1 // SPDX-License-Identifier: GPL-2.0-only
3 * acpi_pad.c ACPI Processor Aggregator Driver
5 * Copyright (c) 2009, Intel Corporation.
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/perf_event.h>
21 #include <linux/platform_device.h>
22 #include <asm/mwait.h>
25 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
26 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
27 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
29 #define ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS 0
30 #define ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION 1
32 static DEFINE_MUTEX(isolated_cpus_lock
);
33 static DEFINE_MUTEX(round_robin_lock
);
35 static unsigned long power_saving_mwait_eax
;
37 static unsigned char tsc_detected_unstable
;
38 static unsigned char tsc_marked_unstable
;
40 static void power_saving_mwait_init(void)
42 unsigned int eax
, ebx
, ecx
, edx
;
43 unsigned int highest_cstate
= 0;
44 unsigned int highest_subcstate
= 0;
47 if (!boot_cpu_has(X86_FEATURE_MWAIT
))
49 if (boot_cpu_data
.cpuid_level
< CPUID_MWAIT_LEAF
)
52 cpuid(CPUID_MWAIT_LEAF
, &eax
, &ebx
, &ecx
, &edx
);
54 if (!(ecx
& CPUID5_ECX_EXTENSIONS_SUPPORTED
) ||
55 !(ecx
& CPUID5_ECX_INTERRUPT_BREAK
))
58 edx
>>= MWAIT_SUBSTATE_SIZE
;
59 for (i
= 0; i
< 7 && edx
; i
++, edx
>>= MWAIT_SUBSTATE_SIZE
) {
60 if (edx
& MWAIT_SUBSTATE_MASK
) {
62 highest_subcstate
= edx
& MWAIT_SUBSTATE_MASK
;
65 power_saving_mwait_eax
= (highest_cstate
<< MWAIT_SUBSTATE_SIZE
) |
66 (highest_subcstate
- 1);
68 #if defined(CONFIG_X86)
69 switch (boot_cpu_data
.x86_vendor
) {
70 case X86_VENDOR_HYGON
:
72 case X86_VENDOR_INTEL
:
73 case X86_VENDOR_ZHAOXIN
:
74 case X86_VENDOR_CENTAUR
:
76 * AMD Fam10h TSC will tick in all
77 * C/P/S0/S1 states when this bit is set.
79 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC
))
80 tsc_detected_unstable
= 1;
83 /* TSC could halt in idle */
84 tsc_detected_unstable
= 1;
89 static unsigned long cpu_weight
[NR_CPUS
];
90 static int tsk_in_cpu
[NR_CPUS
] = {[0 ... NR_CPUS
-1] = -1};
91 static DECLARE_BITMAP(pad_busy_cpus_bits
, NR_CPUS
);
92 static void round_robin_cpu(unsigned int tsk_index
)
94 struct cpumask
*pad_busy_cpus
= to_cpumask(pad_busy_cpus_bits
);
97 unsigned long min_weight
= -1;
98 unsigned long preferred_cpu
;
100 if (!alloc_cpumask_var(&tmp
, GFP_KERNEL
))
103 mutex_lock(&round_robin_lock
);
105 for_each_cpu(cpu
, pad_busy_cpus
)
106 cpumask_or(tmp
, tmp
, topology_sibling_cpumask(cpu
));
107 cpumask_andnot(tmp
, cpu_online_mask
, tmp
);
108 /* avoid HT siblings if possible */
109 if (cpumask_empty(tmp
))
110 cpumask_andnot(tmp
, cpu_online_mask
, pad_busy_cpus
);
111 if (cpumask_empty(tmp
)) {
112 mutex_unlock(&round_robin_lock
);
113 free_cpumask_var(tmp
);
116 for_each_cpu(cpu
, tmp
) {
117 if (cpu_weight
[cpu
] < min_weight
) {
118 min_weight
= cpu_weight
[cpu
];
123 if (tsk_in_cpu
[tsk_index
] != -1)
124 cpumask_clear_cpu(tsk_in_cpu
[tsk_index
], pad_busy_cpus
);
125 tsk_in_cpu
[tsk_index
] = preferred_cpu
;
126 cpumask_set_cpu(preferred_cpu
, pad_busy_cpus
);
127 cpu_weight
[preferred_cpu
]++;
128 mutex_unlock(&round_robin_lock
);
130 set_cpus_allowed_ptr(current
, cpumask_of(preferred_cpu
));
132 free_cpumask_var(tmp
);
135 static void exit_round_robin(unsigned int tsk_index
)
137 struct cpumask
*pad_busy_cpus
= to_cpumask(pad_busy_cpus_bits
);
139 if (tsk_in_cpu
[tsk_index
] != -1) {
140 cpumask_clear_cpu(tsk_in_cpu
[tsk_index
], pad_busy_cpus
);
141 tsk_in_cpu
[tsk_index
] = -1;
145 static unsigned int idle_pct
= 5; /* percentage */
146 static unsigned int round_robin_time
= 1; /* second */
147 static int power_saving_thread(void *data
)
150 unsigned int tsk_index
= (unsigned long)data
;
151 u64 last_jiffies
= 0;
153 sched_set_fifo_low(current
);
155 while (!kthread_should_stop()) {
156 unsigned long expire_time
;
158 /* round robin to cpus */
159 expire_time
= last_jiffies
+ round_robin_time
* HZ
;
160 if (time_before(expire_time
, jiffies
)) {
161 last_jiffies
= jiffies
;
162 round_robin_cpu(tsk_index
);
167 expire_time
= jiffies
+ HZ
* (100 - idle_pct
) / 100;
169 while (!need_resched()) {
170 if (tsc_detected_unstable
&& !tsc_marked_unstable
) {
171 /* TSC could halt in idle, so notify users */
172 mark_tsc_unstable("TSC halts in idle");
173 tsc_marked_unstable
= 1;
179 tick_broadcast_enable();
180 tick_broadcast_enter();
181 stop_critical_timings();
183 mwait_idle_with_hints(power_saving_mwait_eax
, 1);
185 start_critical_timings();
186 tick_broadcast_exit();
188 perf_lopwr_cb(false);
192 if (time_before(expire_time
, jiffies
)) {
199 * current sched_rt has threshold for rt task running time.
200 * When a rt task uses 95% CPU time, the rt thread will be
201 * scheduled out for 5% CPU time to not starve other tasks. But
202 * the mechanism only works when all CPUs have RT task running,
203 * as if one CPU hasn't RT task, RT task from other CPUs will
204 * borrow CPU time from this CPU and cause RT task use > 95%
205 * CPU time. To make 'avoid starvation' work, takes a nap here.
207 if (unlikely(do_sleep
))
208 schedule_timeout_killable(HZ
* idle_pct
/ 100);
210 /* If an external event has set the need_resched flag, then
211 * we need to deal with it, or this loop will continue to
212 * spin without calling __mwait().
214 if (unlikely(need_resched()))
218 exit_round_robin(tsk_index
);
222 static struct task_struct
*ps_tsks
[NR_CPUS
];
223 static unsigned int ps_tsk_num
;
224 static int create_power_saving_task(void)
228 ps_tsks
[ps_tsk_num
] = kthread_run(power_saving_thread
,
229 (void *)(unsigned long)ps_tsk_num
,
230 "acpi_pad/%d", ps_tsk_num
);
232 if (IS_ERR(ps_tsks
[ps_tsk_num
])) {
233 rc
= PTR_ERR(ps_tsks
[ps_tsk_num
]);
234 ps_tsks
[ps_tsk_num
] = NULL
;
243 static void destroy_power_saving_task(void)
245 if (ps_tsk_num
> 0) {
247 kthread_stop(ps_tsks
[ps_tsk_num
]);
248 ps_tsks
[ps_tsk_num
] = NULL
;
252 static void set_power_saving_task_num(unsigned int num
)
254 if (num
> ps_tsk_num
) {
255 while (ps_tsk_num
< num
) {
256 if (create_power_saving_task())
259 } else if (num
< ps_tsk_num
) {
260 while (ps_tsk_num
> num
)
261 destroy_power_saving_task();
265 static void acpi_pad_idle_cpus(unsigned int num_cpus
)
269 num_cpus
= min_t(unsigned int, num_cpus
, num_online_cpus());
270 set_power_saving_task_num(num_cpus
);
275 static uint32_t acpi_pad_idle_cpus_num(void)
280 static ssize_t
rrtime_store(struct device
*dev
,
281 struct device_attribute
*attr
, const char *buf
, size_t count
)
285 if (kstrtoul(buf
, 0, &num
))
287 if (num
< 1 || num
>= 100)
289 mutex_lock(&isolated_cpus_lock
);
290 round_robin_time
= num
;
291 mutex_unlock(&isolated_cpus_lock
);
295 static ssize_t
rrtime_show(struct device
*dev
,
296 struct device_attribute
*attr
, char *buf
)
298 return sysfs_emit(buf
, "%d\n", round_robin_time
);
300 static DEVICE_ATTR_RW(rrtime
);
302 static ssize_t
idlepct_store(struct device
*dev
,
303 struct device_attribute
*attr
, const char *buf
, size_t count
)
307 if (kstrtoul(buf
, 0, &num
))
309 if (num
< 1 || num
>= 100)
311 mutex_lock(&isolated_cpus_lock
);
313 mutex_unlock(&isolated_cpus_lock
);
317 static ssize_t
idlepct_show(struct device
*dev
,
318 struct device_attribute
*attr
, char *buf
)
320 return sysfs_emit(buf
, "%d\n", idle_pct
);
322 static DEVICE_ATTR_RW(idlepct
);
324 static ssize_t
idlecpus_store(struct device
*dev
,
325 struct device_attribute
*attr
, const char *buf
, size_t count
)
329 if (kstrtoul(buf
, 0, &num
))
331 mutex_lock(&isolated_cpus_lock
);
332 acpi_pad_idle_cpus(num
);
333 mutex_unlock(&isolated_cpus_lock
);
337 static ssize_t
idlecpus_show(struct device
*dev
,
338 struct device_attribute
*attr
, char *buf
)
340 return cpumap_print_to_pagebuf(false, buf
,
341 to_cpumask(pad_busy_cpus_bits
));
344 static DEVICE_ATTR_RW(idlecpus
);
346 static struct attribute
*acpi_pad_attrs
[] = {
347 &dev_attr_idlecpus
.attr
,
348 &dev_attr_idlepct
.attr
,
349 &dev_attr_rrtime
.attr
,
353 ATTRIBUTE_GROUPS(acpi_pad
);
356 * Query firmware how many CPUs should be idle
357 * return -1 on failure
359 static int acpi_pad_pur(acpi_handle handle
)
361 struct acpi_buffer buffer
= {ACPI_ALLOCATE_BUFFER
, NULL
};
362 union acpi_object
*package
;
365 if (ACPI_FAILURE(acpi_evaluate_object(handle
, "_PUR", NULL
, &buffer
)))
368 if (!buffer
.length
|| !buffer
.pointer
)
371 package
= buffer
.pointer
;
373 if (package
->type
== ACPI_TYPE_PACKAGE
&&
374 package
->package
.count
== 2 &&
375 package
->package
.elements
[0].integer
.value
== 1) /* rev 1 */
377 num
= package
->package
.elements
[1].integer
.value
;
379 kfree(buffer
.pointer
);
383 static void acpi_pad_handle_notify(acpi_handle handle
)
387 struct acpi_buffer param
= {
389 .pointer
= (void *)&idle_cpus
,
393 mutex_lock(&isolated_cpus_lock
);
394 num_cpus
= acpi_pad_pur(handle
);
396 /* The ACPI specification says that if no action was performed when
397 * processing the _PUR object, _OST should still be evaluated, albeit
398 * with a different status code.
400 status
= ACPI_PROCESSOR_AGGREGATOR_STATUS_NO_ACTION
;
402 status
= ACPI_PROCESSOR_AGGREGATOR_STATUS_SUCCESS
;
403 acpi_pad_idle_cpus(num_cpus
);
406 idle_cpus
= acpi_pad_idle_cpus_num();
407 acpi_evaluate_ost(handle
, ACPI_PROCESSOR_AGGREGATOR_NOTIFY
, status
, ¶m
);
408 mutex_unlock(&isolated_cpus_lock
);
411 static void acpi_pad_notify(acpi_handle handle
, u32 event
,
414 struct acpi_device
*adev
= data
;
417 case ACPI_PROCESSOR_AGGREGATOR_NOTIFY
:
418 acpi_pad_handle_notify(handle
);
419 acpi_bus_generate_netlink_event(adev
->pnp
.device_class
,
420 dev_name(&adev
->dev
), event
, 0);
423 pr_warn("Unsupported event [0x%x]\n", event
);
428 static int acpi_pad_probe(struct platform_device
*pdev
)
430 struct acpi_device
*adev
= ACPI_COMPANION(&pdev
->dev
);
433 strscpy(acpi_device_name(adev
), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME
);
434 strscpy(acpi_device_class(adev
), ACPI_PROCESSOR_AGGREGATOR_CLASS
);
436 status
= acpi_install_notify_handler(adev
->handle
,
437 ACPI_DEVICE_NOTIFY
, acpi_pad_notify
, adev
);
439 if (ACPI_FAILURE(status
))
445 static void acpi_pad_remove(struct platform_device
*pdev
)
447 struct acpi_device
*adev
= ACPI_COMPANION(&pdev
->dev
);
449 mutex_lock(&isolated_cpus_lock
);
450 acpi_pad_idle_cpus(0);
451 mutex_unlock(&isolated_cpus_lock
);
453 acpi_remove_notify_handler(adev
->handle
,
454 ACPI_DEVICE_NOTIFY
, acpi_pad_notify
);
457 static const struct acpi_device_id pad_device_ids
[] = {
461 MODULE_DEVICE_TABLE(acpi
, pad_device_ids
);
463 static struct platform_driver acpi_pad_driver
= {
464 .probe
= acpi_pad_probe
,
465 .remove_new
= acpi_pad_remove
,
467 .dev_groups
= acpi_pad_groups
,
468 .name
= "processor_aggregator",
469 .acpi_match_table
= pad_device_ids
,
473 static int __init
acpi_pad_init(void)
475 /* Xen ACPI PAD is used when running as Xen Dom0. */
476 if (xen_initial_domain())
479 power_saving_mwait_init();
480 if (power_saving_mwait_eax
== 0)
483 return platform_driver_register(&acpi_pad_driver
);
486 static void __exit
acpi_pad_exit(void)
488 platform_driver_unregister(&acpi_pad_driver
);
491 module_init(acpi_pad_init
);
492 module_exit(acpi_pad_exit
);
493 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
494 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
495 MODULE_LICENSE("GPL");