drm/tests: hdmi: Fix memory leaks in drm_display_mode_from_cea_vic()
[drm/drm-misc.git] / arch / arm64 / Kconfig
blobfd9df6dcc5937208fe158ac8da9c4ede131d0fc7
1 # SPDX-License-Identifier: GPL-2.0-only
2 config ARM64
3         def_bool y
4         select ACPI_APMT if ACPI
5         select ACPI_CCA_REQUIRED if ACPI
6         select ACPI_GENERIC_GSI if ACPI
7         select ACPI_GTDT if ACPI
8         select ACPI_HOTPLUG_CPU if ACPI_PROCESSOR && HOTPLUG_CPU
9         select ACPI_IORT if ACPI
10         select ACPI_REDUCED_HARDWARE_ONLY if ACPI
11         select ACPI_MCFG if (ACPI && PCI)
12         select ACPI_SPCR_TABLE if ACPI
13         select ACPI_PPTT if ACPI
14         select ARCH_HAS_DEBUG_WX
15         select ARCH_BINFMT_ELF_EXTRA_PHDRS
16         select ARCH_BINFMT_ELF_STATE
17         select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
18         select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
19         select ARCH_ENABLE_MEMORY_HOTPLUG
20         select ARCH_ENABLE_MEMORY_HOTREMOVE
21         select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
22         select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
23         select ARCH_HAS_CACHE_LINE_SIZE
24         select ARCH_HAS_CURRENT_STACK_POINTER
25         select ARCH_HAS_DEBUG_VIRTUAL
26         select ARCH_HAS_DEBUG_VM_PGTABLE
27         select ARCH_HAS_DMA_OPS if XEN
28         select ARCH_HAS_DMA_PREP_COHERENT
29         select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
30         select ARCH_HAS_FAST_MULTIPLIER
31         select ARCH_HAS_FORTIFY_SOURCE
32         select ARCH_HAS_GCOV_PROFILE_ALL
33         select ARCH_HAS_GIGANTIC_PAGE
34         select ARCH_HAS_KCOV
35         select ARCH_HAS_KERNEL_FPU_SUPPORT if KERNEL_MODE_NEON
36         select ARCH_HAS_KEEPINITRD
37         select ARCH_HAS_MEMBARRIER_SYNC_CORE
38         select ARCH_HAS_MEM_ENCRYPT
39         select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
40         select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
41         select ARCH_HAS_PTE_DEVMAP
42         select ARCH_HAS_PTE_SPECIAL
43         select ARCH_HAS_HW_PTE_YOUNG
44         select ARCH_HAS_SETUP_DMA_OPS
45         select ARCH_HAS_SET_DIRECT_MAP
46         select ARCH_HAS_SET_MEMORY
47         select ARCH_STACKWALK
48         select ARCH_HAS_STRICT_KERNEL_RWX
49         select ARCH_HAS_STRICT_MODULE_RWX
50         select ARCH_HAS_SYNC_DMA_FOR_DEVICE
51         select ARCH_HAS_SYNC_DMA_FOR_CPU
52         select ARCH_HAS_SYSCALL_WRAPPER
53         select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
54         select ARCH_HAS_ZONE_DMA_SET if EXPERT
55         select ARCH_HAVE_ELF_PROT
56         select ARCH_HAVE_NMI_SAFE_CMPXCHG
57         select ARCH_HAVE_TRACE_MMIO_ACCESS
58         select ARCH_INLINE_READ_LOCK if !PREEMPTION
59         select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
60         select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
61         select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
62         select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
63         select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
64         select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
65         select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
66         select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
67         select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
68         select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
69         select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
70         select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
71         select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
72         select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
73         select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
74         select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
75         select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
76         select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
77         select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
78         select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
79         select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
80         select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
81         select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
82         select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
83         select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
84         select ARCH_KEEP_MEMBLOCK
85         select ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
86         select ARCH_USE_CMPXCHG_LOCKREF
87         select ARCH_USE_GNU_PROPERTY
88         select ARCH_USE_MEMTEST
89         select ARCH_USE_QUEUED_RWLOCKS
90         select ARCH_USE_QUEUED_SPINLOCKS
91         select ARCH_USE_SYM_ANNOTATIONS
92         select ARCH_SUPPORTS_DEBUG_PAGEALLOC
93         select ARCH_SUPPORTS_HUGETLBFS
94         select ARCH_SUPPORTS_MEMORY_FAILURE
95         select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
96         select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
97         select ARCH_SUPPORTS_LTO_CLANG_THIN
98         select ARCH_SUPPORTS_CFI_CLANG
99         select ARCH_SUPPORTS_ATOMIC_RMW
100         select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
101         select ARCH_SUPPORTS_NUMA_BALANCING
102         select ARCH_SUPPORTS_PAGE_TABLE_CHECK
103         select ARCH_SUPPORTS_PER_VMA_LOCK
104         select ARCH_SUPPORTS_HUGE_PFNMAP if TRANSPARENT_HUGEPAGE
105         select ARCH_SUPPORTS_RT
106         select ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
107         select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
108         select ARCH_WANT_DEFAULT_BPF_JIT
109         select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
110         select ARCH_WANT_FRAME_POINTERS
111         select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
112         select ARCH_WANT_LD_ORPHAN_WARN
113         select ARCH_WANTS_EXECMEM_LATE if EXECMEM
114         select ARCH_WANTS_NO_INSTR
115         select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
116         select ARCH_HAS_UBSAN
117         select ARM_AMBA
118         select ARM_ARCH_TIMER
119         select ARM_GIC
120         select AUDIT_ARCH_COMPAT_GENERIC
121         select ARM_GIC_V2M if PCI
122         select ARM_GIC_V3
123         select ARM_GIC_V3_ITS if PCI
124         select ARM_PSCI_FW
125         select BUILDTIME_TABLE_SORT
126         select CLONE_BACKWARDS
127         select COMMON_CLK
128         select CPU_PM if (SUSPEND || CPU_IDLE)
129         select CPUMASK_OFFSTACK if NR_CPUS > 256
130         select CRC32
131         select DCACHE_WORD_ACCESS
132         select DYNAMIC_FTRACE if FUNCTION_TRACER
133         select DMA_BOUNCE_UNALIGNED_KMALLOC
134         select DMA_DIRECT_REMAP
135         select EDAC_SUPPORT
136         select FRAME_POINTER
137         select FUNCTION_ALIGNMENT_4B
138         select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
139         select GENERIC_ALLOCATOR
140         select GENERIC_ARCH_TOPOLOGY
141         select GENERIC_CLOCKEVENTS_BROADCAST
142         select GENERIC_CPU_AUTOPROBE
143         select GENERIC_CPU_DEVICES
144         select GENERIC_CPU_VULNERABILITIES
145         select GENERIC_EARLY_IOREMAP
146         select GENERIC_IDLE_POLL_SETUP
147         select GENERIC_IOREMAP
148         select GENERIC_IRQ_IPI
149         select GENERIC_IRQ_PROBE
150         select GENERIC_IRQ_SHOW
151         select GENERIC_IRQ_SHOW_LEVEL
152         select GENERIC_LIB_DEVMEM_IS_ALLOWED
153         select GENERIC_PCI_IOMAP
154         select GENERIC_PTDUMP
155         select GENERIC_SCHED_CLOCK
156         select GENERIC_SMP_IDLE_THREAD
157         select GENERIC_TIME_VSYSCALL
158         select GENERIC_GETTIMEOFDAY
159         select GENERIC_VDSO_TIME_NS
160         select HARDIRQS_SW_RESEND
161         select HAS_IOPORT
162         select HAVE_MOVE_PMD
163         select HAVE_MOVE_PUD
164         select HAVE_PCI
165         select HAVE_ACPI_APEI if (ACPI && EFI)
166         select HAVE_ALIGNED_STRUCT_PAGE
167         select HAVE_ARCH_AUDITSYSCALL
168         select HAVE_ARCH_BITREVERSE
169         select HAVE_ARCH_COMPILER_H
170         select HAVE_ARCH_HUGE_VMALLOC
171         select HAVE_ARCH_HUGE_VMAP
172         select HAVE_ARCH_JUMP_LABEL
173         select HAVE_ARCH_JUMP_LABEL_RELATIVE
174         select HAVE_ARCH_KASAN
175         select HAVE_ARCH_KASAN_VMALLOC
176         select HAVE_ARCH_KASAN_SW_TAGS
177         select HAVE_ARCH_KASAN_HW_TAGS if ARM64_MTE
178         # Some instrumentation may be unsound, hence EXPERT
179         select HAVE_ARCH_KCSAN if EXPERT
180         select HAVE_ARCH_KFENCE
181         select HAVE_ARCH_KGDB
182         select HAVE_ARCH_MMAP_RND_BITS
183         select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
184         select HAVE_ARCH_PREL32_RELOCATIONS
185         select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
186         select HAVE_ARCH_SECCOMP_FILTER
187         select HAVE_ARCH_STACKLEAK
188         select HAVE_ARCH_THREAD_STRUCT_WHITELIST
189         select HAVE_ARCH_TRACEHOOK
190         select HAVE_ARCH_TRANSPARENT_HUGEPAGE
191         select HAVE_ARCH_VMAP_STACK
192         select HAVE_ARM_SMCCC
193         select HAVE_ASM_MODVERSIONS
194         select HAVE_EBPF_JIT
195         select HAVE_C_RECORDMCOUNT
196         select HAVE_CMPXCHG_DOUBLE
197         select HAVE_CMPXCHG_LOCAL
198         select HAVE_CONTEXT_TRACKING_USER
199         select HAVE_DEBUG_KMEMLEAK
200         select HAVE_DMA_CONTIGUOUS
201         select HAVE_DYNAMIC_FTRACE
202         select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
203                 if (GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS || \
204                     CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS)
205         select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
206                 if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
207         select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
208                 if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
209                     (CC_IS_CLANG || !CC_OPTIMIZE_FOR_SIZE))
210         select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
211                 if DYNAMIC_FTRACE_WITH_ARGS
212         select HAVE_SAMPLE_FTRACE_DIRECT
213         select HAVE_SAMPLE_FTRACE_DIRECT_MULTI
214         select HAVE_EFFICIENT_UNALIGNED_ACCESS
215         select HAVE_GUP_FAST
216         select HAVE_FTRACE_MCOUNT_RECORD
217         select HAVE_FUNCTION_TRACER
218         select HAVE_FUNCTION_ERROR_INJECTION
219         select HAVE_FUNCTION_GRAPH_TRACER
220         select HAVE_FUNCTION_GRAPH_RETVAL
221         select HAVE_GCC_PLUGINS
222         select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
223                 HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
224         select HAVE_HW_BREAKPOINT if PERF_EVENTS
225         select HAVE_IOREMAP_PROT
226         select HAVE_IRQ_TIME_ACCOUNTING
227         select HAVE_MOD_ARCH_SPECIFIC
228         select HAVE_NMI
229         select HAVE_PERF_EVENTS
230         select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
231         select HAVE_PERF_REGS
232         select HAVE_PERF_USER_STACK_DUMP
233         select HAVE_PREEMPT_DYNAMIC_KEY
234         select HAVE_REGS_AND_STACK_ACCESS_API
235         select HAVE_POSIX_CPU_TIMERS_TASK_WORK
236         select HAVE_FUNCTION_ARG_ACCESS_API
237         select MMU_GATHER_RCU_TABLE_FREE
238         select HAVE_RSEQ
239         select HAVE_RUST if RUSTC_SUPPORTS_ARM64
240         select HAVE_STACKPROTECTOR
241         select HAVE_SYSCALL_TRACEPOINTS
242         select HAVE_KPROBES
243         select HAVE_KRETPROBES
244         select HAVE_GENERIC_VDSO
245         select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
246         select IRQ_DOMAIN
247         select IRQ_FORCED_THREADING
248         select KASAN_VMALLOC if KASAN
249         select LOCK_MM_AND_FIND_VMA
250         select MODULES_USE_ELF_RELA
251         select NEED_DMA_MAP_STATE
252         select NEED_SG_DMA_LENGTH
253         select OF
254         select OF_EARLY_FLATTREE
255         select PCI_DOMAINS_GENERIC if PCI
256         select PCI_ECAM if (ACPI && PCI)
257         select PCI_SYSCALL if PCI
258         select POWER_RESET
259         select POWER_SUPPLY
260         select SPARSE_IRQ
261         select SWIOTLB
262         select SYSCTL_EXCEPTION_TRACE
263         select THREAD_INFO_IN_TASK
264         select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
265         select HAVE_ARCH_USERFAULTFD_WP if USERFAULTFD
266         select TRACE_IRQFLAGS_SUPPORT
267         select TRACE_IRQFLAGS_NMI_SUPPORT
268         select HAVE_SOFTIRQ_ON_OWN_STACK
269         select USER_STACKTRACE_SUPPORT
270         select VDSO_GETRANDOM
271         help
272           ARM 64-bit (AArch64) Linux support.
274 config RUSTC_SUPPORTS_ARM64
275         def_bool y
276         depends on CPU_LITTLE_ENDIAN
277         # Shadow call stack is only supported on certain rustc versions.
278         #
279         # When using the UNWIND_PATCH_PAC_INTO_SCS option, rustc version 1.80+ is
280         # required due to use of the -Zfixed-x18 flag.
281         #
282         # Otherwise, rustc version 1.82+ is required due to use of the
283         # -Zsanitizer=shadow-call-stack flag.
284         depends on !SHADOW_CALL_STACK || RUSTC_VERSION >= 108200 || RUSTC_VERSION >= 108000 && UNWIND_PATCH_PAC_INTO_SCS
286 config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
287         def_bool CC_IS_CLANG
288         # https://github.com/ClangBuiltLinux/linux/issues/1507
289         depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
291 config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
292         def_bool CC_IS_GCC
293         depends on $(cc-option,-fpatchable-function-entry=2)
295 config 64BIT
296         def_bool y
298 config MMU
299         def_bool y
301 config ARM64_CONT_PTE_SHIFT
302         int
303         default 5 if PAGE_SIZE_64KB
304         default 7 if PAGE_SIZE_16KB
305         default 4
307 config ARM64_CONT_PMD_SHIFT
308         int
309         default 5 if PAGE_SIZE_64KB
310         default 5 if PAGE_SIZE_16KB
311         default 4
313 config ARCH_MMAP_RND_BITS_MIN
314         default 14 if PAGE_SIZE_64KB
315         default 16 if PAGE_SIZE_16KB
316         default 18
318 # max bits determined by the following formula:
319 #  VA_BITS - PAGE_SHIFT - 3
320 config ARCH_MMAP_RND_BITS_MAX
321         default 19 if ARM64_VA_BITS=36
322         default 24 if ARM64_VA_BITS=39
323         default 27 if ARM64_VA_BITS=42
324         default 30 if ARM64_VA_BITS=47
325         default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
326         default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
327         default 33 if ARM64_VA_BITS=48
328         default 14 if ARM64_64K_PAGES
329         default 16 if ARM64_16K_PAGES
330         default 18
332 config ARCH_MMAP_RND_COMPAT_BITS_MIN
333         default 7 if ARM64_64K_PAGES
334         default 9 if ARM64_16K_PAGES
335         default 11
337 config ARCH_MMAP_RND_COMPAT_BITS_MAX
338         default 16
340 config NO_IOPORT_MAP
341         def_bool y if !PCI
343 config STACKTRACE_SUPPORT
344         def_bool y
346 config ILLEGAL_POINTER_VALUE
347         hex
348         default 0xdead000000000000
350 config LOCKDEP_SUPPORT
351         def_bool y
353 config GENERIC_BUG
354         def_bool y
355         depends on BUG
357 config GENERIC_BUG_RELATIVE_POINTERS
358         def_bool y
359         depends on GENERIC_BUG
361 config GENERIC_HWEIGHT
362         def_bool y
364 config GENERIC_CSUM
365         def_bool y
367 config GENERIC_CALIBRATE_DELAY
368         def_bool y
370 config SMP
371         def_bool y
373 config KERNEL_MODE_NEON
374         def_bool y
376 config FIX_EARLYCON_MEM
377         def_bool y
379 config PGTABLE_LEVELS
380         int
381         default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
382         default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
383         default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
384         default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
385         default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
386         default 4 if ARM64_16K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
387         default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
388         default 5 if ARM64_4K_PAGES && ARM64_VA_BITS_52
390 config ARCH_SUPPORTS_UPROBES
391         def_bool y
393 config ARCH_PROC_KCORE_TEXT
394         def_bool y
396 config BROKEN_GAS_INST
397         def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
399 config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
400         bool
401         # Clang's __builtin_return_address() strips the PAC since 12.0.0
402         # https://github.com/llvm/llvm-project/commit/2a96f47c5ffca84cd774ad402cacd137f4bf45e2
403         default y if CC_IS_CLANG
404         # GCC's __builtin_return_address() strips the PAC since 11.1.0,
405         # and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
406         # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
407         default y if CC_IS_GCC && (GCC_VERSION >= 110100)
408         default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
409         default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
410         default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
411         default n
413 config KASAN_SHADOW_OFFSET
414         hex
415         depends on KASAN_GENERIC || KASAN_SW_TAGS
416         default 0xdfff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && !KASAN_SW_TAGS
417         default 0xdfffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && !KASAN_SW_TAGS
418         default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
419         default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
420         default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
421         default 0xefff800000000000 if (ARM64_VA_BITS_48 || (ARM64_VA_BITS_52 && !ARM64_16K_PAGES)) && KASAN_SW_TAGS
422         default 0xefffc00000000000 if (ARM64_VA_BITS_47 || ARM64_VA_BITS_52) && ARM64_16K_PAGES && KASAN_SW_TAGS
423         default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
424         default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
425         default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
426         default 0xffffffffffffffff
428 config UNWIND_TABLES
429         bool
431 source "arch/arm64/Kconfig.platforms"
433 menu "Kernel Features"
435 menu "ARM errata workarounds via the alternatives framework"
437 config AMPERE_ERRATUM_AC03_CPU_38
438         bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
439         default y
440         help
441           This option adds an alternative code sequence to work around Ampere
442           errata AC03_CPU_38 and AC04_CPU_10 on AmpereOne.
444           The affected design reports FEAT_HAFDBS as not implemented in
445           ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
446           as required by the architecture. The unadvertised HAFDBS
447           implementation suffers from an additional erratum where hardware
448           A/D updates can occur after a PTE has been marked invalid.
450           The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
451           which avoids enabling unadvertised hardware Access Flag management
452           at stage-2.
454           If unsure, say Y.
456 config ARM64_WORKAROUND_CLEAN_CACHE
457         bool
459 config ARM64_ERRATUM_826319
460         bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
461         default y
462         select ARM64_WORKAROUND_CLEAN_CACHE
463         help
464           This option adds an alternative code sequence to work around ARM
465           erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
466           AXI master interface and an L2 cache.
468           If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
469           and is unable to accept a certain write via this interface, it will
470           not progress on read data presented on the read data channel and the
471           system can deadlock.
473           The workaround promotes data cache clean instructions to
474           data cache clean-and-invalidate.
475           Please note that this does not necessarily enable the workaround,
476           as it depends on the alternative framework, which will only patch
477           the kernel if an affected CPU is detected.
479           If unsure, say Y.
481 config ARM64_ERRATUM_827319
482         bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
483         default y
484         select ARM64_WORKAROUND_CLEAN_CACHE
485         help
486           This option adds an alternative code sequence to work around ARM
487           erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
488           master interface and an L2 cache.
490           Under certain conditions this erratum can cause a clean line eviction
491           to occur at the same time as another transaction to the same address
492           on the AMBA 5 CHI interface, which can cause data corruption if the
493           interconnect reorders the two transactions.
495           The workaround promotes data cache clean instructions to
496           data cache clean-and-invalidate.
497           Please note that this does not necessarily enable the workaround,
498           as it depends on the alternative framework, which will only patch
499           the kernel if an affected CPU is detected.
501           If unsure, say Y.
503 config ARM64_ERRATUM_824069
504         bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
505         default y
506         select ARM64_WORKAROUND_CLEAN_CACHE
507         help
508           This option adds an alternative code sequence to work around ARM
509           erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
510           to a coherent interconnect.
512           If a Cortex-A53 processor is executing a store or prefetch for
513           write instruction at the same time as a processor in another
514           cluster is executing a cache maintenance operation to the same
515           address, then this erratum might cause a clean cache line to be
516           incorrectly marked as dirty.
518           The workaround promotes data cache clean instructions to
519           data cache clean-and-invalidate.
520           Please note that this option does not necessarily enable the
521           workaround, as it depends on the alternative framework, which will
522           only patch the kernel if an affected CPU is detected.
524           If unsure, say Y.
526 config ARM64_ERRATUM_819472
527         bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
528         default y
529         select ARM64_WORKAROUND_CLEAN_CACHE
530         help
531           This option adds an alternative code sequence to work around ARM
532           erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
533           present when it is connected to a coherent interconnect.
535           If the processor is executing a load and store exclusive sequence at
536           the same time as a processor in another cluster is executing a cache
537           maintenance operation to the same address, then this erratum might
538           cause data corruption.
540           The workaround promotes data cache clean instructions to
541           data cache clean-and-invalidate.
542           Please note that this does not necessarily enable the workaround,
543           as it depends on the alternative framework, which will only patch
544           the kernel if an affected CPU is detected.
546           If unsure, say Y.
548 config ARM64_ERRATUM_832075
549         bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
550         default y
551         help
552           This option adds an alternative code sequence to work around ARM
553           erratum 832075 on Cortex-A57 parts up to r1p2.
555           Affected Cortex-A57 parts might deadlock when exclusive load/store
556           instructions to Write-Back memory are mixed with Device loads.
558           The workaround is to promote device loads to use Load-Acquire
559           semantics.
560           Please note that this does not necessarily enable the workaround,
561           as it depends on the alternative framework, which will only patch
562           the kernel if an affected CPU is detected.
564           If unsure, say Y.
566 config ARM64_ERRATUM_834220
567         bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault (rare)"
568         depends on KVM
569         help
570           This option adds an alternative code sequence to work around ARM
571           erratum 834220 on Cortex-A57 parts up to r1p2.
573           Affected Cortex-A57 parts might report a Stage 2 translation
574           fault as the result of a Stage 1 fault for load crossing a
575           page boundary when there is a permission or device memory
576           alignment fault at Stage 1 and a translation fault at Stage 2.
578           The workaround is to verify that the Stage 1 translation
579           doesn't generate a fault before handling the Stage 2 fault.
580           Please note that this does not necessarily enable the workaround,
581           as it depends on the alternative framework, which will only patch
582           the kernel if an affected CPU is detected.
584           If unsure, say N.
586 config ARM64_ERRATUM_1742098
587         bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
588         depends on COMPAT
589         default y
590         help
591           This option removes the AES hwcap for aarch32 user-space to
592           workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
594           Affected parts may corrupt the AES state if an interrupt is
595           taken between a pair of AES instructions. These instructions
596           are only present if the cryptography extensions are present.
597           All software should have a fallback implementation for CPUs
598           that don't implement the cryptography extensions.
600           If unsure, say Y.
602 config ARM64_ERRATUM_845719
603         bool "Cortex-A53: 845719: a load might read incorrect data"
604         depends on COMPAT
605         default y
606         help
607           This option adds an alternative code sequence to work around ARM
608           erratum 845719 on Cortex-A53 parts up to r0p4.
610           When running a compat (AArch32) userspace on an affected Cortex-A53
611           part, a load at EL0 from a virtual address that matches the bottom 32
612           bits of the virtual address used by a recent load at (AArch64) EL1
613           might return incorrect data.
615           The workaround is to write the contextidr_el1 register on exception
616           return to a 32-bit task.
617           Please note that this does not necessarily enable the workaround,
618           as it depends on the alternative framework, which will only patch
619           the kernel if an affected CPU is detected.
621           If unsure, say Y.
623 config ARM64_ERRATUM_843419
624         bool "Cortex-A53: 843419: A load or store might access an incorrect address"
625         default y
626         help
627           This option links the kernel with '--fix-cortex-a53-843419' and
628           enables PLT support to replace certain ADRP instructions, which can
629           cause subsequent memory accesses to use an incorrect address on
630           Cortex-A53 parts up to r0p4.
632           If unsure, say Y.
634 config ARM64_LD_HAS_FIX_ERRATUM_843419
635         def_bool $(ld-option,--fix-cortex-a53-843419)
637 config ARM64_ERRATUM_1024718
638         bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
639         default y
640         help
641           This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
643           Affected Cortex-A55 cores (all revisions) could cause incorrect
644           update of the hardware dirty bit when the DBM/AP bits are updated
645           without a break-before-make. The workaround is to disable the usage
646           of hardware DBM locally on the affected cores. CPUs not affected by
647           this erratum will continue to use the feature.
649           If unsure, say Y.
651 config ARM64_ERRATUM_1418040
652         bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
653         default y
654         depends on COMPAT
655         help
656           This option adds a workaround for ARM Cortex-A76/Neoverse-N1
657           errata 1188873 and 1418040.
659           Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
660           cause register corruption when accessing the timer registers
661           from AArch32 userspace.
663           If unsure, say Y.
665 config ARM64_WORKAROUND_SPECULATIVE_AT
666         bool
668 config ARM64_ERRATUM_1165522
669         bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
670         default y
671         select ARM64_WORKAROUND_SPECULATIVE_AT
672         help
673           This option adds a workaround for ARM Cortex-A76 erratum 1165522.
675           Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
676           corrupted TLBs by speculating an AT instruction during a guest
677           context switch.
679           If unsure, say Y.
681 config ARM64_ERRATUM_1319367
682         bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
683         default y
684         select ARM64_WORKAROUND_SPECULATIVE_AT
685         help
686           This option adds work arounds for ARM Cortex-A57 erratum 1319537
687           and A72 erratum 1319367
689           Cortex-A57 and A72 cores could end-up with corrupted TLBs by
690           speculating an AT instruction during a guest context switch.
692           If unsure, say Y.
694 config ARM64_ERRATUM_1530923
695         bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
696         default y
697         select ARM64_WORKAROUND_SPECULATIVE_AT
698         help
699           This option adds a workaround for ARM Cortex-A55 erratum 1530923.
701           Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
702           corrupted TLBs by speculating an AT instruction during a guest
703           context switch.
705           If unsure, say Y.
707 config ARM64_WORKAROUND_REPEAT_TLBI
708         bool
710 config ARM64_ERRATUM_2441007
711         bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
712         select ARM64_WORKAROUND_REPEAT_TLBI
713         help
714           This option adds a workaround for ARM Cortex-A55 erratum #2441007.
716           Under very rare circumstances, affected Cortex-A55 CPUs
717           may not handle a race between a break-before-make sequence on one
718           CPU, and another CPU accessing the same page. This could allow a
719           store to a page that has been unmapped.
721           Work around this by adding the affected CPUs to the list that needs
722           TLB sequences to be done twice.
724           If unsure, say N.
726 config ARM64_ERRATUM_1286807
727         bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation (rare)"
728         select ARM64_WORKAROUND_REPEAT_TLBI
729         help
730           This option adds a workaround for ARM Cortex-A76 erratum 1286807.
732           On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
733           address for a cacheable mapping of a location is being
734           accessed by a core while another core is remapping the virtual
735           address to a new physical page using the recommended
736           break-before-make sequence, then under very rare circumstances
737           TLBI+DSB completes before a read using the translation being
738           invalidated has been observed by other observers. The
739           workaround repeats the TLBI+DSB operation.
741           If unsure, say N.
743 config ARM64_ERRATUM_1463225
744         bool "Cortex-A76: Software Step might prevent interrupt recognition"
745         default y
746         help
747           This option adds a workaround for Arm Cortex-A76 erratum 1463225.
749           On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
750           of a system call instruction (SVC) can prevent recognition of
751           subsequent interrupts when software stepping is disabled in the
752           exception handler of the system call and either kernel debugging
753           is enabled or VHE is in use.
755           Work around the erratum by triggering a dummy step exception
756           when handling a system call from a task that is being stepped
757           in a VHE configuration of the kernel.
759           If unsure, say Y.
761 config ARM64_ERRATUM_1542419
762         bool "Neoverse-N1: workaround mis-ordering of instruction fetches (rare)"
763         help
764           This option adds a workaround for ARM Neoverse-N1 erratum
765           1542419.
767           Affected Neoverse-N1 cores could execute a stale instruction when
768           modified by another CPU. The workaround depends on a firmware
769           counterpart.
771           Workaround the issue by hiding the DIC feature from EL0. This
772           forces user-space to perform cache maintenance.
774           If unsure, say N.
776 config ARM64_ERRATUM_1508412
777         bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
778         default y
779         help
780           This option adds a workaround for Arm Cortex-A77 erratum 1508412.
782           Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
783           of a store-exclusive or read of PAR_EL1 and a load with device or
784           non-cacheable memory attributes. The workaround depends on a firmware
785           counterpart.
787           KVM guests must also have the workaround implemented or they can
788           deadlock the system.
790           Work around the issue by inserting DMB SY barriers around PAR_EL1
791           register reads and warning KVM users. The DMB barrier is sufficient
792           to prevent a speculative PAR_EL1 read.
794           If unsure, say Y.
796 config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
797         bool
799 config ARM64_ERRATUM_2051678
800         bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
801         default y
802         help
803           This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
804           Affected Cortex-A510 might not respect the ordering rules for
805           hardware update of the page table's dirty bit. The workaround
806           is to not enable the feature on affected CPUs.
808           If unsure, say Y.
810 config ARM64_ERRATUM_2077057
811         bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
812         default y
813         help
814           This option adds the workaround for ARM Cortex-A510 erratum 2077057.
815           Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
816           expected, but a Pointer Authentication trap is taken instead. The
817           erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
818           EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
820           This can only happen when EL2 is stepping EL1.
822           When these conditions occur, the SPSR_EL2 value is unchanged from the
823           previous guest entry, and can be restored from the in-memory copy.
825           If unsure, say Y.
827 config ARM64_ERRATUM_2658417
828         bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
829         default y
830         help
831           This option adds the workaround for ARM Cortex-A510 erratum 2658417.
832           Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
833           BFMMLA or VMMLA instructions in rare circumstances when a pair of
834           A510 CPUs are using shared neon hardware. As the sharing is not
835           discoverable by the kernel, hide the BF16 HWCAP to indicate that
836           user-space should not be using these instructions.
838           If unsure, say Y.
840 config ARM64_ERRATUM_2119858
841         bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
842         default y
843         depends on CORESIGHT_TRBE
844         select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
845         help
846           This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
848           Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
849           data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
850           the event of a WRAP event.
852           Work around the issue by always making sure we move the TRBPTR_EL1 by
853           256 bytes before enabling the buffer and filling the first 256 bytes of
854           the buffer with ETM ignore packets upon disabling.
856           If unsure, say Y.
858 config ARM64_ERRATUM_2139208
859         bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
860         default y
861         depends on CORESIGHT_TRBE
862         select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
863         help
864           This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
866           Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
867           data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
868           the event of a WRAP event.
870           Work around the issue by always making sure we move the TRBPTR_EL1 by
871           256 bytes before enabling the buffer and filling the first 256 bytes of
872           the buffer with ETM ignore packets upon disabling.
874           If unsure, say Y.
876 config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
877         bool
879 config ARM64_ERRATUM_2054223
880         bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
881         default y
882         select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
883         help
884           Enable workaround for ARM Cortex-A710 erratum 2054223
886           Affected cores may fail to flush the trace data on a TSB instruction, when
887           the PE is in trace prohibited state. This will cause losing a few bytes
888           of the trace cached.
890           Workaround is to issue two TSB consecutively on affected cores.
892           If unsure, say Y.
894 config ARM64_ERRATUM_2067961
895         bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
896         default y
897         select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
898         help
899           Enable workaround for ARM Neoverse-N2 erratum 2067961
901           Affected cores may fail to flush the trace data on a TSB instruction, when
902           the PE is in trace prohibited state. This will cause losing a few bytes
903           of the trace cached.
905           Workaround is to issue two TSB consecutively on affected cores.
907           If unsure, say Y.
909 config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
910         bool
912 config ARM64_ERRATUM_2253138
913         bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
914         depends on CORESIGHT_TRBE
915         default y
916         select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
917         help
918           This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
920           Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
921           for TRBE. Under some conditions, the TRBE might generate a write to the next
922           virtually addressed page following the last page of the TRBE address space
923           (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
925           Work around this in the driver by always making sure that there is a
926           page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
928           If unsure, say Y.
930 config ARM64_ERRATUM_2224489
931         bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
932         depends on CORESIGHT_TRBE
933         default y
934         select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
935         help
936           This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
938           Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
939           for TRBE. Under some conditions, the TRBE might generate a write to the next
940           virtually addressed page following the last page of the TRBE address space
941           (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
943           Work around this in the driver by always making sure that there is a
944           page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
946           If unsure, say Y.
948 config ARM64_ERRATUM_2441009
949         bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI (rare)"
950         select ARM64_WORKAROUND_REPEAT_TLBI
951         help
952           This option adds a workaround for ARM Cortex-A510 erratum #2441009.
954           Under very rare circumstances, affected Cortex-A510 CPUs
955           may not handle a race between a break-before-make sequence on one
956           CPU, and another CPU accessing the same page. This could allow a
957           store to a page that has been unmapped.
959           Work around this by adding the affected CPUs to the list that needs
960           TLB sequences to be done twice.
962           If unsure, say N.
964 config ARM64_ERRATUM_2064142
965         bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
966         depends on CORESIGHT_TRBE
967         default y
968         help
969           This option adds the workaround for ARM Cortex-A510 erratum 2064142.
971           Affected Cortex-A510 core might fail to write into system registers after the
972           TRBE has been disabled. Under some conditions after the TRBE has been disabled
973           writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
974           and TRBTRG_EL1 will be ignored and will not be effected.
976           Work around this in the driver by executing TSB CSYNC and DSB after collection
977           is stopped and before performing a system register write to one of the affected
978           registers.
980           If unsure, say Y.
982 config ARM64_ERRATUM_2038923
983         bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
984         depends on CORESIGHT_TRBE
985         default y
986         help
987           This option adds the workaround for ARM Cortex-A510 erratum 2038923.
989           Affected Cortex-A510 core might cause an inconsistent view on whether trace is
990           prohibited within the CPU. As a result, the trace buffer or trace buffer state
991           might be corrupted. This happens after TRBE buffer has been enabled by setting
992           TRBLIMITR_EL1.E, followed by just a single context synchronization event before
993           execution changes from a context, in which trace is prohibited to one where it
994           isn't, or vice versa. In these mentioned conditions, the view of whether trace
995           is prohibited is inconsistent between parts of the CPU, and the trace buffer or
996           the trace buffer state might be corrupted.
998           Work around this in the driver by preventing an inconsistent view of whether the
999           trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
1000           change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
1001           two ISB instructions if no ERET is to take place.
1003           If unsure, say Y.
1005 config ARM64_ERRATUM_1902691
1006         bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
1007         depends on CORESIGHT_TRBE
1008         default y
1009         help
1010           This option adds the workaround for ARM Cortex-A510 erratum 1902691.
1012           Affected Cortex-A510 core might cause trace data corruption, when being written
1013           into the memory. Effectively TRBE is broken and hence cannot be used to capture
1014           trace data.
1016           Work around this problem in the driver by just preventing TRBE initialization on
1017           affected cpus. The firmware must have disabled the access to TRBE for the kernel
1018           on such implementations. This will cover the kernel for any firmware that doesn't
1019           do this already.
1021           If unsure, say Y.
1023 config ARM64_ERRATUM_2457168
1024         bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1025         depends on ARM64_AMU_EXTN
1026         default y
1027         help
1028           This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1030           The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1031           as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1032           incorrectly giving a significantly higher output value.
1034           Work around this problem by returning 0 when reading the affected counter in
1035           key locations that results in disabling all users of this counter. This effect
1036           is the same to firmware disabling affected counters.
1038           If unsure, say Y.
1040 config ARM64_ERRATUM_2645198
1041         bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1042         default y
1043         help
1044           This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1046           If a Cortex-A715 cpu sees a page mapping permissions change from executable
1047           to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1048           next instruction abort caused by permission fault.
1050           Only user-space does executable to non-executable permission transition via
1051           mprotect() system call. Workaround the problem by doing a break-before-make
1052           TLB invalidation, for all changes to executable user space mappings.
1054           If unsure, say Y.
1056 config ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1057         bool
1059 config ARM64_ERRATUM_2966298
1060         bool "Cortex-A520: 2966298: workaround for speculatively executed unprivileged load"
1061         select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1062         default y
1063         help
1064           This option adds the workaround for ARM Cortex-A520 erratum 2966298.
1066           On an affected Cortex-A520 core, a speculatively executed unprivileged
1067           load might leak data from a privileged level via a cache side channel.
1069           Work around this problem by executing a TLBI before returning to EL0.
1071           If unsure, say Y.
1073 config ARM64_ERRATUM_3117295
1074         bool "Cortex-A510: 3117295: workaround for speculatively executed unprivileged load"
1075         select ARM64_WORKAROUND_SPECULATIVE_UNPRIV_LOAD
1076         default y
1077         help
1078           This option adds the workaround for ARM Cortex-A510 erratum 3117295.
1080           On an affected Cortex-A510 core, a speculatively executed unprivileged
1081           load might leak data from a privileged level via a cache side channel.
1083           Work around this problem by executing a TLBI before returning to EL0.
1085           If unsure, say Y.
1087 config ARM64_ERRATUM_3194386
1088         bool "Cortex-*/Neoverse-*: workaround for MSR SSBS not self-synchronizing"
1089         default y
1090         help
1091           This option adds the workaround for the following errata:
1093           * ARM Cortex-A76 erratum 3324349
1094           * ARM Cortex-A77 erratum 3324348
1095           * ARM Cortex-A78 erratum 3324344
1096           * ARM Cortex-A78C erratum 3324346
1097           * ARM Cortex-A78C erratum 3324347
1098           * ARM Cortex-A710 erratam 3324338
1099           * ARM Cortex-A715 errartum 3456084
1100           * ARM Cortex-A720 erratum 3456091
1101           * ARM Cortex-A725 erratum 3456106
1102           * ARM Cortex-X1 erratum 3324344
1103           * ARM Cortex-X1C erratum 3324346
1104           * ARM Cortex-X2 erratum 3324338
1105           * ARM Cortex-X3 erratum 3324335
1106           * ARM Cortex-X4 erratum 3194386
1107           * ARM Cortex-X925 erratum 3324334
1108           * ARM Neoverse-N1 erratum 3324349
1109           * ARM Neoverse N2 erratum 3324339
1110           * ARM Neoverse-N3 erratum 3456111
1111           * ARM Neoverse-V1 erratum 3324341
1112           * ARM Neoverse V2 erratum 3324336
1113           * ARM Neoverse-V3 erratum 3312417
1115           On affected cores "MSR SSBS, #0" instructions may not affect
1116           subsequent speculative instructions, which may permit unexepected
1117           speculative store bypassing.
1119           Work around this problem by placing a Speculation Barrier (SB) or
1120           Instruction Synchronization Barrier (ISB) after kernel changes to
1121           SSBS. The presence of the SSBS special-purpose register is hidden
1122           from hwcaps and EL0 reads of ID_AA64PFR1_EL1, such that userspace
1123           will use the PR_SPEC_STORE_BYPASS prctl to change SSBS.
1125           If unsure, say Y.
1127 config CAVIUM_ERRATUM_22375
1128         bool "Cavium erratum 22375, 24313"
1129         default y
1130         help
1131           Enable workaround for errata 22375 and 24313.
1133           This implements two gicv3-its errata workarounds for ThunderX. Both
1134           with a small impact affecting only ITS table allocation.
1136             erratum 22375: only alloc 8MB table size
1137             erratum 24313: ignore memory access type
1139           The fixes are in ITS initialization and basically ignore memory access
1140           type and table size provided by the TYPER and BASER registers.
1142           If unsure, say Y.
1144 config CAVIUM_ERRATUM_23144
1145         bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1146         depends on NUMA
1147         default y
1148         help
1149           ITS SYNC command hang for cross node io and collections/cpu mapping.
1151           If unsure, say Y.
1153 config CAVIUM_ERRATUM_23154
1154         bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1155         default y
1156         help
1157           The ThunderX GICv3 implementation requires a modified version for
1158           reading the IAR status to ensure data synchronization
1159           (access to icc_iar1_el1 is not sync'ed before and after).
1161           It also suffers from erratum 38545 (also present on Marvell's
1162           OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1163           spuriously presented to the CPU interface.
1165           If unsure, say Y.
1167 config CAVIUM_ERRATUM_27456
1168         bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1169         default y
1170         help
1171           On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1172           instructions may cause the icache to become corrupted if it
1173           contains data for a non-current ASID.  The fix is to
1174           invalidate the icache when changing the mm context.
1176           If unsure, say Y.
1178 config CAVIUM_ERRATUM_30115
1179         bool "Cavium erratum 30115: Guest may disable interrupts in host"
1180         default y
1181         help
1182           On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1183           1.2, and T83 Pass 1.0, KVM guest execution may disable
1184           interrupts in host. Trapping both GICv3 group-0 and group-1
1185           accesses sidesteps the issue.
1187           If unsure, say Y.
1189 config CAVIUM_TX2_ERRATUM_219
1190         bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1191         default y
1192         help
1193           On Cavium ThunderX2, a load, store or prefetch instruction between a
1194           TTBR update and the corresponding context synchronizing operation can
1195           cause a spurious Data Abort to be delivered to any hardware thread in
1196           the CPU core.
1198           Work around the issue by avoiding the problematic code sequence and
1199           trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1200           trap handler performs the corresponding register access, skips the
1201           instruction and ensures context synchronization by virtue of the
1202           exception return.
1204           If unsure, say Y.
1206 config FUJITSU_ERRATUM_010001
1207         bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1208         default y
1209         help
1210           This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1211           On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1212           accesses may cause undefined fault (Data abort, DFSC=0b111111).
1213           This fault occurs under a specific hardware condition when a
1214           load/store instruction performs an address translation using:
1215           case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1216           case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1217           case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1218           case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1220           The workaround is to ensure these bits are clear in TCR_ELx.
1221           The workaround only affects the Fujitsu-A64FX.
1223           If unsure, say Y.
1225 config HISILICON_ERRATUM_161600802
1226         bool "Hip07 161600802: Erroneous redistributor VLPI base"
1227         default y
1228         help
1229           The HiSilicon Hip07 SoC uses the wrong redistributor base
1230           when issued ITS commands such as VMOVP and VMAPP, and requires
1231           a 128kB offset to be applied to the target address in this commands.
1233           If unsure, say Y.
1235 config QCOM_FALKOR_ERRATUM_1003
1236         bool "Falkor E1003: Incorrect translation due to ASID change"
1237         default y
1238         help
1239           On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1240           and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1241           in TTBR1_EL1, this situation only occurs in the entry trampoline and
1242           then only for entries in the walk cache, since the leaf translation
1243           is unchanged. Work around the erratum by invalidating the walk cache
1244           entries for the trampoline before entering the kernel proper.
1246 config QCOM_FALKOR_ERRATUM_1009
1247         bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1248         default y
1249         select ARM64_WORKAROUND_REPEAT_TLBI
1250         help
1251           On Falkor v1, the CPU may prematurely complete a DSB following a
1252           TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1253           one more time to fix the issue.
1255           If unsure, say Y.
1257 config QCOM_QDF2400_ERRATUM_0065
1258         bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1259         default y
1260         help
1261           On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1262           ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1263           been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1265           If unsure, say Y.
1267 config QCOM_FALKOR_ERRATUM_E1041
1268         bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1269         default y
1270         help
1271           Falkor CPU may speculatively fetch instructions from an improper
1272           memory location when MMU translation is changed from SCTLR_ELn[M]=1
1273           to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1275           If unsure, say Y.
1277 config NVIDIA_CARMEL_CNP_ERRATUM
1278         bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1279         default y
1280         help
1281           If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1282           invalidate shared TLB entries installed by a different core, as it would
1283           on standard ARM cores.
1285           If unsure, say Y.
1287 config ROCKCHIP_ERRATUM_3588001
1288         bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1289         default y
1290         help
1291           The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1292           This means, that its sharability feature may not be used, even though it
1293           is supported by the IP itself.
1295           If unsure, say Y.
1297 config SOCIONEXT_SYNQUACER_PREITS
1298         bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1299         default y
1300         help
1301           Socionext Synquacer SoCs implement a separate h/w block to generate
1302           MSI doorbell writes with non-zero values for the device ID.
1304           If unsure, say Y.
1306 endmenu # "ARM errata workarounds via the alternatives framework"
1308 choice
1309         prompt "Page size"
1310         default ARM64_4K_PAGES
1311         help
1312           Page size (translation granule) configuration.
1314 config ARM64_4K_PAGES
1315         bool "4KB"
1316         select HAVE_PAGE_SIZE_4KB
1317         help
1318           This feature enables 4KB pages support.
1320 config ARM64_16K_PAGES
1321         bool "16KB"
1322         select HAVE_PAGE_SIZE_16KB
1323         help
1324           The system will use 16KB pages support. AArch32 emulation
1325           requires applications compiled with 16K (or a multiple of 16K)
1326           aligned segments.
1328 config ARM64_64K_PAGES
1329         bool "64KB"
1330         select HAVE_PAGE_SIZE_64KB
1331         help
1332           This feature enables 64KB pages support (4KB by default)
1333           allowing only two levels of page tables and faster TLB
1334           look-up. AArch32 emulation requires applications compiled
1335           with 64K aligned segments.
1337 endchoice
1339 choice
1340         prompt "Virtual address space size"
1341         default ARM64_VA_BITS_52
1342         help
1343           Allows choosing one of multiple possible virtual address
1344           space sizes. The level of translation table is determined by
1345           a combination of page size and virtual address space size.
1347 config ARM64_VA_BITS_36
1348         bool "36-bit" if EXPERT
1349         depends on PAGE_SIZE_16KB
1351 config ARM64_VA_BITS_39
1352         bool "39-bit"
1353         depends on PAGE_SIZE_4KB
1355 config ARM64_VA_BITS_42
1356         bool "42-bit"
1357         depends on PAGE_SIZE_64KB
1359 config ARM64_VA_BITS_47
1360         bool "47-bit"
1361         depends on PAGE_SIZE_16KB
1363 config ARM64_VA_BITS_48
1364         bool "48-bit"
1366 config ARM64_VA_BITS_52
1367         bool "52-bit"
1368         depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1369         help
1370           Enable 52-bit virtual addressing for userspace when explicitly
1371           requested via a hint to mmap(). The kernel will also use 52-bit
1372           virtual addresses for its own mappings (provided HW support for
1373           this feature is available, otherwise it reverts to 48-bit).
1375           NOTE: Enabling 52-bit virtual addressing in conjunction with
1376           ARMv8.3 Pointer Authentication will result in the PAC being
1377           reduced from 7 bits to 3 bits, which may have a significant
1378           impact on its susceptibility to brute-force attacks.
1380           If unsure, select 48-bit virtual addressing instead.
1382 endchoice
1384 config ARM64_FORCE_52BIT
1385         bool "Force 52-bit virtual addresses for userspace"
1386         depends on ARM64_VA_BITS_52 && EXPERT
1387         help
1388           For systems with 52-bit userspace VAs enabled, the kernel will attempt
1389           to maintain compatibility with older software by providing 48-bit VAs
1390           unless a hint is supplied to mmap.
1392           This configuration option disables the 48-bit compatibility logic, and
1393           forces all userspace addresses to be 52-bit on HW that supports it. One
1394           should only enable this configuration option for stress testing userspace
1395           memory management code. If unsure say N here.
1397 config ARM64_VA_BITS
1398         int
1399         default 36 if ARM64_VA_BITS_36
1400         default 39 if ARM64_VA_BITS_39
1401         default 42 if ARM64_VA_BITS_42
1402         default 47 if ARM64_VA_BITS_47
1403         default 48 if ARM64_VA_BITS_48
1404         default 52 if ARM64_VA_BITS_52
1406 choice
1407         prompt "Physical address space size"
1408         default ARM64_PA_BITS_48
1409         help
1410           Choose the maximum physical address range that the kernel will
1411           support.
1413 config ARM64_PA_BITS_48
1414         bool "48-bit"
1415         depends on ARM64_64K_PAGES || !ARM64_VA_BITS_52
1417 config ARM64_PA_BITS_52
1418         bool "52-bit"
1419         depends on ARM64_64K_PAGES || ARM64_VA_BITS_52
1420         depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1421         help
1422           Enable support for a 52-bit physical address space, introduced as
1423           part of the ARMv8.2-LPA extension.
1425           With this enabled, the kernel will also continue to work on CPUs that
1426           do not support ARMv8.2-LPA, but with some added memory overhead (and
1427           minor performance overhead).
1429 endchoice
1431 config ARM64_PA_BITS
1432         int
1433         default 48 if ARM64_PA_BITS_48
1434         default 52 if ARM64_PA_BITS_52
1436 config ARM64_LPA2
1437         def_bool y
1438         depends on ARM64_PA_BITS_52 && !ARM64_64K_PAGES
1440 choice
1441         prompt "Endianness"
1442         default CPU_LITTLE_ENDIAN
1443         help
1444           Select the endianness of data accesses performed by the CPU. Userspace
1445           applications will need to be compiled and linked for the endianness
1446           that is selected here.
1448 config CPU_BIG_ENDIAN
1449         bool "Build big-endian kernel"
1450         # https://github.com/llvm/llvm-project/commit/1379b150991f70a5782e9a143c2ba5308da1161c
1451         depends on AS_IS_GNU || AS_VERSION >= 150000
1452         help
1453           Say Y if you plan on running a kernel with a big-endian userspace.
1455 config CPU_LITTLE_ENDIAN
1456         bool "Build little-endian kernel"
1457         help
1458           Say Y if you plan on running a kernel with a little-endian userspace.
1459           This is usually the case for distributions targeting arm64.
1461 endchoice
1463 config SCHED_MC
1464         bool "Multi-core scheduler support"
1465         help
1466           Multi-core scheduler support improves the CPU scheduler's decision
1467           making when dealing with multi-core CPU chips at a cost of slightly
1468           increased overhead in some places. If unsure say N here.
1470 config SCHED_CLUSTER
1471         bool "Cluster scheduler support"
1472         help
1473           Cluster scheduler support improves the CPU scheduler's decision
1474           making when dealing with machines that have clusters of CPUs.
1475           Cluster usually means a couple of CPUs which are placed closely
1476           by sharing mid-level caches, last-level cache tags or internal
1477           busses.
1479 config SCHED_SMT
1480         bool "SMT scheduler support"
1481         help
1482           Improves the CPU scheduler's decision making when dealing with
1483           MultiThreading at a cost of slightly increased overhead in some
1484           places. If unsure say N here.
1486 config NR_CPUS
1487         int "Maximum number of CPUs (2-4096)"
1488         range 2 4096
1489         default "512"
1491 config HOTPLUG_CPU
1492         bool "Support for hot-pluggable CPUs"
1493         select GENERIC_IRQ_MIGRATION
1494         help
1495           Say Y here to experiment with turning CPUs off and on.  CPUs
1496           can be controlled through /sys/devices/system/cpu.
1498 # Common NUMA Features
1499 config NUMA
1500         bool "NUMA Memory Allocation and Scheduler Support"
1501         select GENERIC_ARCH_NUMA
1502         select OF_NUMA
1503         select HAVE_SETUP_PER_CPU_AREA
1504         select NEED_PER_CPU_EMBED_FIRST_CHUNK
1505         select NEED_PER_CPU_PAGE_FIRST_CHUNK
1506         select USE_PERCPU_NUMA_NODE_ID
1507         help
1508           Enable NUMA (Non-Uniform Memory Access) support.
1510           The kernel will try to allocate memory used by a CPU on the
1511           local memory of the CPU and add some more
1512           NUMA awareness to the kernel.
1514 config NODES_SHIFT
1515         int "Maximum NUMA Nodes (as a power of 2)"
1516         range 1 10
1517         default "4"
1518         depends on NUMA
1519         help
1520           Specify the maximum number of NUMA Nodes available on the target
1521           system.  Increases memory reserved to accommodate various tables.
1523 source "kernel/Kconfig.hz"
1525 config ARCH_SPARSEMEM_ENABLE
1526         def_bool y
1527         select SPARSEMEM_VMEMMAP_ENABLE
1528         select SPARSEMEM_VMEMMAP
1530 config HW_PERF_EVENTS
1531         def_bool y
1532         depends on ARM_PMU
1534 # Supported by clang >= 7.0 or GCC >= 12.0.0
1535 config CC_HAVE_SHADOW_CALL_STACK
1536         def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1538 config PARAVIRT
1539         bool "Enable paravirtualization code"
1540         help
1541           This changes the kernel so it can modify itself when it is run
1542           under a hypervisor, potentially improving performance significantly
1543           over full virtualization.
1545 config PARAVIRT_TIME_ACCOUNTING
1546         bool "Paravirtual steal time accounting"
1547         select PARAVIRT
1548         help
1549           Select this option to enable fine granularity task steal time
1550           accounting. Time spent executing other tasks in parallel with
1551           the current vCPU is discounted from the vCPU power. To account for
1552           that, there can be a small performance impact.
1554           If in doubt, say N here.
1556 config ARCH_SUPPORTS_KEXEC
1557         def_bool PM_SLEEP_SMP
1559 config ARCH_SUPPORTS_KEXEC_FILE
1560         def_bool y
1562 config ARCH_SELECTS_KEXEC_FILE
1563         def_bool y
1564         depends on KEXEC_FILE
1565         select HAVE_IMA_KEXEC if IMA
1567 config ARCH_SUPPORTS_KEXEC_SIG
1568         def_bool y
1570 config ARCH_SUPPORTS_KEXEC_IMAGE_VERIFY_SIG
1571         def_bool y
1573 config ARCH_DEFAULT_KEXEC_IMAGE_VERIFY_SIG
1574         def_bool y
1576 config ARCH_SUPPORTS_CRASH_DUMP
1577         def_bool y
1579 config ARCH_HAS_GENERIC_CRASHKERNEL_RESERVATION
1580         def_bool CRASH_RESERVE
1582 config TRANS_TABLE
1583         def_bool y
1584         depends on HIBERNATION || KEXEC_CORE
1586 config XEN_DOM0
1587         def_bool y
1588         depends on XEN
1590 config XEN
1591         bool "Xen guest support on ARM64"
1592         depends on ARM64 && OF
1593         select SWIOTLB_XEN
1594         select PARAVIRT
1595         help
1596           Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1598 # include/linux/mmzone.h requires the following to be true:
1600 #   MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1602 # so the maximum value of MAX_PAGE_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1604 #     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_PAGE_ORDER  |  default MAX_PAGE_ORDER |
1605 # ----+-------------------+--------------+----------------------+-------------------------+
1606 # 4K  |       27          |      12      |       15             |         10              |
1607 # 16K |       27          |      14      |       13             |         11              |
1608 # 64K |       29          |      16      |       13             |         13              |
1609 config ARCH_FORCE_MAX_ORDER
1610         int
1611         default "13" if ARM64_64K_PAGES
1612         default "11" if ARM64_16K_PAGES
1613         default "10"
1614         help
1615           The kernel page allocator limits the size of maximal physically
1616           contiguous allocations. The limit is called MAX_PAGE_ORDER and it
1617           defines the maximal power of two of number of pages that can be
1618           allocated as a single contiguous block. This option allows
1619           overriding the default setting when ability to allocate very
1620           large blocks of physically contiguous memory is required.
1622           The maximal size of allocation cannot exceed the size of the
1623           section, so the value of MAX_PAGE_ORDER should satisfy
1625             MAX_PAGE_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1627           Don't change if unsure.
1629 config UNMAP_KERNEL_AT_EL0
1630         bool "Unmap kernel when running in userspace (KPTI)" if EXPERT
1631         default y
1632         help
1633           Speculation attacks against some high-performance processors can
1634           be used to bypass MMU permission checks and leak kernel data to
1635           userspace. This can be defended against by unmapping the kernel
1636           when running in userspace, mapping it back in on exception entry
1637           via a trampoline page in the vector table.
1639           If unsure, say Y.
1641 config MITIGATE_SPECTRE_BRANCH_HISTORY
1642         bool "Mitigate Spectre style attacks against branch history" if EXPERT
1643         default y
1644         help
1645           Speculation attacks against some high-performance processors can
1646           make use of branch history to influence future speculation.
1647           When taking an exception from user-space, a sequence of branches
1648           or a firmware call overwrites the branch history.
1650 config RODATA_FULL_DEFAULT_ENABLED
1651         bool "Apply r/o permissions of VM areas also to their linear aliases"
1652         default y
1653         help
1654           Apply read-only attributes of VM areas to the linear alias of
1655           the backing pages as well. This prevents code or read-only data
1656           from being modified (inadvertently or intentionally) via another
1657           mapping of the same memory page. This additional enhancement can
1658           be turned off at runtime by passing rodata=[off|on] (and turned on
1659           with rodata=full if this option is set to 'n')
1661           This requires the linear region to be mapped down to pages,
1662           which may adversely affect performance in some cases.
1664 config ARM64_SW_TTBR0_PAN
1665         bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1666         depends on !KCSAN
1667         help
1668           Enabling this option prevents the kernel from accessing
1669           user-space memory directly by pointing TTBR0_EL1 to a reserved
1670           zeroed area and reserved ASID. The user access routines
1671           restore the valid TTBR0_EL1 temporarily.
1673 config ARM64_TAGGED_ADDR_ABI
1674         bool "Enable the tagged user addresses syscall ABI"
1675         default y
1676         help
1677           When this option is enabled, user applications can opt in to a
1678           relaxed ABI via prctl() allowing tagged addresses to be passed
1679           to system calls as pointer arguments. For details, see
1680           Documentation/arch/arm64/tagged-address-abi.rst.
1682 menuconfig COMPAT
1683         bool "Kernel support for 32-bit EL0"
1684         depends on ARM64_4K_PAGES || EXPERT
1685         select HAVE_UID16
1686         select OLD_SIGSUSPEND3
1687         select COMPAT_OLD_SIGACTION
1688         help
1689           This option enables support for a 32-bit EL0 running under a 64-bit
1690           kernel at EL1. AArch32-specific components such as system calls,
1691           the user helper functions, VFP support and the ptrace interface are
1692           handled appropriately by the kernel.
1694           If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1695           that you will only be able to execute AArch32 binaries that were compiled
1696           with page size aligned segments.
1698           If you want to execute 32-bit userspace applications, say Y.
1700 if COMPAT
1702 config KUSER_HELPERS
1703         bool "Enable kuser helpers page for 32-bit applications"
1704         default y
1705         help
1706           Warning: disabling this option may break 32-bit user programs.
1708           Provide kuser helpers to compat tasks. The kernel provides
1709           helper code to userspace in read only form at a fixed location
1710           to allow userspace to be independent of the CPU type fitted to
1711           the system. This permits binaries to be run on ARMv4 through
1712           to ARMv8 without modification.
1714           See Documentation/arch/arm/kernel_user_helpers.rst for details.
1716           However, the fixed address nature of these helpers can be used
1717           by ROP (return orientated programming) authors when creating
1718           exploits.
1720           If all of the binaries and libraries which run on your platform
1721           are built specifically for your platform, and make no use of
1722           these helpers, then you can turn this option off to hinder
1723           such exploits. However, in that case, if a binary or library
1724           relying on those helpers is run, it will not function correctly.
1726           Say N here only if you are absolutely certain that you do not
1727           need these helpers; otherwise, the safe option is to say Y.
1729 config COMPAT_VDSO
1730         bool "Enable vDSO for 32-bit applications"
1731         depends on !CPU_BIG_ENDIAN
1732         depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1733         select GENERIC_COMPAT_VDSO
1734         default y
1735         help
1736           Place in the process address space of 32-bit applications an
1737           ELF shared object providing fast implementations of gettimeofday
1738           and clock_gettime.
1740           You must have a 32-bit build of glibc 2.22 or later for programs
1741           to seamlessly take advantage of this.
1743 config THUMB2_COMPAT_VDSO
1744         bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1745         depends on COMPAT_VDSO
1746         default y
1747         help
1748           Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1749           otherwise with '-marm'.
1751 config COMPAT_ALIGNMENT_FIXUPS
1752         bool "Fix up misaligned multi-word loads and stores in user space"
1754 menuconfig ARMV8_DEPRECATED
1755         bool "Emulate deprecated/obsolete ARMv8 instructions"
1756         depends on SYSCTL
1757         help
1758           Legacy software support may require certain instructions
1759           that have been deprecated or obsoleted in the architecture.
1761           Enable this config to enable selective emulation of these
1762           features.
1764           If unsure, say Y
1766 if ARMV8_DEPRECATED
1768 config SWP_EMULATION
1769         bool "Emulate SWP/SWPB instructions"
1770         help
1771           ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1772           they are always undefined. Say Y here to enable software
1773           emulation of these instructions for userspace using LDXR/STXR.
1774           This feature can be controlled at runtime with the abi.swp
1775           sysctl which is disabled by default.
1777           In some older versions of glibc [<=2.8] SWP is used during futex
1778           trylock() operations with the assumption that the code will not
1779           be preempted. This invalid assumption may be more likely to fail
1780           with SWP emulation enabled, leading to deadlock of the user
1781           application.
1783           NOTE: when accessing uncached shared regions, LDXR/STXR rely
1784           on an external transaction monitoring block called a global
1785           monitor to maintain update atomicity. If your system does not
1786           implement a global monitor, this option can cause programs that
1787           perform SWP operations to uncached memory to deadlock.
1789           If unsure, say Y
1791 config CP15_BARRIER_EMULATION
1792         bool "Emulate CP15 Barrier instructions"
1793         help
1794           The CP15 barrier instructions - CP15ISB, CP15DSB, and
1795           CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1796           strongly recommended to use the ISB, DSB, and DMB
1797           instructions instead.
1799           Say Y here to enable software emulation of these
1800           instructions for AArch32 userspace code. When this option is
1801           enabled, CP15 barrier usage is traced which can help
1802           identify software that needs updating. This feature can be
1803           controlled at runtime with the abi.cp15_barrier sysctl.
1805           If unsure, say Y
1807 config SETEND_EMULATION
1808         bool "Emulate SETEND instruction"
1809         help
1810           The SETEND instruction alters the data-endianness of the
1811           AArch32 EL0, and is deprecated in ARMv8.
1813           Say Y here to enable software emulation of the instruction
1814           for AArch32 userspace code. This feature can be controlled
1815           at runtime with the abi.setend sysctl.
1817           Note: All the cpus on the system must have mixed endian support at EL0
1818           for this feature to be enabled. If a new CPU - which doesn't support mixed
1819           endian - is hotplugged in after this feature has been enabled, there could
1820           be unexpected results in the applications.
1822           If unsure, say Y
1823 endif # ARMV8_DEPRECATED
1825 endif # COMPAT
1827 menu "ARMv8.1 architectural features"
1829 config ARM64_HW_AFDBM
1830         bool "Support for hardware updates of the Access and Dirty page flags"
1831         default y
1832         help
1833           The ARMv8.1 architecture extensions introduce support for
1834           hardware updates of the access and dirty information in page
1835           table entries. When enabled in TCR_EL1 (HA and HD bits) on
1836           capable processors, accesses to pages with PTE_AF cleared will
1837           set this bit instead of raising an access flag fault.
1838           Similarly, writes to read-only pages with the DBM bit set will
1839           clear the read-only bit (AP[2]) instead of raising a
1840           permission fault.
1842           Kernels built with this configuration option enabled continue
1843           to work on pre-ARMv8.1 hardware and the performance impact is
1844           minimal. If unsure, say Y.
1846 config ARM64_PAN
1847         bool "Enable support for Privileged Access Never (PAN)"
1848         default y
1849         help
1850           Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1851           prevents the kernel or hypervisor from accessing user-space (EL0)
1852           memory directly.
1854           Choosing this option will cause any unprotected (not using
1855           copy_to_user et al) memory access to fail with a permission fault.
1857           The feature is detected at runtime, and will remain as a 'nop'
1858           instruction if the cpu does not implement the feature.
1860 config AS_HAS_LSE_ATOMICS
1861         def_bool $(as-instr,.arch_extension lse)
1863 config ARM64_LSE_ATOMICS
1864         bool
1865         default ARM64_USE_LSE_ATOMICS
1866         depends on AS_HAS_LSE_ATOMICS
1868 config ARM64_USE_LSE_ATOMICS
1869         bool "Atomic instructions"
1870         default y
1871         help
1872           As part of the Large System Extensions, ARMv8.1 introduces new
1873           atomic instructions that are designed specifically to scale in
1874           very large systems.
1876           Say Y here to make use of these instructions for the in-kernel
1877           atomic routines. This incurs a small overhead on CPUs that do
1878           not support these instructions and requires the kernel to be
1879           built with binutils >= 2.25 in order for the new instructions
1880           to be used.
1882 endmenu # "ARMv8.1 architectural features"
1884 menu "ARMv8.2 architectural features"
1886 config AS_HAS_ARMV8_2
1887         def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1889 config AS_HAS_SHA3
1890         def_bool $(as-instr,.arch armv8.2-a+sha3)
1892 config ARM64_PMEM
1893         bool "Enable support for persistent memory"
1894         select ARCH_HAS_PMEM_API
1895         select ARCH_HAS_UACCESS_FLUSHCACHE
1896         help
1897           Say Y to enable support for the persistent memory API based on the
1898           ARMv8.2 DCPoP feature.
1900           The feature is detected at runtime, and the kernel will use DC CVAC
1901           operations if DC CVAP is not supported (following the behaviour of
1902           DC CVAP itself if the system does not define a point of persistence).
1904 config ARM64_RAS_EXTN
1905         bool "Enable support for RAS CPU Extensions"
1906         default y
1907         help
1908           CPUs that support the Reliability, Availability and Serviceability
1909           (RAS) Extensions, part of ARMv8.2 are able to track faults and
1910           errors, classify them and report them to software.
1912           On CPUs with these extensions system software can use additional
1913           barriers to determine if faults are pending and read the
1914           classification from a new set of registers.
1916           Selecting this feature will allow the kernel to use these barriers
1917           and access the new registers if the system supports the extension.
1918           Platform RAS features may additionally depend on firmware support.
1920 config ARM64_CNP
1921         bool "Enable support for Common Not Private (CNP) translations"
1922         default y
1923         depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1924         help
1925           Common Not Private (CNP) allows translation table entries to
1926           be shared between different PEs in the same inner shareable
1927           domain, so the hardware can use this fact to optimise the
1928           caching of such entries in the TLB.
1930           Selecting this option allows the CNP feature to be detected
1931           at runtime, and does not affect PEs that do not implement
1932           this feature.
1934 endmenu # "ARMv8.2 architectural features"
1936 menu "ARMv8.3 architectural features"
1938 config ARM64_PTR_AUTH
1939         bool "Enable support for pointer authentication"
1940         default y
1941         help
1942           Pointer authentication (part of the ARMv8.3 Extensions) provides
1943           instructions for signing and authenticating pointers against secret
1944           keys, which can be used to mitigate Return Oriented Programming (ROP)
1945           and other attacks.
1947           This option enables these instructions at EL0 (i.e. for userspace).
1948           Choosing this option will cause the kernel to initialise secret keys
1949           for each process at exec() time, with these keys being
1950           context-switched along with the process.
1952           The feature is detected at runtime. If the feature is not present in
1953           hardware it will not be advertised to userspace/KVM guest nor will it
1954           be enabled.
1956           If the feature is present on the boot CPU but not on a late CPU, then
1957           the late CPU will be parked. Also, if the boot CPU does not have
1958           address auth and the late CPU has then the late CPU will still boot
1959           but with the feature disabled. On such a system, this option should
1960           not be selected.
1962 config ARM64_PTR_AUTH_KERNEL
1963         bool "Use pointer authentication for kernel"
1964         default y
1965         depends on ARM64_PTR_AUTH
1966         depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1967         # Modern compilers insert a .note.gnu.property section note for PAC
1968         # which is only understood by binutils starting with version 2.33.1.
1969         depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1970         depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1971         depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1972         help
1973           If the compiler supports the -mbranch-protection or
1974           -msign-return-address flag (e.g. GCC 7 or later), then this option
1975           will cause the kernel itself to be compiled with return address
1976           protection. In this case, and if the target hardware is known to
1977           support pointer authentication, then CONFIG_STACKPROTECTOR can be
1978           disabled with minimal loss of protection.
1980           This feature works with FUNCTION_GRAPH_TRACER option only if
1981           DYNAMIC_FTRACE_WITH_ARGS is enabled.
1983 config CC_HAS_BRANCH_PROT_PAC_RET
1984         # GCC 9 or later, clang 8 or later
1985         def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1987 config CC_HAS_SIGN_RETURN_ADDRESS
1988         # GCC 7, 8
1989         def_bool $(cc-option,-msign-return-address=all)
1991 config AS_HAS_ARMV8_3
1992         def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1994 config AS_HAS_CFI_NEGATE_RA_STATE
1995         def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1997 config AS_HAS_LDAPR
1998         def_bool $(as-instr,.arch_extension rcpc)
2000 endmenu # "ARMv8.3 architectural features"
2002 menu "ARMv8.4 architectural features"
2004 config ARM64_AMU_EXTN
2005         bool "Enable support for the Activity Monitors Unit CPU extension"
2006         default y
2007         help
2008           The activity monitors extension is an optional extension introduced
2009           by the ARMv8.4 CPU architecture. This enables support for version 1
2010           of the activity monitors architecture, AMUv1.
2012           To enable the use of this extension on CPUs that implement it, say Y.
2014           Note that for architectural reasons, firmware _must_ implement AMU
2015           support when running on CPUs that present the activity monitors
2016           extension. The required support is present in:
2017             * Version 1.5 and later of the ARM Trusted Firmware
2019           For kernels that have this configuration enabled but boot with broken
2020           firmware, you may need to say N here until the firmware is fixed.
2021           Otherwise you may experience firmware panics or lockups when
2022           accessing the counter registers. Even if you are not observing these
2023           symptoms, the values returned by the register reads might not
2024           correctly reflect reality. Most commonly, the value read will be 0,
2025           indicating that the counter is not enabled.
2027 config AS_HAS_ARMV8_4
2028         def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
2030 config ARM64_TLB_RANGE
2031         bool "Enable support for tlbi range feature"
2032         default y
2033         depends on AS_HAS_ARMV8_4
2034         help
2035           ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
2036           range of input addresses.
2038           The feature introduces new assembly instructions, and they were
2039           support when binutils >= 2.30.
2041 endmenu # "ARMv8.4 architectural features"
2043 menu "ARMv8.5 architectural features"
2045 config AS_HAS_ARMV8_5
2046         def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
2048 config ARM64_BTI
2049         bool "Branch Target Identification support"
2050         default y
2051         help
2052           Branch Target Identification (part of the ARMv8.5 Extensions)
2053           provides a mechanism to limit the set of locations to which computed
2054           branch instructions such as BR or BLR can jump.
2056           To make use of BTI on CPUs that support it, say Y.
2058           BTI is intended to provide complementary protection to other control
2059           flow integrity protection mechanisms, such as the Pointer
2060           authentication mechanism provided as part of the ARMv8.3 Extensions.
2061           For this reason, it does not make sense to enable this option without
2062           also enabling support for pointer authentication.  Thus, when
2063           enabling this option you should also select ARM64_PTR_AUTH=y.
2065           Userspace binaries must also be specifically compiled to make use of
2066           this mechanism.  If you say N here or the hardware does not support
2067           BTI, such binaries can still run, but you get no additional
2068           enforcement of branch destinations.
2070 config ARM64_BTI_KERNEL
2071         bool "Use Branch Target Identification for kernel"
2072         default y
2073         depends on ARM64_BTI
2074         depends on ARM64_PTR_AUTH_KERNEL
2075         depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2076         # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2077         depends on !CC_IS_GCC || GCC_VERSION >= 100100
2078         # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2079         depends on !CC_IS_GCC
2080         depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2081         help
2082           Build the kernel with Branch Target Identification annotations
2083           and enable enforcement of this for kernel code. When this option
2084           is enabled and the system supports BTI all kernel code including
2085           modular code must have BTI enabled.
2087 config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2088         # GCC 9 or later, clang 8 or later
2089         def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2091 config ARM64_E0PD
2092         bool "Enable support for E0PD"
2093         default y
2094         help
2095           E0PD (part of the ARMv8.5 extensions) allows us to ensure
2096           that EL0 accesses made via TTBR1 always fault in constant time,
2097           providing similar benefits to KASLR as those provided by KPTI, but
2098           with lower overhead and without disrupting legitimate access to
2099           kernel memory such as SPE.
2101           This option enables E0PD for TTBR1 where available.
2103 config ARM64_AS_HAS_MTE
2104         # Initial support for MTE went in binutils 2.32.0, checked with
2105         # ".arch armv8.5-a+memtag" below. However, this was incomplete
2106         # as a late addition to the final architecture spec (LDGM/STGM)
2107         # is only supported in the newer 2.32.x and 2.33 binutils
2108         # versions, hence the extra "stgm" instruction check below.
2109         def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2111 config ARM64_MTE
2112         bool "Memory Tagging Extension support"
2113         default y
2114         depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2115         depends on AS_HAS_ARMV8_5
2116         depends on AS_HAS_LSE_ATOMICS
2117         # Required for tag checking in the uaccess routines
2118         depends on ARM64_PAN
2119         select ARCH_HAS_SUBPAGE_FAULTS
2120         select ARCH_USES_HIGH_VMA_FLAGS
2121         select ARCH_USES_PG_ARCH_2
2122         select ARCH_USES_PG_ARCH_3
2123         help
2124           Memory Tagging (part of the ARMv8.5 Extensions) provides
2125           architectural support for run-time, always-on detection of
2126           various classes of memory error to aid with software debugging
2127           to eliminate vulnerabilities arising from memory-unsafe
2128           languages.
2130           This option enables the support for the Memory Tagging
2131           Extension at EL0 (i.e. for userspace).
2133           Selecting this option allows the feature to be detected at
2134           runtime. Any secondary CPU not implementing this feature will
2135           not be allowed a late bring-up.
2137           Userspace binaries that want to use this feature must
2138           explicitly opt in. The mechanism for the userspace is
2139           described in:
2141           Documentation/arch/arm64/memory-tagging-extension.rst.
2143 endmenu # "ARMv8.5 architectural features"
2145 menu "ARMv8.7 architectural features"
2147 config ARM64_EPAN
2148         bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2149         default y
2150         depends on ARM64_PAN
2151         help
2152           Enhanced Privileged Access Never (EPAN) allows Privileged
2153           Access Never to be used with Execute-only mappings.
2155           The feature is detected at runtime, and will remain disabled
2156           if the cpu does not implement the feature.
2157 endmenu # "ARMv8.7 architectural features"
2159 menu "ARMv8.9 architectural features"
2161 config ARM64_POE
2162         prompt "Permission Overlay Extension"
2163         def_bool y
2164         select ARCH_USES_HIGH_VMA_FLAGS
2165         select ARCH_HAS_PKEYS
2166         help
2167           The Permission Overlay Extension is used to implement Memory
2168           Protection Keys. Memory Protection Keys provides a mechanism for
2169           enforcing page-based protections, but without requiring modification
2170           of the page tables when an application changes protection domains.
2172           For details, see Documentation/core-api/protection-keys.rst
2174           If unsure, say y.
2176 config ARCH_PKEY_BITS
2177         int
2178         default 3
2180 endmenu # "ARMv8.9 architectural features"
2182 config ARM64_SVE
2183         bool "ARM Scalable Vector Extension support"
2184         default y
2185         help
2186           The Scalable Vector Extension (SVE) is an extension to the AArch64
2187           execution state which complements and extends the SIMD functionality
2188           of the base architecture to support much larger vectors and to enable
2189           additional vectorisation opportunities.
2191           To enable use of this extension on CPUs that implement it, say Y.
2193           On CPUs that support the SVE2 extensions, this option will enable
2194           those too.
2196           Note that for architectural reasons, firmware _must_ implement SVE
2197           support when running on SVE capable hardware.  The required support
2198           is present in:
2200             * version 1.5 and later of the ARM Trusted Firmware
2201             * the AArch64 boot wrapper since commit 5e1261e08abf
2202               ("bootwrapper: SVE: Enable SVE for EL2 and below").
2204           For other firmware implementations, consult the firmware documentation
2205           or vendor.
2207           If you need the kernel to boot on SVE-capable hardware with broken
2208           firmware, you may need to say N here until you get your firmware
2209           fixed.  Otherwise, you may experience firmware panics or lockups when
2210           booting the kernel.  If unsure and you are not observing these
2211           symptoms, you should assume that it is safe to say Y.
2213 config ARM64_SME
2214         bool "ARM Scalable Matrix Extension support"
2215         default y
2216         depends on ARM64_SVE
2217         help
2218           The Scalable Matrix Extension (SME) is an extension to the AArch64
2219           execution state which utilises a substantial subset of the SVE
2220           instruction set, together with the addition of new architectural
2221           register state capable of holding two dimensional matrix tiles to
2222           enable various matrix operations.
2224 config ARM64_PSEUDO_NMI
2225         bool "Support for NMI-like interrupts"
2226         select ARM_GIC_V3
2227         help
2228           Adds support for mimicking Non-Maskable Interrupts through the use of
2229           GIC interrupt priority. This support requires version 3 or later of
2230           ARM GIC.
2232           This high priority configuration for interrupts needs to be
2233           explicitly enabled by setting the kernel parameter
2234           "irqchip.gicv3_pseudo_nmi" to 1.
2236           If unsure, say N
2238 if ARM64_PSEUDO_NMI
2239 config ARM64_DEBUG_PRIORITY_MASKING
2240         bool "Debug interrupt priority masking"
2241         help
2242           This adds runtime checks to functions enabling/disabling
2243           interrupts when using priority masking. The additional checks verify
2244           the validity of ICC_PMR_EL1 when calling concerned functions.
2246           If unsure, say N
2247 endif # ARM64_PSEUDO_NMI
2249 config RELOCATABLE
2250         bool "Build a relocatable kernel image" if EXPERT
2251         select ARCH_HAS_RELR
2252         default y
2253         help
2254           This builds the kernel as a Position Independent Executable (PIE),
2255           which retains all relocation metadata required to relocate the
2256           kernel binary at runtime to a different virtual address than the
2257           address it was linked at.
2258           Since AArch64 uses the RELA relocation format, this requires a
2259           relocation pass at runtime even if the kernel is loaded at the
2260           same address it was linked at.
2262 config RANDOMIZE_BASE
2263         bool "Randomize the address of the kernel image"
2264         select RELOCATABLE
2265         help
2266           Randomizes the virtual address at which the kernel image is
2267           loaded, as a security feature that deters exploit attempts
2268           relying on knowledge of the location of kernel internals.
2270           It is the bootloader's job to provide entropy, by passing a
2271           random u64 value in /chosen/kaslr-seed at kernel entry.
2273           When booting via the UEFI stub, it will invoke the firmware's
2274           EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2275           to the kernel proper. In addition, it will randomise the physical
2276           location of the kernel Image as well.
2278           If unsure, say N.
2280 config RANDOMIZE_MODULE_REGION_FULL
2281         bool "Randomize the module region over a 2 GB range"
2282         depends on RANDOMIZE_BASE
2283         default y
2284         help
2285           Randomizes the location of the module region inside a 2 GB window
2286           covering the core kernel. This way, it is less likely for modules
2287           to leak information about the location of core kernel data structures
2288           but it does imply that function calls between modules and the core
2289           kernel will need to be resolved via veneers in the module PLT.
2291           When this option is not set, the module region will be randomized over
2292           a limited range that contains the [_stext, _etext] interval of the
2293           core kernel, so branch relocations are almost always in range unless
2294           the region is exhausted. In this particular case of region
2295           exhaustion, modules might be able to fall back to a larger 2GB area.
2297 config CC_HAVE_STACKPROTECTOR_SYSREG
2298         def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2300 config STACKPROTECTOR_PER_TASK
2301         def_bool y
2302         depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2304 config UNWIND_PATCH_PAC_INTO_SCS
2305         bool "Enable shadow call stack dynamically using code patching"
2306         # needs Clang with https://github.com/llvm/llvm-project/commit/de07cde67b5d205d58690be012106022aea6d2b3 incorporated
2307         depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2308         depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2309         depends on SHADOW_CALL_STACK
2310         select UNWIND_TABLES
2311         select DYNAMIC_SCS
2313 config ARM64_CONTPTE
2314         bool "Contiguous PTE mappings for user memory" if EXPERT
2315         depends on TRANSPARENT_HUGEPAGE
2316         default y
2317         help
2318           When enabled, user mappings are configured using the PTE contiguous
2319           bit, for any mappings that meet the size and alignment requirements.
2320           This reduces TLB pressure and improves performance.
2322 endmenu # "Kernel Features"
2324 menu "Boot options"
2326 config ARM64_ACPI_PARKING_PROTOCOL
2327         bool "Enable support for the ARM64 ACPI parking protocol"
2328         depends on ACPI
2329         help
2330           Enable support for the ARM64 ACPI parking protocol. If disabled
2331           the kernel will not allow booting through the ARM64 ACPI parking
2332           protocol even if the corresponding data is present in the ACPI
2333           MADT table.
2335 config CMDLINE
2336         string "Default kernel command string"
2337         default ""
2338         help
2339           Provide a set of default command-line options at build time by
2340           entering them here. As a minimum, you should specify the the
2341           root device (e.g. root=/dev/nfs).
2343 choice
2344         prompt "Kernel command line type"
2345         depends on CMDLINE != ""
2346         default CMDLINE_FROM_BOOTLOADER
2347         help
2348           Choose how the kernel will handle the provided default kernel
2349           command line string.
2351 config CMDLINE_FROM_BOOTLOADER
2352         bool "Use bootloader kernel arguments if available"
2353         help
2354           Uses the command-line options passed by the boot loader. If
2355           the boot loader doesn't provide any, the default kernel command
2356           string provided in CMDLINE will be used.
2358 config CMDLINE_FORCE
2359         bool "Always use the default kernel command string"
2360         help
2361           Always use the default kernel command string, even if the boot
2362           loader passes other arguments to the kernel.
2363           This is useful if you cannot or don't want to change the
2364           command-line options your boot loader passes to the kernel.
2366 endchoice
2368 config EFI_STUB
2369         bool
2371 config EFI
2372         bool "UEFI runtime support"
2373         depends on OF && !CPU_BIG_ENDIAN
2374         depends on KERNEL_MODE_NEON
2375         select ARCH_SUPPORTS_ACPI
2376         select LIBFDT
2377         select UCS2_STRING
2378         select EFI_PARAMS_FROM_FDT
2379         select EFI_RUNTIME_WRAPPERS
2380         select EFI_STUB
2381         select EFI_GENERIC_STUB
2382         imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2383         default y
2384         help
2385           This option provides support for runtime services provided
2386           by UEFI firmware (such as non-volatile variables, realtime
2387           clock, and platform reset). A UEFI stub is also provided to
2388           allow the kernel to be booted as an EFI application. This
2389           is only useful on systems that have UEFI firmware.
2391 config COMPRESSED_INSTALL
2392         bool "Install compressed image by default"
2393         help
2394           This makes the regular "make install" install the compressed
2395           image we built, not the legacy uncompressed one.
2397           You can check that a compressed image works for you by doing
2398           "make zinstall" first, and verifying that everything is fine
2399           in your environment before making "make install" do this for
2400           you.
2402 config DMI
2403         bool "Enable support for SMBIOS (DMI) tables"
2404         depends on EFI
2405         default y
2406         help
2407           This enables SMBIOS/DMI feature for systems.
2409           This option is only useful on systems that have UEFI firmware.
2410           However, even with this option, the resultant kernel should
2411           continue to boot on existing non-UEFI platforms.
2413 endmenu # "Boot options"
2415 menu "Power management options"
2417 source "kernel/power/Kconfig"
2419 config ARCH_HIBERNATION_POSSIBLE
2420         def_bool y
2421         depends on CPU_PM
2423 config ARCH_HIBERNATION_HEADER
2424         def_bool y
2425         depends on HIBERNATION
2427 config ARCH_SUSPEND_POSSIBLE
2428         def_bool y
2430 endmenu # "Power management options"
2432 menu "CPU Power Management"
2434 source "drivers/cpuidle/Kconfig"
2436 source "drivers/cpufreq/Kconfig"
2438 endmenu # "CPU Power Management"
2440 source "drivers/acpi/Kconfig"
2442 source "arch/arm64/kvm/Kconfig"