drm/modes: Fix drm_mode_vrefres() docs
[drm/drm-misc.git] / net / vmw_vsock / af_vsock.c
blob5cf8109f672a51f8cf6daca344ae3653dc3beec3
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * VMware vSockets Driver
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
6 */
8 /* Implementation notes:
10 * - There are two kinds of sockets: those created by user action (such as
11 * calling socket(2)) and those created by incoming connection request packets.
13 * - There are two "global" tables, one for bound sockets (sockets that have
14 * specified an address that they are responsible for) and one for connected
15 * sockets (sockets that have established a connection with another socket).
16 * These tables are "global" in that all sockets on the system are placed
17 * within them. - Note, though, that the bound table contains an extra entry
18 * for a list of unbound sockets and SOCK_DGRAM sockets will always remain in
19 * that list. The bound table is used solely for lookup of sockets when packets
20 * are received and that's not necessary for SOCK_DGRAM sockets since we create
21 * a datagram handle for each and need not perform a lookup. Keeping SOCK_DGRAM
22 * sockets out of the bound hash buckets will reduce the chance of collisions
23 * when looking for SOCK_STREAM sockets and prevents us from having to check the
24 * socket type in the hash table lookups.
26 * - Sockets created by user action will either be "client" sockets that
27 * initiate a connection or "server" sockets that listen for connections; we do
28 * not support simultaneous connects (two "client" sockets connecting).
30 * - "Server" sockets are referred to as listener sockets throughout this
31 * implementation because they are in the TCP_LISTEN state. When a
32 * connection request is received (the second kind of socket mentioned above),
33 * we create a new socket and refer to it as a pending socket. These pending
34 * sockets are placed on the pending connection list of the listener socket.
35 * When future packets are received for the address the listener socket is
36 * bound to, we check if the source of the packet is from one that has an
37 * existing pending connection. If it does, we process the packet for the
38 * pending socket. When that socket reaches the connected state, it is removed
39 * from the listener socket's pending list and enqueued in the listener
40 * socket's accept queue. Callers of accept(2) will accept connected sockets
41 * from the listener socket's accept queue. If the socket cannot be accepted
42 * for some reason then it is marked rejected. Once the connection is
43 * accepted, it is owned by the user process and the responsibility for cleanup
44 * falls with that user process.
46 * - It is possible that these pending sockets will never reach the connected
47 * state; in fact, we may never receive another packet after the connection
48 * request. Because of this, we must schedule a cleanup function to run in the
49 * future, after some amount of time passes where a connection should have been
50 * established. This function ensures that the socket is off all lists so it
51 * cannot be retrieved, then drops all references to the socket so it is cleaned
52 * up (sock_put() -> sk_free() -> our sk_destruct implementation). Note this
53 * function will also cleanup rejected sockets, those that reach the connected
54 * state but leave it before they have been accepted.
56 * - Lock ordering for pending or accept queue sockets is:
58 * lock_sock(listener);
59 * lock_sock_nested(pending, SINGLE_DEPTH_NESTING);
61 * Using explicit nested locking keeps lockdep happy since normally only one
62 * lock of a given class may be taken at a time.
64 * - Sockets created by user action will be cleaned up when the user process
65 * calls close(2), causing our release implementation to be called. Our release
66 * implementation will perform some cleanup then drop the last reference so our
67 * sk_destruct implementation is invoked. Our sk_destruct implementation will
68 * perform additional cleanup that's common for both types of sockets.
70 * - A socket's reference count is what ensures that the structure won't be
71 * freed. Each entry in a list (such as the "global" bound and connected tables
72 * and the listener socket's pending list and connected queue) ensures a
73 * reference. When we defer work until process context and pass a socket as our
74 * argument, we must ensure the reference count is increased to ensure the
75 * socket isn't freed before the function is run; the deferred function will
76 * then drop the reference.
78 * - sk->sk_state uses the TCP state constants because they are widely used by
79 * other address families and exposed to userspace tools like ss(8):
81 * TCP_CLOSE - unconnected
82 * TCP_SYN_SENT - connecting
83 * TCP_ESTABLISHED - connected
84 * TCP_CLOSING - disconnecting
85 * TCP_LISTEN - listening
88 #include <linux/compat.h>
89 #include <linux/types.h>
90 #include <linux/bitops.h>
91 #include <linux/cred.h>
92 #include <linux/errqueue.h>
93 #include <linux/init.h>
94 #include <linux/io.h>
95 #include <linux/kernel.h>
96 #include <linux/sched/signal.h>
97 #include <linux/kmod.h>
98 #include <linux/list.h>
99 #include <linux/miscdevice.h>
100 #include <linux/module.h>
101 #include <linux/mutex.h>
102 #include <linux/net.h>
103 #include <linux/poll.h>
104 #include <linux/random.h>
105 #include <linux/skbuff.h>
106 #include <linux/smp.h>
107 #include <linux/socket.h>
108 #include <linux/stddef.h>
109 #include <linux/unistd.h>
110 #include <linux/wait.h>
111 #include <linux/workqueue.h>
112 #include <net/sock.h>
113 #include <net/af_vsock.h>
114 #include <uapi/linux/vm_sockets.h>
115 #include <uapi/asm-generic/ioctls.h>
117 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr);
118 static void vsock_sk_destruct(struct sock *sk);
119 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
120 static void vsock_close(struct sock *sk, long timeout);
122 /* Protocol family. */
123 struct proto vsock_proto = {
124 .name = "AF_VSOCK",
125 .owner = THIS_MODULE,
126 .obj_size = sizeof(struct vsock_sock),
127 .close = vsock_close,
128 #ifdef CONFIG_BPF_SYSCALL
129 .psock_update_sk_prot = vsock_bpf_update_proto,
130 #endif
133 /* The default peer timeout indicates how long we will wait for a peer response
134 * to a control message.
136 #define VSOCK_DEFAULT_CONNECT_TIMEOUT (2 * HZ)
138 #define VSOCK_DEFAULT_BUFFER_SIZE (1024 * 256)
139 #define VSOCK_DEFAULT_BUFFER_MAX_SIZE (1024 * 256)
140 #define VSOCK_DEFAULT_BUFFER_MIN_SIZE 128
142 /* Transport used for host->guest communication */
143 static const struct vsock_transport *transport_h2g;
144 /* Transport used for guest->host communication */
145 static const struct vsock_transport *transport_g2h;
146 /* Transport used for DGRAM communication */
147 static const struct vsock_transport *transport_dgram;
148 /* Transport used for local communication */
149 static const struct vsock_transport *transport_local;
150 static DEFINE_MUTEX(vsock_register_mutex);
152 /**** UTILS ****/
154 /* Each bound VSocket is stored in the bind hash table and each connected
155 * VSocket is stored in the connected hash table.
157 * Unbound sockets are all put on the same list attached to the end of the hash
158 * table (vsock_unbound_sockets). Bound sockets are added to the hash table in
159 * the bucket that their local address hashes to (vsock_bound_sockets(addr)
160 * represents the list that addr hashes to).
162 * Specifically, we initialize the vsock_bind_table array to a size of
163 * VSOCK_HASH_SIZE + 1 so that vsock_bind_table[0] through
164 * vsock_bind_table[VSOCK_HASH_SIZE - 1] are for bound sockets and
165 * vsock_bind_table[VSOCK_HASH_SIZE] is for unbound sockets. The hash function
166 * mods with VSOCK_HASH_SIZE to ensure this.
168 #define MAX_PORT_RETRIES 24
170 #define VSOCK_HASH(addr) ((addr)->svm_port % VSOCK_HASH_SIZE)
171 #define vsock_bound_sockets(addr) (&vsock_bind_table[VSOCK_HASH(addr)])
172 #define vsock_unbound_sockets (&vsock_bind_table[VSOCK_HASH_SIZE])
174 /* XXX This can probably be implemented in a better way. */
175 #define VSOCK_CONN_HASH(src, dst) \
176 (((src)->svm_cid ^ (dst)->svm_port) % VSOCK_HASH_SIZE)
177 #define vsock_connected_sockets(src, dst) \
178 (&vsock_connected_table[VSOCK_CONN_HASH(src, dst)])
179 #define vsock_connected_sockets_vsk(vsk) \
180 vsock_connected_sockets(&(vsk)->remote_addr, &(vsk)->local_addr)
182 struct list_head vsock_bind_table[VSOCK_HASH_SIZE + 1];
183 EXPORT_SYMBOL_GPL(vsock_bind_table);
184 struct list_head vsock_connected_table[VSOCK_HASH_SIZE];
185 EXPORT_SYMBOL_GPL(vsock_connected_table);
186 DEFINE_SPINLOCK(vsock_table_lock);
187 EXPORT_SYMBOL_GPL(vsock_table_lock);
189 /* Autobind this socket to the local address if necessary. */
190 static int vsock_auto_bind(struct vsock_sock *vsk)
192 struct sock *sk = sk_vsock(vsk);
193 struct sockaddr_vm local_addr;
195 if (vsock_addr_bound(&vsk->local_addr))
196 return 0;
197 vsock_addr_init(&local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
198 return __vsock_bind(sk, &local_addr);
201 static void vsock_init_tables(void)
203 int i;
205 for (i = 0; i < ARRAY_SIZE(vsock_bind_table); i++)
206 INIT_LIST_HEAD(&vsock_bind_table[i]);
208 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++)
209 INIT_LIST_HEAD(&vsock_connected_table[i]);
212 static void __vsock_insert_bound(struct list_head *list,
213 struct vsock_sock *vsk)
215 sock_hold(&vsk->sk);
216 list_add(&vsk->bound_table, list);
219 static void __vsock_insert_connected(struct list_head *list,
220 struct vsock_sock *vsk)
222 sock_hold(&vsk->sk);
223 list_add(&vsk->connected_table, list);
226 static void __vsock_remove_bound(struct vsock_sock *vsk)
228 list_del_init(&vsk->bound_table);
229 sock_put(&vsk->sk);
232 static void __vsock_remove_connected(struct vsock_sock *vsk)
234 list_del_init(&vsk->connected_table);
235 sock_put(&vsk->sk);
238 static struct sock *__vsock_find_bound_socket(struct sockaddr_vm *addr)
240 struct vsock_sock *vsk;
242 list_for_each_entry(vsk, vsock_bound_sockets(addr), bound_table) {
243 if (vsock_addr_equals_addr(addr, &vsk->local_addr))
244 return sk_vsock(vsk);
246 if (addr->svm_port == vsk->local_addr.svm_port &&
247 (vsk->local_addr.svm_cid == VMADDR_CID_ANY ||
248 addr->svm_cid == VMADDR_CID_ANY))
249 return sk_vsock(vsk);
252 return NULL;
255 static struct sock *__vsock_find_connected_socket(struct sockaddr_vm *src,
256 struct sockaddr_vm *dst)
258 struct vsock_sock *vsk;
260 list_for_each_entry(vsk, vsock_connected_sockets(src, dst),
261 connected_table) {
262 if (vsock_addr_equals_addr(src, &vsk->remote_addr) &&
263 dst->svm_port == vsk->local_addr.svm_port) {
264 return sk_vsock(vsk);
268 return NULL;
271 static void vsock_insert_unbound(struct vsock_sock *vsk)
273 spin_lock_bh(&vsock_table_lock);
274 __vsock_insert_bound(vsock_unbound_sockets, vsk);
275 spin_unlock_bh(&vsock_table_lock);
278 void vsock_insert_connected(struct vsock_sock *vsk)
280 struct list_head *list = vsock_connected_sockets(
281 &vsk->remote_addr, &vsk->local_addr);
283 spin_lock_bh(&vsock_table_lock);
284 __vsock_insert_connected(list, vsk);
285 spin_unlock_bh(&vsock_table_lock);
287 EXPORT_SYMBOL_GPL(vsock_insert_connected);
289 void vsock_remove_bound(struct vsock_sock *vsk)
291 spin_lock_bh(&vsock_table_lock);
292 if (__vsock_in_bound_table(vsk))
293 __vsock_remove_bound(vsk);
294 spin_unlock_bh(&vsock_table_lock);
296 EXPORT_SYMBOL_GPL(vsock_remove_bound);
298 void vsock_remove_connected(struct vsock_sock *vsk)
300 spin_lock_bh(&vsock_table_lock);
301 if (__vsock_in_connected_table(vsk))
302 __vsock_remove_connected(vsk);
303 spin_unlock_bh(&vsock_table_lock);
305 EXPORT_SYMBOL_GPL(vsock_remove_connected);
307 struct sock *vsock_find_bound_socket(struct sockaddr_vm *addr)
309 struct sock *sk;
311 spin_lock_bh(&vsock_table_lock);
312 sk = __vsock_find_bound_socket(addr);
313 if (sk)
314 sock_hold(sk);
316 spin_unlock_bh(&vsock_table_lock);
318 return sk;
320 EXPORT_SYMBOL_GPL(vsock_find_bound_socket);
322 struct sock *vsock_find_connected_socket(struct sockaddr_vm *src,
323 struct sockaddr_vm *dst)
325 struct sock *sk;
327 spin_lock_bh(&vsock_table_lock);
328 sk = __vsock_find_connected_socket(src, dst);
329 if (sk)
330 sock_hold(sk);
332 spin_unlock_bh(&vsock_table_lock);
334 return sk;
336 EXPORT_SYMBOL_GPL(vsock_find_connected_socket);
338 void vsock_remove_sock(struct vsock_sock *vsk)
340 vsock_remove_bound(vsk);
341 vsock_remove_connected(vsk);
343 EXPORT_SYMBOL_GPL(vsock_remove_sock);
345 void vsock_for_each_connected_socket(struct vsock_transport *transport,
346 void (*fn)(struct sock *sk))
348 int i;
350 spin_lock_bh(&vsock_table_lock);
352 for (i = 0; i < ARRAY_SIZE(vsock_connected_table); i++) {
353 struct vsock_sock *vsk;
354 list_for_each_entry(vsk, &vsock_connected_table[i],
355 connected_table) {
356 if (vsk->transport != transport)
357 continue;
359 fn(sk_vsock(vsk));
363 spin_unlock_bh(&vsock_table_lock);
365 EXPORT_SYMBOL_GPL(vsock_for_each_connected_socket);
367 void vsock_add_pending(struct sock *listener, struct sock *pending)
369 struct vsock_sock *vlistener;
370 struct vsock_sock *vpending;
372 vlistener = vsock_sk(listener);
373 vpending = vsock_sk(pending);
375 sock_hold(pending);
376 sock_hold(listener);
377 list_add_tail(&vpending->pending_links, &vlistener->pending_links);
379 EXPORT_SYMBOL_GPL(vsock_add_pending);
381 void vsock_remove_pending(struct sock *listener, struct sock *pending)
383 struct vsock_sock *vpending = vsock_sk(pending);
385 list_del_init(&vpending->pending_links);
386 sock_put(listener);
387 sock_put(pending);
389 EXPORT_SYMBOL_GPL(vsock_remove_pending);
391 void vsock_enqueue_accept(struct sock *listener, struct sock *connected)
393 struct vsock_sock *vlistener;
394 struct vsock_sock *vconnected;
396 vlistener = vsock_sk(listener);
397 vconnected = vsock_sk(connected);
399 sock_hold(connected);
400 sock_hold(listener);
401 list_add_tail(&vconnected->accept_queue, &vlistener->accept_queue);
403 EXPORT_SYMBOL_GPL(vsock_enqueue_accept);
405 static bool vsock_use_local_transport(unsigned int remote_cid)
407 if (!transport_local)
408 return false;
410 if (remote_cid == VMADDR_CID_LOCAL)
411 return true;
413 if (transport_g2h) {
414 return remote_cid == transport_g2h->get_local_cid();
415 } else {
416 return remote_cid == VMADDR_CID_HOST;
420 static void vsock_deassign_transport(struct vsock_sock *vsk)
422 if (!vsk->transport)
423 return;
425 vsk->transport->destruct(vsk);
426 module_put(vsk->transport->module);
427 vsk->transport = NULL;
430 /* Assign a transport to a socket and call the .init transport callback.
432 * Note: for connection oriented socket this must be called when vsk->remote_addr
433 * is set (e.g. during the connect() or when a connection request on a listener
434 * socket is received).
435 * The vsk->remote_addr is used to decide which transport to use:
436 * - remote CID == VMADDR_CID_LOCAL or g2h->local_cid or VMADDR_CID_HOST if
437 * g2h is not loaded, will use local transport;
438 * - remote CID <= VMADDR_CID_HOST or h2g is not loaded or remote flags field
439 * includes VMADDR_FLAG_TO_HOST flag value, will use guest->host transport;
440 * - remote CID > VMADDR_CID_HOST will use host->guest transport;
442 int vsock_assign_transport(struct vsock_sock *vsk, struct vsock_sock *psk)
444 const struct vsock_transport *new_transport;
445 struct sock *sk = sk_vsock(vsk);
446 unsigned int remote_cid = vsk->remote_addr.svm_cid;
447 __u8 remote_flags;
448 int ret;
450 /* If the packet is coming with the source and destination CIDs higher
451 * than VMADDR_CID_HOST, then a vsock channel where all the packets are
452 * forwarded to the host should be established. Then the host will
453 * need to forward the packets to the guest.
455 * The flag is set on the (listen) receive path (psk is not NULL). On
456 * the connect path the flag can be set by the user space application.
458 if (psk && vsk->local_addr.svm_cid > VMADDR_CID_HOST &&
459 vsk->remote_addr.svm_cid > VMADDR_CID_HOST)
460 vsk->remote_addr.svm_flags |= VMADDR_FLAG_TO_HOST;
462 remote_flags = vsk->remote_addr.svm_flags;
464 switch (sk->sk_type) {
465 case SOCK_DGRAM:
466 new_transport = transport_dgram;
467 break;
468 case SOCK_STREAM:
469 case SOCK_SEQPACKET:
470 if (vsock_use_local_transport(remote_cid))
471 new_transport = transport_local;
472 else if (remote_cid <= VMADDR_CID_HOST || !transport_h2g ||
473 (remote_flags & VMADDR_FLAG_TO_HOST))
474 new_transport = transport_g2h;
475 else
476 new_transport = transport_h2g;
477 break;
478 default:
479 return -ESOCKTNOSUPPORT;
482 if (vsk->transport) {
483 if (vsk->transport == new_transport)
484 return 0;
486 /* transport->release() must be called with sock lock acquired.
487 * This path can only be taken during vsock_connect(), where we
488 * have already held the sock lock. In the other cases, this
489 * function is called on a new socket which is not assigned to
490 * any transport.
492 vsk->transport->release(vsk);
493 vsock_deassign_transport(vsk);
496 /* We increase the module refcnt to prevent the transport unloading
497 * while there are open sockets assigned to it.
499 if (!new_transport || !try_module_get(new_transport->module))
500 return -ENODEV;
502 if (sk->sk_type == SOCK_SEQPACKET) {
503 if (!new_transport->seqpacket_allow ||
504 !new_transport->seqpacket_allow(remote_cid)) {
505 module_put(new_transport->module);
506 return -ESOCKTNOSUPPORT;
510 ret = new_transport->init(vsk, psk);
511 if (ret) {
512 module_put(new_transport->module);
513 return ret;
516 vsk->transport = new_transport;
518 return 0;
520 EXPORT_SYMBOL_GPL(vsock_assign_transport);
522 bool vsock_find_cid(unsigned int cid)
524 if (transport_g2h && cid == transport_g2h->get_local_cid())
525 return true;
527 if (transport_h2g && cid == VMADDR_CID_HOST)
528 return true;
530 if (transport_local && cid == VMADDR_CID_LOCAL)
531 return true;
533 return false;
535 EXPORT_SYMBOL_GPL(vsock_find_cid);
537 static struct sock *vsock_dequeue_accept(struct sock *listener)
539 struct vsock_sock *vlistener;
540 struct vsock_sock *vconnected;
542 vlistener = vsock_sk(listener);
544 if (list_empty(&vlistener->accept_queue))
545 return NULL;
547 vconnected = list_entry(vlistener->accept_queue.next,
548 struct vsock_sock, accept_queue);
550 list_del_init(&vconnected->accept_queue);
551 sock_put(listener);
552 /* The caller will need a reference on the connected socket so we let
553 * it call sock_put().
556 return sk_vsock(vconnected);
559 static bool vsock_is_accept_queue_empty(struct sock *sk)
561 struct vsock_sock *vsk = vsock_sk(sk);
562 return list_empty(&vsk->accept_queue);
565 static bool vsock_is_pending(struct sock *sk)
567 struct vsock_sock *vsk = vsock_sk(sk);
568 return !list_empty(&vsk->pending_links);
571 static int vsock_send_shutdown(struct sock *sk, int mode)
573 struct vsock_sock *vsk = vsock_sk(sk);
575 if (!vsk->transport)
576 return -ENODEV;
578 return vsk->transport->shutdown(vsk, mode);
581 static void vsock_pending_work(struct work_struct *work)
583 struct sock *sk;
584 struct sock *listener;
585 struct vsock_sock *vsk;
586 bool cleanup;
588 vsk = container_of(work, struct vsock_sock, pending_work.work);
589 sk = sk_vsock(vsk);
590 listener = vsk->listener;
591 cleanup = true;
593 lock_sock(listener);
594 lock_sock_nested(sk, SINGLE_DEPTH_NESTING);
596 if (vsock_is_pending(sk)) {
597 vsock_remove_pending(listener, sk);
599 sk_acceptq_removed(listener);
600 } else if (!vsk->rejected) {
601 /* We are not on the pending list and accept() did not reject
602 * us, so we must have been accepted by our user process. We
603 * just need to drop our references to the sockets and be on
604 * our way.
606 cleanup = false;
607 goto out;
610 /* We need to remove ourself from the global connected sockets list so
611 * incoming packets can't find this socket, and to reduce the reference
612 * count.
614 vsock_remove_connected(vsk);
616 sk->sk_state = TCP_CLOSE;
618 out:
619 release_sock(sk);
620 release_sock(listener);
621 if (cleanup)
622 sock_put(sk);
624 sock_put(sk);
625 sock_put(listener);
628 /**** SOCKET OPERATIONS ****/
630 static int __vsock_bind_connectible(struct vsock_sock *vsk,
631 struct sockaddr_vm *addr)
633 static u32 port;
634 struct sockaddr_vm new_addr;
636 if (!port)
637 port = get_random_u32_above(LAST_RESERVED_PORT);
639 vsock_addr_init(&new_addr, addr->svm_cid, addr->svm_port);
641 if (addr->svm_port == VMADDR_PORT_ANY) {
642 bool found = false;
643 unsigned int i;
645 for (i = 0; i < MAX_PORT_RETRIES; i++) {
646 if (port <= LAST_RESERVED_PORT)
647 port = LAST_RESERVED_PORT + 1;
649 new_addr.svm_port = port++;
651 if (!__vsock_find_bound_socket(&new_addr)) {
652 found = true;
653 break;
657 if (!found)
658 return -EADDRNOTAVAIL;
659 } else {
660 /* If port is in reserved range, ensure caller
661 * has necessary privileges.
663 if (addr->svm_port <= LAST_RESERVED_PORT &&
664 !capable(CAP_NET_BIND_SERVICE)) {
665 return -EACCES;
668 if (__vsock_find_bound_socket(&new_addr))
669 return -EADDRINUSE;
672 vsock_addr_init(&vsk->local_addr, new_addr.svm_cid, new_addr.svm_port);
674 /* Remove connection oriented sockets from the unbound list and add them
675 * to the hash table for easy lookup by its address. The unbound list
676 * is simply an extra entry at the end of the hash table, a trick used
677 * by AF_UNIX.
679 __vsock_remove_bound(vsk);
680 __vsock_insert_bound(vsock_bound_sockets(&vsk->local_addr), vsk);
682 return 0;
685 static int __vsock_bind_dgram(struct vsock_sock *vsk,
686 struct sockaddr_vm *addr)
688 return vsk->transport->dgram_bind(vsk, addr);
691 static int __vsock_bind(struct sock *sk, struct sockaddr_vm *addr)
693 struct vsock_sock *vsk = vsock_sk(sk);
694 int retval;
696 /* First ensure this socket isn't already bound. */
697 if (vsock_addr_bound(&vsk->local_addr))
698 return -EINVAL;
700 /* Now bind to the provided address or select appropriate values if
701 * none are provided (VMADDR_CID_ANY and VMADDR_PORT_ANY). Note that
702 * like AF_INET prevents binding to a non-local IP address (in most
703 * cases), we only allow binding to a local CID.
705 if (addr->svm_cid != VMADDR_CID_ANY && !vsock_find_cid(addr->svm_cid))
706 return -EADDRNOTAVAIL;
708 switch (sk->sk_socket->type) {
709 case SOCK_STREAM:
710 case SOCK_SEQPACKET:
711 spin_lock_bh(&vsock_table_lock);
712 retval = __vsock_bind_connectible(vsk, addr);
713 spin_unlock_bh(&vsock_table_lock);
714 break;
716 case SOCK_DGRAM:
717 retval = __vsock_bind_dgram(vsk, addr);
718 break;
720 default:
721 retval = -EINVAL;
722 break;
725 return retval;
728 static void vsock_connect_timeout(struct work_struct *work);
730 static struct sock *__vsock_create(struct net *net,
731 struct socket *sock,
732 struct sock *parent,
733 gfp_t priority,
734 unsigned short type,
735 int kern)
737 struct sock *sk;
738 struct vsock_sock *psk;
739 struct vsock_sock *vsk;
741 sk = sk_alloc(net, AF_VSOCK, priority, &vsock_proto, kern);
742 if (!sk)
743 return NULL;
745 sock_init_data(sock, sk);
747 /* sk->sk_type is normally set in sock_init_data, but only if sock is
748 * non-NULL. We make sure that our sockets always have a type by
749 * setting it here if needed.
751 if (!sock)
752 sk->sk_type = type;
754 vsk = vsock_sk(sk);
755 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
756 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
758 sk->sk_destruct = vsock_sk_destruct;
759 sk->sk_backlog_rcv = vsock_queue_rcv_skb;
760 sock_reset_flag(sk, SOCK_DONE);
762 INIT_LIST_HEAD(&vsk->bound_table);
763 INIT_LIST_HEAD(&vsk->connected_table);
764 vsk->listener = NULL;
765 INIT_LIST_HEAD(&vsk->pending_links);
766 INIT_LIST_HEAD(&vsk->accept_queue);
767 vsk->rejected = false;
768 vsk->sent_request = false;
769 vsk->ignore_connecting_rst = false;
770 vsk->peer_shutdown = 0;
771 INIT_DELAYED_WORK(&vsk->connect_work, vsock_connect_timeout);
772 INIT_DELAYED_WORK(&vsk->pending_work, vsock_pending_work);
774 psk = parent ? vsock_sk(parent) : NULL;
775 if (parent) {
776 vsk->trusted = psk->trusted;
777 vsk->owner = get_cred(psk->owner);
778 vsk->connect_timeout = psk->connect_timeout;
779 vsk->buffer_size = psk->buffer_size;
780 vsk->buffer_min_size = psk->buffer_min_size;
781 vsk->buffer_max_size = psk->buffer_max_size;
782 security_sk_clone(parent, sk);
783 } else {
784 vsk->trusted = ns_capable_noaudit(&init_user_ns, CAP_NET_ADMIN);
785 vsk->owner = get_current_cred();
786 vsk->connect_timeout = VSOCK_DEFAULT_CONNECT_TIMEOUT;
787 vsk->buffer_size = VSOCK_DEFAULT_BUFFER_SIZE;
788 vsk->buffer_min_size = VSOCK_DEFAULT_BUFFER_MIN_SIZE;
789 vsk->buffer_max_size = VSOCK_DEFAULT_BUFFER_MAX_SIZE;
792 return sk;
795 static bool sock_type_connectible(u16 type)
797 return (type == SOCK_STREAM) || (type == SOCK_SEQPACKET);
800 static void __vsock_release(struct sock *sk, int level)
802 struct vsock_sock *vsk;
803 struct sock *pending;
805 vsk = vsock_sk(sk);
806 pending = NULL; /* Compiler warning. */
808 /* When "level" is SINGLE_DEPTH_NESTING, use the nested
809 * version to avoid the warning "possible recursive locking
810 * detected". When "level" is 0, lock_sock_nested(sk, level)
811 * is the same as lock_sock(sk).
813 lock_sock_nested(sk, level);
815 if (vsk->transport)
816 vsk->transport->release(vsk);
817 else if (sock_type_connectible(sk->sk_type))
818 vsock_remove_sock(vsk);
820 sock_orphan(sk);
821 sk->sk_shutdown = SHUTDOWN_MASK;
823 skb_queue_purge(&sk->sk_receive_queue);
825 /* Clean up any sockets that never were accepted. */
826 while ((pending = vsock_dequeue_accept(sk)) != NULL) {
827 __vsock_release(pending, SINGLE_DEPTH_NESTING);
828 sock_put(pending);
831 release_sock(sk);
832 sock_put(sk);
835 static void vsock_sk_destruct(struct sock *sk)
837 struct vsock_sock *vsk = vsock_sk(sk);
839 /* Flush MSG_ZEROCOPY leftovers. */
840 __skb_queue_purge(&sk->sk_error_queue);
842 vsock_deassign_transport(vsk);
844 /* When clearing these addresses, there's no need to set the family and
845 * possibly register the address family with the kernel.
847 vsock_addr_init(&vsk->local_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
848 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY, VMADDR_PORT_ANY);
850 put_cred(vsk->owner);
853 static int vsock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
855 int err;
857 err = sock_queue_rcv_skb(sk, skb);
858 if (err)
859 kfree_skb(skb);
861 return err;
864 struct sock *vsock_create_connected(struct sock *parent)
866 return __vsock_create(sock_net(parent), NULL, parent, GFP_KERNEL,
867 parent->sk_type, 0);
869 EXPORT_SYMBOL_GPL(vsock_create_connected);
871 s64 vsock_stream_has_data(struct vsock_sock *vsk)
873 return vsk->transport->stream_has_data(vsk);
875 EXPORT_SYMBOL_GPL(vsock_stream_has_data);
877 s64 vsock_connectible_has_data(struct vsock_sock *vsk)
879 struct sock *sk = sk_vsock(vsk);
881 if (sk->sk_type == SOCK_SEQPACKET)
882 return vsk->transport->seqpacket_has_data(vsk);
883 else
884 return vsock_stream_has_data(vsk);
886 EXPORT_SYMBOL_GPL(vsock_connectible_has_data);
888 s64 vsock_stream_has_space(struct vsock_sock *vsk)
890 return vsk->transport->stream_has_space(vsk);
892 EXPORT_SYMBOL_GPL(vsock_stream_has_space);
894 void vsock_data_ready(struct sock *sk)
896 struct vsock_sock *vsk = vsock_sk(sk);
898 if (vsock_stream_has_data(vsk) >= sk->sk_rcvlowat ||
899 sock_flag(sk, SOCK_DONE))
900 sk->sk_data_ready(sk);
902 EXPORT_SYMBOL_GPL(vsock_data_ready);
904 /* Dummy callback required by sockmap.
905 * See unconditional call of saved_close() in sock_map_close().
907 static void vsock_close(struct sock *sk, long timeout)
911 static int vsock_release(struct socket *sock)
913 struct sock *sk = sock->sk;
915 if (!sk)
916 return 0;
918 sk->sk_prot->close(sk, 0);
919 __vsock_release(sk, 0);
920 sock->sk = NULL;
921 sock->state = SS_FREE;
923 return 0;
926 static int
927 vsock_bind(struct socket *sock, struct sockaddr *addr, int addr_len)
929 int err;
930 struct sock *sk;
931 struct sockaddr_vm *vm_addr;
933 sk = sock->sk;
935 if (vsock_addr_cast(addr, addr_len, &vm_addr) != 0)
936 return -EINVAL;
938 lock_sock(sk);
939 err = __vsock_bind(sk, vm_addr);
940 release_sock(sk);
942 return err;
945 static int vsock_getname(struct socket *sock,
946 struct sockaddr *addr, int peer)
948 int err;
949 struct sock *sk;
950 struct vsock_sock *vsk;
951 struct sockaddr_vm *vm_addr;
953 sk = sock->sk;
954 vsk = vsock_sk(sk);
955 err = 0;
957 lock_sock(sk);
959 if (peer) {
960 if (sock->state != SS_CONNECTED) {
961 err = -ENOTCONN;
962 goto out;
964 vm_addr = &vsk->remote_addr;
965 } else {
966 vm_addr = &vsk->local_addr;
969 if (!vm_addr) {
970 err = -EINVAL;
971 goto out;
974 /* sys_getsockname() and sys_getpeername() pass us a
975 * MAX_SOCK_ADDR-sized buffer and don't set addr_len. Unfortunately
976 * that macro is defined in socket.c instead of .h, so we hardcode its
977 * value here.
979 BUILD_BUG_ON(sizeof(*vm_addr) > 128);
980 memcpy(addr, vm_addr, sizeof(*vm_addr));
981 err = sizeof(*vm_addr);
983 out:
984 release_sock(sk);
985 return err;
988 static int vsock_shutdown(struct socket *sock, int mode)
990 int err;
991 struct sock *sk;
993 /* User level uses SHUT_RD (0) and SHUT_WR (1), but the kernel uses
994 * RCV_SHUTDOWN (1) and SEND_SHUTDOWN (2), so we must increment mode
995 * here like the other address families do. Note also that the
996 * increment makes SHUT_RDWR (2) into RCV_SHUTDOWN | SEND_SHUTDOWN (3),
997 * which is what we want.
999 mode++;
1001 if ((mode & ~SHUTDOWN_MASK) || !mode)
1002 return -EINVAL;
1004 /* If this is a connection oriented socket and it is not connected then
1005 * bail out immediately. If it is a DGRAM socket then we must first
1006 * kick the socket so that it wakes up from any sleeping calls, for
1007 * example recv(), and then afterwards return the error.
1010 sk = sock->sk;
1012 lock_sock(sk);
1013 if (sock->state == SS_UNCONNECTED) {
1014 err = -ENOTCONN;
1015 if (sock_type_connectible(sk->sk_type))
1016 goto out;
1017 } else {
1018 sock->state = SS_DISCONNECTING;
1019 err = 0;
1022 /* Receive and send shutdowns are treated alike. */
1023 mode = mode & (RCV_SHUTDOWN | SEND_SHUTDOWN);
1024 if (mode) {
1025 sk->sk_shutdown |= mode;
1026 sk->sk_state_change(sk);
1028 if (sock_type_connectible(sk->sk_type)) {
1029 sock_reset_flag(sk, SOCK_DONE);
1030 vsock_send_shutdown(sk, mode);
1034 out:
1035 release_sock(sk);
1036 return err;
1039 static __poll_t vsock_poll(struct file *file, struct socket *sock,
1040 poll_table *wait)
1042 struct sock *sk;
1043 __poll_t mask;
1044 struct vsock_sock *vsk;
1046 sk = sock->sk;
1047 vsk = vsock_sk(sk);
1049 poll_wait(file, sk_sleep(sk), wait);
1050 mask = 0;
1052 if (sk->sk_err || !skb_queue_empty_lockless(&sk->sk_error_queue))
1053 /* Signify that there has been an error on this socket. */
1054 mask |= EPOLLERR;
1056 /* INET sockets treat local write shutdown and peer write shutdown as a
1057 * case of EPOLLHUP set.
1059 if ((sk->sk_shutdown == SHUTDOWN_MASK) ||
1060 ((sk->sk_shutdown & SEND_SHUTDOWN) &&
1061 (vsk->peer_shutdown & SEND_SHUTDOWN))) {
1062 mask |= EPOLLHUP;
1065 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1066 vsk->peer_shutdown & SEND_SHUTDOWN) {
1067 mask |= EPOLLRDHUP;
1070 if (sk_is_readable(sk))
1071 mask |= EPOLLIN | EPOLLRDNORM;
1073 if (sock->type == SOCK_DGRAM) {
1074 /* For datagram sockets we can read if there is something in
1075 * the queue and write as long as the socket isn't shutdown for
1076 * sending.
1078 if (!skb_queue_empty_lockless(&sk->sk_receive_queue) ||
1079 (sk->sk_shutdown & RCV_SHUTDOWN)) {
1080 mask |= EPOLLIN | EPOLLRDNORM;
1083 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1084 mask |= EPOLLOUT | EPOLLWRNORM | EPOLLWRBAND;
1086 } else if (sock_type_connectible(sk->sk_type)) {
1087 const struct vsock_transport *transport;
1089 lock_sock(sk);
1091 transport = vsk->transport;
1093 /* Listening sockets that have connections in their accept
1094 * queue can be read.
1096 if (sk->sk_state == TCP_LISTEN
1097 && !vsock_is_accept_queue_empty(sk))
1098 mask |= EPOLLIN | EPOLLRDNORM;
1100 /* If there is something in the queue then we can read. */
1101 if (transport && transport->stream_is_active(vsk) &&
1102 !(sk->sk_shutdown & RCV_SHUTDOWN)) {
1103 bool data_ready_now = false;
1104 int target = sock_rcvlowat(sk, 0, INT_MAX);
1105 int ret = transport->notify_poll_in(
1106 vsk, target, &data_ready_now);
1107 if (ret < 0) {
1108 mask |= EPOLLERR;
1109 } else {
1110 if (data_ready_now)
1111 mask |= EPOLLIN | EPOLLRDNORM;
1116 /* Sockets whose connections have been closed, reset, or
1117 * terminated should also be considered read, and we check the
1118 * shutdown flag for that.
1120 if (sk->sk_shutdown & RCV_SHUTDOWN ||
1121 vsk->peer_shutdown & SEND_SHUTDOWN) {
1122 mask |= EPOLLIN | EPOLLRDNORM;
1125 /* Connected sockets that can produce data can be written. */
1126 if (transport && sk->sk_state == TCP_ESTABLISHED) {
1127 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1128 bool space_avail_now = false;
1129 int ret = transport->notify_poll_out(
1130 vsk, 1, &space_avail_now);
1131 if (ret < 0) {
1132 mask |= EPOLLERR;
1133 } else {
1134 if (space_avail_now)
1135 /* Remove EPOLLWRBAND since INET
1136 * sockets are not setting it.
1138 mask |= EPOLLOUT | EPOLLWRNORM;
1144 /* Simulate INET socket poll behaviors, which sets
1145 * EPOLLOUT|EPOLLWRNORM when peer is closed and nothing to read,
1146 * but local send is not shutdown.
1148 if (sk->sk_state == TCP_CLOSE || sk->sk_state == TCP_CLOSING) {
1149 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
1150 mask |= EPOLLOUT | EPOLLWRNORM;
1154 release_sock(sk);
1157 return mask;
1160 static int vsock_read_skb(struct sock *sk, skb_read_actor_t read_actor)
1162 struct vsock_sock *vsk = vsock_sk(sk);
1164 return vsk->transport->read_skb(vsk, read_actor);
1167 static int vsock_dgram_sendmsg(struct socket *sock, struct msghdr *msg,
1168 size_t len)
1170 int err;
1171 struct sock *sk;
1172 struct vsock_sock *vsk;
1173 struct sockaddr_vm *remote_addr;
1174 const struct vsock_transport *transport;
1176 if (msg->msg_flags & MSG_OOB)
1177 return -EOPNOTSUPP;
1179 /* For now, MSG_DONTWAIT is always assumed... */
1180 err = 0;
1181 sk = sock->sk;
1182 vsk = vsock_sk(sk);
1184 lock_sock(sk);
1186 transport = vsk->transport;
1188 err = vsock_auto_bind(vsk);
1189 if (err)
1190 goto out;
1193 /* If the provided message contains an address, use that. Otherwise
1194 * fall back on the socket's remote handle (if it has been connected).
1196 if (msg->msg_name &&
1197 vsock_addr_cast(msg->msg_name, msg->msg_namelen,
1198 &remote_addr) == 0) {
1199 /* Ensure this address is of the right type and is a valid
1200 * destination.
1203 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1204 remote_addr->svm_cid = transport->get_local_cid();
1206 if (!vsock_addr_bound(remote_addr)) {
1207 err = -EINVAL;
1208 goto out;
1210 } else if (sock->state == SS_CONNECTED) {
1211 remote_addr = &vsk->remote_addr;
1213 if (remote_addr->svm_cid == VMADDR_CID_ANY)
1214 remote_addr->svm_cid = transport->get_local_cid();
1216 /* XXX Should connect() or this function ensure remote_addr is
1217 * bound?
1219 if (!vsock_addr_bound(&vsk->remote_addr)) {
1220 err = -EINVAL;
1221 goto out;
1223 } else {
1224 err = -EINVAL;
1225 goto out;
1228 if (!transport->dgram_allow(remote_addr->svm_cid,
1229 remote_addr->svm_port)) {
1230 err = -EINVAL;
1231 goto out;
1234 err = transport->dgram_enqueue(vsk, remote_addr, msg, len);
1236 out:
1237 release_sock(sk);
1238 return err;
1241 static int vsock_dgram_connect(struct socket *sock,
1242 struct sockaddr *addr, int addr_len, int flags)
1244 int err;
1245 struct sock *sk;
1246 struct vsock_sock *vsk;
1247 struct sockaddr_vm *remote_addr;
1249 sk = sock->sk;
1250 vsk = vsock_sk(sk);
1252 err = vsock_addr_cast(addr, addr_len, &remote_addr);
1253 if (err == -EAFNOSUPPORT && remote_addr->svm_family == AF_UNSPEC) {
1254 lock_sock(sk);
1255 vsock_addr_init(&vsk->remote_addr, VMADDR_CID_ANY,
1256 VMADDR_PORT_ANY);
1257 sock->state = SS_UNCONNECTED;
1258 release_sock(sk);
1259 return 0;
1260 } else if (err != 0)
1261 return -EINVAL;
1263 lock_sock(sk);
1265 err = vsock_auto_bind(vsk);
1266 if (err)
1267 goto out;
1269 if (!vsk->transport->dgram_allow(remote_addr->svm_cid,
1270 remote_addr->svm_port)) {
1271 err = -EINVAL;
1272 goto out;
1275 memcpy(&vsk->remote_addr, remote_addr, sizeof(vsk->remote_addr));
1276 sock->state = SS_CONNECTED;
1278 /* sock map disallows redirection of non-TCP sockets with sk_state !=
1279 * TCP_ESTABLISHED (see sock_map_redirect_allowed()), so we set
1280 * TCP_ESTABLISHED here to allow redirection of connected vsock dgrams.
1282 * This doesn't seem to be abnormal state for datagram sockets, as the
1283 * same approach can be see in other datagram socket types as well
1284 * (such as unix sockets).
1286 sk->sk_state = TCP_ESTABLISHED;
1288 out:
1289 release_sock(sk);
1290 return err;
1293 int __vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1294 size_t len, int flags)
1296 struct sock *sk = sock->sk;
1297 struct vsock_sock *vsk = vsock_sk(sk);
1299 return vsk->transport->dgram_dequeue(vsk, msg, len, flags);
1302 int vsock_dgram_recvmsg(struct socket *sock, struct msghdr *msg,
1303 size_t len, int flags)
1305 #ifdef CONFIG_BPF_SYSCALL
1306 struct sock *sk = sock->sk;
1307 const struct proto *prot;
1309 prot = READ_ONCE(sk->sk_prot);
1310 if (prot != &vsock_proto)
1311 return prot->recvmsg(sk, msg, len, flags, NULL);
1312 #endif
1314 return __vsock_dgram_recvmsg(sock, msg, len, flags);
1316 EXPORT_SYMBOL_GPL(vsock_dgram_recvmsg);
1318 static int vsock_do_ioctl(struct socket *sock, unsigned int cmd,
1319 int __user *arg)
1321 struct sock *sk = sock->sk;
1322 struct vsock_sock *vsk;
1323 int ret;
1325 vsk = vsock_sk(sk);
1327 switch (cmd) {
1328 case SIOCOUTQ: {
1329 ssize_t n_bytes;
1331 if (!vsk->transport || !vsk->transport->unsent_bytes) {
1332 ret = -EOPNOTSUPP;
1333 break;
1336 if (sock_type_connectible(sk->sk_type) && sk->sk_state == TCP_LISTEN) {
1337 ret = -EINVAL;
1338 break;
1341 n_bytes = vsk->transport->unsent_bytes(vsk);
1342 if (n_bytes < 0) {
1343 ret = n_bytes;
1344 break;
1347 ret = put_user(n_bytes, arg);
1348 break;
1350 default:
1351 ret = -ENOIOCTLCMD;
1354 return ret;
1357 static int vsock_ioctl(struct socket *sock, unsigned int cmd,
1358 unsigned long arg)
1360 int ret;
1362 lock_sock(sock->sk);
1363 ret = vsock_do_ioctl(sock, cmd, (int __user *)arg);
1364 release_sock(sock->sk);
1366 return ret;
1369 static const struct proto_ops vsock_dgram_ops = {
1370 .family = PF_VSOCK,
1371 .owner = THIS_MODULE,
1372 .release = vsock_release,
1373 .bind = vsock_bind,
1374 .connect = vsock_dgram_connect,
1375 .socketpair = sock_no_socketpair,
1376 .accept = sock_no_accept,
1377 .getname = vsock_getname,
1378 .poll = vsock_poll,
1379 .ioctl = vsock_ioctl,
1380 .listen = sock_no_listen,
1381 .shutdown = vsock_shutdown,
1382 .sendmsg = vsock_dgram_sendmsg,
1383 .recvmsg = vsock_dgram_recvmsg,
1384 .mmap = sock_no_mmap,
1385 .read_skb = vsock_read_skb,
1388 static int vsock_transport_cancel_pkt(struct vsock_sock *vsk)
1390 const struct vsock_transport *transport = vsk->transport;
1392 if (!transport || !transport->cancel_pkt)
1393 return -EOPNOTSUPP;
1395 return transport->cancel_pkt(vsk);
1398 static void vsock_connect_timeout(struct work_struct *work)
1400 struct sock *sk;
1401 struct vsock_sock *vsk;
1403 vsk = container_of(work, struct vsock_sock, connect_work.work);
1404 sk = sk_vsock(vsk);
1406 lock_sock(sk);
1407 if (sk->sk_state == TCP_SYN_SENT &&
1408 (sk->sk_shutdown != SHUTDOWN_MASK)) {
1409 sk->sk_state = TCP_CLOSE;
1410 sk->sk_socket->state = SS_UNCONNECTED;
1411 sk->sk_err = ETIMEDOUT;
1412 sk_error_report(sk);
1413 vsock_transport_cancel_pkt(vsk);
1415 release_sock(sk);
1417 sock_put(sk);
1420 static int vsock_connect(struct socket *sock, struct sockaddr *addr,
1421 int addr_len, int flags)
1423 int err;
1424 struct sock *sk;
1425 struct vsock_sock *vsk;
1426 const struct vsock_transport *transport;
1427 struct sockaddr_vm *remote_addr;
1428 long timeout;
1429 DEFINE_WAIT(wait);
1431 err = 0;
1432 sk = sock->sk;
1433 vsk = vsock_sk(sk);
1435 lock_sock(sk);
1437 /* XXX AF_UNSPEC should make us disconnect like AF_INET. */
1438 switch (sock->state) {
1439 case SS_CONNECTED:
1440 err = -EISCONN;
1441 goto out;
1442 case SS_DISCONNECTING:
1443 err = -EINVAL;
1444 goto out;
1445 case SS_CONNECTING:
1446 /* This continues on so we can move sock into the SS_CONNECTED
1447 * state once the connection has completed (at which point err
1448 * will be set to zero also). Otherwise, we will either wait
1449 * for the connection or return -EALREADY should this be a
1450 * non-blocking call.
1452 err = -EALREADY;
1453 if (flags & O_NONBLOCK)
1454 goto out;
1455 break;
1456 default:
1457 if ((sk->sk_state == TCP_LISTEN) ||
1458 vsock_addr_cast(addr, addr_len, &remote_addr) != 0) {
1459 err = -EINVAL;
1460 goto out;
1463 /* Set the remote address that we are connecting to. */
1464 memcpy(&vsk->remote_addr, remote_addr,
1465 sizeof(vsk->remote_addr));
1467 err = vsock_assign_transport(vsk, NULL);
1468 if (err)
1469 goto out;
1471 transport = vsk->transport;
1473 /* The hypervisor and well-known contexts do not have socket
1474 * endpoints.
1476 if (!transport ||
1477 !transport->stream_allow(remote_addr->svm_cid,
1478 remote_addr->svm_port)) {
1479 err = -ENETUNREACH;
1480 goto out;
1483 if (vsock_msgzerocopy_allow(transport)) {
1484 set_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1485 } else if (sock_flag(sk, SOCK_ZEROCOPY)) {
1486 /* If this option was set before 'connect()',
1487 * when transport was unknown, check that this
1488 * feature is supported here.
1490 err = -EOPNOTSUPP;
1491 goto out;
1494 err = vsock_auto_bind(vsk);
1495 if (err)
1496 goto out;
1498 sk->sk_state = TCP_SYN_SENT;
1500 err = transport->connect(vsk);
1501 if (err < 0)
1502 goto out;
1504 /* Mark sock as connecting and set the error code to in
1505 * progress in case this is a non-blocking connect.
1507 sock->state = SS_CONNECTING;
1508 err = -EINPROGRESS;
1511 /* The receive path will handle all communication until we are able to
1512 * enter the connected state. Here we wait for the connection to be
1513 * completed or a notification of an error.
1515 timeout = vsk->connect_timeout;
1516 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1518 while (sk->sk_state != TCP_ESTABLISHED && sk->sk_err == 0) {
1519 if (flags & O_NONBLOCK) {
1520 /* If we're not going to block, we schedule a timeout
1521 * function to generate a timeout on the connection
1522 * attempt, in case the peer doesn't respond in a
1523 * timely manner. We hold on to the socket until the
1524 * timeout fires.
1526 sock_hold(sk);
1528 /* If the timeout function is already scheduled,
1529 * reschedule it, then ungrab the socket refcount to
1530 * keep it balanced.
1532 if (mod_delayed_work(system_wq, &vsk->connect_work,
1533 timeout))
1534 sock_put(sk);
1536 /* Skip ahead to preserve error code set above. */
1537 goto out_wait;
1540 release_sock(sk);
1541 timeout = schedule_timeout(timeout);
1542 lock_sock(sk);
1544 if (signal_pending(current)) {
1545 err = sock_intr_errno(timeout);
1546 sk->sk_state = sk->sk_state == TCP_ESTABLISHED ? TCP_CLOSING : TCP_CLOSE;
1547 sock->state = SS_UNCONNECTED;
1548 vsock_transport_cancel_pkt(vsk);
1549 vsock_remove_connected(vsk);
1550 goto out_wait;
1551 } else if ((sk->sk_state != TCP_ESTABLISHED) && (timeout == 0)) {
1552 err = -ETIMEDOUT;
1553 sk->sk_state = TCP_CLOSE;
1554 sock->state = SS_UNCONNECTED;
1555 vsock_transport_cancel_pkt(vsk);
1556 goto out_wait;
1559 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
1562 if (sk->sk_err) {
1563 err = -sk->sk_err;
1564 sk->sk_state = TCP_CLOSE;
1565 sock->state = SS_UNCONNECTED;
1566 } else {
1567 err = 0;
1570 out_wait:
1571 finish_wait(sk_sleep(sk), &wait);
1572 out:
1573 release_sock(sk);
1574 return err;
1577 static int vsock_accept(struct socket *sock, struct socket *newsock,
1578 struct proto_accept_arg *arg)
1580 struct sock *listener;
1581 int err;
1582 struct sock *connected;
1583 struct vsock_sock *vconnected;
1584 long timeout;
1585 DEFINE_WAIT(wait);
1587 err = 0;
1588 listener = sock->sk;
1590 lock_sock(listener);
1592 if (!sock_type_connectible(sock->type)) {
1593 err = -EOPNOTSUPP;
1594 goto out;
1597 if (listener->sk_state != TCP_LISTEN) {
1598 err = -EINVAL;
1599 goto out;
1602 /* Wait for children sockets to appear; these are the new sockets
1603 * created upon connection establishment.
1605 timeout = sock_rcvtimeo(listener, arg->flags & O_NONBLOCK);
1606 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1608 while ((connected = vsock_dequeue_accept(listener)) == NULL &&
1609 listener->sk_err == 0) {
1610 release_sock(listener);
1611 timeout = schedule_timeout(timeout);
1612 finish_wait(sk_sleep(listener), &wait);
1613 lock_sock(listener);
1615 if (signal_pending(current)) {
1616 err = sock_intr_errno(timeout);
1617 goto out;
1618 } else if (timeout == 0) {
1619 err = -EAGAIN;
1620 goto out;
1623 prepare_to_wait(sk_sleep(listener), &wait, TASK_INTERRUPTIBLE);
1625 finish_wait(sk_sleep(listener), &wait);
1627 if (listener->sk_err)
1628 err = -listener->sk_err;
1630 if (connected) {
1631 sk_acceptq_removed(listener);
1633 lock_sock_nested(connected, SINGLE_DEPTH_NESTING);
1634 vconnected = vsock_sk(connected);
1636 /* If the listener socket has received an error, then we should
1637 * reject this socket and return. Note that we simply mark the
1638 * socket rejected, drop our reference, and let the cleanup
1639 * function handle the cleanup; the fact that we found it in
1640 * the listener's accept queue guarantees that the cleanup
1641 * function hasn't run yet.
1643 if (err) {
1644 vconnected->rejected = true;
1645 } else {
1646 newsock->state = SS_CONNECTED;
1647 sock_graft(connected, newsock);
1648 if (vsock_msgzerocopy_allow(vconnected->transport))
1649 set_bit(SOCK_SUPPORT_ZC,
1650 &connected->sk_socket->flags);
1653 release_sock(connected);
1654 sock_put(connected);
1657 out:
1658 release_sock(listener);
1659 return err;
1662 static int vsock_listen(struct socket *sock, int backlog)
1664 int err;
1665 struct sock *sk;
1666 struct vsock_sock *vsk;
1668 sk = sock->sk;
1670 lock_sock(sk);
1672 if (!sock_type_connectible(sk->sk_type)) {
1673 err = -EOPNOTSUPP;
1674 goto out;
1677 if (sock->state != SS_UNCONNECTED) {
1678 err = -EINVAL;
1679 goto out;
1682 vsk = vsock_sk(sk);
1684 if (!vsock_addr_bound(&vsk->local_addr)) {
1685 err = -EINVAL;
1686 goto out;
1689 sk->sk_max_ack_backlog = backlog;
1690 sk->sk_state = TCP_LISTEN;
1692 err = 0;
1694 out:
1695 release_sock(sk);
1696 return err;
1699 static void vsock_update_buffer_size(struct vsock_sock *vsk,
1700 const struct vsock_transport *transport,
1701 u64 val)
1703 if (val > vsk->buffer_max_size)
1704 val = vsk->buffer_max_size;
1706 if (val < vsk->buffer_min_size)
1707 val = vsk->buffer_min_size;
1709 if (val != vsk->buffer_size &&
1710 transport && transport->notify_buffer_size)
1711 transport->notify_buffer_size(vsk, &val);
1713 vsk->buffer_size = val;
1716 static int vsock_connectible_setsockopt(struct socket *sock,
1717 int level,
1718 int optname,
1719 sockptr_t optval,
1720 unsigned int optlen)
1722 int err;
1723 struct sock *sk;
1724 struct vsock_sock *vsk;
1725 const struct vsock_transport *transport;
1726 u64 val;
1728 if (level != AF_VSOCK && level != SOL_SOCKET)
1729 return -ENOPROTOOPT;
1731 #define COPY_IN(_v) \
1732 do { \
1733 if (optlen < sizeof(_v)) { \
1734 err = -EINVAL; \
1735 goto exit; \
1737 if (copy_from_sockptr(&_v, optval, sizeof(_v)) != 0) { \
1738 err = -EFAULT; \
1739 goto exit; \
1741 } while (0)
1743 err = 0;
1744 sk = sock->sk;
1745 vsk = vsock_sk(sk);
1747 lock_sock(sk);
1749 transport = vsk->transport;
1751 if (level == SOL_SOCKET) {
1752 int zerocopy;
1754 if (optname != SO_ZEROCOPY) {
1755 release_sock(sk);
1756 return sock_setsockopt(sock, level, optname, optval, optlen);
1759 /* Use 'int' type here, because variable to
1760 * set this option usually has this type.
1762 COPY_IN(zerocopy);
1764 if (zerocopy < 0 || zerocopy > 1) {
1765 err = -EINVAL;
1766 goto exit;
1769 if (transport && !vsock_msgzerocopy_allow(transport)) {
1770 err = -EOPNOTSUPP;
1771 goto exit;
1774 sock_valbool_flag(sk, SOCK_ZEROCOPY, zerocopy);
1775 goto exit;
1778 switch (optname) {
1779 case SO_VM_SOCKETS_BUFFER_SIZE:
1780 COPY_IN(val);
1781 vsock_update_buffer_size(vsk, transport, val);
1782 break;
1784 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1785 COPY_IN(val);
1786 vsk->buffer_max_size = val;
1787 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1788 break;
1790 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1791 COPY_IN(val);
1792 vsk->buffer_min_size = val;
1793 vsock_update_buffer_size(vsk, transport, vsk->buffer_size);
1794 break;
1796 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1797 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD: {
1798 struct __kernel_sock_timeval tv;
1800 err = sock_copy_user_timeval(&tv, optval, optlen,
1801 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1802 if (err)
1803 break;
1804 if (tv.tv_sec >= 0 && tv.tv_usec < USEC_PER_SEC &&
1805 tv.tv_sec < (MAX_SCHEDULE_TIMEOUT / HZ - 1)) {
1806 vsk->connect_timeout = tv.tv_sec * HZ +
1807 DIV_ROUND_UP((unsigned long)tv.tv_usec, (USEC_PER_SEC / HZ));
1808 if (vsk->connect_timeout == 0)
1809 vsk->connect_timeout =
1810 VSOCK_DEFAULT_CONNECT_TIMEOUT;
1812 } else {
1813 err = -ERANGE;
1815 break;
1818 default:
1819 err = -ENOPROTOOPT;
1820 break;
1823 #undef COPY_IN
1825 exit:
1826 release_sock(sk);
1827 return err;
1830 static int vsock_connectible_getsockopt(struct socket *sock,
1831 int level, int optname,
1832 char __user *optval,
1833 int __user *optlen)
1835 struct sock *sk = sock->sk;
1836 struct vsock_sock *vsk = vsock_sk(sk);
1838 union {
1839 u64 val64;
1840 struct old_timeval32 tm32;
1841 struct __kernel_old_timeval tm;
1842 struct __kernel_sock_timeval stm;
1843 } v;
1845 int lv = sizeof(v.val64);
1846 int len;
1848 if (level != AF_VSOCK)
1849 return -ENOPROTOOPT;
1851 if (get_user(len, optlen))
1852 return -EFAULT;
1854 memset(&v, 0, sizeof(v));
1856 switch (optname) {
1857 case SO_VM_SOCKETS_BUFFER_SIZE:
1858 v.val64 = vsk->buffer_size;
1859 break;
1861 case SO_VM_SOCKETS_BUFFER_MAX_SIZE:
1862 v.val64 = vsk->buffer_max_size;
1863 break;
1865 case SO_VM_SOCKETS_BUFFER_MIN_SIZE:
1866 v.val64 = vsk->buffer_min_size;
1867 break;
1869 case SO_VM_SOCKETS_CONNECT_TIMEOUT_NEW:
1870 case SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD:
1871 lv = sock_get_timeout(vsk->connect_timeout, &v,
1872 optname == SO_VM_SOCKETS_CONNECT_TIMEOUT_OLD);
1873 break;
1875 default:
1876 return -ENOPROTOOPT;
1879 if (len < lv)
1880 return -EINVAL;
1881 if (len > lv)
1882 len = lv;
1883 if (copy_to_user(optval, &v, len))
1884 return -EFAULT;
1886 if (put_user(len, optlen))
1887 return -EFAULT;
1889 return 0;
1892 static int vsock_connectible_sendmsg(struct socket *sock, struct msghdr *msg,
1893 size_t len)
1895 struct sock *sk;
1896 struct vsock_sock *vsk;
1897 const struct vsock_transport *transport;
1898 ssize_t total_written;
1899 long timeout;
1900 int err;
1901 struct vsock_transport_send_notify_data send_data;
1902 DEFINE_WAIT_FUNC(wait, woken_wake_function);
1904 sk = sock->sk;
1905 vsk = vsock_sk(sk);
1906 total_written = 0;
1907 err = 0;
1909 if (msg->msg_flags & MSG_OOB)
1910 return -EOPNOTSUPP;
1912 lock_sock(sk);
1914 transport = vsk->transport;
1916 /* Callers should not provide a destination with connection oriented
1917 * sockets.
1919 if (msg->msg_namelen) {
1920 err = sk->sk_state == TCP_ESTABLISHED ? -EISCONN : -EOPNOTSUPP;
1921 goto out;
1924 /* Send data only if both sides are not shutdown in the direction. */
1925 if (sk->sk_shutdown & SEND_SHUTDOWN ||
1926 vsk->peer_shutdown & RCV_SHUTDOWN) {
1927 err = -EPIPE;
1928 goto out;
1931 if (!transport || sk->sk_state != TCP_ESTABLISHED ||
1932 !vsock_addr_bound(&vsk->local_addr)) {
1933 err = -ENOTCONN;
1934 goto out;
1937 if (!vsock_addr_bound(&vsk->remote_addr)) {
1938 err = -EDESTADDRREQ;
1939 goto out;
1942 if (msg->msg_flags & MSG_ZEROCOPY &&
1943 !vsock_msgzerocopy_allow(transport)) {
1944 err = -EOPNOTSUPP;
1945 goto out;
1948 /* Wait for room in the produce queue to enqueue our user's data. */
1949 timeout = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1951 err = transport->notify_send_init(vsk, &send_data);
1952 if (err < 0)
1953 goto out;
1955 while (total_written < len) {
1956 ssize_t written;
1958 add_wait_queue(sk_sleep(sk), &wait);
1959 while (vsock_stream_has_space(vsk) == 0 &&
1960 sk->sk_err == 0 &&
1961 !(sk->sk_shutdown & SEND_SHUTDOWN) &&
1962 !(vsk->peer_shutdown & RCV_SHUTDOWN)) {
1964 /* Don't wait for non-blocking sockets. */
1965 if (timeout == 0) {
1966 err = -EAGAIN;
1967 remove_wait_queue(sk_sleep(sk), &wait);
1968 goto out_err;
1971 err = transport->notify_send_pre_block(vsk, &send_data);
1972 if (err < 0) {
1973 remove_wait_queue(sk_sleep(sk), &wait);
1974 goto out_err;
1977 release_sock(sk);
1978 timeout = wait_woken(&wait, TASK_INTERRUPTIBLE, timeout);
1979 lock_sock(sk);
1980 if (signal_pending(current)) {
1981 err = sock_intr_errno(timeout);
1982 remove_wait_queue(sk_sleep(sk), &wait);
1983 goto out_err;
1984 } else if (timeout == 0) {
1985 err = -EAGAIN;
1986 remove_wait_queue(sk_sleep(sk), &wait);
1987 goto out_err;
1990 remove_wait_queue(sk_sleep(sk), &wait);
1992 /* These checks occur both as part of and after the loop
1993 * conditional since we need to check before and after
1994 * sleeping.
1996 if (sk->sk_err) {
1997 err = -sk->sk_err;
1998 goto out_err;
1999 } else if ((sk->sk_shutdown & SEND_SHUTDOWN) ||
2000 (vsk->peer_shutdown & RCV_SHUTDOWN)) {
2001 err = -EPIPE;
2002 goto out_err;
2005 err = transport->notify_send_pre_enqueue(vsk, &send_data);
2006 if (err < 0)
2007 goto out_err;
2009 /* Note that enqueue will only write as many bytes as are free
2010 * in the produce queue, so we don't need to ensure len is
2011 * smaller than the queue size. It is the caller's
2012 * responsibility to check how many bytes we were able to send.
2015 if (sk->sk_type == SOCK_SEQPACKET) {
2016 written = transport->seqpacket_enqueue(vsk,
2017 msg, len - total_written);
2018 } else {
2019 written = transport->stream_enqueue(vsk,
2020 msg, len - total_written);
2023 if (written < 0) {
2024 err = written;
2025 goto out_err;
2028 total_written += written;
2030 err = transport->notify_send_post_enqueue(
2031 vsk, written, &send_data);
2032 if (err < 0)
2033 goto out_err;
2037 out_err:
2038 if (total_written > 0) {
2039 /* Return number of written bytes only if:
2040 * 1) SOCK_STREAM socket.
2041 * 2) SOCK_SEQPACKET socket when whole buffer is sent.
2043 if (sk->sk_type == SOCK_STREAM || total_written == len)
2044 err = total_written;
2046 out:
2047 if (sk->sk_type == SOCK_STREAM)
2048 err = sk_stream_error(sk, msg->msg_flags, err);
2050 release_sock(sk);
2051 return err;
2054 static int vsock_connectible_wait_data(struct sock *sk,
2055 struct wait_queue_entry *wait,
2056 long timeout,
2057 struct vsock_transport_recv_notify_data *recv_data,
2058 size_t target)
2060 const struct vsock_transport *transport;
2061 struct vsock_sock *vsk;
2062 s64 data;
2063 int err;
2065 vsk = vsock_sk(sk);
2066 err = 0;
2067 transport = vsk->transport;
2069 while (1) {
2070 prepare_to_wait(sk_sleep(sk), wait, TASK_INTERRUPTIBLE);
2071 data = vsock_connectible_has_data(vsk);
2072 if (data != 0)
2073 break;
2075 if (sk->sk_err != 0 ||
2076 (sk->sk_shutdown & RCV_SHUTDOWN) ||
2077 (vsk->peer_shutdown & SEND_SHUTDOWN)) {
2078 break;
2081 /* Don't wait for non-blocking sockets. */
2082 if (timeout == 0) {
2083 err = -EAGAIN;
2084 break;
2087 if (recv_data) {
2088 err = transport->notify_recv_pre_block(vsk, target, recv_data);
2089 if (err < 0)
2090 break;
2093 release_sock(sk);
2094 timeout = schedule_timeout(timeout);
2095 lock_sock(sk);
2097 if (signal_pending(current)) {
2098 err = sock_intr_errno(timeout);
2099 break;
2100 } else if (timeout == 0) {
2101 err = -EAGAIN;
2102 break;
2106 finish_wait(sk_sleep(sk), wait);
2108 if (err)
2109 return err;
2111 /* Internal transport error when checking for available
2112 * data. XXX This should be changed to a connection
2113 * reset in a later change.
2115 if (data < 0)
2116 return -ENOMEM;
2118 return data;
2121 static int __vsock_stream_recvmsg(struct sock *sk, struct msghdr *msg,
2122 size_t len, int flags)
2124 struct vsock_transport_recv_notify_data recv_data;
2125 const struct vsock_transport *transport;
2126 struct vsock_sock *vsk;
2127 ssize_t copied;
2128 size_t target;
2129 long timeout;
2130 int err;
2132 DEFINE_WAIT(wait);
2134 vsk = vsock_sk(sk);
2135 transport = vsk->transport;
2137 /* We must not copy less than target bytes into the user's buffer
2138 * before returning successfully, so we wait for the consume queue to
2139 * have that much data to consume before dequeueing. Note that this
2140 * makes it impossible to handle cases where target is greater than the
2141 * queue size.
2143 target = sock_rcvlowat(sk, flags & MSG_WAITALL, len);
2144 if (target >= transport->stream_rcvhiwat(vsk)) {
2145 err = -ENOMEM;
2146 goto out;
2148 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2149 copied = 0;
2151 err = transport->notify_recv_init(vsk, target, &recv_data);
2152 if (err < 0)
2153 goto out;
2156 while (1) {
2157 ssize_t read;
2159 err = vsock_connectible_wait_data(sk, &wait, timeout,
2160 &recv_data, target);
2161 if (err <= 0)
2162 break;
2164 err = transport->notify_recv_pre_dequeue(vsk, target,
2165 &recv_data);
2166 if (err < 0)
2167 break;
2169 read = transport->stream_dequeue(vsk, msg, len - copied, flags);
2170 if (read < 0) {
2171 err = read;
2172 break;
2175 copied += read;
2177 err = transport->notify_recv_post_dequeue(vsk, target, read,
2178 !(flags & MSG_PEEK), &recv_data);
2179 if (err < 0)
2180 goto out;
2182 if (read >= target || flags & MSG_PEEK)
2183 break;
2185 target -= read;
2188 if (sk->sk_err)
2189 err = -sk->sk_err;
2190 else if (sk->sk_shutdown & RCV_SHUTDOWN)
2191 err = 0;
2193 if (copied > 0)
2194 err = copied;
2196 out:
2197 return err;
2200 static int __vsock_seqpacket_recvmsg(struct sock *sk, struct msghdr *msg,
2201 size_t len, int flags)
2203 const struct vsock_transport *transport;
2204 struct vsock_sock *vsk;
2205 ssize_t msg_len;
2206 long timeout;
2207 int err = 0;
2208 DEFINE_WAIT(wait);
2210 vsk = vsock_sk(sk);
2211 transport = vsk->transport;
2213 timeout = sock_rcvtimeo(sk, flags & MSG_DONTWAIT);
2215 err = vsock_connectible_wait_data(sk, &wait, timeout, NULL, 0);
2216 if (err <= 0)
2217 goto out;
2219 msg_len = transport->seqpacket_dequeue(vsk, msg, flags);
2221 if (msg_len < 0) {
2222 err = msg_len;
2223 goto out;
2226 if (sk->sk_err) {
2227 err = -sk->sk_err;
2228 } else if (sk->sk_shutdown & RCV_SHUTDOWN) {
2229 err = 0;
2230 } else {
2231 /* User sets MSG_TRUNC, so return real length of
2232 * packet.
2234 if (flags & MSG_TRUNC)
2235 err = msg_len;
2236 else
2237 err = len - msg_data_left(msg);
2239 /* Always set MSG_TRUNC if real length of packet is
2240 * bigger than user's buffer.
2242 if (msg_len > len)
2243 msg->msg_flags |= MSG_TRUNC;
2246 out:
2247 return err;
2251 __vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2252 int flags)
2254 struct sock *sk;
2255 struct vsock_sock *vsk;
2256 const struct vsock_transport *transport;
2257 int err;
2259 sk = sock->sk;
2261 if (unlikely(flags & MSG_ERRQUEUE))
2262 return sock_recv_errqueue(sk, msg, len, SOL_VSOCK, VSOCK_RECVERR);
2264 vsk = vsock_sk(sk);
2265 err = 0;
2267 lock_sock(sk);
2269 transport = vsk->transport;
2271 if (!transport || sk->sk_state != TCP_ESTABLISHED) {
2272 /* Recvmsg is supposed to return 0 if a peer performs an
2273 * orderly shutdown. Differentiate between that case and when a
2274 * peer has not connected or a local shutdown occurred with the
2275 * SOCK_DONE flag.
2277 if (sock_flag(sk, SOCK_DONE))
2278 err = 0;
2279 else
2280 err = -ENOTCONN;
2282 goto out;
2285 if (flags & MSG_OOB) {
2286 err = -EOPNOTSUPP;
2287 goto out;
2290 /* We don't check peer_shutdown flag here since peer may actually shut
2291 * down, but there can be data in the queue that a local socket can
2292 * receive.
2294 if (sk->sk_shutdown & RCV_SHUTDOWN) {
2295 err = 0;
2296 goto out;
2299 /* It is valid on Linux to pass in a zero-length receive buffer. This
2300 * is not an error. We may as well bail out now.
2302 if (!len) {
2303 err = 0;
2304 goto out;
2307 if (sk->sk_type == SOCK_STREAM)
2308 err = __vsock_stream_recvmsg(sk, msg, len, flags);
2309 else
2310 err = __vsock_seqpacket_recvmsg(sk, msg, len, flags);
2312 out:
2313 release_sock(sk);
2314 return err;
2318 vsock_connectible_recvmsg(struct socket *sock, struct msghdr *msg, size_t len,
2319 int flags)
2321 #ifdef CONFIG_BPF_SYSCALL
2322 struct sock *sk = sock->sk;
2323 const struct proto *prot;
2325 prot = READ_ONCE(sk->sk_prot);
2326 if (prot != &vsock_proto)
2327 return prot->recvmsg(sk, msg, len, flags, NULL);
2328 #endif
2330 return __vsock_connectible_recvmsg(sock, msg, len, flags);
2332 EXPORT_SYMBOL_GPL(vsock_connectible_recvmsg);
2334 static int vsock_set_rcvlowat(struct sock *sk, int val)
2336 const struct vsock_transport *transport;
2337 struct vsock_sock *vsk;
2339 vsk = vsock_sk(sk);
2341 if (val > vsk->buffer_size)
2342 return -EINVAL;
2344 transport = vsk->transport;
2346 if (transport && transport->notify_set_rcvlowat) {
2347 int err;
2349 err = transport->notify_set_rcvlowat(vsk, val);
2350 if (err)
2351 return err;
2354 WRITE_ONCE(sk->sk_rcvlowat, val ? : 1);
2355 return 0;
2358 static const struct proto_ops vsock_stream_ops = {
2359 .family = PF_VSOCK,
2360 .owner = THIS_MODULE,
2361 .release = vsock_release,
2362 .bind = vsock_bind,
2363 .connect = vsock_connect,
2364 .socketpair = sock_no_socketpair,
2365 .accept = vsock_accept,
2366 .getname = vsock_getname,
2367 .poll = vsock_poll,
2368 .ioctl = vsock_ioctl,
2369 .listen = vsock_listen,
2370 .shutdown = vsock_shutdown,
2371 .setsockopt = vsock_connectible_setsockopt,
2372 .getsockopt = vsock_connectible_getsockopt,
2373 .sendmsg = vsock_connectible_sendmsg,
2374 .recvmsg = vsock_connectible_recvmsg,
2375 .mmap = sock_no_mmap,
2376 .set_rcvlowat = vsock_set_rcvlowat,
2377 .read_skb = vsock_read_skb,
2380 static const struct proto_ops vsock_seqpacket_ops = {
2381 .family = PF_VSOCK,
2382 .owner = THIS_MODULE,
2383 .release = vsock_release,
2384 .bind = vsock_bind,
2385 .connect = vsock_connect,
2386 .socketpair = sock_no_socketpair,
2387 .accept = vsock_accept,
2388 .getname = vsock_getname,
2389 .poll = vsock_poll,
2390 .ioctl = vsock_ioctl,
2391 .listen = vsock_listen,
2392 .shutdown = vsock_shutdown,
2393 .setsockopt = vsock_connectible_setsockopt,
2394 .getsockopt = vsock_connectible_getsockopt,
2395 .sendmsg = vsock_connectible_sendmsg,
2396 .recvmsg = vsock_connectible_recvmsg,
2397 .mmap = sock_no_mmap,
2398 .read_skb = vsock_read_skb,
2401 static int vsock_create(struct net *net, struct socket *sock,
2402 int protocol, int kern)
2404 struct vsock_sock *vsk;
2405 struct sock *sk;
2406 int ret;
2408 if (!sock)
2409 return -EINVAL;
2411 if (protocol && protocol != PF_VSOCK)
2412 return -EPROTONOSUPPORT;
2414 switch (sock->type) {
2415 case SOCK_DGRAM:
2416 sock->ops = &vsock_dgram_ops;
2417 break;
2418 case SOCK_STREAM:
2419 sock->ops = &vsock_stream_ops;
2420 break;
2421 case SOCK_SEQPACKET:
2422 sock->ops = &vsock_seqpacket_ops;
2423 break;
2424 default:
2425 return -ESOCKTNOSUPPORT;
2428 sock->state = SS_UNCONNECTED;
2430 sk = __vsock_create(net, sock, NULL, GFP_KERNEL, 0, kern);
2431 if (!sk)
2432 return -ENOMEM;
2434 vsk = vsock_sk(sk);
2436 if (sock->type == SOCK_DGRAM) {
2437 ret = vsock_assign_transport(vsk, NULL);
2438 if (ret < 0) {
2439 sock->sk = NULL;
2440 sock_put(sk);
2441 return ret;
2445 /* SOCK_DGRAM doesn't have 'setsockopt' callback set in its
2446 * proto_ops, so there is no handler for custom logic.
2448 if (sock_type_connectible(sock->type))
2449 set_bit(SOCK_CUSTOM_SOCKOPT, &sk->sk_socket->flags);
2451 vsock_insert_unbound(vsk);
2453 return 0;
2456 static const struct net_proto_family vsock_family_ops = {
2457 .family = AF_VSOCK,
2458 .create = vsock_create,
2459 .owner = THIS_MODULE,
2462 static long vsock_dev_do_ioctl(struct file *filp,
2463 unsigned int cmd, void __user *ptr)
2465 u32 __user *p = ptr;
2466 u32 cid = VMADDR_CID_ANY;
2467 int retval = 0;
2469 switch (cmd) {
2470 case IOCTL_VM_SOCKETS_GET_LOCAL_CID:
2471 /* To be compatible with the VMCI behavior, we prioritize the
2472 * guest CID instead of well-know host CID (VMADDR_CID_HOST).
2474 if (transport_g2h)
2475 cid = transport_g2h->get_local_cid();
2476 else if (transport_h2g)
2477 cid = transport_h2g->get_local_cid();
2479 if (put_user(cid, p) != 0)
2480 retval = -EFAULT;
2481 break;
2483 default:
2484 retval = -ENOIOCTLCMD;
2487 return retval;
2490 static long vsock_dev_ioctl(struct file *filp,
2491 unsigned int cmd, unsigned long arg)
2493 return vsock_dev_do_ioctl(filp, cmd, (void __user *)arg);
2496 #ifdef CONFIG_COMPAT
2497 static long vsock_dev_compat_ioctl(struct file *filp,
2498 unsigned int cmd, unsigned long arg)
2500 return vsock_dev_do_ioctl(filp, cmd, compat_ptr(arg));
2502 #endif
2504 static const struct file_operations vsock_device_ops = {
2505 .owner = THIS_MODULE,
2506 .unlocked_ioctl = vsock_dev_ioctl,
2507 #ifdef CONFIG_COMPAT
2508 .compat_ioctl = vsock_dev_compat_ioctl,
2509 #endif
2510 .open = nonseekable_open,
2513 static struct miscdevice vsock_device = {
2514 .name = "vsock",
2515 .fops = &vsock_device_ops,
2518 static int __init vsock_init(void)
2520 int err = 0;
2522 vsock_init_tables();
2524 vsock_proto.owner = THIS_MODULE;
2525 vsock_device.minor = MISC_DYNAMIC_MINOR;
2526 err = misc_register(&vsock_device);
2527 if (err) {
2528 pr_err("Failed to register misc device\n");
2529 goto err_reset_transport;
2532 err = proto_register(&vsock_proto, 1); /* we want our slab */
2533 if (err) {
2534 pr_err("Cannot register vsock protocol\n");
2535 goto err_deregister_misc;
2538 err = sock_register(&vsock_family_ops);
2539 if (err) {
2540 pr_err("could not register af_vsock (%d) address family: %d\n",
2541 AF_VSOCK, err);
2542 goto err_unregister_proto;
2545 vsock_bpf_build_proto();
2547 return 0;
2549 err_unregister_proto:
2550 proto_unregister(&vsock_proto);
2551 err_deregister_misc:
2552 misc_deregister(&vsock_device);
2553 err_reset_transport:
2554 return err;
2557 static void __exit vsock_exit(void)
2559 misc_deregister(&vsock_device);
2560 sock_unregister(AF_VSOCK);
2561 proto_unregister(&vsock_proto);
2564 const struct vsock_transport *vsock_core_get_transport(struct vsock_sock *vsk)
2566 return vsk->transport;
2568 EXPORT_SYMBOL_GPL(vsock_core_get_transport);
2570 int vsock_core_register(const struct vsock_transport *t, int features)
2572 const struct vsock_transport *t_h2g, *t_g2h, *t_dgram, *t_local;
2573 int err = mutex_lock_interruptible(&vsock_register_mutex);
2575 if (err)
2576 return err;
2578 t_h2g = transport_h2g;
2579 t_g2h = transport_g2h;
2580 t_dgram = transport_dgram;
2581 t_local = transport_local;
2583 if (features & VSOCK_TRANSPORT_F_H2G) {
2584 if (t_h2g) {
2585 err = -EBUSY;
2586 goto err_busy;
2588 t_h2g = t;
2591 if (features & VSOCK_TRANSPORT_F_G2H) {
2592 if (t_g2h) {
2593 err = -EBUSY;
2594 goto err_busy;
2596 t_g2h = t;
2599 if (features & VSOCK_TRANSPORT_F_DGRAM) {
2600 if (t_dgram) {
2601 err = -EBUSY;
2602 goto err_busy;
2604 t_dgram = t;
2607 if (features & VSOCK_TRANSPORT_F_LOCAL) {
2608 if (t_local) {
2609 err = -EBUSY;
2610 goto err_busy;
2612 t_local = t;
2615 transport_h2g = t_h2g;
2616 transport_g2h = t_g2h;
2617 transport_dgram = t_dgram;
2618 transport_local = t_local;
2620 err_busy:
2621 mutex_unlock(&vsock_register_mutex);
2622 return err;
2624 EXPORT_SYMBOL_GPL(vsock_core_register);
2626 void vsock_core_unregister(const struct vsock_transport *t)
2628 mutex_lock(&vsock_register_mutex);
2630 if (transport_h2g == t)
2631 transport_h2g = NULL;
2633 if (transport_g2h == t)
2634 transport_g2h = NULL;
2636 if (transport_dgram == t)
2637 transport_dgram = NULL;
2639 if (transport_local == t)
2640 transport_local = NULL;
2642 mutex_unlock(&vsock_register_mutex);
2644 EXPORT_SYMBOL_GPL(vsock_core_unregister);
2646 module_init(vsock_init);
2647 module_exit(vsock_exit);
2649 MODULE_AUTHOR("VMware, Inc.");
2650 MODULE_DESCRIPTION("VMware Virtual Socket Family");
2651 MODULE_VERSION("1.0.2.0-k");
2652 MODULE_LICENSE("GPL v2");