drm/tests: hdmi: Fix memory leaks in drm_display_mode_from_cea_vic()
[drm/drm-misc.git] / drivers / cpufreq / intel_pstate.c
blobb0018f371ea3a5e996cc9e94dd98e4bc7ae5af02
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pstate.c: Native P state management for Intel processors
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
7 */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/sched/smt.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/cpufreq.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/acpi.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pm_qos.h>
29 #include <linux/bitfield.h>
30 #include <trace/events/power.h>
32 #include <asm/cpu.h>
33 #include <asm/div64.h>
34 #include <asm/msr.h>
35 #include <asm/cpu_device_id.h>
36 #include <asm/cpufeature.h>
37 #include <asm/intel-family.h>
38 #include "../drivers/thermal/intel/thermal_interrupt.h"
40 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
42 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
43 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
46 #ifdef CONFIG_ACPI
47 #include <acpi/processor.h>
48 #include <acpi/cppc_acpi.h>
49 #endif
51 #define FRAC_BITS 8
52 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
53 #define fp_toint(X) ((X) >> FRAC_BITS)
55 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
57 #define EXT_BITS 6
58 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
59 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
60 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
62 static inline int32_t mul_fp(int32_t x, int32_t y)
64 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
67 static inline int32_t div_fp(s64 x, s64 y)
69 return div64_s64((int64_t)x << FRAC_BITS, y);
72 static inline int ceiling_fp(int32_t x)
74 int mask, ret;
76 ret = fp_toint(x);
77 mask = (1 << FRAC_BITS) - 1;
78 if (x & mask)
79 ret += 1;
80 return ret;
83 static inline u64 mul_ext_fp(u64 x, u64 y)
85 return (x * y) >> EXT_FRAC_BITS;
88 static inline u64 div_ext_fp(u64 x, u64 y)
90 return div64_u64(x << EXT_FRAC_BITS, y);
93 /**
94 * struct sample - Store performance sample
95 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
96 * performance during last sample period
97 * @busy_scaled: Scaled busy value which is used to calculate next
98 * P state. This can be different than core_avg_perf
99 * to account for cpu idle period
100 * @aperf: Difference of actual performance frequency clock count
101 * read from APERF MSR between last and current sample
102 * @mperf: Difference of maximum performance frequency clock count
103 * read from MPERF MSR between last and current sample
104 * @tsc: Difference of time stamp counter between last and
105 * current sample
106 * @time: Current time from scheduler
108 * This structure is used in the cpudata structure to store performance sample
109 * data for choosing next P State.
111 struct sample {
112 int32_t core_avg_perf;
113 int32_t busy_scaled;
114 u64 aperf;
115 u64 mperf;
116 u64 tsc;
117 u64 time;
121 * struct pstate_data - Store P state data
122 * @current_pstate: Current requested P state
123 * @min_pstate: Min P state possible for this platform
124 * @max_pstate: Max P state possible for this platform
125 * @max_pstate_physical:This is physical Max P state for a processor
126 * This can be higher than the max_pstate which can
127 * be limited by platform thermal design power limits
128 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor
129 * @scaling: Scaling factor between performance and frequency
130 * @turbo_pstate: Max Turbo P state possible for this platform
131 * @min_freq: @min_pstate frequency in cpufreq units
132 * @max_freq: @max_pstate frequency in cpufreq units
133 * @turbo_freq: @turbo_pstate frequency in cpufreq units
135 * Stores the per cpu model P state limits and current P state.
137 struct pstate_data {
138 int current_pstate;
139 int min_pstate;
140 int max_pstate;
141 int max_pstate_physical;
142 int perf_ctl_scaling;
143 int scaling;
144 int turbo_pstate;
145 unsigned int min_freq;
146 unsigned int max_freq;
147 unsigned int turbo_freq;
151 * struct vid_data - Stores voltage information data
152 * @min: VID data for this platform corresponding to
153 * the lowest P state
154 * @max: VID data corresponding to the highest P State.
155 * @turbo: VID data for turbo P state
156 * @ratio: Ratio of (vid max - vid min) /
157 * (max P state - Min P State)
159 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
160 * This data is used in Atom platforms, where in addition to target P state,
161 * the voltage data needs to be specified to select next P State.
163 struct vid_data {
164 int min;
165 int max;
166 int turbo;
167 int32_t ratio;
171 * struct global_params - Global parameters, mostly tunable via sysfs.
172 * @no_turbo: Whether or not to use turbo P-states.
173 * @turbo_disabled: Whether or not turbo P-states are available at all,
174 * based on the MSR_IA32_MISC_ENABLE value and whether or
175 * not the maximum reported turbo P-state is different from
176 * the maximum reported non-turbo one.
177 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
178 * P-state capacity.
179 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
180 * P-state capacity.
182 struct global_params {
183 bool no_turbo;
184 bool turbo_disabled;
185 int max_perf_pct;
186 int min_perf_pct;
190 * struct cpudata - Per CPU instance data storage
191 * @cpu: CPU number for this instance data
192 * @policy: CPUFreq policy value
193 * @update_util: CPUFreq utility callback information
194 * @update_util_set: CPUFreq utility callback is set
195 * @iowait_boost: iowait-related boost fraction
196 * @last_update: Time of the last update.
197 * @pstate: Stores P state limits for this CPU
198 * @vid: Stores VID limits for this CPU
199 * @last_sample_time: Last Sample time
200 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference
201 * @prev_aperf: Last APERF value read from APERF MSR
202 * @prev_mperf: Last MPERF value read from MPERF MSR
203 * @prev_tsc: Last timestamp counter (TSC) value
204 * @sample: Storage for storing last Sample data
205 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
206 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
207 * @acpi_perf_data: Stores ACPI perf information read from _PSS
208 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
209 * @epp_powersave: Last saved HWP energy performance preference
210 * (EPP) or energy performance bias (EPB),
211 * when policy switched to performance
212 * @epp_policy: Last saved policy used to set EPP/EPB
213 * @epp_default: Power on default HWP energy performance
214 * preference/bias
215 * @epp_cached: Cached HWP energy-performance preference value
216 * @hwp_req_cached: Cached value of the last HWP Request MSR
217 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
218 * @last_io_update: Last time when IO wake flag was set
219 * @capacity_perf: Highest perf used for scale invariance
220 * @sched_flags: Store scheduler flags for possible cross CPU update
221 * @hwp_boost_min: Last HWP boosted min performance
222 * @suspended: Whether or not the driver has been suspended.
223 * @hwp_notify_work: workqueue for HWP notifications.
225 * This structure stores per CPU instance data for all CPUs.
227 struct cpudata {
228 int cpu;
230 unsigned int policy;
231 struct update_util_data update_util;
232 bool update_util_set;
234 struct pstate_data pstate;
235 struct vid_data vid;
237 u64 last_update;
238 u64 last_sample_time;
239 u64 aperf_mperf_shift;
240 u64 prev_aperf;
241 u64 prev_mperf;
242 u64 prev_tsc;
243 struct sample sample;
244 int32_t min_perf_ratio;
245 int32_t max_perf_ratio;
246 #ifdef CONFIG_ACPI
247 struct acpi_processor_performance acpi_perf_data;
248 bool valid_pss_table;
249 #endif
250 unsigned int iowait_boost;
251 s16 epp_powersave;
252 s16 epp_policy;
253 s16 epp_default;
254 s16 epp_cached;
255 u64 hwp_req_cached;
256 u64 hwp_cap_cached;
257 u64 last_io_update;
258 unsigned int capacity_perf;
259 unsigned int sched_flags;
260 u32 hwp_boost_min;
261 bool suspended;
262 struct delayed_work hwp_notify_work;
265 static struct cpudata **all_cpu_data;
268 * struct pstate_funcs - Per CPU model specific callbacks
269 * @get_max: Callback to get maximum non turbo effective P state
270 * @get_max_physical: Callback to get maximum non turbo physical P state
271 * @get_min: Callback to get minimum P state
272 * @get_turbo: Callback to get turbo P state
273 * @get_scaling: Callback to get frequency scaling factor
274 * @get_cpu_scaling: Get frequency scaling factor for a given cpu
275 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
276 * @get_val: Callback to convert P state to actual MSR write value
277 * @get_vid: Callback to get VID data for Atom platforms
279 * Core and Atom CPU models have different way to get P State limits. This
280 * structure is used to store those callbacks.
282 struct pstate_funcs {
283 int (*get_max)(int cpu);
284 int (*get_max_physical)(int cpu);
285 int (*get_min)(int cpu);
286 int (*get_turbo)(int cpu);
287 int (*get_scaling)(void);
288 int (*get_cpu_scaling)(int cpu);
289 int (*get_aperf_mperf_shift)(void);
290 u64 (*get_val)(struct cpudata*, int pstate);
291 void (*get_vid)(struct cpudata *);
294 static struct pstate_funcs pstate_funcs __read_mostly;
296 static bool hwp_active __ro_after_init;
297 static int hwp_mode_bdw __ro_after_init;
298 static bool per_cpu_limits __ro_after_init;
299 static bool hwp_forced __ro_after_init;
300 static bool hwp_boost __read_mostly;
301 static bool hwp_is_hybrid;
303 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
305 #define HYBRID_SCALING_FACTOR 78741
306 #define HYBRID_SCALING_FACTOR_MTL 80000
307 #define HYBRID_SCALING_FACTOR_LNL 86957
309 static int hybrid_scaling_factor = HYBRID_SCALING_FACTOR;
311 static inline int core_get_scaling(void)
313 return 100000;
316 #ifdef CONFIG_ACPI
317 static bool acpi_ppc;
318 #endif
320 static struct global_params global;
322 static DEFINE_MUTEX(intel_pstate_driver_lock);
323 static DEFINE_MUTEX(intel_pstate_limits_lock);
325 #ifdef CONFIG_ACPI
327 static bool intel_pstate_acpi_pm_profile_server(void)
329 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
330 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
331 return true;
333 return false;
336 static bool intel_pstate_get_ppc_enable_status(void)
338 if (intel_pstate_acpi_pm_profile_server())
339 return true;
341 return acpi_ppc;
344 #ifdef CONFIG_ACPI_CPPC_LIB
346 /* The work item is needed to avoid CPU hotplug locking issues */
347 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
349 sched_set_itmt_support();
352 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
354 #define CPPC_MAX_PERF U8_MAX
356 static void intel_pstate_set_itmt_prio(int cpu)
358 struct cppc_perf_caps cppc_perf;
359 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
360 int ret;
362 ret = cppc_get_perf_caps(cpu, &cppc_perf);
364 * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0].
366 * Also, on some systems with overclocking enabled, CPPC.highest_perf is
367 * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT.
368 * Fall back to MSR_HWP_CAPABILITIES then too.
370 if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF)
371 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
374 * The priorities can be set regardless of whether or not
375 * sched_set_itmt_support(true) has been called and it is valid to
376 * update them at any time after it has been called.
378 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
380 if (max_highest_perf <= min_highest_perf) {
381 if (cppc_perf.highest_perf > max_highest_perf)
382 max_highest_perf = cppc_perf.highest_perf;
384 if (cppc_perf.highest_perf < min_highest_perf)
385 min_highest_perf = cppc_perf.highest_perf;
387 if (max_highest_perf > min_highest_perf) {
389 * This code can be run during CPU online under the
390 * CPU hotplug locks, so sched_set_itmt_support()
391 * cannot be called from here. Queue up a work item
392 * to invoke it.
394 schedule_work(&sched_itmt_work);
399 static int intel_pstate_get_cppc_guaranteed(int cpu)
401 struct cppc_perf_caps cppc_perf;
402 int ret;
404 ret = cppc_get_perf_caps(cpu, &cppc_perf);
405 if (ret)
406 return ret;
408 if (cppc_perf.guaranteed_perf)
409 return cppc_perf.guaranteed_perf;
411 return cppc_perf.nominal_perf;
414 static int intel_pstate_cppc_get_scaling(int cpu)
416 struct cppc_perf_caps cppc_perf;
417 int ret;
419 ret = cppc_get_perf_caps(cpu, &cppc_perf);
422 * If the nominal frequency and the nominal performance are not
423 * zero and the ratio between them is not 100, return the hybrid
424 * scaling factor.
426 if (!ret && cppc_perf.nominal_perf && cppc_perf.nominal_freq &&
427 cppc_perf.nominal_perf * 100 != cppc_perf.nominal_freq)
428 return hybrid_scaling_factor;
430 return core_get_scaling();
433 #else /* CONFIG_ACPI_CPPC_LIB */
434 static inline void intel_pstate_set_itmt_prio(int cpu)
437 #endif /* CONFIG_ACPI_CPPC_LIB */
439 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
441 struct cpudata *cpu;
442 int ret;
443 int i;
445 if (hwp_active) {
446 intel_pstate_set_itmt_prio(policy->cpu);
447 return;
450 if (!intel_pstate_get_ppc_enable_status())
451 return;
453 cpu = all_cpu_data[policy->cpu];
455 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
456 policy->cpu);
457 if (ret)
458 return;
461 * Check if the control value in _PSS is for PERF_CTL MSR, which should
462 * guarantee that the states returned by it map to the states in our
463 * list directly.
465 if (cpu->acpi_perf_data.control_register.space_id !=
466 ACPI_ADR_SPACE_FIXED_HARDWARE)
467 goto err;
470 * If there is only one entry _PSS, simply ignore _PSS and continue as
471 * usual without taking _PSS into account
473 if (cpu->acpi_perf_data.state_count < 2)
474 goto err;
476 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
477 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
478 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
479 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
480 (u32) cpu->acpi_perf_data.states[i].core_frequency,
481 (u32) cpu->acpi_perf_data.states[i].power,
482 (u32) cpu->acpi_perf_data.states[i].control);
485 cpu->valid_pss_table = true;
486 pr_debug("_PPC limits will be enforced\n");
488 return;
490 err:
491 cpu->valid_pss_table = false;
492 acpi_processor_unregister_performance(policy->cpu);
495 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
497 struct cpudata *cpu;
499 cpu = all_cpu_data[policy->cpu];
500 if (!cpu->valid_pss_table)
501 return;
503 acpi_processor_unregister_performance(policy->cpu);
505 #else /* CONFIG_ACPI */
506 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
510 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
514 static inline bool intel_pstate_acpi_pm_profile_server(void)
516 return false;
518 #endif /* CONFIG_ACPI */
520 #ifndef CONFIG_ACPI_CPPC_LIB
521 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
523 return -ENOTSUPP;
526 static int intel_pstate_cppc_get_scaling(int cpu)
528 return core_get_scaling();
530 #endif /* CONFIG_ACPI_CPPC_LIB */
532 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq,
533 unsigned int relation)
535 if (freq == cpu->pstate.turbo_freq)
536 return cpu->pstate.turbo_pstate;
538 if (freq == cpu->pstate.max_freq)
539 return cpu->pstate.max_pstate;
541 switch (relation) {
542 case CPUFREQ_RELATION_H:
543 return freq / cpu->pstate.scaling;
544 case CPUFREQ_RELATION_C:
545 return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling);
548 return DIV_ROUND_UP(freq, cpu->pstate.scaling);
551 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq)
553 return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L);
557 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
558 * @cpu: Target CPU.
560 * On hybrid processors, HWP may expose more performance levels than there are
561 * P-states accessible through the PERF_CTL interface. If that happens, the
562 * scaling factor between HWP performance levels and CPU frequency will be less
563 * than the scaling factor between P-state values and CPU frequency.
565 * In that case, adjust the CPU parameters used in computations accordingly.
567 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
569 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
570 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
571 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
572 int scaling = cpu->pstate.scaling;
573 int freq;
575 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
576 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
577 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
578 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
579 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
580 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
582 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
583 perf_ctl_scaling);
584 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
585 perf_ctl_scaling);
587 freq = perf_ctl_max_phys * perf_ctl_scaling;
588 cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq);
590 freq = cpu->pstate.min_pstate * perf_ctl_scaling;
591 cpu->pstate.min_freq = freq;
593 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
594 * the effective range of HWP performance levels.
596 cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq);
599 static bool turbo_is_disabled(void)
601 u64 misc_en;
603 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
605 return !!(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
608 static int min_perf_pct_min(void)
610 struct cpudata *cpu = all_cpu_data[0];
611 int turbo_pstate = cpu->pstate.turbo_pstate;
613 return turbo_pstate ?
614 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
617 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
619 u64 epb;
620 int ret;
622 if (!boot_cpu_has(X86_FEATURE_EPB))
623 return -ENXIO;
625 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
626 if (ret)
627 return (s16)ret;
629 return (s16)(epb & 0x0f);
632 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
634 s16 epp;
636 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
638 * When hwp_req_data is 0, means that caller didn't read
639 * MSR_HWP_REQUEST, so need to read and get EPP.
641 if (!hwp_req_data) {
642 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
643 &hwp_req_data);
644 if (epp)
645 return epp;
647 epp = (hwp_req_data >> 24) & 0xff;
648 } else {
649 /* When there is no EPP present, HWP uses EPB settings */
650 epp = intel_pstate_get_epb(cpu_data);
653 return epp;
656 static int intel_pstate_set_epb(int cpu, s16 pref)
658 u64 epb;
659 int ret;
661 if (!boot_cpu_has(X86_FEATURE_EPB))
662 return -ENXIO;
664 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
665 if (ret)
666 return ret;
668 epb = (epb & ~0x0f) | pref;
669 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
671 return 0;
675 * EPP/EPB display strings corresponding to EPP index in the
676 * energy_perf_strings[]
677 * index String
678 *-------------------------------------
679 * 0 default
680 * 1 performance
681 * 2 balance_performance
682 * 3 balance_power
683 * 4 power
686 enum energy_perf_value_index {
687 EPP_INDEX_DEFAULT = 0,
688 EPP_INDEX_PERFORMANCE,
689 EPP_INDEX_BALANCE_PERFORMANCE,
690 EPP_INDEX_BALANCE_POWERSAVE,
691 EPP_INDEX_POWERSAVE,
694 static const char * const energy_perf_strings[] = {
695 [EPP_INDEX_DEFAULT] = "default",
696 [EPP_INDEX_PERFORMANCE] = "performance",
697 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
698 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
699 [EPP_INDEX_POWERSAVE] = "power",
700 NULL
702 static unsigned int epp_values[] = {
703 [EPP_INDEX_DEFAULT] = 0, /* Unused index */
704 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
705 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
706 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
707 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
710 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
712 s16 epp;
713 int index = -EINVAL;
715 *raw_epp = 0;
716 epp = intel_pstate_get_epp(cpu_data, 0);
717 if (epp < 0)
718 return epp;
720 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
721 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
722 return EPP_INDEX_PERFORMANCE;
723 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
724 return EPP_INDEX_BALANCE_PERFORMANCE;
725 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
726 return EPP_INDEX_BALANCE_POWERSAVE;
727 if (epp == epp_values[EPP_INDEX_POWERSAVE])
728 return EPP_INDEX_POWERSAVE;
729 *raw_epp = epp;
730 return 0;
731 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
733 * Range:
734 * 0x00-0x03 : Performance
735 * 0x04-0x07 : Balance performance
736 * 0x08-0x0B : Balance power
737 * 0x0C-0x0F : Power
738 * The EPB is a 4 bit value, but our ranges restrict the
739 * value which can be set. Here only using top two bits
740 * effectively.
742 index = (epp >> 2) + 1;
745 return index;
748 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
750 int ret;
753 * Use the cached HWP Request MSR value, because in the active mode the
754 * register itself may be updated by intel_pstate_hwp_boost_up() or
755 * intel_pstate_hwp_boost_down() at any time.
757 u64 value = READ_ONCE(cpu->hwp_req_cached);
759 value &= ~GENMASK_ULL(31, 24);
760 value |= (u64)epp << 24;
762 * The only other updater of hwp_req_cached in the active mode,
763 * intel_pstate_hwp_set(), is called under the same lock as this
764 * function, so it cannot run in parallel with the update below.
766 WRITE_ONCE(cpu->hwp_req_cached, value);
767 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
768 if (!ret)
769 cpu->epp_cached = epp;
771 return ret;
774 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
775 int pref_index, bool use_raw,
776 u32 raw_epp)
778 int epp = -EINVAL;
779 int ret;
781 if (!pref_index)
782 epp = cpu_data->epp_default;
784 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
785 if (use_raw)
786 epp = raw_epp;
787 else if (epp == -EINVAL)
788 epp = epp_values[pref_index];
791 * To avoid confusion, refuse to set EPP to any values different
792 * from 0 (performance) if the current policy is "performance",
793 * because those values would be overridden.
795 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
796 return -EBUSY;
798 ret = intel_pstate_set_epp(cpu_data, epp);
799 } else {
800 if (epp == -EINVAL)
801 epp = (pref_index - 1) << 2;
802 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
805 return ret;
808 static ssize_t show_energy_performance_available_preferences(
809 struct cpufreq_policy *policy, char *buf)
811 int i = 0;
812 int ret = 0;
814 while (energy_perf_strings[i] != NULL)
815 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
817 ret += sprintf(&buf[ret], "\n");
819 return ret;
822 cpufreq_freq_attr_ro(energy_performance_available_preferences);
824 static struct cpufreq_driver intel_pstate;
826 static ssize_t store_energy_performance_preference(
827 struct cpufreq_policy *policy, const char *buf, size_t count)
829 struct cpudata *cpu = all_cpu_data[policy->cpu];
830 char str_preference[21];
831 bool raw = false;
832 ssize_t ret;
833 u32 epp = 0;
835 ret = sscanf(buf, "%20s", str_preference);
836 if (ret != 1)
837 return -EINVAL;
839 ret = match_string(energy_perf_strings, -1, str_preference);
840 if (ret < 0) {
841 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
842 return ret;
844 ret = kstrtouint(buf, 10, &epp);
845 if (ret)
846 return ret;
848 if (epp > 255)
849 return -EINVAL;
851 raw = true;
855 * This function runs with the policy R/W semaphore held, which
856 * guarantees that the driver pointer will not change while it is
857 * running.
859 if (!intel_pstate_driver)
860 return -EAGAIN;
862 mutex_lock(&intel_pstate_limits_lock);
864 if (intel_pstate_driver == &intel_pstate) {
865 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
866 } else {
868 * In the passive mode the governor needs to be stopped on the
869 * target CPU before the EPP update and restarted after it,
870 * which is super-heavy-weight, so make sure it is worth doing
871 * upfront.
873 if (!raw)
874 epp = ret ? epp_values[ret] : cpu->epp_default;
876 if (cpu->epp_cached != epp) {
877 int err;
879 cpufreq_stop_governor(policy);
880 ret = intel_pstate_set_epp(cpu, epp);
881 err = cpufreq_start_governor(policy);
882 if (!ret)
883 ret = err;
884 } else {
885 ret = 0;
889 mutex_unlock(&intel_pstate_limits_lock);
891 return ret ?: count;
894 static ssize_t show_energy_performance_preference(
895 struct cpufreq_policy *policy, char *buf)
897 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
898 int preference, raw_epp;
900 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
901 if (preference < 0)
902 return preference;
904 if (raw_epp)
905 return sprintf(buf, "%d\n", raw_epp);
906 else
907 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
910 cpufreq_freq_attr_rw(energy_performance_preference);
912 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
914 struct cpudata *cpu = all_cpu_data[policy->cpu];
915 int ratio, freq;
917 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
918 if (ratio <= 0) {
919 u64 cap;
921 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
922 ratio = HWP_GUARANTEED_PERF(cap);
925 freq = ratio * cpu->pstate.scaling;
926 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
927 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
929 return sprintf(buf, "%d\n", freq);
932 cpufreq_freq_attr_ro(base_frequency);
934 static struct freq_attr *hwp_cpufreq_attrs[] = {
935 &energy_performance_preference,
936 &energy_performance_available_preferences,
937 &base_frequency,
938 NULL,
941 static struct cpudata *hybrid_max_perf_cpu __read_mostly;
943 * Protects hybrid_max_perf_cpu, the capacity_perf fields in struct cpudata,
944 * and the x86 arch scale-invariance information from concurrent updates.
946 static DEFINE_MUTEX(hybrid_capacity_lock);
948 static void hybrid_set_cpu_capacity(struct cpudata *cpu)
950 arch_set_cpu_capacity(cpu->cpu, cpu->capacity_perf,
951 hybrid_max_perf_cpu->capacity_perf,
952 cpu->capacity_perf,
953 cpu->pstate.max_pstate_physical);
955 pr_debug("CPU%d: perf = %u, max. perf = %u, base perf = %d\n", cpu->cpu,
956 cpu->capacity_perf, hybrid_max_perf_cpu->capacity_perf,
957 cpu->pstate.max_pstate_physical);
960 static void hybrid_clear_cpu_capacity(unsigned int cpunum)
962 arch_set_cpu_capacity(cpunum, 1, 1, 1, 1);
965 static void hybrid_get_capacity_perf(struct cpudata *cpu)
967 if (READ_ONCE(global.no_turbo)) {
968 cpu->capacity_perf = cpu->pstate.max_pstate_physical;
969 return;
972 cpu->capacity_perf = HWP_HIGHEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
975 static void hybrid_set_capacity_of_cpus(void)
977 int cpunum;
979 for_each_online_cpu(cpunum) {
980 struct cpudata *cpu = all_cpu_data[cpunum];
982 if (cpu)
983 hybrid_set_cpu_capacity(cpu);
987 static void hybrid_update_cpu_capacity_scaling(void)
989 struct cpudata *max_perf_cpu = NULL;
990 unsigned int max_cap_perf = 0;
991 int cpunum;
993 for_each_online_cpu(cpunum) {
994 struct cpudata *cpu = all_cpu_data[cpunum];
996 if (!cpu)
997 continue;
1000 * During initialization, CPU performance at full capacity needs
1001 * to be determined.
1003 if (!hybrid_max_perf_cpu)
1004 hybrid_get_capacity_perf(cpu);
1007 * If hybrid_max_perf_cpu is not NULL at this point, it is
1008 * being replaced, so don't take it into account when looking
1009 * for the new one.
1011 if (cpu == hybrid_max_perf_cpu)
1012 continue;
1014 if (cpu->capacity_perf > max_cap_perf) {
1015 max_cap_perf = cpu->capacity_perf;
1016 max_perf_cpu = cpu;
1020 if (max_perf_cpu) {
1021 hybrid_max_perf_cpu = max_perf_cpu;
1022 hybrid_set_capacity_of_cpus();
1023 } else {
1024 pr_info("Found no CPUs with nonzero maximum performance\n");
1025 /* Revert to the flat CPU capacity structure. */
1026 for_each_online_cpu(cpunum)
1027 hybrid_clear_cpu_capacity(cpunum);
1031 static void __hybrid_init_cpu_capacity_scaling(void)
1033 hybrid_max_perf_cpu = NULL;
1034 hybrid_update_cpu_capacity_scaling();
1037 static void hybrid_init_cpu_capacity_scaling(void)
1039 bool disable_itmt = false;
1041 mutex_lock(&hybrid_capacity_lock);
1044 * If hybrid_max_perf_cpu is set at this point, the hybrid CPU capacity
1045 * scaling has been enabled already and the driver is just changing the
1046 * operation mode.
1048 if (hybrid_max_perf_cpu) {
1049 __hybrid_init_cpu_capacity_scaling();
1050 goto unlock;
1054 * On hybrid systems, use asym capacity instead of ITMT, but because
1055 * the capacity of SMT threads is not deterministic even approximately,
1056 * do not do that when SMT is in use.
1058 if (hwp_is_hybrid && !sched_smt_active() && arch_enable_hybrid_capacity_scale()) {
1059 __hybrid_init_cpu_capacity_scaling();
1060 disable_itmt = true;
1063 unlock:
1064 mutex_unlock(&hybrid_capacity_lock);
1067 * Disabling ITMT causes sched domains to be rebuilt to disable asym
1068 * packing and enable asym capacity.
1070 if (disable_itmt)
1071 sched_clear_itmt_support();
1074 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
1076 u64 cap;
1078 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
1079 WRITE_ONCE(cpu->hwp_cap_cached, cap);
1080 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
1081 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
1084 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
1086 int scaling = cpu->pstate.scaling;
1088 __intel_pstate_get_hwp_cap(cpu);
1090 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
1091 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
1092 if (scaling != cpu->pstate.perf_ctl_scaling) {
1093 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
1095 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
1096 perf_ctl_scaling);
1097 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
1098 perf_ctl_scaling);
1102 static void hybrid_update_capacity(struct cpudata *cpu)
1104 unsigned int max_cap_perf;
1106 mutex_lock(&hybrid_capacity_lock);
1108 if (!hybrid_max_perf_cpu)
1109 goto unlock;
1112 * The maximum performance of the CPU may have changed, but assume
1113 * that the performance of the other CPUs has not changed.
1115 max_cap_perf = hybrid_max_perf_cpu->capacity_perf;
1117 intel_pstate_get_hwp_cap(cpu);
1119 hybrid_get_capacity_perf(cpu);
1120 /* Should hybrid_max_perf_cpu be replaced by this CPU? */
1121 if (cpu->capacity_perf > max_cap_perf) {
1122 hybrid_max_perf_cpu = cpu;
1123 hybrid_set_capacity_of_cpus();
1124 goto unlock;
1127 /* If this CPU is hybrid_max_perf_cpu, should it be replaced? */
1128 if (cpu == hybrid_max_perf_cpu && cpu->capacity_perf < max_cap_perf) {
1129 hybrid_update_cpu_capacity_scaling();
1130 goto unlock;
1133 hybrid_set_cpu_capacity(cpu);
1135 unlock:
1136 mutex_unlock(&hybrid_capacity_lock);
1139 static void intel_pstate_hwp_set(unsigned int cpu)
1141 struct cpudata *cpu_data = all_cpu_data[cpu];
1142 int max, min;
1143 u64 value;
1144 s16 epp;
1146 max = cpu_data->max_perf_ratio;
1147 min = cpu_data->min_perf_ratio;
1149 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
1150 min = max;
1152 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
1154 value &= ~HWP_MIN_PERF(~0L);
1155 value |= HWP_MIN_PERF(min);
1157 value &= ~HWP_MAX_PERF(~0L);
1158 value |= HWP_MAX_PERF(max);
1160 if (cpu_data->epp_policy == cpu_data->policy)
1161 goto skip_epp;
1163 cpu_data->epp_policy = cpu_data->policy;
1165 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
1166 epp = intel_pstate_get_epp(cpu_data, value);
1167 cpu_data->epp_powersave = epp;
1168 /* If EPP read was failed, then don't try to write */
1169 if (epp < 0)
1170 goto skip_epp;
1172 epp = 0;
1173 } else {
1174 /* skip setting EPP, when saved value is invalid */
1175 if (cpu_data->epp_powersave < 0)
1176 goto skip_epp;
1179 * No need to restore EPP when it is not zero. This
1180 * means:
1181 * - Policy is not changed
1182 * - user has manually changed
1183 * - Error reading EPB
1185 epp = intel_pstate_get_epp(cpu_data, value);
1186 if (epp)
1187 goto skip_epp;
1189 epp = cpu_data->epp_powersave;
1191 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1192 value &= ~GENMASK_ULL(31, 24);
1193 value |= (u64)epp << 24;
1194 } else {
1195 intel_pstate_set_epb(cpu, epp);
1197 skip_epp:
1198 WRITE_ONCE(cpu_data->hwp_req_cached, value);
1199 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1202 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1204 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1206 u64 value = READ_ONCE(cpu->hwp_req_cached);
1207 int min_perf;
1209 intel_pstate_disable_hwp_interrupt(cpu);
1211 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1213 * In case the EPP has been set to "performance" by the
1214 * active mode "performance" scaling algorithm, replace that
1215 * temporary value with the cached EPP one.
1217 value &= ~GENMASK_ULL(31, 24);
1218 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1220 * However, make sure that EPP will be set to "performance" when
1221 * the CPU is brought back online again and the "performance"
1222 * scaling algorithm is still in effect.
1224 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1228 * Clear the desired perf field in the cached HWP request value to
1229 * prevent nonzero desired values from being leaked into the active
1230 * mode.
1232 value &= ~HWP_DESIRED_PERF(~0L);
1233 WRITE_ONCE(cpu->hwp_req_cached, value);
1235 value &= ~GENMASK_ULL(31, 0);
1236 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1238 /* Set hwp_max = hwp_min */
1239 value |= HWP_MAX_PERF(min_perf);
1240 value |= HWP_MIN_PERF(min_perf);
1242 /* Set EPP to min */
1243 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1244 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1246 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1248 mutex_lock(&hybrid_capacity_lock);
1250 if (!hybrid_max_perf_cpu) {
1251 mutex_unlock(&hybrid_capacity_lock);
1253 return;
1256 if (hybrid_max_perf_cpu == cpu)
1257 hybrid_update_cpu_capacity_scaling();
1259 mutex_unlock(&hybrid_capacity_lock);
1261 /* Reset the capacity of the CPU going offline to the initial value. */
1262 hybrid_clear_cpu_capacity(cpu->cpu);
1265 #define POWER_CTL_EE_ENABLE 1
1266 #define POWER_CTL_EE_DISABLE 2
1268 static int power_ctl_ee_state;
1270 static void set_power_ctl_ee_state(bool input)
1272 u64 power_ctl;
1274 mutex_lock(&intel_pstate_driver_lock);
1275 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1276 if (input) {
1277 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1278 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1279 } else {
1280 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1281 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1283 wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1284 mutex_unlock(&intel_pstate_driver_lock);
1287 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1289 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1291 intel_pstate_hwp_enable(cpu);
1292 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1295 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1297 struct cpudata *cpu = all_cpu_data[policy->cpu];
1299 pr_debug("CPU %d suspending\n", cpu->cpu);
1301 cpu->suspended = true;
1303 /* disable HWP interrupt and cancel any pending work */
1304 intel_pstate_disable_hwp_interrupt(cpu);
1306 return 0;
1309 static int intel_pstate_resume(struct cpufreq_policy *policy)
1311 struct cpudata *cpu = all_cpu_data[policy->cpu];
1313 pr_debug("CPU %d resuming\n", cpu->cpu);
1315 /* Only restore if the system default is changed */
1316 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1317 set_power_ctl_ee_state(true);
1318 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1319 set_power_ctl_ee_state(false);
1321 if (cpu->suspended && hwp_active) {
1322 mutex_lock(&intel_pstate_limits_lock);
1324 /* Re-enable HWP, because "online" has not done that. */
1325 intel_pstate_hwp_reenable(cpu);
1327 mutex_unlock(&intel_pstate_limits_lock);
1330 cpu->suspended = false;
1332 return 0;
1335 static void intel_pstate_update_policies(void)
1337 int cpu;
1339 for_each_possible_cpu(cpu)
1340 cpufreq_update_policy(cpu);
1343 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1344 struct cpufreq_policy *policy)
1346 if (hwp_active)
1347 intel_pstate_get_hwp_cap(cpudata);
1349 policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
1350 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1352 refresh_frequency_limits(policy);
1355 static void intel_pstate_update_limits(unsigned int cpu)
1357 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1358 struct cpudata *cpudata;
1360 if (!policy)
1361 return;
1363 cpudata = all_cpu_data[cpu];
1365 __intel_pstate_update_max_freq(cpudata, policy);
1367 /* Prevent the driver from being unregistered now. */
1368 mutex_lock(&intel_pstate_driver_lock);
1370 cpufreq_cpu_release(policy);
1372 hybrid_update_capacity(cpudata);
1374 mutex_unlock(&intel_pstate_driver_lock);
1377 static void intel_pstate_update_limits_for_all(void)
1379 int cpu;
1381 for_each_possible_cpu(cpu) {
1382 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1384 if (!policy)
1385 continue;
1387 __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1389 cpufreq_cpu_release(policy);
1392 mutex_lock(&hybrid_capacity_lock);
1394 if (hybrid_max_perf_cpu)
1395 __hybrid_init_cpu_capacity_scaling();
1397 mutex_unlock(&hybrid_capacity_lock);
1400 /************************** sysfs begin ************************/
1401 #define show_one(file_name, object) \
1402 static ssize_t show_##file_name \
1403 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
1405 return sprintf(buf, "%u\n", global.object); \
1408 static ssize_t intel_pstate_show_status(char *buf);
1409 static int intel_pstate_update_status(const char *buf, size_t size);
1411 static ssize_t show_status(struct kobject *kobj,
1412 struct kobj_attribute *attr, char *buf)
1414 ssize_t ret;
1416 mutex_lock(&intel_pstate_driver_lock);
1417 ret = intel_pstate_show_status(buf);
1418 mutex_unlock(&intel_pstate_driver_lock);
1420 return ret;
1423 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1424 const char *buf, size_t count)
1426 char *p = memchr(buf, '\n', count);
1427 int ret;
1429 mutex_lock(&intel_pstate_driver_lock);
1430 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1431 mutex_unlock(&intel_pstate_driver_lock);
1433 return ret < 0 ? ret : count;
1436 static ssize_t show_turbo_pct(struct kobject *kobj,
1437 struct kobj_attribute *attr, char *buf)
1439 struct cpudata *cpu;
1440 int total, no_turbo, turbo_pct;
1441 uint32_t turbo_fp;
1443 mutex_lock(&intel_pstate_driver_lock);
1445 if (!intel_pstate_driver) {
1446 mutex_unlock(&intel_pstate_driver_lock);
1447 return -EAGAIN;
1450 cpu = all_cpu_data[0];
1452 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1453 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1454 turbo_fp = div_fp(no_turbo, total);
1455 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1457 mutex_unlock(&intel_pstate_driver_lock);
1459 return sprintf(buf, "%u\n", turbo_pct);
1462 static ssize_t show_num_pstates(struct kobject *kobj,
1463 struct kobj_attribute *attr, char *buf)
1465 struct cpudata *cpu;
1466 int total;
1468 mutex_lock(&intel_pstate_driver_lock);
1470 if (!intel_pstate_driver) {
1471 mutex_unlock(&intel_pstate_driver_lock);
1472 return -EAGAIN;
1475 cpu = all_cpu_data[0];
1476 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1478 mutex_unlock(&intel_pstate_driver_lock);
1480 return sprintf(buf, "%u\n", total);
1483 static ssize_t show_no_turbo(struct kobject *kobj,
1484 struct kobj_attribute *attr, char *buf)
1486 ssize_t ret;
1488 mutex_lock(&intel_pstate_driver_lock);
1490 if (!intel_pstate_driver) {
1491 mutex_unlock(&intel_pstate_driver_lock);
1492 return -EAGAIN;
1495 ret = sprintf(buf, "%u\n", global.no_turbo);
1497 mutex_unlock(&intel_pstate_driver_lock);
1499 return ret;
1502 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1503 const char *buf, size_t count)
1505 unsigned int input;
1506 bool no_turbo;
1508 if (sscanf(buf, "%u", &input) != 1)
1509 return -EINVAL;
1511 mutex_lock(&intel_pstate_driver_lock);
1513 if (!intel_pstate_driver) {
1514 count = -EAGAIN;
1515 goto unlock_driver;
1518 no_turbo = !!clamp_t(int, input, 0, 1);
1520 WRITE_ONCE(global.turbo_disabled, turbo_is_disabled());
1521 if (global.turbo_disabled && !no_turbo) {
1522 pr_notice("Turbo disabled by BIOS or unavailable on processor\n");
1523 count = -EPERM;
1524 if (global.no_turbo)
1525 goto unlock_driver;
1526 else
1527 no_turbo = 1;
1530 if (no_turbo == global.no_turbo) {
1531 goto unlock_driver;
1534 WRITE_ONCE(global.no_turbo, no_turbo);
1536 mutex_lock(&intel_pstate_limits_lock);
1538 if (no_turbo) {
1539 struct cpudata *cpu = all_cpu_data[0];
1540 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1542 /* Squash the global minimum into the permitted range. */
1543 if (global.min_perf_pct > pct)
1544 global.min_perf_pct = pct;
1547 mutex_unlock(&intel_pstate_limits_lock);
1549 intel_pstate_update_limits_for_all();
1550 arch_set_max_freq_ratio(no_turbo);
1552 unlock_driver:
1553 mutex_unlock(&intel_pstate_driver_lock);
1555 return count;
1558 static void update_qos_request(enum freq_qos_req_type type)
1560 struct freq_qos_request *req;
1561 struct cpufreq_policy *policy;
1562 int i;
1564 for_each_possible_cpu(i) {
1565 struct cpudata *cpu = all_cpu_data[i];
1566 unsigned int freq, perf_pct;
1568 policy = cpufreq_cpu_get(i);
1569 if (!policy)
1570 continue;
1572 req = policy->driver_data;
1573 cpufreq_cpu_put(policy);
1575 if (!req)
1576 continue;
1578 if (hwp_active)
1579 intel_pstate_get_hwp_cap(cpu);
1581 if (type == FREQ_QOS_MIN) {
1582 perf_pct = global.min_perf_pct;
1583 } else {
1584 req++;
1585 perf_pct = global.max_perf_pct;
1588 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1590 if (freq_qos_update_request(req, freq) < 0)
1591 pr_warn("Failed to update freq constraint: CPU%d\n", i);
1595 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1596 const char *buf, size_t count)
1598 unsigned int input;
1599 int ret;
1601 ret = sscanf(buf, "%u", &input);
1602 if (ret != 1)
1603 return -EINVAL;
1605 mutex_lock(&intel_pstate_driver_lock);
1607 if (!intel_pstate_driver) {
1608 mutex_unlock(&intel_pstate_driver_lock);
1609 return -EAGAIN;
1612 mutex_lock(&intel_pstate_limits_lock);
1614 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1616 mutex_unlock(&intel_pstate_limits_lock);
1618 if (intel_pstate_driver == &intel_pstate)
1619 intel_pstate_update_policies();
1620 else
1621 update_qos_request(FREQ_QOS_MAX);
1623 mutex_unlock(&intel_pstate_driver_lock);
1625 return count;
1628 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1629 const char *buf, size_t count)
1631 unsigned int input;
1632 int ret;
1634 ret = sscanf(buf, "%u", &input);
1635 if (ret != 1)
1636 return -EINVAL;
1638 mutex_lock(&intel_pstate_driver_lock);
1640 if (!intel_pstate_driver) {
1641 mutex_unlock(&intel_pstate_driver_lock);
1642 return -EAGAIN;
1645 mutex_lock(&intel_pstate_limits_lock);
1647 global.min_perf_pct = clamp_t(int, input,
1648 min_perf_pct_min(), global.max_perf_pct);
1650 mutex_unlock(&intel_pstate_limits_lock);
1652 if (intel_pstate_driver == &intel_pstate)
1653 intel_pstate_update_policies();
1654 else
1655 update_qos_request(FREQ_QOS_MIN);
1657 mutex_unlock(&intel_pstate_driver_lock);
1659 return count;
1662 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1663 struct kobj_attribute *attr, char *buf)
1665 return sprintf(buf, "%u\n", hwp_boost);
1668 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1669 struct kobj_attribute *b,
1670 const char *buf, size_t count)
1672 unsigned int input;
1673 int ret;
1675 ret = kstrtouint(buf, 10, &input);
1676 if (ret)
1677 return ret;
1679 mutex_lock(&intel_pstate_driver_lock);
1680 hwp_boost = !!input;
1681 intel_pstate_update_policies();
1682 mutex_unlock(&intel_pstate_driver_lock);
1684 return count;
1687 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1688 char *buf)
1690 u64 power_ctl;
1691 int enable;
1693 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1694 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1695 return sprintf(buf, "%d\n", !enable);
1698 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1699 const char *buf, size_t count)
1701 bool input;
1702 int ret;
1704 ret = kstrtobool(buf, &input);
1705 if (ret)
1706 return ret;
1708 set_power_ctl_ee_state(input);
1710 return count;
1713 show_one(max_perf_pct, max_perf_pct);
1714 show_one(min_perf_pct, min_perf_pct);
1716 define_one_global_rw(status);
1717 define_one_global_rw(no_turbo);
1718 define_one_global_rw(max_perf_pct);
1719 define_one_global_rw(min_perf_pct);
1720 define_one_global_ro(turbo_pct);
1721 define_one_global_ro(num_pstates);
1722 define_one_global_rw(hwp_dynamic_boost);
1723 define_one_global_rw(energy_efficiency);
1725 static struct attribute *intel_pstate_attributes[] = {
1726 &status.attr,
1727 &no_turbo.attr,
1728 NULL
1731 static const struct attribute_group intel_pstate_attr_group = {
1732 .attrs = intel_pstate_attributes,
1735 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1737 static struct kobject *intel_pstate_kobject;
1739 static void __init intel_pstate_sysfs_expose_params(void)
1741 struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1742 int rc;
1744 if (dev_root) {
1745 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1746 put_device(dev_root);
1748 if (WARN_ON(!intel_pstate_kobject))
1749 return;
1751 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1752 if (WARN_ON(rc))
1753 return;
1755 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1756 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1757 WARN_ON(rc);
1759 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1760 WARN_ON(rc);
1764 * If per cpu limits are enforced there are no global limits, so
1765 * return without creating max/min_perf_pct attributes
1767 if (per_cpu_limits)
1768 return;
1770 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1771 WARN_ON(rc);
1773 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1774 WARN_ON(rc);
1776 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1777 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1778 WARN_ON(rc);
1782 static void __init intel_pstate_sysfs_remove(void)
1784 if (!intel_pstate_kobject)
1785 return;
1787 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1789 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1790 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1791 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1794 if (!per_cpu_limits) {
1795 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1796 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1798 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1799 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1802 kobject_put(intel_pstate_kobject);
1805 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1807 int rc;
1809 if (!hwp_active)
1810 return;
1812 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1813 WARN_ON_ONCE(rc);
1816 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1818 if (!hwp_active)
1819 return;
1821 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1824 /************************** sysfs end ************************/
1826 static void intel_pstate_notify_work(struct work_struct *work)
1828 struct cpudata *cpudata =
1829 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1830 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1832 if (policy) {
1833 __intel_pstate_update_max_freq(cpudata, policy);
1835 cpufreq_cpu_release(policy);
1838 * The driver will not be unregistered while this function is
1839 * running, so update the capacity without acquiring the driver
1840 * lock.
1842 hybrid_update_capacity(cpudata);
1845 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1848 static DEFINE_RAW_SPINLOCK(hwp_notify_lock);
1849 static cpumask_t hwp_intr_enable_mask;
1851 #define HWP_GUARANTEED_PERF_CHANGE_STATUS BIT(0)
1852 #define HWP_HIGHEST_PERF_CHANGE_STATUS BIT(3)
1854 void notify_hwp_interrupt(void)
1856 unsigned int this_cpu = smp_processor_id();
1857 u64 value, status_mask;
1858 unsigned long flags;
1860 if (!hwp_active || !cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1861 return;
1863 status_mask = HWP_GUARANTEED_PERF_CHANGE_STATUS;
1864 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1865 status_mask |= HWP_HIGHEST_PERF_CHANGE_STATUS;
1867 rdmsrl_safe(MSR_HWP_STATUS, &value);
1868 if (!(value & status_mask))
1869 return;
1871 raw_spin_lock_irqsave(&hwp_notify_lock, flags);
1873 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1874 goto ack_intr;
1876 schedule_delayed_work(&all_cpu_data[this_cpu]->hwp_notify_work,
1877 msecs_to_jiffies(10));
1879 raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1881 return;
1883 ack_intr:
1884 wrmsrl_safe(MSR_HWP_STATUS, 0);
1885 raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1888 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1890 bool cancel_work;
1892 if (!cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1893 return;
1895 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1896 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1898 raw_spin_lock_irq(&hwp_notify_lock);
1899 cancel_work = cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1900 raw_spin_unlock_irq(&hwp_notify_lock);
1902 if (cancel_work)
1903 cancel_delayed_work_sync(&cpudata->hwp_notify_work);
1906 #define HWP_GUARANTEED_PERF_CHANGE_REQ BIT(0)
1907 #define HWP_HIGHEST_PERF_CHANGE_REQ BIT(2)
1909 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1911 /* Enable HWP notification interrupt for performance change */
1912 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1913 u64 interrupt_mask = HWP_GUARANTEED_PERF_CHANGE_REQ;
1915 raw_spin_lock_irq(&hwp_notify_lock);
1916 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1917 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1918 raw_spin_unlock_irq(&hwp_notify_lock);
1920 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1921 interrupt_mask |= HWP_HIGHEST_PERF_CHANGE_REQ;
1923 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1924 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, interrupt_mask);
1925 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1929 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1931 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1934 * If the EPP is set by firmware, which means that firmware enabled HWP
1935 * - Is equal or less than 0x80 (default balance_perf EPP)
1936 * - But less performance oriented than performance EPP
1937 * then use this as new balance_perf EPP.
1939 if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1940 cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1941 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1942 return;
1946 * If this CPU gen doesn't call for change in balance_perf
1947 * EPP return.
1949 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1950 return;
1953 * Use hard coded value per gen to update the balance_perf
1954 * and default EPP.
1956 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1957 intel_pstate_set_epp(cpudata, cpudata->epp_default);
1960 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1962 /* First disable HWP notification interrupt till we activate again */
1963 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1964 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1966 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1968 intel_pstate_enable_hwp_interrupt(cpudata);
1970 if (cpudata->epp_default >= 0)
1971 return;
1973 intel_pstate_update_epp_defaults(cpudata);
1976 static int atom_get_min_pstate(int not_used)
1978 u64 value;
1980 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1981 return (value >> 8) & 0x7F;
1984 static int atom_get_max_pstate(int not_used)
1986 u64 value;
1988 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1989 return (value >> 16) & 0x7F;
1992 static int atom_get_turbo_pstate(int not_used)
1994 u64 value;
1996 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
1997 return value & 0x7F;
2000 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
2002 u64 val;
2003 int32_t vid_fp;
2004 u32 vid;
2006 val = (u64)pstate << 8;
2007 if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2008 val |= (u64)1 << 32;
2010 vid_fp = cpudata->vid.min + mul_fp(
2011 int_tofp(pstate - cpudata->pstate.min_pstate),
2012 cpudata->vid.ratio);
2014 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
2015 vid = ceiling_fp(vid_fp);
2017 if (pstate > cpudata->pstate.max_pstate)
2018 vid = cpudata->vid.turbo;
2020 return val | vid;
2023 static int silvermont_get_scaling(void)
2025 u64 value;
2026 int i;
2027 /* Defined in Table 35-6 from SDM (Sept 2015) */
2028 static int silvermont_freq_table[] = {
2029 83300, 100000, 133300, 116700, 80000};
2031 rdmsrl(MSR_FSB_FREQ, value);
2032 i = value & 0x7;
2033 WARN_ON(i > 4);
2035 return silvermont_freq_table[i];
2038 static int airmont_get_scaling(void)
2040 u64 value;
2041 int i;
2042 /* Defined in Table 35-10 from SDM (Sept 2015) */
2043 static int airmont_freq_table[] = {
2044 83300, 100000, 133300, 116700, 80000,
2045 93300, 90000, 88900, 87500};
2047 rdmsrl(MSR_FSB_FREQ, value);
2048 i = value & 0xF;
2049 WARN_ON(i > 8);
2051 return airmont_freq_table[i];
2054 static void atom_get_vid(struct cpudata *cpudata)
2056 u64 value;
2058 rdmsrl(MSR_ATOM_CORE_VIDS, value);
2059 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
2060 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
2061 cpudata->vid.ratio = div_fp(
2062 cpudata->vid.max - cpudata->vid.min,
2063 int_tofp(cpudata->pstate.max_pstate -
2064 cpudata->pstate.min_pstate));
2066 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
2067 cpudata->vid.turbo = value & 0x7f;
2070 static int core_get_min_pstate(int cpu)
2072 u64 value;
2074 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2075 return (value >> 40) & 0xFF;
2078 static int core_get_max_pstate_physical(int cpu)
2080 u64 value;
2082 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2083 return (value >> 8) & 0xFF;
2086 static int core_get_tdp_ratio(int cpu, u64 plat_info)
2088 /* Check how many TDP levels present */
2089 if (plat_info & 0x600000000) {
2090 u64 tdp_ctrl;
2091 u64 tdp_ratio;
2092 int tdp_msr;
2093 int err;
2095 /* Get the TDP level (0, 1, 2) to get ratios */
2096 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
2097 if (err)
2098 return err;
2100 /* TDP MSR are continuous starting at 0x648 */
2101 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
2102 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
2103 if (err)
2104 return err;
2106 /* For level 1 and 2, bits[23:16] contain the ratio */
2107 if (tdp_ctrl & 0x03)
2108 tdp_ratio >>= 16;
2110 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
2111 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
2113 return (int)tdp_ratio;
2116 return -ENXIO;
2119 static int core_get_max_pstate(int cpu)
2121 u64 tar;
2122 u64 plat_info;
2123 int max_pstate;
2124 int tdp_ratio;
2125 int err;
2127 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
2128 max_pstate = (plat_info >> 8) & 0xFF;
2130 tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
2131 if (tdp_ratio <= 0)
2132 return max_pstate;
2134 if (hwp_active) {
2135 /* Turbo activation ratio is not used on HWP platforms */
2136 return tdp_ratio;
2139 err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
2140 if (!err) {
2141 int tar_levels;
2143 /* Do some sanity checking for safety */
2144 tar_levels = tar & 0xff;
2145 if (tdp_ratio - 1 == tar_levels) {
2146 max_pstate = tar_levels;
2147 pr_debug("max_pstate=TAC %x\n", max_pstate);
2151 return max_pstate;
2154 static int core_get_turbo_pstate(int cpu)
2156 u64 value;
2157 int nont, ret;
2159 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2160 nont = core_get_max_pstate(cpu);
2161 ret = (value) & 255;
2162 if (ret <= nont)
2163 ret = nont;
2164 return ret;
2167 static u64 core_get_val(struct cpudata *cpudata, int pstate)
2169 u64 val;
2171 val = (u64)pstate << 8;
2172 if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2173 val |= (u64)1 << 32;
2175 return val;
2178 static int knl_get_aperf_mperf_shift(void)
2180 return 10;
2183 static int knl_get_turbo_pstate(int cpu)
2185 u64 value;
2186 int nont, ret;
2188 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2189 nont = core_get_max_pstate(cpu);
2190 ret = (((value) >> 8) & 0xFF);
2191 if (ret <= nont)
2192 ret = nont;
2193 return ret;
2196 static void hybrid_get_type(void *data)
2198 u8 *cpu_type = data;
2200 *cpu_type = get_this_hybrid_cpu_type();
2203 static int hwp_get_cpu_scaling(int cpu)
2205 u8 cpu_type = 0;
2207 smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
2208 /* P-cores have a smaller perf level-to-freqency scaling factor. */
2209 if (cpu_type == 0x40)
2210 return hybrid_scaling_factor;
2212 /* Use default core scaling for E-cores */
2213 if (cpu_type == 0x20)
2214 return core_get_scaling();
2217 * If reached here, this system is either non-hybrid (like Tiger
2218 * Lake) or hybrid-capable (like Alder Lake or Raptor Lake) with
2219 * no E cores (in which case CPUID for hybrid support is 0).
2221 * The CPPC nominal_frequency field is 0 for non-hybrid systems,
2222 * so the default core scaling will be used for them.
2224 return intel_pstate_cppc_get_scaling(cpu);
2227 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
2229 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
2230 cpu->pstate.current_pstate = pstate;
2232 * Generally, there is no guarantee that this code will always run on
2233 * the CPU being updated, so force the register update to run on the
2234 * right CPU.
2236 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2237 pstate_funcs.get_val(cpu, pstate));
2240 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2242 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2245 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2247 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2248 int perf_ctl_scaling = pstate_funcs.get_scaling();
2250 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2251 cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2252 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2254 if (hwp_active && !hwp_mode_bdw) {
2255 __intel_pstate_get_hwp_cap(cpu);
2257 if (pstate_funcs.get_cpu_scaling) {
2258 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2259 if (cpu->pstate.scaling != perf_ctl_scaling) {
2260 intel_pstate_hybrid_hwp_adjust(cpu);
2261 hwp_is_hybrid = true;
2263 } else {
2264 cpu->pstate.scaling = perf_ctl_scaling;
2266 } else {
2267 cpu->pstate.scaling = perf_ctl_scaling;
2268 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2269 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2272 if (cpu->pstate.scaling == perf_ctl_scaling) {
2273 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2274 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2275 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2278 if (pstate_funcs.get_aperf_mperf_shift)
2279 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2281 if (pstate_funcs.get_vid)
2282 pstate_funcs.get_vid(cpu);
2284 intel_pstate_set_min_pstate(cpu);
2288 * Long hold time will keep high perf limits for long time,
2289 * which negatively impacts perf/watt for some workloads,
2290 * like specpower. 3ms is based on experiements on some
2291 * workoads.
2293 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2295 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2297 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2298 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2299 u32 max_limit = (hwp_req & 0xff00) >> 8;
2300 u32 min_limit = (hwp_req & 0xff);
2301 u32 boost_level1;
2304 * Cases to consider (User changes via sysfs or boot time):
2305 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2306 * No boost, return.
2307 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2308 * Should result in one level boost only for P0.
2309 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2310 * Should result in two level boost:
2311 * (min + p1)/2 and P1.
2312 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2313 * Should result in three level boost:
2314 * (min + p1)/2, P1 and P0.
2317 /* If max and min are equal or already at max, nothing to boost */
2318 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2319 return;
2321 if (!cpu->hwp_boost_min)
2322 cpu->hwp_boost_min = min_limit;
2324 /* level at half way mark between min and guranteed */
2325 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2327 if (cpu->hwp_boost_min < boost_level1)
2328 cpu->hwp_boost_min = boost_level1;
2329 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2330 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2331 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2332 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2333 cpu->hwp_boost_min = max_limit;
2334 else
2335 return;
2337 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2338 wrmsrl(MSR_HWP_REQUEST, hwp_req);
2339 cpu->last_update = cpu->sample.time;
2342 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2344 if (cpu->hwp_boost_min) {
2345 bool expired;
2347 /* Check if we are idle for hold time to boost down */
2348 expired = time_after64(cpu->sample.time, cpu->last_update +
2349 hwp_boost_hold_time_ns);
2350 if (expired) {
2351 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2352 cpu->hwp_boost_min = 0;
2355 cpu->last_update = cpu->sample.time;
2358 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2359 u64 time)
2361 cpu->sample.time = time;
2363 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2364 bool do_io = false;
2366 cpu->sched_flags = 0;
2368 * Set iowait_boost flag and update time. Since IO WAIT flag
2369 * is set all the time, we can't just conclude that there is
2370 * some IO bound activity is scheduled on this CPU with just
2371 * one occurrence. If we receive at least two in two
2372 * consecutive ticks, then we treat as boost candidate.
2374 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2375 do_io = true;
2377 cpu->last_io_update = time;
2379 if (do_io)
2380 intel_pstate_hwp_boost_up(cpu);
2382 } else {
2383 intel_pstate_hwp_boost_down(cpu);
2387 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2388 u64 time, unsigned int flags)
2390 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2392 cpu->sched_flags |= flags;
2394 if (smp_processor_id() == cpu->cpu)
2395 intel_pstate_update_util_hwp_local(cpu, time);
2398 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2400 struct sample *sample = &cpu->sample;
2402 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2405 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2407 u64 aperf, mperf;
2408 unsigned long flags;
2409 u64 tsc;
2411 local_irq_save(flags);
2412 rdmsrl(MSR_IA32_APERF, aperf);
2413 rdmsrl(MSR_IA32_MPERF, mperf);
2414 tsc = rdtsc();
2415 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2416 local_irq_restore(flags);
2417 return false;
2419 local_irq_restore(flags);
2421 cpu->last_sample_time = cpu->sample.time;
2422 cpu->sample.time = time;
2423 cpu->sample.aperf = aperf;
2424 cpu->sample.mperf = mperf;
2425 cpu->sample.tsc = tsc;
2426 cpu->sample.aperf -= cpu->prev_aperf;
2427 cpu->sample.mperf -= cpu->prev_mperf;
2428 cpu->sample.tsc -= cpu->prev_tsc;
2430 cpu->prev_aperf = aperf;
2431 cpu->prev_mperf = mperf;
2432 cpu->prev_tsc = tsc;
2434 * First time this function is invoked in a given cycle, all of the
2435 * previous sample data fields are equal to zero or stale and they must
2436 * be populated with meaningful numbers for things to work, so assume
2437 * that sample.time will always be reset before setting the utilization
2438 * update hook and make the caller skip the sample then.
2440 if (cpu->last_sample_time) {
2441 intel_pstate_calc_avg_perf(cpu);
2442 return true;
2444 return false;
2447 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2449 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2452 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2454 return mul_ext_fp(cpu->pstate.max_pstate_physical,
2455 cpu->sample.core_avg_perf);
2458 static inline int32_t get_target_pstate(struct cpudata *cpu)
2460 struct sample *sample = &cpu->sample;
2461 int32_t busy_frac;
2462 int target, avg_pstate;
2464 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2465 sample->tsc);
2467 if (busy_frac < cpu->iowait_boost)
2468 busy_frac = cpu->iowait_boost;
2470 sample->busy_scaled = busy_frac * 100;
2472 target = READ_ONCE(global.no_turbo) ?
2473 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2474 target += target >> 2;
2475 target = mul_fp(target, busy_frac);
2476 if (target < cpu->pstate.min_pstate)
2477 target = cpu->pstate.min_pstate;
2480 * If the average P-state during the previous cycle was higher than the
2481 * current target, add 50% of the difference to the target to reduce
2482 * possible performance oscillations and offset possible performance
2483 * loss related to moving the workload from one CPU to another within
2484 * a package/module.
2486 avg_pstate = get_avg_pstate(cpu);
2487 if (avg_pstate > target)
2488 target += (avg_pstate - target) >> 1;
2490 return target;
2493 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2495 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2496 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2498 return clamp_t(int, pstate, min_pstate, max_pstate);
2501 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2503 if (pstate == cpu->pstate.current_pstate)
2504 return;
2506 cpu->pstate.current_pstate = pstate;
2507 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2510 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2512 int from = cpu->pstate.current_pstate;
2513 struct sample *sample;
2514 int target_pstate;
2516 target_pstate = get_target_pstate(cpu);
2517 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2518 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2519 intel_pstate_update_pstate(cpu, target_pstate);
2521 sample = &cpu->sample;
2522 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2523 fp_toint(sample->busy_scaled),
2524 from,
2525 cpu->pstate.current_pstate,
2526 sample->mperf,
2527 sample->aperf,
2528 sample->tsc,
2529 get_avg_frequency(cpu),
2530 fp_toint(cpu->iowait_boost * 100));
2533 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2534 unsigned int flags)
2536 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2537 u64 delta_ns;
2539 /* Don't allow remote callbacks */
2540 if (smp_processor_id() != cpu->cpu)
2541 return;
2543 delta_ns = time - cpu->last_update;
2544 if (flags & SCHED_CPUFREQ_IOWAIT) {
2545 /* Start over if the CPU may have been idle. */
2546 if (delta_ns > TICK_NSEC) {
2547 cpu->iowait_boost = ONE_EIGHTH_FP;
2548 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2549 cpu->iowait_boost <<= 1;
2550 if (cpu->iowait_boost > int_tofp(1))
2551 cpu->iowait_boost = int_tofp(1);
2552 } else {
2553 cpu->iowait_boost = ONE_EIGHTH_FP;
2555 } else if (cpu->iowait_boost) {
2556 /* Clear iowait_boost if the CPU may have been idle. */
2557 if (delta_ns > TICK_NSEC)
2558 cpu->iowait_boost = 0;
2559 else
2560 cpu->iowait_boost >>= 1;
2562 cpu->last_update = time;
2563 delta_ns = time - cpu->sample.time;
2564 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2565 return;
2567 if (intel_pstate_sample(cpu, time))
2568 intel_pstate_adjust_pstate(cpu);
2571 static struct pstate_funcs core_funcs = {
2572 .get_max = core_get_max_pstate,
2573 .get_max_physical = core_get_max_pstate_physical,
2574 .get_min = core_get_min_pstate,
2575 .get_turbo = core_get_turbo_pstate,
2576 .get_scaling = core_get_scaling,
2577 .get_val = core_get_val,
2580 static const struct pstate_funcs silvermont_funcs = {
2581 .get_max = atom_get_max_pstate,
2582 .get_max_physical = atom_get_max_pstate,
2583 .get_min = atom_get_min_pstate,
2584 .get_turbo = atom_get_turbo_pstate,
2585 .get_val = atom_get_val,
2586 .get_scaling = silvermont_get_scaling,
2587 .get_vid = atom_get_vid,
2590 static const struct pstate_funcs airmont_funcs = {
2591 .get_max = atom_get_max_pstate,
2592 .get_max_physical = atom_get_max_pstate,
2593 .get_min = atom_get_min_pstate,
2594 .get_turbo = atom_get_turbo_pstate,
2595 .get_val = atom_get_val,
2596 .get_scaling = airmont_get_scaling,
2597 .get_vid = atom_get_vid,
2600 static const struct pstate_funcs knl_funcs = {
2601 .get_max = core_get_max_pstate,
2602 .get_max_physical = core_get_max_pstate_physical,
2603 .get_min = core_get_min_pstate,
2604 .get_turbo = knl_get_turbo_pstate,
2605 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2606 .get_scaling = core_get_scaling,
2607 .get_val = core_get_val,
2610 #define X86_MATCH(vfm, policy) \
2611 X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, &policy)
2613 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2614 X86_MATCH(INTEL_SANDYBRIDGE, core_funcs),
2615 X86_MATCH(INTEL_SANDYBRIDGE_X, core_funcs),
2616 X86_MATCH(INTEL_ATOM_SILVERMONT, silvermont_funcs),
2617 X86_MATCH(INTEL_IVYBRIDGE, core_funcs),
2618 X86_MATCH(INTEL_HASWELL, core_funcs),
2619 X86_MATCH(INTEL_BROADWELL, core_funcs),
2620 X86_MATCH(INTEL_IVYBRIDGE_X, core_funcs),
2621 X86_MATCH(INTEL_HASWELL_X, core_funcs),
2622 X86_MATCH(INTEL_HASWELL_L, core_funcs),
2623 X86_MATCH(INTEL_HASWELL_G, core_funcs),
2624 X86_MATCH(INTEL_BROADWELL_G, core_funcs),
2625 X86_MATCH(INTEL_ATOM_AIRMONT, airmont_funcs),
2626 X86_MATCH(INTEL_SKYLAKE_L, core_funcs),
2627 X86_MATCH(INTEL_BROADWELL_X, core_funcs),
2628 X86_MATCH(INTEL_SKYLAKE, core_funcs),
2629 X86_MATCH(INTEL_BROADWELL_D, core_funcs),
2630 X86_MATCH(INTEL_XEON_PHI_KNL, knl_funcs),
2631 X86_MATCH(INTEL_XEON_PHI_KNM, knl_funcs),
2632 X86_MATCH(INTEL_ATOM_GOLDMONT, core_funcs),
2633 X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS, core_funcs),
2634 X86_MATCH(INTEL_SKYLAKE_X, core_funcs),
2635 X86_MATCH(INTEL_COMETLAKE, core_funcs),
2636 X86_MATCH(INTEL_ICELAKE_X, core_funcs),
2637 X86_MATCH(INTEL_TIGERLAKE, core_funcs),
2638 X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs),
2639 X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs),
2642 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2644 #ifdef CONFIG_ACPI
2645 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2646 X86_MATCH(INTEL_BROADWELL_D, core_funcs),
2647 X86_MATCH(INTEL_BROADWELL_X, core_funcs),
2648 X86_MATCH(INTEL_SKYLAKE_X, core_funcs),
2649 X86_MATCH(INTEL_ICELAKE_X, core_funcs),
2650 X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs),
2651 X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs),
2652 X86_MATCH(INTEL_GRANITERAPIDS_D, core_funcs),
2653 X86_MATCH(INTEL_GRANITERAPIDS_X, core_funcs),
2654 X86_MATCH(INTEL_ATOM_CRESTMONT, core_funcs),
2655 X86_MATCH(INTEL_ATOM_CRESTMONT_X, core_funcs),
2658 #endif
2660 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2661 X86_MATCH(INTEL_KABYLAKE, core_funcs),
2665 static int intel_pstate_init_cpu(unsigned int cpunum)
2667 struct cpudata *cpu;
2669 cpu = all_cpu_data[cpunum];
2671 if (!cpu) {
2672 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2673 if (!cpu)
2674 return -ENOMEM;
2676 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2678 cpu->cpu = cpunum;
2680 cpu->epp_default = -EINVAL;
2682 if (hwp_active) {
2683 intel_pstate_hwp_enable(cpu);
2685 if (intel_pstate_acpi_pm_profile_server())
2686 hwp_boost = true;
2688 } else if (hwp_active) {
2690 * Re-enable HWP in case this happens after a resume from ACPI
2691 * S3 if the CPU was offline during the whole system/resume
2692 * cycle.
2694 intel_pstate_hwp_reenable(cpu);
2697 cpu->epp_powersave = -EINVAL;
2698 cpu->epp_policy = 0;
2700 intel_pstate_get_cpu_pstates(cpu);
2702 pr_debug("controlling: cpu %d\n", cpunum);
2704 return 0;
2707 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2709 struct cpudata *cpu = all_cpu_data[cpu_num];
2711 if (hwp_active && !hwp_boost)
2712 return;
2714 if (cpu->update_util_set)
2715 return;
2717 /* Prevent intel_pstate_update_util() from using stale data. */
2718 cpu->sample.time = 0;
2719 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2720 (hwp_active ?
2721 intel_pstate_update_util_hwp :
2722 intel_pstate_update_util));
2723 cpu->update_util_set = true;
2726 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2728 struct cpudata *cpu_data = all_cpu_data[cpu];
2730 if (!cpu_data->update_util_set)
2731 return;
2733 cpufreq_remove_update_util_hook(cpu);
2734 cpu_data->update_util_set = false;
2735 synchronize_rcu();
2738 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2740 return READ_ONCE(global.no_turbo) ?
2741 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2744 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2745 unsigned int policy_min,
2746 unsigned int policy_max)
2748 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2749 int32_t max_policy_perf, min_policy_perf;
2751 max_policy_perf = policy_max / perf_ctl_scaling;
2752 if (policy_max == policy_min) {
2753 min_policy_perf = max_policy_perf;
2754 } else {
2755 min_policy_perf = policy_min / perf_ctl_scaling;
2756 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2757 0, max_policy_perf);
2761 * HWP needs some special consideration, because HWP_REQUEST uses
2762 * abstract values to represent performance rather than pure ratios.
2764 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2765 int freq;
2767 freq = max_policy_perf * perf_ctl_scaling;
2768 max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2769 freq = min_policy_perf * perf_ctl_scaling;
2770 min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2773 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2774 cpu->cpu, min_policy_perf, max_policy_perf);
2776 /* Normalize user input to [min_perf, max_perf] */
2777 if (per_cpu_limits) {
2778 cpu->min_perf_ratio = min_policy_perf;
2779 cpu->max_perf_ratio = max_policy_perf;
2780 } else {
2781 int turbo_max = cpu->pstate.turbo_pstate;
2782 int32_t global_min, global_max;
2784 /* Global limits are in percent of the maximum turbo P-state. */
2785 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2786 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2787 global_min = clamp_t(int32_t, global_min, 0, global_max);
2789 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2790 global_min, global_max);
2792 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2793 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2794 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2795 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2797 /* Make sure min_perf <= max_perf */
2798 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2799 cpu->max_perf_ratio);
2802 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2803 cpu->max_perf_ratio,
2804 cpu->min_perf_ratio);
2807 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2809 struct cpudata *cpu;
2811 if (!policy->cpuinfo.max_freq)
2812 return -ENODEV;
2814 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2815 policy->cpuinfo.max_freq, policy->max);
2817 cpu = all_cpu_data[policy->cpu];
2818 cpu->policy = policy->policy;
2820 mutex_lock(&intel_pstate_limits_lock);
2822 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2824 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2825 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2828 * NOHZ_FULL CPUs need this as the governor callback may not
2829 * be invoked on them.
2831 intel_pstate_clear_update_util_hook(policy->cpu);
2832 intel_pstate_set_pstate(cpu, pstate);
2833 } else {
2834 intel_pstate_set_update_util_hook(policy->cpu);
2837 if (hwp_active) {
2839 * When hwp_boost was active before and dynamically it
2840 * was turned off, in that case we need to clear the
2841 * update util hook.
2843 if (!hwp_boost)
2844 intel_pstate_clear_update_util_hook(policy->cpu);
2845 intel_pstate_hwp_set(policy->cpu);
2848 * policy->cur is never updated with the intel_pstate driver, but it
2849 * is used as a stale frequency value. So, keep it within limits.
2851 policy->cur = policy->min;
2853 mutex_unlock(&intel_pstate_limits_lock);
2855 return 0;
2858 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2859 struct cpufreq_policy_data *policy)
2861 if (!hwp_active &&
2862 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2863 policy->max < policy->cpuinfo.max_freq &&
2864 policy->max > cpu->pstate.max_freq) {
2865 pr_debug("policy->max > max non turbo frequency\n");
2866 policy->max = policy->cpuinfo.max_freq;
2870 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2871 struct cpufreq_policy_data *policy)
2873 int max_freq;
2875 if (hwp_active) {
2876 intel_pstate_get_hwp_cap(cpu);
2877 max_freq = READ_ONCE(global.no_turbo) ?
2878 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2879 } else {
2880 max_freq = intel_pstate_get_max_freq(cpu);
2882 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2884 intel_pstate_adjust_policy_max(cpu, policy);
2887 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2889 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2891 return 0;
2894 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2896 struct cpudata *cpu = all_cpu_data[policy->cpu];
2898 pr_debug("CPU %d going offline\n", cpu->cpu);
2900 if (cpu->suspended)
2901 return 0;
2904 * If the CPU is an SMT thread and it goes offline with the performance
2905 * settings different from the minimum, it will prevent its sibling
2906 * from getting to lower performance levels, so force the minimum
2907 * performance on CPU offline to prevent that from happening.
2909 if (hwp_active)
2910 intel_pstate_hwp_offline(cpu);
2911 else
2912 intel_pstate_set_min_pstate(cpu);
2914 intel_pstate_exit_perf_limits(policy);
2916 return 0;
2919 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2921 struct cpudata *cpu = all_cpu_data[policy->cpu];
2923 pr_debug("CPU %d going online\n", cpu->cpu);
2925 intel_pstate_init_acpi_perf_limits(policy);
2927 if (hwp_active) {
2929 * Re-enable HWP and clear the "suspended" flag to let "resume"
2930 * know that it need not do that.
2932 intel_pstate_hwp_reenable(cpu);
2933 cpu->suspended = false;
2935 hybrid_update_capacity(cpu);
2938 return 0;
2941 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2943 intel_pstate_clear_update_util_hook(policy->cpu);
2945 return intel_cpufreq_cpu_offline(policy);
2948 static void intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2950 pr_debug("CPU %d exiting\n", policy->cpu);
2952 policy->fast_switch_possible = false;
2955 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2957 struct cpudata *cpu;
2958 int rc;
2960 rc = intel_pstate_init_cpu(policy->cpu);
2961 if (rc)
2962 return rc;
2964 cpu = all_cpu_data[policy->cpu];
2966 cpu->max_perf_ratio = 0xFF;
2967 cpu->min_perf_ratio = 0;
2969 /* cpuinfo and default policy values */
2970 policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2971 policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
2972 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2974 policy->min = policy->cpuinfo.min_freq;
2975 policy->max = policy->cpuinfo.max_freq;
2977 intel_pstate_init_acpi_perf_limits(policy);
2979 policy->fast_switch_possible = true;
2981 return 0;
2984 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
2986 int ret = __intel_pstate_cpu_init(policy);
2988 if (ret)
2989 return ret;
2992 * Set the policy to powersave to provide a valid fallback value in case
2993 * the default cpufreq governor is neither powersave nor performance.
2995 policy->policy = CPUFREQ_POLICY_POWERSAVE;
2997 if (hwp_active) {
2998 struct cpudata *cpu = all_cpu_data[policy->cpu];
3000 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
3003 return 0;
3006 static struct cpufreq_driver intel_pstate = {
3007 .flags = CPUFREQ_CONST_LOOPS,
3008 .verify = intel_pstate_verify_policy,
3009 .setpolicy = intel_pstate_set_policy,
3010 .suspend = intel_pstate_suspend,
3011 .resume = intel_pstate_resume,
3012 .init = intel_pstate_cpu_init,
3013 .exit = intel_pstate_cpu_exit,
3014 .offline = intel_pstate_cpu_offline,
3015 .online = intel_pstate_cpu_online,
3016 .update_limits = intel_pstate_update_limits,
3017 .name = "intel_pstate",
3020 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
3022 struct cpudata *cpu = all_cpu_data[policy->cpu];
3024 intel_pstate_verify_cpu_policy(cpu, policy);
3025 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
3027 return 0;
3030 /* Use of trace in passive mode:
3032 * In passive mode the trace core_busy field (also known as the
3033 * performance field, and lablelled as such on the graphs; also known as
3034 * core_avg_perf) is not needed and so is re-assigned to indicate if the
3035 * driver call was via the normal or fast switch path. Various graphs
3036 * output from the intel_pstate_tracer.py utility that include core_busy
3037 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
3038 * so we use 10 to indicate the normal path through the driver, and
3039 * 90 to indicate the fast switch path through the driver.
3040 * The scaled_busy field is not used, and is set to 0.
3043 #define INTEL_PSTATE_TRACE_TARGET 10
3044 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
3046 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
3048 struct sample *sample;
3050 if (!trace_pstate_sample_enabled())
3051 return;
3053 if (!intel_pstate_sample(cpu, ktime_get()))
3054 return;
3056 sample = &cpu->sample;
3057 trace_pstate_sample(trace_type,
3059 old_pstate,
3060 cpu->pstate.current_pstate,
3061 sample->mperf,
3062 sample->aperf,
3063 sample->tsc,
3064 get_avg_frequency(cpu),
3065 fp_toint(cpu->iowait_boost * 100));
3068 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
3069 u32 desired, bool fast_switch)
3071 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
3073 value &= ~HWP_MIN_PERF(~0L);
3074 value |= HWP_MIN_PERF(min);
3076 value &= ~HWP_MAX_PERF(~0L);
3077 value |= HWP_MAX_PERF(max);
3079 value &= ~HWP_DESIRED_PERF(~0L);
3080 value |= HWP_DESIRED_PERF(desired);
3082 if (value == prev)
3083 return;
3085 WRITE_ONCE(cpu->hwp_req_cached, value);
3086 if (fast_switch)
3087 wrmsrl(MSR_HWP_REQUEST, value);
3088 else
3089 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3092 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
3093 u32 target_pstate, bool fast_switch)
3095 if (fast_switch)
3096 wrmsrl(MSR_IA32_PERF_CTL,
3097 pstate_funcs.get_val(cpu, target_pstate));
3098 else
3099 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
3100 pstate_funcs.get_val(cpu, target_pstate));
3103 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
3104 int target_pstate, bool fast_switch)
3106 struct cpudata *cpu = all_cpu_data[policy->cpu];
3107 int old_pstate = cpu->pstate.current_pstate;
3109 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
3110 if (hwp_active) {
3111 int max_pstate = policy->strict_target ?
3112 target_pstate : cpu->max_perf_ratio;
3114 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
3115 fast_switch);
3116 } else if (target_pstate != old_pstate) {
3117 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
3120 cpu->pstate.current_pstate = target_pstate;
3122 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
3123 INTEL_PSTATE_TRACE_TARGET, old_pstate);
3125 return target_pstate;
3128 static int intel_cpufreq_target(struct cpufreq_policy *policy,
3129 unsigned int target_freq,
3130 unsigned int relation)
3132 struct cpudata *cpu = all_cpu_data[policy->cpu];
3133 struct cpufreq_freqs freqs;
3134 int target_pstate;
3136 freqs.old = policy->cur;
3137 freqs.new = target_freq;
3139 cpufreq_freq_transition_begin(policy, &freqs);
3141 target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation);
3142 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
3144 freqs.new = target_pstate * cpu->pstate.scaling;
3146 cpufreq_freq_transition_end(policy, &freqs, false);
3148 return 0;
3151 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
3152 unsigned int target_freq)
3154 struct cpudata *cpu = all_cpu_data[policy->cpu];
3155 int target_pstate;
3157 target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq);
3159 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
3161 return target_pstate * cpu->pstate.scaling;
3164 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
3165 unsigned long min_perf,
3166 unsigned long target_perf,
3167 unsigned long capacity)
3169 struct cpudata *cpu = all_cpu_data[cpunum];
3170 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
3171 int old_pstate = cpu->pstate.current_pstate;
3172 int cap_pstate, min_pstate, max_pstate, target_pstate;
3174 cap_pstate = READ_ONCE(global.no_turbo) ?
3175 HWP_GUARANTEED_PERF(hwp_cap) :
3176 HWP_HIGHEST_PERF(hwp_cap);
3178 /* Optimization: Avoid unnecessary divisions. */
3180 target_pstate = cap_pstate;
3181 if (target_perf < capacity)
3182 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
3184 min_pstate = cap_pstate;
3185 if (min_perf < capacity)
3186 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
3188 if (min_pstate < cpu->pstate.min_pstate)
3189 min_pstate = cpu->pstate.min_pstate;
3191 if (min_pstate < cpu->min_perf_ratio)
3192 min_pstate = cpu->min_perf_ratio;
3194 if (min_pstate > cpu->max_perf_ratio)
3195 min_pstate = cpu->max_perf_ratio;
3197 max_pstate = min(cap_pstate, cpu->max_perf_ratio);
3198 if (max_pstate < min_pstate)
3199 max_pstate = min_pstate;
3201 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
3203 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
3205 cpu->pstate.current_pstate = target_pstate;
3206 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
3209 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
3211 struct freq_qos_request *req;
3212 struct cpudata *cpu;
3213 struct device *dev;
3214 int ret, freq;
3216 dev = get_cpu_device(policy->cpu);
3217 if (!dev)
3218 return -ENODEV;
3220 ret = __intel_pstate_cpu_init(policy);
3221 if (ret)
3222 return ret;
3224 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3225 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
3226 policy->cur = policy->cpuinfo.min_freq;
3228 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3229 if (!req) {
3230 ret = -ENOMEM;
3231 goto pstate_exit;
3234 cpu = all_cpu_data[policy->cpu];
3236 if (hwp_active) {
3237 u64 value;
3239 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3241 intel_pstate_get_hwp_cap(cpu);
3243 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3244 WRITE_ONCE(cpu->hwp_req_cached, value);
3246 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3247 } else {
3248 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3251 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3253 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3254 freq);
3255 if (ret < 0) {
3256 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3257 goto free_req;
3260 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3262 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3263 freq);
3264 if (ret < 0) {
3265 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3266 goto remove_min_req;
3269 policy->driver_data = req;
3271 return 0;
3273 remove_min_req:
3274 freq_qos_remove_request(req);
3275 free_req:
3276 kfree(req);
3277 pstate_exit:
3278 intel_pstate_exit_perf_limits(policy);
3280 return ret;
3283 static void intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3285 struct freq_qos_request *req;
3287 req = policy->driver_data;
3289 freq_qos_remove_request(req + 1);
3290 freq_qos_remove_request(req);
3291 kfree(req);
3293 intel_pstate_cpu_exit(policy);
3296 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3298 intel_pstate_suspend(policy);
3300 if (hwp_active) {
3301 struct cpudata *cpu = all_cpu_data[policy->cpu];
3302 u64 value = READ_ONCE(cpu->hwp_req_cached);
3305 * Clear the desired perf field in MSR_HWP_REQUEST in case
3306 * intel_cpufreq_adjust_perf() is in use and the last value
3307 * written by it may not be suitable.
3309 value &= ~HWP_DESIRED_PERF(~0L);
3310 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3311 WRITE_ONCE(cpu->hwp_req_cached, value);
3314 return 0;
3317 static struct cpufreq_driver intel_cpufreq = {
3318 .flags = CPUFREQ_CONST_LOOPS,
3319 .verify = intel_cpufreq_verify_policy,
3320 .target = intel_cpufreq_target,
3321 .fast_switch = intel_cpufreq_fast_switch,
3322 .init = intel_cpufreq_cpu_init,
3323 .exit = intel_cpufreq_cpu_exit,
3324 .offline = intel_cpufreq_cpu_offline,
3325 .online = intel_pstate_cpu_online,
3326 .suspend = intel_cpufreq_suspend,
3327 .resume = intel_pstate_resume,
3328 .update_limits = intel_pstate_update_limits,
3329 .name = "intel_cpufreq",
3332 static struct cpufreq_driver *default_driver;
3334 static void intel_pstate_driver_cleanup(void)
3336 unsigned int cpu;
3338 cpus_read_lock();
3339 for_each_online_cpu(cpu) {
3340 if (all_cpu_data[cpu]) {
3341 if (intel_pstate_driver == &intel_pstate)
3342 intel_pstate_clear_update_util_hook(cpu);
3344 kfree(all_cpu_data[cpu]);
3345 WRITE_ONCE(all_cpu_data[cpu], NULL);
3348 cpus_read_unlock();
3350 intel_pstate_driver = NULL;
3353 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3355 int ret;
3357 if (driver == &intel_pstate)
3358 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3360 memset(&global, 0, sizeof(global));
3361 global.max_perf_pct = 100;
3362 global.turbo_disabled = turbo_is_disabled();
3363 global.no_turbo = global.turbo_disabled;
3365 arch_set_max_freq_ratio(global.turbo_disabled);
3367 intel_pstate_driver = driver;
3368 ret = cpufreq_register_driver(intel_pstate_driver);
3369 if (ret) {
3370 intel_pstate_driver_cleanup();
3371 return ret;
3374 global.min_perf_pct = min_perf_pct_min();
3376 hybrid_init_cpu_capacity_scaling();
3378 return 0;
3381 static ssize_t intel_pstate_show_status(char *buf)
3383 if (!intel_pstate_driver)
3384 return sprintf(buf, "off\n");
3386 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3387 "active" : "passive");
3390 static int intel_pstate_update_status(const char *buf, size_t size)
3392 if (size == 3 && !strncmp(buf, "off", size)) {
3393 if (!intel_pstate_driver)
3394 return -EINVAL;
3396 if (hwp_active)
3397 return -EBUSY;
3399 cpufreq_unregister_driver(intel_pstate_driver);
3400 intel_pstate_driver_cleanup();
3401 return 0;
3404 if (size == 6 && !strncmp(buf, "active", size)) {
3405 if (intel_pstate_driver) {
3406 if (intel_pstate_driver == &intel_pstate)
3407 return 0;
3409 cpufreq_unregister_driver(intel_pstate_driver);
3412 return intel_pstate_register_driver(&intel_pstate);
3415 if (size == 7 && !strncmp(buf, "passive", size)) {
3416 if (intel_pstate_driver) {
3417 if (intel_pstate_driver == &intel_cpufreq)
3418 return 0;
3420 cpufreq_unregister_driver(intel_pstate_driver);
3421 intel_pstate_sysfs_hide_hwp_dynamic_boost();
3424 return intel_pstate_register_driver(&intel_cpufreq);
3427 return -EINVAL;
3430 static int no_load __initdata;
3431 static int no_hwp __initdata;
3432 static int hwp_only __initdata;
3433 static unsigned int force_load __initdata;
3435 static int __init intel_pstate_msrs_not_valid(void)
3437 if (!pstate_funcs.get_max(0) ||
3438 !pstate_funcs.get_min(0) ||
3439 !pstate_funcs.get_turbo(0))
3440 return -ENODEV;
3442 return 0;
3445 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3447 pstate_funcs.get_max = funcs->get_max;
3448 pstate_funcs.get_max_physical = funcs->get_max_physical;
3449 pstate_funcs.get_min = funcs->get_min;
3450 pstate_funcs.get_turbo = funcs->get_turbo;
3451 pstate_funcs.get_scaling = funcs->get_scaling;
3452 pstate_funcs.get_val = funcs->get_val;
3453 pstate_funcs.get_vid = funcs->get_vid;
3454 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3457 #ifdef CONFIG_ACPI
3459 static bool __init intel_pstate_no_acpi_pss(void)
3461 int i;
3463 for_each_possible_cpu(i) {
3464 acpi_status status;
3465 union acpi_object *pss;
3466 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3467 struct acpi_processor *pr = per_cpu(processors, i);
3469 if (!pr)
3470 continue;
3472 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3473 if (ACPI_FAILURE(status))
3474 continue;
3476 pss = buffer.pointer;
3477 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3478 kfree(pss);
3479 return false;
3482 kfree(pss);
3485 pr_debug("ACPI _PSS not found\n");
3486 return true;
3489 static bool __init intel_pstate_no_acpi_pcch(void)
3491 acpi_status status;
3492 acpi_handle handle;
3494 status = acpi_get_handle(NULL, "\\_SB", &handle);
3495 if (ACPI_FAILURE(status))
3496 goto not_found;
3498 if (acpi_has_method(handle, "PCCH"))
3499 return false;
3501 not_found:
3502 pr_debug("ACPI PCCH not found\n");
3503 return true;
3506 static bool __init intel_pstate_has_acpi_ppc(void)
3508 int i;
3510 for_each_possible_cpu(i) {
3511 struct acpi_processor *pr = per_cpu(processors, i);
3513 if (!pr)
3514 continue;
3515 if (acpi_has_method(pr->handle, "_PPC"))
3516 return true;
3518 pr_debug("ACPI _PPC not found\n");
3519 return false;
3522 enum {
3523 PSS,
3524 PPC,
3527 /* Hardware vendor-specific info that has its own power management modes */
3528 static struct acpi_platform_list plat_info[] __initdata = {
3529 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3530 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3531 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3532 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3533 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3534 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3535 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3536 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3537 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3538 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3539 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3540 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3541 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3542 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3543 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3544 { } /* End */
3547 #define BITMASK_OOB (BIT(8) | BIT(18))
3549 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3551 const struct x86_cpu_id *id;
3552 u64 misc_pwr;
3553 int idx;
3555 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3556 if (id) {
3557 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3558 if (misc_pwr & BITMASK_OOB) {
3559 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3560 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3561 return true;
3565 idx = acpi_match_platform_list(plat_info);
3566 if (idx < 0)
3567 return false;
3569 switch (plat_info[idx].data) {
3570 case PSS:
3571 if (!intel_pstate_no_acpi_pss())
3572 return false;
3574 return intel_pstate_no_acpi_pcch();
3575 case PPC:
3576 return intel_pstate_has_acpi_ppc() && !force_load;
3579 return false;
3582 static void intel_pstate_request_control_from_smm(void)
3585 * It may be unsafe to request P-states control from SMM if _PPC support
3586 * has not been enabled.
3588 if (acpi_ppc)
3589 acpi_processor_pstate_control();
3591 #else /* CONFIG_ACPI not enabled */
3592 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
3593 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
3594 static inline void intel_pstate_request_control_from_smm(void) {}
3595 #endif /* CONFIG_ACPI */
3597 #define INTEL_PSTATE_HWP_BROADWELL 0x01
3599 #define X86_MATCH_HWP(vfm, hwp_mode) \
3600 X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_HWP, hwp_mode)
3602 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3603 X86_MATCH_HWP(INTEL_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
3604 X86_MATCH_HWP(INTEL_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
3605 X86_MATCH_HWP(INTEL_ANY, 0),
3609 static bool intel_pstate_hwp_is_enabled(void)
3611 u64 value;
3613 rdmsrl(MSR_PM_ENABLE, value);
3614 return !!(value & 0x1);
3617 #define POWERSAVE_MASK GENMASK(7, 0)
3618 #define BALANCE_POWER_MASK GENMASK(15, 8)
3619 #define BALANCE_PERFORMANCE_MASK GENMASK(23, 16)
3620 #define PERFORMANCE_MASK GENMASK(31, 24)
3622 #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \
3623 (FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\
3624 FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\
3625 FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\
3626 FIELD_PREP_CONST(PERFORMANCE_MASK, performance))
3628 #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \
3629 (HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\
3630 balance_perf, HWP_EPP_PERFORMANCE))
3632 static const struct x86_cpu_id intel_epp_default[] = {
3634 * Set EPP value as 102, this is the max suggested EPP
3635 * which can result in one core turbo frequency for
3636 * AlderLake Mobile CPUs.
3638 X86_MATCH_VFM(INTEL_ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)),
3639 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3640 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3641 X86_MATCH_VFM(INTEL_METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3642 179, 64, 16)),
3643 X86_MATCH_VFM(INTEL_ARROWLAKE, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3644 179, 64, 16)),
3648 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = {
3649 X86_MATCH_VFM(INTEL_METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL),
3650 X86_MATCH_VFM(INTEL_ARROWLAKE, HYBRID_SCALING_FACTOR_MTL),
3651 X86_MATCH_VFM(INTEL_LUNARLAKE_M, HYBRID_SCALING_FACTOR_LNL),
3655 static int __init intel_pstate_init(void)
3657 static struct cpudata **_all_cpu_data;
3658 const struct x86_cpu_id *id;
3659 int rc;
3661 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3662 return -ENODEV;
3664 id = x86_match_cpu(hwp_support_ids);
3665 if (id) {
3666 hwp_forced = intel_pstate_hwp_is_enabled();
3668 if (hwp_forced)
3669 pr_info("HWP enabled by BIOS\n");
3670 else if (no_load)
3671 return -ENODEV;
3673 copy_cpu_funcs(&core_funcs);
3675 * Avoid enabling HWP for processors without EPP support,
3676 * because that means incomplete HWP implementation which is a
3677 * corner case and supporting it is generally problematic.
3679 * If HWP is enabled already, though, there is no choice but to
3680 * deal with it.
3682 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3683 hwp_active = true;
3684 hwp_mode_bdw = id->driver_data;
3685 intel_pstate.attr = hwp_cpufreq_attrs;
3686 intel_cpufreq.attr = hwp_cpufreq_attrs;
3687 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3688 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3689 if (!default_driver)
3690 default_driver = &intel_pstate;
3692 pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3694 goto hwp_cpu_matched;
3696 pr_info("HWP not enabled\n");
3697 } else {
3698 if (no_load)
3699 return -ENODEV;
3701 id = x86_match_cpu(intel_pstate_cpu_ids);
3702 if (!id) {
3703 pr_info("CPU model not supported\n");
3704 return -ENODEV;
3707 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3710 if (intel_pstate_msrs_not_valid()) {
3711 pr_info("Invalid MSRs\n");
3712 return -ENODEV;
3714 /* Without HWP start in the passive mode. */
3715 if (!default_driver)
3716 default_driver = &intel_cpufreq;
3718 hwp_cpu_matched:
3720 * The Intel pstate driver will be ignored if the platform
3721 * firmware has its own power management modes.
3723 if (intel_pstate_platform_pwr_mgmt_exists()) {
3724 pr_info("P-states controlled by the platform\n");
3725 return -ENODEV;
3728 if (!hwp_active && hwp_only)
3729 return -ENOTSUPP;
3731 pr_info("Intel P-state driver initializing\n");
3733 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3734 if (!_all_cpu_data)
3735 return -ENOMEM;
3737 WRITE_ONCE(all_cpu_data, _all_cpu_data);
3739 intel_pstate_request_control_from_smm();
3741 intel_pstate_sysfs_expose_params();
3743 if (hwp_active) {
3744 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default);
3745 const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor);
3747 if (id) {
3748 epp_values[EPP_INDEX_POWERSAVE] =
3749 FIELD_GET(POWERSAVE_MASK, id->driver_data);
3750 epp_values[EPP_INDEX_BALANCE_POWERSAVE] =
3751 FIELD_GET(BALANCE_POWER_MASK, id->driver_data);
3752 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] =
3753 FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data);
3754 epp_values[EPP_INDEX_PERFORMANCE] =
3755 FIELD_GET(PERFORMANCE_MASK, id->driver_data);
3756 pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n",
3757 epp_values[EPP_INDEX_POWERSAVE],
3758 epp_values[EPP_INDEX_BALANCE_POWERSAVE],
3759 epp_values[EPP_INDEX_BALANCE_PERFORMANCE],
3760 epp_values[EPP_INDEX_PERFORMANCE]);
3763 if (hybrid_id) {
3764 hybrid_scaling_factor = hybrid_id->driver_data;
3765 pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor);
3770 mutex_lock(&intel_pstate_driver_lock);
3771 rc = intel_pstate_register_driver(default_driver);
3772 mutex_unlock(&intel_pstate_driver_lock);
3773 if (rc) {
3774 intel_pstate_sysfs_remove();
3775 return rc;
3778 if (hwp_active) {
3779 const struct x86_cpu_id *id;
3781 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3782 if (id) {
3783 set_power_ctl_ee_state(false);
3784 pr_info("Disabling energy efficiency optimization\n");
3787 pr_info("HWP enabled\n");
3788 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3789 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3792 return 0;
3794 device_initcall(intel_pstate_init);
3796 static int __init intel_pstate_setup(char *str)
3798 if (!str)
3799 return -EINVAL;
3801 if (!strcmp(str, "disable"))
3802 no_load = 1;
3803 else if (!strcmp(str, "active"))
3804 default_driver = &intel_pstate;
3805 else if (!strcmp(str, "passive"))
3806 default_driver = &intel_cpufreq;
3808 if (!strcmp(str, "no_hwp"))
3809 no_hwp = 1;
3811 if (!strcmp(str, "force"))
3812 force_load = 1;
3813 if (!strcmp(str, "hwp_only"))
3814 hwp_only = 1;
3815 if (!strcmp(str, "per_cpu_perf_limits"))
3816 per_cpu_limits = true;
3818 #ifdef CONFIG_ACPI
3819 if (!strcmp(str, "support_acpi_ppc"))
3820 acpi_ppc = true;
3821 #endif
3823 return 0;
3825 early_param("intel_pstate", intel_pstate_setup);
3827 MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
3828 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");