drm/tests: hdmi: Fix memory leaks in drm_display_mode_from_cea_vic()
[drm/drm-misc.git] / drivers / cpufreq / imx6q-cpufreq.c
blobc20d3ecc5a81ea058766e4e533457fcc8a90283f
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2013 Freescale Semiconductor, Inc.
4 */
6 #include <linux/clk.h>
7 #include <linux/cpu.h>
8 #include <linux/cpufreq.h>
9 #include <linux/err.h>
10 #include <linux/module.h>
11 #include <linux/nvmem-consumer.h>
12 #include <linux/of.h>
13 #include <linux/of_address.h>
14 #include <linux/pm_opp.h>
15 #include <linux/platform_device.h>
16 #include <linux/regulator/consumer.h>
17 #include <linux/mfd/syscon.h>
18 #include <linux/regmap.h>
20 #define PU_SOC_VOLTAGE_NORMAL 1250000
21 #define PU_SOC_VOLTAGE_HIGH 1275000
22 #define FREQ_1P2_GHZ 1200000000
24 static struct regulator *arm_reg;
25 static struct regulator *pu_reg;
26 static struct regulator *soc_reg;
28 enum IMX6_CPUFREQ_CLKS {
29 ARM,
30 PLL1_SYS,
31 STEP,
32 PLL1_SW,
33 PLL2_PFD2_396M,
34 /* MX6UL requires two more clks */
35 PLL2_BUS,
36 SECONDARY_SEL,
38 #define IMX6Q_CPUFREQ_CLK_NUM 5
39 #define IMX6UL_CPUFREQ_CLK_NUM 7
41 static int num_clks;
42 static struct clk_bulk_data clks[] = {
43 { .id = "arm" },
44 { .id = "pll1_sys" },
45 { .id = "step" },
46 { .id = "pll1_sw" },
47 { .id = "pll2_pfd2_396m" },
48 { .id = "pll2_bus" },
49 { .id = "secondary_sel" },
52 static struct device *cpu_dev;
53 static struct cpufreq_frequency_table *freq_table;
54 static unsigned int max_freq;
55 static unsigned int transition_latency;
57 static u32 *imx6_soc_volt;
58 static u32 soc_opp_count;
60 static int imx6q_set_target(struct cpufreq_policy *policy, unsigned int index)
62 struct dev_pm_opp *opp;
63 unsigned long freq_hz, volt, volt_old;
64 unsigned int old_freq, new_freq;
65 bool pll1_sys_temp_enabled = false;
66 int ret;
68 new_freq = freq_table[index].frequency;
69 freq_hz = new_freq * 1000;
70 old_freq = clk_get_rate(clks[ARM].clk) / 1000;
72 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_hz);
73 if (IS_ERR(opp)) {
74 dev_err(cpu_dev, "failed to find OPP for %ld\n", freq_hz);
75 return PTR_ERR(opp);
78 volt = dev_pm_opp_get_voltage(opp);
79 dev_pm_opp_put(opp);
81 volt_old = regulator_get_voltage(arm_reg);
83 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
84 old_freq / 1000, volt_old / 1000,
85 new_freq / 1000, volt / 1000);
87 /* scaling up? scale voltage before frequency */
88 if (new_freq > old_freq) {
89 if (!IS_ERR(pu_reg)) {
90 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
91 if (ret) {
92 dev_err(cpu_dev, "failed to scale vddpu up: %d\n", ret);
93 return ret;
96 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
97 if (ret) {
98 dev_err(cpu_dev, "failed to scale vddsoc up: %d\n", ret);
99 return ret;
101 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
102 if (ret) {
103 dev_err(cpu_dev,
104 "failed to scale vddarm up: %d\n", ret);
105 return ret;
110 * The setpoints are selected per PLL/PDF frequencies, so we need to
111 * reprogram PLL for frequency scaling. The procedure of reprogramming
112 * PLL1 is as below.
113 * For i.MX6UL, it has a secondary clk mux, the cpu frequency change
114 * flow is slightly different from other i.MX6 OSC.
115 * The cpu frequeny change flow for i.MX6(except i.MX6UL) is as below:
116 * - Enable pll2_pfd2_396m_clk and reparent pll1_sw_clk to it
117 * - Reprogram pll1_sys_clk and reparent pll1_sw_clk back to it
118 * - Disable pll2_pfd2_396m_clk
120 if (of_machine_is_compatible("fsl,imx6ul") ||
121 of_machine_is_compatible("fsl,imx6ull")) {
123 * When changing pll1_sw_clk's parent to pll1_sys_clk,
124 * CPU may run at higher than 528MHz, this will lead to
125 * the system unstable if the voltage is lower than the
126 * voltage of 528MHz, so lower the CPU frequency to one
127 * half before changing CPU frequency.
129 clk_set_rate(clks[ARM].clk, (old_freq >> 1) * 1000);
130 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
131 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk))
132 clk_set_parent(clks[SECONDARY_SEL].clk,
133 clks[PLL2_BUS].clk);
134 else
135 clk_set_parent(clks[SECONDARY_SEL].clk,
136 clks[PLL2_PFD2_396M].clk);
137 clk_set_parent(clks[STEP].clk, clks[SECONDARY_SEL].clk);
138 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
139 if (freq_hz > clk_get_rate(clks[PLL2_BUS].clk)) {
140 clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
141 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
143 } else {
144 clk_set_parent(clks[STEP].clk, clks[PLL2_PFD2_396M].clk);
145 clk_set_parent(clks[PLL1_SW].clk, clks[STEP].clk);
146 if (freq_hz > clk_get_rate(clks[PLL2_PFD2_396M].clk)) {
147 clk_set_rate(clks[PLL1_SYS].clk, new_freq * 1000);
148 clk_set_parent(clks[PLL1_SW].clk, clks[PLL1_SYS].clk);
149 } else {
150 /* pll1_sys needs to be enabled for divider rate change to work. */
151 pll1_sys_temp_enabled = true;
152 clk_prepare_enable(clks[PLL1_SYS].clk);
156 /* Ensure the arm clock divider is what we expect */
157 ret = clk_set_rate(clks[ARM].clk, new_freq * 1000);
158 if (ret) {
159 int ret1;
161 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
162 ret1 = regulator_set_voltage_tol(arm_reg, volt_old, 0);
163 if (ret1)
164 dev_warn(cpu_dev,
165 "failed to restore vddarm voltage: %d\n", ret1);
166 return ret;
169 /* PLL1 is only needed until after ARM-PODF is set. */
170 if (pll1_sys_temp_enabled)
171 clk_disable_unprepare(clks[PLL1_SYS].clk);
173 /* scaling down? scale voltage after frequency */
174 if (new_freq < old_freq) {
175 ret = regulator_set_voltage_tol(arm_reg, volt, 0);
176 if (ret)
177 dev_warn(cpu_dev,
178 "failed to scale vddarm down: %d\n", ret);
179 ret = regulator_set_voltage_tol(soc_reg, imx6_soc_volt[index], 0);
180 if (ret)
181 dev_warn(cpu_dev, "failed to scale vddsoc down: %d\n", ret);
182 if (!IS_ERR(pu_reg)) {
183 ret = regulator_set_voltage_tol(pu_reg, imx6_soc_volt[index], 0);
184 if (ret)
185 dev_warn(cpu_dev, "failed to scale vddpu down: %d\n", ret);
189 return 0;
192 static int imx6q_cpufreq_init(struct cpufreq_policy *policy)
194 policy->clk = clks[ARM].clk;
195 cpufreq_generic_init(policy, freq_table, transition_latency);
196 policy->suspend_freq = max_freq;
198 return 0;
201 static struct cpufreq_driver imx6q_cpufreq_driver = {
202 .flags = CPUFREQ_NEED_INITIAL_FREQ_CHECK |
203 CPUFREQ_IS_COOLING_DEV,
204 .verify = cpufreq_generic_frequency_table_verify,
205 .target_index = imx6q_set_target,
206 .get = cpufreq_generic_get,
207 .init = imx6q_cpufreq_init,
208 .register_em = cpufreq_register_em_with_opp,
209 .name = "imx6q-cpufreq",
210 .attr = cpufreq_generic_attr,
211 .suspend = cpufreq_generic_suspend,
214 static void imx6x_disable_freq_in_opp(struct device *dev, unsigned long freq)
216 int ret = dev_pm_opp_disable(dev, freq);
218 if (ret < 0 && ret != -ENODEV)
219 dev_warn(dev, "failed to disable %ldMHz OPP\n", freq / 1000000);
222 #define OCOTP_CFG3 0x440
223 #define OCOTP_CFG3_SPEED_SHIFT 16
224 #define OCOTP_CFG3_SPEED_1P2GHZ 0x3
225 #define OCOTP_CFG3_SPEED_996MHZ 0x2
226 #define OCOTP_CFG3_SPEED_852MHZ 0x1
228 static int imx6q_opp_check_speed_grading(struct device *dev)
230 u32 val;
231 int ret;
233 if (of_property_present(dev->of_node, "nvmem-cells")) {
234 ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
235 if (ret)
236 return ret;
237 } else {
238 struct regmap *ocotp;
240 ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6q-ocotp");
241 if (IS_ERR(ocotp))
242 return -ENOENT;
245 * SPEED_GRADING[1:0] defines the max speed of ARM:
246 * 2b'11: 1200000000Hz;
247 * 2b'10: 996000000Hz;
248 * 2b'01: 852000000Hz; -- i.MX6Q Only, exclusive with 996MHz.
249 * 2b'00: 792000000Hz;
250 * We need to set the max speed of ARM according to fuse map.
252 regmap_read(ocotp, OCOTP_CFG3, &val);
255 val >>= OCOTP_CFG3_SPEED_SHIFT;
256 val &= 0x3;
258 if (val < OCOTP_CFG3_SPEED_996MHZ)
259 imx6x_disable_freq_in_opp(dev, 996000000);
261 if (of_machine_is_compatible("fsl,imx6q") ||
262 of_machine_is_compatible("fsl,imx6qp")) {
263 if (val != OCOTP_CFG3_SPEED_852MHZ)
264 imx6x_disable_freq_in_opp(dev, 852000000);
266 if (val != OCOTP_CFG3_SPEED_1P2GHZ)
267 imx6x_disable_freq_in_opp(dev, 1200000000);
270 return 0;
273 #define OCOTP_CFG3_6UL_SPEED_696MHZ 0x2
274 #define OCOTP_CFG3_6ULL_SPEED_792MHZ 0x2
275 #define OCOTP_CFG3_6ULL_SPEED_900MHZ 0x3
277 static int imx6ul_opp_check_speed_grading(struct device *dev)
279 u32 val;
280 int ret = 0;
282 if (of_property_present(dev->of_node, "nvmem-cells")) {
283 ret = nvmem_cell_read_u32(dev, "speed_grade", &val);
284 if (ret)
285 return ret;
286 } else {
287 struct regmap *ocotp;
289 ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6ul-ocotp");
290 if (IS_ERR(ocotp))
291 ocotp = syscon_regmap_lookup_by_compatible("fsl,imx6ull-ocotp");
293 if (IS_ERR(ocotp))
294 return -ENOENT;
296 regmap_read(ocotp, OCOTP_CFG3, &val);
300 * Speed GRADING[1:0] defines the max speed of ARM:
301 * 2b'00: Reserved;
302 * 2b'01: 528000000Hz;
303 * 2b'10: 696000000Hz on i.MX6UL, 792000000Hz on i.MX6ULL;
304 * 2b'11: 900000000Hz on i.MX6ULL only;
305 * We need to set the max speed of ARM according to fuse map.
307 val >>= OCOTP_CFG3_SPEED_SHIFT;
308 val &= 0x3;
310 if (of_machine_is_compatible("fsl,imx6ul"))
311 if (val != OCOTP_CFG3_6UL_SPEED_696MHZ)
312 imx6x_disable_freq_in_opp(dev, 696000000);
314 if (of_machine_is_compatible("fsl,imx6ull")) {
315 if (val < OCOTP_CFG3_6ULL_SPEED_792MHZ)
316 imx6x_disable_freq_in_opp(dev, 792000000);
318 if (val != OCOTP_CFG3_6ULL_SPEED_900MHZ)
319 imx6x_disable_freq_in_opp(dev, 900000000);
322 return ret;
325 static int imx6q_cpufreq_probe(struct platform_device *pdev)
327 struct device_node *np;
328 struct dev_pm_opp *opp;
329 unsigned long min_volt, max_volt;
330 int num, ret;
331 const struct property *prop;
332 const __be32 *val;
333 u32 nr, i, j;
335 cpu_dev = get_cpu_device(0);
336 if (!cpu_dev) {
337 pr_err("failed to get cpu0 device\n");
338 return -ENODEV;
341 np = of_node_get(cpu_dev->of_node);
342 if (!np) {
343 dev_err(cpu_dev, "failed to find cpu0 node\n");
344 return -ENOENT;
347 if (of_machine_is_compatible("fsl,imx6ul") ||
348 of_machine_is_compatible("fsl,imx6ull"))
349 num_clks = IMX6UL_CPUFREQ_CLK_NUM;
350 else
351 num_clks = IMX6Q_CPUFREQ_CLK_NUM;
353 ret = clk_bulk_get(cpu_dev, num_clks, clks);
354 if (ret)
355 goto put_node;
357 arm_reg = regulator_get(cpu_dev, "arm");
358 pu_reg = regulator_get_optional(cpu_dev, "pu");
359 soc_reg = regulator_get(cpu_dev, "soc");
360 if (PTR_ERR(arm_reg) == -EPROBE_DEFER ||
361 PTR_ERR(soc_reg) == -EPROBE_DEFER ||
362 PTR_ERR(pu_reg) == -EPROBE_DEFER) {
363 ret = -EPROBE_DEFER;
364 dev_dbg(cpu_dev, "regulators not ready, defer\n");
365 goto put_reg;
367 if (IS_ERR(arm_reg) || IS_ERR(soc_reg)) {
368 dev_err(cpu_dev, "failed to get regulators\n");
369 ret = -ENOENT;
370 goto put_reg;
373 ret = dev_pm_opp_of_add_table(cpu_dev);
374 if (ret < 0) {
375 dev_err(cpu_dev, "failed to init OPP table: %d\n", ret);
376 goto put_reg;
379 if (of_machine_is_compatible("fsl,imx6ul") ||
380 of_machine_is_compatible("fsl,imx6ull")) {
381 ret = imx6ul_opp_check_speed_grading(cpu_dev);
382 } else {
383 ret = imx6q_opp_check_speed_grading(cpu_dev);
385 if (ret) {
386 dev_err_probe(cpu_dev, ret, "failed to read ocotp\n");
387 goto out_free_opp;
390 num = dev_pm_opp_get_opp_count(cpu_dev);
391 if (num < 0) {
392 ret = num;
393 dev_err(cpu_dev, "no OPP table is found: %d\n", ret);
394 goto out_free_opp;
397 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
398 if (ret) {
399 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
400 goto out_free_opp;
403 /* Make imx6_soc_volt array's size same as arm opp number */
404 imx6_soc_volt = devm_kcalloc(cpu_dev, num, sizeof(*imx6_soc_volt),
405 GFP_KERNEL);
406 if (imx6_soc_volt == NULL) {
407 ret = -ENOMEM;
408 goto free_freq_table;
411 prop = of_find_property(np, "fsl,soc-operating-points", NULL);
412 if (!prop || !prop->value)
413 goto soc_opp_out;
416 * Each OPP is a set of tuples consisting of frequency and
417 * voltage like <freq-kHz vol-uV>.
419 nr = prop->length / sizeof(u32);
420 if (nr % 2 || (nr / 2) < num)
421 goto soc_opp_out;
423 for (j = 0; j < num; j++) {
424 val = prop->value;
425 for (i = 0; i < nr / 2; i++) {
426 unsigned long freq = be32_to_cpup(val++);
427 unsigned long volt = be32_to_cpup(val++);
428 if (freq_table[j].frequency == freq) {
429 imx6_soc_volt[soc_opp_count++] = volt;
430 break;
435 soc_opp_out:
436 /* use fixed soc opp volt if no valid soc opp info found in dtb */
437 if (soc_opp_count != num) {
438 dev_warn(cpu_dev, "can NOT find valid fsl,soc-operating-points property in dtb, use default value!\n");
439 for (j = 0; j < num; j++)
440 imx6_soc_volt[j] = PU_SOC_VOLTAGE_NORMAL;
441 if (freq_table[num - 1].frequency * 1000 == FREQ_1P2_GHZ)
442 imx6_soc_volt[num - 1] = PU_SOC_VOLTAGE_HIGH;
445 if (of_property_read_u32(np, "clock-latency", &transition_latency))
446 transition_latency = CPUFREQ_ETERNAL;
449 * Calculate the ramp time for max voltage change in the
450 * VDDSOC and VDDPU regulators.
452 ret = regulator_set_voltage_time(soc_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
453 if (ret > 0)
454 transition_latency += ret * 1000;
455 if (!IS_ERR(pu_reg)) {
456 ret = regulator_set_voltage_time(pu_reg, imx6_soc_volt[0], imx6_soc_volt[num - 1]);
457 if (ret > 0)
458 transition_latency += ret * 1000;
462 * OPP is maintained in order of increasing frequency, and
463 * freq_table initialised from OPP is therefore sorted in the
464 * same order.
466 max_freq = freq_table[--num].frequency;
467 opp = dev_pm_opp_find_freq_exact(cpu_dev,
468 freq_table[0].frequency * 1000, true);
469 min_volt = dev_pm_opp_get_voltage(opp);
470 dev_pm_opp_put(opp);
471 opp = dev_pm_opp_find_freq_exact(cpu_dev, max_freq * 1000, true);
472 max_volt = dev_pm_opp_get_voltage(opp);
473 dev_pm_opp_put(opp);
475 ret = regulator_set_voltage_time(arm_reg, min_volt, max_volt);
476 if (ret > 0)
477 transition_latency += ret * 1000;
479 ret = cpufreq_register_driver(&imx6q_cpufreq_driver);
480 if (ret) {
481 dev_err(cpu_dev, "failed register driver: %d\n", ret);
482 goto free_freq_table;
485 of_node_put(np);
486 return 0;
488 free_freq_table:
489 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
490 out_free_opp:
491 dev_pm_opp_of_remove_table(cpu_dev);
492 put_reg:
493 if (!IS_ERR(arm_reg))
494 regulator_put(arm_reg);
495 if (!IS_ERR(pu_reg))
496 regulator_put(pu_reg);
497 if (!IS_ERR(soc_reg))
498 regulator_put(soc_reg);
500 clk_bulk_put(num_clks, clks);
501 put_node:
502 of_node_put(np);
504 return ret;
507 static void imx6q_cpufreq_remove(struct platform_device *pdev)
509 cpufreq_unregister_driver(&imx6q_cpufreq_driver);
510 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
511 dev_pm_opp_of_remove_table(cpu_dev);
512 regulator_put(arm_reg);
513 if (!IS_ERR(pu_reg))
514 regulator_put(pu_reg);
515 regulator_put(soc_reg);
517 clk_bulk_put(num_clks, clks);
520 static struct platform_driver imx6q_cpufreq_platdrv = {
521 .driver = {
522 .name = "imx6q-cpufreq",
524 .probe = imx6q_cpufreq_probe,
525 .remove_new = imx6q_cpufreq_remove,
527 module_platform_driver(imx6q_cpufreq_platdrv);
529 MODULE_ALIAS("platform:imx6q-cpufreq");
530 MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
531 MODULE_DESCRIPTION("Freescale i.MX6Q cpufreq driver");
532 MODULE_LICENSE("GPL");