1 // SPDX-License-Identifier: GPL-2.0-only
3 * VMware vSockets Driver
5 * Copyright (C) 2007-2013 VMware, Inc. All rights reserved.
8 #include <linux/types.h>
9 #include <linux/bitops.h>
10 #include <linux/cred.h>
11 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/kmod.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/mutex.h>
18 #include <linux/net.h>
19 #include <linux/poll.h>
20 #include <linux/skbuff.h>
21 #include <linux/smp.h>
22 #include <linux/socket.h>
23 #include <linux/stddef.h>
24 #include <linux/unistd.h>
25 #include <linux/wait.h>
26 #include <linux/workqueue.h>
28 #include <net/af_vsock.h>
30 #include "vmci_transport_notify.h"
32 static int vmci_transport_recv_dgram_cb(void *data
, struct vmci_datagram
*dg
);
33 static int vmci_transport_recv_stream_cb(void *data
, struct vmci_datagram
*dg
);
34 static void vmci_transport_peer_detach_cb(u32 sub_id
,
35 const struct vmci_event_data
*ed
,
37 static void vmci_transport_recv_pkt_work(struct work_struct
*work
);
38 static void vmci_transport_cleanup(struct work_struct
*work
);
39 static int vmci_transport_recv_listen(struct sock
*sk
,
40 struct vmci_transport_packet
*pkt
);
41 static int vmci_transport_recv_connecting_server(
44 struct vmci_transport_packet
*pkt
);
45 static int vmci_transport_recv_connecting_client(
47 struct vmci_transport_packet
*pkt
);
48 static int vmci_transport_recv_connecting_client_negotiate(
50 struct vmci_transport_packet
*pkt
);
51 static int vmci_transport_recv_connecting_client_invalid(
53 struct vmci_transport_packet
*pkt
);
54 static int vmci_transport_recv_connected(struct sock
*sk
,
55 struct vmci_transport_packet
*pkt
);
56 static bool vmci_transport_old_proto_override(bool *old_pkt_proto
);
57 static u16
vmci_transport_new_proto_supported_versions(void);
58 static bool vmci_transport_proto_to_notify_struct(struct sock
*sk
, u16
*proto
,
60 static bool vmci_check_transport(struct vsock_sock
*vsk
);
62 struct vmci_transport_recv_pkt_info
{
63 struct work_struct work
;
65 struct vmci_transport_packet pkt
;
68 static LIST_HEAD(vmci_transport_cleanup_list
);
69 static DEFINE_SPINLOCK(vmci_transport_cleanup_lock
);
70 static DECLARE_WORK(vmci_transport_cleanup_work
, vmci_transport_cleanup
);
72 static struct vmci_handle vmci_transport_stream_handle
= { VMCI_INVALID_ID
,
74 static u32 vmci_transport_qp_resumed_sub_id
= VMCI_INVALID_ID
;
76 static int PROTOCOL_OVERRIDE
= -1;
78 static struct vsock_transport vmci_transport
; /* forward declaration */
80 /* Helper function to convert from a VMCI error code to a VSock error code. */
82 static s32
vmci_transport_error_to_vsock_error(s32 vmci_error
)
85 case VMCI_ERROR_NO_MEM
:
87 case VMCI_ERROR_DUPLICATE_ENTRY
:
88 case VMCI_ERROR_ALREADY_EXISTS
:
90 case VMCI_ERROR_NO_ACCESS
:
92 case VMCI_ERROR_NO_RESOURCES
:
94 case VMCI_ERROR_INVALID_RESOURCE
:
96 case VMCI_ERROR_INVALID_ARGS
:
103 static u32
vmci_transport_peer_rid(u32 peer_cid
)
105 if (VMADDR_CID_HYPERVISOR
== peer_cid
)
106 return VMCI_TRANSPORT_HYPERVISOR_PACKET_RID
;
108 return VMCI_TRANSPORT_PACKET_RID
;
112 vmci_transport_packet_init(struct vmci_transport_packet
*pkt
,
113 struct sockaddr_vm
*src
,
114 struct sockaddr_vm
*dst
,
118 struct vmci_transport_waiting_info
*wait
,
120 struct vmci_handle handle
)
122 /* We register the stream control handler as an any cid handle so we
123 * must always send from a source address of VMADDR_CID_ANY
125 pkt
->dg
.src
= vmci_make_handle(VMADDR_CID_ANY
,
126 VMCI_TRANSPORT_PACKET_RID
);
127 pkt
->dg
.dst
= vmci_make_handle(dst
->svm_cid
,
128 vmci_transport_peer_rid(dst
->svm_cid
));
129 pkt
->dg
.payload_size
= sizeof(*pkt
) - sizeof(pkt
->dg
);
130 pkt
->version
= VMCI_TRANSPORT_PACKET_VERSION
;
132 pkt
->src_port
= src
->svm_port
;
133 pkt
->dst_port
= dst
->svm_port
;
134 memset(&pkt
->proto
, 0, sizeof(pkt
->proto
));
135 memset(&pkt
->_reserved2
, 0, sizeof(pkt
->_reserved2
));
138 case VMCI_TRANSPORT_PACKET_TYPE_INVALID
:
142 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST
:
143 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE
:
147 case VMCI_TRANSPORT_PACKET_TYPE_OFFER
:
148 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH
:
149 pkt
->u
.handle
= handle
;
152 case VMCI_TRANSPORT_PACKET_TYPE_WROTE
:
153 case VMCI_TRANSPORT_PACKET_TYPE_READ
:
154 case VMCI_TRANSPORT_PACKET_TYPE_RST
:
158 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN
:
162 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ
:
163 case VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE
:
164 memcpy(&pkt
->u
.wait
, wait
, sizeof(pkt
->u
.wait
));
167 case VMCI_TRANSPORT_PACKET_TYPE_REQUEST2
:
168 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2
:
176 vmci_transport_packet_get_addresses(struct vmci_transport_packet
*pkt
,
177 struct sockaddr_vm
*local
,
178 struct sockaddr_vm
*remote
)
180 vsock_addr_init(local
, pkt
->dg
.dst
.context
, pkt
->dst_port
);
181 vsock_addr_init(remote
, pkt
->dg
.src
.context
, pkt
->src_port
);
185 __vmci_transport_send_control_pkt(struct vmci_transport_packet
*pkt
,
186 struct sockaddr_vm
*src
,
187 struct sockaddr_vm
*dst
,
188 enum vmci_transport_packet_type type
,
191 struct vmci_transport_waiting_info
*wait
,
193 struct vmci_handle handle
,
198 vmci_transport_packet_init(pkt
, src
, dst
, type
, size
, mode
, wait
,
200 err
= vmci_datagram_send(&pkt
->dg
);
201 if (convert_error
&& (err
< 0))
202 return vmci_transport_error_to_vsock_error(err
);
208 vmci_transport_reply_control_pkt_fast(struct vmci_transport_packet
*pkt
,
209 enum vmci_transport_packet_type type
,
212 struct vmci_transport_waiting_info
*wait
,
213 struct vmci_handle handle
)
215 struct vmci_transport_packet reply
;
216 struct sockaddr_vm src
, dst
;
218 if (pkt
->type
== VMCI_TRANSPORT_PACKET_TYPE_RST
) {
221 vmci_transport_packet_get_addresses(pkt
, &src
, &dst
);
222 return __vmci_transport_send_control_pkt(&reply
, &src
, &dst
,
231 vmci_transport_send_control_pkt_bh(struct sockaddr_vm
*src
,
232 struct sockaddr_vm
*dst
,
233 enum vmci_transport_packet_type type
,
236 struct vmci_transport_waiting_info
*wait
,
237 struct vmci_handle handle
)
239 /* Note that it is safe to use a single packet across all CPUs since
240 * two tasklets of the same type are guaranteed to not ever run
241 * simultaneously. If that ever changes, or VMCI stops using tasklets,
242 * we can use per-cpu packets.
244 static struct vmci_transport_packet pkt
;
246 return __vmci_transport_send_control_pkt(&pkt
, src
, dst
, type
,
248 VSOCK_PROTO_INVALID
, handle
,
253 vmci_transport_alloc_send_control_pkt(struct sockaddr_vm
*src
,
254 struct sockaddr_vm
*dst
,
255 enum vmci_transport_packet_type type
,
258 struct vmci_transport_waiting_info
*wait
,
260 struct vmci_handle handle
)
262 struct vmci_transport_packet
*pkt
;
265 pkt
= kmalloc(sizeof(*pkt
), GFP_KERNEL
);
269 err
= __vmci_transport_send_control_pkt(pkt
, src
, dst
, type
, size
,
270 mode
, wait
, proto
, handle
,
278 vmci_transport_send_control_pkt(struct sock
*sk
,
279 enum vmci_transport_packet_type type
,
282 struct vmci_transport_waiting_info
*wait
,
284 struct vmci_handle handle
)
286 struct vsock_sock
*vsk
;
290 if (!vsock_addr_bound(&vsk
->local_addr
))
293 if (!vsock_addr_bound(&vsk
->remote_addr
))
296 return vmci_transport_alloc_send_control_pkt(&vsk
->local_addr
,
299 wait
, proto
, handle
);
302 static int vmci_transport_send_reset_bh(struct sockaddr_vm
*dst
,
303 struct sockaddr_vm
*src
,
304 struct vmci_transport_packet
*pkt
)
306 if (pkt
->type
== VMCI_TRANSPORT_PACKET_TYPE_RST
)
308 return vmci_transport_send_control_pkt_bh(
310 VMCI_TRANSPORT_PACKET_TYPE_RST
, 0,
311 0, NULL
, VMCI_INVALID_HANDLE
);
314 static int vmci_transport_send_reset(struct sock
*sk
,
315 struct vmci_transport_packet
*pkt
)
317 struct sockaddr_vm
*dst_ptr
;
318 struct sockaddr_vm dst
;
319 struct vsock_sock
*vsk
;
321 if (pkt
->type
== VMCI_TRANSPORT_PACKET_TYPE_RST
)
326 if (!vsock_addr_bound(&vsk
->local_addr
))
329 if (vsock_addr_bound(&vsk
->remote_addr
)) {
330 dst_ptr
= &vsk
->remote_addr
;
332 vsock_addr_init(&dst
, pkt
->dg
.src
.context
,
336 return vmci_transport_alloc_send_control_pkt(&vsk
->local_addr
, dst_ptr
,
337 VMCI_TRANSPORT_PACKET_TYPE_RST
,
338 0, 0, NULL
, VSOCK_PROTO_INVALID
,
339 VMCI_INVALID_HANDLE
);
342 static int vmci_transport_send_negotiate(struct sock
*sk
, size_t size
)
344 return vmci_transport_send_control_pkt(
346 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE
,
349 VMCI_INVALID_HANDLE
);
352 static int vmci_transport_send_negotiate2(struct sock
*sk
, size_t size
,
355 return vmci_transport_send_control_pkt(
357 VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2
,
358 size
, 0, NULL
, version
,
359 VMCI_INVALID_HANDLE
);
362 static int vmci_transport_send_qp_offer(struct sock
*sk
,
363 struct vmci_handle handle
)
365 return vmci_transport_send_control_pkt(
366 sk
, VMCI_TRANSPORT_PACKET_TYPE_OFFER
, 0,
368 VSOCK_PROTO_INVALID
, handle
);
371 static int vmci_transport_send_attach(struct sock
*sk
,
372 struct vmci_handle handle
)
374 return vmci_transport_send_control_pkt(
375 sk
, VMCI_TRANSPORT_PACKET_TYPE_ATTACH
,
376 0, 0, NULL
, VSOCK_PROTO_INVALID
,
380 static int vmci_transport_reply_reset(struct vmci_transport_packet
*pkt
)
382 return vmci_transport_reply_control_pkt_fast(
384 VMCI_TRANSPORT_PACKET_TYPE_RST
,
386 VMCI_INVALID_HANDLE
);
389 static int vmci_transport_send_invalid_bh(struct sockaddr_vm
*dst
,
390 struct sockaddr_vm
*src
)
392 return vmci_transport_send_control_pkt_bh(
394 VMCI_TRANSPORT_PACKET_TYPE_INVALID
,
395 0, 0, NULL
, VMCI_INVALID_HANDLE
);
398 int vmci_transport_send_wrote_bh(struct sockaddr_vm
*dst
,
399 struct sockaddr_vm
*src
)
401 return vmci_transport_send_control_pkt_bh(
403 VMCI_TRANSPORT_PACKET_TYPE_WROTE
, 0,
404 0, NULL
, VMCI_INVALID_HANDLE
);
407 int vmci_transport_send_read_bh(struct sockaddr_vm
*dst
,
408 struct sockaddr_vm
*src
)
410 return vmci_transport_send_control_pkt_bh(
412 VMCI_TRANSPORT_PACKET_TYPE_READ
, 0,
413 0, NULL
, VMCI_INVALID_HANDLE
);
416 int vmci_transport_send_wrote(struct sock
*sk
)
418 return vmci_transport_send_control_pkt(
419 sk
, VMCI_TRANSPORT_PACKET_TYPE_WROTE
, 0,
420 0, NULL
, VSOCK_PROTO_INVALID
,
421 VMCI_INVALID_HANDLE
);
424 int vmci_transport_send_read(struct sock
*sk
)
426 return vmci_transport_send_control_pkt(
427 sk
, VMCI_TRANSPORT_PACKET_TYPE_READ
, 0,
428 0, NULL
, VSOCK_PROTO_INVALID
,
429 VMCI_INVALID_HANDLE
);
432 int vmci_transport_send_waiting_write(struct sock
*sk
,
433 struct vmci_transport_waiting_info
*wait
)
435 return vmci_transport_send_control_pkt(
436 sk
, VMCI_TRANSPORT_PACKET_TYPE_WAITING_WRITE
,
437 0, 0, wait
, VSOCK_PROTO_INVALID
,
438 VMCI_INVALID_HANDLE
);
441 int vmci_transport_send_waiting_read(struct sock
*sk
,
442 struct vmci_transport_waiting_info
*wait
)
444 return vmci_transport_send_control_pkt(
445 sk
, VMCI_TRANSPORT_PACKET_TYPE_WAITING_READ
,
446 0, 0, wait
, VSOCK_PROTO_INVALID
,
447 VMCI_INVALID_HANDLE
);
450 static int vmci_transport_shutdown(struct vsock_sock
*vsk
, int mode
)
452 return vmci_transport_send_control_pkt(
454 VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN
,
457 VMCI_INVALID_HANDLE
);
460 static int vmci_transport_send_conn_request(struct sock
*sk
, size_t size
)
462 return vmci_transport_send_control_pkt(sk
,
463 VMCI_TRANSPORT_PACKET_TYPE_REQUEST
,
466 VMCI_INVALID_HANDLE
);
469 static int vmci_transport_send_conn_request2(struct sock
*sk
, size_t size
,
472 return vmci_transport_send_control_pkt(
473 sk
, VMCI_TRANSPORT_PACKET_TYPE_REQUEST2
,
474 size
, 0, NULL
, version
,
475 VMCI_INVALID_HANDLE
);
478 static struct sock
*vmci_transport_get_pending(
479 struct sock
*listener
,
480 struct vmci_transport_packet
*pkt
)
482 struct vsock_sock
*vlistener
;
483 struct vsock_sock
*vpending
;
484 struct sock
*pending
;
485 struct sockaddr_vm src
;
487 vsock_addr_init(&src
, pkt
->dg
.src
.context
, pkt
->src_port
);
489 vlistener
= vsock_sk(listener
);
491 list_for_each_entry(vpending
, &vlistener
->pending_links
,
493 if (vsock_addr_equals_addr(&src
, &vpending
->remote_addr
) &&
494 pkt
->dst_port
== vpending
->local_addr
.svm_port
) {
495 pending
= sk_vsock(vpending
);
507 static void vmci_transport_release_pending(struct sock
*pending
)
512 /* We allow two kinds of sockets to communicate with a restricted VM: 1)
513 * trusted sockets 2) sockets from applications running as the same user as the
514 * VM (this is only true for the host side and only when using hosted products)
517 static bool vmci_transport_is_trusted(struct vsock_sock
*vsock
, u32 peer_cid
)
519 return vsock
->trusted
||
520 vmci_is_context_owner(peer_cid
, vsock
->owner
->uid
);
523 /* We allow sending datagrams to and receiving datagrams from a restricted VM
524 * only if it is trusted as described in vmci_transport_is_trusted.
527 static bool vmci_transport_allow_dgram(struct vsock_sock
*vsock
, u32 peer_cid
)
529 if (VMADDR_CID_HYPERVISOR
== peer_cid
)
532 if (vsock
->cached_peer
!= peer_cid
) {
533 vsock
->cached_peer
= peer_cid
;
534 if (!vmci_transport_is_trusted(vsock
, peer_cid
) &&
535 (vmci_context_get_priv_flags(peer_cid
) &
536 VMCI_PRIVILEGE_FLAG_RESTRICTED
)) {
537 vsock
->cached_peer_allow_dgram
= false;
539 vsock
->cached_peer_allow_dgram
= true;
543 return vsock
->cached_peer_allow_dgram
;
547 vmci_transport_queue_pair_alloc(struct vmci_qp
**qpair
,
548 struct vmci_handle
*handle
,
551 u32 peer
, u32 flags
, bool trusted
)
556 /* Try to allocate our queue pair as trusted. This will only
557 * work if vsock is running in the host.
560 err
= vmci_qpair_alloc(qpair
, handle
, produce_size
,
563 VMCI_PRIVILEGE_FLAG_TRUSTED
);
564 if (err
!= VMCI_ERROR_NO_ACCESS
)
569 err
= vmci_qpair_alloc(qpair
, handle
, produce_size
, consume_size
,
570 peer
, flags
, VMCI_NO_PRIVILEGE_FLAGS
);
573 pr_err_once("Could not attach to queue pair with %d\n", err
);
574 err
= vmci_transport_error_to_vsock_error(err
);
581 vmci_transport_datagram_create_hnd(u32 resource_id
,
583 vmci_datagram_recv_cb recv_cb
,
585 struct vmci_handle
*out_handle
)
589 /* Try to allocate our datagram handler as trusted. This will only work
590 * if vsock is running in the host.
593 err
= vmci_datagram_create_handle_priv(resource_id
, flags
,
594 VMCI_PRIVILEGE_FLAG_TRUSTED
,
596 client_data
, out_handle
);
598 if (err
== VMCI_ERROR_NO_ACCESS
)
599 err
= vmci_datagram_create_handle(resource_id
, flags
,
600 recv_cb
, client_data
,
606 /* This is invoked as part of a tasklet that's scheduled when the VMCI
607 * interrupt fires. This is run in bottom-half context and if it ever needs to
608 * sleep it should defer that work to a work queue.
611 static int vmci_transport_recv_dgram_cb(void *data
, struct vmci_datagram
*dg
)
616 struct vsock_sock
*vsk
;
618 sk
= (struct sock
*)data
;
620 /* This handler is privileged when this module is running on the host.
621 * We will get datagrams from all endpoints (even VMs that are in a
622 * restricted context). If we get one from a restricted context then
623 * the destination socket must be trusted.
625 * NOTE: We access the socket struct without holding the lock here.
626 * This is ok because the field we are interested is never modified
627 * outside of the create and destruct socket functions.
630 if (!vmci_transport_allow_dgram(vsk
, dg
->src
.context
))
631 return VMCI_ERROR_NO_ACCESS
;
633 size
= VMCI_DG_SIZE(dg
);
635 /* Attach the packet to the socket's receive queue as an sk_buff. */
636 skb
= alloc_skb(size
, GFP_ATOMIC
);
638 return VMCI_ERROR_NO_MEM
;
640 /* sk_receive_skb() will do a sock_put(), so hold here. */
643 memcpy(skb
->data
, dg
, size
);
644 sk_receive_skb(sk
, skb
, 0);
649 static bool vmci_transport_stream_allow(u32 cid
, u32 port
)
651 static const u32 non_socket_contexts
[] = {
656 BUILD_BUG_ON(sizeof(cid
) != sizeof(*non_socket_contexts
));
658 for (i
= 0; i
< ARRAY_SIZE(non_socket_contexts
); i
++) {
659 if (cid
== non_socket_contexts
[i
])
666 /* This is invoked as part of a tasklet that's scheduled when the VMCI
667 * interrupt fires. This is run in bottom-half context but it defers most of
668 * its work to the packet handling work queue.
671 static int vmci_transport_recv_stream_cb(void *data
, struct vmci_datagram
*dg
)
674 struct sockaddr_vm dst
;
675 struct sockaddr_vm src
;
676 struct vmci_transport_packet
*pkt
;
677 struct vsock_sock
*vsk
;
683 bh_process_pkt
= false;
685 /* Ignore incoming packets from contexts without sockets, or resources
686 * that aren't vsock implementations.
689 if (!vmci_transport_stream_allow(dg
->src
.context
, -1)
690 || vmci_transport_peer_rid(dg
->src
.context
) != dg
->src
.resource
)
691 return VMCI_ERROR_NO_ACCESS
;
693 if (VMCI_DG_SIZE(dg
) < sizeof(*pkt
))
694 /* Drop datagrams that do not contain full VSock packets. */
695 return VMCI_ERROR_INVALID_ARGS
;
697 pkt
= (struct vmci_transport_packet
*)dg
;
699 /* Find the socket that should handle this packet. First we look for a
700 * connected socket and if there is none we look for a socket bound to
701 * the destintation address.
703 vsock_addr_init(&src
, pkt
->dg
.src
.context
, pkt
->src_port
);
704 vsock_addr_init(&dst
, pkt
->dg
.dst
.context
, pkt
->dst_port
);
706 sk
= vsock_find_connected_socket(&src
, &dst
);
708 sk
= vsock_find_bound_socket(&dst
);
710 /* We could not find a socket for this specified
711 * address. If this packet is a RST, we just drop it.
712 * If it is another packet, we send a RST. Note that
713 * we do not send a RST reply to RSTs so that we do not
714 * continually send RSTs between two endpoints.
716 * Note that since this is a reply, dst is src and src
719 if (vmci_transport_send_reset_bh(&dst
, &src
, pkt
) < 0)
720 pr_err("unable to send reset\n");
722 err
= VMCI_ERROR_NOT_FOUND
;
727 /* If the received packet type is beyond all types known to this
728 * implementation, reply with an invalid message. Hopefully this will
729 * help when implementing backwards compatibility in the future.
731 if (pkt
->type
>= VMCI_TRANSPORT_PACKET_TYPE_MAX
) {
732 vmci_transport_send_invalid_bh(&dst
, &src
);
733 err
= VMCI_ERROR_INVALID_ARGS
;
737 /* This handler is privileged when this module is running on the host.
738 * We will get datagram connect requests from all endpoints (even VMs
739 * that are in a restricted context). If we get one from a restricted
740 * context then the destination socket must be trusted.
742 * NOTE: We access the socket struct without holding the lock here.
743 * This is ok because the field we are interested is never modified
744 * outside of the create and destruct socket functions.
747 if (!vmci_transport_allow_dgram(vsk
, pkt
->dg
.src
.context
)) {
748 err
= VMCI_ERROR_NO_ACCESS
;
752 /* We do most everything in a work queue, but let's fast path the
753 * notification of reads and writes to help data transfer performance.
754 * We can only do this if there is no process context code executing
755 * for this socket since that may change the state.
759 if (!sock_owned_by_user(sk
)) {
760 /* The local context ID may be out of date, update it. */
761 vsk
->local_addr
.svm_cid
= dst
.svm_cid
;
763 if (sk
->sk_state
== TCP_ESTABLISHED
)
764 vmci_trans(vsk
)->notify_ops
->handle_notify_pkt(
765 sk
, pkt
, true, &dst
, &src
,
771 if (!bh_process_pkt
) {
772 struct vmci_transport_recv_pkt_info
*recv_pkt_info
;
774 recv_pkt_info
= kmalloc(sizeof(*recv_pkt_info
), GFP_ATOMIC
);
775 if (!recv_pkt_info
) {
776 if (vmci_transport_send_reset_bh(&dst
, &src
, pkt
) < 0)
777 pr_err("unable to send reset\n");
779 err
= VMCI_ERROR_NO_MEM
;
783 recv_pkt_info
->sk
= sk
;
784 memcpy(&recv_pkt_info
->pkt
, pkt
, sizeof(recv_pkt_info
->pkt
));
785 INIT_WORK(&recv_pkt_info
->work
, vmci_transport_recv_pkt_work
);
787 schedule_work(&recv_pkt_info
->work
);
788 /* Clear sk so that the reference count incremented by one of
789 * the Find functions above is not decremented below. We need
790 * that reference count for the packet handler we've scheduled
803 static void vmci_transport_handle_detach(struct sock
*sk
)
805 struct vsock_sock
*vsk
;
808 if (!vmci_handle_is_invalid(vmci_trans(vsk
)->qp_handle
)) {
809 sock_set_flag(sk
, SOCK_DONE
);
811 /* On a detach the peer will not be sending or receiving
814 vsk
->peer_shutdown
= SHUTDOWN_MASK
;
816 /* We should not be sending anymore since the peer won't be
817 * there to receive, but we can still receive if there is data
818 * left in our consume queue. If the local endpoint is a host,
819 * we can't call vsock_stream_has_data, since that may block,
820 * but a host endpoint can't read data once the VM has
821 * detached, so there is no available data in that case.
823 if (vsk
->local_addr
.svm_cid
== VMADDR_CID_HOST
||
824 vsock_stream_has_data(vsk
) <= 0) {
825 if (sk
->sk_state
== TCP_SYN_SENT
) {
826 /* The peer may detach from a queue pair while
827 * we are still in the connecting state, i.e.,
828 * if the peer VM is killed after attaching to
829 * a queue pair, but before we complete the
830 * handshake. In that case, we treat the detach
831 * event like a reset.
834 sk
->sk_state
= TCP_CLOSE
;
835 sk
->sk_err
= ECONNRESET
;
839 sk
->sk_state
= TCP_CLOSE
;
841 sk
->sk_state_change(sk
);
845 static void vmci_transport_peer_detach_cb(u32 sub_id
,
846 const struct vmci_event_data
*e_data
,
849 struct vmci_transport
*trans
= client_data
;
850 const struct vmci_event_payload_qp
*e_payload
;
852 e_payload
= vmci_event_data_const_payload(e_data
);
854 /* XXX This is lame, we should provide a way to lookup sockets by
857 if (vmci_handle_is_invalid(e_payload
->handle
) ||
858 !vmci_handle_is_equal(trans
->qp_handle
, e_payload
->handle
))
861 /* We don't ask for delayed CBs when we subscribe to this event (we
862 * pass 0 as flags to vmci_event_subscribe()). VMCI makes no
863 * guarantees in that case about what context we might be running in,
864 * so it could be BH or process, blockable or non-blockable. So we
865 * need to account for all possible contexts here.
867 spin_lock_bh(&trans
->lock
);
871 /* Apart from here, trans->lock is only grabbed as part of sk destruct,
872 * where trans->sk isn't locked.
874 bh_lock_sock(trans
->sk
);
876 vmci_transport_handle_detach(trans
->sk
);
878 bh_unlock_sock(trans
->sk
);
880 spin_unlock_bh(&trans
->lock
);
883 static void vmci_transport_qp_resumed_cb(u32 sub_id
,
884 const struct vmci_event_data
*e_data
,
887 vsock_for_each_connected_socket(&vmci_transport
,
888 vmci_transport_handle_detach
);
891 static void vmci_transport_recv_pkt_work(struct work_struct
*work
)
893 struct vmci_transport_recv_pkt_info
*recv_pkt_info
;
894 struct vmci_transport_packet
*pkt
;
898 container_of(work
, struct vmci_transport_recv_pkt_info
, work
);
899 sk
= recv_pkt_info
->sk
;
900 pkt
= &recv_pkt_info
->pkt
;
904 /* The local context ID may be out of date. */
905 vsock_sk(sk
)->local_addr
.svm_cid
= pkt
->dg
.dst
.context
;
907 switch (sk
->sk_state
) {
909 vmci_transport_recv_listen(sk
, pkt
);
912 /* Processing of pending connections for servers goes through
913 * the listening socket, so see vmci_transport_recv_listen()
916 vmci_transport_recv_connecting_client(sk
, pkt
);
918 case TCP_ESTABLISHED
:
919 vmci_transport_recv_connected(sk
, pkt
);
922 /* Because this function does not run in the same context as
923 * vmci_transport_recv_stream_cb it is possible that the
924 * socket has closed. We need to let the other side know or it
925 * could be sitting in a connect and hang forever. Send a
926 * reset to prevent that.
928 vmci_transport_send_reset(sk
, pkt
);
933 kfree(recv_pkt_info
);
934 /* Release reference obtained in the stream callback when we fetched
935 * this socket out of the bound or connected list.
940 static int vmci_transport_recv_listen(struct sock
*sk
,
941 struct vmci_transport_packet
*pkt
)
943 struct sock
*pending
;
944 struct vsock_sock
*vpending
;
947 bool old_request
= false;
948 bool old_pkt_proto
= false;
950 /* Because we are in the listen state, we could be receiving a packet
951 * for ourself or any previous connection requests that we received.
952 * If it's the latter, we try to find a socket in our list of pending
953 * connections and, if we do, call the appropriate handler for the
954 * state that socket is in. Otherwise we try to service the
955 * connection request.
957 pending
= vmci_transport_get_pending(sk
, pkt
);
961 /* The local context ID may be out of date. */
962 vsock_sk(pending
)->local_addr
.svm_cid
= pkt
->dg
.dst
.context
;
964 switch (pending
->sk_state
) {
966 err
= vmci_transport_recv_connecting_server(sk
,
971 vmci_transport_send_reset(pending
, pkt
);
976 vsock_remove_pending(sk
, pending
);
978 release_sock(pending
);
979 vmci_transport_release_pending(pending
);
984 /* The listen state only accepts connection requests. Reply with a
985 * reset unless we received a reset.
988 if (!(pkt
->type
== VMCI_TRANSPORT_PACKET_TYPE_REQUEST
||
989 pkt
->type
== VMCI_TRANSPORT_PACKET_TYPE_REQUEST2
)) {
990 vmci_transport_reply_reset(pkt
);
994 if (pkt
->u
.size
== 0) {
995 vmci_transport_reply_reset(pkt
);
999 /* If this socket can't accommodate this connection request, we send a
1000 * reset. Otherwise we create and initialize a child socket and reply
1001 * with a connection negotiation.
1003 if (sk
->sk_ack_backlog
>= sk
->sk_max_ack_backlog
) {
1004 vmci_transport_reply_reset(pkt
);
1005 return -ECONNREFUSED
;
1008 pending
= vsock_create_connected(sk
);
1010 vmci_transport_send_reset(sk
, pkt
);
1014 vpending
= vsock_sk(pending
);
1016 vsock_addr_init(&vpending
->local_addr
, pkt
->dg
.dst
.context
,
1018 vsock_addr_init(&vpending
->remote_addr
, pkt
->dg
.src
.context
,
1021 err
= vsock_assign_transport(vpending
, vsock_sk(sk
));
1022 /* Transport assigned (looking at remote_addr) must be the same
1023 * where we received the request.
1025 if (err
|| !vmci_check_transport(vpending
)) {
1026 vmci_transport_send_reset(sk
, pkt
);
1031 /* If the proposed size fits within our min/max, accept it. Otherwise
1032 * propose our own size.
1034 if (pkt
->u
.size
>= vpending
->buffer_min_size
&&
1035 pkt
->u
.size
<= vpending
->buffer_max_size
) {
1036 qp_size
= pkt
->u
.size
;
1038 qp_size
= vpending
->buffer_size
;
1041 /* Figure out if we are using old or new requests based on the
1042 * overrides pkt types sent by our peer.
1044 if (vmci_transport_old_proto_override(&old_pkt_proto
)) {
1045 old_request
= old_pkt_proto
;
1047 if (pkt
->type
== VMCI_TRANSPORT_PACKET_TYPE_REQUEST
)
1049 else if (pkt
->type
== VMCI_TRANSPORT_PACKET_TYPE_REQUEST2
)
1050 old_request
= false;
1055 /* Handle a REQUEST (or override) */
1056 u16 version
= VSOCK_PROTO_INVALID
;
1057 if (vmci_transport_proto_to_notify_struct(
1058 pending
, &version
, true))
1059 err
= vmci_transport_send_negotiate(pending
, qp_size
);
1064 /* Handle a REQUEST2 (or override) */
1065 int proto_int
= pkt
->proto
;
1067 u16 active_proto_version
= 0;
1069 /* The list of possible protocols is the intersection of all
1070 * protocols the client supports ... plus all the protocols we
1073 proto_int
&= vmci_transport_new_proto_supported_versions();
1075 /* We choose the highest possible protocol version and use that
1078 pos
= fls(proto_int
);
1080 active_proto_version
= (1 << (pos
- 1));
1081 if (vmci_transport_proto_to_notify_struct(
1082 pending
, &active_proto_version
, false))
1083 err
= vmci_transport_send_negotiate2(pending
,
1085 active_proto_version
);
1095 vmci_transport_send_reset(sk
, pkt
);
1097 err
= vmci_transport_error_to_vsock_error(err
);
1101 vsock_add_pending(sk
, pending
);
1102 sk_acceptq_added(sk
);
1104 pending
->sk_state
= TCP_SYN_SENT
;
1105 vmci_trans(vpending
)->produce_size
=
1106 vmci_trans(vpending
)->consume_size
= qp_size
;
1107 vpending
->buffer_size
= qp_size
;
1109 vmci_trans(vpending
)->notify_ops
->process_request(pending
);
1111 /* We might never receive another message for this socket and it's not
1112 * connected to any process, so we have to ensure it gets cleaned up
1113 * ourself. Our delayed work function will take care of that. Note
1114 * that we do not ever cancel this function since we have few
1115 * guarantees about its state when calling cancel_delayed_work().
1116 * Instead we hold a reference on the socket for that function and make
1117 * it capable of handling cases where it needs to do nothing but
1118 * release that reference.
1120 vpending
->listener
= sk
;
1123 schedule_delayed_work(&vpending
->pending_work
, HZ
);
1130 vmci_transport_recv_connecting_server(struct sock
*listener
,
1131 struct sock
*pending
,
1132 struct vmci_transport_packet
*pkt
)
1134 struct vsock_sock
*vpending
;
1135 struct vmci_handle handle
;
1136 struct vmci_qp
*qpair
;
1143 vpending
= vsock_sk(pending
);
1144 detach_sub_id
= VMCI_INVALID_ID
;
1146 switch (pkt
->type
) {
1147 case VMCI_TRANSPORT_PACKET_TYPE_OFFER
:
1148 if (vmci_handle_is_invalid(pkt
->u
.handle
)) {
1149 vmci_transport_send_reset(pending
, pkt
);
1156 /* Close and cleanup the connection. */
1157 vmci_transport_send_reset(pending
, pkt
);
1159 err
= pkt
->type
== VMCI_TRANSPORT_PACKET_TYPE_RST
? 0 : -EINVAL
;
1163 /* In order to complete the connection we need to attach to the offered
1164 * queue pair and send an attach notification. We also subscribe to the
1165 * detach event so we know when our peer goes away, and we do that
1166 * before attaching so we don't miss an event. If all this succeeds,
1167 * we update our state and wakeup anything waiting in accept() for a
1171 /* We don't care about attach since we ensure the other side has
1172 * attached by specifying the ATTACH_ONLY flag below.
1174 err
= vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH
,
1175 vmci_transport_peer_detach_cb
,
1176 vmci_trans(vpending
), &detach_sub_id
);
1177 if (err
< VMCI_SUCCESS
) {
1178 vmci_transport_send_reset(pending
, pkt
);
1179 err
= vmci_transport_error_to_vsock_error(err
);
1184 vmci_trans(vpending
)->detach_sub_id
= detach_sub_id
;
1186 /* Now attach to the queue pair the client created. */
1187 handle
= pkt
->u
.handle
;
1189 /* vpending->local_addr always has a context id so we do not need to
1190 * worry about VMADDR_CID_ANY in this case.
1193 vpending
->remote_addr
.svm_cid
== vpending
->local_addr
.svm_cid
;
1194 flags
= VMCI_QPFLAG_ATTACH_ONLY
;
1195 flags
|= is_local
? VMCI_QPFLAG_LOCAL
: 0;
1197 err
= vmci_transport_queue_pair_alloc(
1200 vmci_trans(vpending
)->produce_size
,
1201 vmci_trans(vpending
)->consume_size
,
1202 pkt
->dg
.src
.context
,
1204 vmci_transport_is_trusted(
1206 vpending
->remote_addr
.svm_cid
));
1208 vmci_transport_send_reset(pending
, pkt
);
1213 vmci_trans(vpending
)->qp_handle
= handle
;
1214 vmci_trans(vpending
)->qpair
= qpair
;
1216 /* When we send the attach message, we must be ready to handle incoming
1217 * control messages on the newly connected socket. So we move the
1218 * pending socket to the connected state before sending the attach
1219 * message. Otherwise, an incoming packet triggered by the attach being
1220 * received by the peer may be processed concurrently with what happens
1221 * below after sending the attach message, and that incoming packet
1222 * will find the listening socket instead of the (currently) pending
1223 * socket. Note that enqueueing the socket increments the reference
1224 * count, so even if a reset comes before the connection is accepted,
1225 * the socket will be valid until it is removed from the queue.
1227 * If we fail sending the attach below, we remove the socket from the
1228 * connected list and move the socket to TCP_CLOSE before
1229 * releasing the lock, so a pending slow path processing of an incoming
1230 * packet will not see the socket in the connected state in that case.
1232 pending
->sk_state
= TCP_ESTABLISHED
;
1234 vsock_insert_connected(vpending
);
1236 /* Notify our peer of our attach. */
1237 err
= vmci_transport_send_attach(pending
, handle
);
1239 vsock_remove_connected(vpending
);
1240 pr_err("Could not send attach\n");
1241 vmci_transport_send_reset(pending
, pkt
);
1242 err
= vmci_transport_error_to_vsock_error(err
);
1247 /* We have a connection. Move the now connected socket from the
1248 * listener's pending list to the accept queue so callers of accept()
1251 vsock_remove_pending(listener
, pending
);
1252 vsock_enqueue_accept(listener
, pending
);
1254 /* Callers of accept() will be waiting on the listening socket, not
1255 * the pending socket.
1257 listener
->sk_data_ready(listener
);
1262 pending
->sk_err
= skerr
;
1263 pending
->sk_state
= TCP_CLOSE
;
1264 /* As long as we drop our reference, all necessary cleanup will handle
1265 * when the cleanup function drops its reference and our destruct
1266 * implementation is called. Note that since the listen handler will
1267 * remove pending from the pending list upon our failure, the cleanup
1268 * function won't drop the additional reference, which is why we do it
1277 vmci_transport_recv_connecting_client(struct sock
*sk
,
1278 struct vmci_transport_packet
*pkt
)
1280 struct vsock_sock
*vsk
;
1286 switch (pkt
->type
) {
1287 case VMCI_TRANSPORT_PACKET_TYPE_ATTACH
:
1288 if (vmci_handle_is_invalid(pkt
->u
.handle
) ||
1289 !vmci_handle_is_equal(pkt
->u
.handle
,
1290 vmci_trans(vsk
)->qp_handle
)) {
1296 /* Signify the socket is connected and wakeup the waiter in
1297 * connect(). Also place the socket in the connected table for
1298 * accounting (it can already be found since it's in the bound
1301 sk
->sk_state
= TCP_ESTABLISHED
;
1302 sk
->sk_socket
->state
= SS_CONNECTED
;
1303 vsock_insert_connected(vsk
);
1304 sk
->sk_state_change(sk
);
1307 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE
:
1308 case VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2
:
1309 if (pkt
->u
.size
== 0
1310 || pkt
->dg
.src
.context
!= vsk
->remote_addr
.svm_cid
1311 || pkt
->src_port
!= vsk
->remote_addr
.svm_port
1312 || !vmci_handle_is_invalid(vmci_trans(vsk
)->qp_handle
)
1313 || vmci_trans(vsk
)->qpair
1314 || vmci_trans(vsk
)->produce_size
!= 0
1315 || vmci_trans(vsk
)->consume_size
!= 0
1316 || vmci_trans(vsk
)->detach_sub_id
!= VMCI_INVALID_ID
) {
1323 err
= vmci_transport_recv_connecting_client_negotiate(sk
, pkt
);
1330 case VMCI_TRANSPORT_PACKET_TYPE_INVALID
:
1331 err
= vmci_transport_recv_connecting_client_invalid(sk
, pkt
);
1338 case VMCI_TRANSPORT_PACKET_TYPE_RST
:
1339 /* Older versions of the linux code (WS 6.5 / ESX 4.0) used to
1340 * continue processing here after they sent an INVALID packet.
1341 * This meant that we got a RST after the INVALID. We ignore a
1342 * RST after an INVALID. The common code doesn't send the RST
1343 * ... so we can hang if an old version of the common code
1344 * fails between getting a REQUEST and sending an OFFER back.
1345 * Not much we can do about it... except hope that it doesn't
1348 if (vsk
->ignore_connecting_rst
) {
1349 vsk
->ignore_connecting_rst
= false;
1358 /* Close and cleanup the connection. */
1367 vmci_transport_send_reset(sk
, pkt
);
1369 sk
->sk_state
= TCP_CLOSE
;
1371 sk_error_report(sk
);
1375 static int vmci_transport_recv_connecting_client_negotiate(
1377 struct vmci_transport_packet
*pkt
)
1380 struct vsock_sock
*vsk
;
1381 struct vmci_handle handle
;
1382 struct vmci_qp
*qpair
;
1386 bool old_proto
= true;
1391 handle
= VMCI_INVALID_HANDLE
;
1392 detach_sub_id
= VMCI_INVALID_ID
;
1394 /* If we have gotten here then we should be past the point where old
1395 * linux vsock could have sent the bogus rst.
1397 vsk
->sent_request
= false;
1398 vsk
->ignore_connecting_rst
= false;
1400 /* Verify that we're OK with the proposed queue pair size */
1401 if (pkt
->u
.size
< vsk
->buffer_min_size
||
1402 pkt
->u
.size
> vsk
->buffer_max_size
) {
1407 /* At this point we know the CID the peer is using to talk to us. */
1409 if (vsk
->local_addr
.svm_cid
== VMADDR_CID_ANY
)
1410 vsk
->local_addr
.svm_cid
= pkt
->dg
.dst
.context
;
1412 /* Setup the notify ops to be the highest supported version that both
1413 * the server and the client support.
1416 if (vmci_transport_old_proto_override(&old_pkt_proto
)) {
1417 old_proto
= old_pkt_proto
;
1419 if (pkt
->type
== VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE
)
1421 else if (pkt
->type
== VMCI_TRANSPORT_PACKET_TYPE_NEGOTIATE2
)
1427 version
= VSOCK_PROTO_INVALID
;
1429 version
= pkt
->proto
;
1431 if (!vmci_transport_proto_to_notify_struct(sk
, &version
, old_proto
)) {
1436 /* Subscribe to detach events first.
1438 * XXX We attach once for each queue pair created for now so it is easy
1439 * to find the socket (it's provided), but later we should only
1440 * subscribe once and add a way to lookup sockets by queue pair handle.
1442 err
= vmci_event_subscribe(VMCI_EVENT_QP_PEER_DETACH
,
1443 vmci_transport_peer_detach_cb
,
1444 vmci_trans(vsk
), &detach_sub_id
);
1445 if (err
< VMCI_SUCCESS
) {
1446 err
= vmci_transport_error_to_vsock_error(err
);
1450 /* Make VMCI select the handle for us. */
1451 handle
= VMCI_INVALID_HANDLE
;
1452 is_local
= vsk
->remote_addr
.svm_cid
== vsk
->local_addr
.svm_cid
;
1453 flags
= is_local
? VMCI_QPFLAG_LOCAL
: 0;
1455 err
= vmci_transport_queue_pair_alloc(&qpair
,
1459 vsk
->remote_addr
.svm_cid
,
1461 vmci_transport_is_trusted(
1464 remote_addr
.svm_cid
));
1468 err
= vmci_transport_send_qp_offer(sk
, handle
);
1470 err
= vmci_transport_error_to_vsock_error(err
);
1474 vmci_trans(vsk
)->qp_handle
= handle
;
1475 vmci_trans(vsk
)->qpair
= qpair
;
1477 vmci_trans(vsk
)->produce_size
= vmci_trans(vsk
)->consume_size
=
1480 vmci_trans(vsk
)->detach_sub_id
= detach_sub_id
;
1482 vmci_trans(vsk
)->notify_ops
->process_negotiate(sk
);
1487 if (detach_sub_id
!= VMCI_INVALID_ID
)
1488 vmci_event_unsubscribe(detach_sub_id
);
1490 if (!vmci_handle_is_invalid(handle
))
1491 vmci_qpair_detach(&qpair
);
1497 vmci_transport_recv_connecting_client_invalid(struct sock
*sk
,
1498 struct vmci_transport_packet
*pkt
)
1501 struct vsock_sock
*vsk
= vsock_sk(sk
);
1503 if (vsk
->sent_request
) {
1504 vsk
->sent_request
= false;
1505 vsk
->ignore_connecting_rst
= true;
1507 err
= vmci_transport_send_conn_request(sk
, vsk
->buffer_size
);
1509 err
= vmci_transport_error_to_vsock_error(err
);
1518 static int vmci_transport_recv_connected(struct sock
*sk
,
1519 struct vmci_transport_packet
*pkt
)
1521 struct vsock_sock
*vsk
;
1522 bool pkt_processed
= false;
1524 /* In cases where we are closing the connection, it's sufficient to
1525 * mark the state change (and maybe error) and wake up any waiting
1526 * threads. Since this is a connected socket, it's owned by a user
1527 * process and will be cleaned up when the failure is passed back on
1528 * the current or next system call. Our system call implementations
1529 * must therefore check for error and state changes on entry and when
1532 switch (pkt
->type
) {
1533 case VMCI_TRANSPORT_PACKET_TYPE_SHUTDOWN
:
1537 vsk
->peer_shutdown
|= pkt
->u
.mode
;
1538 sk
->sk_state_change(sk
);
1542 case VMCI_TRANSPORT_PACKET_TYPE_RST
:
1544 /* It is possible that we sent our peer a message (e.g a
1545 * WAITING_READ) right before we got notified that the peer had
1546 * detached. If that happens then we can get a RST pkt back
1547 * from our peer even though there is data available for us to
1548 * read. In that case, don't shutdown the socket completely but
1549 * instead allow the local client to finish reading data off
1550 * the queuepair. Always treat a RST pkt in connected mode like
1553 sock_set_flag(sk
, SOCK_DONE
);
1554 vsk
->peer_shutdown
= SHUTDOWN_MASK
;
1555 if (vsock_stream_has_data(vsk
) <= 0)
1556 sk
->sk_state
= TCP_CLOSING
;
1558 sk
->sk_state_change(sk
);
1563 vmci_trans(vsk
)->notify_ops
->handle_notify_pkt(
1564 sk
, pkt
, false, NULL
, NULL
,
1575 static int vmci_transport_socket_init(struct vsock_sock
*vsk
,
1576 struct vsock_sock
*psk
)
1578 vsk
->trans
= kmalloc(sizeof(struct vmci_transport
), GFP_KERNEL
);
1582 vmci_trans(vsk
)->dg_handle
= VMCI_INVALID_HANDLE
;
1583 vmci_trans(vsk
)->qp_handle
= VMCI_INVALID_HANDLE
;
1584 vmci_trans(vsk
)->qpair
= NULL
;
1585 vmci_trans(vsk
)->produce_size
= vmci_trans(vsk
)->consume_size
= 0;
1586 vmci_trans(vsk
)->detach_sub_id
= VMCI_INVALID_ID
;
1587 vmci_trans(vsk
)->notify_ops
= NULL
;
1588 INIT_LIST_HEAD(&vmci_trans(vsk
)->elem
);
1589 vmci_trans(vsk
)->sk
= &vsk
->sk
;
1590 spin_lock_init(&vmci_trans(vsk
)->lock
);
1595 static void vmci_transport_free_resources(struct list_head
*transport_list
)
1597 while (!list_empty(transport_list
)) {
1598 struct vmci_transport
*transport
=
1599 list_first_entry(transport_list
, struct vmci_transport
,
1601 list_del(&transport
->elem
);
1603 if (transport
->detach_sub_id
!= VMCI_INVALID_ID
) {
1604 vmci_event_unsubscribe(transport
->detach_sub_id
);
1605 transport
->detach_sub_id
= VMCI_INVALID_ID
;
1608 if (!vmci_handle_is_invalid(transport
->qp_handle
)) {
1609 vmci_qpair_detach(&transport
->qpair
);
1610 transport
->qp_handle
= VMCI_INVALID_HANDLE
;
1611 transport
->produce_size
= 0;
1612 transport
->consume_size
= 0;
1619 static void vmci_transport_cleanup(struct work_struct
*work
)
1623 spin_lock_bh(&vmci_transport_cleanup_lock
);
1624 list_replace_init(&vmci_transport_cleanup_list
, &pending
);
1625 spin_unlock_bh(&vmci_transport_cleanup_lock
);
1626 vmci_transport_free_resources(&pending
);
1629 static void vmci_transport_destruct(struct vsock_sock
*vsk
)
1631 /* transport can be NULL if we hit a failure at init() time */
1632 if (!vmci_trans(vsk
))
1635 /* Ensure that the detach callback doesn't use the sk/vsk
1636 * we are about to destruct.
1638 spin_lock_bh(&vmci_trans(vsk
)->lock
);
1639 vmci_trans(vsk
)->sk
= NULL
;
1640 spin_unlock_bh(&vmci_trans(vsk
)->lock
);
1642 if (vmci_trans(vsk
)->notify_ops
)
1643 vmci_trans(vsk
)->notify_ops
->socket_destruct(vsk
);
1645 spin_lock_bh(&vmci_transport_cleanup_lock
);
1646 list_add(&vmci_trans(vsk
)->elem
, &vmci_transport_cleanup_list
);
1647 spin_unlock_bh(&vmci_transport_cleanup_lock
);
1648 schedule_work(&vmci_transport_cleanup_work
);
1653 static void vmci_transport_release(struct vsock_sock
*vsk
)
1655 vsock_remove_sock(vsk
);
1657 if (!vmci_handle_is_invalid(vmci_trans(vsk
)->dg_handle
)) {
1658 vmci_datagram_destroy_handle(vmci_trans(vsk
)->dg_handle
);
1659 vmci_trans(vsk
)->dg_handle
= VMCI_INVALID_HANDLE
;
1663 static int vmci_transport_dgram_bind(struct vsock_sock
*vsk
,
1664 struct sockaddr_vm
*addr
)
1670 /* VMCI will select a resource ID for us if we provide
1673 port
= addr
->svm_port
== VMADDR_PORT_ANY
?
1674 VMCI_INVALID_ID
: addr
->svm_port
;
1676 if (port
<= LAST_RESERVED_PORT
&& !capable(CAP_NET_BIND_SERVICE
))
1679 flags
= addr
->svm_cid
== VMADDR_CID_ANY
?
1680 VMCI_FLAG_ANYCID_DG_HND
: 0;
1682 err
= vmci_transport_datagram_create_hnd(port
, flags
,
1683 vmci_transport_recv_dgram_cb
,
1685 &vmci_trans(vsk
)->dg_handle
);
1686 if (err
< VMCI_SUCCESS
)
1687 return vmci_transport_error_to_vsock_error(err
);
1688 vsock_addr_init(&vsk
->local_addr
, addr
->svm_cid
,
1689 vmci_trans(vsk
)->dg_handle
.resource
);
1694 static int vmci_transport_dgram_enqueue(
1695 struct vsock_sock
*vsk
,
1696 struct sockaddr_vm
*remote_addr
,
1701 struct vmci_datagram
*dg
;
1703 if (len
> VMCI_MAX_DG_PAYLOAD_SIZE
)
1706 if (!vmci_transport_allow_dgram(vsk
, remote_addr
->svm_cid
))
1709 /* Allocate a buffer for the user's message and our packet header. */
1710 dg
= kmalloc(len
+ sizeof(*dg
), GFP_KERNEL
);
1714 err
= memcpy_from_msg(VMCI_DG_PAYLOAD(dg
), msg
, len
);
1720 dg
->dst
= vmci_make_handle(remote_addr
->svm_cid
,
1721 remote_addr
->svm_port
);
1722 dg
->src
= vmci_make_handle(vsk
->local_addr
.svm_cid
,
1723 vsk
->local_addr
.svm_port
);
1724 dg
->payload_size
= len
;
1726 err
= vmci_datagram_send(dg
);
1729 return vmci_transport_error_to_vsock_error(err
);
1731 return err
- sizeof(*dg
);
1734 static int vmci_transport_dgram_dequeue(struct vsock_sock
*vsk
,
1735 struct msghdr
*msg
, size_t len
,
1739 struct vmci_datagram
*dg
;
1741 struct sk_buff
*skb
;
1743 if (flags
& MSG_OOB
|| flags
& MSG_ERRQUEUE
)
1746 /* Retrieve the head sk_buff from the socket's receive queue. */
1748 skb
= skb_recv_datagram(&vsk
->sk
, flags
, &err
);
1752 dg
= (struct vmci_datagram
*)skb
->data
;
1754 /* err is 0, meaning we read zero bytes. */
1757 payload_len
= dg
->payload_size
;
1758 /* Ensure the sk_buff matches the payload size claimed in the packet. */
1759 if (payload_len
!= skb
->len
- sizeof(*dg
)) {
1764 if (payload_len
> len
) {
1766 msg
->msg_flags
|= MSG_TRUNC
;
1769 /* Place the datagram payload in the user's iovec. */
1770 err
= skb_copy_datagram_msg(skb
, sizeof(*dg
), msg
, payload_len
);
1774 if (msg
->msg_name
) {
1775 /* Provide the address of the sender. */
1776 DECLARE_SOCKADDR(struct sockaddr_vm
*, vm_addr
, msg
->msg_name
);
1777 vsock_addr_init(vm_addr
, dg
->src
.context
, dg
->src
.resource
);
1778 msg
->msg_namelen
= sizeof(*vm_addr
);
1783 skb_free_datagram(&vsk
->sk
, skb
);
1787 static bool vmci_transport_dgram_allow(u32 cid
, u32 port
)
1789 if (cid
== VMADDR_CID_HYPERVISOR
) {
1790 /* Registrations of PBRPC Servers do not modify VMX/Hypervisor
1791 * state and are allowed.
1793 return port
== VMCI_UNITY_PBRPC_REGISTER
;
1799 static int vmci_transport_connect(struct vsock_sock
*vsk
)
1802 bool old_pkt_proto
= false;
1803 struct sock
*sk
= &vsk
->sk
;
1805 if (vmci_transport_old_proto_override(&old_pkt_proto
) &&
1807 err
= vmci_transport_send_conn_request(sk
, vsk
->buffer_size
);
1809 sk
->sk_state
= TCP_CLOSE
;
1813 int supported_proto_versions
=
1814 vmci_transport_new_proto_supported_versions();
1815 err
= vmci_transport_send_conn_request2(sk
, vsk
->buffer_size
,
1816 supported_proto_versions
);
1818 sk
->sk_state
= TCP_CLOSE
;
1822 vsk
->sent_request
= true;
1828 static ssize_t
vmci_transport_stream_dequeue(
1829 struct vsock_sock
*vsk
,
1836 if (flags
& MSG_PEEK
)
1837 err
= vmci_qpair_peekv(vmci_trans(vsk
)->qpair
, msg
, len
, 0);
1839 err
= vmci_qpair_dequev(vmci_trans(vsk
)->qpair
, msg
, len
, 0);
1847 static ssize_t
vmci_transport_stream_enqueue(
1848 struct vsock_sock
*vsk
,
1854 err
= vmci_qpair_enquev(vmci_trans(vsk
)->qpair
, msg
, len
, 0);
1861 static s64
vmci_transport_stream_has_data(struct vsock_sock
*vsk
)
1863 return vmci_qpair_consume_buf_ready(vmci_trans(vsk
)->qpair
);
1866 static s64
vmci_transport_stream_has_space(struct vsock_sock
*vsk
)
1868 return vmci_qpair_produce_free_space(vmci_trans(vsk
)->qpair
);
1871 static u64
vmci_transport_stream_rcvhiwat(struct vsock_sock
*vsk
)
1873 return vmci_trans(vsk
)->consume_size
;
1876 static bool vmci_transport_stream_is_active(struct vsock_sock
*vsk
)
1878 return !vmci_handle_is_invalid(vmci_trans(vsk
)->qp_handle
);
1881 static int vmci_transport_notify_poll_in(
1882 struct vsock_sock
*vsk
,
1884 bool *data_ready_now
)
1886 return vmci_trans(vsk
)->notify_ops
->poll_in(
1887 &vsk
->sk
, target
, data_ready_now
);
1890 static int vmci_transport_notify_poll_out(
1891 struct vsock_sock
*vsk
,
1893 bool *space_available_now
)
1895 return vmci_trans(vsk
)->notify_ops
->poll_out(
1896 &vsk
->sk
, target
, space_available_now
);
1899 static int vmci_transport_notify_recv_init(
1900 struct vsock_sock
*vsk
,
1902 struct vsock_transport_recv_notify_data
*data
)
1904 return vmci_trans(vsk
)->notify_ops
->recv_init(
1906 (struct vmci_transport_recv_notify_data
*)data
);
1909 static int vmci_transport_notify_recv_pre_block(
1910 struct vsock_sock
*vsk
,
1912 struct vsock_transport_recv_notify_data
*data
)
1914 return vmci_trans(vsk
)->notify_ops
->recv_pre_block(
1916 (struct vmci_transport_recv_notify_data
*)data
);
1919 static int vmci_transport_notify_recv_pre_dequeue(
1920 struct vsock_sock
*vsk
,
1922 struct vsock_transport_recv_notify_data
*data
)
1924 return vmci_trans(vsk
)->notify_ops
->recv_pre_dequeue(
1926 (struct vmci_transport_recv_notify_data
*)data
);
1929 static int vmci_transport_notify_recv_post_dequeue(
1930 struct vsock_sock
*vsk
,
1934 struct vsock_transport_recv_notify_data
*data
)
1936 return vmci_trans(vsk
)->notify_ops
->recv_post_dequeue(
1937 &vsk
->sk
, target
, copied
, data_read
,
1938 (struct vmci_transport_recv_notify_data
*)data
);
1941 static int vmci_transport_notify_send_init(
1942 struct vsock_sock
*vsk
,
1943 struct vsock_transport_send_notify_data
*data
)
1945 return vmci_trans(vsk
)->notify_ops
->send_init(
1947 (struct vmci_transport_send_notify_data
*)data
);
1950 static int vmci_transport_notify_send_pre_block(
1951 struct vsock_sock
*vsk
,
1952 struct vsock_transport_send_notify_data
*data
)
1954 return vmci_trans(vsk
)->notify_ops
->send_pre_block(
1956 (struct vmci_transport_send_notify_data
*)data
);
1959 static int vmci_transport_notify_send_pre_enqueue(
1960 struct vsock_sock
*vsk
,
1961 struct vsock_transport_send_notify_data
*data
)
1963 return vmci_trans(vsk
)->notify_ops
->send_pre_enqueue(
1965 (struct vmci_transport_send_notify_data
*)data
);
1968 static int vmci_transport_notify_send_post_enqueue(
1969 struct vsock_sock
*vsk
,
1971 struct vsock_transport_send_notify_data
*data
)
1973 return vmci_trans(vsk
)->notify_ops
->send_post_enqueue(
1975 (struct vmci_transport_send_notify_data
*)data
);
1978 static bool vmci_transport_old_proto_override(bool *old_pkt_proto
)
1980 if (PROTOCOL_OVERRIDE
!= -1) {
1981 if (PROTOCOL_OVERRIDE
== 0)
1982 *old_pkt_proto
= true;
1984 *old_pkt_proto
= false;
1986 pr_info("Proto override in use\n");
1993 static bool vmci_transport_proto_to_notify_struct(struct sock
*sk
,
1997 struct vsock_sock
*vsk
= vsock_sk(sk
);
1999 if (old_pkt_proto
) {
2000 if (*proto
!= VSOCK_PROTO_INVALID
) {
2001 pr_err("Can't set both an old and new protocol\n");
2004 vmci_trans(vsk
)->notify_ops
= &vmci_transport_notify_pkt_ops
;
2009 case VSOCK_PROTO_PKT_ON_NOTIFY
:
2010 vmci_trans(vsk
)->notify_ops
=
2011 &vmci_transport_notify_pkt_q_state_ops
;
2014 pr_err("Unknown notify protocol version\n");
2019 vmci_trans(vsk
)->notify_ops
->socket_init(sk
);
2023 static u16
vmci_transport_new_proto_supported_versions(void)
2025 if (PROTOCOL_OVERRIDE
!= -1)
2026 return PROTOCOL_OVERRIDE
;
2028 return VSOCK_PROTO_ALL_SUPPORTED
;
2031 static u32
vmci_transport_get_local_cid(void)
2033 return vmci_get_context_id();
2036 static struct vsock_transport vmci_transport
= {
2037 .module
= THIS_MODULE
,
2038 .init
= vmci_transport_socket_init
,
2039 .destruct
= vmci_transport_destruct
,
2040 .release
= vmci_transport_release
,
2041 .connect
= vmci_transport_connect
,
2042 .dgram_bind
= vmci_transport_dgram_bind
,
2043 .dgram_dequeue
= vmci_transport_dgram_dequeue
,
2044 .dgram_enqueue
= vmci_transport_dgram_enqueue
,
2045 .dgram_allow
= vmci_transport_dgram_allow
,
2046 .stream_dequeue
= vmci_transport_stream_dequeue
,
2047 .stream_enqueue
= vmci_transport_stream_enqueue
,
2048 .stream_has_data
= vmci_transport_stream_has_data
,
2049 .stream_has_space
= vmci_transport_stream_has_space
,
2050 .stream_rcvhiwat
= vmci_transport_stream_rcvhiwat
,
2051 .stream_is_active
= vmci_transport_stream_is_active
,
2052 .stream_allow
= vmci_transport_stream_allow
,
2053 .notify_poll_in
= vmci_transport_notify_poll_in
,
2054 .notify_poll_out
= vmci_transport_notify_poll_out
,
2055 .notify_recv_init
= vmci_transport_notify_recv_init
,
2056 .notify_recv_pre_block
= vmci_transport_notify_recv_pre_block
,
2057 .notify_recv_pre_dequeue
= vmci_transport_notify_recv_pre_dequeue
,
2058 .notify_recv_post_dequeue
= vmci_transport_notify_recv_post_dequeue
,
2059 .notify_send_init
= vmci_transport_notify_send_init
,
2060 .notify_send_pre_block
= vmci_transport_notify_send_pre_block
,
2061 .notify_send_pre_enqueue
= vmci_transport_notify_send_pre_enqueue
,
2062 .notify_send_post_enqueue
= vmci_transport_notify_send_post_enqueue
,
2063 .shutdown
= vmci_transport_shutdown
,
2064 .get_local_cid
= vmci_transport_get_local_cid
,
2067 static bool vmci_check_transport(struct vsock_sock
*vsk
)
2069 return vsk
->transport
== &vmci_transport
;
2072 static void vmci_vsock_transport_cb(bool is_host
)
2077 features
= VSOCK_TRANSPORT_F_H2G
;
2079 features
= VSOCK_TRANSPORT_F_G2H
;
2081 vsock_core_register(&vmci_transport
, features
);
2084 static int __init
vmci_transport_init(void)
2088 /* Create the datagram handle that we will use to send and receive all
2089 * VSocket control messages for this context.
2091 err
= vmci_transport_datagram_create_hnd(VMCI_TRANSPORT_PACKET_RID
,
2092 VMCI_FLAG_ANYCID_DG_HND
,
2093 vmci_transport_recv_stream_cb
,
2095 &vmci_transport_stream_handle
);
2096 if (err
< VMCI_SUCCESS
) {
2097 pr_err("Unable to create datagram handle. (%d)\n", err
);
2098 return vmci_transport_error_to_vsock_error(err
);
2100 err
= vmci_event_subscribe(VMCI_EVENT_QP_RESUMED
,
2101 vmci_transport_qp_resumed_cb
,
2102 NULL
, &vmci_transport_qp_resumed_sub_id
);
2103 if (err
< VMCI_SUCCESS
) {
2104 pr_err("Unable to subscribe to resumed event. (%d)\n", err
);
2105 err
= vmci_transport_error_to_vsock_error(err
);
2106 vmci_transport_qp_resumed_sub_id
= VMCI_INVALID_ID
;
2107 goto err_destroy_stream_handle
;
2110 /* Register only with dgram feature, other features (H2G, G2H) will be
2111 * registered when the first host or guest becomes active.
2113 err
= vsock_core_register(&vmci_transport
, VSOCK_TRANSPORT_F_DGRAM
);
2115 goto err_unsubscribe
;
2117 err
= vmci_register_vsock_callback(vmci_vsock_transport_cb
);
2119 goto err_unregister
;
2124 vsock_core_unregister(&vmci_transport
);
2126 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id
);
2127 err_destroy_stream_handle
:
2128 vmci_datagram_destroy_handle(vmci_transport_stream_handle
);
2131 module_init(vmci_transport_init
);
2133 static void __exit
vmci_transport_exit(void)
2135 cancel_work_sync(&vmci_transport_cleanup_work
);
2136 vmci_transport_free_resources(&vmci_transport_cleanup_list
);
2138 if (!vmci_handle_is_invalid(vmci_transport_stream_handle
)) {
2139 if (vmci_datagram_destroy_handle(
2140 vmci_transport_stream_handle
) != VMCI_SUCCESS
)
2141 pr_err("Couldn't destroy datagram handle\n");
2142 vmci_transport_stream_handle
= VMCI_INVALID_HANDLE
;
2145 if (vmci_transport_qp_resumed_sub_id
!= VMCI_INVALID_ID
) {
2146 vmci_event_unsubscribe(vmci_transport_qp_resumed_sub_id
);
2147 vmci_transport_qp_resumed_sub_id
= VMCI_INVALID_ID
;
2150 vmci_register_vsock_callback(NULL
);
2151 vsock_core_unregister(&vmci_transport
);
2153 module_exit(vmci_transport_exit
);
2155 MODULE_AUTHOR("VMware, Inc.");
2156 MODULE_DESCRIPTION("VMCI transport for Virtual Sockets");
2157 MODULE_VERSION("1.0.5.0-k");
2158 MODULE_LICENSE("GPL v2");
2159 MODULE_ALIAS("vmware_vsock");
2160 MODULE_ALIAS_NETPROTO(PF_VSOCK
);