1 // SPDX-License-Identifier: GPL-2.0-only
3 * Driver for SiS7019 Audio Accelerator
5 * Copyright (C) 2004-2007, David Dillow
6 * Written by David Dillow <dave@thedillows.org>
7 * Inspired by the Trident 4D-WaveDX/NX driver.
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/time.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/interrupt.h>
18 #include <linux/delay.h>
19 #include <sound/core.h>
20 #include <sound/ac97_codec.h>
21 #include <sound/initval.h>
24 MODULE_AUTHOR("David Dillow <dave@thedillows.org>");
25 MODULE_DESCRIPTION("SiS7019");
26 MODULE_LICENSE("GPL");
28 static int index
= SNDRV_DEFAULT_IDX1
; /* Index 0-MAX */
29 static char *id
= SNDRV_DEFAULT_STR1
; /* ID for this card */
30 static bool enable
= 1;
31 static int codecs
= 1;
33 module_param(index
, int, 0444);
34 MODULE_PARM_DESC(index
, "Index value for SiS7019 Audio Accelerator.");
35 module_param(id
, charp
, 0444);
36 MODULE_PARM_DESC(id
, "ID string for SiS7019 Audio Accelerator.");
37 module_param(enable
, bool, 0444);
38 MODULE_PARM_DESC(enable
, "Enable SiS7019 Audio Accelerator.");
39 module_param(codecs
, int, 0444);
40 MODULE_PARM_DESC(codecs
, "Set bit to indicate that codec number is expected to be present (default 1)");
42 static const struct pci_device_id snd_sis7019_ids
[] = {
43 { PCI_DEVICE(PCI_VENDOR_ID_SI
, 0x7019) },
47 MODULE_DEVICE_TABLE(pci
, snd_sis7019_ids
);
49 /* There are three timing modes for the voices.
51 * For both playback and capture, when the buffer is one or two periods long,
52 * we use the hardware's built-in Mid-Loop Interrupt and End-Loop Interrupt
53 * to let us know when the periods have ended.
55 * When performing playback with more than two periods per buffer, we set
56 * the "Stop Sample Offset" and tell the hardware to interrupt us when we
57 * reach it. We then update the offset and continue on until we are
58 * interrupted for the next period.
60 * Capture channels do not have a SSO, so we allocate a playback channel to
61 * use as a timer for the capture periods. We use the SSO on the playback
62 * channel to clock out virtual periods, and adjust the virtual period length
63 * to maintain synchronization. This algorithm came from the Trident driver.
65 * FIXME: It'd be nice to make use of some of the synth features in the
66 * hardware, but a woeful lack of documentation is a significant roadblock.
70 #define VOICE_IN_USE 1
71 #define VOICE_CAPTURE 2
72 #define VOICE_SSO_TIMING 4
73 #define VOICE_SYNC_TIMING 8
81 struct snd_pcm_substream
*substream
;
83 void __iomem
*ctrl_base
;
84 void __iomem
*wave_base
;
85 void __iomem
*sync_base
;
89 /* We need four pages to store our wave parameters during a suspend. If
90 * we're not doing power management, we still need to allocate a page
91 * for the silence buffer.
93 #define SIS_SUSPEND_PAGES 4
103 struct snd_card
*card
;
104 struct snd_ac97
*ac97
[3];
106 /* Protect against more than one thread hitting the AC97
107 * registers (in a more polite manner than pounding the hardware
110 struct mutex ac97_mutex
;
112 /* voice_lock protects allocation/freeing of the voice descriptions
114 spinlock_t voice_lock
;
116 struct voice voices
[64];
117 struct voice capture_voice
;
119 /* Allocate pages to store the internal wave state during
120 * suspends. When we're operating, this can be used as a silence
121 * buffer for a timing channel.
123 void *suspend_state
[SIS_SUSPEND_PAGES
];
126 dma_addr_t silence_dma_addr
;
129 /* These values are also used by the module param 'codecs' to indicate
130 * which codecs should be present.
132 #define SIS_PRIMARY_CODEC_PRESENT 0x0001
133 #define SIS_SECONDARY_CODEC_PRESENT 0x0002
134 #define SIS_TERTIARY_CODEC_PRESENT 0x0004
136 /* The HW offset parameters (Loop End, Stop Sample, End Sample) have a
137 * documented range of 8-0xfff8 samples. Given that they are 0-based,
138 * that places our period/buffer range at 9-0xfff9 samples. That makes the
139 * max buffer size 0xfff9 samples * 2 channels * 2 bytes per sample, and
140 * max samples / min samples gives us the max periods in a buffer.
142 * We'll add a constraint upon open that limits the period and buffer sample
143 * size to values that are legal for the hardware.
145 static const struct snd_pcm_hardware sis_playback_hw_info
= {
146 .info
= (SNDRV_PCM_INFO_MMAP
|
147 SNDRV_PCM_INFO_MMAP_VALID
|
148 SNDRV_PCM_INFO_INTERLEAVED
|
149 SNDRV_PCM_INFO_BLOCK_TRANSFER
|
150 SNDRV_PCM_INFO_SYNC_START
|
151 SNDRV_PCM_INFO_RESUME
),
152 .formats
= (SNDRV_PCM_FMTBIT_S8
| SNDRV_PCM_FMTBIT_U8
|
153 SNDRV_PCM_FMTBIT_S16_LE
| SNDRV_PCM_FMTBIT_U16_LE
),
154 .rates
= SNDRV_PCM_RATE_8000_48000
| SNDRV_PCM_RATE_CONTINUOUS
,
159 .buffer_bytes_max
= (0xfff9 * 4),
160 .period_bytes_min
= 9,
161 .period_bytes_max
= (0xfff9 * 4),
163 .periods_max
= (0xfff9 / 9),
166 static const struct snd_pcm_hardware sis_capture_hw_info
= {
167 .info
= (SNDRV_PCM_INFO_MMAP
|
168 SNDRV_PCM_INFO_MMAP_VALID
|
169 SNDRV_PCM_INFO_INTERLEAVED
|
170 SNDRV_PCM_INFO_BLOCK_TRANSFER
|
171 SNDRV_PCM_INFO_SYNC_START
|
172 SNDRV_PCM_INFO_RESUME
),
173 .formats
= (SNDRV_PCM_FMTBIT_S8
| SNDRV_PCM_FMTBIT_U8
|
174 SNDRV_PCM_FMTBIT_S16_LE
| SNDRV_PCM_FMTBIT_U16_LE
),
175 .rates
= SNDRV_PCM_RATE_48000
,
180 .buffer_bytes_max
= (0xfff9 * 4),
181 .period_bytes_min
= 9,
182 .period_bytes_max
= (0xfff9 * 4),
184 .periods_max
= (0xfff9 / 9),
187 static void sis_update_sso(struct voice
*voice
, u16 period
)
189 void __iomem
*base
= voice
->ctrl_base
;
191 voice
->sso
+= period
;
192 if (voice
->sso
>= voice
->buffer_size
)
193 voice
->sso
-= voice
->buffer_size
;
195 /* Enforce the documented hardware minimum offset */
199 /* The SSO is in the upper 16 bits of the register. */
200 writew(voice
->sso
& 0xffff, base
+ SIS_PLAY_DMA_SSO_ESO
+ 2);
203 static void sis_update_voice(struct voice
*voice
)
205 if (voice
->flags
& VOICE_SSO_TIMING
) {
206 sis_update_sso(voice
, voice
->period_size
);
207 } else if (voice
->flags
& VOICE_SYNC_TIMING
) {
210 /* If we've not hit the end of the virtual period, update
211 * our records and keep going.
213 if (voice
->vperiod
> voice
->period_size
) {
214 voice
->vperiod
-= voice
->period_size
;
215 if (voice
->vperiod
< voice
->period_size
)
216 sis_update_sso(voice
, voice
->vperiod
);
218 sis_update_sso(voice
, voice
->period_size
);
222 /* Calculate our relative offset between the target and
223 * the actual CSO value. Since we're operating in a loop,
224 * if the value is more than half way around, we can
225 * consider ourselves wrapped.
227 sync
= voice
->sync_cso
;
228 sync
-= readw(voice
->sync_base
+ SIS_CAPTURE_DMA_FORMAT_CSO
);
229 if (sync
> (voice
->sync_buffer_size
/ 2))
230 sync
-= voice
->sync_buffer_size
;
232 /* If sync is positive, then we interrupted too early, and
233 * we'll need to come back in a few samples and try again.
234 * There's a minimum wait, as it takes some time for the DMA
235 * engine to startup, etc...
240 sis_update_sso(voice
, sync
);
244 /* Ok, we interrupted right on time, or (hopefully) just
245 * a bit late. We'll adjst our next waiting period based
246 * on how close we got.
248 * We need to stay just behind the actual channel to ensure
249 * it really is past a period when we get our interrupt --
250 * otherwise we'll fall into the early code above and have
251 * a minimum wait time, which makes us quite late here,
252 * eating into the user's time to refresh the buffer, esp.
253 * if using small periods.
255 * If we're less than 9 samples behind, we're on target.
256 * Otherwise, shorten the next vperiod by the amount we've
260 voice
->vperiod
= voice
->sync_period_size
+ 1;
262 voice
->vperiod
= voice
->sync_period_size
+ sync
+ 10;
264 if (voice
->vperiod
< voice
->buffer_size
) {
265 sis_update_sso(voice
, voice
->vperiod
);
268 sis_update_sso(voice
, voice
->period_size
);
270 sync
= voice
->sync_cso
+ voice
->sync_period_size
;
271 if (sync
>= voice
->sync_buffer_size
)
272 sync
-= voice
->sync_buffer_size
;
273 voice
->sync_cso
= sync
;
276 snd_pcm_period_elapsed(voice
->substream
);
279 static void sis_voice_irq(u32 status
, struct voice
*voice
)
287 sis_update_voice(voice
);
292 static irqreturn_t
sis_interrupt(int irq
, void *dev
)
294 struct sis7019
*sis
= dev
;
295 unsigned long io
= sis
->ioport
;
299 /* We only use the DMA interrupts, and we don't enable any other
300 * source of interrupts. But, it is possible to see an interrupt
301 * status that didn't actually interrupt us, so eliminate anything
302 * we're not expecting to avoid falsely claiming an IRQ, and an
303 * ensuing endless loop.
305 intr
= inl(io
+ SIS_GISR
);
306 intr
&= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS
|
307 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS
;
312 status
= inl(io
+ SIS_PISR_A
);
314 sis_voice_irq(status
, sis
->voices
);
315 outl(status
, io
+ SIS_PISR_A
);
318 status
= inl(io
+ SIS_PISR_B
);
320 sis_voice_irq(status
, &sis
->voices
[32]);
321 outl(status
, io
+ SIS_PISR_B
);
324 status
= inl(io
+ SIS_RISR
);
326 voice
= &sis
->capture_voice
;
328 snd_pcm_period_elapsed(voice
->substream
);
330 outl(status
, io
+ SIS_RISR
);
333 outl(intr
, io
+ SIS_GISR
);
334 intr
= inl(io
+ SIS_GISR
);
335 intr
&= SIS_GISR_AUDIO_PLAY_DMA_IRQ_STATUS
|
336 SIS_GISR_AUDIO_RECORD_DMA_IRQ_STATUS
;
342 static u32
sis_rate_to_delta(unsigned int rate
)
346 /* This was copied from the trident driver, but it seems its gotten
347 * around a bit... nevertheless, it works well.
349 * We special case 44100 and 8000 since rounding with the equation
350 * does not give us an accurate enough value. For 11025 and 22050
351 * the equation gives us the best answer. All other frequencies will
352 * also use the equation. JDW
356 else if (rate
== 8000)
358 else if (rate
== 48000)
361 delta
= DIV_ROUND_CLOSEST(rate
<< 12, 48000) & 0x0000ffff;
365 static void __sis_map_silence(struct sis7019
*sis
)
367 /* Helper function: must hold sis->voice_lock on entry */
368 if (!sis
->silence_users
)
369 sis
->silence_dma_addr
= dma_map_single(&sis
->pci
->dev
,
370 sis
->suspend_state
[0],
371 4096, DMA_TO_DEVICE
);
372 sis
->silence_users
++;
375 static void __sis_unmap_silence(struct sis7019
*sis
)
377 /* Helper function: must hold sis->voice_lock on entry */
378 sis
->silence_users
--;
379 if (!sis
->silence_users
)
380 dma_unmap_single(&sis
->pci
->dev
, sis
->silence_dma_addr
, 4096,
384 static void sis_free_voice(struct sis7019
*sis
, struct voice
*voice
)
388 spin_lock_irqsave(&sis
->voice_lock
, flags
);
390 __sis_unmap_silence(sis
);
391 voice
->timing
->flags
&= ~(VOICE_IN_USE
| VOICE_SSO_TIMING
|
393 voice
->timing
= NULL
;
395 voice
->flags
&= ~(VOICE_IN_USE
| VOICE_SSO_TIMING
| VOICE_SYNC_TIMING
);
396 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
399 static struct voice
*__sis_alloc_playback_voice(struct sis7019
*sis
)
401 /* Must hold the voice_lock on entry */
405 for (i
= 0; i
< 64; i
++) {
406 voice
= &sis
->voices
[i
];
407 if (voice
->flags
& VOICE_IN_USE
)
409 voice
->flags
|= VOICE_IN_USE
;
418 static struct voice
*sis_alloc_playback_voice(struct sis7019
*sis
)
423 spin_lock_irqsave(&sis
->voice_lock
, flags
);
424 voice
= __sis_alloc_playback_voice(sis
);
425 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
430 static int sis_alloc_timing_voice(struct snd_pcm_substream
*substream
,
431 struct snd_pcm_hw_params
*hw_params
)
433 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
434 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
435 struct voice
*voice
= runtime
->private_data
;
436 unsigned int period_size
, buffer_size
;
440 /* If there are one or two periods per buffer, we don't need a
441 * timing voice, as we can use the capture channel's interrupts
442 * to clock out the periods.
444 period_size
= params_period_size(hw_params
);
445 buffer_size
= params_buffer_size(hw_params
);
446 needed
= (period_size
!= buffer_size
&&
447 period_size
!= (buffer_size
/ 2));
449 if (needed
&& !voice
->timing
) {
450 spin_lock_irqsave(&sis
->voice_lock
, flags
);
451 voice
->timing
= __sis_alloc_playback_voice(sis
);
453 __sis_map_silence(sis
);
454 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
457 voice
->timing
->substream
= substream
;
458 } else if (!needed
&& voice
->timing
) {
459 sis_free_voice(sis
, voice
);
460 voice
->timing
= NULL
;
466 static int sis_playback_open(struct snd_pcm_substream
*substream
)
468 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
469 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
472 voice
= sis_alloc_playback_voice(sis
);
476 voice
->substream
= substream
;
477 runtime
->private_data
= voice
;
478 runtime
->hw
= sis_playback_hw_info
;
479 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_PERIOD_SIZE
,
481 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_BUFFER_SIZE
,
483 snd_pcm_set_sync(substream
);
487 static int sis_substream_close(struct snd_pcm_substream
*substream
)
489 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
490 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
491 struct voice
*voice
= runtime
->private_data
;
493 sis_free_voice(sis
, voice
);
497 static int sis_pcm_playback_prepare(struct snd_pcm_substream
*substream
)
499 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
500 struct voice
*voice
= runtime
->private_data
;
501 void __iomem
*ctrl_base
= voice
->ctrl_base
;
502 void __iomem
*wave_base
= voice
->wave_base
;
503 u32 format
, dma_addr
, control
, sso_eso
, delta
, reg
;
506 /* We rely on the PCM core to ensure that the parameters for this
507 * substream do not change on us while we're programming the HW.
510 if (snd_pcm_format_width(runtime
->format
) == 8)
511 format
|= SIS_PLAY_DMA_FORMAT_8BIT
;
512 if (!snd_pcm_format_signed(runtime
->format
))
513 format
|= SIS_PLAY_DMA_FORMAT_UNSIGNED
;
514 if (runtime
->channels
== 1)
515 format
|= SIS_PLAY_DMA_FORMAT_MONO
;
517 /* The baseline setup is for a single period per buffer, and
518 * we add bells and whistles as needed from there.
520 dma_addr
= runtime
->dma_addr
;
521 leo
= runtime
->buffer_size
- 1;
522 control
= leo
| SIS_PLAY_DMA_LOOP
| SIS_PLAY_DMA_INTR_AT_LEO
;
525 if (runtime
->period_size
== (runtime
->buffer_size
/ 2)) {
526 control
|= SIS_PLAY_DMA_INTR_AT_MLP
;
527 } else if (runtime
->period_size
!= runtime
->buffer_size
) {
528 voice
->flags
|= VOICE_SSO_TIMING
;
529 voice
->sso
= runtime
->period_size
- 1;
530 voice
->period_size
= runtime
->period_size
;
531 voice
->buffer_size
= runtime
->buffer_size
;
533 control
&= ~SIS_PLAY_DMA_INTR_AT_LEO
;
534 control
|= SIS_PLAY_DMA_INTR_AT_SSO
;
535 sso_eso
|= (runtime
->period_size
- 1) << 16;
538 delta
= sis_rate_to_delta(runtime
->rate
);
540 /* Ok, we're ready to go, set up the channel.
542 writel(format
, ctrl_base
+ SIS_PLAY_DMA_FORMAT_CSO
);
543 writel(dma_addr
, ctrl_base
+ SIS_PLAY_DMA_BASE
);
544 writel(control
, ctrl_base
+ SIS_PLAY_DMA_CONTROL
);
545 writel(sso_eso
, ctrl_base
+ SIS_PLAY_DMA_SSO_ESO
);
547 for (reg
= 0; reg
< SIS_WAVE_SIZE
; reg
+= 4)
548 writel(0, wave_base
+ reg
);
550 writel(SIS_WAVE_GENERAL_WAVE_VOLUME
, wave_base
+ SIS_WAVE_GENERAL
);
551 writel(delta
<< 16, wave_base
+ SIS_WAVE_GENERAL_ARTICULATION
);
552 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE
|
553 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE
|
554 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE
,
555 wave_base
+ SIS_WAVE_CHANNEL_CONTROL
);
557 /* Force PCI writes to post. */
563 static int sis_pcm_trigger(struct snd_pcm_substream
*substream
, int cmd
)
565 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
566 unsigned long io
= sis
->ioport
;
567 struct snd_pcm_substream
*s
;
572 u32 play
[2] = { 0, 0 };
574 /* No locks needed, as the PCM core will hold the locks on the
575 * substreams, and the HW will only start/stop the indicated voices
576 * without changing the state of the others.
579 case SNDRV_PCM_TRIGGER_START
:
580 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE
:
581 case SNDRV_PCM_TRIGGER_RESUME
:
584 case SNDRV_PCM_TRIGGER_STOP
:
585 case SNDRV_PCM_TRIGGER_PAUSE_PUSH
:
586 case SNDRV_PCM_TRIGGER_SUSPEND
:
593 snd_pcm_group_for_each_entry(s
, substream
) {
594 /* Make sure it is for us... */
595 chip
= snd_pcm_substream_chip(s
);
599 voice
= s
->runtime
->private_data
;
600 if (voice
->flags
& VOICE_CAPTURE
) {
601 record
|= 1 << voice
->num
;
602 voice
= voice
->timing
;
605 /* voice could be NULL if this a recording stream, and it
606 * doesn't have an external timing channel.
609 play
[voice
->num
/ 32] |= 1 << (voice
->num
& 0x1f);
611 snd_pcm_trigger_done(s
, substream
);
616 outl(record
, io
+ SIS_RECORD_START_REG
);
618 outl(play
[0], io
+ SIS_PLAY_START_A_REG
);
620 outl(play
[1], io
+ SIS_PLAY_START_B_REG
);
623 outl(record
, io
+ SIS_RECORD_STOP_REG
);
625 outl(play
[0], io
+ SIS_PLAY_STOP_A_REG
);
627 outl(play
[1], io
+ SIS_PLAY_STOP_B_REG
);
632 static snd_pcm_uframes_t
sis_pcm_pointer(struct snd_pcm_substream
*substream
)
634 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
635 struct voice
*voice
= runtime
->private_data
;
638 cso
= readl(voice
->ctrl_base
+ SIS_PLAY_DMA_FORMAT_CSO
);
643 static int sis_capture_open(struct snd_pcm_substream
*substream
)
645 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
646 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
647 struct voice
*voice
= &sis
->capture_voice
;
650 /* FIXME: The driver only supports recording from one channel
651 * at the moment, but it could support more.
653 spin_lock_irqsave(&sis
->voice_lock
, flags
);
654 if (voice
->flags
& VOICE_IN_USE
)
657 voice
->flags
|= VOICE_IN_USE
;
658 spin_unlock_irqrestore(&sis
->voice_lock
, flags
);
663 voice
->substream
= substream
;
664 runtime
->private_data
= voice
;
665 runtime
->hw
= sis_capture_hw_info
;
666 runtime
->hw
.rates
= sis
->ac97
[0]->rates
[AC97_RATES_ADC
];
667 snd_pcm_limit_hw_rates(runtime
);
668 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_PERIOD_SIZE
,
670 snd_pcm_hw_constraint_minmax(runtime
, SNDRV_PCM_HW_PARAM_BUFFER_SIZE
,
672 snd_pcm_set_sync(substream
);
676 static int sis_capture_hw_params(struct snd_pcm_substream
*substream
,
677 struct snd_pcm_hw_params
*hw_params
)
679 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
682 rc
= snd_ac97_set_rate(sis
->ac97
[0], AC97_PCM_LR_ADC_RATE
,
683 params_rate(hw_params
));
687 rc
= sis_alloc_timing_voice(substream
, hw_params
);
693 static void sis_prepare_timing_voice(struct voice
*voice
,
694 struct snd_pcm_substream
*substream
)
696 struct sis7019
*sis
= snd_pcm_substream_chip(substream
);
697 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
698 struct voice
*timing
= voice
->timing
;
699 void __iomem
*play_base
= timing
->ctrl_base
;
700 void __iomem
*wave_base
= timing
->wave_base
;
701 u16 buffer_size
, period_size
;
702 u32 format
, control
, sso_eso
, delta
;
703 u32 vperiod
, sso
, reg
;
705 /* Set our initial buffer and period as large as we can given a
706 * single page of silence.
708 buffer_size
= 4096 / runtime
->channels
;
709 buffer_size
/= snd_pcm_format_size(runtime
->format
, 1);
710 period_size
= buffer_size
;
712 /* Initially, we want to interrupt just a bit behind the end of
713 * the period we're clocking out. 12 samples seems to give a good
716 * We want to spread our interrupts throughout the virtual period,
717 * so that we don't end up with two interrupts back to back at the
718 * end -- this helps minimize the effects of any jitter. Adjust our
719 * clocking period size so that the last period is at least a fourth
722 * This is all moot if we don't need to use virtual periods.
724 vperiod
= runtime
->period_size
+ 12;
725 if (vperiod
> period_size
) {
726 u16 tail
= vperiod
% period_size
;
727 u16 quarter_period
= period_size
/ 4;
729 if (tail
&& tail
< quarter_period
) {
730 u16 loops
= vperiod
/ period_size
;
732 tail
= quarter_period
- tail
;
738 sso
= period_size
- 1;
740 /* The initial period will fit inside the buffer, so we
741 * don't need to use virtual periods -- disable them.
743 period_size
= runtime
->period_size
;
748 /* The interrupt handler implements the timing synchronization, so
751 timing
->flags
|= VOICE_SYNC_TIMING
;
752 timing
->sync_base
= voice
->ctrl_base
;
753 timing
->sync_cso
= runtime
->period_size
;
754 timing
->sync_period_size
= runtime
->period_size
;
755 timing
->sync_buffer_size
= runtime
->buffer_size
;
756 timing
->period_size
= period_size
;
757 timing
->buffer_size
= buffer_size
;
759 timing
->vperiod
= vperiod
;
761 /* Using unsigned samples with the all-zero silence buffer
762 * forces the output to the lower rail, killing playback.
763 * So ignore unsigned vs signed -- it doesn't change the timing.
766 if (snd_pcm_format_width(runtime
->format
) == 8)
767 format
= SIS_CAPTURE_DMA_FORMAT_8BIT
;
768 if (runtime
->channels
== 1)
769 format
|= SIS_CAPTURE_DMA_FORMAT_MONO
;
771 control
= timing
->buffer_size
- 1;
772 control
|= SIS_PLAY_DMA_LOOP
| SIS_PLAY_DMA_INTR_AT_SSO
;
773 sso_eso
= timing
->buffer_size
- 1;
774 sso_eso
|= timing
->sso
<< 16;
776 delta
= sis_rate_to_delta(runtime
->rate
);
778 /* We've done the math, now configure the channel.
780 writel(format
, play_base
+ SIS_PLAY_DMA_FORMAT_CSO
);
781 writel(sis
->silence_dma_addr
, play_base
+ SIS_PLAY_DMA_BASE
);
782 writel(control
, play_base
+ SIS_PLAY_DMA_CONTROL
);
783 writel(sso_eso
, play_base
+ SIS_PLAY_DMA_SSO_ESO
);
785 for (reg
= 0; reg
< SIS_WAVE_SIZE
; reg
+= 4)
786 writel(0, wave_base
+ reg
);
788 writel(SIS_WAVE_GENERAL_WAVE_VOLUME
, wave_base
+ SIS_WAVE_GENERAL
);
789 writel(delta
<< 16, wave_base
+ SIS_WAVE_GENERAL_ARTICULATION
);
790 writel(SIS_WAVE_CHANNEL_CONTROL_FIRST_SAMPLE
|
791 SIS_WAVE_CHANNEL_CONTROL_AMP_ENABLE
|
792 SIS_WAVE_CHANNEL_CONTROL_INTERPOLATE_ENABLE
,
793 wave_base
+ SIS_WAVE_CHANNEL_CONTROL
);
796 static int sis_pcm_capture_prepare(struct snd_pcm_substream
*substream
)
798 struct snd_pcm_runtime
*runtime
= substream
->runtime
;
799 struct voice
*voice
= runtime
->private_data
;
800 void __iomem
*rec_base
= voice
->ctrl_base
;
801 u32 format
, dma_addr
, control
;
804 /* We rely on the PCM core to ensure that the parameters for this
805 * substream do not change on us while we're programming the HW.
808 if (snd_pcm_format_width(runtime
->format
) == 8)
809 format
= SIS_CAPTURE_DMA_FORMAT_8BIT
;
810 if (!snd_pcm_format_signed(runtime
->format
))
811 format
|= SIS_CAPTURE_DMA_FORMAT_UNSIGNED
;
812 if (runtime
->channels
== 1)
813 format
|= SIS_CAPTURE_DMA_FORMAT_MONO
;
815 dma_addr
= runtime
->dma_addr
;
816 leo
= runtime
->buffer_size
- 1;
817 control
= leo
| SIS_CAPTURE_DMA_LOOP
;
819 /* If we've got more than two periods per buffer, then we have
820 * use a timing voice to clock out the periods. Otherwise, we can
821 * use the capture channel's interrupts.
824 sis_prepare_timing_voice(voice
, substream
);
826 control
|= SIS_CAPTURE_DMA_INTR_AT_LEO
;
827 if (runtime
->period_size
!= runtime
->buffer_size
)
828 control
|= SIS_CAPTURE_DMA_INTR_AT_MLP
;
831 writel(format
, rec_base
+ SIS_CAPTURE_DMA_FORMAT_CSO
);
832 writel(dma_addr
, rec_base
+ SIS_CAPTURE_DMA_BASE
);
833 writel(control
, rec_base
+ SIS_CAPTURE_DMA_CONTROL
);
835 /* Force the writes to post. */
841 static const struct snd_pcm_ops sis_playback_ops
= {
842 .open
= sis_playback_open
,
843 .close
= sis_substream_close
,
844 .prepare
= sis_pcm_playback_prepare
,
845 .trigger
= sis_pcm_trigger
,
846 .pointer
= sis_pcm_pointer
,
849 static const struct snd_pcm_ops sis_capture_ops
= {
850 .open
= sis_capture_open
,
851 .close
= sis_substream_close
,
852 .hw_params
= sis_capture_hw_params
,
853 .prepare
= sis_pcm_capture_prepare
,
854 .trigger
= sis_pcm_trigger
,
855 .pointer
= sis_pcm_pointer
,
858 static int sis_pcm_create(struct sis7019
*sis
)
863 /* We have 64 voices, and the driver currently records from
864 * only one channel, though that could change in the future.
866 rc
= snd_pcm_new(sis
->card
, "SiS7019", 0, 64, 1, &pcm
);
870 pcm
->private_data
= sis
;
871 strcpy(pcm
->name
, "SiS7019");
874 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_PLAYBACK
, &sis_playback_ops
);
875 snd_pcm_set_ops(pcm
, SNDRV_PCM_STREAM_CAPTURE
, &sis_capture_ops
);
877 /* Try to preallocate some memory, but it's not the end of the
878 * world if this fails.
880 snd_pcm_set_managed_buffer_all(pcm
, SNDRV_DMA_TYPE_DEV
,
881 &sis
->pci
->dev
, 64*1024, 128*1024);
886 static unsigned short sis_ac97_rw(struct sis7019
*sis
, int codec
, u32 cmd
)
888 unsigned long io
= sis
->ioport
;
889 unsigned short val
= 0xffff;
893 static const u16 codec_ready
[3] = {
894 SIS_AC97_STATUS_CODEC_READY
,
895 SIS_AC97_STATUS_CODEC2_READY
,
896 SIS_AC97_STATUS_CODEC3_READY
,
899 rdy
= codec_ready
[codec
];
902 /* Get the AC97 semaphore -- software first, so we don't spin
903 * pounding out IO reads on the hardware semaphore...
905 mutex_lock(&sis
->ac97_mutex
);
908 while ((inw(io
+ SIS_AC97_SEMA
) & SIS_AC97_SEMA_BUSY
) && --count
)
914 /* ... and wait for any outstanding commands to complete ...
918 status
= inw(io
+ SIS_AC97_STATUS
);
919 if ((status
& rdy
) && !(status
& SIS_AC97_STATUS_BUSY
))
928 /* ... before sending our command and waiting for it to finish ...
930 outl(cmd
, io
+ SIS_AC97_CMD
);
934 while ((inw(io
+ SIS_AC97_STATUS
) & SIS_AC97_STATUS_BUSY
) && --count
)
937 /* ... and reading the results (if any).
939 val
= inl(io
+ SIS_AC97_CMD
) >> 16;
942 outl(SIS_AC97_SEMA_RELEASE
, io
+ SIS_AC97_SEMA
);
944 mutex_unlock(&sis
->ac97_mutex
);
947 dev_err(&sis
->pci
->dev
, "ac97 codec %d timeout cmd 0x%08x\n",
954 static void sis_ac97_write(struct snd_ac97
*ac97
, unsigned short reg
,
957 static const u32 cmd
[3] = {
958 SIS_AC97_CMD_CODEC_WRITE
,
959 SIS_AC97_CMD_CODEC2_WRITE
,
960 SIS_AC97_CMD_CODEC3_WRITE
,
962 sis_ac97_rw(ac97
->private_data
, ac97
->num
,
963 (val
<< 16) | (reg
<< 8) | cmd
[ac97
->num
]);
966 static unsigned short sis_ac97_read(struct snd_ac97
*ac97
, unsigned short reg
)
968 static const u32 cmd
[3] = {
969 SIS_AC97_CMD_CODEC_READ
,
970 SIS_AC97_CMD_CODEC2_READ
,
971 SIS_AC97_CMD_CODEC3_READ
,
973 return sis_ac97_rw(ac97
->private_data
, ac97
->num
,
974 (reg
<< 8) | cmd
[ac97
->num
]);
977 static int sis_mixer_create(struct sis7019
*sis
)
979 struct snd_ac97_bus
*bus
;
980 struct snd_ac97_template ac97
;
981 static const struct snd_ac97_bus_ops ops
= {
982 .write
= sis_ac97_write
,
983 .read
= sis_ac97_read
,
987 memset(&ac97
, 0, sizeof(ac97
));
988 ac97
.private_data
= sis
;
990 rc
= snd_ac97_bus(sis
->card
, 0, &ops
, NULL
, &bus
);
991 if (!rc
&& sis
->codecs_present
& SIS_PRIMARY_CODEC_PRESENT
)
992 rc
= snd_ac97_mixer(bus
, &ac97
, &sis
->ac97
[0]);
994 if (!rc
&& (sis
->codecs_present
& SIS_SECONDARY_CODEC_PRESENT
))
995 rc
= snd_ac97_mixer(bus
, &ac97
, &sis
->ac97
[1]);
997 if (!rc
&& (sis
->codecs_present
& SIS_TERTIARY_CODEC_PRESENT
))
998 rc
= snd_ac97_mixer(bus
, &ac97
, &sis
->ac97
[2]);
1000 /* If we return an error here, then snd_card_free() should
1001 * free up any ac97 codecs that got created, as well as the bus.
1006 static void sis_chip_free(struct snd_card
*card
)
1008 struct sis7019
*sis
= card
->private_data
;
1010 /* Reset the chip, and disable all interrputs.
1012 outl(SIS_GCR_SOFTWARE_RESET
, sis
->ioport
+ SIS_GCR
);
1014 outl(0, sis
->ioport
+ SIS_GCR
);
1015 outl(0, sis
->ioport
+ SIS_GIER
);
1017 /* Now, free everything we allocated.
1020 free_irq(sis
->irq
, sis
);
1023 static int sis_chip_init(struct sis7019
*sis
)
1025 unsigned long io
= sis
->ioport
;
1026 void __iomem
*ioaddr
= sis
->ioaddr
;
1027 unsigned long timeout
;
1032 /* Reset the audio controller
1034 outl(SIS_GCR_SOFTWARE_RESET
, io
+ SIS_GCR
);
1036 outl(0, io
+ SIS_GCR
);
1038 /* Get the AC-link semaphore, and reset the codecs
1041 while ((inw(io
+ SIS_AC97_SEMA
) & SIS_AC97_SEMA_BUSY
) && --count
)
1047 outl(SIS_AC97_CMD_CODEC_COLD_RESET
, io
+ SIS_AC97_CMD
);
1051 while ((inw(io
+ SIS_AC97_STATUS
) & SIS_AC97_STATUS_BUSY
) && --count
)
1054 /* Command complete, we can let go of the semaphore now.
1056 outl(SIS_AC97_SEMA_RELEASE
, io
+ SIS_AC97_SEMA
);
1060 /* Now that we've finished the reset, find out what's attached.
1061 * There are some codec/board combinations that take an extremely
1062 * long time to come up. 350+ ms has been observed in the field,
1063 * so we'll give them up to 500ms.
1065 sis
->codecs_present
= 0;
1066 timeout
= msecs_to_jiffies(500) + jiffies
;
1067 while (time_before_eq(jiffies
, timeout
)) {
1068 status
= inl(io
+ SIS_AC97_STATUS
);
1069 if (status
& SIS_AC97_STATUS_CODEC_READY
)
1070 sis
->codecs_present
|= SIS_PRIMARY_CODEC_PRESENT
;
1071 if (status
& SIS_AC97_STATUS_CODEC2_READY
)
1072 sis
->codecs_present
|= SIS_SECONDARY_CODEC_PRESENT
;
1073 if (status
& SIS_AC97_STATUS_CODEC3_READY
)
1074 sis
->codecs_present
|= SIS_TERTIARY_CODEC_PRESENT
;
1076 if (sis
->codecs_present
== codecs
)
1082 /* All done, check for errors.
1084 if (!sis
->codecs_present
) {
1085 dev_err(&sis
->pci
->dev
, "could not find any codecs\n");
1089 if (sis
->codecs_present
!= codecs
) {
1090 dev_warn(&sis
->pci
->dev
, "missing codecs, found %0x, expected %0x\n",
1091 sis
->codecs_present
, codecs
);
1094 /* Let the hardware know that the audio driver is alive,
1095 * and enable PCM slots on the AC-link for L/R playback (3 & 4) and
1096 * record channels. We're going to want to use Variable Rate Audio
1097 * for recording, to avoid needlessly resampling from 48kHZ.
1099 outl(SIS_AC97_CONF_AUDIO_ALIVE
, io
+ SIS_AC97_CONF
);
1100 outl(SIS_AC97_CONF_AUDIO_ALIVE
| SIS_AC97_CONF_PCM_LR_ENABLE
|
1101 SIS_AC97_CONF_PCM_CAP_MIC_ENABLE
|
1102 SIS_AC97_CONF_PCM_CAP_LR_ENABLE
|
1103 SIS_AC97_CONF_CODEC_VRA_ENABLE
, io
+ SIS_AC97_CONF
);
1105 /* All AC97 PCM slots should be sourced from sub-mixer 0.
1107 outl(0, io
+ SIS_AC97_PSR
);
1109 /* There is only one valid DMA setup for a PCI environment.
1111 outl(SIS_DMA_CSR_PCI_SETTINGS
, io
+ SIS_DMA_CSR
);
1113 /* Reset the synchronization groups for all of the channels
1114 * to be asynchronous. If we start doing SPDIF or 5.1 sound, etc.
1115 * we'll need to change how we handle these. Until then, we just
1116 * assign sub-mixer 0 to all playback channels, and avoid any
1117 * attenuation on the audio.
1119 outl(0, io
+ SIS_PLAY_SYNC_GROUP_A
);
1120 outl(0, io
+ SIS_PLAY_SYNC_GROUP_B
);
1121 outl(0, io
+ SIS_PLAY_SYNC_GROUP_C
);
1122 outl(0, io
+ SIS_PLAY_SYNC_GROUP_D
);
1123 outl(0, io
+ SIS_MIXER_SYNC_GROUP
);
1125 for (i
= 0; i
< 64; i
++) {
1126 writel(i
, SIS_MIXER_START_ADDR(ioaddr
, i
));
1127 writel(SIS_MIXER_RIGHT_NO_ATTEN
| SIS_MIXER_LEFT_NO_ATTEN
|
1128 SIS_MIXER_DEST_0
, SIS_MIXER_ADDR(ioaddr
, i
));
1131 /* Don't attenuate any audio set for the wave amplifier.
1133 * FIXME: Maximum attenuation is set for the music amp, which will
1134 * need to change if we start using the synth engine.
1136 outl(0xffff0000, io
+ SIS_WEVCR
);
1138 /* Ensure that the wave engine is in normal operating mode.
1140 outl(0, io
+ SIS_WECCR
);
1142 /* Go ahead and enable the DMA interrupts. They won't go live
1143 * until we start a channel.
1145 outl(SIS_GIER_AUDIO_PLAY_DMA_IRQ_ENABLE
|
1146 SIS_GIER_AUDIO_RECORD_DMA_IRQ_ENABLE
, io
+ SIS_GIER
);
1151 static int sis_suspend(struct device
*dev
)
1153 struct snd_card
*card
= dev_get_drvdata(dev
);
1154 struct sis7019
*sis
= card
->private_data
;
1155 void __iomem
*ioaddr
= sis
->ioaddr
;
1158 snd_power_change_state(card
, SNDRV_CTL_POWER_D3hot
);
1159 if (sis
->codecs_present
& SIS_PRIMARY_CODEC_PRESENT
)
1160 snd_ac97_suspend(sis
->ac97
[0]);
1161 if (sis
->codecs_present
& SIS_SECONDARY_CODEC_PRESENT
)
1162 snd_ac97_suspend(sis
->ac97
[1]);
1163 if (sis
->codecs_present
& SIS_TERTIARY_CODEC_PRESENT
)
1164 snd_ac97_suspend(sis
->ac97
[2]);
1166 /* snd_pcm_suspend_all() stopped all channels, so we're quiescent.
1168 if (sis
->irq
>= 0) {
1169 free_irq(sis
->irq
, sis
);
1173 /* Save the internal state away
1175 for (i
= 0; i
< 4; i
++) {
1176 memcpy_fromio(sis
->suspend_state
[i
], ioaddr
, 4096);
1183 static int sis_resume(struct device
*dev
)
1185 struct pci_dev
*pci
= to_pci_dev(dev
);
1186 struct snd_card
*card
= dev_get_drvdata(dev
);
1187 struct sis7019
*sis
= card
->private_data
;
1188 void __iomem
*ioaddr
= sis
->ioaddr
;
1191 if (sis_chip_init(sis
)) {
1192 dev_err(&pci
->dev
, "unable to re-init controller\n");
1196 if (request_irq(pci
->irq
, sis_interrupt
, IRQF_SHARED
,
1197 KBUILD_MODNAME
, sis
)) {
1198 dev_err(&pci
->dev
, "unable to regain IRQ %d\n", pci
->irq
);
1202 /* Restore saved state, then clear out the page we use for the
1205 for (i
= 0; i
< 4; i
++) {
1206 memcpy_toio(ioaddr
, sis
->suspend_state
[i
], 4096);
1210 memset(sis
->suspend_state
[0], 0, 4096);
1212 sis
->irq
= pci
->irq
;
1214 if (sis
->codecs_present
& SIS_PRIMARY_CODEC_PRESENT
)
1215 snd_ac97_resume(sis
->ac97
[0]);
1216 if (sis
->codecs_present
& SIS_SECONDARY_CODEC_PRESENT
)
1217 snd_ac97_resume(sis
->ac97
[1]);
1218 if (sis
->codecs_present
& SIS_TERTIARY_CODEC_PRESENT
)
1219 snd_ac97_resume(sis
->ac97
[2]);
1221 snd_power_change_state(card
, SNDRV_CTL_POWER_D0
);
1225 snd_card_disconnect(card
);
1229 static DEFINE_SIMPLE_DEV_PM_OPS(sis_pm
, sis_suspend
, sis_resume
);
1231 static int sis_alloc_suspend(struct sis7019
*sis
)
1235 /* We need 16K to store the internal wave engine state during a
1236 * suspend, but we don't need it to be contiguous, so play nice
1237 * with the memory system. We'll also use this area for a silence
1240 for (i
= 0; i
< SIS_SUSPEND_PAGES
; i
++) {
1241 sis
->suspend_state
[i
] = devm_kmalloc(&sis
->pci
->dev
, 4096,
1243 if (!sis
->suspend_state
[i
])
1246 memset(sis
->suspend_state
[0], 0, 4096);
1251 static int sis_chip_create(struct snd_card
*card
,
1252 struct pci_dev
*pci
)
1254 struct sis7019
*sis
= card
->private_data
;
1255 struct voice
*voice
;
1259 rc
= pcim_enable_device(pci
);
1263 rc
= dma_set_mask(&pci
->dev
, DMA_BIT_MASK(30));
1265 dev_err(&pci
->dev
, "architecture does not support 30-bit PCI busmaster DMA");
1269 mutex_init(&sis
->ac97_mutex
);
1270 spin_lock_init(&sis
->voice_lock
);
1274 sis
->ioport
= pci_resource_start(pci
, 0);
1276 rc
= pci_request_regions(pci
, "SiS7019");
1278 dev_err(&pci
->dev
, "unable request regions\n");
1282 sis
->ioaddr
= devm_ioremap(&pci
->dev
, pci_resource_start(pci
, 1), 0x4000);
1284 dev_err(&pci
->dev
, "unable to remap MMIO, aborting\n");
1288 rc
= sis_alloc_suspend(sis
);
1290 dev_err(&pci
->dev
, "unable to allocate state storage\n");
1294 rc
= sis_chip_init(sis
);
1297 card
->private_free
= sis_chip_free
;
1299 rc
= request_irq(pci
->irq
, sis_interrupt
, IRQF_SHARED
, KBUILD_MODNAME
,
1302 dev_err(&pci
->dev
, "unable to allocate irq %d\n", sis
->irq
);
1306 sis
->irq
= pci
->irq
;
1307 card
->sync_irq
= sis
->irq
;
1308 pci_set_master(pci
);
1310 for (i
= 0; i
< 64; i
++) {
1311 voice
= &sis
->voices
[i
];
1313 voice
->ctrl_base
= SIS_PLAY_DMA_ADDR(sis
->ioaddr
, i
);
1314 voice
->wave_base
= SIS_WAVE_ADDR(sis
->ioaddr
, i
);
1317 voice
= &sis
->capture_voice
;
1318 voice
->flags
= VOICE_CAPTURE
;
1319 voice
->num
= SIS_CAPTURE_CHAN_AC97_PCM_IN
;
1320 voice
->ctrl_base
= SIS_CAPTURE_DMA_ADDR(sis
->ioaddr
, voice
->num
);
1325 static int __snd_sis7019_probe(struct pci_dev
*pci
,
1326 const struct pci_device_id
*pci_id
)
1328 struct snd_card
*card
;
1329 struct sis7019
*sis
;
1335 /* The user can specify which codecs should be present so that we
1336 * can wait for them to show up if they are slow to recover from
1337 * the AC97 cold reset. We default to a single codec, the primary.
1339 * We assume that SIS_PRIMARY_*_PRESENT matches bits 0-2.
1341 codecs
&= SIS_PRIMARY_CODEC_PRESENT
| SIS_SECONDARY_CODEC_PRESENT
|
1342 SIS_TERTIARY_CODEC_PRESENT
;
1344 codecs
= SIS_PRIMARY_CODEC_PRESENT
;
1346 rc
= snd_devm_card_new(&pci
->dev
, index
, id
, THIS_MODULE
,
1347 sizeof(*sis
), &card
);
1351 strcpy(card
->driver
, "SiS7019");
1352 strcpy(card
->shortname
, "SiS7019");
1353 rc
= sis_chip_create(card
, pci
);
1357 sis
= card
->private_data
;
1359 rc
= sis_mixer_create(sis
);
1363 rc
= sis_pcm_create(sis
);
1367 snprintf(card
->longname
, sizeof(card
->longname
),
1368 "%s Audio Accelerator with %s at 0x%lx, irq %d",
1369 card
->shortname
, snd_ac97_get_short_name(sis
->ac97
[0]),
1370 sis
->ioport
, sis
->irq
);
1372 rc
= snd_card_register(card
);
1376 pci_set_drvdata(pci
, card
);
1380 static int snd_sis7019_probe(struct pci_dev
*pci
,
1381 const struct pci_device_id
*pci_id
)
1383 return snd_card_free_on_error(&pci
->dev
, __snd_sis7019_probe(pci
, pci_id
));
1386 static struct pci_driver sis7019_driver
= {
1387 .name
= KBUILD_MODNAME
,
1388 .id_table
= snd_sis7019_ids
,
1389 .probe
= snd_sis7019_probe
,
1395 module_pci_driver(sis7019_driver
);