len;
2109 err = skb_copy_datagram_msg(skb, rxm->offset,
2110 msg, chunk);
2111 if (err < 0)
2112 goto put_on_rx_list_err;
2114 if (is_peek) {
2115 peeked += chunk;
2116 goto put_on_rx_list;
2119 if (partially_consumed) {
2120 rxm->offset += chunk;
2121 rxm->full_len -= chunk;
2122 goto put_on_rx_list;
2125 consume_skb(skb);
2128 decrypted += chunk;
2129 len -= chunk;
2131 /* Return full control message to userspace before trying
2132 * to parse another message type
2134 msg->msg_flags |= MSG_EOR;
2135 if (control != TLS_RECORD_TYPE_DATA)
2136 break;
2139 recv_end:
2140 if (async) {
2141 int ret;
2143 /* Wait for all previously submitted records to be decrypted */
2144 ret = tls_decrypt_async_wait(ctx);
2145 __skb_queue_purge(&ctx->async_hold);
2147 if (ret) {
2148 if (err >= 0 || err == -EINPROGRESS)
2149 err = ret;
2150 goto end;
2153 /* Drain records from the rx_list & copy if required */
2154 if (is_peek)
2155 err = process_rx_list(ctx, msg, &control, copied + peeked,
2156 decrypted - peeked, is_peek, NULL);
2157 else
2158 err = process_rx_list(ctx, msg, &control, 0,
2159 async_copy_bytes, is_peek, NULL);
2161 /* we could have copied less than we wanted, and possibly nothing */
2162 decrypted += max(err, 0) - async_copy_bytes;
2165 copied += decrypted;
2167 end:
2168 tls_rx_reader_unlock(sk, ctx);
2169 if (psock)
2170 sk_psock_put(sk, psock);
2171 return copied ? : err;
2174 ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
2175 struct pipe_inode_info *pipe,
2176 size_t len, unsigned int flags)
2178 struct tls_context *tls_ctx = tls_get_ctx(sock->sk);
2179 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2180 struct strp_msg *rxm = NULL;
2181 struct sock *sk = sock->sk;
2182 struct tls_msg *tlm;
2183 struct sk_buff *skb;
2184 ssize_t copied = 0;
2185 int chunk;
2186 int err;
2188 err = tls_rx_reader_lock(sk, ctx, flags & SPLICE_F_NONBLOCK);
2189 if (err < 0)
2190 return err;
2192 if (!skb_queue_empty(&ctx->rx_list)) {
2193 skb = __skb_dequeue(&ctx->rx_list);
2194 } else {
2195 struct tls_decrypt_arg darg;
2197 err = tls_rx_rec_wait(sk, NULL, flags & SPLICE_F_NONBLOCK,
2198 true);
2199 if (err <= 0)
2200 goto splice_read_end;
2202 memset(&darg.inargs, 0, sizeof(darg.inargs));
2204 err = tls_rx_one_record(sk, NULL, &darg);
2205 if (err < 0) {
2206 tls_err_abort(sk, -EBADMSG);
2207 goto splice_read_end;
2210 tls_rx_rec_done(ctx);
2211 skb = darg.skb;
2214 rxm = strp_msg(skb);
2215 tlm = tls_msg(skb);
2217 /* splice does not support reading control messages */
2218 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2219 err = -EINVAL;
2220 goto splice_requeue;
2223 chunk = min_t(unsigned int, rxm->full_len, len);
2224 copied = skb_splice_bits(skb, sk, rxm->offset, pipe, chunk, flags);
2225 if (copied < 0)
2226 goto splice_requeue;
2228 if (chunk < rxm->full_len) {
2229 rxm->offset += len;
2230 rxm->full_len -= len;
2231 goto splice_requeue;
2234 consume_skb(skb);
2236 splice_read_end:
2237 tls_rx_reader_unlock(sk, ctx);
2238 return copied ? : err;
2240 splice_requeue:
2241 __skb_queue_head(&ctx->rx_list, skb);
2242 goto splice_read_end;
2245 int tls_sw_read_sock(struct sock *sk, read_descriptor_t *desc,
2246 sk_read_actor_t read_actor)
2248 struct tls_context *tls_ctx = tls_get_ctx(sk);
2249 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2250 struct tls_prot_info *prot = &tls_ctx->prot_info;
2251 struct strp_msg *rxm = NULL;
2252 struct sk_buff *skb = NULL;
2253 struct sk_psock *psock;
2254 size_t flushed_at = 0;
2255 bool released = true;
2256 struct tls_msg *tlm;
2257 ssize_t copied = 0;
2258 ssize_t decrypted;
2259 int err, used;
2261 psock = sk_psock_get(sk);
2262 if (psock) {
2263 sk_psock_put(sk, psock);
2264 return -EINVAL;
2266 err = tls_rx_reader_acquire(sk, ctx, true);
2267 if (err < 0)
2268 return err;
2270 /* If crypto failed the connection is broken */
2271 err = ctx->async_wait.err;
2272 if (err)
2273 goto read_sock_end;
2275 decrypted = 0;
2276 do {
2277 if (!skb_queue_empty(&ctx->rx_list)) {
2278 skb = __skb_dequeue(&ctx->rx_list);
2279 rxm = strp_msg(skb);
2280 tlm = tls_msg(skb);
2281 } else {
2282 struct tls_decrypt_arg darg;
2284 err = tls_rx_rec_wait(sk, NULL, true, released);
2285 if (err <= 0)
2286 goto read_sock_end;
2288 memset(&darg.inargs, 0, sizeof(darg.inargs));
2290 err = tls_rx_one_record(sk, NULL, &darg);
2291 if (err < 0) {
2292 tls_err_abort(sk, -EBADMSG);
2293 goto read_sock_end;
2296 released = tls_read_flush_backlog(sk, prot, INT_MAX,
2297 0, decrypted,
2298 &flushed_at);
2299 skb = darg.skb;
2300 rxm = strp_msg(skb);
2301 tlm = tls_msg(skb);
2302 decrypted += rxm->full_len;
2304 tls_rx_rec_done(ctx);
2307 /* read_sock does not support reading control messages */
2308 if (tlm->control != TLS_RECORD_TYPE_DATA) {
2309 err = -EINVAL;
2310 goto read_sock_requeue;
2313 used = read_actor(desc, skb, rxm->offset, rxm->full_len);
2314 if (used <= 0) {
2315 if (!copied)
2316 err = used;
2317 goto read_sock_requeue;
2319 copied += used;
2320 if (used < rxm->full_len) {
2321 rxm->offset += used;
2322 rxm->full_len -= used;
2323 if (!desc->count)
2324 goto read_sock_requeue;
2325 } else {
2326 consume_skb(skb);
2327 if (!desc->count)
2328 skb = NULL;
2330 } while (skb);
2332 read_sock_end:
2333 tls_rx_reader_release(sk, ctx);
2334 return copied ? : err;
2336 read_sock_requeue:
2337 __skb_queue_head(&ctx->rx_list, skb);
2338 goto read_sock_end;
2341 bool tls_sw_sock_is_readable(struct sock *sk)
2343 struct tls_context *tls_ctx = tls_get_ctx(sk);
2344 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2345 bool ingress_empty = true;
2346 struct sk_psock *psock;
2348 rcu_read_lock();
2349 psock = sk_psock(sk);
2350 if (psock)
2351 ingress_empty = list_empty(&psock->ingress_msg);
2352 rcu_read_unlock();
2354 return !ingress_empty || tls_strp_msg_ready(ctx) ||
2355 !skb_queue_empty(&ctx->rx_list);
2358 int tls_rx_msg_size(struct tls_strparser *strp, struct sk_buff *skb)
2360 struct tls_context *tls_ctx = tls_get_ctx(strp->sk);
2361 struct tls_prot_info *prot = &tls_ctx->prot_info;
2362 char header[TLS_HEADER_SIZE + TLS_MAX_IV_SIZE];
2363 size_t cipher_overhead;
2364 size_t data_len = 0;
2365 int ret;
2367 /* Verify that we have a full TLS header, or wait for more data */
2368 if (strp->stm.offset + prot->prepend_size > skb->len)
2369 return 0;
2371 /* Sanity-check size of on-stack buffer. */
2372 if (WARN_ON(prot->prepend_size > sizeof(header))) {
2373 ret = -EINVAL;
2374 goto read_failure;
2377 /* Linearize header to local buffer */
2378 ret = skb_copy_bits(skb, strp->stm.offset, header, prot->prepend_size);
2379 if (ret < 0)
2380 goto read_failure;
2382 strp->mark = header[0];
2384 data_len = ((header[4] & 0xFF) | (header[3] << 8));
2386 cipher_overhead = prot->tag_size;
2387 if (prot->version != TLS_1_3_VERSION &&
2388 prot->cipher_type != TLS_CIPHER_CHACHA20_POLY1305)
2389 cipher_overhead += prot->iv_size;
2391 if (data_len > TLS_MAX_PAYLOAD_SIZE + cipher_overhead +
2392 prot->tail_size) {
2393 ret = -EMSGSIZE;
2394 goto read_failure;
2396 if (data_len < cipher_overhead) {
2397 ret = -EBADMSG;
2398 goto read_failure;
2401 /* Note that both TLS1.3 and TLS1.2 use TLS_1_2 version here */
2402 if (header[1] != TLS_1_2_VERSION_MINOR ||
2403 header[2] != TLS_1_2_VERSION_MAJOR) {
2404 ret = -EINVAL;
2405 goto read_failure;
2408 tls_device_rx_resync_new_rec(strp->sk, data_len + TLS_HEADER_SIZE,
2409 TCP_SKB_CB(skb)->seq + strp->stm.offset);
2410 return data_len + TLS_HEADER_SIZE;
2412 read_failure:
2413 tls_err_abort(strp->sk, ret);
2415 return ret;
2418 void tls_rx_msg_ready(struct tls_strparser *strp)
2420 struct tls_sw_context_rx *ctx;
2422 ctx = container_of(strp, struct tls_sw_context_rx, strp);
2423 ctx->saved_data_ready(strp->sk);
2426 static void tls_data_ready(struct sock *sk)
2428 struct tls_context *tls_ctx = tls_get_ctx(sk);
2429 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2430 struct sk_psock *psock;
2431 gfp_t alloc_save;
2433 trace_sk_data_ready(sk);
2435 alloc_save = sk->sk_allocation;
2436 sk->sk_allocation = GFP_ATOMIC;
2437 tls_strp_data_ready(&ctx->strp);
2438 sk->sk_allocation = alloc_save;
2440 psock = sk_psock_get(sk);
2441 if (psock) {
2442 if (!list_empty(&psock->ingress_msg))
2443 ctx->saved_data_ready(sk);
2444 sk_psock_put(sk, psock);
2448 void tls_sw_cancel_work_tx(struct tls_context *tls_ctx)
2450 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2452 set_bit(BIT_TX_CLOSING, &ctx->tx_bitmask);
2453 set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask);
2454 cancel_delayed_work_sync(&ctx->tx_work.work);
2457 void tls_sw_release_resources_tx(struct sock *sk)
2459 struct tls_context *tls_ctx = tls_get_ctx(sk);
2460 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2461 struct tls_rec *rec, *tmp;
2463 /* Wait for any pending async encryptions to complete */
2464 tls_encrypt_async_wait(ctx);
2466 tls_tx_records(sk, -1);
2468 /* Free up un-sent records in tx_list. First, free
2469 * the partially sent record if any at head of tx_list.
2471 if (tls_ctx->partially_sent_record) {
2472 tls_free_partial_record(sk, tls_ctx);
2473 rec = list_first_entry(&ctx->tx_list,
2474 struct tls_rec, list);
2475 list_del(&rec->list);
2476 sk_msg_free(sk, &rec->msg_plaintext);
2477 kfree(rec);
2480 list_for_each_entry_safe(rec, tmp, &ctx->tx_list, list) {
2481 list_del(&rec->list);
2482 sk_msg_free(sk, &rec->msg_encrypted);
2483 sk_msg_free(sk, &rec->msg_plaintext);
2484 kfree(rec);
2487 crypto_free_aead(ctx->aead_send);
2488 tls_free_open_rec(sk);
2491 void tls_sw_free_ctx_tx(struct tls_context *tls_ctx)
2493 struct tls_sw_context_tx *ctx = tls_sw_ctx_tx(tls_ctx);
2495 kfree(ctx);
2498 void tls_sw_release_resources_rx(struct sock *sk)
2500 struct tls_context *tls_ctx = tls_get_ctx(sk);
2501 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2503 if (ctx->aead_recv) {
2504 __skb_queue_purge(&ctx->rx_list);
2505 crypto_free_aead(ctx->aead_recv);
2506 tls_strp_stop(&ctx->strp);
2507 /* If tls_sw_strparser_arm() was not called (cleanup paths)
2508 * we still want to tls_strp_stop(), but sk->sk_data_ready was
2509 * never swapped.
2511 if (ctx->saved_data_ready) {
2512 write_lock_bh(&sk->sk_callback_lock);
2513 sk->sk_data_ready = ctx->saved_data_ready;
2514 write_unlock_bh(&sk->sk_callback_lock);
2519 void tls_sw_strparser_done(struct tls_context *tls_ctx)
2521 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2523 tls_strp_done(&ctx->strp);
2526 void tls_sw_free_ctx_rx(struct tls_context *tls_ctx)
2528 struct tls_sw_context_rx *ctx = tls_sw_ctx_rx(tls_ctx);
2530 kfree(ctx);
2533 void tls_sw_free_resources_rx(struct sock *sk)
2535 struct tls_context *tls_ctx = tls_get_ctx(sk);
2537 tls_sw_release_resources_rx(sk);
2538 tls_sw_free_ctx_rx(tls_ctx);
2541 /* The work handler to transmitt the encrypted records in tx_list */
2542 static void tx_work_handler(struct work_struct *work)
2544 struct delayed_work *delayed_work = to_delayed_work(work);
2545 struct tx_work *tx_work = container_of(delayed_work,
2546 struct tx_work, work);
2547 struct sock *sk = tx_work->sk;
2548 struct tls_context *tls_ctx = tls_get_ctx(sk);
2549 struct tls_sw_context_tx *ctx;
2551 if (unlikely(!tls_ctx))
2552 return;
2554 ctx = tls_sw_ctx_tx(tls_ctx);
2555 if (test_bit(BIT_TX_CLOSING, &ctx->tx_bitmask))
2556 return;
2558 if (!test_and_clear_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask))
2559 return;
2561 if (mutex_trylock(&tls_ctx->tx_lock)) {
2562 lock_sock(sk);
2563 tls_tx_records(sk, -1);
2564 release_sock(sk);
2565 mutex_unlock(&tls_ctx->tx_lock);
2566 } else if (!test_and_set_bit(BIT_TX_SCHEDULED, &ctx->tx_bitmask)) {
2567 /* Someone is holding the tx_lock, they will likely run Tx
2568 * and cancel the work on their way out of the lock section.
2569 * Schedule a long delay just in case.
2571 schedule_delayed_work(&ctx->tx_work.work, msecs_to_jiffies(10));
2575 static bool tls_is_tx_ready(struct tls_sw_context_tx *ctx)
2577 struct tls_rec *rec;
2579 rec = list_first_entry_or_null(&ctx->tx_list, struct tls_rec, list);
2580 if (!rec)
2581 return false;
2583 return READ_ONCE(rec->tx_ready);
2586 void tls_sw_write_space(struct sock *sk, struct tls_context *ctx)
2588 struct tls_sw_context_tx *tx_ctx = tls_sw_ctx_tx(ctx);
2590 /* Schedule the transmission if tx list is ready */
2591 if (tls_is_tx_ready(tx_ctx) &&
2592 !test_and_set_bit(BIT_TX_SCHEDULED, &tx_ctx->tx_bitmask))
2593 schedule_delayed_work(&tx_ctx->tx_work.work, 0);
2596 void tls_sw_strparser_arm(struct sock *sk, struct tls_context *tls_ctx)
2598 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2600 write_lock_bh(&sk->sk_callback_lock);
2601 rx_ctx->saved_data_ready = sk->sk_data_ready;
2602 sk->sk_data_ready = tls_data_ready;
2603 write_unlock_bh(&sk->sk_callback_lock);
2606 void tls_update_rx_zc_capable(struct tls_context *tls_ctx)
2608 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(tls_ctx);
2610 rx_ctx->zc_capable = tls_ctx->rx_no_pad ||
2611 tls_ctx->prot_info.version != TLS_1_3_VERSION;
2614 static struct tls_sw_context_tx *init_ctx_tx(struct tls_context *ctx, struct sock *sk)
2616 struct tls_sw_context_tx *sw_ctx_tx;
2618 if (!ctx->priv_ctx_tx) {
2619 sw_ctx_tx = kzalloc(sizeof(*sw_ctx_tx), GFP_KERNEL);
2620 if (!sw_ctx_tx)
2621 return NULL;
2622 } else {
2623 sw_ctx_tx = ctx->priv_ctx_tx;
2626 crypto_init_wait(&sw_ctx_tx->async_wait);
2627 atomic_set(&sw_ctx_tx->encrypt_pending, 1);
2628 INIT_LIST_HEAD(&sw_ctx_tx->tx_list);
2629 INIT_DELAYED_WORK(&sw_ctx_tx->tx_work.work, tx_work_handler);
2630 sw_ctx_tx->tx_work.sk = sk;
2632 return sw_ctx_tx;
2635 static struct tls_sw_context_rx *init_ctx_rx(struct tls_context *ctx)
2637 struct tls_sw_context_rx *sw_ctx_rx;
2639 if (!ctx->priv_ctx_rx) {
2640 sw_ctx_rx = kzalloc(sizeof(*sw_ctx_rx), GFP_KERNEL);
2641 if (!sw_ctx_rx)
2642 return NULL;
2643 } else {
2644 sw_ctx_rx = ctx->priv_ctx_rx;
2647 crypto_init_wait(&sw_ctx_rx->async_wait);
2648 atomic_set(&sw_ctx_rx->decrypt_pending, 1);
2649 init_waitqueue_head(&sw_ctx_rx->wq);
2650 skb_queue_head_init(&sw_ctx_rx->rx_list);
2651 skb_queue_head_init(&sw_ctx_rx->async_hold);
2653 return sw_ctx_rx;
2656 int init_prot_info(struct tls_prot_info *prot,
2657 const struct tls_crypto_info *crypto_info,
2658 const struct tls_cipher_desc *cipher_desc)
2660 u16 nonce_size = cipher_desc->nonce;
2662 if (crypto_info->version == TLS_1_3_VERSION) {
2663 nonce_size = 0;
2664 prot->aad_size = TLS_HEADER_SIZE;
2665 prot->tail_size = 1;
2666 } else {
2667 prot->aad_size = TLS_AAD_SPACE_SIZE;
2668 prot->tail_size = 0;
2671 /* Sanity-check the sizes for stack allocations. */
2672 if (nonce_size > TLS_MAX_IV_SIZE || prot->aad_size > TLS_MAX_AAD_SIZE)
2673 return -EINVAL;
2675 prot->version = crypto_info->version;
2676 prot->cipher_type = crypto_info->cipher_type;
2677 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
2678 prot->tag_size = cipher_desc->tag;
2679 prot->overhead_size = prot->prepend_size + prot->tag_size + prot->tail_size;
2680 prot->iv_size = cipher_desc->iv;
2681 prot->salt_size = cipher_desc->salt;
2682 prot->rec_seq_size = cipher_desc->rec_seq;
2684 return 0;
2687 int tls_set_sw_offload(struct sock *sk, int tx)
2689 struct tls_sw_context_tx *sw_ctx_tx = NULL;
2690 struct tls_sw_context_rx *sw_ctx_rx = NULL;
2691 const struct tls_cipher_desc *cipher_desc;
2692 struct tls_crypto_info *crypto_info;
2693 char *iv, *rec_seq, *key, *salt;
2694 struct cipher_context *cctx;
2695 struct tls_prot_info *prot;
2696 struct crypto_aead **aead;
2697 struct tls_context *ctx;
2698 struct crypto_tfm *tfm;
2699 int rc = 0;
2701 ctx = tls_get_ctx(sk);
2702 prot = &ctx->prot_info;
2704 if (tx) {
2705 ctx->priv_ctx_tx = init_ctx_tx(ctx, sk);
2706 if (!ctx->priv_ctx_tx)
2707 return -ENOMEM;
2709 sw_ctx_tx = ctx->priv_ctx_tx;
2710 crypto_info = &ctx->crypto_send.info;
2711 cctx = &ctx->tx;
2712 aead = &sw_ctx_tx->aead_send;
2713 } else {
2714 ctx->priv_ctx_rx = init_ctx_rx(ctx);
2715 if (!ctx->priv_ctx_rx)
2716 return -ENOMEM;
2718 sw_ctx_rx = ctx->priv_ctx_rx;
2719 crypto_info = &ctx->crypto_recv.info;
2720 cctx = &ctx->rx;
2721 aead = &sw_ctx_rx->aead_recv;
2724 cipher_desc = get_cipher_desc(crypto_info->cipher_type);
2725 if (!cipher_desc) {
2726 rc = -EINVAL;
2727 goto free_priv;
2730 rc = init_prot_info(prot, crypto_info, cipher_desc);
2731 if (rc)
2732 goto free_priv;
2734 iv = crypto_info_iv(crypto_info, cipher_desc);
2735 key = crypto_info_key(crypto_info, cipher_desc);
2736 salt = crypto_info_salt(crypto_info, cipher_desc);
2737 rec_seq = crypto_info_rec_seq(crypto_info, cipher_desc);
2739 memcpy(cctx->iv, salt, cipher_desc->salt);
2740 memcpy(cctx->iv + cipher_desc->salt, iv, cipher_desc->iv);
2741 memcpy(cctx->rec_seq, rec_seq, cipher_desc->rec_seq);
2743 if (!*aead) {
2744 *aead = crypto_alloc_aead(cipher_desc->cipher_name, 0, 0);
2745 if (IS_ERR(*aead)) {
2746 rc = PTR_ERR(*aead);
2747 *aead = NULL;
2748 goto free_priv;
2752 ctx->push_pending_record = tls_sw_push_pending_record;
2754 rc = crypto_aead_setkey(*aead, key, cipher_desc->key);
2755 if (rc)
2756 goto free_aead;
2758 rc = crypto_aead_setauthsize(*aead, prot->tag_size);
2759 if (rc)
2760 goto free_aead;
2762 if (sw_ctx_rx) {
2763 tfm = crypto_aead_tfm(sw_ctx_rx->aead_recv);
2765 tls_update_rx_zc_capable(ctx);
2766 sw_ctx_rx->async_capable =
2767 crypto_info->version != TLS_1_3_VERSION &&
2768 !!(tfm->__crt_alg->cra_flags & CRYPTO_ALG_ASYNC);
2770 rc = tls_strp_init(&sw_ctx_rx->strp, sk);
2771 if (rc)
2772 goto free_aead;
2775 goto out;
2777 free_aead:
2778 crypto_free_aead(*aead);
2779 *aead = NULL;
2780 free_priv:
2781 if (tx) {
2782 kfree(ctx->priv_ctx_tx);
2783 ctx->priv_ctx_tx = NULL;
2784 } else {
2785 kfree(ctx->priv_ctx_rx);
2786 ctx->priv_ctx_rx = NULL;
2788 out:
2789 return rc;