1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * POWERNV cpufreq driver for the IBM POWER processors
5 * (C) Copyright IBM 2014
7 * Author: Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>
10 #define pr_fmt(fmt) "powernv-cpufreq: " fmt
12 #include <linux/kernel.h>
13 #include <linux/sysfs.h>
14 #include <linux/cpumask.h>
15 #include <linux/module.h>
16 #include <linux/cpufreq.h>
17 #include <linux/smp.h>
19 #include <linux/reboot.h>
20 #include <linux/slab.h>
21 #include <linux/cpu.h>
22 #include <linux/hashtable.h>
23 #include <trace/events/power.h>
25 #include <asm/cputhreads.h>
26 #include <asm/firmware.h>
28 #include <asm/smp.h> /* Required for cpu_sibling_mask() in UP configs */
30 #include <linux/timer.h>
32 #define POWERNV_MAX_PSTATES_ORDER 8
33 #define POWERNV_MAX_PSTATES (1UL << (POWERNV_MAX_PSTATES_ORDER))
34 #define PMSR_PSAFE_ENABLE (1UL << 30)
35 #define PMSR_SPR_EM_DISABLE (1UL << 31)
36 #define MAX_PSTATE_SHIFT 32
37 #define LPSTATE_SHIFT 48
38 #define GPSTATE_SHIFT 56
39 #define MAX_NR_CHIPS 32
41 #define MAX_RAMP_DOWN_TIME 5120
43 * On an idle system we want the global pstate to ramp-down from max value to
44 * min over a span of ~5 secs. Also we want it to initially ramp-down slowly and
45 * then ramp-down rapidly later on.
47 * This gives a percentage rampdown for time elapsed in milliseconds.
48 * ramp_down_percentage = ((ms * ms) >> 18)
49 * ~= 3.8 * (sec * sec)
51 * At 0 ms ramp_down_percent = 0
52 * At 5120 ms ramp_down_percent = 100
54 #define ramp_down_percent(time) ((time * time) >> 18)
56 /* Interval after which the timer is queued to bring down global pstate */
57 #define GPSTATE_TIMER_INTERVAL 2000
60 * struct global_pstate_info - Per policy data structure to maintain history of
62 * @highest_lpstate_idx: The local pstate index from which we are
64 * @elapsed_time: Time in ms spent in ramping down from
66 * @last_sampled_time: Time from boot in ms when global pstates were
68 * @last_lpstate_idx: Last set value of local pstate and global
69 * @last_gpstate_idx: pstate in terms of cpufreq table index
70 * @timer: Is used for ramping down if cpu goes idle for
71 * a long time with global pstate held high
72 * @gpstate_lock: A spinlock to maintain synchronization between
73 * routines called by the timer handler and
74 * governer's target_index calls
75 * @policy: Associated CPUFreq policy
77 struct global_pstate_info
{
78 int highest_lpstate_idx
;
79 unsigned int elapsed_time
;
80 unsigned int last_sampled_time
;
83 spinlock_t gpstate_lock
;
84 struct timer_list timer
;
85 struct cpufreq_policy
*policy
;
88 static struct cpufreq_frequency_table powernv_freqs
[POWERNV_MAX_PSTATES
+1];
90 static DEFINE_HASHTABLE(pstate_revmap
, POWERNV_MAX_PSTATES_ORDER
);
92 * struct pstate_idx_revmap_data: Entry in the hashmap pstate_revmap
93 * indexed by a function of pstate id.
95 * @pstate_id: pstate id for this entry.
97 * @cpufreq_table_idx: Index into the powernv_freqs
98 * cpufreq_frequency_table for frequency
99 * corresponding to pstate_id.
101 * @hentry: hlist_node that hooks this entry into the pstate_revmap
104 struct pstate_idx_revmap_data
{
106 unsigned int cpufreq_table_idx
;
107 struct hlist_node hentry
;
110 static bool rebooting
, throttled
, occ_reset
;
112 static const char * const throttle_reason
[] = {
115 "Processor Over Temperature",
116 "Power Supply Failure",
121 enum throttle_reason_type
{
125 POWER_SUPPLY_FAILURE
,
137 struct work_struct throttle
;
139 int throttle_sub_turbo
;
140 int reason
[OCC_MAX_REASON
];
144 static DEFINE_PER_CPU(struct chip
*, chip_info
);
148 * The set of pstates consists of contiguous integers.
149 * powernv_pstate_info stores the index of the frequency table for
150 * max, min and nominal frequencies. It also stores number of
151 * available frequencies.
153 * powernv_pstate_info.nominal indicates the index to the highest
154 * non-turbo frequency.
156 static struct powernv_pstate_info
{
159 unsigned int nominal
;
160 unsigned int nr_pstates
;
162 } powernv_pstate_info
;
164 static inline u8
extract_pstate(u64 pmsr_val
, unsigned int shift
)
166 return ((pmsr_val
>> shift
) & 0xFF);
169 #define extract_local_pstate(x) extract_pstate(x, LPSTATE_SHIFT)
170 #define extract_global_pstate(x) extract_pstate(x, GPSTATE_SHIFT)
171 #define extract_max_pstate(x) extract_pstate(x, MAX_PSTATE_SHIFT)
173 /* Use following functions for conversions between pstate_id and index */
176 * idx_to_pstate : Returns the pstate id corresponding to the
177 * frequency in the cpufreq frequency table
178 * powernv_freqs indexed by @i.
180 * If @i is out of bound, this will return the pstate
181 * corresponding to the nominal frequency.
183 static inline u8
idx_to_pstate(unsigned int i
)
185 if (unlikely(i
>= powernv_pstate_info
.nr_pstates
)) {
186 pr_warn_once("idx_to_pstate: index %u is out of bound\n", i
);
187 return powernv_freqs
[powernv_pstate_info
.nominal
].driver_data
;
190 return powernv_freqs
[i
].driver_data
;
194 * pstate_to_idx : Returns the index in the cpufreq frequencytable
195 * powernv_freqs for the frequency whose corresponding
196 * pstate id is @pstate.
198 * If no frequency corresponding to @pstate is found,
199 * this will return the index of the nominal
202 static unsigned int pstate_to_idx(u8 pstate
)
204 unsigned int key
= pstate
% POWERNV_MAX_PSTATES
;
205 struct pstate_idx_revmap_data
*revmap_data
;
207 hash_for_each_possible(pstate_revmap
, revmap_data
, hentry
, key
) {
208 if (revmap_data
->pstate_id
== pstate
)
209 return revmap_data
->cpufreq_table_idx
;
212 pr_warn_once("pstate_to_idx: pstate 0x%x not found\n", pstate
);
213 return powernv_pstate_info
.nominal
;
216 static inline void reset_gpstates(struct cpufreq_policy
*policy
)
218 struct global_pstate_info
*gpstates
= policy
->driver_data
;
220 gpstates
->highest_lpstate_idx
= 0;
221 gpstates
->elapsed_time
= 0;
222 gpstates
->last_sampled_time
= 0;
223 gpstates
->last_lpstate_idx
= 0;
224 gpstates
->last_gpstate_idx
= 0;
228 * Initialize the freq table based on data obtained
229 * from the firmware passed via device-tree
231 static int init_powernv_pstates(void)
233 struct device_node
*power_mgt
;
234 int i
, nr_pstates
= 0;
235 const __be32
*pstate_ids
, *pstate_freqs
;
236 u32 len_ids
, len_freqs
;
237 u32 pstate_min
, pstate_max
, pstate_nominal
;
238 u32 pstate_turbo
, pstate_ultra_turbo
;
241 power_mgt
= of_find_node_by_path("/ibm,opal/power-mgt");
243 pr_warn("power-mgt node not found\n");
247 if (of_property_read_u32(power_mgt
, "ibm,pstate-min", &pstate_min
)) {
248 pr_warn("ibm,pstate-min node not found\n");
252 if (of_property_read_u32(power_mgt
, "ibm,pstate-max", &pstate_max
)) {
253 pr_warn("ibm,pstate-max node not found\n");
257 if (of_property_read_u32(power_mgt
, "ibm,pstate-nominal",
259 pr_warn("ibm,pstate-nominal not found\n");
263 if (of_property_read_u32(power_mgt
, "ibm,pstate-ultra-turbo",
264 &pstate_ultra_turbo
)) {
265 powernv_pstate_info
.wof_enabled
= false;
269 if (of_property_read_u32(power_mgt
, "ibm,pstate-turbo",
271 powernv_pstate_info
.wof_enabled
= false;
275 if (pstate_turbo
== pstate_ultra_turbo
)
276 powernv_pstate_info
.wof_enabled
= false;
278 powernv_pstate_info
.wof_enabled
= true;
281 pr_info("cpufreq pstate min 0x%x nominal 0x%x max 0x%x\n", pstate_min
,
282 pstate_nominal
, pstate_max
);
283 pr_info("Workload Optimized Frequency is %s in the platform\n",
284 (powernv_pstate_info
.wof_enabled
) ? "enabled" : "disabled");
286 pstate_ids
= of_get_property(power_mgt
, "ibm,pstate-ids", &len_ids
);
288 pr_warn("ibm,pstate-ids not found\n");
292 pstate_freqs
= of_get_property(power_mgt
, "ibm,pstate-frequencies-mhz",
295 pr_warn("ibm,pstate-frequencies-mhz not found\n");
299 if (len_ids
!= len_freqs
) {
300 pr_warn("Entries in ibm,pstate-ids and "
301 "ibm,pstate-frequencies-mhz does not match\n");
304 nr_pstates
= min(len_ids
, len_freqs
) / sizeof(u32
);
306 pr_warn("No PStates found\n");
310 powernv_pstate_info
.nr_pstates
= nr_pstates
;
311 pr_debug("NR PStates %d\n", nr_pstates
);
313 for (i
= 0; i
< nr_pstates
; i
++) {
314 u32 id
= be32_to_cpu(pstate_ids
[i
]);
315 u32 freq
= be32_to_cpu(pstate_freqs
[i
]);
316 struct pstate_idx_revmap_data
*revmap_data
;
319 pr_debug("PState id %d freq %d MHz\n", id
, freq
);
320 powernv_freqs
[i
].frequency
= freq
* 1000; /* kHz */
321 powernv_freqs
[i
].driver_data
= id
& 0xFF;
323 revmap_data
= kmalloc(sizeof(*revmap_data
), GFP_KERNEL
);
329 revmap_data
->pstate_id
= id
& 0xFF;
330 revmap_data
->cpufreq_table_idx
= i
;
331 key
= (revmap_data
->pstate_id
) % POWERNV_MAX_PSTATES
;
332 hash_add(pstate_revmap
, &revmap_data
->hentry
, key
);
334 if (id
== pstate_max
)
335 powernv_pstate_info
.max
= i
;
336 if (id
== pstate_nominal
)
337 powernv_pstate_info
.nominal
= i
;
338 if (id
== pstate_min
)
339 powernv_pstate_info
.min
= i
;
341 if (powernv_pstate_info
.wof_enabled
&& id
== pstate_turbo
) {
344 for (j
= i
- 1; j
>= (int)powernv_pstate_info
.max
; j
--)
345 powernv_freqs
[j
].flags
= CPUFREQ_BOOST_FREQ
;
349 /* End of list marker entry */
350 powernv_freqs
[i
].frequency
= CPUFREQ_TABLE_END
;
352 of_node_put(power_mgt
);
355 of_node_put(power_mgt
);
359 /* Returns the CPU frequency corresponding to the pstate_id. */
360 static unsigned int pstate_id_to_freq(u8 pstate_id
)
364 i
= pstate_to_idx(pstate_id
);
365 if (i
>= powernv_pstate_info
.nr_pstates
|| i
< 0) {
366 pr_warn("PState id 0x%x outside of PState table, reporting nominal id 0x%x instead\n",
367 pstate_id
, idx_to_pstate(powernv_pstate_info
.nominal
));
368 i
= powernv_pstate_info
.nominal
;
371 return powernv_freqs
[i
].frequency
;
375 * cpuinfo_nominal_freq_show - Show the nominal CPU frequency as indicated by
378 static ssize_t
cpuinfo_nominal_freq_show(struct cpufreq_policy
*policy
,
381 return sprintf(buf
, "%u\n",
382 powernv_freqs
[powernv_pstate_info
.nominal
].frequency
);
385 static struct freq_attr cpufreq_freq_attr_cpuinfo_nominal_freq
=
386 __ATTR_RO(cpuinfo_nominal_freq
);
388 #define SCALING_BOOST_FREQS_ATTR_INDEX 2
390 static struct freq_attr
*powernv_cpu_freq_attr
[] = {
391 &cpufreq_freq_attr_scaling_available_freqs
,
392 &cpufreq_freq_attr_cpuinfo_nominal_freq
,
393 &cpufreq_freq_attr_scaling_boost_freqs
,
397 #define throttle_attr(name, member) \
398 static ssize_t name##_show(struct cpufreq_policy *policy, char *buf) \
400 struct chip *chip = per_cpu(chip_info, policy->cpu); \
402 return sprintf(buf, "%u\n", chip->member); \
405 static struct freq_attr throttle_attr_##name = __ATTR_RO(name) \
407 throttle_attr(unthrottle, reason[NO_THROTTLE]);
408 throttle_attr(powercap
, reason
[POWERCAP
]);
409 throttle_attr(overtemp
, reason
[CPU_OVERTEMP
]);
410 throttle_attr(supply_fault
, reason
[POWER_SUPPLY_FAILURE
]);
411 throttle_attr(overcurrent
, reason
[OVERCURRENT
]);
412 throttle_attr(occ_reset
, reason
[OCC_RESET_THROTTLE
]);
413 throttle_attr(turbo_stat
, throttle_turbo
);
414 throttle_attr(sub_turbo_stat
, throttle_sub_turbo
);
416 static struct attribute
*throttle_attrs
[] = {
417 &throttle_attr_unthrottle
.attr
,
418 &throttle_attr_powercap
.attr
,
419 &throttle_attr_overtemp
.attr
,
420 &throttle_attr_supply_fault
.attr
,
421 &throttle_attr_overcurrent
.attr
,
422 &throttle_attr_occ_reset
.attr
,
423 &throttle_attr_turbo_stat
.attr
,
424 &throttle_attr_sub_turbo_stat
.attr
,
428 static const struct attribute_group throttle_attr_grp
= {
429 .name
= "throttle_stats",
430 .attrs
= throttle_attrs
,
433 /* Helper routines */
435 /* Access helpers to power mgt SPR */
437 static inline unsigned long get_pmspr(unsigned long sprn
)
441 return mfspr(SPRN_PMCR
);
444 return mfspr(SPRN_PMICR
);
447 return mfspr(SPRN_PMSR
);
452 static inline void set_pmspr(unsigned long sprn
, unsigned long val
)
456 mtspr(SPRN_PMCR
, val
);
460 mtspr(SPRN_PMICR
, val
);
467 * Use objects of this type to query/update
468 * pstates on a remote CPU via smp_call_function.
470 struct powernv_smp_call_data
{
477 * powernv_read_cpu_freq: Reads the current frequency on this CPU.
479 * Called via smp_call_function.
481 * Note: The caller of the smp_call_function should pass an argument of
482 * the type 'struct powernv_smp_call_data *' along with this function.
484 * The current frequency on this CPU will be returned via
485 * ((struct powernv_smp_call_data *)arg)->freq;
487 static void powernv_read_cpu_freq(void *arg
)
489 unsigned long pmspr_val
;
490 struct powernv_smp_call_data
*freq_data
= arg
;
492 pmspr_val
= get_pmspr(SPRN_PMSR
);
493 freq_data
->pstate_id
= extract_local_pstate(pmspr_val
);
494 freq_data
->freq
= pstate_id_to_freq(freq_data
->pstate_id
);
496 pr_debug("cpu %d pmsr %016lX pstate_id 0x%x frequency %d kHz\n",
497 raw_smp_processor_id(), pmspr_val
, freq_data
->pstate_id
,
502 * powernv_cpufreq_get: Returns the CPU frequency as reported by the
503 * firmware for CPU 'cpu'. This value is reported through the sysfs
504 * file cpuinfo_cur_freq.
506 static unsigned int powernv_cpufreq_get(unsigned int cpu
)
508 struct powernv_smp_call_data freq_data
;
510 smp_call_function_any(cpu_sibling_mask(cpu
), powernv_read_cpu_freq
,
513 return freq_data
.freq
;
517 * set_pstate: Sets the pstate on this CPU.
519 * This is called via an smp_call_function.
521 * The caller must ensure that freq_data is of the type
522 * (struct powernv_smp_call_data *) and the pstate_id which needs to be set
523 * on this CPU should be present in freq_data->pstate_id.
525 static void set_pstate(void *data
)
528 struct powernv_smp_call_data
*freq_data
= data
;
529 unsigned long pstate_ul
= freq_data
->pstate_id
;
530 unsigned long gpstate_ul
= freq_data
->gpstate_id
;
532 val
= get_pmspr(SPRN_PMCR
);
533 val
= val
& 0x0000FFFFFFFFFFFFULL
;
535 pstate_ul
= pstate_ul
& 0xFF;
536 gpstate_ul
= gpstate_ul
& 0xFF;
538 /* Set both global(bits 56..63) and local(bits 48..55) PStates */
539 val
= val
| (gpstate_ul
<< 56) | (pstate_ul
<< 48);
541 pr_debug("Setting cpu %d pmcr to %016lX\n",
542 raw_smp_processor_id(), val
);
543 set_pmspr(SPRN_PMCR
, val
);
547 * get_nominal_index: Returns the index corresponding to the nominal
548 * pstate in the cpufreq table
550 static inline unsigned int get_nominal_index(void)
552 return powernv_pstate_info
.nominal
;
555 static void powernv_cpufreq_throttle_check(void *data
)
558 unsigned int cpu
= smp_processor_id();
561 unsigned int pmsr_pmax_idx
;
563 pmsr
= get_pmspr(SPRN_PMSR
);
564 chip
= this_cpu_read(chip_info
);
566 /* Check for Pmax Capping */
567 pmsr_pmax
= extract_max_pstate(pmsr
);
568 pmsr_pmax_idx
= pstate_to_idx(pmsr_pmax
);
569 if (pmsr_pmax_idx
!= powernv_pstate_info
.max
) {
572 chip
->throttled
= true;
573 if (pmsr_pmax_idx
> powernv_pstate_info
.nominal
) {
574 pr_warn_once("CPU %d on Chip %u has Pmax(0x%x) reduced below that of nominal frequency(0x%x)\n",
575 cpu
, chip
->id
, pmsr_pmax
,
576 idx_to_pstate(powernv_pstate_info
.nominal
));
577 chip
->throttle_sub_turbo
++;
579 chip
->throttle_turbo
++;
581 trace_powernv_throttle(chip
->id
,
582 throttle_reason
[chip
->throttle_reason
],
584 } else if (chip
->throttled
) {
585 chip
->throttled
= false;
586 trace_powernv_throttle(chip
->id
,
587 throttle_reason
[chip
->throttle_reason
],
591 /* Check if Psafe_mode_active is set in PMSR. */
593 if (pmsr
& PMSR_PSAFE_ENABLE
) {
595 pr_info("Pstate set to safe frequency\n");
598 /* Check if SPR_EM_DISABLE is set in PMSR */
599 if (pmsr
& PMSR_SPR_EM_DISABLE
) {
601 pr_info("Frequency Control disabled from OS\n");
605 pr_info("PMSR = %16lx\n", pmsr
);
606 pr_warn("CPU Frequency could be throttled\n");
611 * calc_global_pstate - Calculate global pstate
612 * @elapsed_time: Elapsed time in milliseconds
613 * @local_pstate_idx: New local pstate
614 * @highest_lpstate_idx: pstate from which its ramping down
616 * Finds the appropriate global pstate based on the pstate from which its
617 * ramping down and the time elapsed in ramping down. It follows a quadratic
618 * equation which ensures that it reaches ramping down to pmin in 5sec.
620 static inline int calc_global_pstate(unsigned int elapsed_time
,
621 int highest_lpstate_idx
,
622 int local_pstate_idx
)
627 * Using ramp_down_percent we get the percentage of rampdown
628 * that we are expecting to be dropping. Difference between
629 * highest_lpstate_idx and powernv_pstate_info.min will give a absolute
630 * number of how many pstates we will drop eventually by the end of
631 * 5 seconds, then just scale it get the number pstates to be dropped.
633 index_diff
= ((int)ramp_down_percent(elapsed_time
) *
634 (powernv_pstate_info
.min
- highest_lpstate_idx
)) / 100;
636 /* Ensure that global pstate is >= to local pstate */
637 if (highest_lpstate_idx
+ index_diff
>= local_pstate_idx
)
638 return local_pstate_idx
;
640 return highest_lpstate_idx
+ index_diff
;
643 static inline void queue_gpstate_timer(struct global_pstate_info
*gpstates
)
645 unsigned int timer_interval
;
648 * Setting up timer to fire after GPSTATE_TIMER_INTERVAL ms, But
649 * if it exceeds MAX_RAMP_DOWN_TIME ms for ramp down time.
650 * Set timer such that it fires exactly at MAX_RAMP_DOWN_TIME
651 * seconds of ramp down time.
653 if ((gpstates
->elapsed_time
+ GPSTATE_TIMER_INTERVAL
)
654 > MAX_RAMP_DOWN_TIME
)
655 timer_interval
= MAX_RAMP_DOWN_TIME
- gpstates
->elapsed_time
;
657 timer_interval
= GPSTATE_TIMER_INTERVAL
;
659 mod_timer(&gpstates
->timer
, jiffies
+ msecs_to_jiffies(timer_interval
));
663 * gpstate_timer_handler
665 * @t: Timer context used to fetch global pstate info struct
667 * This handler brings down the global pstate closer to the local pstate
668 * according quadratic equation. Queues a new timer if it is still not equal
671 static void gpstate_timer_handler(struct timer_list
*t
)
673 struct global_pstate_info
*gpstates
= from_timer(gpstates
, t
, timer
);
674 struct cpufreq_policy
*policy
= gpstates
->policy
;
675 int gpstate_idx
, lpstate_idx
;
677 unsigned int time_diff
= jiffies_to_msecs(jiffies
)
678 - gpstates
->last_sampled_time
;
679 struct powernv_smp_call_data freq_data
;
681 if (!spin_trylock(&gpstates
->gpstate_lock
))
684 * If the timer has migrated to the different cpu then bring
685 * it back to one of the policy->cpus
687 if (!cpumask_test_cpu(raw_smp_processor_id(), policy
->cpus
)) {
688 gpstates
->timer
.expires
= jiffies
+ msecs_to_jiffies(1);
689 add_timer_on(&gpstates
->timer
, cpumask_first(policy
->cpus
));
690 spin_unlock(&gpstates
->gpstate_lock
);
695 * If PMCR was last updated was using fast_switch then
696 * We may have wrong in gpstate->last_lpstate_idx
697 * value. Hence, read from PMCR to get correct data.
699 val
= get_pmspr(SPRN_PMCR
);
700 freq_data
.gpstate_id
= extract_global_pstate(val
);
701 freq_data
.pstate_id
= extract_local_pstate(val
);
702 if (freq_data
.gpstate_id
== freq_data
.pstate_id
) {
703 reset_gpstates(policy
);
704 spin_unlock(&gpstates
->gpstate_lock
);
708 gpstates
->last_sampled_time
+= time_diff
;
709 gpstates
->elapsed_time
+= time_diff
;
711 if (gpstates
->elapsed_time
> MAX_RAMP_DOWN_TIME
) {
712 gpstate_idx
= pstate_to_idx(freq_data
.pstate_id
);
713 lpstate_idx
= gpstate_idx
;
714 reset_gpstates(policy
);
715 gpstates
->highest_lpstate_idx
= gpstate_idx
;
717 lpstate_idx
= pstate_to_idx(freq_data
.pstate_id
);
718 gpstate_idx
= calc_global_pstate(gpstates
->elapsed_time
,
719 gpstates
->highest_lpstate_idx
,
722 freq_data
.gpstate_id
= idx_to_pstate(gpstate_idx
);
723 gpstates
->last_gpstate_idx
= gpstate_idx
;
724 gpstates
->last_lpstate_idx
= lpstate_idx
;
726 * If local pstate is equal to global pstate, rampdown is over
727 * So timer is not required to be queued.
729 if (gpstate_idx
!= gpstates
->last_lpstate_idx
)
730 queue_gpstate_timer(gpstates
);
732 set_pstate(&freq_data
);
733 spin_unlock(&gpstates
->gpstate_lock
);
737 * powernv_cpufreq_target_index: Sets the frequency corresponding to
738 * the cpufreq table entry indexed by new_index on the cpus in the
741 static int powernv_cpufreq_target_index(struct cpufreq_policy
*policy
,
742 unsigned int new_index
)
744 struct powernv_smp_call_data freq_data
;
745 unsigned int cur_msec
, gpstate_idx
;
746 struct global_pstate_info
*gpstates
= policy
->driver_data
;
748 if (unlikely(rebooting
) && new_index
!= get_nominal_index())
752 /* we don't want to be preempted while
753 * checking if the CPU frequency has been throttled
756 powernv_cpufreq_throttle_check(NULL
);
760 cur_msec
= jiffies_to_msecs(get_jiffies_64());
762 freq_data
.pstate_id
= idx_to_pstate(new_index
);
764 freq_data
.gpstate_id
= freq_data
.pstate_id
;
768 spin_lock(&gpstates
->gpstate_lock
);
770 if (!gpstates
->last_sampled_time
) {
771 gpstate_idx
= new_index
;
772 gpstates
->highest_lpstate_idx
= new_index
;
776 if (gpstates
->last_gpstate_idx
< new_index
) {
777 gpstates
->elapsed_time
+= cur_msec
-
778 gpstates
->last_sampled_time
;
781 * If its has been ramping down for more than MAX_RAMP_DOWN_TIME
782 * we should be resetting all global pstate related data. Set it
783 * equal to local pstate to start fresh.
785 if (gpstates
->elapsed_time
> MAX_RAMP_DOWN_TIME
) {
786 reset_gpstates(policy
);
787 gpstates
->highest_lpstate_idx
= new_index
;
788 gpstate_idx
= new_index
;
790 /* Elaspsed_time is less than 5 seconds, continue to rampdown */
791 gpstate_idx
= calc_global_pstate(gpstates
->elapsed_time
,
792 gpstates
->highest_lpstate_idx
,
796 reset_gpstates(policy
);
797 gpstates
->highest_lpstate_idx
= new_index
;
798 gpstate_idx
= new_index
;
802 * If local pstate is equal to global pstate, rampdown is over
803 * So timer is not required to be queued.
805 if (gpstate_idx
!= new_index
)
806 queue_gpstate_timer(gpstates
);
808 del_timer_sync(&gpstates
->timer
);
811 freq_data
.gpstate_id
= idx_to_pstate(gpstate_idx
);
812 gpstates
->last_sampled_time
= cur_msec
;
813 gpstates
->last_gpstate_idx
= gpstate_idx
;
814 gpstates
->last_lpstate_idx
= new_index
;
816 spin_unlock(&gpstates
->gpstate_lock
);
820 * Use smp_call_function to send IPI and execute the
821 * mtspr on target CPU. We could do that without IPI
822 * if current CPU is within policy->cpus (core)
824 smp_call_function_any(policy
->cpus
, set_pstate
, &freq_data
, 1);
828 static int powernv_cpufreq_cpu_init(struct cpufreq_policy
*policy
)
831 struct kernfs_node
*kn
;
832 struct global_pstate_info
*gpstates
;
834 base
= cpu_first_thread_sibling(policy
->cpu
);
836 for (i
= 0; i
< threads_per_core
; i
++)
837 cpumask_set_cpu(base
+ i
, policy
->cpus
);
839 kn
= kernfs_find_and_get(policy
->kobj
.sd
, throttle_attr_grp
.name
);
843 ret
= sysfs_create_group(&policy
->kobj
, &throttle_attr_grp
);
845 pr_info("Failed to create throttle stats directory for cpu %d\n",
853 policy
->freq_table
= powernv_freqs
;
854 policy
->fast_switch_possible
= true;
856 if (pvr_version_is(PVR_POWER9
))
859 /* Initialise Gpstate ramp-down timer only on POWER8 */
860 gpstates
= kzalloc(sizeof(*gpstates
), GFP_KERNEL
);
864 policy
->driver_data
= gpstates
;
866 /* initialize timer */
867 gpstates
->policy
= policy
;
868 timer_setup(&gpstates
->timer
, gpstate_timer_handler
,
869 TIMER_PINNED
| TIMER_DEFERRABLE
);
870 gpstates
->timer
.expires
= jiffies
+
871 msecs_to_jiffies(GPSTATE_TIMER_INTERVAL
);
872 spin_lock_init(&gpstates
->gpstate_lock
);
877 static void powernv_cpufreq_cpu_exit(struct cpufreq_policy
*policy
)
879 struct powernv_smp_call_data freq_data
;
880 struct global_pstate_info
*gpstates
= policy
->driver_data
;
882 freq_data
.pstate_id
= idx_to_pstate(powernv_pstate_info
.min
);
883 freq_data
.gpstate_id
= idx_to_pstate(powernv_pstate_info
.min
);
884 smp_call_function_single(policy
->cpu
, set_pstate
, &freq_data
, 1);
886 del_timer_sync(&gpstates
->timer
);
888 kfree(policy
->driver_data
);
891 static int powernv_cpufreq_reboot_notifier(struct notifier_block
*nb
,
892 unsigned long action
, void *unused
)
895 struct cpufreq_policy
*cpu_policy
;
898 for_each_online_cpu(cpu
) {
899 cpu_policy
= cpufreq_cpu_get(cpu
);
902 powernv_cpufreq_target_index(cpu_policy
, get_nominal_index());
903 cpufreq_cpu_put(cpu_policy
);
909 static struct notifier_block powernv_cpufreq_reboot_nb
= {
910 .notifier_call
= powernv_cpufreq_reboot_notifier
,
913 static void powernv_cpufreq_work_fn(struct work_struct
*work
)
915 struct chip
*chip
= container_of(work
, struct chip
, throttle
);
916 struct cpufreq_policy
*policy
;
921 cpumask_and(&mask
, &chip
->mask
, cpu_online_mask
);
922 smp_call_function_any(&mask
,
923 powernv_cpufreq_throttle_check
, NULL
, 0);
928 chip
->restore
= false;
929 for_each_cpu(cpu
, &mask
) {
932 policy
= cpufreq_cpu_get(cpu
);
935 index
= cpufreq_table_find_index_c(policy
, policy
->cur
, false);
936 powernv_cpufreq_target_index(policy
, index
);
937 cpumask_andnot(&mask
, &mask
, policy
->cpus
);
938 cpufreq_cpu_put(policy
);
944 static int powernv_cpufreq_occ_msg(struct notifier_block
*nb
,
945 unsigned long msg_type
, void *_msg
)
947 struct opal_msg
*msg
= _msg
;
948 struct opal_occ_msg omsg
;
951 if (msg_type
!= OPAL_MSG_OCC
)
954 omsg
.type
= be64_to_cpu(msg
->params
[0]);
959 pr_info("OCC (On Chip Controller - enforces hard thermal/power limits) Resetting\n");
961 * powernv_cpufreq_throttle_check() is called in
962 * target() callback which can detect the throttle state
963 * for governors like ondemand.
964 * But static governors will not call target() often thus
965 * report throttling here.
969 pr_warn("CPU frequency is throttled for duration\n");
974 pr_info("OCC Loading, CPU frequency is throttled until OCC is started\n");
977 omsg
.chip
= be64_to_cpu(msg
->params
[1]);
978 omsg
.throttle_status
= be64_to_cpu(msg
->params
[2]);
983 pr_info("OCC Active, CPU frequency is no longer throttled\n");
985 for (i
= 0; i
< nr_chips
; i
++) {
986 chips
[i
].restore
= true;
987 schedule_work(&chips
[i
].throttle
);
993 for (i
= 0; i
< nr_chips
; i
++)
994 if (chips
[i
].id
== omsg
.chip
)
997 if (omsg
.throttle_status
>= 0 &&
998 omsg
.throttle_status
<= OCC_MAX_THROTTLE_STATUS
) {
999 chips
[i
].throttle_reason
= omsg
.throttle_status
;
1000 chips
[i
].reason
[omsg
.throttle_status
]++;
1003 if (!omsg
.throttle_status
)
1004 chips
[i
].restore
= true;
1006 schedule_work(&chips
[i
].throttle
);
1011 static struct notifier_block powernv_cpufreq_opal_nb
= {
1012 .notifier_call
= powernv_cpufreq_occ_msg
,
1017 static unsigned int powernv_fast_switch(struct cpufreq_policy
*policy
,
1018 unsigned int target_freq
)
1021 struct powernv_smp_call_data freq_data
;
1023 index
= cpufreq_table_find_index_dl(policy
, target_freq
, false);
1024 freq_data
.pstate_id
= powernv_freqs
[index
].driver_data
;
1025 freq_data
.gpstate_id
= powernv_freqs
[index
].driver_data
;
1026 set_pstate(&freq_data
);
1028 return powernv_freqs
[index
].frequency
;
1031 static struct cpufreq_driver powernv_cpufreq_driver
= {
1032 .name
= "powernv-cpufreq",
1033 .flags
= CPUFREQ_CONST_LOOPS
,
1034 .init
= powernv_cpufreq_cpu_init
,
1035 .exit
= powernv_cpufreq_cpu_exit
,
1036 .verify
= cpufreq_generic_frequency_table_verify
,
1037 .target_index
= powernv_cpufreq_target_index
,
1038 .fast_switch
= powernv_fast_switch
,
1039 .get
= powernv_cpufreq_get
,
1040 .attr
= powernv_cpu_freq_attr
,
1043 static int init_chip_info(void)
1046 unsigned int cpu
, i
;
1047 unsigned int prev_chip_id
= UINT_MAX
;
1048 cpumask_t
*chip_cpu_mask
;
1051 chip
= kcalloc(num_possible_cpus(), sizeof(*chip
), GFP_KERNEL
);
1055 /* Allocate a chip cpu mask large enough to fit mask for all chips */
1056 chip_cpu_mask
= kcalloc(MAX_NR_CHIPS
, sizeof(cpumask_t
), GFP_KERNEL
);
1057 if (!chip_cpu_mask
) {
1059 goto free_and_return
;
1062 for_each_possible_cpu(cpu
) {
1063 unsigned int id
= cpu_to_chip_id(cpu
);
1065 if (prev_chip_id
!= id
) {
1067 chip
[nr_chips
++] = id
;
1069 cpumask_set_cpu(cpu
, &chip_cpu_mask
[nr_chips
-1]);
1072 chips
= kcalloc(nr_chips
, sizeof(struct chip
), GFP_KERNEL
);
1075 goto out_free_chip_cpu_mask
;
1078 for (i
= 0; i
< nr_chips
; i
++) {
1079 chips
[i
].id
= chip
[i
];
1080 cpumask_copy(&chips
[i
].mask
, &chip_cpu_mask
[i
]);
1081 INIT_WORK(&chips
[i
].throttle
, powernv_cpufreq_work_fn
);
1082 for_each_cpu(cpu
, &chips
[i
].mask
)
1083 per_cpu(chip_info
, cpu
) = &chips
[i
];
1086 out_free_chip_cpu_mask
:
1087 kfree(chip_cpu_mask
);
1093 static inline void clean_chip_info(void)
1097 /* flush any pending work items */
1099 for (i
= 0; i
< nr_chips
; i
++)
1100 cancel_work_sync(&chips
[i
].throttle
);
1104 static inline void unregister_all_notifiers(void)
1106 opal_message_notifier_unregister(OPAL_MSG_OCC
,
1107 &powernv_cpufreq_opal_nb
);
1108 unregister_reboot_notifier(&powernv_cpufreq_reboot_nb
);
1111 static int __init
powernv_cpufreq_init(void)
1115 /* Don't probe on pseries (guest) platforms */
1116 if (!firmware_has_feature(FW_FEATURE_OPAL
))
1119 /* Discover pstates from device tree and init */
1120 rc
= init_powernv_pstates();
1124 /* Populate chip info */
1125 rc
= init_chip_info();
1129 if (powernv_pstate_info
.wof_enabled
)
1130 powernv_cpufreq_driver
.boost_enabled
= true;
1132 powernv_cpu_freq_attr
[SCALING_BOOST_FREQS_ATTR_INDEX
] = NULL
;
1134 rc
= cpufreq_register_driver(&powernv_cpufreq_driver
);
1136 pr_info("Failed to register the cpufreq driver (%d)\n", rc
);
1140 if (powernv_pstate_info
.wof_enabled
)
1141 cpufreq_enable_boost_support();
1143 register_reboot_notifier(&powernv_cpufreq_reboot_nb
);
1144 opal_message_notifier_register(OPAL_MSG_OCC
, &powernv_cpufreq_opal_nb
);
1150 pr_info("Platform driver disabled. System does not support PState control\n");
1153 module_init(powernv_cpufreq_init
);
1155 static void __exit
powernv_cpufreq_exit(void)
1157 cpufreq_unregister_driver(&powernv_cpufreq_driver
);
1158 unregister_all_notifiers();
1161 module_exit(powernv_cpufreq_exit
);
1163 MODULE_DESCRIPTION("cpufreq driver for IBM/OpenPOWER powernv systems");
1164 MODULE_LICENSE("GPL");
1165 MODULE_AUTHOR("Vaidyanathan Srinivasan <svaidy at linux.vnet.ibm.com>");