drm/ast: Only warn about unsupported TX chips on Gen4 and later
[drm/drm-misc.git] / virt / kvm / kvm_main.c
blobde2c11dae23163c057c625e8eb3f593978f0548f
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine (KVM) Hypervisor
5 * Copyright (C) 2006 Qumranet, Inc.
6 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 * Authors:
9 * Avi Kivity <avi@qumranet.com>
10 * Yaniv Kamay <yaniv@qumranet.com>
13 #include <kvm/iodev.h>
15 #include <linux/kvm_host.h>
16 #include <linux/kvm.h>
17 #include <linux/module.h>
18 #include <linux/errno.h>
19 #include <linux/percpu.h>
20 #include <linux/mm.h>
21 #include <linux/miscdevice.h>
22 #include <linux/vmalloc.h>
23 #include <linux/reboot.h>
24 #include <linux/debugfs.h>
25 #include <linux/highmem.h>
26 #include <linux/file.h>
27 #include <linux/syscore_ops.h>
28 #include <linux/cpu.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/stat.h>
32 #include <linux/cpumask.h>
33 #include <linux/smp.h>
34 #include <linux/anon_inodes.h>
35 #include <linux/profile.h>
36 #include <linux/kvm_para.h>
37 #include <linux/pagemap.h>
38 #include <linux/mman.h>
39 #include <linux/swap.h>
40 #include <linux/bitops.h>
41 #include <linux/spinlock.h>
42 #include <linux/compat.h>
43 #include <linux/srcu.h>
44 #include <linux/hugetlb.h>
45 #include <linux/slab.h>
46 #include <linux/sort.h>
47 #include <linux/bsearch.h>
48 #include <linux/io.h>
49 #include <linux/lockdep.h>
50 #include <linux/kthread.h>
51 #include <linux/suspend.h>
53 #include <asm/processor.h>
54 #include <asm/ioctl.h>
55 #include <linux/uaccess.h>
57 #include "coalesced_mmio.h"
58 #include "async_pf.h"
59 #include "kvm_mm.h"
60 #include "vfio.h"
62 #include <trace/events/ipi.h>
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/kvm.h>
67 #include <linux/kvm_dirty_ring.h>
70 /* Worst case buffer size needed for holding an integer. */
71 #define ITOA_MAX_LEN 12
73 MODULE_AUTHOR("Qumranet");
74 MODULE_DESCRIPTION("Kernel-based Virtual Machine (KVM) Hypervisor");
75 MODULE_LICENSE("GPL");
77 /* Architectures should define their poll value according to the halt latency */
78 unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
79 module_param(halt_poll_ns, uint, 0644);
80 EXPORT_SYMBOL_GPL(halt_poll_ns);
82 /* Default doubles per-vcpu halt_poll_ns. */
83 unsigned int halt_poll_ns_grow = 2;
84 module_param(halt_poll_ns_grow, uint, 0644);
85 EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
87 /* The start value to grow halt_poll_ns from */
88 unsigned int halt_poll_ns_grow_start = 10000; /* 10us */
89 module_param(halt_poll_ns_grow_start, uint, 0644);
90 EXPORT_SYMBOL_GPL(halt_poll_ns_grow_start);
92 /* Default halves per-vcpu halt_poll_ns. */
93 unsigned int halt_poll_ns_shrink = 2;
94 module_param(halt_poll_ns_shrink, uint, 0644);
95 EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
98 * Allow direct access (from KVM or the CPU) without MMU notifier protection
99 * to unpinned pages.
101 static bool allow_unsafe_mappings;
102 module_param(allow_unsafe_mappings, bool, 0444);
105 * Ordering of locks:
107 * kvm->lock --> kvm->slots_lock --> kvm->irq_lock
110 DEFINE_MUTEX(kvm_lock);
111 LIST_HEAD(vm_list);
113 static struct kmem_cache *kvm_vcpu_cache;
115 static __read_mostly struct preempt_ops kvm_preempt_ops;
116 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_running_vcpu);
118 static struct dentry *kvm_debugfs_dir;
120 static const struct file_operations stat_fops_per_vm;
122 static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
123 unsigned long arg);
124 #ifdef CONFIG_KVM_COMPAT
125 static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
126 unsigned long arg);
127 #define KVM_COMPAT(c) .compat_ioctl = (c)
128 #else
130 * For architectures that don't implement a compat infrastructure,
131 * adopt a double line of defense:
132 * - Prevent a compat task from opening /dev/kvm
133 * - If the open has been done by a 64bit task, and the KVM fd
134 * passed to a compat task, let the ioctls fail.
136 static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
137 unsigned long arg) { return -EINVAL; }
139 static int kvm_no_compat_open(struct inode *inode, struct file *file)
141 return is_compat_task() ? -ENODEV : 0;
143 #define KVM_COMPAT(c) .compat_ioctl = kvm_no_compat_ioctl, \
144 .open = kvm_no_compat_open
145 #endif
146 static int kvm_enable_virtualization(void);
147 static void kvm_disable_virtualization(void);
149 static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
151 #define KVM_EVENT_CREATE_VM 0
152 #define KVM_EVENT_DESTROY_VM 1
153 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
154 static unsigned long long kvm_createvm_count;
155 static unsigned long long kvm_active_vms;
157 static DEFINE_PER_CPU(cpumask_var_t, cpu_kick_mask);
159 __weak void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
164 * Switches to specified vcpu, until a matching vcpu_put()
166 void vcpu_load(struct kvm_vcpu *vcpu)
168 int cpu = get_cpu();
170 __this_cpu_write(kvm_running_vcpu, vcpu);
171 preempt_notifier_register(&vcpu->preempt_notifier);
172 kvm_arch_vcpu_load(vcpu, cpu);
173 put_cpu();
175 EXPORT_SYMBOL_GPL(vcpu_load);
177 void vcpu_put(struct kvm_vcpu *vcpu)
179 preempt_disable();
180 kvm_arch_vcpu_put(vcpu);
181 preempt_notifier_unregister(&vcpu->preempt_notifier);
182 __this_cpu_write(kvm_running_vcpu, NULL);
183 preempt_enable();
185 EXPORT_SYMBOL_GPL(vcpu_put);
187 /* TODO: merge with kvm_arch_vcpu_should_kick */
188 static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
190 int mode = kvm_vcpu_exiting_guest_mode(vcpu);
193 * We need to wait for the VCPU to reenable interrupts and get out of
194 * READING_SHADOW_PAGE_TABLES mode.
196 if (req & KVM_REQUEST_WAIT)
197 return mode != OUTSIDE_GUEST_MODE;
200 * Need to kick a running VCPU, but otherwise there is nothing to do.
202 return mode == IN_GUEST_MODE;
205 static void ack_kick(void *_completed)
209 static inline bool kvm_kick_many_cpus(struct cpumask *cpus, bool wait)
211 if (cpumask_empty(cpus))
212 return false;
214 smp_call_function_many(cpus, ack_kick, NULL, wait);
215 return true;
218 static void kvm_make_vcpu_request(struct kvm_vcpu *vcpu, unsigned int req,
219 struct cpumask *tmp, int current_cpu)
221 int cpu;
223 if (likely(!(req & KVM_REQUEST_NO_ACTION)))
224 __kvm_make_request(req, vcpu);
226 if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
227 return;
230 * Note, the vCPU could get migrated to a different pCPU at any point
231 * after kvm_request_needs_ipi(), which could result in sending an IPI
232 * to the previous pCPU. But, that's OK because the purpose of the IPI
233 * is to ensure the vCPU returns to OUTSIDE_GUEST_MODE, which is
234 * satisfied if the vCPU migrates. Entering READING_SHADOW_PAGE_TABLES
235 * after this point is also OK, as the requirement is only that KVM wait
236 * for vCPUs that were reading SPTEs _before_ any changes were
237 * finalized. See kvm_vcpu_kick() for more details on handling requests.
239 if (kvm_request_needs_ipi(vcpu, req)) {
240 cpu = READ_ONCE(vcpu->cpu);
241 if (cpu != -1 && cpu != current_cpu)
242 __cpumask_set_cpu(cpu, tmp);
246 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
247 unsigned long *vcpu_bitmap)
249 struct kvm_vcpu *vcpu;
250 struct cpumask *cpus;
251 int i, me;
252 bool called;
254 me = get_cpu();
256 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
257 cpumask_clear(cpus);
259 for_each_set_bit(i, vcpu_bitmap, KVM_MAX_VCPUS) {
260 vcpu = kvm_get_vcpu(kvm, i);
261 if (!vcpu)
262 continue;
263 kvm_make_vcpu_request(vcpu, req, cpus, me);
266 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
267 put_cpu();
269 return called;
272 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
274 struct kvm_vcpu *vcpu;
275 struct cpumask *cpus;
276 unsigned long i;
277 bool called;
278 int me;
280 me = get_cpu();
282 cpus = this_cpu_cpumask_var_ptr(cpu_kick_mask);
283 cpumask_clear(cpus);
285 kvm_for_each_vcpu(i, vcpu, kvm)
286 kvm_make_vcpu_request(vcpu, req, cpus, me);
288 called = kvm_kick_many_cpus(cpus, !!(req & KVM_REQUEST_WAIT));
289 put_cpu();
291 return called;
293 EXPORT_SYMBOL_GPL(kvm_make_all_cpus_request);
295 void kvm_flush_remote_tlbs(struct kvm *kvm)
297 ++kvm->stat.generic.remote_tlb_flush_requests;
300 * We want to publish modifications to the page tables before reading
301 * mode. Pairs with a memory barrier in arch-specific code.
302 * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
303 * and smp_mb in walk_shadow_page_lockless_begin/end.
304 * - powerpc: smp_mb in kvmppc_prepare_to_enter.
306 * There is already an smp_mb__after_atomic() before
307 * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
308 * barrier here.
310 if (!kvm_arch_flush_remote_tlbs(kvm)
311 || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
312 ++kvm->stat.generic.remote_tlb_flush;
314 EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
316 void kvm_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn, u64 nr_pages)
318 if (!kvm_arch_flush_remote_tlbs_range(kvm, gfn, nr_pages))
319 return;
322 * Fall back to a flushing entire TLBs if the architecture range-based
323 * TLB invalidation is unsupported or can't be performed for whatever
324 * reason.
326 kvm_flush_remote_tlbs(kvm);
329 void kvm_flush_remote_tlbs_memslot(struct kvm *kvm,
330 const struct kvm_memory_slot *memslot)
333 * All current use cases for flushing the TLBs for a specific memslot
334 * are related to dirty logging, and many do the TLB flush out of
335 * mmu_lock. The interaction between the various operations on memslot
336 * must be serialized by slots_locks to ensure the TLB flush from one
337 * operation is observed by any other operation on the same memslot.
339 lockdep_assert_held(&kvm->slots_lock);
340 kvm_flush_remote_tlbs_range(kvm, memslot->base_gfn, memslot->npages);
343 static void kvm_flush_shadow_all(struct kvm *kvm)
345 kvm_arch_flush_shadow_all(kvm);
346 kvm_arch_guest_memory_reclaimed(kvm);
349 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
350 static inline void *mmu_memory_cache_alloc_obj(struct kvm_mmu_memory_cache *mc,
351 gfp_t gfp_flags)
353 void *page;
355 gfp_flags |= mc->gfp_zero;
357 if (mc->kmem_cache)
358 return kmem_cache_alloc(mc->kmem_cache, gfp_flags);
360 page = (void *)__get_free_page(gfp_flags);
361 if (page && mc->init_value)
362 memset64(page, mc->init_value, PAGE_SIZE / sizeof(u64));
363 return page;
366 int __kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int capacity, int min)
368 gfp_t gfp = mc->gfp_custom ? mc->gfp_custom : GFP_KERNEL_ACCOUNT;
369 void *obj;
371 if (mc->nobjs >= min)
372 return 0;
374 if (unlikely(!mc->objects)) {
375 if (WARN_ON_ONCE(!capacity))
376 return -EIO;
379 * Custom init values can be used only for page allocations,
380 * and obviously conflict with __GFP_ZERO.
382 if (WARN_ON_ONCE(mc->init_value && (mc->kmem_cache || mc->gfp_zero)))
383 return -EIO;
385 mc->objects = kvmalloc_array(capacity, sizeof(void *), gfp);
386 if (!mc->objects)
387 return -ENOMEM;
389 mc->capacity = capacity;
392 /* It is illegal to request a different capacity across topups. */
393 if (WARN_ON_ONCE(mc->capacity != capacity))
394 return -EIO;
396 while (mc->nobjs < mc->capacity) {
397 obj = mmu_memory_cache_alloc_obj(mc, gfp);
398 if (!obj)
399 return mc->nobjs >= min ? 0 : -ENOMEM;
400 mc->objects[mc->nobjs++] = obj;
402 return 0;
405 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min)
407 return __kvm_mmu_topup_memory_cache(mc, KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE, min);
410 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc)
412 return mc->nobjs;
415 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
417 while (mc->nobjs) {
418 if (mc->kmem_cache)
419 kmem_cache_free(mc->kmem_cache, mc->objects[--mc->nobjs]);
420 else
421 free_page((unsigned long)mc->objects[--mc->nobjs]);
424 kvfree(mc->objects);
426 mc->objects = NULL;
427 mc->capacity = 0;
430 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
432 void *p;
434 if (WARN_ON(!mc->nobjs))
435 p = mmu_memory_cache_alloc_obj(mc, GFP_ATOMIC | __GFP_ACCOUNT);
436 else
437 p = mc->objects[--mc->nobjs];
438 BUG_ON(!p);
439 return p;
441 #endif
443 static void kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
445 mutex_init(&vcpu->mutex);
446 vcpu->cpu = -1;
447 vcpu->kvm = kvm;
448 vcpu->vcpu_id = id;
449 vcpu->pid = NULL;
450 rwlock_init(&vcpu->pid_lock);
451 #ifndef __KVM_HAVE_ARCH_WQP
452 rcuwait_init(&vcpu->wait);
453 #endif
454 kvm_async_pf_vcpu_init(vcpu);
456 kvm_vcpu_set_in_spin_loop(vcpu, false);
457 kvm_vcpu_set_dy_eligible(vcpu, false);
458 vcpu->preempted = false;
459 vcpu->ready = false;
460 preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
461 vcpu->last_used_slot = NULL;
463 /* Fill the stats id string for the vcpu */
464 snprintf(vcpu->stats_id, sizeof(vcpu->stats_id), "kvm-%d/vcpu-%d",
465 task_pid_nr(current), id);
468 static void kvm_vcpu_destroy(struct kvm_vcpu *vcpu)
470 kvm_arch_vcpu_destroy(vcpu);
471 kvm_dirty_ring_free(&vcpu->dirty_ring);
474 * No need for rcu_read_lock as VCPU_RUN is the only place that changes
475 * the vcpu->pid pointer, and at destruction time all file descriptors
476 * are already gone.
478 put_pid(vcpu->pid);
480 free_page((unsigned long)vcpu->run);
481 kmem_cache_free(kvm_vcpu_cache, vcpu);
484 void kvm_destroy_vcpus(struct kvm *kvm)
486 unsigned long i;
487 struct kvm_vcpu *vcpu;
489 kvm_for_each_vcpu(i, vcpu, kvm) {
490 kvm_vcpu_destroy(vcpu);
491 xa_erase(&kvm->vcpu_array, i);
494 atomic_set(&kvm->online_vcpus, 0);
496 EXPORT_SYMBOL_GPL(kvm_destroy_vcpus);
498 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
499 static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
501 return container_of(mn, struct kvm, mmu_notifier);
504 typedef bool (*gfn_handler_t)(struct kvm *kvm, struct kvm_gfn_range *range);
506 typedef void (*on_lock_fn_t)(struct kvm *kvm);
508 struct kvm_mmu_notifier_range {
510 * 64-bit addresses, as KVM notifiers can operate on host virtual
511 * addresses (unsigned long) and guest physical addresses (64-bit).
513 u64 start;
514 u64 end;
515 union kvm_mmu_notifier_arg arg;
516 gfn_handler_t handler;
517 on_lock_fn_t on_lock;
518 bool flush_on_ret;
519 bool may_block;
523 * The inner-most helper returns a tuple containing the return value from the
524 * arch- and action-specific handler, plus a flag indicating whether or not at
525 * least one memslot was found, i.e. if the handler found guest memory.
527 * Note, most notifiers are averse to booleans, so even though KVM tracks the
528 * return from arch code as a bool, outer helpers will cast it to an int. :-(
530 typedef struct kvm_mmu_notifier_return {
531 bool ret;
532 bool found_memslot;
533 } kvm_mn_ret_t;
536 * Use a dedicated stub instead of NULL to indicate that there is no callback
537 * function/handler. The compiler technically can't guarantee that a real
538 * function will have a non-zero address, and so it will generate code to
539 * check for !NULL, whereas comparing against a stub will be elided at compile
540 * time (unless the compiler is getting long in the tooth, e.g. gcc 4.9).
542 static void kvm_null_fn(void)
546 #define IS_KVM_NULL_FN(fn) ((fn) == (void *)kvm_null_fn)
548 /* Iterate over each memslot intersecting [start, last] (inclusive) range */
549 #define kvm_for_each_memslot_in_hva_range(node, slots, start, last) \
550 for (node = interval_tree_iter_first(&slots->hva_tree, start, last); \
551 node; \
552 node = interval_tree_iter_next(node, start, last)) \
554 static __always_inline kvm_mn_ret_t __kvm_handle_hva_range(struct kvm *kvm,
555 const struct kvm_mmu_notifier_range *range)
557 struct kvm_mmu_notifier_return r = {
558 .ret = false,
559 .found_memslot = false,
561 struct kvm_gfn_range gfn_range;
562 struct kvm_memory_slot *slot;
563 struct kvm_memslots *slots;
564 int i, idx;
566 if (WARN_ON_ONCE(range->end <= range->start))
567 return r;
569 /* A null handler is allowed if and only if on_lock() is provided. */
570 if (WARN_ON_ONCE(IS_KVM_NULL_FN(range->on_lock) &&
571 IS_KVM_NULL_FN(range->handler)))
572 return r;
574 idx = srcu_read_lock(&kvm->srcu);
576 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
577 struct interval_tree_node *node;
579 slots = __kvm_memslots(kvm, i);
580 kvm_for_each_memslot_in_hva_range(node, slots,
581 range->start, range->end - 1) {
582 unsigned long hva_start, hva_end;
584 slot = container_of(node, struct kvm_memory_slot, hva_node[slots->node_idx]);
585 hva_start = max_t(unsigned long, range->start, slot->userspace_addr);
586 hva_end = min_t(unsigned long, range->end,
587 slot->userspace_addr + (slot->npages << PAGE_SHIFT));
590 * To optimize for the likely case where the address
591 * range is covered by zero or one memslots, don't
592 * bother making these conditional (to avoid writes on
593 * the second or later invocation of the handler).
595 gfn_range.arg = range->arg;
596 gfn_range.may_block = range->may_block;
599 * {gfn(page) | page intersects with [hva_start, hva_end)} =
600 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
602 gfn_range.start = hva_to_gfn_memslot(hva_start, slot);
603 gfn_range.end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, slot);
604 gfn_range.slot = slot;
606 if (!r.found_memslot) {
607 r.found_memslot = true;
608 KVM_MMU_LOCK(kvm);
609 if (!IS_KVM_NULL_FN(range->on_lock))
610 range->on_lock(kvm);
612 if (IS_KVM_NULL_FN(range->handler))
613 goto mmu_unlock;
615 r.ret |= range->handler(kvm, &gfn_range);
619 if (range->flush_on_ret && r.ret)
620 kvm_flush_remote_tlbs(kvm);
622 mmu_unlock:
623 if (r.found_memslot)
624 KVM_MMU_UNLOCK(kvm);
626 srcu_read_unlock(&kvm->srcu, idx);
628 return r;
631 static __always_inline int kvm_handle_hva_range(struct mmu_notifier *mn,
632 unsigned long start,
633 unsigned long end,
634 gfn_handler_t handler,
635 bool flush_on_ret)
637 struct kvm *kvm = mmu_notifier_to_kvm(mn);
638 const struct kvm_mmu_notifier_range range = {
639 .start = start,
640 .end = end,
641 .handler = handler,
642 .on_lock = (void *)kvm_null_fn,
643 .flush_on_ret = flush_on_ret,
644 .may_block = false,
647 return __kvm_handle_hva_range(kvm, &range).ret;
650 static __always_inline int kvm_handle_hva_range_no_flush(struct mmu_notifier *mn,
651 unsigned long start,
652 unsigned long end,
653 gfn_handler_t handler)
655 return kvm_handle_hva_range(mn, start, end, handler, false);
658 void kvm_mmu_invalidate_begin(struct kvm *kvm)
660 lockdep_assert_held_write(&kvm->mmu_lock);
662 * The count increase must become visible at unlock time as no
663 * spte can be established without taking the mmu_lock and
664 * count is also read inside the mmu_lock critical section.
666 kvm->mmu_invalidate_in_progress++;
668 if (likely(kvm->mmu_invalidate_in_progress == 1)) {
669 kvm->mmu_invalidate_range_start = INVALID_GPA;
670 kvm->mmu_invalidate_range_end = INVALID_GPA;
674 void kvm_mmu_invalidate_range_add(struct kvm *kvm, gfn_t start, gfn_t end)
676 lockdep_assert_held_write(&kvm->mmu_lock);
678 WARN_ON_ONCE(!kvm->mmu_invalidate_in_progress);
680 if (likely(kvm->mmu_invalidate_range_start == INVALID_GPA)) {
681 kvm->mmu_invalidate_range_start = start;
682 kvm->mmu_invalidate_range_end = end;
683 } else {
685 * Fully tracking multiple concurrent ranges has diminishing
686 * returns. Keep things simple and just find the minimal range
687 * which includes the current and new ranges. As there won't be
688 * enough information to subtract a range after its invalidate
689 * completes, any ranges invalidated concurrently will
690 * accumulate and persist until all outstanding invalidates
691 * complete.
693 kvm->mmu_invalidate_range_start =
694 min(kvm->mmu_invalidate_range_start, start);
695 kvm->mmu_invalidate_range_end =
696 max(kvm->mmu_invalidate_range_end, end);
700 bool kvm_mmu_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range)
702 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
703 return kvm_unmap_gfn_range(kvm, range);
706 static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
707 const struct mmu_notifier_range *range)
709 struct kvm *kvm = mmu_notifier_to_kvm(mn);
710 const struct kvm_mmu_notifier_range hva_range = {
711 .start = range->start,
712 .end = range->end,
713 .handler = kvm_mmu_unmap_gfn_range,
714 .on_lock = kvm_mmu_invalidate_begin,
715 .flush_on_ret = true,
716 .may_block = mmu_notifier_range_blockable(range),
719 trace_kvm_unmap_hva_range(range->start, range->end);
722 * Prevent memslot modification between range_start() and range_end()
723 * so that conditionally locking provides the same result in both
724 * functions. Without that guarantee, the mmu_invalidate_in_progress
725 * adjustments will be imbalanced.
727 * Pairs with the decrement in range_end().
729 spin_lock(&kvm->mn_invalidate_lock);
730 kvm->mn_active_invalidate_count++;
731 spin_unlock(&kvm->mn_invalidate_lock);
734 * Invalidate pfn caches _before_ invalidating the secondary MMUs, i.e.
735 * before acquiring mmu_lock, to avoid holding mmu_lock while acquiring
736 * each cache's lock. There are relatively few caches in existence at
737 * any given time, and the caches themselves can check for hva overlap,
738 * i.e. don't need to rely on memslot overlap checks for performance.
739 * Because this runs without holding mmu_lock, the pfn caches must use
740 * mn_active_invalidate_count (see above) instead of
741 * mmu_invalidate_in_progress.
743 gfn_to_pfn_cache_invalidate_start(kvm, range->start, range->end);
746 * If one or more memslots were found and thus zapped, notify arch code
747 * that guest memory has been reclaimed. This needs to be done *after*
748 * dropping mmu_lock, as x86's reclaim path is slooooow.
750 if (__kvm_handle_hva_range(kvm, &hva_range).found_memslot)
751 kvm_arch_guest_memory_reclaimed(kvm);
753 return 0;
756 void kvm_mmu_invalidate_end(struct kvm *kvm)
758 lockdep_assert_held_write(&kvm->mmu_lock);
761 * This sequence increase will notify the kvm page fault that
762 * the page that is going to be mapped in the spte could have
763 * been freed.
765 kvm->mmu_invalidate_seq++;
766 smp_wmb();
768 * The above sequence increase must be visible before the
769 * below count decrease, which is ensured by the smp_wmb above
770 * in conjunction with the smp_rmb in mmu_invalidate_retry().
772 kvm->mmu_invalidate_in_progress--;
773 KVM_BUG_ON(kvm->mmu_invalidate_in_progress < 0, kvm);
776 * Assert that at least one range was added between start() and end().
777 * Not adding a range isn't fatal, but it is a KVM bug.
779 WARN_ON_ONCE(kvm->mmu_invalidate_range_start == INVALID_GPA);
782 static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
783 const struct mmu_notifier_range *range)
785 struct kvm *kvm = mmu_notifier_to_kvm(mn);
786 const struct kvm_mmu_notifier_range hva_range = {
787 .start = range->start,
788 .end = range->end,
789 .handler = (void *)kvm_null_fn,
790 .on_lock = kvm_mmu_invalidate_end,
791 .flush_on_ret = false,
792 .may_block = mmu_notifier_range_blockable(range),
794 bool wake;
796 __kvm_handle_hva_range(kvm, &hva_range);
798 /* Pairs with the increment in range_start(). */
799 spin_lock(&kvm->mn_invalidate_lock);
800 if (!WARN_ON_ONCE(!kvm->mn_active_invalidate_count))
801 --kvm->mn_active_invalidate_count;
802 wake = !kvm->mn_active_invalidate_count;
803 spin_unlock(&kvm->mn_invalidate_lock);
806 * There can only be one waiter, since the wait happens under
807 * slots_lock.
809 if (wake)
810 rcuwait_wake_up(&kvm->mn_memslots_update_rcuwait);
813 static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
814 struct mm_struct *mm,
815 unsigned long start,
816 unsigned long end)
818 trace_kvm_age_hva(start, end);
820 return kvm_handle_hva_range(mn, start, end, kvm_age_gfn,
821 !IS_ENABLED(CONFIG_KVM_ELIDE_TLB_FLUSH_IF_YOUNG));
824 static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
825 struct mm_struct *mm,
826 unsigned long start,
827 unsigned long end)
829 trace_kvm_age_hva(start, end);
832 * Even though we do not flush TLB, this will still adversely
833 * affect performance on pre-Haswell Intel EPT, where there is
834 * no EPT Access Bit to clear so that we have to tear down EPT
835 * tables instead. If we find this unacceptable, we can always
836 * add a parameter to kvm_age_hva so that it effectively doesn't
837 * do anything on clear_young.
839 * Also note that currently we never issue secondary TLB flushes
840 * from clear_young, leaving this job up to the regular system
841 * cadence. If we find this inaccurate, we might come up with a
842 * more sophisticated heuristic later.
844 return kvm_handle_hva_range_no_flush(mn, start, end, kvm_age_gfn);
847 static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
848 struct mm_struct *mm,
849 unsigned long address)
851 trace_kvm_test_age_hva(address);
853 return kvm_handle_hva_range_no_flush(mn, address, address + 1,
854 kvm_test_age_gfn);
857 static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
858 struct mm_struct *mm)
860 struct kvm *kvm = mmu_notifier_to_kvm(mn);
861 int idx;
863 idx = srcu_read_lock(&kvm->srcu);
864 kvm_flush_shadow_all(kvm);
865 srcu_read_unlock(&kvm->srcu, idx);
868 static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
869 .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
870 .invalidate_range_end = kvm_mmu_notifier_invalidate_range_end,
871 .clear_flush_young = kvm_mmu_notifier_clear_flush_young,
872 .clear_young = kvm_mmu_notifier_clear_young,
873 .test_young = kvm_mmu_notifier_test_young,
874 .release = kvm_mmu_notifier_release,
877 static int kvm_init_mmu_notifier(struct kvm *kvm)
879 kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
880 return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
883 #else /* !CONFIG_KVM_GENERIC_MMU_NOTIFIER */
885 static int kvm_init_mmu_notifier(struct kvm *kvm)
887 return 0;
890 #endif /* CONFIG_KVM_GENERIC_MMU_NOTIFIER */
892 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
893 static int kvm_pm_notifier_call(struct notifier_block *bl,
894 unsigned long state,
895 void *unused)
897 struct kvm *kvm = container_of(bl, struct kvm, pm_notifier);
899 return kvm_arch_pm_notifier(kvm, state);
902 static void kvm_init_pm_notifier(struct kvm *kvm)
904 kvm->pm_notifier.notifier_call = kvm_pm_notifier_call;
905 /* Suspend KVM before we suspend ftrace, RCU, etc. */
906 kvm->pm_notifier.priority = INT_MAX;
907 register_pm_notifier(&kvm->pm_notifier);
910 static void kvm_destroy_pm_notifier(struct kvm *kvm)
912 unregister_pm_notifier(&kvm->pm_notifier);
914 #else /* !CONFIG_HAVE_KVM_PM_NOTIFIER */
915 static void kvm_init_pm_notifier(struct kvm *kvm)
919 static void kvm_destroy_pm_notifier(struct kvm *kvm)
922 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
924 static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
926 if (!memslot->dirty_bitmap)
927 return;
929 vfree(memslot->dirty_bitmap);
930 memslot->dirty_bitmap = NULL;
933 /* This does not remove the slot from struct kvm_memslots data structures */
934 static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
936 if (slot->flags & KVM_MEM_GUEST_MEMFD)
937 kvm_gmem_unbind(slot);
939 kvm_destroy_dirty_bitmap(slot);
941 kvm_arch_free_memslot(kvm, slot);
943 kfree(slot);
946 static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
948 struct hlist_node *idnode;
949 struct kvm_memory_slot *memslot;
950 int bkt;
953 * The same memslot objects live in both active and inactive sets,
954 * arbitrarily free using index '1' so the second invocation of this
955 * function isn't operating over a structure with dangling pointers
956 * (even though this function isn't actually touching them).
958 if (!slots->node_idx)
959 return;
961 hash_for_each_safe(slots->id_hash, bkt, idnode, memslot, id_node[1])
962 kvm_free_memslot(kvm, memslot);
965 static umode_t kvm_stats_debugfs_mode(const struct _kvm_stats_desc *pdesc)
967 switch (pdesc->desc.flags & KVM_STATS_TYPE_MASK) {
968 case KVM_STATS_TYPE_INSTANT:
969 return 0444;
970 case KVM_STATS_TYPE_CUMULATIVE:
971 case KVM_STATS_TYPE_PEAK:
972 default:
973 return 0644;
978 static void kvm_destroy_vm_debugfs(struct kvm *kvm)
980 int i;
981 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
982 kvm_vcpu_stats_header.num_desc;
984 if (IS_ERR(kvm->debugfs_dentry))
985 return;
987 debugfs_remove_recursive(kvm->debugfs_dentry);
989 if (kvm->debugfs_stat_data) {
990 for (i = 0; i < kvm_debugfs_num_entries; i++)
991 kfree(kvm->debugfs_stat_data[i]);
992 kfree(kvm->debugfs_stat_data);
996 static int kvm_create_vm_debugfs(struct kvm *kvm, const char *fdname)
998 static DEFINE_MUTEX(kvm_debugfs_lock);
999 struct dentry *dent;
1000 char dir_name[ITOA_MAX_LEN * 2];
1001 struct kvm_stat_data *stat_data;
1002 const struct _kvm_stats_desc *pdesc;
1003 int i, ret = -ENOMEM;
1004 int kvm_debugfs_num_entries = kvm_vm_stats_header.num_desc +
1005 kvm_vcpu_stats_header.num_desc;
1007 if (!debugfs_initialized())
1008 return 0;
1010 snprintf(dir_name, sizeof(dir_name), "%d-%s", task_pid_nr(current), fdname);
1011 mutex_lock(&kvm_debugfs_lock);
1012 dent = debugfs_lookup(dir_name, kvm_debugfs_dir);
1013 if (dent) {
1014 pr_warn_ratelimited("KVM: debugfs: duplicate directory %s\n", dir_name);
1015 dput(dent);
1016 mutex_unlock(&kvm_debugfs_lock);
1017 return 0;
1019 dent = debugfs_create_dir(dir_name, kvm_debugfs_dir);
1020 mutex_unlock(&kvm_debugfs_lock);
1021 if (IS_ERR(dent))
1022 return 0;
1024 kvm->debugfs_dentry = dent;
1025 kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
1026 sizeof(*kvm->debugfs_stat_data),
1027 GFP_KERNEL_ACCOUNT);
1028 if (!kvm->debugfs_stat_data)
1029 goto out_err;
1031 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
1032 pdesc = &kvm_vm_stats_desc[i];
1033 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1034 if (!stat_data)
1035 goto out_err;
1037 stat_data->kvm = kvm;
1038 stat_data->desc = pdesc;
1039 stat_data->kind = KVM_STAT_VM;
1040 kvm->debugfs_stat_data[i] = stat_data;
1041 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1042 kvm->debugfs_dentry, stat_data,
1043 &stat_fops_per_vm);
1046 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
1047 pdesc = &kvm_vcpu_stats_desc[i];
1048 stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL_ACCOUNT);
1049 if (!stat_data)
1050 goto out_err;
1052 stat_data->kvm = kvm;
1053 stat_data->desc = pdesc;
1054 stat_data->kind = KVM_STAT_VCPU;
1055 kvm->debugfs_stat_data[i + kvm_vm_stats_header.num_desc] = stat_data;
1056 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
1057 kvm->debugfs_dentry, stat_data,
1058 &stat_fops_per_vm);
1061 kvm_arch_create_vm_debugfs(kvm);
1062 return 0;
1063 out_err:
1064 kvm_destroy_vm_debugfs(kvm);
1065 return ret;
1069 * Called after the VM is otherwise initialized, but just before adding it to
1070 * the vm_list.
1072 int __weak kvm_arch_post_init_vm(struct kvm *kvm)
1074 return 0;
1078 * Called just after removing the VM from the vm_list, but before doing any
1079 * other destruction.
1081 void __weak kvm_arch_pre_destroy_vm(struct kvm *kvm)
1086 * Called after per-vm debugfs created. When called kvm->debugfs_dentry should
1087 * be setup already, so we can create arch-specific debugfs entries under it.
1088 * Cleanup should be automatic done in kvm_destroy_vm_debugfs() recursively, so
1089 * a per-arch destroy interface is not needed.
1091 void __weak kvm_arch_create_vm_debugfs(struct kvm *kvm)
1095 static struct kvm *kvm_create_vm(unsigned long type, const char *fdname)
1097 struct kvm *kvm = kvm_arch_alloc_vm();
1098 struct kvm_memslots *slots;
1099 int r, i, j;
1101 if (!kvm)
1102 return ERR_PTR(-ENOMEM);
1104 KVM_MMU_LOCK_INIT(kvm);
1105 mmgrab(current->mm);
1106 kvm->mm = current->mm;
1107 kvm_eventfd_init(kvm);
1108 mutex_init(&kvm->lock);
1109 mutex_init(&kvm->irq_lock);
1110 mutex_init(&kvm->slots_lock);
1111 mutex_init(&kvm->slots_arch_lock);
1112 spin_lock_init(&kvm->mn_invalidate_lock);
1113 rcuwait_init(&kvm->mn_memslots_update_rcuwait);
1114 xa_init(&kvm->vcpu_array);
1115 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1116 xa_init(&kvm->mem_attr_array);
1117 #endif
1119 INIT_LIST_HEAD(&kvm->gpc_list);
1120 spin_lock_init(&kvm->gpc_lock);
1122 INIT_LIST_HEAD(&kvm->devices);
1123 kvm->max_vcpus = KVM_MAX_VCPUS;
1125 BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
1128 * Force subsequent debugfs file creations to fail if the VM directory
1129 * is not created (by kvm_create_vm_debugfs()).
1131 kvm->debugfs_dentry = ERR_PTR(-ENOENT);
1133 snprintf(kvm->stats_id, sizeof(kvm->stats_id), "kvm-%d",
1134 task_pid_nr(current));
1136 r = -ENOMEM;
1137 if (init_srcu_struct(&kvm->srcu))
1138 goto out_err_no_srcu;
1139 if (init_srcu_struct(&kvm->irq_srcu))
1140 goto out_err_no_irq_srcu;
1142 r = kvm_init_irq_routing(kvm);
1143 if (r)
1144 goto out_err_no_irq_routing;
1146 refcount_set(&kvm->users_count, 1);
1148 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1149 for (j = 0; j < 2; j++) {
1150 slots = &kvm->__memslots[i][j];
1152 atomic_long_set(&slots->last_used_slot, (unsigned long)NULL);
1153 slots->hva_tree = RB_ROOT_CACHED;
1154 slots->gfn_tree = RB_ROOT;
1155 hash_init(slots->id_hash);
1156 slots->node_idx = j;
1158 /* Generations must be different for each address space. */
1159 slots->generation = i;
1162 rcu_assign_pointer(kvm->memslots[i], &kvm->__memslots[i][0]);
1165 r = -ENOMEM;
1166 for (i = 0; i < KVM_NR_BUSES; i++) {
1167 rcu_assign_pointer(kvm->buses[i],
1168 kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL_ACCOUNT));
1169 if (!kvm->buses[i])
1170 goto out_err_no_arch_destroy_vm;
1173 r = kvm_arch_init_vm(kvm, type);
1174 if (r)
1175 goto out_err_no_arch_destroy_vm;
1177 r = kvm_enable_virtualization();
1178 if (r)
1179 goto out_err_no_disable;
1181 #ifdef CONFIG_HAVE_KVM_IRQCHIP
1182 INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
1183 #endif
1185 r = kvm_init_mmu_notifier(kvm);
1186 if (r)
1187 goto out_err_no_mmu_notifier;
1189 r = kvm_coalesced_mmio_init(kvm);
1190 if (r < 0)
1191 goto out_no_coalesced_mmio;
1193 r = kvm_create_vm_debugfs(kvm, fdname);
1194 if (r)
1195 goto out_err_no_debugfs;
1197 r = kvm_arch_post_init_vm(kvm);
1198 if (r)
1199 goto out_err;
1201 mutex_lock(&kvm_lock);
1202 list_add(&kvm->vm_list, &vm_list);
1203 mutex_unlock(&kvm_lock);
1205 preempt_notifier_inc();
1206 kvm_init_pm_notifier(kvm);
1208 return kvm;
1210 out_err:
1211 kvm_destroy_vm_debugfs(kvm);
1212 out_err_no_debugfs:
1213 kvm_coalesced_mmio_free(kvm);
1214 out_no_coalesced_mmio:
1215 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1216 if (kvm->mmu_notifier.ops)
1217 mmu_notifier_unregister(&kvm->mmu_notifier, current->mm);
1218 #endif
1219 out_err_no_mmu_notifier:
1220 kvm_disable_virtualization();
1221 out_err_no_disable:
1222 kvm_arch_destroy_vm(kvm);
1223 out_err_no_arch_destroy_vm:
1224 WARN_ON_ONCE(!refcount_dec_and_test(&kvm->users_count));
1225 for (i = 0; i < KVM_NR_BUSES; i++)
1226 kfree(kvm_get_bus(kvm, i));
1227 kvm_free_irq_routing(kvm);
1228 out_err_no_irq_routing:
1229 cleanup_srcu_struct(&kvm->irq_srcu);
1230 out_err_no_irq_srcu:
1231 cleanup_srcu_struct(&kvm->srcu);
1232 out_err_no_srcu:
1233 kvm_arch_free_vm(kvm);
1234 mmdrop(current->mm);
1235 return ERR_PTR(r);
1238 static void kvm_destroy_devices(struct kvm *kvm)
1240 struct kvm_device *dev, *tmp;
1243 * We do not need to take the kvm->lock here, because nobody else
1244 * has a reference to the struct kvm at this point and therefore
1245 * cannot access the devices list anyhow.
1247 * The device list is generally managed as an rculist, but list_del()
1248 * is used intentionally here. If a bug in KVM introduced a reader that
1249 * was not backed by a reference on the kvm struct, the hope is that
1250 * it'd consume the poisoned forward pointer instead of suffering a
1251 * use-after-free, even though this cannot be guaranteed.
1253 list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
1254 list_del(&dev->vm_node);
1255 dev->ops->destroy(dev);
1259 static void kvm_destroy_vm(struct kvm *kvm)
1261 int i;
1262 struct mm_struct *mm = kvm->mm;
1264 kvm_destroy_pm_notifier(kvm);
1265 kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
1266 kvm_destroy_vm_debugfs(kvm);
1267 kvm_arch_sync_events(kvm);
1268 mutex_lock(&kvm_lock);
1269 list_del(&kvm->vm_list);
1270 mutex_unlock(&kvm_lock);
1271 kvm_arch_pre_destroy_vm(kvm);
1273 kvm_free_irq_routing(kvm);
1274 for (i = 0; i < KVM_NR_BUSES; i++) {
1275 struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
1277 if (bus)
1278 kvm_io_bus_destroy(bus);
1279 kvm->buses[i] = NULL;
1281 kvm_coalesced_mmio_free(kvm);
1282 #ifdef CONFIG_KVM_GENERIC_MMU_NOTIFIER
1283 mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
1285 * At this point, pending calls to invalidate_range_start()
1286 * have completed but no more MMU notifiers will run, so
1287 * mn_active_invalidate_count may remain unbalanced.
1288 * No threads can be waiting in kvm_swap_active_memslots() as the
1289 * last reference on KVM has been dropped, but freeing
1290 * memslots would deadlock without this manual intervention.
1292 * If the count isn't unbalanced, i.e. KVM did NOT unregister its MMU
1293 * notifier between a start() and end(), then there shouldn't be any
1294 * in-progress invalidations.
1296 WARN_ON(rcuwait_active(&kvm->mn_memslots_update_rcuwait));
1297 if (kvm->mn_active_invalidate_count)
1298 kvm->mn_active_invalidate_count = 0;
1299 else
1300 WARN_ON(kvm->mmu_invalidate_in_progress);
1301 #else
1302 kvm_flush_shadow_all(kvm);
1303 #endif
1304 kvm_arch_destroy_vm(kvm);
1305 kvm_destroy_devices(kvm);
1306 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
1307 kvm_free_memslots(kvm, &kvm->__memslots[i][0]);
1308 kvm_free_memslots(kvm, &kvm->__memslots[i][1]);
1310 cleanup_srcu_struct(&kvm->irq_srcu);
1311 cleanup_srcu_struct(&kvm->srcu);
1312 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
1313 xa_destroy(&kvm->mem_attr_array);
1314 #endif
1315 kvm_arch_free_vm(kvm);
1316 preempt_notifier_dec();
1317 kvm_disable_virtualization();
1318 mmdrop(mm);
1321 void kvm_get_kvm(struct kvm *kvm)
1323 refcount_inc(&kvm->users_count);
1325 EXPORT_SYMBOL_GPL(kvm_get_kvm);
1328 * Make sure the vm is not during destruction, which is a safe version of
1329 * kvm_get_kvm(). Return true if kvm referenced successfully, false otherwise.
1331 bool kvm_get_kvm_safe(struct kvm *kvm)
1333 return refcount_inc_not_zero(&kvm->users_count);
1335 EXPORT_SYMBOL_GPL(kvm_get_kvm_safe);
1337 void kvm_put_kvm(struct kvm *kvm)
1339 if (refcount_dec_and_test(&kvm->users_count))
1340 kvm_destroy_vm(kvm);
1342 EXPORT_SYMBOL_GPL(kvm_put_kvm);
1345 * Used to put a reference that was taken on behalf of an object associated
1346 * with a user-visible file descriptor, e.g. a vcpu or device, if installation
1347 * of the new file descriptor fails and the reference cannot be transferred to
1348 * its final owner. In such cases, the caller is still actively using @kvm and
1349 * will fail miserably if the refcount unexpectedly hits zero.
1351 void kvm_put_kvm_no_destroy(struct kvm *kvm)
1353 WARN_ON(refcount_dec_and_test(&kvm->users_count));
1355 EXPORT_SYMBOL_GPL(kvm_put_kvm_no_destroy);
1357 static int kvm_vm_release(struct inode *inode, struct file *filp)
1359 struct kvm *kvm = filp->private_data;
1361 kvm_irqfd_release(kvm);
1363 kvm_put_kvm(kvm);
1364 return 0;
1368 * Allocation size is twice as large as the actual dirty bitmap size.
1369 * See kvm_vm_ioctl_get_dirty_log() why this is needed.
1371 static int kvm_alloc_dirty_bitmap(struct kvm_memory_slot *memslot)
1373 unsigned long dirty_bytes = kvm_dirty_bitmap_bytes(memslot);
1375 memslot->dirty_bitmap = __vcalloc(2, dirty_bytes, GFP_KERNEL_ACCOUNT);
1376 if (!memslot->dirty_bitmap)
1377 return -ENOMEM;
1379 return 0;
1382 static struct kvm_memslots *kvm_get_inactive_memslots(struct kvm *kvm, int as_id)
1384 struct kvm_memslots *active = __kvm_memslots(kvm, as_id);
1385 int node_idx_inactive = active->node_idx ^ 1;
1387 return &kvm->__memslots[as_id][node_idx_inactive];
1391 * Helper to get the address space ID when one of memslot pointers may be NULL.
1392 * This also serves as a sanity that at least one of the pointers is non-NULL,
1393 * and that their address space IDs don't diverge.
1395 static int kvm_memslots_get_as_id(struct kvm_memory_slot *a,
1396 struct kvm_memory_slot *b)
1398 if (WARN_ON_ONCE(!a && !b))
1399 return 0;
1401 if (!a)
1402 return b->as_id;
1403 if (!b)
1404 return a->as_id;
1406 WARN_ON_ONCE(a->as_id != b->as_id);
1407 return a->as_id;
1410 static void kvm_insert_gfn_node(struct kvm_memslots *slots,
1411 struct kvm_memory_slot *slot)
1413 struct rb_root *gfn_tree = &slots->gfn_tree;
1414 struct rb_node **node, *parent;
1415 int idx = slots->node_idx;
1417 parent = NULL;
1418 for (node = &gfn_tree->rb_node; *node; ) {
1419 struct kvm_memory_slot *tmp;
1421 tmp = container_of(*node, struct kvm_memory_slot, gfn_node[idx]);
1422 parent = *node;
1423 if (slot->base_gfn < tmp->base_gfn)
1424 node = &(*node)->rb_left;
1425 else if (slot->base_gfn > tmp->base_gfn)
1426 node = &(*node)->rb_right;
1427 else
1428 BUG();
1431 rb_link_node(&slot->gfn_node[idx], parent, node);
1432 rb_insert_color(&slot->gfn_node[idx], gfn_tree);
1435 static void kvm_erase_gfn_node(struct kvm_memslots *slots,
1436 struct kvm_memory_slot *slot)
1438 rb_erase(&slot->gfn_node[slots->node_idx], &slots->gfn_tree);
1441 static void kvm_replace_gfn_node(struct kvm_memslots *slots,
1442 struct kvm_memory_slot *old,
1443 struct kvm_memory_slot *new)
1445 int idx = slots->node_idx;
1447 WARN_ON_ONCE(old->base_gfn != new->base_gfn);
1449 rb_replace_node(&old->gfn_node[idx], &new->gfn_node[idx],
1450 &slots->gfn_tree);
1454 * Replace @old with @new in the inactive memslots.
1456 * With NULL @old this simply adds @new.
1457 * With NULL @new this simply removes @old.
1459 * If @new is non-NULL its hva_node[slots_idx] range has to be set
1460 * appropriately.
1462 static void kvm_replace_memslot(struct kvm *kvm,
1463 struct kvm_memory_slot *old,
1464 struct kvm_memory_slot *new)
1466 int as_id = kvm_memslots_get_as_id(old, new);
1467 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1468 int idx = slots->node_idx;
1470 if (old) {
1471 hash_del(&old->id_node[idx]);
1472 interval_tree_remove(&old->hva_node[idx], &slots->hva_tree);
1474 if ((long)old == atomic_long_read(&slots->last_used_slot))
1475 atomic_long_set(&slots->last_used_slot, (long)new);
1477 if (!new) {
1478 kvm_erase_gfn_node(slots, old);
1479 return;
1484 * Initialize @new's hva range. Do this even when replacing an @old
1485 * slot, kvm_copy_memslot() deliberately does not touch node data.
1487 new->hva_node[idx].start = new->userspace_addr;
1488 new->hva_node[idx].last = new->userspace_addr +
1489 (new->npages << PAGE_SHIFT) - 1;
1492 * (Re)Add the new memslot. There is no O(1) interval_tree_replace(),
1493 * hva_node needs to be swapped with remove+insert even though hva can't
1494 * change when replacing an existing slot.
1496 hash_add(slots->id_hash, &new->id_node[idx], new->id);
1497 interval_tree_insert(&new->hva_node[idx], &slots->hva_tree);
1500 * If the memslot gfn is unchanged, rb_replace_node() can be used to
1501 * switch the node in the gfn tree instead of removing the old and
1502 * inserting the new as two separate operations. Replacement is a
1503 * single O(1) operation versus two O(log(n)) operations for
1504 * remove+insert.
1506 if (old && old->base_gfn == new->base_gfn) {
1507 kvm_replace_gfn_node(slots, old, new);
1508 } else {
1509 if (old)
1510 kvm_erase_gfn_node(slots, old);
1511 kvm_insert_gfn_node(slots, new);
1516 * Flags that do not access any of the extra space of struct
1517 * kvm_userspace_memory_region2. KVM_SET_USER_MEMORY_REGION_V1_FLAGS
1518 * only allows these.
1520 #define KVM_SET_USER_MEMORY_REGION_V1_FLAGS \
1521 (KVM_MEM_LOG_DIRTY_PAGES | KVM_MEM_READONLY)
1523 static int check_memory_region_flags(struct kvm *kvm,
1524 const struct kvm_userspace_memory_region2 *mem)
1526 u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
1528 if (kvm_arch_has_private_mem(kvm))
1529 valid_flags |= KVM_MEM_GUEST_MEMFD;
1531 /* Dirty logging private memory is not currently supported. */
1532 if (mem->flags & KVM_MEM_GUEST_MEMFD)
1533 valid_flags &= ~KVM_MEM_LOG_DIRTY_PAGES;
1536 * GUEST_MEMFD is incompatible with read-only memslots, as writes to
1537 * read-only memslots have emulated MMIO, not page fault, semantics,
1538 * and KVM doesn't allow emulated MMIO for private memory.
1540 if (kvm_arch_has_readonly_mem(kvm) &&
1541 !(mem->flags & KVM_MEM_GUEST_MEMFD))
1542 valid_flags |= KVM_MEM_READONLY;
1544 if (mem->flags & ~valid_flags)
1545 return -EINVAL;
1547 return 0;
1550 static void kvm_swap_active_memslots(struct kvm *kvm, int as_id)
1552 struct kvm_memslots *slots = kvm_get_inactive_memslots(kvm, as_id);
1554 /* Grab the generation from the activate memslots. */
1555 u64 gen = __kvm_memslots(kvm, as_id)->generation;
1557 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
1558 slots->generation = gen | KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1561 * Do not store the new memslots while there are invalidations in
1562 * progress, otherwise the locking in invalidate_range_start and
1563 * invalidate_range_end will be unbalanced.
1565 spin_lock(&kvm->mn_invalidate_lock);
1566 prepare_to_rcuwait(&kvm->mn_memslots_update_rcuwait);
1567 while (kvm->mn_active_invalidate_count) {
1568 set_current_state(TASK_UNINTERRUPTIBLE);
1569 spin_unlock(&kvm->mn_invalidate_lock);
1570 schedule();
1571 spin_lock(&kvm->mn_invalidate_lock);
1573 finish_rcuwait(&kvm->mn_memslots_update_rcuwait);
1574 rcu_assign_pointer(kvm->memslots[as_id], slots);
1575 spin_unlock(&kvm->mn_invalidate_lock);
1578 * Acquired in kvm_set_memslot. Must be released before synchronize
1579 * SRCU below in order to avoid deadlock with another thread
1580 * acquiring the slots_arch_lock in an srcu critical section.
1582 mutex_unlock(&kvm->slots_arch_lock);
1584 synchronize_srcu_expedited(&kvm->srcu);
1587 * Increment the new memslot generation a second time, dropping the
1588 * update in-progress flag and incrementing the generation based on
1589 * the number of address spaces. This provides a unique and easily
1590 * identifiable generation number while the memslots are in flux.
1592 gen = slots->generation & ~KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS;
1595 * Generations must be unique even across address spaces. We do not need
1596 * a global counter for that, instead the generation space is evenly split
1597 * across address spaces. For example, with two address spaces, address
1598 * space 0 will use generations 0, 2, 4, ... while address space 1 will
1599 * use generations 1, 3, 5, ...
1601 gen += kvm_arch_nr_memslot_as_ids(kvm);
1603 kvm_arch_memslots_updated(kvm, gen);
1605 slots->generation = gen;
1608 static int kvm_prepare_memory_region(struct kvm *kvm,
1609 const struct kvm_memory_slot *old,
1610 struct kvm_memory_slot *new,
1611 enum kvm_mr_change change)
1613 int r;
1616 * If dirty logging is disabled, nullify the bitmap; the old bitmap
1617 * will be freed on "commit". If logging is enabled in both old and
1618 * new, reuse the existing bitmap. If logging is enabled only in the
1619 * new and KVM isn't using a ring buffer, allocate and initialize a
1620 * new bitmap.
1622 if (change != KVM_MR_DELETE) {
1623 if (!(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
1624 new->dirty_bitmap = NULL;
1625 else if (old && old->dirty_bitmap)
1626 new->dirty_bitmap = old->dirty_bitmap;
1627 else if (kvm_use_dirty_bitmap(kvm)) {
1628 r = kvm_alloc_dirty_bitmap(new);
1629 if (r)
1630 return r;
1632 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
1633 bitmap_set(new->dirty_bitmap, 0, new->npages);
1637 r = kvm_arch_prepare_memory_region(kvm, old, new, change);
1639 /* Free the bitmap on failure if it was allocated above. */
1640 if (r && new && new->dirty_bitmap && (!old || !old->dirty_bitmap))
1641 kvm_destroy_dirty_bitmap(new);
1643 return r;
1646 static void kvm_commit_memory_region(struct kvm *kvm,
1647 struct kvm_memory_slot *old,
1648 const struct kvm_memory_slot *new,
1649 enum kvm_mr_change change)
1651 int old_flags = old ? old->flags : 0;
1652 int new_flags = new ? new->flags : 0;
1654 * Update the total number of memslot pages before calling the arch
1655 * hook so that architectures can consume the result directly.
1657 if (change == KVM_MR_DELETE)
1658 kvm->nr_memslot_pages -= old->npages;
1659 else if (change == KVM_MR_CREATE)
1660 kvm->nr_memslot_pages += new->npages;
1662 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) {
1663 int change = (new_flags & KVM_MEM_LOG_DIRTY_PAGES) ? 1 : -1;
1664 atomic_set(&kvm->nr_memslots_dirty_logging,
1665 atomic_read(&kvm->nr_memslots_dirty_logging) + change);
1668 kvm_arch_commit_memory_region(kvm, old, new, change);
1670 switch (change) {
1671 case KVM_MR_CREATE:
1672 /* Nothing more to do. */
1673 break;
1674 case KVM_MR_DELETE:
1675 /* Free the old memslot and all its metadata. */
1676 kvm_free_memslot(kvm, old);
1677 break;
1678 case KVM_MR_MOVE:
1679 case KVM_MR_FLAGS_ONLY:
1681 * Free the dirty bitmap as needed; the below check encompasses
1682 * both the flags and whether a ring buffer is being used)
1684 if (old->dirty_bitmap && !new->dirty_bitmap)
1685 kvm_destroy_dirty_bitmap(old);
1688 * The final quirk. Free the detached, old slot, but only its
1689 * memory, not any metadata. Metadata, including arch specific
1690 * data, may be reused by @new.
1692 kfree(old);
1693 break;
1694 default:
1695 BUG();
1700 * Activate @new, which must be installed in the inactive slots by the caller,
1701 * by swapping the active slots and then propagating @new to @old once @old is
1702 * unreachable and can be safely modified.
1704 * With NULL @old this simply adds @new to @active (while swapping the sets).
1705 * With NULL @new this simply removes @old from @active and frees it
1706 * (while also swapping the sets).
1708 static void kvm_activate_memslot(struct kvm *kvm,
1709 struct kvm_memory_slot *old,
1710 struct kvm_memory_slot *new)
1712 int as_id = kvm_memslots_get_as_id(old, new);
1714 kvm_swap_active_memslots(kvm, as_id);
1716 /* Propagate the new memslot to the now inactive memslots. */
1717 kvm_replace_memslot(kvm, old, new);
1720 static void kvm_copy_memslot(struct kvm_memory_slot *dest,
1721 const struct kvm_memory_slot *src)
1723 dest->base_gfn = src->base_gfn;
1724 dest->npages = src->npages;
1725 dest->dirty_bitmap = src->dirty_bitmap;
1726 dest->arch = src->arch;
1727 dest->userspace_addr = src->userspace_addr;
1728 dest->flags = src->flags;
1729 dest->id = src->id;
1730 dest->as_id = src->as_id;
1733 static void kvm_invalidate_memslot(struct kvm *kvm,
1734 struct kvm_memory_slot *old,
1735 struct kvm_memory_slot *invalid_slot)
1738 * Mark the current slot INVALID. As with all memslot modifications,
1739 * this must be done on an unreachable slot to avoid modifying the
1740 * current slot in the active tree.
1742 kvm_copy_memslot(invalid_slot, old);
1743 invalid_slot->flags |= KVM_MEMSLOT_INVALID;
1744 kvm_replace_memslot(kvm, old, invalid_slot);
1747 * Activate the slot that is now marked INVALID, but don't propagate
1748 * the slot to the now inactive slots. The slot is either going to be
1749 * deleted or recreated as a new slot.
1751 kvm_swap_active_memslots(kvm, old->as_id);
1754 * From this point no new shadow pages pointing to a deleted, or moved,
1755 * memslot will be created. Validation of sp->gfn happens in:
1756 * - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1757 * - kvm_is_visible_gfn (mmu_check_root)
1759 kvm_arch_flush_shadow_memslot(kvm, old);
1760 kvm_arch_guest_memory_reclaimed(kvm);
1762 /* Was released by kvm_swap_active_memslots(), reacquire. */
1763 mutex_lock(&kvm->slots_arch_lock);
1766 * Copy the arch-specific field of the newly-installed slot back to the
1767 * old slot as the arch data could have changed between releasing
1768 * slots_arch_lock in kvm_swap_active_memslots() and re-acquiring the lock
1769 * above. Writers are required to retrieve memslots *after* acquiring
1770 * slots_arch_lock, thus the active slot's data is guaranteed to be fresh.
1772 old->arch = invalid_slot->arch;
1775 static void kvm_create_memslot(struct kvm *kvm,
1776 struct kvm_memory_slot *new)
1778 /* Add the new memslot to the inactive set and activate. */
1779 kvm_replace_memslot(kvm, NULL, new);
1780 kvm_activate_memslot(kvm, NULL, new);
1783 static void kvm_delete_memslot(struct kvm *kvm,
1784 struct kvm_memory_slot *old,
1785 struct kvm_memory_slot *invalid_slot)
1788 * Remove the old memslot (in the inactive memslots) by passing NULL as
1789 * the "new" slot, and for the invalid version in the active slots.
1791 kvm_replace_memslot(kvm, old, NULL);
1792 kvm_activate_memslot(kvm, invalid_slot, NULL);
1795 static void kvm_move_memslot(struct kvm *kvm,
1796 struct kvm_memory_slot *old,
1797 struct kvm_memory_slot *new,
1798 struct kvm_memory_slot *invalid_slot)
1801 * Replace the old memslot in the inactive slots, and then swap slots
1802 * and replace the current INVALID with the new as well.
1804 kvm_replace_memslot(kvm, old, new);
1805 kvm_activate_memslot(kvm, invalid_slot, new);
1808 static void kvm_update_flags_memslot(struct kvm *kvm,
1809 struct kvm_memory_slot *old,
1810 struct kvm_memory_slot *new)
1813 * Similar to the MOVE case, but the slot doesn't need to be zapped as
1814 * an intermediate step. Instead, the old memslot is simply replaced
1815 * with a new, updated copy in both memslot sets.
1817 kvm_replace_memslot(kvm, old, new);
1818 kvm_activate_memslot(kvm, old, new);
1821 static int kvm_set_memslot(struct kvm *kvm,
1822 struct kvm_memory_slot *old,
1823 struct kvm_memory_slot *new,
1824 enum kvm_mr_change change)
1826 struct kvm_memory_slot *invalid_slot;
1827 int r;
1830 * Released in kvm_swap_active_memslots().
1832 * Must be held from before the current memslots are copied until after
1833 * the new memslots are installed with rcu_assign_pointer, then
1834 * released before the synchronize srcu in kvm_swap_active_memslots().
1836 * When modifying memslots outside of the slots_lock, must be held
1837 * before reading the pointer to the current memslots until after all
1838 * changes to those memslots are complete.
1840 * These rules ensure that installing new memslots does not lose
1841 * changes made to the previous memslots.
1843 mutex_lock(&kvm->slots_arch_lock);
1846 * Invalidate the old slot if it's being deleted or moved. This is
1847 * done prior to actually deleting/moving the memslot to allow vCPUs to
1848 * continue running by ensuring there are no mappings or shadow pages
1849 * for the memslot when it is deleted/moved. Without pre-invalidation
1850 * (and without a lock), a window would exist between effecting the
1851 * delete/move and committing the changes in arch code where KVM or a
1852 * guest could access a non-existent memslot.
1854 * Modifications are done on a temporary, unreachable slot. The old
1855 * slot needs to be preserved in case a later step fails and the
1856 * invalidation needs to be reverted.
1858 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1859 invalid_slot = kzalloc(sizeof(*invalid_slot), GFP_KERNEL_ACCOUNT);
1860 if (!invalid_slot) {
1861 mutex_unlock(&kvm->slots_arch_lock);
1862 return -ENOMEM;
1864 kvm_invalidate_memslot(kvm, old, invalid_slot);
1867 r = kvm_prepare_memory_region(kvm, old, new, change);
1868 if (r) {
1870 * For DELETE/MOVE, revert the above INVALID change. No
1871 * modifications required since the original slot was preserved
1872 * in the inactive slots. Changing the active memslots also
1873 * release slots_arch_lock.
1875 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE) {
1876 kvm_activate_memslot(kvm, invalid_slot, old);
1877 kfree(invalid_slot);
1878 } else {
1879 mutex_unlock(&kvm->slots_arch_lock);
1881 return r;
1885 * For DELETE and MOVE, the working slot is now active as the INVALID
1886 * version of the old slot. MOVE is particularly special as it reuses
1887 * the old slot and returns a copy of the old slot (in working_slot).
1888 * For CREATE, there is no old slot. For DELETE and FLAGS_ONLY, the
1889 * old slot is detached but otherwise preserved.
1891 if (change == KVM_MR_CREATE)
1892 kvm_create_memslot(kvm, new);
1893 else if (change == KVM_MR_DELETE)
1894 kvm_delete_memslot(kvm, old, invalid_slot);
1895 else if (change == KVM_MR_MOVE)
1896 kvm_move_memslot(kvm, old, new, invalid_slot);
1897 else if (change == KVM_MR_FLAGS_ONLY)
1898 kvm_update_flags_memslot(kvm, old, new);
1899 else
1900 BUG();
1902 /* Free the temporary INVALID slot used for DELETE and MOVE. */
1903 if (change == KVM_MR_DELETE || change == KVM_MR_MOVE)
1904 kfree(invalid_slot);
1907 * No need to refresh new->arch, changes after dropping slots_arch_lock
1908 * will directly hit the final, active memslot. Architectures are
1909 * responsible for knowing that new->arch may be stale.
1911 kvm_commit_memory_region(kvm, old, new, change);
1913 return 0;
1916 static bool kvm_check_memslot_overlap(struct kvm_memslots *slots, int id,
1917 gfn_t start, gfn_t end)
1919 struct kvm_memslot_iter iter;
1921 kvm_for_each_memslot_in_gfn_range(&iter, slots, start, end) {
1922 if (iter.slot->id != id)
1923 return true;
1926 return false;
1930 * Allocate some memory and give it an address in the guest physical address
1931 * space.
1933 * Discontiguous memory is allowed, mostly for framebuffers.
1935 * Must be called holding kvm->slots_lock for write.
1937 int __kvm_set_memory_region(struct kvm *kvm,
1938 const struct kvm_userspace_memory_region2 *mem)
1940 struct kvm_memory_slot *old, *new;
1941 struct kvm_memslots *slots;
1942 enum kvm_mr_change change;
1943 unsigned long npages;
1944 gfn_t base_gfn;
1945 int as_id, id;
1946 int r;
1948 r = check_memory_region_flags(kvm, mem);
1949 if (r)
1950 return r;
1952 as_id = mem->slot >> 16;
1953 id = (u16)mem->slot;
1955 /* General sanity checks */
1956 if ((mem->memory_size & (PAGE_SIZE - 1)) ||
1957 (mem->memory_size != (unsigned long)mem->memory_size))
1958 return -EINVAL;
1959 if (mem->guest_phys_addr & (PAGE_SIZE - 1))
1960 return -EINVAL;
1961 /* We can read the guest memory with __xxx_user() later on. */
1962 if ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
1963 (mem->userspace_addr != untagged_addr(mem->userspace_addr)) ||
1964 !access_ok((void __user *)(unsigned long)mem->userspace_addr,
1965 mem->memory_size))
1966 return -EINVAL;
1967 if (mem->flags & KVM_MEM_GUEST_MEMFD &&
1968 (mem->guest_memfd_offset & (PAGE_SIZE - 1) ||
1969 mem->guest_memfd_offset + mem->memory_size < mem->guest_memfd_offset))
1970 return -EINVAL;
1971 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_MEM_SLOTS_NUM)
1972 return -EINVAL;
1973 if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
1974 return -EINVAL;
1975 if ((mem->memory_size >> PAGE_SHIFT) > KVM_MEM_MAX_NR_PAGES)
1976 return -EINVAL;
1978 slots = __kvm_memslots(kvm, as_id);
1981 * Note, the old memslot (and the pointer itself!) may be invalidated
1982 * and/or destroyed by kvm_set_memslot().
1984 old = id_to_memslot(slots, id);
1986 if (!mem->memory_size) {
1987 if (!old || !old->npages)
1988 return -EINVAL;
1990 if (WARN_ON_ONCE(kvm->nr_memslot_pages < old->npages))
1991 return -EIO;
1993 return kvm_set_memslot(kvm, old, NULL, KVM_MR_DELETE);
1996 base_gfn = (mem->guest_phys_addr >> PAGE_SHIFT);
1997 npages = (mem->memory_size >> PAGE_SHIFT);
1999 if (!old || !old->npages) {
2000 change = KVM_MR_CREATE;
2003 * To simplify KVM internals, the total number of pages across
2004 * all memslots must fit in an unsigned long.
2006 if ((kvm->nr_memslot_pages + npages) < kvm->nr_memslot_pages)
2007 return -EINVAL;
2008 } else { /* Modify an existing slot. */
2009 /* Private memslots are immutable, they can only be deleted. */
2010 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2011 return -EINVAL;
2012 if ((mem->userspace_addr != old->userspace_addr) ||
2013 (npages != old->npages) ||
2014 ((mem->flags ^ old->flags) & KVM_MEM_READONLY))
2015 return -EINVAL;
2017 if (base_gfn != old->base_gfn)
2018 change = KVM_MR_MOVE;
2019 else if (mem->flags != old->flags)
2020 change = KVM_MR_FLAGS_ONLY;
2021 else /* Nothing to change. */
2022 return 0;
2025 if ((change == KVM_MR_CREATE || change == KVM_MR_MOVE) &&
2026 kvm_check_memslot_overlap(slots, id, base_gfn, base_gfn + npages))
2027 return -EEXIST;
2029 /* Allocate a slot that will persist in the memslot. */
2030 new = kzalloc(sizeof(*new), GFP_KERNEL_ACCOUNT);
2031 if (!new)
2032 return -ENOMEM;
2034 new->as_id = as_id;
2035 new->id = id;
2036 new->base_gfn = base_gfn;
2037 new->npages = npages;
2038 new->flags = mem->flags;
2039 new->userspace_addr = mem->userspace_addr;
2040 if (mem->flags & KVM_MEM_GUEST_MEMFD) {
2041 r = kvm_gmem_bind(kvm, new, mem->guest_memfd, mem->guest_memfd_offset);
2042 if (r)
2043 goto out;
2046 r = kvm_set_memslot(kvm, old, new, change);
2047 if (r)
2048 goto out_unbind;
2050 return 0;
2052 out_unbind:
2053 if (mem->flags & KVM_MEM_GUEST_MEMFD)
2054 kvm_gmem_unbind(new);
2055 out:
2056 kfree(new);
2057 return r;
2059 EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
2061 int kvm_set_memory_region(struct kvm *kvm,
2062 const struct kvm_userspace_memory_region2 *mem)
2064 int r;
2066 mutex_lock(&kvm->slots_lock);
2067 r = __kvm_set_memory_region(kvm, mem);
2068 mutex_unlock(&kvm->slots_lock);
2069 return r;
2071 EXPORT_SYMBOL_GPL(kvm_set_memory_region);
2073 static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
2074 struct kvm_userspace_memory_region2 *mem)
2076 if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
2077 return -EINVAL;
2079 return kvm_set_memory_region(kvm, mem);
2082 #ifndef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
2084 * kvm_get_dirty_log - get a snapshot of dirty pages
2085 * @kvm: pointer to kvm instance
2086 * @log: slot id and address to which we copy the log
2087 * @is_dirty: set to '1' if any dirty pages were found
2088 * @memslot: set to the associated memslot, always valid on success
2090 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
2091 int *is_dirty, struct kvm_memory_slot **memslot)
2093 struct kvm_memslots *slots;
2094 int i, as_id, id;
2095 unsigned long n;
2096 unsigned long any = 0;
2098 /* Dirty ring tracking may be exclusive to dirty log tracking */
2099 if (!kvm_use_dirty_bitmap(kvm))
2100 return -ENXIO;
2102 *memslot = NULL;
2103 *is_dirty = 0;
2105 as_id = log->slot >> 16;
2106 id = (u16)log->slot;
2107 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2108 return -EINVAL;
2110 slots = __kvm_memslots(kvm, as_id);
2111 *memslot = id_to_memslot(slots, id);
2112 if (!(*memslot) || !(*memslot)->dirty_bitmap)
2113 return -ENOENT;
2115 kvm_arch_sync_dirty_log(kvm, *memslot);
2117 n = kvm_dirty_bitmap_bytes(*memslot);
2119 for (i = 0; !any && i < n/sizeof(long); ++i)
2120 any = (*memslot)->dirty_bitmap[i];
2122 if (copy_to_user(log->dirty_bitmap, (*memslot)->dirty_bitmap, n))
2123 return -EFAULT;
2125 if (any)
2126 *is_dirty = 1;
2127 return 0;
2129 EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
2131 #else /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2133 * kvm_get_dirty_log_protect - get a snapshot of dirty pages
2134 * and reenable dirty page tracking for the corresponding pages.
2135 * @kvm: pointer to kvm instance
2136 * @log: slot id and address to which we copy the log
2138 * We need to keep it in mind that VCPU threads can write to the bitmap
2139 * concurrently. So, to avoid losing track of dirty pages we keep the
2140 * following order:
2142 * 1. Take a snapshot of the bit and clear it if needed.
2143 * 2. Write protect the corresponding page.
2144 * 3. Copy the snapshot to the userspace.
2145 * 4. Upon return caller flushes TLB's if needed.
2147 * Between 2 and 4, the guest may write to the page using the remaining TLB
2148 * entry. This is not a problem because the page is reported dirty using
2149 * the snapshot taken before and step 4 ensures that writes done after
2150 * exiting to userspace will be logged for the next call.
2153 static int kvm_get_dirty_log_protect(struct kvm *kvm, struct kvm_dirty_log *log)
2155 struct kvm_memslots *slots;
2156 struct kvm_memory_slot *memslot;
2157 int i, as_id, id;
2158 unsigned long n;
2159 unsigned long *dirty_bitmap;
2160 unsigned long *dirty_bitmap_buffer;
2161 bool flush;
2163 /* Dirty ring tracking may be exclusive to dirty log tracking */
2164 if (!kvm_use_dirty_bitmap(kvm))
2165 return -ENXIO;
2167 as_id = log->slot >> 16;
2168 id = (u16)log->slot;
2169 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2170 return -EINVAL;
2172 slots = __kvm_memslots(kvm, as_id);
2173 memslot = id_to_memslot(slots, id);
2174 if (!memslot || !memslot->dirty_bitmap)
2175 return -ENOENT;
2177 dirty_bitmap = memslot->dirty_bitmap;
2179 kvm_arch_sync_dirty_log(kvm, memslot);
2181 n = kvm_dirty_bitmap_bytes(memslot);
2182 flush = false;
2183 if (kvm->manual_dirty_log_protect) {
2185 * Unlike kvm_get_dirty_log, we always return false in *flush,
2186 * because no flush is needed until KVM_CLEAR_DIRTY_LOG. There
2187 * is some code duplication between this function and
2188 * kvm_get_dirty_log, but hopefully all architecture
2189 * transition to kvm_get_dirty_log_protect and kvm_get_dirty_log
2190 * can be eliminated.
2192 dirty_bitmap_buffer = dirty_bitmap;
2193 } else {
2194 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2195 memset(dirty_bitmap_buffer, 0, n);
2197 KVM_MMU_LOCK(kvm);
2198 for (i = 0; i < n / sizeof(long); i++) {
2199 unsigned long mask;
2200 gfn_t offset;
2202 if (!dirty_bitmap[i])
2203 continue;
2205 flush = true;
2206 mask = xchg(&dirty_bitmap[i], 0);
2207 dirty_bitmap_buffer[i] = mask;
2209 offset = i * BITS_PER_LONG;
2210 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2211 offset, mask);
2213 KVM_MMU_UNLOCK(kvm);
2216 if (flush)
2217 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2219 if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
2220 return -EFAULT;
2221 return 0;
2226 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
2227 * @kvm: kvm instance
2228 * @log: slot id and address to which we copy the log
2230 * Steps 1-4 below provide general overview of dirty page logging. See
2231 * kvm_get_dirty_log_protect() function description for additional details.
2233 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
2234 * always flush the TLB (step 4) even if previous step failed and the dirty
2235 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
2236 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
2237 * writes will be marked dirty for next log read.
2239 * 1. Take a snapshot of the bit and clear it if needed.
2240 * 2. Write protect the corresponding page.
2241 * 3. Copy the snapshot to the userspace.
2242 * 4. Flush TLB's if needed.
2244 static int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
2245 struct kvm_dirty_log *log)
2247 int r;
2249 mutex_lock(&kvm->slots_lock);
2251 r = kvm_get_dirty_log_protect(kvm, log);
2253 mutex_unlock(&kvm->slots_lock);
2254 return r;
2258 * kvm_clear_dirty_log_protect - clear dirty bits in the bitmap
2259 * and reenable dirty page tracking for the corresponding pages.
2260 * @kvm: pointer to kvm instance
2261 * @log: slot id and address from which to fetch the bitmap of dirty pages
2263 static int kvm_clear_dirty_log_protect(struct kvm *kvm,
2264 struct kvm_clear_dirty_log *log)
2266 struct kvm_memslots *slots;
2267 struct kvm_memory_slot *memslot;
2268 int as_id, id;
2269 gfn_t offset;
2270 unsigned long i, n;
2271 unsigned long *dirty_bitmap;
2272 unsigned long *dirty_bitmap_buffer;
2273 bool flush;
2275 /* Dirty ring tracking may be exclusive to dirty log tracking */
2276 if (!kvm_use_dirty_bitmap(kvm))
2277 return -ENXIO;
2279 as_id = log->slot >> 16;
2280 id = (u16)log->slot;
2281 if (as_id >= kvm_arch_nr_memslot_as_ids(kvm) || id >= KVM_USER_MEM_SLOTS)
2282 return -EINVAL;
2284 if (log->first_page & 63)
2285 return -EINVAL;
2287 slots = __kvm_memslots(kvm, as_id);
2288 memslot = id_to_memslot(slots, id);
2289 if (!memslot || !memslot->dirty_bitmap)
2290 return -ENOENT;
2292 dirty_bitmap = memslot->dirty_bitmap;
2294 n = ALIGN(log->num_pages, BITS_PER_LONG) / 8;
2296 if (log->first_page > memslot->npages ||
2297 log->num_pages > memslot->npages - log->first_page ||
2298 (log->num_pages < memslot->npages - log->first_page && (log->num_pages & 63)))
2299 return -EINVAL;
2301 kvm_arch_sync_dirty_log(kvm, memslot);
2303 flush = false;
2304 dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
2305 if (copy_from_user(dirty_bitmap_buffer, log->dirty_bitmap, n))
2306 return -EFAULT;
2308 KVM_MMU_LOCK(kvm);
2309 for (offset = log->first_page, i = offset / BITS_PER_LONG,
2310 n = DIV_ROUND_UP(log->num_pages, BITS_PER_LONG); n--;
2311 i++, offset += BITS_PER_LONG) {
2312 unsigned long mask = *dirty_bitmap_buffer++;
2313 atomic_long_t *p = (atomic_long_t *) &dirty_bitmap[i];
2314 if (!mask)
2315 continue;
2317 mask &= atomic_long_fetch_andnot(mask, p);
2320 * mask contains the bits that really have been cleared. This
2321 * never includes any bits beyond the length of the memslot (if
2322 * the length is not aligned to 64 pages), therefore it is not
2323 * a problem if userspace sets them in log->dirty_bitmap.
2325 if (mask) {
2326 flush = true;
2327 kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
2328 offset, mask);
2331 KVM_MMU_UNLOCK(kvm);
2333 if (flush)
2334 kvm_flush_remote_tlbs_memslot(kvm, memslot);
2336 return 0;
2339 static int kvm_vm_ioctl_clear_dirty_log(struct kvm *kvm,
2340 struct kvm_clear_dirty_log *log)
2342 int r;
2344 mutex_lock(&kvm->slots_lock);
2346 r = kvm_clear_dirty_log_protect(kvm, log);
2348 mutex_unlock(&kvm->slots_lock);
2349 return r;
2351 #endif /* CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
2353 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
2354 static u64 kvm_supported_mem_attributes(struct kvm *kvm)
2356 if (!kvm || kvm_arch_has_private_mem(kvm))
2357 return KVM_MEMORY_ATTRIBUTE_PRIVATE;
2359 return 0;
2363 * Returns true if _all_ gfns in the range [@start, @end) have attributes
2364 * such that the bits in @mask match @attrs.
2366 bool kvm_range_has_memory_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2367 unsigned long mask, unsigned long attrs)
2369 XA_STATE(xas, &kvm->mem_attr_array, start);
2370 unsigned long index;
2371 void *entry;
2373 mask &= kvm_supported_mem_attributes(kvm);
2374 if (attrs & ~mask)
2375 return false;
2377 if (end == start + 1)
2378 return (kvm_get_memory_attributes(kvm, start) & mask) == attrs;
2380 guard(rcu)();
2381 if (!attrs)
2382 return !xas_find(&xas, end - 1);
2384 for (index = start; index < end; index++) {
2385 do {
2386 entry = xas_next(&xas);
2387 } while (xas_retry(&xas, entry));
2389 if (xas.xa_index != index ||
2390 (xa_to_value(entry) & mask) != attrs)
2391 return false;
2394 return true;
2397 static __always_inline void kvm_handle_gfn_range(struct kvm *kvm,
2398 struct kvm_mmu_notifier_range *range)
2400 struct kvm_gfn_range gfn_range;
2401 struct kvm_memory_slot *slot;
2402 struct kvm_memslots *slots;
2403 struct kvm_memslot_iter iter;
2404 bool found_memslot = false;
2405 bool ret = false;
2406 int i;
2408 gfn_range.arg = range->arg;
2409 gfn_range.may_block = range->may_block;
2411 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
2412 slots = __kvm_memslots(kvm, i);
2414 kvm_for_each_memslot_in_gfn_range(&iter, slots, range->start, range->end) {
2415 slot = iter.slot;
2416 gfn_range.slot = slot;
2418 gfn_range.start = max(range->start, slot->base_gfn);
2419 gfn_range.end = min(range->end, slot->base_gfn + slot->npages);
2420 if (gfn_range.start >= gfn_range.end)
2421 continue;
2423 if (!found_memslot) {
2424 found_memslot = true;
2425 KVM_MMU_LOCK(kvm);
2426 if (!IS_KVM_NULL_FN(range->on_lock))
2427 range->on_lock(kvm);
2430 ret |= range->handler(kvm, &gfn_range);
2434 if (range->flush_on_ret && ret)
2435 kvm_flush_remote_tlbs(kvm);
2437 if (found_memslot)
2438 KVM_MMU_UNLOCK(kvm);
2441 static bool kvm_pre_set_memory_attributes(struct kvm *kvm,
2442 struct kvm_gfn_range *range)
2445 * Unconditionally add the range to the invalidation set, regardless of
2446 * whether or not the arch callback actually needs to zap SPTEs. E.g.
2447 * if KVM supports RWX attributes in the future and the attributes are
2448 * going from R=>RW, zapping isn't strictly necessary. Unconditionally
2449 * adding the range allows KVM to require that MMU invalidations add at
2450 * least one range between begin() and end(), e.g. allows KVM to detect
2451 * bugs where the add() is missed. Relaxing the rule *might* be safe,
2452 * but it's not obvious that allowing new mappings while the attributes
2453 * are in flux is desirable or worth the complexity.
2455 kvm_mmu_invalidate_range_add(kvm, range->start, range->end);
2457 return kvm_arch_pre_set_memory_attributes(kvm, range);
2460 /* Set @attributes for the gfn range [@start, @end). */
2461 static int kvm_vm_set_mem_attributes(struct kvm *kvm, gfn_t start, gfn_t end,
2462 unsigned long attributes)
2464 struct kvm_mmu_notifier_range pre_set_range = {
2465 .start = start,
2466 .end = end,
2467 .handler = kvm_pre_set_memory_attributes,
2468 .on_lock = kvm_mmu_invalidate_begin,
2469 .flush_on_ret = true,
2470 .may_block = true,
2472 struct kvm_mmu_notifier_range post_set_range = {
2473 .start = start,
2474 .end = end,
2475 .arg.attributes = attributes,
2476 .handler = kvm_arch_post_set_memory_attributes,
2477 .on_lock = kvm_mmu_invalidate_end,
2478 .may_block = true,
2480 unsigned long i;
2481 void *entry;
2482 int r = 0;
2484 entry = attributes ? xa_mk_value(attributes) : NULL;
2486 mutex_lock(&kvm->slots_lock);
2488 /* Nothing to do if the entire range as the desired attributes. */
2489 if (kvm_range_has_memory_attributes(kvm, start, end, ~0, attributes))
2490 goto out_unlock;
2493 * Reserve memory ahead of time to avoid having to deal with failures
2494 * partway through setting the new attributes.
2496 for (i = start; i < end; i++) {
2497 r = xa_reserve(&kvm->mem_attr_array, i, GFP_KERNEL_ACCOUNT);
2498 if (r)
2499 goto out_unlock;
2502 kvm_handle_gfn_range(kvm, &pre_set_range);
2504 for (i = start; i < end; i++) {
2505 r = xa_err(xa_store(&kvm->mem_attr_array, i, entry,
2506 GFP_KERNEL_ACCOUNT));
2507 KVM_BUG_ON(r, kvm);
2510 kvm_handle_gfn_range(kvm, &post_set_range);
2512 out_unlock:
2513 mutex_unlock(&kvm->slots_lock);
2515 return r;
2517 static int kvm_vm_ioctl_set_mem_attributes(struct kvm *kvm,
2518 struct kvm_memory_attributes *attrs)
2520 gfn_t start, end;
2522 /* flags is currently not used. */
2523 if (attrs->flags)
2524 return -EINVAL;
2525 if (attrs->attributes & ~kvm_supported_mem_attributes(kvm))
2526 return -EINVAL;
2527 if (attrs->size == 0 || attrs->address + attrs->size < attrs->address)
2528 return -EINVAL;
2529 if (!PAGE_ALIGNED(attrs->address) || !PAGE_ALIGNED(attrs->size))
2530 return -EINVAL;
2532 start = attrs->address >> PAGE_SHIFT;
2533 end = (attrs->address + attrs->size) >> PAGE_SHIFT;
2536 * xarray tracks data using "unsigned long", and as a result so does
2537 * KVM. For simplicity, supports generic attributes only on 64-bit
2538 * architectures.
2540 BUILD_BUG_ON(sizeof(attrs->attributes) != sizeof(unsigned long));
2542 return kvm_vm_set_mem_attributes(kvm, start, end, attrs->attributes);
2544 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
2546 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
2548 return __gfn_to_memslot(kvm_memslots(kvm), gfn);
2550 EXPORT_SYMBOL_GPL(gfn_to_memslot);
2552 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
2554 struct kvm_memslots *slots = kvm_vcpu_memslots(vcpu);
2555 u64 gen = slots->generation;
2556 struct kvm_memory_slot *slot;
2559 * This also protects against using a memslot from a different address space,
2560 * since different address spaces have different generation numbers.
2562 if (unlikely(gen != vcpu->last_used_slot_gen)) {
2563 vcpu->last_used_slot = NULL;
2564 vcpu->last_used_slot_gen = gen;
2567 slot = try_get_memslot(vcpu->last_used_slot, gfn);
2568 if (slot)
2569 return slot;
2572 * Fall back to searching all memslots. We purposely use
2573 * search_memslots() instead of __gfn_to_memslot() to avoid
2574 * thrashing the VM-wide last_used_slot in kvm_memslots.
2576 slot = search_memslots(slots, gfn, false);
2577 if (slot) {
2578 vcpu->last_used_slot = slot;
2579 return slot;
2582 return NULL;
2585 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
2587 struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
2589 return kvm_is_visible_memslot(memslot);
2591 EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
2593 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
2595 struct kvm_memory_slot *memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2597 return kvm_is_visible_memslot(memslot);
2599 EXPORT_SYMBOL_GPL(kvm_vcpu_is_visible_gfn);
2601 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn)
2603 struct vm_area_struct *vma;
2604 unsigned long addr, size;
2606 size = PAGE_SIZE;
2608 addr = kvm_vcpu_gfn_to_hva_prot(vcpu, gfn, NULL);
2609 if (kvm_is_error_hva(addr))
2610 return PAGE_SIZE;
2612 mmap_read_lock(current->mm);
2613 vma = find_vma(current->mm, addr);
2614 if (!vma)
2615 goto out;
2617 size = vma_kernel_pagesize(vma);
2619 out:
2620 mmap_read_unlock(current->mm);
2622 return size;
2625 static bool memslot_is_readonly(const struct kvm_memory_slot *slot)
2627 return slot->flags & KVM_MEM_READONLY;
2630 static unsigned long __gfn_to_hva_many(const struct kvm_memory_slot *slot, gfn_t gfn,
2631 gfn_t *nr_pages, bool write)
2633 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
2634 return KVM_HVA_ERR_BAD;
2636 if (memslot_is_readonly(slot) && write)
2637 return KVM_HVA_ERR_RO_BAD;
2639 if (nr_pages)
2640 *nr_pages = slot->npages - (gfn - slot->base_gfn);
2642 return __gfn_to_hva_memslot(slot, gfn);
2645 static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
2646 gfn_t *nr_pages)
2648 return __gfn_to_hva_many(slot, gfn, nr_pages, true);
2651 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
2652 gfn_t gfn)
2654 return gfn_to_hva_many(slot, gfn, NULL);
2656 EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
2658 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
2660 return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
2662 EXPORT_SYMBOL_GPL(gfn_to_hva);
2664 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
2666 return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
2668 EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
2671 * Return the hva of a @gfn and the R/W attribute if possible.
2673 * @slot: the kvm_memory_slot which contains @gfn
2674 * @gfn: the gfn to be translated
2675 * @writable: used to return the read/write attribute of the @slot if the hva
2676 * is valid and @writable is not NULL
2678 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
2679 gfn_t gfn, bool *writable)
2681 unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
2683 if (!kvm_is_error_hva(hva) && writable)
2684 *writable = !memslot_is_readonly(slot);
2686 return hva;
2689 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
2691 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
2693 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2696 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
2698 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2700 return gfn_to_hva_memslot_prot(slot, gfn, writable);
2703 static bool kvm_is_ad_tracked_page(struct page *page)
2706 * Per page-flags.h, pages tagged PG_reserved "should in general not be
2707 * touched (e.g. set dirty) except by its owner".
2709 return !PageReserved(page);
2712 static void kvm_set_page_dirty(struct page *page)
2714 if (kvm_is_ad_tracked_page(page))
2715 SetPageDirty(page);
2718 static void kvm_set_page_accessed(struct page *page)
2720 if (kvm_is_ad_tracked_page(page))
2721 mark_page_accessed(page);
2724 void kvm_release_page_clean(struct page *page)
2726 if (!page)
2727 return;
2729 kvm_set_page_accessed(page);
2730 put_page(page);
2732 EXPORT_SYMBOL_GPL(kvm_release_page_clean);
2734 void kvm_release_page_dirty(struct page *page)
2736 if (!page)
2737 return;
2739 kvm_set_page_dirty(page);
2740 kvm_release_page_clean(page);
2742 EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
2744 static kvm_pfn_t kvm_resolve_pfn(struct kvm_follow_pfn *kfp, struct page *page,
2745 struct follow_pfnmap_args *map, bool writable)
2747 kvm_pfn_t pfn;
2749 WARN_ON_ONCE(!!page == !!map);
2751 if (kfp->map_writable)
2752 *kfp->map_writable = writable;
2754 if (map)
2755 pfn = map->pfn;
2756 else
2757 pfn = page_to_pfn(page);
2759 *kfp->refcounted_page = page;
2761 return pfn;
2765 * The fast path to get the writable pfn which will be stored in @pfn,
2766 * true indicates success, otherwise false is returned.
2768 static bool hva_to_pfn_fast(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2770 struct page *page;
2771 bool r;
2774 * Try the fast-only path when the caller wants to pin/get the page for
2775 * writing. If the caller only wants to read the page, KVM must go
2776 * down the full, slow path in order to avoid racing an operation that
2777 * breaks Copy-on-Write (CoW), e.g. so that KVM doesn't end up pointing
2778 * at the old, read-only page while mm/ points at a new, writable page.
2780 if (!((kfp->flags & FOLL_WRITE) || kfp->map_writable))
2781 return false;
2783 if (kfp->pin)
2784 r = pin_user_pages_fast(kfp->hva, 1, FOLL_WRITE, &page) == 1;
2785 else
2786 r = get_user_page_fast_only(kfp->hva, FOLL_WRITE, &page);
2788 if (r) {
2789 *pfn = kvm_resolve_pfn(kfp, page, NULL, true);
2790 return true;
2793 return false;
2797 * The slow path to get the pfn of the specified host virtual address,
2798 * 1 indicates success, -errno is returned if error is detected.
2800 static int hva_to_pfn_slow(struct kvm_follow_pfn *kfp, kvm_pfn_t *pfn)
2803 * When a VCPU accesses a page that is not mapped into the secondary
2804 * MMU, we lookup the page using GUP to map it, so the guest VCPU can
2805 * make progress. We always want to honor NUMA hinting faults in that
2806 * case, because GUP usage corresponds to memory accesses from the VCPU.
2807 * Otherwise, we'd not trigger NUMA hinting faults once a page is
2808 * mapped into the secondary MMU and gets accessed by a VCPU.
2810 * Note that get_user_page_fast_only() and FOLL_WRITE for now
2811 * implicitly honor NUMA hinting faults and don't need this flag.
2813 unsigned int flags = FOLL_HWPOISON | FOLL_HONOR_NUMA_FAULT | kfp->flags;
2814 struct page *page, *wpage;
2815 int npages;
2817 if (kfp->pin)
2818 npages = pin_user_pages_unlocked(kfp->hva, 1, &page, flags);
2819 else
2820 npages = get_user_pages_unlocked(kfp->hva, 1, &page, flags);
2821 if (npages != 1)
2822 return npages;
2825 * Pinning is mutually exclusive with opportunistically mapping a read
2826 * fault as writable, as KVM should never pin pages when mapping memory
2827 * into the guest (pinning is only for direct accesses from KVM).
2829 if (WARN_ON_ONCE(kfp->map_writable && kfp->pin))
2830 goto out;
2832 /* map read fault as writable if possible */
2833 if (!(flags & FOLL_WRITE) && kfp->map_writable &&
2834 get_user_page_fast_only(kfp->hva, FOLL_WRITE, &wpage)) {
2835 put_page(page);
2836 page = wpage;
2837 flags |= FOLL_WRITE;
2840 out:
2841 *pfn = kvm_resolve_pfn(kfp, page, NULL, flags & FOLL_WRITE);
2842 return npages;
2845 static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
2847 if (unlikely(!(vma->vm_flags & VM_READ)))
2848 return false;
2850 if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
2851 return false;
2853 return true;
2856 static int hva_to_pfn_remapped(struct vm_area_struct *vma,
2857 struct kvm_follow_pfn *kfp, kvm_pfn_t *p_pfn)
2859 struct follow_pfnmap_args args = { .vma = vma, .address = kfp->hva };
2860 bool write_fault = kfp->flags & FOLL_WRITE;
2861 int r;
2864 * Remapped memory cannot be pinned in any meaningful sense. Bail if
2865 * the caller wants to pin the page, i.e. access the page outside of
2866 * MMU notifier protection, and unsafe umappings are disallowed.
2868 if (kfp->pin && !allow_unsafe_mappings)
2869 return -EINVAL;
2871 r = follow_pfnmap_start(&args);
2872 if (r) {
2874 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
2875 * not call the fault handler, so do it here.
2877 bool unlocked = false;
2878 r = fixup_user_fault(current->mm, kfp->hva,
2879 (write_fault ? FAULT_FLAG_WRITE : 0),
2880 &unlocked);
2881 if (unlocked)
2882 return -EAGAIN;
2883 if (r)
2884 return r;
2886 r = follow_pfnmap_start(&args);
2887 if (r)
2888 return r;
2891 if (write_fault && !args.writable) {
2892 *p_pfn = KVM_PFN_ERR_RO_FAULT;
2893 goto out;
2896 *p_pfn = kvm_resolve_pfn(kfp, NULL, &args, args.writable);
2897 out:
2898 follow_pfnmap_end(&args);
2899 return r;
2902 kvm_pfn_t hva_to_pfn(struct kvm_follow_pfn *kfp)
2904 struct vm_area_struct *vma;
2905 kvm_pfn_t pfn;
2906 int npages, r;
2908 might_sleep();
2910 if (WARN_ON_ONCE(!kfp->refcounted_page))
2911 return KVM_PFN_ERR_FAULT;
2913 if (hva_to_pfn_fast(kfp, &pfn))
2914 return pfn;
2916 npages = hva_to_pfn_slow(kfp, &pfn);
2917 if (npages == 1)
2918 return pfn;
2919 if (npages == -EINTR || npages == -EAGAIN)
2920 return KVM_PFN_ERR_SIGPENDING;
2921 if (npages == -EHWPOISON)
2922 return KVM_PFN_ERR_HWPOISON;
2924 mmap_read_lock(current->mm);
2925 retry:
2926 vma = vma_lookup(current->mm, kfp->hva);
2928 if (vma == NULL)
2929 pfn = KVM_PFN_ERR_FAULT;
2930 else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
2931 r = hva_to_pfn_remapped(vma, kfp, &pfn);
2932 if (r == -EAGAIN)
2933 goto retry;
2934 if (r < 0)
2935 pfn = KVM_PFN_ERR_FAULT;
2936 } else {
2937 if ((kfp->flags & FOLL_NOWAIT) &&
2938 vma_is_valid(vma, kfp->flags & FOLL_WRITE))
2939 pfn = KVM_PFN_ERR_NEEDS_IO;
2940 else
2941 pfn = KVM_PFN_ERR_FAULT;
2943 mmap_read_unlock(current->mm);
2944 return pfn;
2947 static kvm_pfn_t kvm_follow_pfn(struct kvm_follow_pfn *kfp)
2949 kfp->hva = __gfn_to_hva_many(kfp->slot, kfp->gfn, NULL,
2950 kfp->flags & FOLL_WRITE);
2952 if (kfp->hva == KVM_HVA_ERR_RO_BAD)
2953 return KVM_PFN_ERR_RO_FAULT;
2955 if (kvm_is_error_hva(kfp->hva))
2956 return KVM_PFN_NOSLOT;
2958 if (memslot_is_readonly(kfp->slot) && kfp->map_writable) {
2959 *kfp->map_writable = false;
2960 kfp->map_writable = NULL;
2963 return hva_to_pfn(kfp);
2966 kvm_pfn_t __kvm_faultin_pfn(const struct kvm_memory_slot *slot, gfn_t gfn,
2967 unsigned int foll, bool *writable,
2968 struct page **refcounted_page)
2970 struct kvm_follow_pfn kfp = {
2971 .slot = slot,
2972 .gfn = gfn,
2973 .flags = foll,
2974 .map_writable = writable,
2975 .refcounted_page = refcounted_page,
2978 if (WARN_ON_ONCE(!writable || !refcounted_page))
2979 return KVM_PFN_ERR_FAULT;
2981 *writable = false;
2982 *refcounted_page = NULL;
2984 return kvm_follow_pfn(&kfp);
2986 EXPORT_SYMBOL_GPL(__kvm_faultin_pfn);
2988 int kvm_prefetch_pages(struct kvm_memory_slot *slot, gfn_t gfn,
2989 struct page **pages, int nr_pages)
2991 unsigned long addr;
2992 gfn_t entry = 0;
2994 addr = gfn_to_hva_many(slot, gfn, &entry);
2995 if (kvm_is_error_hva(addr))
2996 return -1;
2998 if (entry < nr_pages)
2999 return 0;
3001 return get_user_pages_fast_only(addr, nr_pages, FOLL_WRITE, pages);
3003 EXPORT_SYMBOL_GPL(kvm_prefetch_pages);
3006 * Don't use this API unless you are absolutely, positively certain that KVM
3007 * needs to get a struct page, e.g. to pin the page for firmware DMA.
3009 * FIXME: Users of this API likely need to FOLL_PIN the page, not just elevate
3010 * its refcount.
3012 struct page *__gfn_to_page(struct kvm *kvm, gfn_t gfn, bool write)
3014 struct page *refcounted_page = NULL;
3015 struct kvm_follow_pfn kfp = {
3016 .slot = gfn_to_memslot(kvm, gfn),
3017 .gfn = gfn,
3018 .flags = write ? FOLL_WRITE : 0,
3019 .refcounted_page = &refcounted_page,
3022 (void)kvm_follow_pfn(&kfp);
3023 return refcounted_page;
3025 EXPORT_SYMBOL_GPL(__gfn_to_page);
3027 int __kvm_vcpu_map(struct kvm_vcpu *vcpu, gfn_t gfn, struct kvm_host_map *map,
3028 bool writable)
3030 struct kvm_follow_pfn kfp = {
3031 .slot = gfn_to_memslot(vcpu->kvm, gfn),
3032 .gfn = gfn,
3033 .flags = writable ? FOLL_WRITE : 0,
3034 .refcounted_page = &map->pinned_page,
3035 .pin = true,
3038 map->pinned_page = NULL;
3039 map->page = NULL;
3040 map->hva = NULL;
3041 map->gfn = gfn;
3042 map->writable = writable;
3044 map->pfn = kvm_follow_pfn(&kfp);
3045 if (is_error_noslot_pfn(map->pfn))
3046 return -EINVAL;
3048 if (pfn_valid(map->pfn)) {
3049 map->page = pfn_to_page(map->pfn);
3050 map->hva = kmap(map->page);
3051 #ifdef CONFIG_HAS_IOMEM
3052 } else {
3053 map->hva = memremap(pfn_to_hpa(map->pfn), PAGE_SIZE, MEMREMAP_WB);
3054 #endif
3057 return map->hva ? 0 : -EFAULT;
3059 EXPORT_SYMBOL_GPL(__kvm_vcpu_map);
3061 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map)
3063 if (!map->hva)
3064 return;
3066 if (map->page)
3067 kunmap(map->page);
3068 #ifdef CONFIG_HAS_IOMEM
3069 else
3070 memunmap(map->hva);
3071 #endif
3073 if (map->writable)
3074 kvm_vcpu_mark_page_dirty(vcpu, map->gfn);
3076 if (map->pinned_page) {
3077 if (map->writable)
3078 kvm_set_page_dirty(map->pinned_page);
3079 kvm_set_page_accessed(map->pinned_page);
3080 unpin_user_page(map->pinned_page);
3083 map->hva = NULL;
3084 map->page = NULL;
3085 map->pinned_page = NULL;
3087 EXPORT_SYMBOL_GPL(kvm_vcpu_unmap);
3089 static int next_segment(unsigned long len, int offset)
3091 if (len > PAGE_SIZE - offset)
3092 return PAGE_SIZE - offset;
3093 else
3094 return len;
3097 /* Copy @len bytes from guest memory at '(@gfn * PAGE_SIZE) + @offset' to @data */
3098 static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
3099 void *data, int offset, int len)
3101 int r;
3102 unsigned long addr;
3104 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3105 return -EFAULT;
3107 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3108 if (kvm_is_error_hva(addr))
3109 return -EFAULT;
3110 r = __copy_from_user(data, (void __user *)addr + offset, len);
3111 if (r)
3112 return -EFAULT;
3113 return 0;
3116 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
3117 int len)
3119 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3121 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3123 EXPORT_SYMBOL_GPL(kvm_read_guest_page);
3125 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
3126 int offset, int len)
3128 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3130 return __kvm_read_guest_page(slot, gfn, data, offset, len);
3132 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
3134 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
3136 gfn_t gfn = gpa >> PAGE_SHIFT;
3137 int seg;
3138 int offset = offset_in_page(gpa);
3139 int ret;
3141 while ((seg = next_segment(len, offset)) != 0) {
3142 ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
3143 if (ret < 0)
3144 return ret;
3145 offset = 0;
3146 len -= seg;
3147 data += seg;
3148 ++gfn;
3150 return 0;
3152 EXPORT_SYMBOL_GPL(kvm_read_guest);
3154 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
3156 gfn_t gfn = gpa >> PAGE_SHIFT;
3157 int seg;
3158 int offset = offset_in_page(gpa);
3159 int ret;
3161 while ((seg = next_segment(len, offset)) != 0) {
3162 ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
3163 if (ret < 0)
3164 return ret;
3165 offset = 0;
3166 len -= seg;
3167 data += seg;
3168 ++gfn;
3170 return 0;
3172 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
3174 static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
3175 void *data, int offset, unsigned long len)
3177 int r;
3178 unsigned long addr;
3180 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3181 return -EFAULT;
3183 addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
3184 if (kvm_is_error_hva(addr))
3185 return -EFAULT;
3186 pagefault_disable();
3187 r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
3188 pagefault_enable();
3189 if (r)
3190 return -EFAULT;
3191 return 0;
3194 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
3195 void *data, unsigned long len)
3197 gfn_t gfn = gpa >> PAGE_SHIFT;
3198 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3199 int offset = offset_in_page(gpa);
3201 return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
3203 EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
3205 /* Copy @len bytes from @data into guest memory at '(@gfn * PAGE_SIZE) + @offset' */
3206 static int __kvm_write_guest_page(struct kvm *kvm,
3207 struct kvm_memory_slot *memslot, gfn_t gfn,
3208 const void *data, int offset, int len)
3210 int r;
3211 unsigned long addr;
3213 if (WARN_ON_ONCE(offset + len > PAGE_SIZE))
3214 return -EFAULT;
3216 addr = gfn_to_hva_memslot(memslot, gfn);
3217 if (kvm_is_error_hva(addr))
3218 return -EFAULT;
3219 r = __copy_to_user((void __user *)addr + offset, data, len);
3220 if (r)
3221 return -EFAULT;
3222 mark_page_dirty_in_slot(kvm, memslot, gfn);
3223 return 0;
3226 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
3227 const void *data, int offset, int len)
3229 struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
3231 return __kvm_write_guest_page(kvm, slot, gfn, data, offset, len);
3233 EXPORT_SYMBOL_GPL(kvm_write_guest_page);
3235 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3236 const void *data, int offset, int len)
3238 struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3240 return __kvm_write_guest_page(vcpu->kvm, slot, gfn, data, offset, len);
3242 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
3244 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
3245 unsigned long len)
3247 gfn_t gfn = gpa >> PAGE_SHIFT;
3248 int seg;
3249 int offset = offset_in_page(gpa);
3250 int ret;
3252 while ((seg = next_segment(len, offset)) != 0) {
3253 ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
3254 if (ret < 0)
3255 return ret;
3256 offset = 0;
3257 len -= seg;
3258 data += seg;
3259 ++gfn;
3261 return 0;
3263 EXPORT_SYMBOL_GPL(kvm_write_guest);
3265 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
3266 unsigned long len)
3268 gfn_t gfn = gpa >> PAGE_SHIFT;
3269 int seg;
3270 int offset = offset_in_page(gpa);
3271 int ret;
3273 while ((seg = next_segment(len, offset)) != 0) {
3274 ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
3275 if (ret < 0)
3276 return ret;
3277 offset = 0;
3278 len -= seg;
3279 data += seg;
3280 ++gfn;
3282 return 0;
3284 EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
3286 static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
3287 struct gfn_to_hva_cache *ghc,
3288 gpa_t gpa, unsigned long len)
3290 int offset = offset_in_page(gpa);
3291 gfn_t start_gfn = gpa >> PAGE_SHIFT;
3292 gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
3293 gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
3294 gfn_t nr_pages_avail;
3296 /* Update ghc->generation before performing any error checks. */
3297 ghc->generation = slots->generation;
3299 if (start_gfn > end_gfn) {
3300 ghc->hva = KVM_HVA_ERR_BAD;
3301 return -EINVAL;
3305 * If the requested region crosses two memslots, we still
3306 * verify that the entire region is valid here.
3308 for ( ; start_gfn <= end_gfn; start_gfn += nr_pages_avail) {
3309 ghc->memslot = __gfn_to_memslot(slots, start_gfn);
3310 ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
3311 &nr_pages_avail);
3312 if (kvm_is_error_hva(ghc->hva))
3313 return -EFAULT;
3316 /* Use the slow path for cross page reads and writes. */
3317 if (nr_pages_needed == 1)
3318 ghc->hva += offset;
3319 else
3320 ghc->memslot = NULL;
3322 ghc->gpa = gpa;
3323 ghc->len = len;
3324 return 0;
3327 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3328 gpa_t gpa, unsigned long len)
3330 struct kvm_memslots *slots = kvm_memslots(kvm);
3331 return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
3333 EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
3335 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3336 void *data, unsigned int offset,
3337 unsigned long len)
3339 struct kvm_memslots *slots = kvm_memslots(kvm);
3340 int r;
3341 gpa_t gpa = ghc->gpa + offset;
3343 if (WARN_ON_ONCE(len + offset > ghc->len))
3344 return -EINVAL;
3346 if (slots->generation != ghc->generation) {
3347 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3348 return -EFAULT;
3351 if (kvm_is_error_hva(ghc->hva))
3352 return -EFAULT;
3354 if (unlikely(!ghc->memslot))
3355 return kvm_write_guest(kvm, gpa, data, len);
3357 r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
3358 if (r)
3359 return -EFAULT;
3360 mark_page_dirty_in_slot(kvm, ghc->memslot, gpa >> PAGE_SHIFT);
3362 return 0;
3364 EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
3366 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3367 void *data, unsigned long len)
3369 return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
3371 EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
3373 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3374 void *data, unsigned int offset,
3375 unsigned long len)
3377 struct kvm_memslots *slots = kvm_memslots(kvm);
3378 int r;
3379 gpa_t gpa = ghc->gpa + offset;
3381 if (WARN_ON_ONCE(len + offset > ghc->len))
3382 return -EINVAL;
3384 if (slots->generation != ghc->generation) {
3385 if (__kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len))
3386 return -EFAULT;
3389 if (kvm_is_error_hva(ghc->hva))
3390 return -EFAULT;
3392 if (unlikely(!ghc->memslot))
3393 return kvm_read_guest(kvm, gpa, data, len);
3395 r = __copy_from_user(data, (void __user *)ghc->hva + offset, len);
3396 if (r)
3397 return -EFAULT;
3399 return 0;
3401 EXPORT_SYMBOL_GPL(kvm_read_guest_offset_cached);
3403 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
3404 void *data, unsigned long len)
3406 return kvm_read_guest_offset_cached(kvm, ghc, data, 0, len);
3408 EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
3410 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
3412 const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
3413 gfn_t gfn = gpa >> PAGE_SHIFT;
3414 int seg;
3415 int offset = offset_in_page(gpa);
3416 int ret;
3418 while ((seg = next_segment(len, offset)) != 0) {
3419 ret = kvm_write_guest_page(kvm, gfn, zero_page, offset, seg);
3420 if (ret < 0)
3421 return ret;
3422 offset = 0;
3423 len -= seg;
3424 ++gfn;
3426 return 0;
3428 EXPORT_SYMBOL_GPL(kvm_clear_guest);
3430 void mark_page_dirty_in_slot(struct kvm *kvm,
3431 const struct kvm_memory_slot *memslot,
3432 gfn_t gfn)
3434 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
3436 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3437 if (WARN_ON_ONCE(vcpu && vcpu->kvm != kvm))
3438 return;
3440 WARN_ON_ONCE(!vcpu && !kvm_arch_allow_write_without_running_vcpu(kvm));
3441 #endif
3443 if (memslot && kvm_slot_dirty_track_enabled(memslot)) {
3444 unsigned long rel_gfn = gfn - memslot->base_gfn;
3445 u32 slot = (memslot->as_id << 16) | memslot->id;
3447 if (kvm->dirty_ring_size && vcpu)
3448 kvm_dirty_ring_push(vcpu, slot, rel_gfn);
3449 else if (memslot->dirty_bitmap)
3450 set_bit_le(rel_gfn, memslot->dirty_bitmap);
3453 EXPORT_SYMBOL_GPL(mark_page_dirty_in_slot);
3455 void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
3457 struct kvm_memory_slot *memslot;
3459 memslot = gfn_to_memslot(kvm, gfn);
3460 mark_page_dirty_in_slot(kvm, memslot, gfn);
3462 EXPORT_SYMBOL_GPL(mark_page_dirty);
3464 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
3466 struct kvm_memory_slot *memslot;
3468 memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3469 mark_page_dirty_in_slot(vcpu->kvm, memslot, gfn);
3471 EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
3473 void kvm_sigset_activate(struct kvm_vcpu *vcpu)
3475 if (!vcpu->sigset_active)
3476 return;
3479 * This does a lockless modification of ->real_blocked, which is fine
3480 * because, only current can change ->real_blocked and all readers of
3481 * ->real_blocked don't care as long ->real_blocked is always a subset
3482 * of ->blocked.
3484 sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
3487 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
3489 if (!vcpu->sigset_active)
3490 return;
3492 sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
3493 sigemptyset(&current->real_blocked);
3496 static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
3498 unsigned int old, val, grow, grow_start;
3500 old = val = vcpu->halt_poll_ns;
3501 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3502 grow = READ_ONCE(halt_poll_ns_grow);
3503 if (!grow)
3504 goto out;
3506 val *= grow;
3507 if (val < grow_start)
3508 val = grow_start;
3510 vcpu->halt_poll_ns = val;
3511 out:
3512 trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
3515 static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
3517 unsigned int old, val, shrink, grow_start;
3519 old = val = vcpu->halt_poll_ns;
3520 shrink = READ_ONCE(halt_poll_ns_shrink);
3521 grow_start = READ_ONCE(halt_poll_ns_grow_start);
3522 if (shrink == 0)
3523 val = 0;
3524 else
3525 val /= shrink;
3527 if (val < grow_start)
3528 val = 0;
3530 vcpu->halt_poll_ns = val;
3531 trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
3534 static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
3536 int ret = -EINTR;
3537 int idx = srcu_read_lock(&vcpu->kvm->srcu);
3539 if (kvm_arch_vcpu_runnable(vcpu))
3540 goto out;
3541 if (kvm_cpu_has_pending_timer(vcpu))
3542 goto out;
3543 if (signal_pending(current))
3544 goto out;
3545 if (kvm_check_request(KVM_REQ_UNBLOCK, vcpu))
3546 goto out;
3548 ret = 0;
3549 out:
3550 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3551 return ret;
3555 * Block the vCPU until the vCPU is runnable, an event arrives, or a signal is
3556 * pending. This is mostly used when halting a vCPU, but may also be used
3557 * directly for other vCPU non-runnable states, e.g. x86's Wait-For-SIPI.
3559 bool kvm_vcpu_block(struct kvm_vcpu *vcpu)
3561 struct rcuwait *wait = kvm_arch_vcpu_get_wait(vcpu);
3562 bool waited = false;
3564 vcpu->stat.generic.blocking = 1;
3566 preempt_disable();
3567 kvm_arch_vcpu_blocking(vcpu);
3568 prepare_to_rcuwait(wait);
3569 preempt_enable();
3571 for (;;) {
3572 set_current_state(TASK_INTERRUPTIBLE);
3574 if (kvm_vcpu_check_block(vcpu) < 0)
3575 break;
3577 waited = true;
3578 schedule();
3581 preempt_disable();
3582 finish_rcuwait(wait);
3583 kvm_arch_vcpu_unblocking(vcpu);
3584 preempt_enable();
3586 vcpu->stat.generic.blocking = 0;
3588 return waited;
3591 static inline void update_halt_poll_stats(struct kvm_vcpu *vcpu, ktime_t start,
3592 ktime_t end, bool success)
3594 struct kvm_vcpu_stat_generic *stats = &vcpu->stat.generic;
3595 u64 poll_ns = ktime_to_ns(ktime_sub(end, start));
3597 ++vcpu->stat.generic.halt_attempted_poll;
3599 if (success) {
3600 ++vcpu->stat.generic.halt_successful_poll;
3602 if (!vcpu_valid_wakeup(vcpu))
3603 ++vcpu->stat.generic.halt_poll_invalid;
3605 stats->halt_poll_success_ns += poll_ns;
3606 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_success_hist, poll_ns);
3607 } else {
3608 stats->halt_poll_fail_ns += poll_ns;
3609 KVM_STATS_LOG_HIST_UPDATE(stats->halt_poll_fail_hist, poll_ns);
3613 static unsigned int kvm_vcpu_max_halt_poll_ns(struct kvm_vcpu *vcpu)
3615 struct kvm *kvm = vcpu->kvm;
3617 if (kvm->override_halt_poll_ns) {
3619 * Ensure kvm->max_halt_poll_ns is not read before
3620 * kvm->override_halt_poll_ns.
3622 * Pairs with the smp_wmb() when enabling KVM_CAP_HALT_POLL.
3624 smp_rmb();
3625 return READ_ONCE(kvm->max_halt_poll_ns);
3628 return READ_ONCE(halt_poll_ns);
3632 * Emulate a vCPU halt condition, e.g. HLT on x86, WFI on arm, etc... If halt
3633 * polling is enabled, busy wait for a short time before blocking to avoid the
3634 * expensive block+unblock sequence if a wake event arrives soon after the vCPU
3635 * is halted.
3637 void kvm_vcpu_halt(struct kvm_vcpu *vcpu)
3639 unsigned int max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3640 bool halt_poll_allowed = !kvm_arch_no_poll(vcpu);
3641 ktime_t start, cur, poll_end;
3642 bool waited = false;
3643 bool do_halt_poll;
3644 u64 halt_ns;
3646 if (vcpu->halt_poll_ns > max_halt_poll_ns)
3647 vcpu->halt_poll_ns = max_halt_poll_ns;
3649 do_halt_poll = halt_poll_allowed && vcpu->halt_poll_ns;
3651 start = cur = poll_end = ktime_get();
3652 if (do_halt_poll) {
3653 ktime_t stop = ktime_add_ns(start, vcpu->halt_poll_ns);
3655 do {
3656 if (kvm_vcpu_check_block(vcpu) < 0)
3657 goto out;
3658 cpu_relax();
3659 poll_end = cur = ktime_get();
3660 } while (kvm_vcpu_can_poll(cur, stop));
3663 waited = kvm_vcpu_block(vcpu);
3665 cur = ktime_get();
3666 if (waited) {
3667 vcpu->stat.generic.halt_wait_ns +=
3668 ktime_to_ns(cur) - ktime_to_ns(poll_end);
3669 KVM_STATS_LOG_HIST_UPDATE(vcpu->stat.generic.halt_wait_hist,
3670 ktime_to_ns(cur) - ktime_to_ns(poll_end));
3672 out:
3673 /* The total time the vCPU was "halted", including polling time. */
3674 halt_ns = ktime_to_ns(cur) - ktime_to_ns(start);
3677 * Note, halt-polling is considered successful so long as the vCPU was
3678 * never actually scheduled out, i.e. even if the wake event arrived
3679 * after of the halt-polling loop itself, but before the full wait.
3681 if (do_halt_poll)
3682 update_halt_poll_stats(vcpu, start, poll_end, !waited);
3684 if (halt_poll_allowed) {
3685 /* Recompute the max halt poll time in case it changed. */
3686 max_halt_poll_ns = kvm_vcpu_max_halt_poll_ns(vcpu);
3688 if (!vcpu_valid_wakeup(vcpu)) {
3689 shrink_halt_poll_ns(vcpu);
3690 } else if (max_halt_poll_ns) {
3691 if (halt_ns <= vcpu->halt_poll_ns)
3693 /* we had a long block, shrink polling */
3694 else if (vcpu->halt_poll_ns &&
3695 halt_ns > max_halt_poll_ns)
3696 shrink_halt_poll_ns(vcpu);
3697 /* we had a short halt and our poll time is too small */
3698 else if (vcpu->halt_poll_ns < max_halt_poll_ns &&
3699 halt_ns < max_halt_poll_ns)
3700 grow_halt_poll_ns(vcpu);
3701 } else {
3702 vcpu->halt_poll_ns = 0;
3706 trace_kvm_vcpu_wakeup(halt_ns, waited, vcpu_valid_wakeup(vcpu));
3708 EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
3710 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
3712 if (__kvm_vcpu_wake_up(vcpu)) {
3713 WRITE_ONCE(vcpu->ready, true);
3714 ++vcpu->stat.generic.halt_wakeup;
3715 return true;
3718 return false;
3720 EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
3722 #ifndef CONFIG_S390
3724 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
3726 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
3728 int me, cpu;
3730 if (kvm_vcpu_wake_up(vcpu))
3731 return;
3733 me = get_cpu();
3735 * The only state change done outside the vcpu mutex is IN_GUEST_MODE
3736 * to EXITING_GUEST_MODE. Therefore the moderately expensive "should
3737 * kick" check does not need atomic operations if kvm_vcpu_kick is used
3738 * within the vCPU thread itself.
3740 if (vcpu == __this_cpu_read(kvm_running_vcpu)) {
3741 if (vcpu->mode == IN_GUEST_MODE)
3742 WRITE_ONCE(vcpu->mode, EXITING_GUEST_MODE);
3743 goto out;
3747 * Note, the vCPU could get migrated to a different pCPU at any point
3748 * after kvm_arch_vcpu_should_kick(), which could result in sending an
3749 * IPI to the previous pCPU. But, that's ok because the purpose of the
3750 * IPI is to force the vCPU to leave IN_GUEST_MODE, and migrating the
3751 * vCPU also requires it to leave IN_GUEST_MODE.
3753 if (kvm_arch_vcpu_should_kick(vcpu)) {
3754 cpu = READ_ONCE(vcpu->cpu);
3755 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
3756 smp_send_reschedule(cpu);
3758 out:
3759 put_cpu();
3761 EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
3762 #endif /* !CONFIG_S390 */
3764 int kvm_vcpu_yield_to(struct kvm_vcpu *target)
3766 struct task_struct *task = NULL;
3767 int ret;
3769 if (!read_trylock(&target->pid_lock))
3770 return 0;
3772 if (target->pid)
3773 task = get_pid_task(target->pid, PIDTYPE_PID);
3775 read_unlock(&target->pid_lock);
3777 if (!task)
3778 return 0;
3779 ret = yield_to(task, 1);
3780 put_task_struct(task);
3782 return ret;
3784 EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
3787 * Helper that checks whether a VCPU is eligible for directed yield.
3788 * Most eligible candidate to yield is decided by following heuristics:
3790 * (a) VCPU which has not done pl-exit or cpu relax intercepted recently
3791 * (preempted lock holder), indicated by @in_spin_loop.
3792 * Set at the beginning and cleared at the end of interception/PLE handler.
3794 * (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
3795 * chance last time (mostly it has become eligible now since we have probably
3796 * yielded to lockholder in last iteration. This is done by toggling
3797 * @dy_eligible each time a VCPU checked for eligibility.)
3799 * Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
3800 * to preempted lock-holder could result in wrong VCPU selection and CPU
3801 * burning. Giving priority for a potential lock-holder increases lock
3802 * progress.
3804 * Since algorithm is based on heuristics, accessing another VCPU data without
3805 * locking does not harm. It may result in trying to yield to same VCPU, fail
3806 * and continue with next VCPU and so on.
3808 static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
3810 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
3811 bool eligible;
3813 eligible = !vcpu->spin_loop.in_spin_loop ||
3814 vcpu->spin_loop.dy_eligible;
3816 if (vcpu->spin_loop.in_spin_loop)
3817 kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
3819 return eligible;
3820 #else
3821 return true;
3822 #endif
3826 * Unlike kvm_arch_vcpu_runnable, this function is called outside
3827 * a vcpu_load/vcpu_put pair. However, for most architectures
3828 * kvm_arch_vcpu_runnable does not require vcpu_load.
3830 bool __weak kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
3832 return kvm_arch_vcpu_runnable(vcpu);
3835 static bool vcpu_dy_runnable(struct kvm_vcpu *vcpu)
3837 if (kvm_arch_dy_runnable(vcpu))
3838 return true;
3840 #ifdef CONFIG_KVM_ASYNC_PF
3841 if (!list_empty_careful(&vcpu->async_pf.done))
3842 return true;
3843 #endif
3845 return false;
3849 * By default, simply query the target vCPU's current mode when checking if a
3850 * vCPU was preempted in kernel mode. All architectures except x86 (or more
3851 * specifical, except VMX) allow querying whether or not a vCPU is in kernel
3852 * mode even if the vCPU is NOT loaded, i.e. using kvm_arch_vcpu_in_kernel()
3853 * directly for cross-vCPU checks is functionally correct and accurate.
3855 bool __weak kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu)
3857 return kvm_arch_vcpu_in_kernel(vcpu);
3860 bool __weak kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
3862 return false;
3865 void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
3867 int nr_vcpus, start, i, idx, yielded;
3868 struct kvm *kvm = me->kvm;
3869 struct kvm_vcpu *vcpu;
3870 int try = 3;
3872 nr_vcpus = atomic_read(&kvm->online_vcpus);
3873 if (nr_vcpus < 2)
3874 return;
3876 /* Pairs with the smp_wmb() in kvm_vm_ioctl_create_vcpu(). */
3877 smp_rmb();
3879 kvm_vcpu_set_in_spin_loop(me, true);
3882 * The current vCPU ("me") is spinning in kernel mode, i.e. is likely
3883 * waiting for a resource to become available. Attempt to yield to a
3884 * vCPU that is runnable, but not currently running, e.g. because the
3885 * vCPU was preempted by a higher priority task. With luck, the vCPU
3886 * that was preempted is holding a lock or some other resource that the
3887 * current vCPU is waiting to acquire, and yielding to the other vCPU
3888 * will allow it to make forward progress and release the lock (or kick
3889 * the spinning vCPU, etc).
3891 * Since KVM has no insight into what exactly the guest is doing,
3892 * approximate a round-robin selection by iterating over all vCPUs,
3893 * starting at the last boosted vCPU. I.e. if N=kvm->last_boosted_vcpu,
3894 * iterate over vCPU[N+1]..vCPU[N-1], wrapping as needed.
3896 * Note, this is inherently racy, e.g. if multiple vCPUs are spinning,
3897 * they may all try to yield to the same vCPU(s). But as above, this
3898 * is all best effort due to KVM's lack of visibility into the guest.
3900 start = READ_ONCE(kvm->last_boosted_vcpu) + 1;
3901 for (i = 0; i < nr_vcpus; i++) {
3902 idx = (start + i) % nr_vcpus;
3903 if (idx == me->vcpu_idx)
3904 continue;
3906 vcpu = xa_load(&kvm->vcpu_array, idx);
3907 if (!READ_ONCE(vcpu->ready))
3908 continue;
3909 if (kvm_vcpu_is_blocking(vcpu) && !vcpu_dy_runnable(vcpu))
3910 continue;
3913 * Treat the target vCPU as being in-kernel if it has a pending
3914 * interrupt, as the vCPU trying to yield may be spinning
3915 * waiting on IPI delivery, i.e. the target vCPU is in-kernel
3916 * for the purposes of directed yield.
3918 if (READ_ONCE(vcpu->preempted) && yield_to_kernel_mode &&
3919 !kvm_arch_dy_has_pending_interrupt(vcpu) &&
3920 !kvm_arch_vcpu_preempted_in_kernel(vcpu))
3921 continue;
3923 if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
3924 continue;
3926 yielded = kvm_vcpu_yield_to(vcpu);
3927 if (yielded > 0) {
3928 WRITE_ONCE(kvm->last_boosted_vcpu, i);
3929 break;
3930 } else if (yielded < 0 && !--try) {
3931 break;
3934 kvm_vcpu_set_in_spin_loop(me, false);
3936 /* Ensure vcpu is not eligible during next spinloop */
3937 kvm_vcpu_set_dy_eligible(me, false);
3939 EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
3941 static bool kvm_page_in_dirty_ring(struct kvm *kvm, unsigned long pgoff)
3943 #ifdef CONFIG_HAVE_KVM_DIRTY_RING
3944 return (pgoff >= KVM_DIRTY_LOG_PAGE_OFFSET) &&
3945 (pgoff < KVM_DIRTY_LOG_PAGE_OFFSET +
3946 kvm->dirty_ring_size / PAGE_SIZE);
3947 #else
3948 return false;
3949 #endif
3952 static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
3954 struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
3955 struct page *page;
3957 if (vmf->pgoff == 0)
3958 page = virt_to_page(vcpu->run);
3959 #ifdef CONFIG_X86
3960 else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
3961 page = virt_to_page(vcpu->arch.pio_data);
3962 #endif
3963 #ifdef CONFIG_KVM_MMIO
3964 else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
3965 page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
3966 #endif
3967 else if (kvm_page_in_dirty_ring(vcpu->kvm, vmf->pgoff))
3968 page = kvm_dirty_ring_get_page(
3969 &vcpu->dirty_ring,
3970 vmf->pgoff - KVM_DIRTY_LOG_PAGE_OFFSET);
3971 else
3972 return kvm_arch_vcpu_fault(vcpu, vmf);
3973 get_page(page);
3974 vmf->page = page;
3975 return 0;
3978 static const struct vm_operations_struct kvm_vcpu_vm_ops = {
3979 .fault = kvm_vcpu_fault,
3982 static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
3984 struct kvm_vcpu *vcpu = file->private_data;
3985 unsigned long pages = vma_pages(vma);
3987 if ((kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff) ||
3988 kvm_page_in_dirty_ring(vcpu->kvm, vma->vm_pgoff + pages - 1)) &&
3989 ((vma->vm_flags & VM_EXEC) || !(vma->vm_flags & VM_SHARED)))
3990 return -EINVAL;
3992 vma->vm_ops = &kvm_vcpu_vm_ops;
3993 return 0;
3996 static int kvm_vcpu_release(struct inode *inode, struct file *filp)
3998 struct kvm_vcpu *vcpu = filp->private_data;
4000 kvm_put_kvm(vcpu->kvm);
4001 return 0;
4004 static struct file_operations kvm_vcpu_fops = {
4005 .release = kvm_vcpu_release,
4006 .unlocked_ioctl = kvm_vcpu_ioctl,
4007 .mmap = kvm_vcpu_mmap,
4008 .llseek = noop_llseek,
4009 KVM_COMPAT(kvm_vcpu_compat_ioctl),
4013 * Allocates an inode for the vcpu.
4015 static int create_vcpu_fd(struct kvm_vcpu *vcpu)
4017 char name[8 + 1 + ITOA_MAX_LEN + 1];
4019 snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
4020 return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
4023 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
4024 static int vcpu_get_pid(void *data, u64 *val)
4026 struct kvm_vcpu *vcpu = data;
4028 read_lock(&vcpu->pid_lock);
4029 *val = pid_nr(vcpu->pid);
4030 read_unlock(&vcpu->pid_lock);
4031 return 0;
4034 DEFINE_SIMPLE_ATTRIBUTE(vcpu_get_pid_fops, vcpu_get_pid, NULL, "%llu\n");
4036 static void kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
4038 struct dentry *debugfs_dentry;
4039 char dir_name[ITOA_MAX_LEN * 2];
4041 if (!debugfs_initialized())
4042 return;
4044 snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
4045 debugfs_dentry = debugfs_create_dir(dir_name,
4046 vcpu->kvm->debugfs_dentry);
4047 debugfs_create_file("pid", 0444, debugfs_dentry, vcpu,
4048 &vcpu_get_pid_fops);
4050 kvm_arch_create_vcpu_debugfs(vcpu, debugfs_dentry);
4052 #endif
4055 * Creates some virtual cpus. Good luck creating more than one.
4057 static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, unsigned long id)
4059 int r;
4060 struct kvm_vcpu *vcpu;
4061 struct page *page;
4064 * KVM tracks vCPU IDs as 'int', be kind to userspace and reject
4065 * too-large values instead of silently truncating.
4067 * Ensure KVM_MAX_VCPU_IDS isn't pushed above INT_MAX without first
4068 * changing the storage type (at the very least, IDs should be tracked
4069 * as unsigned ints).
4071 BUILD_BUG_ON(KVM_MAX_VCPU_IDS > INT_MAX);
4072 if (id >= KVM_MAX_VCPU_IDS)
4073 return -EINVAL;
4075 mutex_lock(&kvm->lock);
4076 if (kvm->created_vcpus >= kvm->max_vcpus) {
4077 mutex_unlock(&kvm->lock);
4078 return -EINVAL;
4081 r = kvm_arch_vcpu_precreate(kvm, id);
4082 if (r) {
4083 mutex_unlock(&kvm->lock);
4084 return r;
4087 kvm->created_vcpus++;
4088 mutex_unlock(&kvm->lock);
4090 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL_ACCOUNT);
4091 if (!vcpu) {
4092 r = -ENOMEM;
4093 goto vcpu_decrement;
4096 BUILD_BUG_ON(sizeof(struct kvm_run) > PAGE_SIZE);
4097 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
4098 if (!page) {
4099 r = -ENOMEM;
4100 goto vcpu_free;
4102 vcpu->run = page_address(page);
4104 kvm_vcpu_init(vcpu, kvm, id);
4106 r = kvm_arch_vcpu_create(vcpu);
4107 if (r)
4108 goto vcpu_free_run_page;
4110 if (kvm->dirty_ring_size) {
4111 r = kvm_dirty_ring_alloc(&vcpu->dirty_ring,
4112 id, kvm->dirty_ring_size);
4113 if (r)
4114 goto arch_vcpu_destroy;
4117 mutex_lock(&kvm->lock);
4119 #ifdef CONFIG_LOCKDEP
4120 /* Ensure that lockdep knows vcpu->mutex is taken *inside* kvm->lock */
4121 mutex_lock(&vcpu->mutex);
4122 mutex_unlock(&vcpu->mutex);
4123 #endif
4125 if (kvm_get_vcpu_by_id(kvm, id)) {
4126 r = -EEXIST;
4127 goto unlock_vcpu_destroy;
4130 vcpu->vcpu_idx = atomic_read(&kvm->online_vcpus);
4131 r = xa_reserve(&kvm->vcpu_array, vcpu->vcpu_idx, GFP_KERNEL_ACCOUNT);
4132 if (r)
4133 goto unlock_vcpu_destroy;
4135 /* Now it's all set up, let userspace reach it */
4136 kvm_get_kvm(kvm);
4137 r = create_vcpu_fd(vcpu);
4138 if (r < 0)
4139 goto kvm_put_xa_release;
4141 if (KVM_BUG_ON(xa_store(&kvm->vcpu_array, vcpu->vcpu_idx, vcpu, 0), kvm)) {
4142 r = -EINVAL;
4143 goto kvm_put_xa_release;
4147 * Pairs with smp_rmb() in kvm_get_vcpu. Store the vcpu
4148 * pointer before kvm->online_vcpu's incremented value.
4150 smp_wmb();
4151 atomic_inc(&kvm->online_vcpus);
4153 mutex_unlock(&kvm->lock);
4154 kvm_arch_vcpu_postcreate(vcpu);
4155 kvm_create_vcpu_debugfs(vcpu);
4156 return r;
4158 kvm_put_xa_release:
4159 kvm_put_kvm_no_destroy(kvm);
4160 xa_release(&kvm->vcpu_array, vcpu->vcpu_idx);
4161 unlock_vcpu_destroy:
4162 mutex_unlock(&kvm->lock);
4163 kvm_dirty_ring_free(&vcpu->dirty_ring);
4164 arch_vcpu_destroy:
4165 kvm_arch_vcpu_destroy(vcpu);
4166 vcpu_free_run_page:
4167 free_page((unsigned long)vcpu->run);
4168 vcpu_free:
4169 kmem_cache_free(kvm_vcpu_cache, vcpu);
4170 vcpu_decrement:
4171 mutex_lock(&kvm->lock);
4172 kvm->created_vcpus--;
4173 mutex_unlock(&kvm->lock);
4174 return r;
4177 static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
4179 if (sigset) {
4180 sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
4181 vcpu->sigset_active = 1;
4182 vcpu->sigset = *sigset;
4183 } else
4184 vcpu->sigset_active = 0;
4185 return 0;
4188 static ssize_t kvm_vcpu_stats_read(struct file *file, char __user *user_buffer,
4189 size_t size, loff_t *offset)
4191 struct kvm_vcpu *vcpu = file->private_data;
4193 return kvm_stats_read(vcpu->stats_id, &kvm_vcpu_stats_header,
4194 &kvm_vcpu_stats_desc[0], &vcpu->stat,
4195 sizeof(vcpu->stat), user_buffer, size, offset);
4198 static int kvm_vcpu_stats_release(struct inode *inode, struct file *file)
4200 struct kvm_vcpu *vcpu = file->private_data;
4202 kvm_put_kvm(vcpu->kvm);
4203 return 0;
4206 static const struct file_operations kvm_vcpu_stats_fops = {
4207 .owner = THIS_MODULE,
4208 .read = kvm_vcpu_stats_read,
4209 .release = kvm_vcpu_stats_release,
4210 .llseek = noop_llseek,
4213 static int kvm_vcpu_ioctl_get_stats_fd(struct kvm_vcpu *vcpu)
4215 int fd;
4216 struct file *file;
4217 char name[15 + ITOA_MAX_LEN + 1];
4219 snprintf(name, sizeof(name), "kvm-vcpu-stats:%d", vcpu->vcpu_id);
4221 fd = get_unused_fd_flags(O_CLOEXEC);
4222 if (fd < 0)
4223 return fd;
4225 file = anon_inode_getfile(name, &kvm_vcpu_stats_fops, vcpu, O_RDONLY);
4226 if (IS_ERR(file)) {
4227 put_unused_fd(fd);
4228 return PTR_ERR(file);
4231 kvm_get_kvm(vcpu->kvm);
4233 file->f_mode |= FMODE_PREAD;
4234 fd_install(fd, file);
4236 return fd;
4239 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4240 static int kvm_vcpu_pre_fault_memory(struct kvm_vcpu *vcpu,
4241 struct kvm_pre_fault_memory *range)
4243 int idx;
4244 long r;
4245 u64 full_size;
4247 if (range->flags)
4248 return -EINVAL;
4250 if (!PAGE_ALIGNED(range->gpa) ||
4251 !PAGE_ALIGNED(range->size) ||
4252 range->gpa + range->size <= range->gpa)
4253 return -EINVAL;
4255 vcpu_load(vcpu);
4256 idx = srcu_read_lock(&vcpu->kvm->srcu);
4258 full_size = range->size;
4259 do {
4260 if (signal_pending(current)) {
4261 r = -EINTR;
4262 break;
4265 r = kvm_arch_vcpu_pre_fault_memory(vcpu, range);
4266 if (WARN_ON_ONCE(r == 0 || r == -EIO))
4267 break;
4269 if (r < 0)
4270 break;
4272 range->size -= r;
4273 range->gpa += r;
4274 cond_resched();
4275 } while (range->size);
4277 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4278 vcpu_put(vcpu);
4280 /* Return success if at least one page was mapped successfully. */
4281 return full_size == range->size ? r : 0;
4283 #endif
4285 static long kvm_vcpu_ioctl(struct file *filp,
4286 unsigned int ioctl, unsigned long arg)
4288 struct kvm_vcpu *vcpu = filp->private_data;
4289 void __user *argp = (void __user *)arg;
4290 int r;
4291 struct kvm_fpu *fpu = NULL;
4292 struct kvm_sregs *kvm_sregs = NULL;
4294 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4295 return -EIO;
4297 if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
4298 return -EINVAL;
4301 * Some architectures have vcpu ioctls that are asynchronous to vcpu
4302 * execution; mutex_lock() would break them.
4304 r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
4305 if (r != -ENOIOCTLCMD)
4306 return r;
4308 if (mutex_lock_killable(&vcpu->mutex))
4309 return -EINTR;
4310 switch (ioctl) {
4311 case KVM_RUN: {
4312 struct pid *oldpid;
4313 r = -EINVAL;
4314 if (arg)
4315 goto out;
4318 * Note, vcpu->pid is primarily protected by vcpu->mutex. The
4319 * dedicated r/w lock allows other tasks, e.g. other vCPUs, to
4320 * read vcpu->pid while this vCPU is in KVM_RUN, e.g. to yield
4321 * directly to this vCPU
4323 oldpid = vcpu->pid;
4324 if (unlikely(oldpid != task_pid(current))) {
4325 /* The thread running this VCPU changed. */
4326 struct pid *newpid;
4328 r = kvm_arch_vcpu_run_pid_change(vcpu);
4329 if (r)
4330 break;
4332 newpid = get_task_pid(current, PIDTYPE_PID);
4333 write_lock(&vcpu->pid_lock);
4334 vcpu->pid = newpid;
4335 write_unlock(&vcpu->pid_lock);
4337 put_pid(oldpid);
4339 vcpu->wants_to_run = !READ_ONCE(vcpu->run->immediate_exit__unsafe);
4340 r = kvm_arch_vcpu_ioctl_run(vcpu);
4341 vcpu->wants_to_run = false;
4343 trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
4344 break;
4346 case KVM_GET_REGS: {
4347 struct kvm_regs *kvm_regs;
4349 r = -ENOMEM;
4350 kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
4351 if (!kvm_regs)
4352 goto out;
4353 r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
4354 if (r)
4355 goto out_free1;
4356 r = -EFAULT;
4357 if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
4358 goto out_free1;
4359 r = 0;
4360 out_free1:
4361 kfree(kvm_regs);
4362 break;
4364 case KVM_SET_REGS: {
4365 struct kvm_regs *kvm_regs;
4367 kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
4368 if (IS_ERR(kvm_regs)) {
4369 r = PTR_ERR(kvm_regs);
4370 goto out;
4372 r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
4373 kfree(kvm_regs);
4374 break;
4376 case KVM_GET_SREGS: {
4377 kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
4378 r = -ENOMEM;
4379 if (!kvm_sregs)
4380 goto out;
4381 r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
4382 if (r)
4383 goto out;
4384 r = -EFAULT;
4385 if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
4386 goto out;
4387 r = 0;
4388 break;
4390 case KVM_SET_SREGS: {
4391 kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
4392 if (IS_ERR(kvm_sregs)) {
4393 r = PTR_ERR(kvm_sregs);
4394 kvm_sregs = NULL;
4395 goto out;
4397 r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
4398 break;
4400 case KVM_GET_MP_STATE: {
4401 struct kvm_mp_state mp_state;
4403 r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
4404 if (r)
4405 goto out;
4406 r = -EFAULT;
4407 if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
4408 goto out;
4409 r = 0;
4410 break;
4412 case KVM_SET_MP_STATE: {
4413 struct kvm_mp_state mp_state;
4415 r = -EFAULT;
4416 if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
4417 goto out;
4418 r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
4419 break;
4421 case KVM_TRANSLATE: {
4422 struct kvm_translation tr;
4424 r = -EFAULT;
4425 if (copy_from_user(&tr, argp, sizeof(tr)))
4426 goto out;
4427 r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
4428 if (r)
4429 goto out;
4430 r = -EFAULT;
4431 if (copy_to_user(argp, &tr, sizeof(tr)))
4432 goto out;
4433 r = 0;
4434 break;
4436 case KVM_SET_GUEST_DEBUG: {
4437 struct kvm_guest_debug dbg;
4439 r = -EFAULT;
4440 if (copy_from_user(&dbg, argp, sizeof(dbg)))
4441 goto out;
4442 r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
4443 break;
4445 case KVM_SET_SIGNAL_MASK: {
4446 struct kvm_signal_mask __user *sigmask_arg = argp;
4447 struct kvm_signal_mask kvm_sigmask;
4448 sigset_t sigset, *p;
4450 p = NULL;
4451 if (argp) {
4452 r = -EFAULT;
4453 if (copy_from_user(&kvm_sigmask, argp,
4454 sizeof(kvm_sigmask)))
4455 goto out;
4456 r = -EINVAL;
4457 if (kvm_sigmask.len != sizeof(sigset))
4458 goto out;
4459 r = -EFAULT;
4460 if (copy_from_user(&sigset, sigmask_arg->sigset,
4461 sizeof(sigset)))
4462 goto out;
4463 p = &sigset;
4465 r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
4466 break;
4468 case KVM_GET_FPU: {
4469 fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
4470 r = -ENOMEM;
4471 if (!fpu)
4472 goto out;
4473 r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
4474 if (r)
4475 goto out;
4476 r = -EFAULT;
4477 if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
4478 goto out;
4479 r = 0;
4480 break;
4482 case KVM_SET_FPU: {
4483 fpu = memdup_user(argp, sizeof(*fpu));
4484 if (IS_ERR(fpu)) {
4485 r = PTR_ERR(fpu);
4486 fpu = NULL;
4487 goto out;
4489 r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
4490 break;
4492 case KVM_GET_STATS_FD: {
4493 r = kvm_vcpu_ioctl_get_stats_fd(vcpu);
4494 break;
4496 #ifdef CONFIG_KVM_GENERIC_PRE_FAULT_MEMORY
4497 case KVM_PRE_FAULT_MEMORY: {
4498 struct kvm_pre_fault_memory range;
4500 r = -EFAULT;
4501 if (copy_from_user(&range, argp, sizeof(range)))
4502 break;
4503 r = kvm_vcpu_pre_fault_memory(vcpu, &range);
4504 /* Pass back leftover range. */
4505 if (copy_to_user(argp, &range, sizeof(range)))
4506 r = -EFAULT;
4507 break;
4509 #endif
4510 default:
4511 r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
4513 out:
4514 mutex_unlock(&vcpu->mutex);
4515 kfree(fpu);
4516 kfree(kvm_sregs);
4517 return r;
4520 #ifdef CONFIG_KVM_COMPAT
4521 static long kvm_vcpu_compat_ioctl(struct file *filp,
4522 unsigned int ioctl, unsigned long arg)
4524 struct kvm_vcpu *vcpu = filp->private_data;
4525 void __user *argp = compat_ptr(arg);
4526 int r;
4528 if (vcpu->kvm->mm != current->mm || vcpu->kvm->vm_dead)
4529 return -EIO;
4531 switch (ioctl) {
4532 case KVM_SET_SIGNAL_MASK: {
4533 struct kvm_signal_mask __user *sigmask_arg = argp;
4534 struct kvm_signal_mask kvm_sigmask;
4535 sigset_t sigset;
4537 if (argp) {
4538 r = -EFAULT;
4539 if (copy_from_user(&kvm_sigmask, argp,
4540 sizeof(kvm_sigmask)))
4541 goto out;
4542 r = -EINVAL;
4543 if (kvm_sigmask.len != sizeof(compat_sigset_t))
4544 goto out;
4545 r = -EFAULT;
4546 if (get_compat_sigset(&sigset,
4547 (compat_sigset_t __user *)sigmask_arg->sigset))
4548 goto out;
4549 r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
4550 } else
4551 r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
4552 break;
4554 default:
4555 r = kvm_vcpu_ioctl(filp, ioctl, arg);
4558 out:
4559 return r;
4561 #endif
4563 static int kvm_device_mmap(struct file *filp, struct vm_area_struct *vma)
4565 struct kvm_device *dev = filp->private_data;
4567 if (dev->ops->mmap)
4568 return dev->ops->mmap(dev, vma);
4570 return -ENODEV;
4573 static int kvm_device_ioctl_attr(struct kvm_device *dev,
4574 int (*accessor)(struct kvm_device *dev,
4575 struct kvm_device_attr *attr),
4576 unsigned long arg)
4578 struct kvm_device_attr attr;
4580 if (!accessor)
4581 return -EPERM;
4583 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4584 return -EFAULT;
4586 return accessor(dev, &attr);
4589 static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
4590 unsigned long arg)
4592 struct kvm_device *dev = filp->private_data;
4594 if (dev->kvm->mm != current->mm || dev->kvm->vm_dead)
4595 return -EIO;
4597 switch (ioctl) {
4598 case KVM_SET_DEVICE_ATTR:
4599 return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
4600 case KVM_GET_DEVICE_ATTR:
4601 return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
4602 case KVM_HAS_DEVICE_ATTR:
4603 return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
4604 default:
4605 if (dev->ops->ioctl)
4606 return dev->ops->ioctl(dev, ioctl, arg);
4608 return -ENOTTY;
4612 static int kvm_device_release(struct inode *inode, struct file *filp)
4614 struct kvm_device *dev = filp->private_data;
4615 struct kvm *kvm = dev->kvm;
4617 if (dev->ops->release) {
4618 mutex_lock(&kvm->lock);
4619 list_del_rcu(&dev->vm_node);
4620 synchronize_rcu();
4621 dev->ops->release(dev);
4622 mutex_unlock(&kvm->lock);
4625 kvm_put_kvm(kvm);
4626 return 0;
4629 static struct file_operations kvm_device_fops = {
4630 .unlocked_ioctl = kvm_device_ioctl,
4631 .release = kvm_device_release,
4632 KVM_COMPAT(kvm_device_ioctl),
4633 .mmap = kvm_device_mmap,
4636 struct kvm_device *kvm_device_from_filp(struct file *filp)
4638 if (filp->f_op != &kvm_device_fops)
4639 return NULL;
4641 return filp->private_data;
4644 static const struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
4645 #ifdef CONFIG_KVM_MPIC
4646 [KVM_DEV_TYPE_FSL_MPIC_20] = &kvm_mpic_ops,
4647 [KVM_DEV_TYPE_FSL_MPIC_42] = &kvm_mpic_ops,
4648 #endif
4651 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type)
4653 if (type >= ARRAY_SIZE(kvm_device_ops_table))
4654 return -ENOSPC;
4656 if (kvm_device_ops_table[type] != NULL)
4657 return -EEXIST;
4659 kvm_device_ops_table[type] = ops;
4660 return 0;
4663 void kvm_unregister_device_ops(u32 type)
4665 if (kvm_device_ops_table[type] != NULL)
4666 kvm_device_ops_table[type] = NULL;
4669 static int kvm_ioctl_create_device(struct kvm *kvm,
4670 struct kvm_create_device *cd)
4672 const struct kvm_device_ops *ops;
4673 struct kvm_device *dev;
4674 bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
4675 int type;
4676 int ret;
4678 if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
4679 return -ENODEV;
4681 type = array_index_nospec(cd->type, ARRAY_SIZE(kvm_device_ops_table));
4682 ops = kvm_device_ops_table[type];
4683 if (ops == NULL)
4684 return -ENODEV;
4686 if (test)
4687 return 0;
4689 dev = kzalloc(sizeof(*dev), GFP_KERNEL_ACCOUNT);
4690 if (!dev)
4691 return -ENOMEM;
4693 dev->ops = ops;
4694 dev->kvm = kvm;
4696 mutex_lock(&kvm->lock);
4697 ret = ops->create(dev, type);
4698 if (ret < 0) {
4699 mutex_unlock(&kvm->lock);
4700 kfree(dev);
4701 return ret;
4703 list_add_rcu(&dev->vm_node, &kvm->devices);
4704 mutex_unlock(&kvm->lock);
4706 if (ops->init)
4707 ops->init(dev);
4709 kvm_get_kvm(kvm);
4710 ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
4711 if (ret < 0) {
4712 kvm_put_kvm_no_destroy(kvm);
4713 mutex_lock(&kvm->lock);
4714 list_del_rcu(&dev->vm_node);
4715 synchronize_rcu();
4716 if (ops->release)
4717 ops->release(dev);
4718 mutex_unlock(&kvm->lock);
4719 if (ops->destroy)
4720 ops->destroy(dev);
4721 return ret;
4724 cd->fd = ret;
4725 return 0;
4728 static int kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
4730 switch (arg) {
4731 case KVM_CAP_USER_MEMORY:
4732 case KVM_CAP_USER_MEMORY2:
4733 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
4734 case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
4735 case KVM_CAP_INTERNAL_ERROR_DATA:
4736 #ifdef CONFIG_HAVE_KVM_MSI
4737 case KVM_CAP_SIGNAL_MSI:
4738 #endif
4739 #ifdef CONFIG_HAVE_KVM_IRQCHIP
4740 case KVM_CAP_IRQFD:
4741 #endif
4742 case KVM_CAP_IOEVENTFD_ANY_LENGTH:
4743 case KVM_CAP_CHECK_EXTENSION_VM:
4744 case KVM_CAP_ENABLE_CAP_VM:
4745 case KVM_CAP_HALT_POLL:
4746 return 1;
4747 #ifdef CONFIG_KVM_MMIO
4748 case KVM_CAP_COALESCED_MMIO:
4749 return KVM_COALESCED_MMIO_PAGE_OFFSET;
4750 case KVM_CAP_COALESCED_PIO:
4751 return 1;
4752 #endif
4753 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4754 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2:
4755 return KVM_DIRTY_LOG_MANUAL_CAPS;
4756 #endif
4757 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
4758 case KVM_CAP_IRQ_ROUTING:
4759 return KVM_MAX_IRQ_ROUTES;
4760 #endif
4761 #if KVM_MAX_NR_ADDRESS_SPACES > 1
4762 case KVM_CAP_MULTI_ADDRESS_SPACE:
4763 if (kvm)
4764 return kvm_arch_nr_memslot_as_ids(kvm);
4765 return KVM_MAX_NR_ADDRESS_SPACES;
4766 #endif
4767 case KVM_CAP_NR_MEMSLOTS:
4768 return KVM_USER_MEM_SLOTS;
4769 case KVM_CAP_DIRTY_LOG_RING:
4770 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_TSO
4771 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4772 #else
4773 return 0;
4774 #endif
4775 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4776 #ifdef CONFIG_HAVE_KVM_DIRTY_RING_ACQ_REL
4777 return KVM_DIRTY_RING_MAX_ENTRIES * sizeof(struct kvm_dirty_gfn);
4778 #else
4779 return 0;
4780 #endif
4781 #ifdef CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP
4782 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP:
4783 #endif
4784 case KVM_CAP_BINARY_STATS_FD:
4785 case KVM_CAP_SYSTEM_EVENT_DATA:
4786 case KVM_CAP_DEVICE_CTRL:
4787 return 1;
4788 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
4789 case KVM_CAP_MEMORY_ATTRIBUTES:
4790 return kvm_supported_mem_attributes(kvm);
4791 #endif
4792 #ifdef CONFIG_KVM_PRIVATE_MEM
4793 case KVM_CAP_GUEST_MEMFD:
4794 return !kvm || kvm_arch_has_private_mem(kvm);
4795 #endif
4796 default:
4797 break;
4799 return kvm_vm_ioctl_check_extension(kvm, arg);
4802 static int kvm_vm_ioctl_enable_dirty_log_ring(struct kvm *kvm, u32 size)
4804 int r;
4806 if (!KVM_DIRTY_LOG_PAGE_OFFSET)
4807 return -EINVAL;
4809 /* the size should be power of 2 */
4810 if (!size || (size & (size - 1)))
4811 return -EINVAL;
4813 /* Should be bigger to keep the reserved entries, or a page */
4814 if (size < kvm_dirty_ring_get_rsvd_entries() *
4815 sizeof(struct kvm_dirty_gfn) || size < PAGE_SIZE)
4816 return -EINVAL;
4818 if (size > KVM_DIRTY_RING_MAX_ENTRIES *
4819 sizeof(struct kvm_dirty_gfn))
4820 return -E2BIG;
4822 /* We only allow it to set once */
4823 if (kvm->dirty_ring_size)
4824 return -EINVAL;
4826 mutex_lock(&kvm->lock);
4828 if (kvm->created_vcpus) {
4829 /* We don't allow to change this value after vcpu created */
4830 r = -EINVAL;
4831 } else {
4832 kvm->dirty_ring_size = size;
4833 r = 0;
4836 mutex_unlock(&kvm->lock);
4837 return r;
4840 static int kvm_vm_ioctl_reset_dirty_pages(struct kvm *kvm)
4842 unsigned long i;
4843 struct kvm_vcpu *vcpu;
4844 int cleared = 0;
4846 if (!kvm->dirty_ring_size)
4847 return -EINVAL;
4849 mutex_lock(&kvm->slots_lock);
4851 kvm_for_each_vcpu(i, vcpu, kvm)
4852 cleared += kvm_dirty_ring_reset(vcpu->kvm, &vcpu->dirty_ring);
4854 mutex_unlock(&kvm->slots_lock);
4856 if (cleared)
4857 kvm_flush_remote_tlbs(kvm);
4859 return cleared;
4862 int __attribute__((weak)) kvm_vm_ioctl_enable_cap(struct kvm *kvm,
4863 struct kvm_enable_cap *cap)
4865 return -EINVAL;
4868 bool kvm_are_all_memslots_empty(struct kvm *kvm)
4870 int i;
4872 lockdep_assert_held(&kvm->slots_lock);
4874 for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) {
4875 if (!kvm_memslots_empty(__kvm_memslots(kvm, i)))
4876 return false;
4879 return true;
4881 EXPORT_SYMBOL_GPL(kvm_are_all_memslots_empty);
4883 static int kvm_vm_ioctl_enable_cap_generic(struct kvm *kvm,
4884 struct kvm_enable_cap *cap)
4886 switch (cap->cap) {
4887 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
4888 case KVM_CAP_MANUAL_DIRTY_LOG_PROTECT2: {
4889 u64 allowed_options = KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE;
4891 if (cap->args[0] & KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE)
4892 allowed_options = KVM_DIRTY_LOG_MANUAL_CAPS;
4894 if (cap->flags || (cap->args[0] & ~allowed_options))
4895 return -EINVAL;
4896 kvm->manual_dirty_log_protect = cap->args[0];
4897 return 0;
4899 #endif
4900 case KVM_CAP_HALT_POLL: {
4901 if (cap->flags || cap->args[0] != (unsigned int)cap->args[0])
4902 return -EINVAL;
4904 kvm->max_halt_poll_ns = cap->args[0];
4907 * Ensure kvm->override_halt_poll_ns does not become visible
4908 * before kvm->max_halt_poll_ns.
4910 * Pairs with the smp_rmb() in kvm_vcpu_max_halt_poll_ns().
4912 smp_wmb();
4913 kvm->override_halt_poll_ns = true;
4915 return 0;
4917 case KVM_CAP_DIRTY_LOG_RING:
4918 case KVM_CAP_DIRTY_LOG_RING_ACQ_REL:
4919 if (!kvm_vm_ioctl_check_extension_generic(kvm, cap->cap))
4920 return -EINVAL;
4922 return kvm_vm_ioctl_enable_dirty_log_ring(kvm, cap->args[0]);
4923 case KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP: {
4924 int r = -EINVAL;
4926 if (!IS_ENABLED(CONFIG_NEED_KVM_DIRTY_RING_WITH_BITMAP) ||
4927 !kvm->dirty_ring_size || cap->flags)
4928 return r;
4930 mutex_lock(&kvm->slots_lock);
4933 * For simplicity, allow enabling ring+bitmap if and only if
4934 * there are no memslots, e.g. to ensure all memslots allocate
4935 * a bitmap after the capability is enabled.
4937 if (kvm_are_all_memslots_empty(kvm)) {
4938 kvm->dirty_ring_with_bitmap = true;
4939 r = 0;
4942 mutex_unlock(&kvm->slots_lock);
4944 return r;
4946 default:
4947 return kvm_vm_ioctl_enable_cap(kvm, cap);
4951 static ssize_t kvm_vm_stats_read(struct file *file, char __user *user_buffer,
4952 size_t size, loff_t *offset)
4954 struct kvm *kvm = file->private_data;
4956 return kvm_stats_read(kvm->stats_id, &kvm_vm_stats_header,
4957 &kvm_vm_stats_desc[0], &kvm->stat,
4958 sizeof(kvm->stat), user_buffer, size, offset);
4961 static int kvm_vm_stats_release(struct inode *inode, struct file *file)
4963 struct kvm *kvm = file->private_data;
4965 kvm_put_kvm(kvm);
4966 return 0;
4969 static const struct file_operations kvm_vm_stats_fops = {
4970 .owner = THIS_MODULE,
4971 .read = kvm_vm_stats_read,
4972 .release = kvm_vm_stats_release,
4973 .llseek = noop_llseek,
4976 static int kvm_vm_ioctl_get_stats_fd(struct kvm *kvm)
4978 int fd;
4979 struct file *file;
4981 fd = get_unused_fd_flags(O_CLOEXEC);
4982 if (fd < 0)
4983 return fd;
4985 file = anon_inode_getfile("kvm-vm-stats",
4986 &kvm_vm_stats_fops, kvm, O_RDONLY);
4987 if (IS_ERR(file)) {
4988 put_unused_fd(fd);
4989 return PTR_ERR(file);
4992 kvm_get_kvm(kvm);
4994 file->f_mode |= FMODE_PREAD;
4995 fd_install(fd, file);
4997 return fd;
5000 #define SANITY_CHECK_MEM_REGION_FIELD(field) \
5001 do { \
5002 BUILD_BUG_ON(offsetof(struct kvm_userspace_memory_region, field) != \
5003 offsetof(struct kvm_userspace_memory_region2, field)); \
5004 BUILD_BUG_ON(sizeof_field(struct kvm_userspace_memory_region, field) != \
5005 sizeof_field(struct kvm_userspace_memory_region2, field)); \
5006 } while (0)
5008 static long kvm_vm_ioctl(struct file *filp,
5009 unsigned int ioctl, unsigned long arg)
5011 struct kvm *kvm = filp->private_data;
5012 void __user *argp = (void __user *)arg;
5013 int r;
5015 if (kvm->mm != current->mm || kvm->vm_dead)
5016 return -EIO;
5017 switch (ioctl) {
5018 case KVM_CREATE_VCPU:
5019 r = kvm_vm_ioctl_create_vcpu(kvm, arg);
5020 break;
5021 case KVM_ENABLE_CAP: {
5022 struct kvm_enable_cap cap;
5024 r = -EFAULT;
5025 if (copy_from_user(&cap, argp, sizeof(cap)))
5026 goto out;
5027 r = kvm_vm_ioctl_enable_cap_generic(kvm, &cap);
5028 break;
5030 case KVM_SET_USER_MEMORY_REGION2:
5031 case KVM_SET_USER_MEMORY_REGION: {
5032 struct kvm_userspace_memory_region2 mem;
5033 unsigned long size;
5035 if (ioctl == KVM_SET_USER_MEMORY_REGION) {
5037 * Fields beyond struct kvm_userspace_memory_region shouldn't be
5038 * accessed, but avoid leaking kernel memory in case of a bug.
5040 memset(&mem, 0, sizeof(mem));
5041 size = sizeof(struct kvm_userspace_memory_region);
5042 } else {
5043 size = sizeof(struct kvm_userspace_memory_region2);
5046 /* Ensure the common parts of the two structs are identical. */
5047 SANITY_CHECK_MEM_REGION_FIELD(slot);
5048 SANITY_CHECK_MEM_REGION_FIELD(flags);
5049 SANITY_CHECK_MEM_REGION_FIELD(guest_phys_addr);
5050 SANITY_CHECK_MEM_REGION_FIELD(memory_size);
5051 SANITY_CHECK_MEM_REGION_FIELD(userspace_addr);
5053 r = -EFAULT;
5054 if (copy_from_user(&mem, argp, size))
5055 goto out;
5057 r = -EINVAL;
5058 if (ioctl == KVM_SET_USER_MEMORY_REGION &&
5059 (mem.flags & ~KVM_SET_USER_MEMORY_REGION_V1_FLAGS))
5060 goto out;
5062 r = kvm_vm_ioctl_set_memory_region(kvm, &mem);
5063 break;
5065 case KVM_GET_DIRTY_LOG: {
5066 struct kvm_dirty_log log;
5068 r = -EFAULT;
5069 if (copy_from_user(&log, argp, sizeof(log)))
5070 goto out;
5071 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5072 break;
5074 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5075 case KVM_CLEAR_DIRTY_LOG: {
5076 struct kvm_clear_dirty_log log;
5078 r = -EFAULT;
5079 if (copy_from_user(&log, argp, sizeof(log)))
5080 goto out;
5081 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5082 break;
5084 #endif
5085 #ifdef CONFIG_KVM_MMIO
5086 case KVM_REGISTER_COALESCED_MMIO: {
5087 struct kvm_coalesced_mmio_zone zone;
5089 r = -EFAULT;
5090 if (copy_from_user(&zone, argp, sizeof(zone)))
5091 goto out;
5092 r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
5093 break;
5095 case KVM_UNREGISTER_COALESCED_MMIO: {
5096 struct kvm_coalesced_mmio_zone zone;
5098 r = -EFAULT;
5099 if (copy_from_user(&zone, argp, sizeof(zone)))
5100 goto out;
5101 r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
5102 break;
5104 #endif
5105 case KVM_IRQFD: {
5106 struct kvm_irqfd data;
5108 r = -EFAULT;
5109 if (copy_from_user(&data, argp, sizeof(data)))
5110 goto out;
5111 r = kvm_irqfd(kvm, &data);
5112 break;
5114 case KVM_IOEVENTFD: {
5115 struct kvm_ioeventfd data;
5117 r = -EFAULT;
5118 if (copy_from_user(&data, argp, sizeof(data)))
5119 goto out;
5120 r = kvm_ioeventfd(kvm, &data);
5121 break;
5123 #ifdef CONFIG_HAVE_KVM_MSI
5124 case KVM_SIGNAL_MSI: {
5125 struct kvm_msi msi;
5127 r = -EFAULT;
5128 if (copy_from_user(&msi, argp, sizeof(msi)))
5129 goto out;
5130 r = kvm_send_userspace_msi(kvm, &msi);
5131 break;
5133 #endif
5134 #ifdef __KVM_HAVE_IRQ_LINE
5135 case KVM_IRQ_LINE_STATUS:
5136 case KVM_IRQ_LINE: {
5137 struct kvm_irq_level irq_event;
5139 r = -EFAULT;
5140 if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
5141 goto out;
5143 r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
5144 ioctl == KVM_IRQ_LINE_STATUS);
5145 if (r)
5146 goto out;
5148 r = -EFAULT;
5149 if (ioctl == KVM_IRQ_LINE_STATUS) {
5150 if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
5151 goto out;
5154 r = 0;
5155 break;
5157 #endif
5158 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
5159 case KVM_SET_GSI_ROUTING: {
5160 struct kvm_irq_routing routing;
5161 struct kvm_irq_routing __user *urouting;
5162 struct kvm_irq_routing_entry *entries = NULL;
5164 r = -EFAULT;
5165 if (copy_from_user(&routing, argp, sizeof(routing)))
5166 goto out;
5167 r = -EINVAL;
5168 if (!kvm_arch_can_set_irq_routing(kvm))
5169 goto out;
5170 if (routing.nr > KVM_MAX_IRQ_ROUTES)
5171 goto out;
5172 if (routing.flags)
5173 goto out;
5174 if (routing.nr) {
5175 urouting = argp;
5176 entries = vmemdup_array_user(urouting->entries,
5177 routing.nr, sizeof(*entries));
5178 if (IS_ERR(entries)) {
5179 r = PTR_ERR(entries);
5180 goto out;
5183 r = kvm_set_irq_routing(kvm, entries, routing.nr,
5184 routing.flags);
5185 kvfree(entries);
5186 break;
5188 #endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
5189 #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES
5190 case KVM_SET_MEMORY_ATTRIBUTES: {
5191 struct kvm_memory_attributes attrs;
5193 r = -EFAULT;
5194 if (copy_from_user(&attrs, argp, sizeof(attrs)))
5195 goto out;
5197 r = kvm_vm_ioctl_set_mem_attributes(kvm, &attrs);
5198 break;
5200 #endif /* CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES */
5201 case KVM_CREATE_DEVICE: {
5202 struct kvm_create_device cd;
5204 r = -EFAULT;
5205 if (copy_from_user(&cd, argp, sizeof(cd)))
5206 goto out;
5208 r = kvm_ioctl_create_device(kvm, &cd);
5209 if (r)
5210 goto out;
5212 r = -EFAULT;
5213 if (copy_to_user(argp, &cd, sizeof(cd)))
5214 goto out;
5216 r = 0;
5217 break;
5219 case KVM_CHECK_EXTENSION:
5220 r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
5221 break;
5222 case KVM_RESET_DIRTY_RINGS:
5223 r = kvm_vm_ioctl_reset_dirty_pages(kvm);
5224 break;
5225 case KVM_GET_STATS_FD:
5226 r = kvm_vm_ioctl_get_stats_fd(kvm);
5227 break;
5228 #ifdef CONFIG_KVM_PRIVATE_MEM
5229 case KVM_CREATE_GUEST_MEMFD: {
5230 struct kvm_create_guest_memfd guest_memfd;
5232 r = -EFAULT;
5233 if (copy_from_user(&guest_memfd, argp, sizeof(guest_memfd)))
5234 goto out;
5236 r = kvm_gmem_create(kvm, &guest_memfd);
5237 break;
5239 #endif
5240 default:
5241 r = kvm_arch_vm_ioctl(filp, ioctl, arg);
5243 out:
5244 return r;
5247 #ifdef CONFIG_KVM_COMPAT
5248 struct compat_kvm_dirty_log {
5249 __u32 slot;
5250 __u32 padding1;
5251 union {
5252 compat_uptr_t dirty_bitmap; /* one bit per page */
5253 __u64 padding2;
5257 struct compat_kvm_clear_dirty_log {
5258 __u32 slot;
5259 __u32 num_pages;
5260 __u64 first_page;
5261 union {
5262 compat_uptr_t dirty_bitmap; /* one bit per page */
5263 __u64 padding2;
5267 long __weak kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
5268 unsigned long arg)
5270 return -ENOTTY;
5273 static long kvm_vm_compat_ioctl(struct file *filp,
5274 unsigned int ioctl, unsigned long arg)
5276 struct kvm *kvm = filp->private_data;
5277 int r;
5279 if (kvm->mm != current->mm || kvm->vm_dead)
5280 return -EIO;
5282 r = kvm_arch_vm_compat_ioctl(filp, ioctl, arg);
5283 if (r != -ENOTTY)
5284 return r;
5286 switch (ioctl) {
5287 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
5288 case KVM_CLEAR_DIRTY_LOG: {
5289 struct compat_kvm_clear_dirty_log compat_log;
5290 struct kvm_clear_dirty_log log;
5292 if (copy_from_user(&compat_log, (void __user *)arg,
5293 sizeof(compat_log)))
5294 return -EFAULT;
5295 log.slot = compat_log.slot;
5296 log.num_pages = compat_log.num_pages;
5297 log.first_page = compat_log.first_page;
5298 log.padding2 = compat_log.padding2;
5299 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5301 r = kvm_vm_ioctl_clear_dirty_log(kvm, &log);
5302 break;
5304 #endif
5305 case KVM_GET_DIRTY_LOG: {
5306 struct compat_kvm_dirty_log compat_log;
5307 struct kvm_dirty_log log;
5309 if (copy_from_user(&compat_log, (void __user *)arg,
5310 sizeof(compat_log)))
5311 return -EFAULT;
5312 log.slot = compat_log.slot;
5313 log.padding1 = compat_log.padding1;
5314 log.padding2 = compat_log.padding2;
5315 log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
5317 r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
5318 break;
5320 default:
5321 r = kvm_vm_ioctl(filp, ioctl, arg);
5323 return r;
5325 #endif
5327 static struct file_operations kvm_vm_fops = {
5328 .release = kvm_vm_release,
5329 .unlocked_ioctl = kvm_vm_ioctl,
5330 .llseek = noop_llseek,
5331 KVM_COMPAT(kvm_vm_compat_ioctl),
5334 bool file_is_kvm(struct file *file)
5336 return file && file->f_op == &kvm_vm_fops;
5338 EXPORT_SYMBOL_GPL(file_is_kvm);
5340 static int kvm_dev_ioctl_create_vm(unsigned long type)
5342 char fdname[ITOA_MAX_LEN + 1];
5343 int r, fd;
5344 struct kvm *kvm;
5345 struct file *file;
5347 fd = get_unused_fd_flags(O_CLOEXEC);
5348 if (fd < 0)
5349 return fd;
5351 snprintf(fdname, sizeof(fdname), "%d", fd);
5353 kvm = kvm_create_vm(type, fdname);
5354 if (IS_ERR(kvm)) {
5355 r = PTR_ERR(kvm);
5356 goto put_fd;
5359 file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
5360 if (IS_ERR(file)) {
5361 r = PTR_ERR(file);
5362 goto put_kvm;
5366 * Don't call kvm_put_kvm anymore at this point; file->f_op is
5367 * already set, with ->release() being kvm_vm_release(). In error
5368 * cases it will be called by the final fput(file) and will take
5369 * care of doing kvm_put_kvm(kvm).
5371 kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
5373 fd_install(fd, file);
5374 return fd;
5376 put_kvm:
5377 kvm_put_kvm(kvm);
5378 put_fd:
5379 put_unused_fd(fd);
5380 return r;
5383 static long kvm_dev_ioctl(struct file *filp,
5384 unsigned int ioctl, unsigned long arg)
5386 int r = -EINVAL;
5388 switch (ioctl) {
5389 case KVM_GET_API_VERSION:
5390 if (arg)
5391 goto out;
5392 r = KVM_API_VERSION;
5393 break;
5394 case KVM_CREATE_VM:
5395 r = kvm_dev_ioctl_create_vm(arg);
5396 break;
5397 case KVM_CHECK_EXTENSION:
5398 r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
5399 break;
5400 case KVM_GET_VCPU_MMAP_SIZE:
5401 if (arg)
5402 goto out;
5403 r = PAGE_SIZE; /* struct kvm_run */
5404 #ifdef CONFIG_X86
5405 r += PAGE_SIZE; /* pio data page */
5406 #endif
5407 #ifdef CONFIG_KVM_MMIO
5408 r += PAGE_SIZE; /* coalesced mmio ring page */
5409 #endif
5410 break;
5411 default:
5412 return kvm_arch_dev_ioctl(filp, ioctl, arg);
5414 out:
5415 return r;
5418 static struct file_operations kvm_chardev_ops = {
5419 .unlocked_ioctl = kvm_dev_ioctl,
5420 .llseek = noop_llseek,
5421 KVM_COMPAT(kvm_dev_ioctl),
5424 static struct miscdevice kvm_dev = {
5425 KVM_MINOR,
5426 "kvm",
5427 &kvm_chardev_ops,
5430 #ifdef CONFIG_KVM_GENERIC_HARDWARE_ENABLING
5431 static bool enable_virt_at_load = true;
5432 module_param(enable_virt_at_load, bool, 0444);
5434 __visible bool kvm_rebooting;
5435 EXPORT_SYMBOL_GPL(kvm_rebooting);
5437 static DEFINE_PER_CPU(bool, virtualization_enabled);
5438 static DEFINE_MUTEX(kvm_usage_lock);
5439 static int kvm_usage_count;
5441 __weak void kvm_arch_enable_virtualization(void)
5446 __weak void kvm_arch_disable_virtualization(void)
5451 static int kvm_enable_virtualization_cpu(void)
5453 if (__this_cpu_read(virtualization_enabled))
5454 return 0;
5456 if (kvm_arch_enable_virtualization_cpu()) {
5457 pr_info("kvm: enabling virtualization on CPU%d failed\n",
5458 raw_smp_processor_id());
5459 return -EIO;
5462 __this_cpu_write(virtualization_enabled, true);
5463 return 0;
5466 static int kvm_online_cpu(unsigned int cpu)
5469 * Abort the CPU online process if hardware virtualization cannot
5470 * be enabled. Otherwise running VMs would encounter unrecoverable
5471 * errors when scheduled to this CPU.
5473 return kvm_enable_virtualization_cpu();
5476 static void kvm_disable_virtualization_cpu(void *ign)
5478 if (!__this_cpu_read(virtualization_enabled))
5479 return;
5481 kvm_arch_disable_virtualization_cpu();
5483 __this_cpu_write(virtualization_enabled, false);
5486 static int kvm_offline_cpu(unsigned int cpu)
5488 kvm_disable_virtualization_cpu(NULL);
5489 return 0;
5492 static void kvm_shutdown(void)
5495 * Disable hardware virtualization and set kvm_rebooting to indicate
5496 * that KVM has asynchronously disabled hardware virtualization, i.e.
5497 * that relevant errors and exceptions aren't entirely unexpected.
5498 * Some flavors of hardware virtualization need to be disabled before
5499 * transferring control to firmware (to perform shutdown/reboot), e.g.
5500 * on x86, virtualization can block INIT interrupts, which are used by
5501 * firmware to pull APs back under firmware control. Note, this path
5502 * is used for both shutdown and reboot scenarios, i.e. neither name is
5503 * 100% comprehensive.
5505 pr_info("kvm: exiting hardware virtualization\n");
5506 kvm_rebooting = true;
5507 on_each_cpu(kvm_disable_virtualization_cpu, NULL, 1);
5510 static int kvm_suspend(void)
5513 * Secondary CPUs and CPU hotplug are disabled across the suspend/resume
5514 * callbacks, i.e. no need to acquire kvm_usage_lock to ensure the usage
5515 * count is stable. Assert that kvm_usage_lock is not held to ensure
5516 * the system isn't suspended while KVM is enabling hardware. Hardware
5517 * enabling can be preempted, but the task cannot be frozen until it has
5518 * dropped all locks (userspace tasks are frozen via a fake signal).
5520 lockdep_assert_not_held(&kvm_usage_lock);
5521 lockdep_assert_irqs_disabled();
5523 kvm_disable_virtualization_cpu(NULL);
5524 return 0;
5527 static void kvm_resume(void)
5529 lockdep_assert_not_held(&kvm_usage_lock);
5530 lockdep_assert_irqs_disabled();
5532 WARN_ON_ONCE(kvm_enable_virtualization_cpu());
5535 static struct syscore_ops kvm_syscore_ops = {
5536 .suspend = kvm_suspend,
5537 .resume = kvm_resume,
5538 .shutdown = kvm_shutdown,
5541 static int kvm_enable_virtualization(void)
5543 int r;
5545 guard(mutex)(&kvm_usage_lock);
5547 if (kvm_usage_count++)
5548 return 0;
5550 kvm_arch_enable_virtualization();
5552 r = cpuhp_setup_state(CPUHP_AP_KVM_ONLINE, "kvm/cpu:online",
5553 kvm_online_cpu, kvm_offline_cpu);
5554 if (r)
5555 goto err_cpuhp;
5557 register_syscore_ops(&kvm_syscore_ops);
5560 * Undo virtualization enabling and bail if the system is going down.
5561 * If userspace initiated a forced reboot, e.g. reboot -f, then it's
5562 * possible for an in-flight operation to enable virtualization after
5563 * syscore_shutdown() is called, i.e. without kvm_shutdown() being
5564 * invoked. Note, this relies on system_state being set _before_
5565 * kvm_shutdown(), e.g. to ensure either kvm_shutdown() is invoked
5566 * or this CPU observes the impending shutdown. Which is why KVM uses
5567 * a syscore ops hook instead of registering a dedicated reboot
5568 * notifier (the latter runs before system_state is updated).
5570 if (system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF ||
5571 system_state == SYSTEM_RESTART) {
5572 r = -EBUSY;
5573 goto err_rebooting;
5576 return 0;
5578 err_rebooting:
5579 unregister_syscore_ops(&kvm_syscore_ops);
5580 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5581 err_cpuhp:
5582 kvm_arch_disable_virtualization();
5583 --kvm_usage_count;
5584 return r;
5587 static void kvm_disable_virtualization(void)
5589 guard(mutex)(&kvm_usage_lock);
5591 if (--kvm_usage_count)
5592 return;
5594 unregister_syscore_ops(&kvm_syscore_ops);
5595 cpuhp_remove_state(CPUHP_AP_KVM_ONLINE);
5596 kvm_arch_disable_virtualization();
5599 static int kvm_init_virtualization(void)
5601 if (enable_virt_at_load)
5602 return kvm_enable_virtualization();
5604 return 0;
5607 static void kvm_uninit_virtualization(void)
5609 if (enable_virt_at_load)
5610 kvm_disable_virtualization();
5612 #else /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5613 static int kvm_enable_virtualization(void)
5615 return 0;
5618 static int kvm_init_virtualization(void)
5620 return 0;
5623 static void kvm_disable_virtualization(void)
5628 static void kvm_uninit_virtualization(void)
5632 #endif /* CONFIG_KVM_GENERIC_HARDWARE_ENABLING */
5634 static void kvm_iodevice_destructor(struct kvm_io_device *dev)
5636 if (dev->ops->destructor)
5637 dev->ops->destructor(dev);
5640 static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
5642 int i;
5644 for (i = 0; i < bus->dev_count; i++) {
5645 struct kvm_io_device *pos = bus->range[i].dev;
5647 kvm_iodevice_destructor(pos);
5649 kfree(bus);
5652 static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
5653 const struct kvm_io_range *r2)
5655 gpa_t addr1 = r1->addr;
5656 gpa_t addr2 = r2->addr;
5658 if (addr1 < addr2)
5659 return -1;
5661 /* If r2->len == 0, match the exact address. If r2->len != 0,
5662 * accept any overlapping write. Any order is acceptable for
5663 * overlapping ranges, because kvm_io_bus_get_first_dev ensures
5664 * we process all of them.
5666 if (r2->len) {
5667 addr1 += r1->len;
5668 addr2 += r2->len;
5671 if (addr1 > addr2)
5672 return 1;
5674 return 0;
5677 static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
5679 return kvm_io_bus_cmp(p1, p2);
5682 static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
5683 gpa_t addr, int len)
5685 struct kvm_io_range *range, key;
5686 int off;
5688 key = (struct kvm_io_range) {
5689 .addr = addr,
5690 .len = len,
5693 range = bsearch(&key, bus->range, bus->dev_count,
5694 sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
5695 if (range == NULL)
5696 return -ENOENT;
5698 off = range - bus->range;
5700 while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
5701 off--;
5703 return off;
5706 static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5707 struct kvm_io_range *range, const void *val)
5709 int idx;
5711 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5712 if (idx < 0)
5713 return -EOPNOTSUPP;
5715 while (idx < bus->dev_count &&
5716 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5717 if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
5718 range->len, val))
5719 return idx;
5720 idx++;
5723 return -EOPNOTSUPP;
5726 /* kvm_io_bus_write - called under kvm->slots_lock */
5727 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5728 int len, const void *val)
5730 struct kvm_io_bus *bus;
5731 struct kvm_io_range range;
5732 int r;
5734 range = (struct kvm_io_range) {
5735 .addr = addr,
5736 .len = len,
5739 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5740 if (!bus)
5741 return -ENOMEM;
5742 r = __kvm_io_bus_write(vcpu, bus, &range, val);
5743 return r < 0 ? r : 0;
5745 EXPORT_SYMBOL_GPL(kvm_io_bus_write);
5747 /* kvm_io_bus_write_cookie - called under kvm->slots_lock */
5748 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
5749 gpa_t addr, int len, const void *val, long cookie)
5751 struct kvm_io_bus *bus;
5752 struct kvm_io_range range;
5754 range = (struct kvm_io_range) {
5755 .addr = addr,
5756 .len = len,
5759 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5760 if (!bus)
5761 return -ENOMEM;
5763 /* First try the device referenced by cookie. */
5764 if ((cookie >= 0) && (cookie < bus->dev_count) &&
5765 (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
5766 if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
5767 val))
5768 return cookie;
5771 * cookie contained garbage; fall back to search and return the
5772 * correct cookie value.
5774 return __kvm_io_bus_write(vcpu, bus, &range, val);
5777 static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
5778 struct kvm_io_range *range, void *val)
5780 int idx;
5782 idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
5783 if (idx < 0)
5784 return -EOPNOTSUPP;
5786 while (idx < bus->dev_count &&
5787 kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
5788 if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
5789 range->len, val))
5790 return idx;
5791 idx++;
5794 return -EOPNOTSUPP;
5797 /* kvm_io_bus_read - called under kvm->slots_lock */
5798 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
5799 int len, void *val)
5801 struct kvm_io_bus *bus;
5802 struct kvm_io_range range;
5803 int r;
5805 range = (struct kvm_io_range) {
5806 .addr = addr,
5807 .len = len,
5810 bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
5811 if (!bus)
5812 return -ENOMEM;
5813 r = __kvm_io_bus_read(vcpu, bus, &range, val);
5814 return r < 0 ? r : 0;
5817 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
5818 int len, struct kvm_io_device *dev)
5820 int i;
5821 struct kvm_io_bus *new_bus, *bus;
5822 struct kvm_io_range range;
5824 lockdep_assert_held(&kvm->slots_lock);
5826 bus = kvm_get_bus(kvm, bus_idx);
5827 if (!bus)
5828 return -ENOMEM;
5830 /* exclude ioeventfd which is limited by maximum fd */
5831 if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
5832 return -ENOSPC;
5834 new_bus = kmalloc(struct_size(bus, range, bus->dev_count + 1),
5835 GFP_KERNEL_ACCOUNT);
5836 if (!new_bus)
5837 return -ENOMEM;
5839 range = (struct kvm_io_range) {
5840 .addr = addr,
5841 .len = len,
5842 .dev = dev,
5845 for (i = 0; i < bus->dev_count; i++)
5846 if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
5847 break;
5849 memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
5850 new_bus->dev_count++;
5851 new_bus->range[i] = range;
5852 memcpy(new_bus->range + i + 1, bus->range + i,
5853 (bus->dev_count - i) * sizeof(struct kvm_io_range));
5854 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5855 synchronize_srcu_expedited(&kvm->srcu);
5856 kfree(bus);
5858 return 0;
5861 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5862 struct kvm_io_device *dev)
5864 int i;
5865 struct kvm_io_bus *new_bus, *bus;
5867 lockdep_assert_held(&kvm->slots_lock);
5869 bus = kvm_get_bus(kvm, bus_idx);
5870 if (!bus)
5871 return 0;
5873 for (i = 0; i < bus->dev_count; i++) {
5874 if (bus->range[i].dev == dev) {
5875 break;
5879 if (i == bus->dev_count)
5880 return 0;
5882 new_bus = kmalloc(struct_size(bus, range, bus->dev_count - 1),
5883 GFP_KERNEL_ACCOUNT);
5884 if (new_bus) {
5885 memcpy(new_bus, bus, struct_size(bus, range, i));
5886 new_bus->dev_count--;
5887 memcpy(new_bus->range + i, bus->range + i + 1,
5888 flex_array_size(new_bus, range, new_bus->dev_count - i));
5891 rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
5892 synchronize_srcu_expedited(&kvm->srcu);
5895 * If NULL bus is installed, destroy the old bus, including all the
5896 * attached devices. Otherwise, destroy the caller's device only.
5898 if (!new_bus) {
5899 pr_err("kvm: failed to shrink bus, removing it completely\n");
5900 kvm_io_bus_destroy(bus);
5901 return -ENOMEM;
5904 kvm_iodevice_destructor(dev);
5905 kfree(bus);
5906 return 0;
5909 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
5910 gpa_t addr)
5912 struct kvm_io_bus *bus;
5913 int dev_idx, srcu_idx;
5914 struct kvm_io_device *iodev = NULL;
5916 srcu_idx = srcu_read_lock(&kvm->srcu);
5918 bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
5919 if (!bus)
5920 goto out_unlock;
5922 dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
5923 if (dev_idx < 0)
5924 goto out_unlock;
5926 iodev = bus->range[dev_idx].dev;
5928 out_unlock:
5929 srcu_read_unlock(&kvm->srcu, srcu_idx);
5931 return iodev;
5933 EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
5935 static int kvm_debugfs_open(struct inode *inode, struct file *file,
5936 int (*get)(void *, u64 *), int (*set)(void *, u64),
5937 const char *fmt)
5939 int ret;
5940 struct kvm_stat_data *stat_data = inode->i_private;
5943 * The debugfs files are a reference to the kvm struct which
5944 * is still valid when kvm_destroy_vm is called. kvm_get_kvm_safe
5945 * avoids the race between open and the removal of the debugfs directory.
5947 if (!kvm_get_kvm_safe(stat_data->kvm))
5948 return -ENOENT;
5950 ret = simple_attr_open(inode, file, get,
5951 kvm_stats_debugfs_mode(stat_data->desc) & 0222
5952 ? set : NULL, fmt);
5953 if (ret)
5954 kvm_put_kvm(stat_data->kvm);
5956 return ret;
5959 static int kvm_debugfs_release(struct inode *inode, struct file *file)
5961 struct kvm_stat_data *stat_data = inode->i_private;
5963 simple_attr_release(inode, file);
5964 kvm_put_kvm(stat_data->kvm);
5966 return 0;
5969 static int kvm_get_stat_per_vm(struct kvm *kvm, size_t offset, u64 *val)
5971 *val = *(u64 *)((void *)(&kvm->stat) + offset);
5973 return 0;
5976 static int kvm_clear_stat_per_vm(struct kvm *kvm, size_t offset)
5978 *(u64 *)((void *)(&kvm->stat) + offset) = 0;
5980 return 0;
5983 static int kvm_get_stat_per_vcpu(struct kvm *kvm, size_t offset, u64 *val)
5985 unsigned long i;
5986 struct kvm_vcpu *vcpu;
5988 *val = 0;
5990 kvm_for_each_vcpu(i, vcpu, kvm)
5991 *val += *(u64 *)((void *)(&vcpu->stat) + offset);
5993 return 0;
5996 static int kvm_clear_stat_per_vcpu(struct kvm *kvm, size_t offset)
5998 unsigned long i;
5999 struct kvm_vcpu *vcpu;
6001 kvm_for_each_vcpu(i, vcpu, kvm)
6002 *(u64 *)((void *)(&vcpu->stat) + offset) = 0;
6004 return 0;
6007 static int kvm_stat_data_get(void *data, u64 *val)
6009 int r = -EFAULT;
6010 struct kvm_stat_data *stat_data = data;
6012 switch (stat_data->kind) {
6013 case KVM_STAT_VM:
6014 r = kvm_get_stat_per_vm(stat_data->kvm,
6015 stat_data->desc->desc.offset, val);
6016 break;
6017 case KVM_STAT_VCPU:
6018 r = kvm_get_stat_per_vcpu(stat_data->kvm,
6019 stat_data->desc->desc.offset, val);
6020 break;
6023 return r;
6026 static int kvm_stat_data_clear(void *data, u64 val)
6028 int r = -EFAULT;
6029 struct kvm_stat_data *stat_data = data;
6031 if (val)
6032 return -EINVAL;
6034 switch (stat_data->kind) {
6035 case KVM_STAT_VM:
6036 r = kvm_clear_stat_per_vm(stat_data->kvm,
6037 stat_data->desc->desc.offset);
6038 break;
6039 case KVM_STAT_VCPU:
6040 r = kvm_clear_stat_per_vcpu(stat_data->kvm,
6041 stat_data->desc->desc.offset);
6042 break;
6045 return r;
6048 static int kvm_stat_data_open(struct inode *inode, struct file *file)
6050 __simple_attr_check_format("%llu\n", 0ull);
6051 return kvm_debugfs_open(inode, file, kvm_stat_data_get,
6052 kvm_stat_data_clear, "%llu\n");
6055 static const struct file_operations stat_fops_per_vm = {
6056 .owner = THIS_MODULE,
6057 .open = kvm_stat_data_open,
6058 .release = kvm_debugfs_release,
6059 .read = simple_attr_read,
6060 .write = simple_attr_write,
6063 static int vm_stat_get(void *_offset, u64 *val)
6065 unsigned offset = (long)_offset;
6066 struct kvm *kvm;
6067 u64 tmp_val;
6069 *val = 0;
6070 mutex_lock(&kvm_lock);
6071 list_for_each_entry(kvm, &vm_list, vm_list) {
6072 kvm_get_stat_per_vm(kvm, offset, &tmp_val);
6073 *val += tmp_val;
6075 mutex_unlock(&kvm_lock);
6076 return 0;
6079 static int vm_stat_clear(void *_offset, u64 val)
6081 unsigned offset = (long)_offset;
6082 struct kvm *kvm;
6084 if (val)
6085 return -EINVAL;
6087 mutex_lock(&kvm_lock);
6088 list_for_each_entry(kvm, &vm_list, vm_list) {
6089 kvm_clear_stat_per_vm(kvm, offset);
6091 mutex_unlock(&kvm_lock);
6093 return 0;
6096 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
6097 DEFINE_SIMPLE_ATTRIBUTE(vm_stat_readonly_fops, vm_stat_get, NULL, "%llu\n");
6099 static int vcpu_stat_get(void *_offset, u64 *val)
6101 unsigned offset = (long)_offset;
6102 struct kvm *kvm;
6103 u64 tmp_val;
6105 *val = 0;
6106 mutex_lock(&kvm_lock);
6107 list_for_each_entry(kvm, &vm_list, vm_list) {
6108 kvm_get_stat_per_vcpu(kvm, offset, &tmp_val);
6109 *val += tmp_val;
6111 mutex_unlock(&kvm_lock);
6112 return 0;
6115 static int vcpu_stat_clear(void *_offset, u64 val)
6117 unsigned offset = (long)_offset;
6118 struct kvm *kvm;
6120 if (val)
6121 return -EINVAL;
6123 mutex_lock(&kvm_lock);
6124 list_for_each_entry(kvm, &vm_list, vm_list) {
6125 kvm_clear_stat_per_vcpu(kvm, offset);
6127 mutex_unlock(&kvm_lock);
6129 return 0;
6132 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
6133 "%llu\n");
6134 DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_readonly_fops, vcpu_stat_get, NULL, "%llu\n");
6136 static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
6138 struct kobj_uevent_env *env;
6139 unsigned long long created, active;
6141 if (!kvm_dev.this_device || !kvm)
6142 return;
6144 mutex_lock(&kvm_lock);
6145 if (type == KVM_EVENT_CREATE_VM) {
6146 kvm_createvm_count++;
6147 kvm_active_vms++;
6148 } else if (type == KVM_EVENT_DESTROY_VM) {
6149 kvm_active_vms--;
6151 created = kvm_createvm_count;
6152 active = kvm_active_vms;
6153 mutex_unlock(&kvm_lock);
6155 env = kzalloc(sizeof(*env), GFP_KERNEL);
6156 if (!env)
6157 return;
6159 add_uevent_var(env, "CREATED=%llu", created);
6160 add_uevent_var(env, "COUNT=%llu", active);
6162 if (type == KVM_EVENT_CREATE_VM) {
6163 add_uevent_var(env, "EVENT=create");
6164 kvm->userspace_pid = task_pid_nr(current);
6165 } else if (type == KVM_EVENT_DESTROY_VM) {
6166 add_uevent_var(env, "EVENT=destroy");
6168 add_uevent_var(env, "PID=%d", kvm->userspace_pid);
6170 if (!IS_ERR(kvm->debugfs_dentry)) {
6171 char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
6173 if (p) {
6174 tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
6175 if (!IS_ERR(tmp))
6176 add_uevent_var(env, "STATS_PATH=%s", tmp);
6177 kfree(p);
6180 /* no need for checks, since we are adding at most only 5 keys */
6181 env->envp[env->envp_idx++] = NULL;
6182 kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
6183 kfree(env);
6186 static void kvm_init_debug(void)
6188 const struct file_operations *fops;
6189 const struct _kvm_stats_desc *pdesc;
6190 int i;
6192 kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
6194 for (i = 0; i < kvm_vm_stats_header.num_desc; ++i) {
6195 pdesc = &kvm_vm_stats_desc[i];
6196 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6197 fops = &vm_stat_fops;
6198 else
6199 fops = &vm_stat_readonly_fops;
6200 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6201 kvm_debugfs_dir,
6202 (void *)(long)pdesc->desc.offset, fops);
6205 for (i = 0; i < kvm_vcpu_stats_header.num_desc; ++i) {
6206 pdesc = &kvm_vcpu_stats_desc[i];
6207 if (kvm_stats_debugfs_mode(pdesc) & 0222)
6208 fops = &vcpu_stat_fops;
6209 else
6210 fops = &vcpu_stat_readonly_fops;
6211 debugfs_create_file(pdesc->name, kvm_stats_debugfs_mode(pdesc),
6212 kvm_debugfs_dir,
6213 (void *)(long)pdesc->desc.offset, fops);
6217 static inline
6218 struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
6220 return container_of(pn, struct kvm_vcpu, preempt_notifier);
6223 static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
6225 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6227 WRITE_ONCE(vcpu->preempted, false);
6228 WRITE_ONCE(vcpu->ready, false);
6230 __this_cpu_write(kvm_running_vcpu, vcpu);
6231 kvm_arch_vcpu_load(vcpu, cpu);
6233 WRITE_ONCE(vcpu->scheduled_out, false);
6236 static void kvm_sched_out(struct preempt_notifier *pn,
6237 struct task_struct *next)
6239 struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
6241 WRITE_ONCE(vcpu->scheduled_out, true);
6243 if (task_is_runnable(current) && vcpu->wants_to_run) {
6244 WRITE_ONCE(vcpu->preempted, true);
6245 WRITE_ONCE(vcpu->ready, true);
6247 kvm_arch_vcpu_put(vcpu);
6248 __this_cpu_write(kvm_running_vcpu, NULL);
6252 * kvm_get_running_vcpu - get the vcpu running on the current CPU.
6254 * We can disable preemption locally around accessing the per-CPU variable,
6255 * and use the resolved vcpu pointer after enabling preemption again,
6256 * because even if the current thread is migrated to another CPU, reading
6257 * the per-CPU value later will give us the same value as we update the
6258 * per-CPU variable in the preempt notifier handlers.
6260 struct kvm_vcpu *kvm_get_running_vcpu(void)
6262 struct kvm_vcpu *vcpu;
6264 preempt_disable();
6265 vcpu = __this_cpu_read(kvm_running_vcpu);
6266 preempt_enable();
6268 return vcpu;
6270 EXPORT_SYMBOL_GPL(kvm_get_running_vcpu);
6273 * kvm_get_running_vcpus - get the per-CPU array of currently running vcpus.
6275 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void)
6277 return &kvm_running_vcpu;
6280 #ifdef CONFIG_GUEST_PERF_EVENTS
6281 static unsigned int kvm_guest_state(void)
6283 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6284 unsigned int state;
6286 if (!kvm_arch_pmi_in_guest(vcpu))
6287 return 0;
6289 state = PERF_GUEST_ACTIVE;
6290 if (!kvm_arch_vcpu_in_kernel(vcpu))
6291 state |= PERF_GUEST_USER;
6293 return state;
6296 static unsigned long kvm_guest_get_ip(void)
6298 struct kvm_vcpu *vcpu = kvm_get_running_vcpu();
6300 /* Retrieving the IP must be guarded by a call to kvm_guest_state(). */
6301 if (WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)))
6302 return 0;
6304 return kvm_arch_vcpu_get_ip(vcpu);
6307 static struct perf_guest_info_callbacks kvm_guest_cbs = {
6308 .state = kvm_guest_state,
6309 .get_ip = kvm_guest_get_ip,
6310 .handle_intel_pt_intr = NULL,
6313 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void))
6315 kvm_guest_cbs.handle_intel_pt_intr = pt_intr_handler;
6316 perf_register_guest_info_callbacks(&kvm_guest_cbs);
6318 void kvm_unregister_perf_callbacks(void)
6320 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
6322 #endif
6324 int kvm_init(unsigned vcpu_size, unsigned vcpu_align, struct module *module)
6326 int r;
6327 int cpu;
6329 /* A kmem cache lets us meet the alignment requirements of fx_save. */
6330 if (!vcpu_align)
6331 vcpu_align = __alignof__(struct kvm_vcpu);
6332 kvm_vcpu_cache =
6333 kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
6334 SLAB_ACCOUNT,
6335 offsetof(struct kvm_vcpu, arch),
6336 offsetofend(struct kvm_vcpu, stats_id)
6337 - offsetof(struct kvm_vcpu, arch),
6338 NULL);
6339 if (!kvm_vcpu_cache)
6340 return -ENOMEM;
6342 for_each_possible_cpu(cpu) {
6343 if (!alloc_cpumask_var_node(&per_cpu(cpu_kick_mask, cpu),
6344 GFP_KERNEL, cpu_to_node(cpu))) {
6345 r = -ENOMEM;
6346 goto err_cpu_kick_mask;
6350 r = kvm_irqfd_init();
6351 if (r)
6352 goto err_irqfd;
6354 r = kvm_async_pf_init();
6355 if (r)
6356 goto err_async_pf;
6358 kvm_chardev_ops.owner = module;
6359 kvm_vm_fops.owner = module;
6360 kvm_vcpu_fops.owner = module;
6361 kvm_device_fops.owner = module;
6363 kvm_preempt_ops.sched_in = kvm_sched_in;
6364 kvm_preempt_ops.sched_out = kvm_sched_out;
6366 kvm_init_debug();
6368 r = kvm_vfio_ops_init();
6369 if (WARN_ON_ONCE(r))
6370 goto err_vfio;
6372 kvm_gmem_init(module);
6374 r = kvm_init_virtualization();
6375 if (r)
6376 goto err_virt;
6379 * Registration _must_ be the very last thing done, as this exposes
6380 * /dev/kvm to userspace, i.e. all infrastructure must be setup!
6382 r = misc_register(&kvm_dev);
6383 if (r) {
6384 pr_err("kvm: misc device register failed\n");
6385 goto err_register;
6388 return 0;
6390 err_register:
6391 kvm_uninit_virtualization();
6392 err_virt:
6393 kvm_vfio_ops_exit();
6394 err_vfio:
6395 kvm_async_pf_deinit();
6396 err_async_pf:
6397 kvm_irqfd_exit();
6398 err_irqfd:
6399 err_cpu_kick_mask:
6400 for_each_possible_cpu(cpu)
6401 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6402 kmem_cache_destroy(kvm_vcpu_cache);
6403 return r;
6405 EXPORT_SYMBOL_GPL(kvm_init);
6407 void kvm_exit(void)
6409 int cpu;
6412 * Note, unregistering /dev/kvm doesn't strictly need to come first,
6413 * fops_get(), a.k.a. try_module_get(), prevents acquiring references
6414 * to KVM while the module is being stopped.
6416 misc_deregister(&kvm_dev);
6418 kvm_uninit_virtualization();
6420 debugfs_remove_recursive(kvm_debugfs_dir);
6421 for_each_possible_cpu(cpu)
6422 free_cpumask_var(per_cpu(cpu_kick_mask, cpu));
6423 kmem_cache_destroy(kvm_vcpu_cache);
6424 kvm_vfio_ops_exit();
6425 kvm_async_pf_deinit();
6426 kvm_irqfd_exit();
6428 EXPORT_SYMBOL_GPL(kvm_exit);