1 // SPDX-License-Identifier: GPL-2.0+
3 * Marvell Armada 37xx SoC Peripheral clocks
5 * Copyright (C) 2016 Marvell
7 * Gregory CLEMENT <gregory.clement@free-electrons.com>
9 * Most of the peripheral clocks can be modelled like this:
10 * _____ _______ _______
11 * TBG-A-P --| | | | | | ______
12 * TBG-B-P --| Mux |--| /div1 |--| /div2 |--| Gate |--> perip_clk
13 * TBG-A-S --| | | | | | |______|
14 * TBG-B-S --|_____| |_______| |_______|
16 * However some clocks may use only one or two block or and use the
17 * xtal clock as parent.
20 #include <linux/clk-provider.h>
22 #include <linux/mfd/syscon.h>
24 #include <linux/platform_device.h>
25 #include <linux/regmap.h>
26 #include <linux/slab.h>
27 #include <linux/jiffies.h>
36 #define ARMADA_37XX_DVFS_LOAD_1 1
37 #define LOAD_LEVEL_NR 4
39 #define ARMADA_37XX_NB_L0L1 0x18
40 #define ARMADA_37XX_NB_L2L3 0x1C
41 #define ARMADA_37XX_NB_TBG_DIV_OFF 13
42 #define ARMADA_37XX_NB_TBG_DIV_MASK 0x7
43 #define ARMADA_37XX_NB_CLK_SEL_OFF 11
44 #define ARMADA_37XX_NB_CLK_SEL_MASK 0x1
45 #define ARMADA_37XX_NB_TBG_SEL_OFF 9
46 #define ARMADA_37XX_NB_TBG_SEL_MASK 0x3
47 #define ARMADA_37XX_NB_CONFIG_SHIFT 16
48 #define ARMADA_37XX_NB_DYN_MOD 0x24
49 #define ARMADA_37XX_NB_DFS_EN 31
50 #define ARMADA_37XX_NB_CPU_LOAD 0x30
51 #define ARMADA_37XX_NB_CPU_LOAD_MASK 0x3
52 #define ARMADA_37XX_DVFS_LOAD_0 0
53 #define ARMADA_37XX_DVFS_LOAD_1 1
54 #define ARMADA_37XX_DVFS_LOAD_2 2
55 #define ARMADA_37XX_DVFS_LOAD_3 3
57 struct clk_periph_driver_data
{
58 struct clk_hw_onecell_data
*hw_data
;
62 /* Storage registers for suspend/resume operations */
71 struct clk_double_div
{
81 void __iomem
*reg_mux
;
84 void __iomem
*reg_div
;
86 struct regmap
*nb_pm_base
;
87 unsigned long l1_expiration
;
90 #define to_clk_double_div(_hw) container_of(_hw, struct clk_double_div, hw)
91 #define to_clk_pm_cpu(_hw) container_of(_hw, struct clk_pm_cpu, hw)
93 struct clk_periph_data
{
95 const char * const *parent_names
;
97 struct clk_hw
*mux_hw
;
98 struct clk_hw
*rate_hw
;
99 struct clk_hw
*gate_hw
;
100 struct clk_hw
*muxrate_hw
;
104 static const struct clk_div_table clk_table6
[] = {
105 { .val
= 1, .div
= 1, },
106 { .val
= 2, .div
= 2, },
107 { .val
= 3, .div
= 3, },
108 { .val
= 4, .div
= 4, },
109 { .val
= 5, .div
= 5, },
110 { .val
= 6, .div
= 6, },
111 { .val
= 0, .div
= 0, }, /* last entry */
114 static const struct clk_div_table clk_table1
[] = {
115 { .val
= 0, .div
= 1, },
116 { .val
= 1, .div
= 2, },
117 { .val
= 0, .div
= 0, }, /* last entry */
120 static const struct clk_div_table clk_table2
[] = {
121 { .val
= 0, .div
= 2, },
122 { .val
= 1, .div
= 4, },
123 { .val
= 0, .div
= 0, }, /* last entry */
126 static const struct clk_ops clk_double_div_ops
;
127 static const struct clk_ops clk_pm_cpu_ops
;
129 #define PERIPH_GATE(_name, _bit) \
130 struct clk_gate gate_##_name = { \
131 .reg = (void *)CLK_DIS, \
133 .hw.init = &(struct clk_init_data){ \
134 .ops = &clk_gate_ops, \
138 #define PERIPH_MUX(_name, _shift) \
139 struct clk_mux mux_##_name = { \
140 .reg = (void *)TBG_SEL, \
143 .hw.init = &(struct clk_init_data){ \
144 .ops = &clk_mux_ro_ops, \
148 #define PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2) \
149 struct clk_double_div rate_##_name = { \
150 .reg1 = (void *)_reg1, \
151 .reg2 = (void *)_reg2, \
154 .hw.init = &(struct clk_init_data){ \
155 .ops = &clk_double_div_ops, \
159 #define PERIPH_DIV(_name, _reg, _shift, _table) \
160 struct clk_divider rate_##_name = { \
161 .reg = (void *)_reg, \
164 .hw.init = &(struct clk_init_data){ \
165 .ops = &clk_divider_ro_ops, \
169 #define PERIPH_PM_CPU(_name, _shift1, _reg, _shift2) \
170 struct clk_pm_cpu muxrate_##_name = { \
171 .reg_mux = (void *)TBG_SEL, \
173 .shift_mux = _shift1, \
174 .reg_div = (void *)_reg, \
175 .shift_div = _shift2, \
176 .hw.init = &(struct clk_init_data){ \
177 .ops = &clk_pm_cpu_ops, \
181 #define PERIPH_CLK_FULL_DD(_name, _bit, _shift, _reg1, _reg2, _shift1, _shift2)\
182 static PERIPH_GATE(_name, _bit); \
183 static PERIPH_MUX(_name, _shift); \
184 static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
186 #define PERIPH_CLK_FULL(_name, _bit, _shift, _reg, _shift1, _table) \
187 static PERIPH_GATE(_name, _bit); \
188 static PERIPH_MUX(_name, _shift); \
189 static PERIPH_DIV(_name, _reg, _shift1, _table);
191 #define PERIPH_CLK_GATE_DIV(_name, _bit, _reg, _shift, _table) \
192 static PERIPH_GATE(_name, _bit); \
193 static PERIPH_DIV(_name, _reg, _shift, _table);
195 #define PERIPH_CLK_MUX_DD(_name, _shift, _reg1, _reg2, _shift1, _shift2)\
196 static PERIPH_MUX(_name, _shift); \
197 static PERIPH_DOUBLEDIV(_name, _reg1, _reg2, _shift1, _shift2);
199 #define REF_CLK_FULL(_name) \
201 .parent_names = (const char *[]){ "TBG-A-P", \
202 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
204 .mux_hw = &mux_##_name.hw, \
205 .gate_hw = &gate_##_name.hw, \
206 .rate_hw = &rate_##_name.hw, \
209 #define REF_CLK_FULL_DD(_name) \
211 .parent_names = (const char *[]){ "TBG-A-P", \
212 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
214 .mux_hw = &mux_##_name.hw, \
215 .gate_hw = &gate_##_name.hw, \
216 .rate_hw = &rate_##_name.hw, \
217 .is_double_div = true, \
220 #define REF_CLK_GATE(_name, _parent_name) \
222 .parent_names = (const char *[]){ _parent_name}, \
224 .gate_hw = &gate_##_name.hw, \
227 #define REF_CLK_GATE_DIV(_name, _parent_name) \
229 .parent_names = (const char *[]){ _parent_name}, \
231 .gate_hw = &gate_##_name.hw, \
232 .rate_hw = &rate_##_name.hw, \
235 #define REF_CLK_PM_CPU(_name) \
237 .parent_names = (const char *[]){ "TBG-A-P", \
238 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
240 .muxrate_hw = &muxrate_##_name.hw, \
243 #define REF_CLK_MUX_DD(_name) \
245 .parent_names = (const char *[]){ "TBG-A-P", \
246 "TBG-B-P", "TBG-A-S", "TBG-B-S"}, \
248 .mux_hw = &mux_##_name.hw, \
249 .rate_hw = &rate_##_name.hw, \
250 .is_double_div = true, \
253 /* NB periph clocks */
254 PERIPH_CLK_FULL_DD(mmc
, 2, 0, DIV_SEL2
, DIV_SEL2
, 16, 13);
255 PERIPH_CLK_FULL_DD(sata_host
, 3, 2, DIV_SEL2
, DIV_SEL2
, 10, 7);
256 PERIPH_CLK_FULL_DD(sec_at
, 6, 4, DIV_SEL1
, DIV_SEL1
, 3, 0);
257 PERIPH_CLK_FULL_DD(sec_dap
, 7, 6, DIV_SEL1
, DIV_SEL1
, 9, 6);
258 PERIPH_CLK_FULL_DD(tscem
, 8, 8, DIV_SEL1
, DIV_SEL1
, 15, 12);
259 PERIPH_CLK_FULL(tscem_tmx
, 10, 10, DIV_SEL1
, 18, clk_table6
);
260 static PERIPH_GATE(avs
, 11);
261 PERIPH_CLK_FULL_DD(pwm
, 13, 14, DIV_SEL0
, DIV_SEL0
, 3, 0);
262 PERIPH_CLK_FULL_DD(sqf
, 12, 12, DIV_SEL1
, DIV_SEL1
, 27, 24);
263 static PERIPH_GATE(i2c_2
, 16);
264 static PERIPH_GATE(i2c_1
, 17);
265 PERIPH_CLK_GATE_DIV(ddr_phy
, 19, DIV_SEL0
, 18, clk_table2
);
266 PERIPH_CLK_FULL_DD(ddr_fclk
, 21, 16, DIV_SEL0
, DIV_SEL0
, 15, 12);
267 PERIPH_CLK_FULL(trace
, 22, 18, DIV_SEL0
, 20, clk_table6
);
268 PERIPH_CLK_FULL(counter
, 23, 20, DIV_SEL0
, 23, clk_table6
);
269 PERIPH_CLK_FULL_DD(eip97
, 24, 24, DIV_SEL2
, DIV_SEL2
, 22, 19);
270 static PERIPH_PM_CPU(cpu
, 22, DIV_SEL0
, 28);
272 static struct clk_periph_data data_nb
[] = {
273 REF_CLK_FULL_DD(mmc
),
274 REF_CLK_FULL_DD(sata_host
),
275 REF_CLK_FULL_DD(sec_at
),
276 REF_CLK_FULL_DD(sec_dap
),
277 REF_CLK_FULL_DD(tscem
),
278 REF_CLK_FULL(tscem_tmx
),
279 REF_CLK_GATE(avs
, "xtal"),
280 REF_CLK_FULL_DD(sqf
),
281 REF_CLK_FULL_DD(pwm
),
282 REF_CLK_GATE(i2c_2
, "xtal"),
283 REF_CLK_GATE(i2c_1
, "xtal"),
284 REF_CLK_GATE_DIV(ddr_phy
, "TBG-A-S"),
285 REF_CLK_FULL_DD(ddr_fclk
),
287 REF_CLK_FULL(counter
),
288 REF_CLK_FULL_DD(eip97
),
293 /* SB periph clocks */
294 PERIPH_CLK_MUX_DD(gbe_50
, 6, DIV_SEL2
, DIV_SEL2
, 6, 9);
295 PERIPH_CLK_MUX_DD(gbe_core
, 8, DIV_SEL1
, DIV_SEL1
, 18, 21);
296 PERIPH_CLK_MUX_DD(gbe_125
, 10, DIV_SEL1
, DIV_SEL1
, 6, 9);
297 static PERIPH_GATE(gbe1_50
, 0);
298 static PERIPH_GATE(gbe0_50
, 1);
299 static PERIPH_GATE(gbe1_125
, 2);
300 static PERIPH_GATE(gbe0_125
, 3);
301 PERIPH_CLK_GATE_DIV(gbe1_core
, 4, DIV_SEL1
, 13, clk_table1
);
302 PERIPH_CLK_GATE_DIV(gbe0_core
, 5, DIV_SEL1
, 14, clk_table1
);
303 PERIPH_CLK_GATE_DIV(gbe_bm
, 12, DIV_SEL1
, 0, clk_table1
);
304 PERIPH_CLK_FULL_DD(sdio
, 11, 14, DIV_SEL0
, DIV_SEL0
, 3, 6);
305 PERIPH_CLK_FULL_DD(usb32_usb2_sys
, 16, 16, DIV_SEL0
, DIV_SEL0
, 9, 12);
306 PERIPH_CLK_FULL_DD(usb32_ss_sys
, 17, 18, DIV_SEL0
, DIV_SEL0
, 15, 18);
307 static PERIPH_GATE(pcie
, 14);
309 static struct clk_periph_data data_sb
[] = {
310 REF_CLK_MUX_DD(gbe_50
),
311 REF_CLK_MUX_DD(gbe_core
),
312 REF_CLK_MUX_DD(gbe_125
),
313 REF_CLK_GATE(gbe1_50
, "gbe_50"),
314 REF_CLK_GATE(gbe0_50
, "gbe_50"),
315 REF_CLK_GATE(gbe1_125
, "gbe_125"),
316 REF_CLK_GATE(gbe0_125
, "gbe_125"),
317 REF_CLK_GATE_DIV(gbe1_core
, "gbe_core"),
318 REF_CLK_GATE_DIV(gbe0_core
, "gbe_core"),
319 REF_CLK_GATE_DIV(gbe_bm
, "gbe_core"),
320 REF_CLK_FULL_DD(sdio
),
321 REF_CLK_FULL_DD(usb32_usb2_sys
),
322 REF_CLK_FULL_DD(usb32_ss_sys
),
323 REF_CLK_GATE(pcie
, "gbe_core"),
327 static unsigned int get_div(void __iomem
*reg
, int shift
)
331 val
= (readl(reg
) >> shift
) & 0x7;
337 static unsigned long clk_double_div_recalc_rate(struct clk_hw
*hw
,
338 unsigned long parent_rate
)
340 struct clk_double_div
*double_div
= to_clk_double_div(hw
);
343 div
= get_div(double_div
->reg1
, double_div
->shift1
);
344 div
*= get_div(double_div
->reg2
, double_div
->shift2
);
346 return DIV_ROUND_UP_ULL((u64
)parent_rate
, div
);
349 static const struct clk_ops clk_double_div_ops
= {
350 .recalc_rate
= clk_double_div_recalc_rate
,
353 static void armada_3700_pm_dvfs_update_regs(unsigned int load_level
,
355 unsigned int *offset
)
357 if (load_level
<= ARMADA_37XX_DVFS_LOAD_1
)
358 *reg
= ARMADA_37XX_NB_L0L1
;
360 *reg
= ARMADA_37XX_NB_L2L3
;
362 if (load_level
== ARMADA_37XX_DVFS_LOAD_0
||
363 load_level
== ARMADA_37XX_DVFS_LOAD_2
)
364 *offset
+= ARMADA_37XX_NB_CONFIG_SHIFT
;
367 static bool armada_3700_pm_dvfs_is_enabled(struct regmap
*base
)
369 unsigned int val
, reg
= ARMADA_37XX_NB_DYN_MOD
;
374 regmap_read(base
, reg
, &val
);
376 return !!(val
& BIT(ARMADA_37XX_NB_DFS_EN
));
379 static unsigned int armada_3700_pm_dvfs_get_cpu_div(struct regmap
*base
)
381 unsigned int reg
= ARMADA_37XX_NB_CPU_LOAD
;
382 unsigned int offset
= ARMADA_37XX_NB_TBG_DIV_OFF
;
383 unsigned int load_level
, div
;
386 * This function is always called after the function
387 * armada_3700_pm_dvfs_is_enabled, so no need to check again
388 * if the base is valid.
390 regmap_read(base
, reg
, &load_level
);
393 * The register and the offset inside this register accessed to
394 * read the current divider depend on the load level
396 load_level
&= ARMADA_37XX_NB_CPU_LOAD_MASK
;
397 armada_3700_pm_dvfs_update_regs(load_level
, ®
, &offset
);
399 regmap_read(base
, reg
, &div
);
401 return (div
>> offset
) & ARMADA_37XX_NB_TBG_DIV_MASK
;
404 static unsigned int armada_3700_pm_dvfs_get_cpu_parent(struct regmap
*base
)
406 unsigned int reg
= ARMADA_37XX_NB_CPU_LOAD
;
407 unsigned int offset
= ARMADA_37XX_NB_TBG_SEL_OFF
;
408 unsigned int load_level
, sel
;
411 * This function is always called after the function
412 * armada_3700_pm_dvfs_is_enabled, so no need to check again
413 * if the base is valid
415 regmap_read(base
, reg
, &load_level
);
418 * The register and the offset inside this register accessed to
419 * read the current divider depend on the load level
421 load_level
&= ARMADA_37XX_NB_CPU_LOAD_MASK
;
422 armada_3700_pm_dvfs_update_regs(load_level
, ®
, &offset
);
424 regmap_read(base
, reg
, &sel
);
426 return (sel
>> offset
) & ARMADA_37XX_NB_TBG_SEL_MASK
;
429 static u8
clk_pm_cpu_get_parent(struct clk_hw
*hw
)
431 struct clk_pm_cpu
*pm_cpu
= to_clk_pm_cpu(hw
);
434 if (armada_3700_pm_dvfs_is_enabled(pm_cpu
->nb_pm_base
)) {
435 val
= armada_3700_pm_dvfs_get_cpu_parent(pm_cpu
->nb_pm_base
);
437 val
= readl(pm_cpu
->reg_mux
) >> pm_cpu
->shift_mux
;
438 val
&= pm_cpu
->mask_mux
;
444 static unsigned long clk_pm_cpu_recalc_rate(struct clk_hw
*hw
,
445 unsigned long parent_rate
)
447 struct clk_pm_cpu
*pm_cpu
= to_clk_pm_cpu(hw
);
450 if (armada_3700_pm_dvfs_is_enabled(pm_cpu
->nb_pm_base
))
451 div
= armada_3700_pm_dvfs_get_cpu_div(pm_cpu
->nb_pm_base
);
453 div
= get_div(pm_cpu
->reg_div
, pm_cpu
->shift_div
);
454 return DIV_ROUND_UP_ULL((u64
)parent_rate
, div
);
457 static long clk_pm_cpu_round_rate(struct clk_hw
*hw
, unsigned long rate
,
458 unsigned long *parent_rate
)
460 struct clk_pm_cpu
*pm_cpu
= to_clk_pm_cpu(hw
);
461 struct regmap
*base
= pm_cpu
->nb_pm_base
;
462 unsigned int div
= *parent_rate
/ rate
;
463 unsigned int load_level
;
464 /* only available when DVFS is enabled */
465 if (!armada_3700_pm_dvfs_is_enabled(base
))
468 for (load_level
= 0; load_level
< LOAD_LEVEL_NR
; load_level
++) {
469 unsigned int reg
, val
, offset
= ARMADA_37XX_NB_TBG_DIV_OFF
;
471 armada_3700_pm_dvfs_update_regs(load_level
, ®
, &offset
);
473 regmap_read(base
, reg
, &val
);
476 val
&= ARMADA_37XX_NB_TBG_DIV_MASK
;
479 * We found a load level matching the target
480 * divider, switch to this load level and
483 return *parent_rate
/ div
;
486 /* We didn't find any valid divider */
491 * Workaround when base CPU frequnecy is 1000 or 1200 MHz
493 * Switching the CPU from the L2 or L3 frequencies (250/300 or 200 MHz
494 * respectively) to L0 frequency (1/1.2 GHz) requires a significant
495 * amount of time to let VDD stabilize to the appropriate
496 * voltage. This amount of time is large enough that it cannot be
497 * covered by the hardware countdown register. Due to this, the CPU
498 * might start operating at L0 before the voltage is stabilized,
499 * leading to CPU stalls.
501 * To work around this problem, we prevent switching directly from the
502 * L2/L3 frequencies to the L0 frequency, and instead switch to the L1
503 * frequency in-between. The sequence therefore becomes:
504 * 1. First switch from L2/L3 (200/250/300 MHz) to L1 (500/600 MHz)
505 * 2. Sleep 20ms for stabling VDD voltage
506 * 3. Then switch from L1 (500/600 MHz) to L0 (1000/1200 MHz).
508 static void clk_pm_cpu_set_rate_wa(struct clk_pm_cpu
*pm_cpu
,
509 unsigned int new_level
, unsigned long rate
,
512 unsigned int cur_level
;
514 regmap_read(base
, ARMADA_37XX_NB_CPU_LOAD
, &cur_level
);
515 cur_level
&= ARMADA_37XX_NB_CPU_LOAD_MASK
;
517 if (cur_level
== new_level
)
521 * System wants to go to L1 on its own. If we are going from L2/L3,
522 * remember when 20ms will expire. If from L0, set the value so that
523 * next switch to L0 won't have to wait.
525 if (new_level
== ARMADA_37XX_DVFS_LOAD_1
) {
526 if (cur_level
== ARMADA_37XX_DVFS_LOAD_0
)
527 pm_cpu
->l1_expiration
= jiffies
;
529 pm_cpu
->l1_expiration
= jiffies
+ msecs_to_jiffies(20);
534 * If we are setting to L2/L3, just invalidate L1 expiration time,
535 * sleeping is not needed.
537 if (rate
< 1000*1000*1000)
538 goto invalidate_l1_exp
;
541 * We are going to L0 with rate >= 1GHz. Check whether we have been at
542 * L1 for long enough time. If not, go to L1 for 20ms.
544 if (pm_cpu
->l1_expiration
&& time_is_before_eq_jiffies(pm_cpu
->l1_expiration
))
545 goto invalidate_l1_exp
;
547 regmap_update_bits(base
, ARMADA_37XX_NB_CPU_LOAD
,
548 ARMADA_37XX_NB_CPU_LOAD_MASK
,
549 ARMADA_37XX_DVFS_LOAD_1
);
553 pm_cpu
->l1_expiration
= 0;
556 static int clk_pm_cpu_set_rate(struct clk_hw
*hw
, unsigned long rate
,
557 unsigned long parent_rate
)
559 struct clk_pm_cpu
*pm_cpu
= to_clk_pm_cpu(hw
);
560 struct regmap
*base
= pm_cpu
->nb_pm_base
;
561 unsigned int div
= parent_rate
/ rate
;
562 unsigned int load_level
;
564 /* only available when DVFS is enabled */
565 if (!armada_3700_pm_dvfs_is_enabled(base
))
568 for (load_level
= 0; load_level
< LOAD_LEVEL_NR
; load_level
++) {
569 unsigned int reg
, mask
, val
,
570 offset
= ARMADA_37XX_NB_TBG_DIV_OFF
;
572 armada_3700_pm_dvfs_update_regs(load_level
, ®
, &offset
);
574 regmap_read(base
, reg
, &val
);
576 val
&= ARMADA_37XX_NB_TBG_DIV_MASK
;
580 * We found a load level matching the target
581 * divider, switch to this load level and
584 reg
= ARMADA_37XX_NB_CPU_LOAD
;
585 mask
= ARMADA_37XX_NB_CPU_LOAD_MASK
;
587 /* Apply workaround when base CPU frequency is 1000 or 1200 MHz */
588 if (parent_rate
>= 1000*1000*1000)
589 clk_pm_cpu_set_rate_wa(pm_cpu
, load_level
, rate
, base
);
591 regmap_update_bits(base
, reg
, mask
, load_level
);
597 /* We didn't find any valid divider */
601 static const struct clk_ops clk_pm_cpu_ops
= {
602 .get_parent
= clk_pm_cpu_get_parent
,
603 .round_rate
= clk_pm_cpu_round_rate
,
604 .set_rate
= clk_pm_cpu_set_rate
,
605 .recalc_rate
= clk_pm_cpu_recalc_rate
,
608 static const struct of_device_id armada_3700_periph_clock_of_match
[] = {
609 { .compatible
= "marvell,armada-3700-periph-clock-nb",
611 { .compatible
= "marvell,armada-3700-periph-clock-sb",
616 static int armada_3700_add_composite_clk(const struct clk_periph_data
*data
,
617 void __iomem
*reg
, spinlock_t
*lock
,
618 struct device
*dev
, struct clk_hw
**hw
)
620 const struct clk_ops
*mux_ops
= NULL
, *gate_ops
= NULL
,
622 struct clk_hw
*mux_hw
= NULL
, *gate_hw
= NULL
, *rate_hw
= NULL
;
627 mux_hw
= data
->mux_hw
;
628 mux
= to_clk_mux(mux_hw
);
630 mux_ops
= mux_hw
->init
->ops
;
631 mux
->reg
= reg
+ (u64
)mux
->reg
;
635 struct clk_gate
*gate
;
637 gate_hw
= data
->gate_hw
;
638 gate
= to_clk_gate(gate_hw
);
640 gate_ops
= gate_hw
->init
->ops
;
641 gate
->reg
= reg
+ (u64
)gate
->reg
;
642 gate
->flags
= CLK_GATE_SET_TO_DISABLE
;
646 rate_hw
= data
->rate_hw
;
647 rate_ops
= rate_hw
->init
->ops
;
648 if (data
->is_double_div
) {
649 struct clk_double_div
*rate
;
651 rate
= to_clk_double_div(rate_hw
);
652 rate
->reg1
= reg
+ (u64
)rate
->reg1
;
653 rate
->reg2
= reg
+ (u64
)rate
->reg2
;
655 struct clk_divider
*rate
= to_clk_divider(rate_hw
);
656 const struct clk_div_table
*clkt
;
659 rate
->reg
= reg
+ (u64
)rate
->reg
;
660 for (clkt
= rate
->table
; clkt
->div
; clkt
++)
662 rate
->width
= order_base_2(table_size
);
667 if (data
->muxrate_hw
) {
668 struct clk_pm_cpu
*pmcpu_clk
;
669 struct clk_hw
*muxrate_hw
= data
->muxrate_hw
;
672 pmcpu_clk
= to_clk_pm_cpu(muxrate_hw
);
673 pmcpu_clk
->reg_mux
= reg
+ (u64
)pmcpu_clk
->reg_mux
;
674 pmcpu_clk
->reg_div
= reg
+ (u64
)pmcpu_clk
->reg_div
;
677 rate_hw
= muxrate_hw
;
678 mux_ops
= muxrate_hw
->init
->ops
;
679 rate_ops
= muxrate_hw
->init
->ops
;
681 map
= syscon_regmap_lookup_by_compatible(
682 "marvell,armada-3700-nb-pm");
683 pmcpu_clk
->nb_pm_base
= map
;
686 *hw
= clk_hw_register_composite(dev
, data
->name
, data
->parent_names
,
687 data
->num_parents
, mux_hw
,
688 mux_ops
, rate_hw
, rate_ops
,
689 gate_hw
, gate_ops
, CLK_IGNORE_UNUSED
);
691 return PTR_ERR_OR_ZERO(*hw
);
694 static int __maybe_unused
armada_3700_periph_clock_suspend(struct device
*dev
)
696 struct clk_periph_driver_data
*data
= dev_get_drvdata(dev
);
698 data
->tbg_sel
= readl(data
->reg
+ TBG_SEL
);
699 data
->div_sel0
= readl(data
->reg
+ DIV_SEL0
);
700 data
->div_sel1
= readl(data
->reg
+ DIV_SEL1
);
701 data
->div_sel2
= readl(data
->reg
+ DIV_SEL2
);
702 data
->clk_sel
= readl(data
->reg
+ CLK_SEL
);
703 data
->clk_dis
= readl(data
->reg
+ CLK_DIS
);
708 static int __maybe_unused
armada_3700_periph_clock_resume(struct device
*dev
)
710 struct clk_periph_driver_data
*data
= dev_get_drvdata(dev
);
712 /* Follow the same order than what the Cortex-M3 does (ATF code) */
713 writel(data
->clk_dis
, data
->reg
+ CLK_DIS
);
714 writel(data
->div_sel0
, data
->reg
+ DIV_SEL0
);
715 writel(data
->div_sel1
, data
->reg
+ DIV_SEL1
);
716 writel(data
->div_sel2
, data
->reg
+ DIV_SEL2
);
717 writel(data
->tbg_sel
, data
->reg
+ TBG_SEL
);
718 writel(data
->clk_sel
, data
->reg
+ CLK_SEL
);
723 static const struct dev_pm_ops armada_3700_periph_clock_pm_ops
= {
724 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(armada_3700_periph_clock_suspend
,
725 armada_3700_periph_clock_resume
)
728 static int armada_3700_periph_clock_probe(struct platform_device
*pdev
)
730 struct clk_periph_driver_data
*driver_data
;
731 struct device_node
*np
= pdev
->dev
.of_node
;
732 const struct clk_periph_data
*data
;
733 struct device
*dev
= &pdev
->dev
;
734 int num_periph
= 0, i
, ret
;
736 data
= of_device_get_match_data(dev
);
740 while (data
[num_periph
].name
)
743 driver_data
= devm_kzalloc(dev
, sizeof(*driver_data
), GFP_KERNEL
);
747 driver_data
->hw_data
= devm_kzalloc(dev
,
748 struct_size(driver_data
->hw_data
,
751 if (!driver_data
->hw_data
)
753 driver_data
->hw_data
->num
= num_periph
;
755 driver_data
->reg
= devm_platform_ioremap_resource(pdev
, 0);
756 if (IS_ERR(driver_data
->reg
))
757 return PTR_ERR(driver_data
->reg
);
759 spin_lock_init(&driver_data
->lock
);
761 for (i
= 0; i
< num_periph
; i
++) {
762 struct clk_hw
**hw
= &driver_data
->hw_data
->hws
[i
];
763 if (armada_3700_add_composite_clk(&data
[i
], driver_data
->reg
,
764 &driver_data
->lock
, dev
, hw
))
765 dev_err(dev
, "Can't register periph clock %s\n",
769 ret
= of_clk_add_hw_provider(np
, of_clk_hw_onecell_get
,
770 driver_data
->hw_data
);
772 for (i
= 0; i
< num_periph
; i
++)
773 clk_hw_unregister(driver_data
->hw_data
->hws
[i
]);
777 platform_set_drvdata(pdev
, driver_data
);
781 static void armada_3700_periph_clock_remove(struct platform_device
*pdev
)
783 struct clk_periph_driver_data
*data
= platform_get_drvdata(pdev
);
784 struct clk_hw_onecell_data
*hw_data
= data
->hw_data
;
787 of_clk_del_provider(pdev
->dev
.of_node
);
789 for (i
= 0; i
< hw_data
->num
; i
++)
790 clk_hw_unregister(hw_data
->hws
[i
]);
793 static struct platform_driver armada_3700_periph_clock_driver
= {
794 .probe
= armada_3700_periph_clock_probe
,
795 .remove
= armada_3700_periph_clock_remove
,
797 .name
= "marvell-armada-3700-periph-clock",
798 .of_match_table
= armada_3700_periph_clock_of_match
,
799 .pm
= &armada_3700_periph_clock_pm_ops
,
803 builtin_platform_driver(armada_3700_periph_clock_driver
);