1 /* SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause) */
2 #ifndef __BPF_HELPERS__
3 #define __BPF_HELPERS__
6 * Note that bpf programs need to include either
7 * vmlinux.h (auto-generated from BTF) or linux/types.h
8 * in advance since bpf_helper_defs.h uses such types
11 #include "bpf_helper_defs.h"
13 #define __uint(name, val) int (*name)[val]
14 #define __type(name, val) typeof(val) *name
15 #define __array(name, val) typeof(val) *name[]
16 #define __ulong(name, val) enum { ___bpf_concat(__unique_value, __COUNTER__) = val } name
19 * Helper macro to place programs, maps, license in
20 * different sections in elf_bpf file. Section names
21 * are interpreted by libbpf depending on the context (BPF programs, BPF maps,
22 * extern variables, etc).
23 * To allow use of SEC() with externs (e.g., for extern .maps declarations),
24 * make sure __attribute__((unused)) doesn't trigger compilation warning.
26 #if __GNUC__ && !__clang__
29 * Pragma macros are broken on GCC
30 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=55578
31 * https://gcc.gnu.org/bugzilla/show_bug.cgi?id=90400
33 #define SEC(name) __attribute__((section(name), used))
38 _Pragma("GCC diagnostic push") \
39 _Pragma("GCC diagnostic ignored \"-Wignored-attributes\"") \
40 __attribute__((section(name), used)) \
41 _Pragma("GCC diagnostic pop") \
45 /* Avoid 'linux/stddef.h' definition of '__always_inline'. */
46 #undef __always_inline
47 #define __always_inline inline __attribute__((always_inline))
50 #define __noinline __attribute__((noinline))
53 #define __weak __attribute__((weak))
57 * Use __hidden attribute to mark a non-static BPF subprogram effectively
58 * static for BPF verifier's verification algorithm purposes, allowing more
59 * extensive and permissive BPF verification process, taking into account
60 * subprogram's caller context.
62 #define __hidden __attribute__((visibility("hidden")))
64 /* When utilizing vmlinux.h with BPF CO-RE, user BPF programs can't include
65 * any system-level headers (such as stddef.h, linux/version.h, etc), and
66 * commonly-used macros like NULL and KERNEL_VERSION aren't available through
67 * vmlinux.h. This just adds unnecessary hurdles and forces users to re-define
68 * them on their own. So as a convenience, provide such definitions here.
71 #define NULL ((void *)0)
74 #ifndef KERNEL_VERSION
75 #define KERNEL_VERSION(a, b, c) (((a) << 16) + ((b) << 8) + ((c) > 255 ? 255 : (c)))
79 * Helper macros to manipulate data structures
82 /* offsetof() definition that uses __builtin_offset() might not preserve field
83 * offset CO-RE relocation properly, so force-redefine offsetof() using
84 * old-school approach which works with CO-RE correctly
87 #define offsetof(type, member) ((unsigned long)&((type *)0)->member)
89 /* redefined container_of() to ensure we use the above offsetof() macro */
91 #define container_of(ptr, type, member) \
93 void *__mptr = (void *)(ptr); \
94 ((type *)(__mptr - offsetof(type, member))); \
98 * Compiler (optimization) barrier.
101 #define barrier() asm volatile("" ::: "memory")
104 /* Variable-specific compiler (optimization) barrier. It's a no-op which makes
105 * compiler believe that there is some black box modification of a given
106 * variable and thus prevents compiler from making extra assumption about its
107 * value and potential simplifications and optimizations on this variable.
109 * E.g., compiler might often delay or even omit 32-bit to 64-bit casting of
110 * a variable, making some code patterns unverifiable. Putting barrier_var()
111 * in place will ensure that cast is performed before the barrier_var()
112 * invocation, because compiler has to pessimistically assume that embedded
113 * asm section might perform some extra operations on that variable.
115 * This is a variable-specific variant of more global barrier().
118 #define barrier_var(var) asm volatile("" : "+r"(var))
122 * Helper macro to throw a compilation error if __bpf_unreachable() gets
123 * built into the resulting code. This works given BPF back end does not
124 * implement __builtin_trap(). This is useful to assert that certain paths
125 * of the program code are never used and hence eliminated by the compiler.
127 * For example, consider a switch statement that covers known cases used by
128 * the program. __bpf_unreachable() can then reside in the default case. If
129 * the program gets extended such that a case is not covered in the switch
130 * statement, then it will throw a build error due to the default case not
131 * being compiled out.
133 #ifndef __bpf_unreachable
134 # define __bpf_unreachable() __builtin_trap()
138 * Helper function to perform a tail call with a constant/immediate map slot.
140 #if (defined(__clang__) && __clang_major__ >= 8) || (!defined(__clang__) && __GNUC__ > 12)
142 static __always_inline
void
143 bpf_tail_call_static(void *ctx
, const void *map
, const __u32 slot
)
145 if (!__builtin_constant_p(slot
))
149 * Provide a hard guarantee that LLVM won't optimize setting r2 (map
150 * pointer) and r3 (constant map index) from _different paths_ ending
151 * up at the _same_ call insn as otherwise we won't be able to use the
152 * jmpq/nopl retpoline-free patching by the x86-64 JIT in the kernel
153 * given they mismatch. See also d2e4c1e6c294 ("bpf: Constant map key
154 * tracking for prog array pokes") for details on verifier tracking.
156 * Note on clobber list: we need to stay in-line with BPF calling
157 * convention, so even if we don't end up using r0, r4, r5, we need
158 * to mark them as clobber so that LLVM doesn't end up using them
159 * before / after the call.
161 asm volatile("r1 = %[ctx]\n\t"
165 :: [ctx
]"r"(ctx
), [map
]"r"(map
), [slot
]"i"(slot
)
166 : "r0", "r1", "r2", "r3", "r4", "r5");
171 enum libbpf_pin_type
{
173 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
177 enum libbpf_tristate
{
183 #define __kconfig __attribute__((section(".kconfig")))
184 #define __ksym __attribute__((section(".ksyms")))
185 #define __kptr_untrusted __attribute__((btf_type_tag("kptr_untrusted")))
186 #define __kptr __attribute__((btf_type_tag("kptr")))
187 #define __percpu_kptr __attribute__((btf_type_tag("percpu_kptr")))
188 #define __uptr __attribute__((btf_type_tag("uptr")))
190 #if defined (__clang__)
191 #define bpf_ksym_exists(sym) ({ \
192 _Static_assert(!__builtin_constant_p(!!sym), \
193 #sym " should be marked as __weak"); \
197 #define bpf_ksym_exists(sym) ({ \
198 _Static_assert(__builtin_has_attribute (*sym, __weak__), \
199 #sym " should be marked as __weak"); \
203 #define bpf_ksym_exists(sym) !!sym
206 #define __arg_ctx __attribute__((btf_decl_tag("arg:ctx")))
207 #define __arg_nonnull __attribute((btf_decl_tag("arg:nonnull")))
208 #define __arg_nullable __attribute((btf_decl_tag("arg:nullable")))
209 #define __arg_trusted __attribute((btf_decl_tag("arg:trusted")))
210 #define __arg_arena __attribute((btf_decl_tag("arg:arena")))
212 #ifndef ___bpf_concat
213 #define ___bpf_concat(a, b) a ## b
216 #define ___bpf_apply(fn, n) ___bpf_concat(fn, n)
219 #define ___bpf_nth(_, _1, _2, _3, _4, _5, _6, _7, _8, _9, _a, _b, _c, N, ...) N
222 #define ___bpf_narg(...) \
223 ___bpf_nth(_, ##__VA_ARGS__, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0)
226 #define ___bpf_fill0(arr, p, x) do {} while (0)
227 #define ___bpf_fill1(arr, p, x) arr[p] = x
228 #define ___bpf_fill2(arr, p, x, args...) arr[p] = x; ___bpf_fill1(arr, p + 1, args)
229 #define ___bpf_fill3(arr, p, x, args...) arr[p] = x; ___bpf_fill2(arr, p + 1, args)
230 #define ___bpf_fill4(arr, p, x, args...) arr[p] = x; ___bpf_fill3(arr, p + 1, args)
231 #define ___bpf_fill5(arr, p, x, args...) arr[p] = x; ___bpf_fill4(arr, p + 1, args)
232 #define ___bpf_fill6(arr, p, x, args...) arr[p] = x; ___bpf_fill5(arr, p + 1, args)
233 #define ___bpf_fill7(arr, p, x, args...) arr[p] = x; ___bpf_fill6(arr, p + 1, args)
234 #define ___bpf_fill8(arr, p, x, args...) arr[p] = x; ___bpf_fill7(arr, p + 1, args)
235 #define ___bpf_fill9(arr, p, x, args...) arr[p] = x; ___bpf_fill8(arr, p + 1, args)
236 #define ___bpf_fill10(arr, p, x, args...) arr[p] = x; ___bpf_fill9(arr, p + 1, args)
237 #define ___bpf_fill11(arr, p, x, args...) arr[p] = x; ___bpf_fill10(arr, p + 1, args)
238 #define ___bpf_fill12(arr, p, x, args...) arr[p] = x; ___bpf_fill11(arr, p + 1, args)
239 #define ___bpf_fill(arr, args...) \
240 ___bpf_apply(___bpf_fill, ___bpf_narg(args))(arr, 0, args)
243 * BPF_SEQ_PRINTF to wrap bpf_seq_printf to-be-printed values
246 #define BPF_SEQ_PRINTF(seq, fmt, args...) \
248 static const char ___fmt[] = fmt; \
249 unsigned long long ___param[___bpf_narg(args)]; \
251 _Pragma("GCC diagnostic push") \
252 _Pragma("GCC diagnostic ignored \"-Wint-conversion\"") \
253 ___bpf_fill(___param, args); \
254 _Pragma("GCC diagnostic pop") \
256 bpf_seq_printf(seq, ___fmt, sizeof(___fmt), \
257 ___param, sizeof(___param)); \
261 * BPF_SNPRINTF wraps the bpf_snprintf helper with variadic arguments instead of
264 #define BPF_SNPRINTF(out, out_size, fmt, args...) \
266 static const char ___fmt[] = fmt; \
267 unsigned long long ___param[___bpf_narg(args)]; \
269 _Pragma("GCC diagnostic push") \
270 _Pragma("GCC diagnostic ignored \"-Wint-conversion\"") \
271 ___bpf_fill(___param, args); \
272 _Pragma("GCC diagnostic pop") \
274 bpf_snprintf(out, out_size, ___fmt, \
275 ___param, sizeof(___param)); \
278 #ifdef BPF_NO_GLOBAL_DATA
279 #define BPF_PRINTK_FMT_MOD
281 #define BPF_PRINTK_FMT_MOD static const
284 #define __bpf_printk(fmt, ...) \
286 BPF_PRINTK_FMT_MOD char ____fmt[] = fmt; \
287 bpf_trace_printk(____fmt, sizeof(____fmt), \
292 * __bpf_vprintk wraps the bpf_trace_vprintk helper with variadic arguments
293 * instead of an array of u64.
295 #define __bpf_vprintk(fmt, args...) \
297 static const char ___fmt[] = fmt; \
298 unsigned long long ___param[___bpf_narg(args)]; \
300 _Pragma("GCC diagnostic push") \
301 _Pragma("GCC diagnostic ignored \"-Wint-conversion\"") \
302 ___bpf_fill(___param, args); \
303 _Pragma("GCC diagnostic pop") \
305 bpf_trace_vprintk(___fmt, sizeof(___fmt), \
306 ___param, sizeof(___param)); \
309 /* Use __bpf_printk when bpf_printk call has 3 or fewer fmt args
310 * Otherwise use __bpf_vprintk
312 #define ___bpf_pick_printk(...) \
313 ___bpf_nth(_, ##__VA_ARGS__, __bpf_vprintk, __bpf_vprintk, __bpf_vprintk, \
314 __bpf_vprintk, __bpf_vprintk, __bpf_vprintk, __bpf_vprintk, \
315 __bpf_vprintk, __bpf_vprintk, __bpf_printk /*3*/, __bpf_printk /*2*/,\
316 __bpf_printk /*1*/, __bpf_printk /*0*/)
318 /* Helper macro to print out debug messages */
319 #define bpf_printk(fmt, args...) ___bpf_pick_printk(args)(fmt, ##args)
323 extern int bpf_iter_num_new(struct bpf_iter_num
*it
, int start
, int end
) __weak __ksym
;
324 extern int *bpf_iter_num_next(struct bpf_iter_num
*it
) __weak __ksym
;
325 extern void bpf_iter_num_destroy(struct bpf_iter_num
*it
) __weak __ksym
;
328 /* bpf_for_each(iter_type, cur_elem, args...) provides generic construct for
329 * using BPF open-coded iterators without having to write mundane explicit
330 * low-level loop logic. Instead, it provides for()-like generic construct
331 * that can be used pretty naturally. E.g., for some hypothetical cgroup
332 * iterator, you'd write:
334 * struct cgroup *cg, *parent_cg = <...>;
336 * bpf_for_each(cgroup, cg, parent_cg, CG_ITER_CHILDREN) {
337 * bpf_printk("Child cgroup id = %d", cg->cgroup_id);
338 * if (cg->cgroup_id == 123)
342 * I.e., it looks almost like high-level for each loop in other languages,
343 * supports continue/break, and is verifiable by BPF verifier.
345 * For iterating integers, the difference between bpf_for_each(num, i, N, M)
346 * and bpf_for(i, N, M) is in that bpf_for() provides additional proof to
347 * verifier that i is in [N, M) range, and in bpf_for_each() case i is `int
348 * *`, not just `int`. So for integers bpf_for() is more convenient.
350 * Note: this macro relies on C99 feature of allowing to declare variables
351 * inside for() loop, bound to for() loop lifetime. It also utilizes GCC
352 * extension: __attribute__((cleanup(<func>))), supported by both GCC and
355 #define bpf_for_each(type, cur, args...) for ( \
356 /* initialize and define destructor */ \
357 struct bpf_iter_##type ___it __attribute__((aligned(8), /* enforce, just in case */, \
358 cleanup(bpf_iter_##type##_destroy))), \
359 /* ___p pointer is just to call bpf_iter_##type##_new() *once* to init ___it */ \
360 *___p __attribute__((unused)) = ( \
361 bpf_iter_##type##_new(&___it, ##args), \
362 /* this is a workaround for Clang bug: it currently doesn't emit BTF */ \
363 /* for bpf_iter_##type##_destroy() when used from cleanup() attribute */ \
364 (void)bpf_iter_##type##_destroy, (void *)0); \
365 /* iteration and termination check */ \
366 (((cur) = bpf_iter_##type##_next(&___it))); \
368 #endif /* bpf_for_each */
371 /* bpf_for(i, start, end) implements a for()-like looping construct that sets
372 * provided integer variable *i* to values starting from *start* through,
373 * but not including, *end*. It also proves to BPF verifier that *i* belongs
374 * to range [start, end), so this can be used for accessing arrays without
377 * Note: *start* and *end* are assumed to be expressions with no side effects
378 * and whose values do not change throughout bpf_for() loop execution. They do
379 * not have to be statically known or constant, though.
381 * Note: similarly to bpf_for_each(), it relies on C99 feature of declaring for()
382 * loop bound variables and cleanup attribute, supported by GCC and Clang.
384 #define bpf_for(i, start, end) for ( \
385 /* initialize and define destructor */ \
386 struct bpf_iter_num ___it __attribute__((aligned(8), /* enforce, just in case */ \
387 cleanup(bpf_iter_num_destroy))), \
388 /* ___p pointer is necessary to call bpf_iter_num_new() *once* to init ___it */ \
389 *___p __attribute__((unused)) = ( \
390 bpf_iter_num_new(&___it, (start), (end)), \
391 /* this is a workaround for Clang bug: it currently doesn't emit BTF */ \
392 /* for bpf_iter_num_destroy() when used from cleanup() attribute */ \
393 (void)bpf_iter_num_destroy, (void *)0); \
395 /* iteration step */ \
396 int *___t = bpf_iter_num_next(&___it); \
397 /* termination and bounds check */ \
398 (___t && ((i) = *___t, (i) >= (start) && (i) < (end))); \
404 /* bpf_repeat(N) performs N iterations without exposing iteration number
406 * Note: similarly to bpf_for_each(), it relies on C99 feature of declaring for()
407 * loop bound variables and cleanup attribute, supported by GCC and Clang.
409 #define bpf_repeat(N) for ( \
410 /* initialize and define destructor */ \
411 struct bpf_iter_num ___it __attribute__((aligned(8), /* enforce, just in case */ \
412 cleanup(bpf_iter_num_destroy))), \
413 /* ___p pointer is necessary to call bpf_iter_num_new() *once* to init ___it */ \
414 *___p __attribute__((unused)) = ( \
415 bpf_iter_num_new(&___it, 0, (N)), \
416 /* this is a workaround for Clang bug: it currently doesn't emit BTF */ \
417 /* for bpf_iter_num_destroy() when used from cleanup() attribute */ \
418 (void)bpf_iter_num_destroy, (void *)0); \
419 bpf_iter_num_next(&___it); \
422 #endif /* bpf_repeat */