1 // SPDX-License-Identifier: GPL-2.0-or-later
4 * Copyright (C) 2004-2005, 2008, 2013 Red Hat, Inc. All Rights Reserved.
5 * Written by David Howells (dhowells@redhat.com)
8 #include <linux/export.h>
9 #include <linux/init.h>
10 #include <linux/sched.h>
11 #include <linux/slab.h>
12 #include <linux/security.h>
13 #include <linux/seq_file.h>
14 #include <linux/err.h>
15 #include <linux/user_namespace.h>
16 #include <linux/nsproxy.h>
17 #include <keys/keyring-type.h>
18 #include <keys/user-type.h>
19 #include <linux/assoc_array_priv.h>
20 #include <linux/uaccess.h>
21 #include <net/net_namespace.h>
25 * When plumbing the depths of the key tree, this sets a hard limit
26 * set on how deep we're willing to go.
28 #define KEYRING_SEARCH_MAX_DEPTH 6
31 * We mark pointers we pass to the associative array with bit 1 set if
32 * they're keyrings and clear otherwise.
34 #define KEYRING_PTR_SUBTYPE 0x2UL
36 static inline bool keyring_ptr_is_keyring(const struct assoc_array_ptr
*x
)
38 return (unsigned long)x
& KEYRING_PTR_SUBTYPE
;
40 static inline struct key
*keyring_ptr_to_key(const struct assoc_array_ptr
*x
)
42 void *object
= assoc_array_ptr_to_leaf(x
);
43 return (struct key
*)((unsigned long)object
& ~KEYRING_PTR_SUBTYPE
);
45 static inline void *keyring_key_to_ptr(struct key
*key
)
47 if (key
->type
== &key_type_keyring
)
48 return (void *)((unsigned long)key
| KEYRING_PTR_SUBTYPE
);
52 static DEFINE_RWLOCK(keyring_name_lock
);
55 * Clean up the bits of user_namespace that belong to us.
57 void key_free_user_ns(struct user_namespace
*ns
)
59 write_lock(&keyring_name_lock
);
60 list_del_init(&ns
->keyring_name_list
);
61 write_unlock(&keyring_name_lock
);
63 key_put(ns
->user_keyring_register
);
64 #ifdef CONFIG_PERSISTENT_KEYRINGS
65 key_put(ns
->persistent_keyring_register
);
70 * The keyring key type definition. Keyrings are simply keys of this type and
71 * can be treated as ordinary keys in addition to having their own special
74 static int keyring_preparse(struct key_preparsed_payload
*prep
);
75 static void keyring_free_preparse(struct key_preparsed_payload
*prep
);
76 static int keyring_instantiate(struct key
*keyring
,
77 struct key_preparsed_payload
*prep
);
78 static void keyring_revoke(struct key
*keyring
);
79 static void keyring_destroy(struct key
*keyring
);
80 static void keyring_describe(const struct key
*keyring
, struct seq_file
*m
);
81 static long keyring_read(const struct key
*keyring
,
82 char *buffer
, size_t buflen
);
84 struct key_type key_type_keyring
= {
87 .preparse
= keyring_preparse
,
88 .free_preparse
= keyring_free_preparse
,
89 .instantiate
= keyring_instantiate
,
90 .revoke
= keyring_revoke
,
91 .destroy
= keyring_destroy
,
92 .describe
= keyring_describe
,
95 EXPORT_SYMBOL(key_type_keyring
);
98 * Semaphore to serialise link/link calls to prevent two link calls in parallel
99 * introducing a cycle.
101 static DEFINE_MUTEX(keyring_serialise_link_lock
);
104 * Publish the name of a keyring so that it can be found by name (if it has
105 * one and it doesn't begin with a dot).
107 static void keyring_publish_name(struct key
*keyring
)
109 struct user_namespace
*ns
= current_user_ns();
111 if (keyring
->description
&&
112 keyring
->description
[0] &&
113 keyring
->description
[0] != '.') {
114 write_lock(&keyring_name_lock
);
115 list_add_tail(&keyring
->name_link
, &ns
->keyring_name_list
);
116 write_unlock(&keyring_name_lock
);
121 * Preparse a keyring payload
123 static int keyring_preparse(struct key_preparsed_payload
*prep
)
125 return prep
->datalen
!= 0 ? -EINVAL
: 0;
129 * Free a preparse of a user defined key payload
131 static void keyring_free_preparse(struct key_preparsed_payload
*prep
)
136 * Initialise a keyring.
138 * Returns 0 on success, -EINVAL if given any data.
140 static int keyring_instantiate(struct key
*keyring
,
141 struct key_preparsed_payload
*prep
)
143 assoc_array_init(&keyring
->keys
);
144 /* make the keyring available by name if it has one */
145 keyring_publish_name(keyring
);
150 * Multiply 64-bits by 32-bits to 96-bits and fold back to 64-bit. Ideally we'd
151 * fold the carry back too, but that requires inline asm.
153 static u64
mult_64x32_and_fold(u64 x
, u32 y
)
155 u64 hi
= (u64
)(u32
)(x
>> 32) * y
;
156 u64 lo
= (u64
)(u32
)(x
) * y
;
157 return lo
+ ((u64
)(u32
)hi
<< 32) + (u32
)(hi
>> 32);
161 * Hash a key type and description.
163 static void hash_key_type_and_desc(struct keyring_index_key
*index_key
)
165 const unsigned level_shift
= ASSOC_ARRAY_LEVEL_STEP
;
166 const unsigned long fan_mask
= ASSOC_ARRAY_FAN_MASK
;
167 const char *description
= index_key
->description
;
168 unsigned long hash
, type
;
171 int n
, desc_len
= index_key
->desc_len
;
173 type
= (unsigned long)index_key
->type
;
174 acc
= mult_64x32_and_fold(type
, desc_len
+ 13);
175 acc
= mult_64x32_and_fold(acc
, 9207);
176 piece
= (unsigned long)index_key
->domain_tag
;
177 acc
= mult_64x32_and_fold(acc
, piece
);
178 acc
= mult_64x32_and_fold(acc
, 9207);
187 memcpy(&piece
, description
, n
);
190 acc
= mult_64x32_and_fold(acc
, piece
);
191 acc
= mult_64x32_and_fold(acc
, 9207);
194 /* Fold the hash down to 32 bits if need be. */
196 if (ASSOC_ARRAY_KEY_CHUNK_SIZE
== 32)
199 /* Squidge all the keyrings into a separate part of the tree to
200 * ordinary keys by making sure the lowest level segment in the hash is
201 * zero for keyrings and non-zero otherwise.
203 if (index_key
->type
!= &key_type_keyring
&& (hash
& fan_mask
) == 0)
204 hash
|= (hash
>> (ASSOC_ARRAY_KEY_CHUNK_SIZE
- level_shift
)) | 1;
205 else if (index_key
->type
== &key_type_keyring
&& (hash
& fan_mask
) != 0)
206 hash
= (hash
+ (hash
<< level_shift
)) & ~fan_mask
;
207 index_key
->hash
= hash
;
211 * Finalise an index key to include a part of the description actually in the
212 * index key, to set the domain tag and to calculate the hash.
214 void key_set_index_key(struct keyring_index_key
*index_key
)
216 static struct key_tag default_domain_tag
= { .usage
= REFCOUNT_INIT(1), };
217 size_t n
= min_t(size_t, index_key
->desc_len
, sizeof(index_key
->desc
));
219 memcpy(index_key
->desc
, index_key
->description
, n
);
221 if (!index_key
->domain_tag
) {
222 if (index_key
->type
->flags
& KEY_TYPE_NET_DOMAIN
)
223 index_key
->domain_tag
= current
->nsproxy
->net_ns
->key_domain
;
225 index_key
->domain_tag
= &default_domain_tag
;
228 hash_key_type_and_desc(index_key
);
232 * key_put_tag - Release a ref on a tag.
233 * @tag: The tag to release.
235 * This releases a reference the given tag and returns true if that ref was the
238 bool key_put_tag(struct key_tag
*tag
)
240 if (refcount_dec_and_test(&tag
->usage
)) {
249 * key_remove_domain - Kill off a key domain and gc its keys
250 * @domain_tag: The domain tag to release.
252 * This marks a domain tag as being dead and releases a ref on it. If that
253 * wasn't the last reference, the garbage collector is poked to try and delete
254 * all keys that were in the domain.
256 void key_remove_domain(struct key_tag
*domain_tag
)
258 domain_tag
->removed
= true;
259 if (!key_put_tag(domain_tag
))
260 key_schedule_gc_links();
264 * Build the next index key chunk.
266 * We return it one word-sized chunk at a time.
268 static unsigned long keyring_get_key_chunk(const void *data
, int level
)
270 const struct keyring_index_key
*index_key
= data
;
271 unsigned long chunk
= 0;
273 int desc_len
= index_key
->desc_len
, n
= sizeof(chunk
);
275 level
/= ASSOC_ARRAY_KEY_CHUNK_SIZE
;
278 return index_key
->hash
;
282 return (unsigned long)index_key
->type
;
284 return (unsigned long)index_key
->domain_tag
;
287 if (desc_len
<= sizeof(index_key
->desc
))
290 d
= index_key
->description
+ sizeof(index_key
->desc
);
291 d
+= level
* sizeof(long);
292 desc_len
-= sizeof(index_key
->desc
);
298 } while (--desc_len
> 0);
303 static unsigned long keyring_get_object_key_chunk(const void *object
, int level
)
305 const struct key
*key
= keyring_ptr_to_key(object
);
306 return keyring_get_key_chunk(&key
->index_key
, level
);
309 static bool keyring_compare_object(const void *object
, const void *data
)
311 const struct keyring_index_key
*index_key
= data
;
312 const struct key
*key
= keyring_ptr_to_key(object
);
314 return key
->index_key
.type
== index_key
->type
&&
315 key
->index_key
.domain_tag
== index_key
->domain_tag
&&
316 key
->index_key
.desc_len
== index_key
->desc_len
&&
317 memcmp(key
->index_key
.description
, index_key
->description
,
318 index_key
->desc_len
) == 0;
322 * Compare the index keys of a pair of objects and determine the bit position
323 * at which they differ - if they differ.
325 static int keyring_diff_objects(const void *object
, const void *data
)
327 const struct key
*key_a
= keyring_ptr_to_key(object
);
328 const struct keyring_index_key
*a
= &key_a
->index_key
;
329 const struct keyring_index_key
*b
= data
;
330 unsigned long seg_a
, seg_b
;
336 if ((seg_a
^ seg_b
) != 0)
338 level
+= ASSOC_ARRAY_KEY_CHUNK_SIZE
/ 8;
340 /* The number of bits contributed by the hash is controlled by a
341 * constant in the assoc_array headers. Everything else thereafter we
342 * can deal with as being machine word-size dependent.
346 if ((seg_a
^ seg_b
) != 0)
348 level
+= sizeof(unsigned long);
350 /* The next bit may not work on big endian */
351 seg_a
= (unsigned long)a
->type
;
352 seg_b
= (unsigned long)b
->type
;
353 if ((seg_a
^ seg_b
) != 0)
355 level
+= sizeof(unsigned long);
357 seg_a
= (unsigned long)a
->domain_tag
;
358 seg_b
= (unsigned long)b
->domain_tag
;
359 if ((seg_a
^ seg_b
) != 0)
361 level
+= sizeof(unsigned long);
364 if (a
->desc_len
<= i
)
367 for (; i
< a
->desc_len
; i
++) {
368 seg_a
= *(unsigned char *)(a
->description
+ i
);
369 seg_b
= *(unsigned char *)(b
->description
+ i
);
370 if ((seg_a
^ seg_b
) != 0)
380 i
= level
* 8 + __ffs(seg_a
^ seg_b
);
385 * Free an object after stripping the keyring flag off of the pointer.
387 static void keyring_free_object(void *object
)
389 key_put(keyring_ptr_to_key(object
));
393 * Operations for keyring management by the index-tree routines.
395 static const struct assoc_array_ops keyring_assoc_array_ops
= {
396 .get_key_chunk
= keyring_get_key_chunk
,
397 .get_object_key_chunk
= keyring_get_object_key_chunk
,
398 .compare_object
= keyring_compare_object
,
399 .diff_objects
= keyring_diff_objects
,
400 .free_object
= keyring_free_object
,
404 * Clean up a keyring when it is destroyed. Unpublish its name if it had one
405 * and dispose of its data.
407 * The garbage collector detects the final key_put(), removes the keyring from
408 * the serial number tree and then does RCU synchronisation before coming here,
409 * so we shouldn't need to worry about code poking around here with the RCU
410 * readlock held by this time.
412 static void keyring_destroy(struct key
*keyring
)
414 if (keyring
->description
) {
415 write_lock(&keyring_name_lock
);
417 if (keyring
->name_link
.next
!= NULL
&&
418 !list_empty(&keyring
->name_link
))
419 list_del(&keyring
->name_link
);
421 write_unlock(&keyring_name_lock
);
424 if (keyring
->restrict_link
) {
425 struct key_restriction
*keyres
= keyring
->restrict_link
;
427 key_put(keyres
->key
);
431 assoc_array_destroy(&keyring
->keys
, &keyring_assoc_array_ops
);
435 * Describe a keyring for /proc.
437 static void keyring_describe(const struct key
*keyring
, struct seq_file
*m
)
439 if (keyring
->description
)
440 seq_puts(m
, keyring
->description
);
442 seq_puts(m
, "[anon]");
444 if (key_is_positive(keyring
)) {
445 if (keyring
->keys
.nr_leaves_on_tree
!= 0)
446 seq_printf(m
, ": %lu", keyring
->keys
.nr_leaves_on_tree
);
448 seq_puts(m
, ": empty");
452 struct keyring_read_iterator_context
{
455 key_serial_t
*buffer
;
458 static int keyring_read_iterator(const void *object
, void *data
)
460 struct keyring_read_iterator_context
*ctx
= data
;
461 const struct key
*key
= keyring_ptr_to_key(object
);
463 kenter("{%s,%d},,{%zu/%zu}",
464 key
->type
->name
, key
->serial
, ctx
->count
, ctx
->buflen
);
466 if (ctx
->count
>= ctx
->buflen
)
469 *ctx
->buffer
++ = key
->serial
;
470 ctx
->count
+= sizeof(key
->serial
);
475 * Read a list of key IDs from the keyring's contents in binary form
477 * The keyring's semaphore is read-locked by the caller. This prevents someone
478 * from modifying it under us - which could cause us to read key IDs multiple
481 static long keyring_read(const struct key
*keyring
,
482 char *buffer
, size_t buflen
)
484 struct keyring_read_iterator_context ctx
;
487 kenter("{%d},,%zu", key_serial(keyring
), buflen
);
489 if (buflen
& (sizeof(key_serial_t
) - 1))
492 /* Copy as many key IDs as fit into the buffer */
493 if (buffer
&& buflen
) {
494 ctx
.buffer
= (key_serial_t
*)buffer
;
497 ret
= assoc_array_iterate(&keyring
->keys
,
498 keyring_read_iterator
, &ctx
);
500 kleave(" = %ld [iterate]", ret
);
505 /* Return the size of the buffer needed */
506 ret
= keyring
->keys
.nr_leaves_on_tree
* sizeof(key_serial_t
);
508 kleave("= %ld [ok]", ret
);
510 kleave("= %ld [buffer too small]", ret
);
515 * Allocate a keyring and link into the destination keyring.
517 struct key
*keyring_alloc(const char *description
, kuid_t uid
, kgid_t gid
,
518 const struct cred
*cred
, key_perm_t perm
,
520 struct key_restriction
*restrict_link
,
526 keyring
= key_alloc(&key_type_keyring
, description
,
527 uid
, gid
, cred
, perm
, flags
, restrict_link
);
528 if (!IS_ERR(keyring
)) {
529 ret
= key_instantiate_and_link(keyring
, NULL
, 0, dest
, NULL
);
532 keyring
= ERR_PTR(ret
);
538 EXPORT_SYMBOL(keyring_alloc
);
541 * restrict_link_reject - Give -EPERM to restrict link
542 * @keyring: The keyring being added to.
543 * @type: The type of key being added.
544 * @payload: The payload of the key intended to be added.
545 * @restriction_key: Keys providing additional data for evaluating restriction.
547 * Reject the addition of any links to a keyring. It can be overridden by
548 * passing KEY_ALLOC_BYPASS_RESTRICTION to key_instantiate_and_link() when
549 * adding a key to a keyring.
551 * This is meant to be stored in a key_restriction structure which is passed
552 * in the restrict_link parameter to keyring_alloc().
554 int restrict_link_reject(struct key
*keyring
,
555 const struct key_type
*type
,
556 const union key_payload
*payload
,
557 struct key
*restriction_key
)
563 * By default, we keys found by getting an exact match on their descriptions.
565 bool key_default_cmp(const struct key
*key
,
566 const struct key_match_data
*match_data
)
568 return strcmp(key
->description
, match_data
->raw_data
) == 0;
572 * Iteration function to consider each key found.
574 static int keyring_search_iterator(const void *object
, void *iterator_data
)
576 struct keyring_search_context
*ctx
= iterator_data
;
577 const struct key
*key
= keyring_ptr_to_key(object
);
578 unsigned long kflags
= READ_ONCE(key
->flags
);
579 short state
= READ_ONCE(key
->state
);
581 kenter("{%d}", key
->serial
);
583 /* ignore keys not of this type */
584 if (key
->type
!= ctx
->index_key
.type
) {
585 kleave(" = 0 [!type]");
589 /* skip invalidated, revoked and expired keys */
590 if (ctx
->flags
& KEYRING_SEARCH_DO_STATE_CHECK
) {
591 time64_t expiry
= READ_ONCE(key
->expiry
);
593 if (kflags
& ((1 << KEY_FLAG_INVALIDATED
) |
594 (1 << KEY_FLAG_REVOKED
))) {
595 ctx
->result
= ERR_PTR(-EKEYREVOKED
);
596 kleave(" = %d [invrev]", ctx
->skipped_ret
);
600 if (expiry
&& ctx
->now
>= expiry
) {
601 if (!(ctx
->flags
& KEYRING_SEARCH_SKIP_EXPIRED
))
602 ctx
->result
= ERR_PTR(-EKEYEXPIRED
);
603 kleave(" = %d [expire]", ctx
->skipped_ret
);
608 /* keys that don't match */
609 if (!ctx
->match_data
.cmp(key
, &ctx
->match_data
)) {
610 kleave(" = 0 [!match]");
614 /* key must have search permissions */
615 if (!(ctx
->flags
& KEYRING_SEARCH_NO_CHECK_PERM
) &&
616 key_task_permission(make_key_ref(key
, ctx
->possessed
),
617 ctx
->cred
, KEY_NEED_SEARCH
) < 0) {
618 ctx
->result
= ERR_PTR(-EACCES
);
619 kleave(" = %d [!perm]", ctx
->skipped_ret
);
623 if (ctx
->flags
& KEYRING_SEARCH_DO_STATE_CHECK
) {
624 /* we set a different error code if we pass a negative key */
626 ctx
->result
= ERR_PTR(state
);
627 kleave(" = %d [neg]", ctx
->skipped_ret
);
633 ctx
->result
= make_key_ref(key
, ctx
->possessed
);
634 kleave(" = 1 [found]");
638 return ctx
->skipped_ret
;
642 * Search inside a keyring for a key. We can search by walking to it
643 * directly based on its index-key or we can iterate over the entire
644 * tree looking for it, based on the match function.
646 static int search_keyring(struct key
*keyring
, struct keyring_search_context
*ctx
)
648 if (ctx
->match_data
.lookup_type
== KEYRING_SEARCH_LOOKUP_DIRECT
) {
651 object
= assoc_array_find(&keyring
->keys
,
652 &keyring_assoc_array_ops
,
654 return object
? ctx
->iterator(object
, ctx
) : 0;
656 return assoc_array_iterate(&keyring
->keys
, ctx
->iterator
, ctx
);
660 * Search a tree of keyrings that point to other keyrings up to the maximum
663 static bool search_nested_keyrings(struct key
*keyring
,
664 struct keyring_search_context
*ctx
)
668 struct assoc_array_node
*node
;
670 } stack
[KEYRING_SEARCH_MAX_DEPTH
];
672 struct assoc_array_shortcut
*shortcut
;
673 struct assoc_array_node
*node
;
674 struct assoc_array_ptr
*ptr
;
678 kenter("{%d},{%s,%s}",
680 ctx
->index_key
.type
->name
,
681 ctx
->index_key
.description
);
683 #define STATE_CHECKS (KEYRING_SEARCH_NO_STATE_CHECK | KEYRING_SEARCH_DO_STATE_CHECK)
684 BUG_ON((ctx
->flags
& STATE_CHECKS
) == 0 ||
685 (ctx
->flags
& STATE_CHECKS
) == STATE_CHECKS
);
687 if (ctx
->index_key
.description
)
688 key_set_index_key(&ctx
->index_key
);
690 /* Check to see if this top-level keyring is what we are looking for
691 * and whether it is valid or not.
693 if (ctx
->match_data
.lookup_type
== KEYRING_SEARCH_LOOKUP_ITERATE
||
694 keyring_compare_object(keyring
, &ctx
->index_key
)) {
695 ctx
->skipped_ret
= 2;
696 switch (ctx
->iterator(keyring_key_to_ptr(keyring
), ctx
)) {
706 ctx
->skipped_ret
= 0;
708 /* Start processing a new keyring */
710 kdebug("descend to %d", keyring
->serial
);
711 if (keyring
->flags
& ((1 << KEY_FLAG_INVALIDATED
) |
712 (1 << KEY_FLAG_REVOKED
)))
713 goto not_this_keyring
;
715 /* Search through the keys in this keyring before its searching its
718 if (search_keyring(keyring
, ctx
))
721 /* Then manually iterate through the keyrings nested in this one.
723 * Start from the root node of the index tree. Because of the way the
724 * hash function has been set up, keyrings cluster on the leftmost
725 * branch of the root node (root slot 0) or in the root node itself.
726 * Non-keyrings avoid the leftmost branch of the root entirely (root
729 if (!(ctx
->flags
& KEYRING_SEARCH_RECURSE
))
730 goto not_this_keyring
;
732 ptr
= READ_ONCE(keyring
->keys
.root
);
734 goto not_this_keyring
;
736 if (assoc_array_ptr_is_shortcut(ptr
)) {
737 /* If the root is a shortcut, either the keyring only contains
738 * keyring pointers (everything clusters behind root slot 0) or
739 * doesn't contain any keyring pointers.
741 shortcut
= assoc_array_ptr_to_shortcut(ptr
);
742 if ((shortcut
->index_key
[0] & ASSOC_ARRAY_FAN_MASK
) != 0)
743 goto not_this_keyring
;
745 ptr
= READ_ONCE(shortcut
->next_node
);
746 node
= assoc_array_ptr_to_node(ptr
);
750 node
= assoc_array_ptr_to_node(ptr
);
751 ptr
= node
->slots
[0];
752 if (!assoc_array_ptr_is_meta(ptr
))
756 /* Descend to a more distal node in this keyring's content tree and go
760 if (assoc_array_ptr_is_shortcut(ptr
)) {
761 shortcut
= assoc_array_ptr_to_shortcut(ptr
);
762 ptr
= READ_ONCE(shortcut
->next_node
);
763 BUG_ON(!assoc_array_ptr_is_node(ptr
));
765 node
= assoc_array_ptr_to_node(ptr
);
768 kdebug("begin_node");
771 /* Go through the slots in a node */
772 for (; slot
< ASSOC_ARRAY_FAN_OUT
; slot
++) {
773 ptr
= READ_ONCE(node
->slots
[slot
]);
775 if (assoc_array_ptr_is_meta(ptr
)) {
776 if (node
->back_pointer
||
777 assoc_array_ptr_is_shortcut(ptr
))
778 goto descend_to_node
;
781 if (!keyring_ptr_is_keyring(ptr
))
784 key
= keyring_ptr_to_key(ptr
);
786 if (sp
>= KEYRING_SEARCH_MAX_DEPTH
) {
787 if (ctx
->flags
& KEYRING_SEARCH_DETECT_TOO_DEEP
) {
788 ctx
->result
= ERR_PTR(-ELOOP
);
791 goto not_this_keyring
;
794 /* Search a nested keyring */
795 if (!(ctx
->flags
& KEYRING_SEARCH_NO_CHECK_PERM
) &&
796 key_task_permission(make_key_ref(key
, ctx
->possessed
),
797 ctx
->cred
, KEY_NEED_SEARCH
) < 0)
800 /* stack the current position */
801 stack
[sp
].keyring
= keyring
;
802 stack
[sp
].node
= node
;
803 stack
[sp
].slot
= slot
;
806 /* begin again with the new keyring */
808 goto descend_to_keyring
;
811 /* We've dealt with all the slots in the current node, so now we need
812 * to ascend to the parent and continue processing there.
814 ptr
= READ_ONCE(node
->back_pointer
);
815 slot
= node
->parent_slot
;
817 if (ptr
&& assoc_array_ptr_is_shortcut(ptr
)) {
818 shortcut
= assoc_array_ptr_to_shortcut(ptr
);
819 ptr
= READ_ONCE(shortcut
->back_pointer
);
820 slot
= shortcut
->parent_slot
;
823 goto not_this_keyring
;
824 node
= assoc_array_ptr_to_node(ptr
);
827 /* If we've ascended to the root (zero backpointer), we must have just
828 * finished processing the leftmost branch rather than the root slots -
829 * so there can't be any more keyrings for us to find.
831 if (node
->back_pointer
) {
832 kdebug("ascend %d", slot
);
836 /* The keyring we're looking at was disqualified or didn't contain a
840 kdebug("not_this_keyring %d", sp
);
846 /* Resume the processing of a keyring higher up in the tree */
848 keyring
= stack
[sp
].keyring
;
849 node
= stack
[sp
].node
;
850 slot
= stack
[sp
].slot
+ 1;
851 kdebug("ascend to %d [%d]", keyring
->serial
, slot
);
854 /* We found a viable match */
856 key
= key_ref_to_ptr(ctx
->result
);
858 if (!(ctx
->flags
& KEYRING_SEARCH_NO_UPDATE_TIME
)) {
859 key
->last_used_at
= ctx
->now
;
860 keyring
->last_used_at
= ctx
->now
;
862 stack
[--sp
].keyring
->last_used_at
= ctx
->now
;
869 * keyring_search_rcu - Search a keyring tree for a matching key under RCU
870 * @keyring_ref: A pointer to the keyring with possession indicator.
871 * @ctx: The keyring search context.
873 * Search the supplied keyring tree for a key that matches the criteria given.
874 * The root keyring and any linked keyrings must grant Search permission to the
875 * caller to be searchable and keys can only be found if they too grant Search
876 * to the caller. The possession flag on the root keyring pointer controls use
877 * of the possessor bits in permissions checking of the entire tree. In
878 * addition, the LSM gets to forbid keyring searches and key matches.
880 * The search is performed as a breadth-then-depth search up to the prescribed
881 * limit (KEYRING_SEARCH_MAX_DEPTH). The caller must hold the RCU read lock to
882 * prevent keyrings from being destroyed or rearranged whilst they are being
885 * Keys are matched to the type provided and are then filtered by the match
886 * function, which is given the description to use in any way it sees fit. The
887 * match function may use any attributes of a key that it wishes to
888 * determine the match. Normally the match function from the key type would be
891 * RCU can be used to prevent the keyring key lists from disappearing without
892 * the need to take lots of locks.
894 * Returns a pointer to the found key and increments the key usage count if
895 * successful; -EAGAIN if no matching keys were found, or if expired or revoked
896 * keys were found; -ENOKEY if only negative keys were found; -ENOTDIR if the
897 * specified keyring wasn't a keyring.
899 * In the case of a successful return, the possession attribute from
900 * @keyring_ref is propagated to the returned key reference.
902 key_ref_t
keyring_search_rcu(key_ref_t keyring_ref
,
903 struct keyring_search_context
*ctx
)
908 ctx
->iterator
= keyring_search_iterator
;
909 ctx
->possessed
= is_key_possessed(keyring_ref
);
910 ctx
->result
= ERR_PTR(-EAGAIN
);
912 keyring
= key_ref_to_ptr(keyring_ref
);
915 if (keyring
->type
!= &key_type_keyring
)
916 return ERR_PTR(-ENOTDIR
);
918 if (!(ctx
->flags
& KEYRING_SEARCH_NO_CHECK_PERM
)) {
919 err
= key_task_permission(keyring_ref
, ctx
->cred
, KEY_NEED_SEARCH
);
924 ctx
->now
= ktime_get_real_seconds();
925 if (search_nested_keyrings(keyring
, ctx
))
926 __key_get(key_ref_to_ptr(ctx
->result
));
931 * keyring_search - Search the supplied keyring tree for a matching key
932 * @keyring: The root of the keyring tree to be searched.
933 * @type: The type of keyring we want to find.
934 * @description: The name of the keyring we want to find.
935 * @recurse: True to search the children of @keyring also
937 * As keyring_search_rcu() above, but using the current task's credentials and
938 * type's default matching function and preferred search method.
940 key_ref_t
keyring_search(key_ref_t keyring
,
941 struct key_type
*type
,
942 const char *description
,
945 struct keyring_search_context ctx
= {
946 .index_key
.type
= type
,
947 .index_key
.description
= description
,
948 .index_key
.desc_len
= strlen(description
),
949 .cred
= current_cred(),
950 .match_data
.cmp
= key_default_cmp
,
951 .match_data
.raw_data
= description
,
952 .match_data
.lookup_type
= KEYRING_SEARCH_LOOKUP_DIRECT
,
953 .flags
= KEYRING_SEARCH_DO_STATE_CHECK
,
959 ctx
.flags
|= KEYRING_SEARCH_RECURSE
;
960 if (type
->match_preparse
) {
961 ret
= type
->match_preparse(&ctx
.match_data
);
967 key
= keyring_search_rcu(keyring
, &ctx
);
970 if (type
->match_free
)
971 type
->match_free(&ctx
.match_data
);
974 EXPORT_SYMBOL(keyring_search
);
976 static struct key_restriction
*keyring_restriction_alloc(
977 key_restrict_link_func_t check
)
979 struct key_restriction
*keyres
=
980 kzalloc(sizeof(struct key_restriction
), GFP_KERNEL
);
983 return ERR_PTR(-ENOMEM
);
985 keyres
->check
= check
;
991 * Semaphore to serialise restriction setup to prevent reference count
992 * cycles through restriction key pointers.
994 static DECLARE_RWSEM(keyring_serialise_restrict_sem
);
997 * Check for restriction cycles that would prevent keyring garbage collection.
998 * keyring_serialise_restrict_sem must be held.
1000 static bool keyring_detect_restriction_cycle(const struct key
*dest_keyring
,
1001 struct key_restriction
*keyres
)
1003 while (keyres
&& keyres
->key
&&
1004 keyres
->key
->type
== &key_type_keyring
) {
1005 if (keyres
->key
== dest_keyring
)
1008 keyres
= keyres
->key
->restrict_link
;
1015 * keyring_restrict - Look up and apply a restriction to a keyring
1016 * @keyring_ref: The keyring to be restricted
1017 * @type: The key type that will provide the restriction checker.
1018 * @restriction: The restriction options to apply to the keyring
1020 * Look up a keyring and apply a restriction to it. The restriction is managed
1021 * by the specific key type, but can be configured by the options specified in
1022 * the restriction string.
1024 int keyring_restrict(key_ref_t keyring_ref
, const char *type
,
1025 const char *restriction
)
1027 struct key
*keyring
;
1028 struct key_type
*restrict_type
= NULL
;
1029 struct key_restriction
*restrict_link
;
1032 keyring
= key_ref_to_ptr(keyring_ref
);
1035 if (keyring
->type
!= &key_type_keyring
)
1039 restrict_link
= keyring_restriction_alloc(restrict_link_reject
);
1041 restrict_type
= key_type_lookup(type
);
1043 if (IS_ERR(restrict_type
))
1044 return PTR_ERR(restrict_type
);
1046 if (!restrict_type
->lookup_restriction
) {
1051 restrict_link
= restrict_type
->lookup_restriction(restriction
);
1054 if (IS_ERR(restrict_link
)) {
1055 ret
= PTR_ERR(restrict_link
);
1059 down_write(&keyring
->sem
);
1060 down_write(&keyring_serialise_restrict_sem
);
1062 if (keyring
->restrict_link
) {
1064 } else if (keyring_detect_restriction_cycle(keyring
, restrict_link
)) {
1067 keyring
->restrict_link
= restrict_link
;
1068 notify_key(keyring
, NOTIFY_KEY_SETATTR
, 0);
1071 up_write(&keyring_serialise_restrict_sem
);
1072 up_write(&keyring
->sem
);
1075 key_put(restrict_link
->key
);
1076 kfree(restrict_link
);
1081 key_type_put(restrict_type
);
1085 EXPORT_SYMBOL(keyring_restrict
);
1088 * Search the given keyring for a key that might be updated.
1090 * The caller must guarantee that the keyring is a keyring and that the
1091 * permission is granted to modify the keyring as no check is made here. The
1092 * caller must also hold a lock on the keyring semaphore.
1094 * Returns a pointer to the found key with usage count incremented if
1095 * successful and returns NULL if not found. Revoked and invalidated keys are
1098 * If successful, the possession indicator is propagated from the keyring ref
1099 * to the returned key reference.
1101 key_ref_t
find_key_to_update(key_ref_t keyring_ref
,
1102 const struct keyring_index_key
*index_key
)
1104 struct key
*keyring
, *key
;
1107 keyring
= key_ref_to_ptr(keyring_ref
);
1109 kenter("{%d},{%s,%s}",
1110 keyring
->serial
, index_key
->type
->name
, index_key
->description
);
1112 object
= assoc_array_find(&keyring
->keys
, &keyring_assoc_array_ops
,
1122 key
= keyring_ptr_to_key(object
);
1123 if (key
->flags
& ((1 << KEY_FLAG_INVALIDATED
) |
1124 (1 << KEY_FLAG_REVOKED
))) {
1125 kleave(" = NULL [x]");
1129 kleave(" = {%d}", key
->serial
);
1130 return make_key_ref(key
, is_key_possessed(keyring_ref
));
1134 * Find a keyring with the specified name.
1136 * Only keyrings that have nonzero refcount, are not revoked, and are owned by a
1137 * user in the current user namespace are considered. If @uid_keyring is %true,
1138 * the keyring additionally must have been allocated as a user or user session
1139 * keyring; otherwise, it must grant Search permission directly to the caller.
1141 * Returns a pointer to the keyring with the keyring's refcount having being
1142 * incremented on success. -ENOKEY is returned if a key could not be found.
1144 struct key
*find_keyring_by_name(const char *name
, bool uid_keyring
)
1146 struct user_namespace
*ns
= current_user_ns();
1147 struct key
*keyring
;
1150 return ERR_PTR(-EINVAL
);
1152 read_lock(&keyring_name_lock
);
1154 /* Search this hash bucket for a keyring with a matching name that
1155 * grants Search permission and that hasn't been revoked
1157 list_for_each_entry(keyring
, &ns
->keyring_name_list
, name_link
) {
1158 if (!kuid_has_mapping(ns
, keyring
->user
->uid
))
1161 if (test_bit(KEY_FLAG_REVOKED
, &keyring
->flags
))
1164 if (strcmp(keyring
->description
, name
) != 0)
1168 if (!test_bit(KEY_FLAG_UID_KEYRING
,
1172 if (key_permission(make_key_ref(keyring
, 0),
1173 KEY_NEED_SEARCH
) < 0)
1177 /* we've got a match but we might end up racing with
1178 * key_cleanup() if the keyring is currently 'dead'
1179 * (ie. it has a zero usage count) */
1180 if (!refcount_inc_not_zero(&keyring
->usage
))
1182 keyring
->last_used_at
= ktime_get_real_seconds();
1186 keyring
= ERR_PTR(-ENOKEY
);
1188 read_unlock(&keyring_name_lock
);
1192 static int keyring_detect_cycle_iterator(const void *object
,
1193 void *iterator_data
)
1195 struct keyring_search_context
*ctx
= iterator_data
;
1196 const struct key
*key
= keyring_ptr_to_key(object
);
1198 kenter("{%d}", key
->serial
);
1200 /* We might get a keyring with matching index-key that is nonetheless a
1201 * different keyring. */
1202 if (key
!= ctx
->match_data
.raw_data
)
1205 ctx
->result
= ERR_PTR(-EDEADLK
);
1210 * See if a cycle will be created by inserting acyclic tree B in acyclic
1211 * tree A at the topmost level (ie: as a direct child of A).
1213 * Since we are adding B to A at the top level, checking for cycles should just
1214 * be a matter of seeing if node A is somewhere in tree B.
1216 static int keyring_detect_cycle(struct key
*A
, struct key
*B
)
1218 struct keyring_search_context ctx
= {
1219 .index_key
= A
->index_key
,
1220 .match_data
.raw_data
= A
,
1221 .match_data
.lookup_type
= KEYRING_SEARCH_LOOKUP_DIRECT
,
1222 .iterator
= keyring_detect_cycle_iterator
,
1223 .flags
= (KEYRING_SEARCH_NO_STATE_CHECK
|
1224 KEYRING_SEARCH_NO_UPDATE_TIME
|
1225 KEYRING_SEARCH_NO_CHECK_PERM
|
1226 KEYRING_SEARCH_DETECT_TOO_DEEP
|
1227 KEYRING_SEARCH_RECURSE
),
1231 search_nested_keyrings(B
, &ctx
);
1233 return PTR_ERR(ctx
.result
) == -EAGAIN
? 0 : PTR_ERR(ctx
.result
);
1237 * Lock keyring for link.
1239 int __key_link_lock(struct key
*keyring
,
1240 const struct keyring_index_key
*index_key
)
1241 __acquires(&keyring
->sem
)
1242 __acquires(&keyring_serialise_link_lock
)
1244 if (keyring
->type
!= &key_type_keyring
)
1247 down_write(&keyring
->sem
);
1249 /* Serialise link/link calls to prevent parallel calls causing a cycle
1250 * when linking two keyring in opposite orders.
1252 if (index_key
->type
== &key_type_keyring
)
1253 mutex_lock(&keyring_serialise_link_lock
);
1259 * Lock keyrings for move (link/unlink combination).
1261 int __key_move_lock(struct key
*l_keyring
, struct key
*u_keyring
,
1262 const struct keyring_index_key
*index_key
)
1263 __acquires(&l_keyring
->sem
)
1264 __acquires(&u_keyring
->sem
)
1265 __acquires(&keyring_serialise_link_lock
)
1267 if (l_keyring
->type
!= &key_type_keyring
||
1268 u_keyring
->type
!= &key_type_keyring
)
1271 /* We have to be very careful here to take the keyring locks in the
1272 * right order, lest we open ourselves to deadlocking against another
1275 if (l_keyring
< u_keyring
) {
1276 down_write(&l_keyring
->sem
);
1277 down_write_nested(&u_keyring
->sem
, 1);
1279 down_write(&u_keyring
->sem
);
1280 down_write_nested(&l_keyring
->sem
, 1);
1283 /* Serialise link/link calls to prevent parallel calls causing a cycle
1284 * when linking two keyring in opposite orders.
1286 if (index_key
->type
== &key_type_keyring
)
1287 mutex_lock(&keyring_serialise_link_lock
);
1293 * Preallocate memory so that a key can be linked into to a keyring.
1295 int __key_link_begin(struct key
*keyring
,
1296 const struct keyring_index_key
*index_key
,
1297 struct assoc_array_edit
**_edit
)
1299 struct assoc_array_edit
*edit
;
1303 keyring
->serial
, index_key
->type
->name
, index_key
->description
);
1305 BUG_ON(index_key
->desc_len
== 0);
1306 BUG_ON(*_edit
!= NULL
);
1311 if (test_bit(KEY_FLAG_REVOKED
, &keyring
->flags
))
1314 /* Create an edit script that will insert/replace the key in the
1317 edit
= assoc_array_insert(&keyring
->keys
,
1318 &keyring_assoc_array_ops
,
1322 ret
= PTR_ERR(edit
);
1326 /* If we're not replacing a link in-place then we're going to need some
1329 if (!edit
->dead_leaf
) {
1330 ret
= key_payload_reserve(keyring
,
1331 keyring
->datalen
+ KEYQUOTA_LINK_BYTES
);
1341 assoc_array_cancel_edit(edit
);
1343 kleave(" = %d", ret
);
1348 * Check already instantiated keys aren't going to be a problem.
1350 * The caller must have called __key_link_begin(). Don't need to call this for
1351 * keys that were created since __key_link_begin() was called.
1353 int __key_link_check_live_key(struct key
*keyring
, struct key
*key
)
1355 if (key
->type
== &key_type_keyring
)
1356 /* check that we aren't going to create a cycle by linking one
1357 * keyring to another */
1358 return keyring_detect_cycle(keyring
, key
);
1363 * Link a key into to a keyring.
1365 * Must be called with __key_link_begin() having being called. Discards any
1366 * already extant link to matching key if there is one, so that each keyring
1367 * holds at most one link to any given key of a particular type+description
1370 void __key_link(struct key
*keyring
, struct key
*key
,
1371 struct assoc_array_edit
**_edit
)
1374 assoc_array_insert_set_object(*_edit
, keyring_key_to_ptr(key
));
1375 assoc_array_apply_edit(*_edit
);
1377 notify_key(keyring
, NOTIFY_KEY_LINKED
, key_serial(key
));
1381 * Finish linking a key into to a keyring.
1383 * Must be called with __key_link_begin() having being called.
1385 void __key_link_end(struct key
*keyring
,
1386 const struct keyring_index_key
*index_key
,
1387 struct assoc_array_edit
*edit
)
1388 __releases(&keyring
->sem
)
1389 __releases(&keyring_serialise_link_lock
)
1391 BUG_ON(index_key
->type
== NULL
);
1392 kenter("%d,%s,", keyring
->serial
, index_key
->type
->name
);
1395 if (!edit
->dead_leaf
) {
1396 key_payload_reserve(keyring
,
1397 keyring
->datalen
- KEYQUOTA_LINK_BYTES
);
1399 assoc_array_cancel_edit(edit
);
1401 up_write(&keyring
->sem
);
1403 if (index_key
->type
== &key_type_keyring
)
1404 mutex_unlock(&keyring_serialise_link_lock
);
1408 * Check addition of keys to restricted keyrings.
1410 static int __key_link_check_restriction(struct key
*keyring
, struct key
*key
)
1412 if (!keyring
->restrict_link
|| !keyring
->restrict_link
->check
)
1414 return keyring
->restrict_link
->check(keyring
, key
->type
, &key
->payload
,
1415 keyring
->restrict_link
->key
);
1419 * key_link - Link a key to a keyring
1420 * @keyring: The keyring to make the link in.
1421 * @key: The key to link to.
1423 * Make a link in a keyring to a key, such that the keyring holds a reference
1424 * on that key and the key can potentially be found by searching that keyring.
1426 * This function will write-lock the keyring's semaphore and will consume some
1427 * of the user's key data quota to hold the link.
1429 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring,
1430 * -EKEYREVOKED if the keyring has been revoked, -ENFILE if the keyring is
1431 * full, -EDQUOT if there is insufficient key data quota remaining to add
1432 * another link or -ENOMEM if there's insufficient memory.
1434 * It is assumed that the caller has checked that it is permitted for a link to
1435 * be made (the keyring should have Write permission and the key Link
1438 int key_link(struct key
*keyring
, struct key
*key
)
1440 struct assoc_array_edit
*edit
= NULL
;
1443 kenter("{%d,%d}", keyring
->serial
, refcount_read(&keyring
->usage
));
1448 ret
= __key_link_lock(keyring
, &key
->index_key
);
1452 ret
= __key_link_begin(keyring
, &key
->index_key
, &edit
);
1456 kdebug("begun {%d,%d}", keyring
->serial
, refcount_read(&keyring
->usage
));
1457 ret
= __key_link_check_restriction(keyring
, key
);
1459 ret
= __key_link_check_live_key(keyring
, key
);
1461 __key_link(keyring
, key
, &edit
);
1464 __key_link_end(keyring
, &key
->index_key
, edit
);
1466 kleave(" = %d {%d,%d}", ret
, keyring
->serial
, refcount_read(&keyring
->usage
));
1469 EXPORT_SYMBOL(key_link
);
1472 * Lock a keyring for unlink.
1474 static int __key_unlink_lock(struct key
*keyring
)
1475 __acquires(&keyring
->sem
)
1477 if (keyring
->type
!= &key_type_keyring
)
1480 down_write(&keyring
->sem
);
1485 * Begin the process of unlinking a key from a keyring.
1487 static int __key_unlink_begin(struct key
*keyring
, struct key
*key
,
1488 struct assoc_array_edit
**_edit
)
1490 struct assoc_array_edit
*edit
;
1492 BUG_ON(*_edit
!= NULL
);
1494 edit
= assoc_array_delete(&keyring
->keys
, &keyring_assoc_array_ops
,
1497 return PTR_ERR(edit
);
1507 * Apply an unlink change.
1509 static void __key_unlink(struct key
*keyring
, struct key
*key
,
1510 struct assoc_array_edit
**_edit
)
1512 assoc_array_apply_edit(*_edit
);
1513 notify_key(keyring
, NOTIFY_KEY_UNLINKED
, key_serial(key
));
1515 key_payload_reserve(keyring
, keyring
->datalen
- KEYQUOTA_LINK_BYTES
);
1519 * Finish unlinking a key from to a keyring.
1521 static void __key_unlink_end(struct key
*keyring
,
1523 struct assoc_array_edit
*edit
)
1524 __releases(&keyring
->sem
)
1527 assoc_array_cancel_edit(edit
);
1528 up_write(&keyring
->sem
);
1532 * key_unlink - Unlink the first link to a key from a keyring.
1533 * @keyring: The keyring to remove the link from.
1534 * @key: The key the link is to.
1536 * Remove a link from a keyring to a key.
1538 * This function will write-lock the keyring's semaphore.
1540 * Returns 0 if successful, -ENOTDIR if the keyring isn't a keyring, -ENOENT if
1541 * the key isn't linked to by the keyring or -ENOMEM if there's insufficient
1544 * It is assumed that the caller has checked that it is permitted for a link to
1545 * be removed (the keyring should have Write permission; no permissions are
1546 * required on the key).
1548 int key_unlink(struct key
*keyring
, struct key
*key
)
1550 struct assoc_array_edit
*edit
= NULL
;
1556 ret
= __key_unlink_lock(keyring
);
1560 ret
= __key_unlink_begin(keyring
, key
, &edit
);
1562 __key_unlink(keyring
, key
, &edit
);
1563 __key_unlink_end(keyring
, key
, edit
);
1566 EXPORT_SYMBOL(key_unlink
);
1569 * key_move - Move a key from one keyring to another
1570 * @key: The key to move
1571 * @from_keyring: The keyring to remove the link from.
1572 * @to_keyring: The keyring to make the link in.
1573 * @flags: Qualifying flags, such as KEYCTL_MOVE_EXCL.
1575 * Make a link in @to_keyring to a key, such that the keyring holds a reference
1576 * on that key and the key can potentially be found by searching that keyring
1577 * whilst simultaneously removing a link to the key from @from_keyring.
1579 * This function will write-lock both keyring's semaphores and will consume
1580 * some of the user's key data quota to hold the link on @to_keyring.
1582 * Returns 0 if successful, -ENOTDIR if either keyring isn't a keyring,
1583 * -EKEYREVOKED if either keyring has been revoked, -ENFILE if the second
1584 * keyring is full, -EDQUOT if there is insufficient key data quota remaining
1585 * to add another link or -ENOMEM if there's insufficient memory. If
1586 * KEYCTL_MOVE_EXCL is set, then -EEXIST will be returned if there's already a
1587 * matching key in @to_keyring.
1589 * It is assumed that the caller has checked that it is permitted for a link to
1590 * be made (the keyring should have Write permission and the key Link
1593 int key_move(struct key
*key
,
1594 struct key
*from_keyring
,
1595 struct key
*to_keyring
,
1598 struct assoc_array_edit
*from_edit
= NULL
, *to_edit
= NULL
;
1601 kenter("%d,%d,%d", key
->serial
, from_keyring
->serial
, to_keyring
->serial
);
1603 if (from_keyring
== to_keyring
)
1607 key_check(from_keyring
);
1608 key_check(to_keyring
);
1610 ret
= __key_move_lock(from_keyring
, to_keyring
, &key
->index_key
);
1613 ret
= __key_unlink_begin(from_keyring
, key
, &from_edit
);
1616 ret
= __key_link_begin(to_keyring
, &key
->index_key
, &to_edit
);
1621 if (to_edit
->dead_leaf
&& (flags
& KEYCTL_MOVE_EXCL
))
1624 ret
= __key_link_check_restriction(to_keyring
, key
);
1627 ret
= __key_link_check_live_key(to_keyring
, key
);
1631 __key_unlink(from_keyring
, key
, &from_edit
);
1632 __key_link(to_keyring
, key
, &to_edit
);
1634 __key_link_end(to_keyring
, &key
->index_key
, to_edit
);
1635 __key_unlink_end(from_keyring
, key
, from_edit
);
1637 kleave(" = %d", ret
);
1640 EXPORT_SYMBOL(key_move
);
1643 * keyring_clear - Clear a keyring
1644 * @keyring: The keyring to clear.
1646 * Clear the contents of the specified keyring.
1648 * Returns 0 if successful or -ENOTDIR if the keyring isn't a keyring.
1650 int keyring_clear(struct key
*keyring
)
1652 struct assoc_array_edit
*edit
;
1655 if (keyring
->type
!= &key_type_keyring
)
1658 down_write(&keyring
->sem
);
1660 edit
= assoc_array_clear(&keyring
->keys
, &keyring_assoc_array_ops
);
1662 ret
= PTR_ERR(edit
);
1665 assoc_array_apply_edit(edit
);
1666 notify_key(keyring
, NOTIFY_KEY_CLEARED
, 0);
1667 key_payload_reserve(keyring
, 0);
1671 up_write(&keyring
->sem
);
1674 EXPORT_SYMBOL(keyring_clear
);
1677 * Dispose of the links from a revoked keyring.
1679 * This is called with the key sem write-locked.
1681 static void keyring_revoke(struct key
*keyring
)
1683 struct assoc_array_edit
*edit
;
1685 edit
= assoc_array_clear(&keyring
->keys
, &keyring_assoc_array_ops
);
1686 if (!IS_ERR(edit
)) {
1688 assoc_array_apply_edit(edit
);
1689 key_payload_reserve(keyring
, 0);
1693 static bool keyring_gc_select_iterator(void *object
, void *iterator_data
)
1695 struct key
*key
= keyring_ptr_to_key(object
);
1696 time64_t
*limit
= iterator_data
;
1698 if (key_is_dead(key
, *limit
))
1704 static int keyring_gc_check_iterator(const void *object
, void *iterator_data
)
1706 const struct key
*key
= keyring_ptr_to_key(object
);
1707 time64_t
*limit
= iterator_data
;
1710 return key_is_dead(key
, *limit
);
1714 * Garbage collect pointers from a keyring.
1716 * Not called with any locks held. The keyring's key struct will not be
1717 * deallocated under us as only our caller may deallocate it.
1719 void keyring_gc(struct key
*keyring
, time64_t limit
)
1723 kenter("%x{%s}", keyring
->serial
, keyring
->description
?: "");
1725 if (keyring
->flags
& ((1 << KEY_FLAG_INVALIDATED
) |
1726 (1 << KEY_FLAG_REVOKED
)))
1729 /* scan the keyring looking for dead keys */
1731 result
= assoc_array_iterate(&keyring
->keys
,
1732 keyring_gc_check_iterator
, &limit
);
1742 down_write(&keyring
->sem
);
1743 assoc_array_gc(&keyring
->keys
, &keyring_assoc_array_ops
,
1744 keyring_gc_select_iterator
, &limit
);
1745 up_write(&keyring
->sem
);
1750 * Garbage collect restriction pointers from a keyring.
1752 * Keyring restrictions are associated with a key type, and must be cleaned
1753 * up if the key type is unregistered. The restriction is altered to always
1754 * reject additional keys so a keyring cannot be opened up by unregistering
1757 * Not called with any keyring locks held. The keyring's key struct will not
1758 * be deallocated under us as only our caller may deallocate it.
1760 * The caller is required to hold key_types_sem and dead_type->sem. This is
1761 * fulfilled by key_gc_keytype() holding the locks on behalf of
1762 * key_garbage_collector(), which it invokes on a workqueue.
1764 void keyring_restriction_gc(struct key
*keyring
, struct key_type
*dead_type
)
1766 struct key_restriction
*keyres
;
1768 kenter("%x{%s}", keyring
->serial
, keyring
->description
?: "");
1771 * keyring->restrict_link is only assigned at key allocation time
1772 * or with the key type locked, so the only values that could be
1773 * concurrently assigned to keyring->restrict_link are for key
1774 * types other than dead_type. Given this, it's ok to check
1775 * the key type before acquiring keyring->sem.
1777 if (!dead_type
|| !keyring
->restrict_link
||
1778 keyring
->restrict_link
->keytype
!= dead_type
) {
1779 kleave(" [no restriction gc]");
1783 /* Lock the keyring to ensure that a link is not in progress */
1784 down_write(&keyring
->sem
);
1786 keyres
= keyring
->restrict_link
;
1788 keyres
->check
= restrict_link_reject
;
1790 key_put(keyres
->key
);
1792 keyres
->keytype
= NULL
;
1794 up_write(&keyring
->sem
);
1796 kleave(" [restriction gc]");