1 // SPDX-License-Identifier: GPL-2.0-only
2 /* n2_core.c: Niagara2 Stream Processing Unit (SPU) crypto support.
4 * Copyright (C) 2010, 2011 David S. Miller <davem@davemloft.net>
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 #include <linux/kernel.h>
10 #include <linux/module.h>
12 #include <linux/of_address.h>
13 #include <linux/platform_device.h>
14 #include <linux/cpumask.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/crypto.h>
18 #include <crypto/md5.h>
19 #include <crypto/sha1.h>
20 #include <crypto/sha2.h>
21 #include <crypto/aes.h>
22 #include <crypto/internal/des.h>
23 #include <linux/mutex.h>
24 #include <linux/delay.h>
25 #include <linux/sched.h>
27 #include <crypto/internal/hash.h>
28 #include <crypto/internal/skcipher.h>
29 #include <crypto/scatterwalk.h>
30 #include <crypto/algapi.h>
32 #include <asm/hypervisor.h>
33 #include <asm/mdesc.h>
37 #define DRV_MODULE_NAME "n2_crypto"
38 #define DRV_MODULE_VERSION "0.2"
39 #define DRV_MODULE_RELDATE "July 28, 2011"
41 static const char version
[] =
42 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
44 MODULE_AUTHOR("David S. Miller <davem@davemloft.net>");
45 MODULE_DESCRIPTION("Niagara2 Crypto driver");
46 MODULE_LICENSE("GPL");
47 MODULE_VERSION(DRV_MODULE_VERSION
);
49 #define N2_CRA_PRIORITY 200
51 static DEFINE_MUTEX(spu_lock
);
55 unsigned long qhandle
;
62 struct list_head jobs
;
69 struct list_head list
;
73 struct spu_queue
*queue
;
77 static struct spu_queue
**cpu_to_cwq
;
78 static struct spu_queue
**cpu_to_mau
;
80 static unsigned long spu_next_offset(struct spu_queue
*q
, unsigned long off
)
82 if (q
->q_type
== HV_NCS_QTYPE_MAU
) {
83 off
+= MAU_ENTRY_SIZE
;
84 if (off
== (MAU_ENTRY_SIZE
* MAU_NUM_ENTRIES
))
87 off
+= CWQ_ENTRY_SIZE
;
88 if (off
== (CWQ_ENTRY_SIZE
* CWQ_NUM_ENTRIES
))
94 struct n2_request_common
{
95 struct list_head entry
;
98 #define OFFSET_NOT_RUNNING (~(unsigned int)0)
100 /* An async job request records the final tail value it used in
101 * n2_request_common->offset, test to see if that offset is in
102 * the range old_head, new_head, inclusive.
104 static inline bool job_finished(struct spu_queue
*q
, unsigned int offset
,
105 unsigned long old_head
, unsigned long new_head
)
107 if (old_head
<= new_head
) {
108 if (offset
> old_head
&& offset
<= new_head
)
111 if (offset
> old_head
|| offset
<= new_head
)
117 /* When the HEAD marker is unequal to the actual HEAD, we get
118 * a virtual device INO interrupt. We should process the
119 * completed CWQ entries and adjust the HEAD marker to clear
122 static irqreturn_t
cwq_intr(int irq
, void *dev_id
)
124 unsigned long off
, new_head
, hv_ret
;
125 struct spu_queue
*q
= dev_id
;
127 pr_err("CPU[%d]: Got CWQ interrupt for qhdl[%lx]\n",
128 smp_processor_id(), q
->qhandle
);
132 hv_ret
= sun4v_ncs_gethead(q
->qhandle
, &new_head
);
134 pr_err("CPU[%d]: CWQ gethead[%lx] hv_ret[%lu]\n",
135 smp_processor_id(), new_head
, hv_ret
);
137 for (off
= q
->head
; off
!= new_head
; off
= spu_next_offset(q
, off
)) {
141 hv_ret
= sun4v_ncs_sethead_marker(q
->qhandle
, new_head
);
142 if (hv_ret
== HV_EOK
)
145 spin_unlock(&q
->lock
);
150 static irqreturn_t
mau_intr(int irq
, void *dev_id
)
152 struct spu_queue
*q
= dev_id
;
153 unsigned long head
, hv_ret
;
157 pr_err("CPU[%d]: Got MAU interrupt for qhdl[%lx]\n",
158 smp_processor_id(), q
->qhandle
);
160 hv_ret
= sun4v_ncs_gethead(q
->qhandle
, &head
);
162 pr_err("CPU[%d]: MAU gethead[%lx] hv_ret[%lu]\n",
163 smp_processor_id(), head
, hv_ret
);
165 sun4v_ncs_sethead_marker(q
->qhandle
, head
);
167 spin_unlock(&q
->lock
);
172 static void *spu_queue_next(struct spu_queue
*q
, void *cur
)
174 return q
->q
+ spu_next_offset(q
, cur
- q
->q
);
177 static int spu_queue_num_free(struct spu_queue
*q
)
179 unsigned long head
= q
->head
;
180 unsigned long tail
= q
->tail
;
181 unsigned long end
= (CWQ_ENTRY_SIZE
* CWQ_NUM_ENTRIES
);
187 diff
= (end
- tail
) + head
;
189 return (diff
/ CWQ_ENTRY_SIZE
) - 1;
192 static void *spu_queue_alloc(struct spu_queue
*q
, int num_entries
)
194 int avail
= spu_queue_num_free(q
);
196 if (avail
>= num_entries
)
197 return q
->q
+ q
->tail
;
202 static unsigned long spu_queue_submit(struct spu_queue
*q
, void *last
)
204 unsigned long hv_ret
, new_tail
;
206 new_tail
= spu_next_offset(q
, last
- q
->q
);
208 hv_ret
= sun4v_ncs_settail(q
->qhandle
, new_tail
);
209 if (hv_ret
== HV_EOK
)
214 static u64
control_word_base(unsigned int len
, unsigned int hmac_key_len
,
215 int enc_type
, int auth_type
,
216 unsigned int hash_len
,
217 bool sfas
, bool sob
, bool eob
, bool encrypt
,
220 u64 word
= (len
- 1) & CONTROL_LEN
;
222 word
|= ((u64
) opcode
<< CONTROL_OPCODE_SHIFT
);
223 word
|= ((u64
) enc_type
<< CONTROL_ENC_TYPE_SHIFT
);
224 word
|= ((u64
) auth_type
<< CONTROL_AUTH_TYPE_SHIFT
);
226 word
|= CONTROL_STORE_FINAL_AUTH_STATE
;
228 word
|= CONTROL_START_OF_BLOCK
;
230 word
|= CONTROL_END_OF_BLOCK
;
232 word
|= CONTROL_ENCRYPT
;
234 word
|= ((u64
) (hmac_key_len
- 1)) << CONTROL_HMAC_KEY_LEN_SHIFT
;
236 word
|= ((u64
) (hash_len
- 1)) << CONTROL_HASH_LEN_SHIFT
;
242 static inline bool n2_should_run_async(struct spu_queue
*qp
, int this_len
)
244 if (this_len
>= 64 ||
245 qp
->head
!= qp
->tail
)
251 struct n2_ahash_alg
{
252 struct list_head entry
;
259 struct ahash_alg alg
;
262 static inline struct n2_ahash_alg
*n2_ahash_alg(struct crypto_tfm
*tfm
)
264 struct crypto_alg
*alg
= tfm
->__crt_alg
;
265 struct ahash_alg
*ahash_alg
;
267 ahash_alg
= container_of(alg
, struct ahash_alg
, halg
.base
);
269 return container_of(ahash_alg
, struct n2_ahash_alg
, alg
);
273 const char *child_alg
;
274 struct n2_ahash_alg derived
;
277 static inline struct n2_hmac_alg
*n2_hmac_alg(struct crypto_tfm
*tfm
)
279 struct crypto_alg
*alg
= tfm
->__crt_alg
;
280 struct ahash_alg
*ahash_alg
;
282 ahash_alg
= container_of(alg
, struct ahash_alg
, halg
.base
);
284 return container_of(ahash_alg
, struct n2_hmac_alg
, derived
.alg
);
288 struct crypto_ahash
*fallback_tfm
;
291 #define N2_HASH_KEY_MAX 32 /* HW limit for all HMAC requests */
294 struct n2_hash_ctx base
;
296 struct crypto_shash
*child_shash
;
299 unsigned char hash_key
[N2_HASH_KEY_MAX
];
302 struct n2_hash_req_ctx
{
304 struct md5_state md5
;
305 struct sha1_state sha1
;
306 struct sha256_state sha256
;
309 struct ahash_request fallback_req
;
312 static int n2_hash_async_init(struct ahash_request
*req
)
314 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
315 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
316 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
318 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
319 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
321 return crypto_ahash_init(&rctx
->fallback_req
);
324 static int n2_hash_async_update(struct ahash_request
*req
)
326 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
327 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
328 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
330 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
331 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
332 rctx
->fallback_req
.nbytes
= req
->nbytes
;
333 rctx
->fallback_req
.src
= req
->src
;
335 return crypto_ahash_update(&rctx
->fallback_req
);
338 static int n2_hash_async_final(struct ahash_request
*req
)
340 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
341 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
342 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
344 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
345 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
346 rctx
->fallback_req
.result
= req
->result
;
348 return crypto_ahash_final(&rctx
->fallback_req
);
351 static int n2_hash_async_finup(struct ahash_request
*req
)
353 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
354 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
355 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
357 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
358 rctx
->fallback_req
.base
.flags
= req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
359 rctx
->fallback_req
.nbytes
= req
->nbytes
;
360 rctx
->fallback_req
.src
= req
->src
;
361 rctx
->fallback_req
.result
= req
->result
;
363 return crypto_ahash_finup(&rctx
->fallback_req
);
366 static int n2_hash_async_noimport(struct ahash_request
*req
, const void *in
)
371 static int n2_hash_async_noexport(struct ahash_request
*req
, void *out
)
376 static int n2_hash_cra_init(struct crypto_tfm
*tfm
)
378 const char *fallback_driver_name
= crypto_tfm_alg_name(tfm
);
379 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
380 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(ahash
);
381 struct crypto_ahash
*fallback_tfm
;
384 fallback_tfm
= crypto_alloc_ahash(fallback_driver_name
, 0,
385 CRYPTO_ALG_NEED_FALLBACK
);
386 if (IS_ERR(fallback_tfm
)) {
387 pr_warn("Fallback driver '%s' could not be loaded!\n",
388 fallback_driver_name
);
389 err
= PTR_ERR(fallback_tfm
);
393 crypto_ahash_set_reqsize(ahash
, (sizeof(struct n2_hash_req_ctx
) +
394 crypto_ahash_reqsize(fallback_tfm
)));
396 ctx
->fallback_tfm
= fallback_tfm
;
403 static void n2_hash_cra_exit(struct crypto_tfm
*tfm
)
405 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
406 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(ahash
);
408 crypto_free_ahash(ctx
->fallback_tfm
);
411 static int n2_hmac_cra_init(struct crypto_tfm
*tfm
)
413 const char *fallback_driver_name
= crypto_tfm_alg_name(tfm
);
414 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
415 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(ahash
);
416 struct n2_hmac_alg
*n2alg
= n2_hmac_alg(tfm
);
417 struct crypto_ahash
*fallback_tfm
;
418 struct crypto_shash
*child_shash
;
421 fallback_tfm
= crypto_alloc_ahash(fallback_driver_name
, 0,
422 CRYPTO_ALG_NEED_FALLBACK
);
423 if (IS_ERR(fallback_tfm
)) {
424 pr_warn("Fallback driver '%s' could not be loaded!\n",
425 fallback_driver_name
);
426 err
= PTR_ERR(fallback_tfm
);
430 child_shash
= crypto_alloc_shash(n2alg
->child_alg
, 0, 0);
431 if (IS_ERR(child_shash
)) {
432 pr_warn("Child shash '%s' could not be loaded!\n",
434 err
= PTR_ERR(child_shash
);
435 goto out_free_fallback
;
438 crypto_ahash_set_reqsize(ahash
, (sizeof(struct n2_hash_req_ctx
) +
439 crypto_ahash_reqsize(fallback_tfm
)));
441 ctx
->child_shash
= child_shash
;
442 ctx
->base
.fallback_tfm
= fallback_tfm
;
446 crypto_free_ahash(fallback_tfm
);
452 static void n2_hmac_cra_exit(struct crypto_tfm
*tfm
)
454 struct crypto_ahash
*ahash
= __crypto_ahash_cast(tfm
);
455 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(ahash
);
457 crypto_free_ahash(ctx
->base
.fallback_tfm
);
458 crypto_free_shash(ctx
->child_shash
);
461 static int n2_hmac_async_setkey(struct crypto_ahash
*tfm
, const u8
*key
,
464 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(tfm
);
465 struct crypto_shash
*child_shash
= ctx
->child_shash
;
466 struct crypto_ahash
*fallback_tfm
;
469 fallback_tfm
= ctx
->base
.fallback_tfm
;
470 err
= crypto_ahash_setkey(fallback_tfm
, key
, keylen
);
474 bs
= crypto_shash_blocksize(child_shash
);
475 ds
= crypto_shash_digestsize(child_shash
);
476 BUG_ON(ds
> N2_HASH_KEY_MAX
);
478 err
= crypto_shash_tfm_digest(child_shash
, key
, keylen
,
483 } else if (keylen
<= N2_HASH_KEY_MAX
)
484 memcpy(ctx
->hash_key
, key
, keylen
);
486 ctx
->hash_key_len
= keylen
;
491 static unsigned long wait_for_tail(struct spu_queue
*qp
)
493 unsigned long head
, hv_ret
;
496 hv_ret
= sun4v_ncs_gethead(qp
->qhandle
, &head
);
497 if (hv_ret
!= HV_EOK
) {
498 pr_err("Hypervisor error on gethead\n");
501 if (head
== qp
->tail
) {
509 static unsigned long submit_and_wait_for_tail(struct spu_queue
*qp
,
510 struct cwq_initial_entry
*ent
)
512 unsigned long hv_ret
= spu_queue_submit(qp
, ent
);
514 if (hv_ret
== HV_EOK
)
515 hv_ret
= wait_for_tail(qp
);
520 static int n2_do_async_digest(struct ahash_request
*req
,
521 unsigned int auth_type
, unsigned int digest_size
,
522 unsigned int result_size
, void *hash_loc
,
523 unsigned long auth_key
, unsigned int auth_key_len
)
525 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
526 struct cwq_initial_entry
*ent
;
527 struct crypto_hash_walk walk
;
528 struct spu_queue
*qp
;
533 /* The total effective length of the operation may not
536 if (unlikely(req
->nbytes
> (1 << 16))) {
537 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
538 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
540 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
541 rctx
->fallback_req
.base
.flags
=
542 req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
543 rctx
->fallback_req
.nbytes
= req
->nbytes
;
544 rctx
->fallback_req
.src
= req
->src
;
545 rctx
->fallback_req
.result
= req
->result
;
547 return crypto_ahash_digest(&rctx
->fallback_req
);
550 nbytes
= crypto_hash_walk_first(req
, &walk
);
553 qp
= cpu_to_cwq
[cpu
];
557 spin_lock_irqsave(&qp
->lock
, flags
);
559 /* XXX can do better, improve this later by doing a by-hand scatterlist
562 ent
= qp
->q
+ qp
->tail
;
564 ent
->control
= control_word_base(nbytes
, auth_key_len
, 0,
565 auth_type
, digest_size
,
566 false, true, false, false,
569 ent
->src_addr
= __pa(walk
.data
);
570 ent
->auth_key_addr
= auth_key
;
571 ent
->auth_iv_addr
= __pa(hash_loc
);
572 ent
->final_auth_state_addr
= 0UL;
573 ent
->enc_key_addr
= 0UL;
574 ent
->enc_iv_addr
= 0UL;
575 ent
->dest_addr
= __pa(hash_loc
);
577 nbytes
= crypto_hash_walk_done(&walk
, 0);
579 ent
= spu_queue_next(qp
, ent
);
581 ent
->control
= (nbytes
- 1);
582 ent
->src_addr
= __pa(walk
.data
);
583 ent
->auth_key_addr
= 0UL;
584 ent
->auth_iv_addr
= 0UL;
585 ent
->final_auth_state_addr
= 0UL;
586 ent
->enc_key_addr
= 0UL;
587 ent
->enc_iv_addr
= 0UL;
588 ent
->dest_addr
= 0UL;
590 nbytes
= crypto_hash_walk_done(&walk
, 0);
592 ent
->control
|= CONTROL_END_OF_BLOCK
;
594 if (submit_and_wait_for_tail(qp
, ent
) != HV_EOK
)
599 spin_unlock_irqrestore(&qp
->lock
, flags
);
602 memcpy(req
->result
, hash_loc
, result_size
);
609 static int n2_hash_async_digest(struct ahash_request
*req
)
611 struct n2_ahash_alg
*n2alg
= n2_ahash_alg(req
->base
.tfm
);
612 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
615 ds
= n2alg
->digest_size
;
616 if (unlikely(req
->nbytes
== 0)) {
617 memcpy(req
->result
, n2alg
->hash_zero
, ds
);
620 memcpy(&rctx
->u
, n2alg
->hash_init
, n2alg
->hw_op_hashsz
);
622 return n2_do_async_digest(req
, n2alg
->auth_type
,
623 n2alg
->hw_op_hashsz
, ds
,
627 static int n2_hmac_async_digest(struct ahash_request
*req
)
629 struct n2_hmac_alg
*n2alg
= n2_hmac_alg(req
->base
.tfm
);
630 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
631 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
632 struct n2_hmac_ctx
*ctx
= crypto_ahash_ctx(tfm
);
635 ds
= n2alg
->derived
.digest_size
;
636 if (unlikely(req
->nbytes
== 0) ||
637 unlikely(ctx
->hash_key_len
> N2_HASH_KEY_MAX
)) {
638 struct n2_hash_req_ctx
*rctx
= ahash_request_ctx(req
);
639 struct n2_hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
641 ahash_request_set_tfm(&rctx
->fallback_req
, ctx
->fallback_tfm
);
642 rctx
->fallback_req
.base
.flags
=
643 req
->base
.flags
& CRYPTO_TFM_REQ_MAY_SLEEP
;
644 rctx
->fallback_req
.nbytes
= req
->nbytes
;
645 rctx
->fallback_req
.src
= req
->src
;
646 rctx
->fallback_req
.result
= req
->result
;
648 return crypto_ahash_digest(&rctx
->fallback_req
);
650 memcpy(&rctx
->u
, n2alg
->derived
.hash_init
,
651 n2alg
->derived
.hw_op_hashsz
);
653 return n2_do_async_digest(req
, n2alg
->derived
.hmac_type
,
654 n2alg
->derived
.hw_op_hashsz
, ds
,
656 __pa(&ctx
->hash_key
),
660 struct n2_skcipher_context
{
664 u8 aes
[AES_MAX_KEY_SIZE
];
665 u8 des
[DES_KEY_SIZE
];
666 u8 des3
[3 * DES_KEY_SIZE
];
670 #define N2_CHUNK_ARR_LEN 16
672 struct n2_crypto_chunk
{
673 struct list_head entry
;
674 unsigned long iv_paddr
: 44;
675 unsigned long arr_len
: 20;
676 unsigned long dest_paddr
;
677 unsigned long dest_final
;
679 unsigned long src_paddr
: 44;
680 unsigned long src_len
: 20;
681 } arr
[N2_CHUNK_ARR_LEN
];
684 struct n2_request_context
{
685 struct skcipher_walk walk
;
686 struct list_head chunk_list
;
687 struct n2_crypto_chunk chunk
;
691 /* The SPU allows some level of flexibility for partial cipher blocks
692 * being specified in a descriptor.
694 * It merely requires that every descriptor's length field is at least
695 * as large as the cipher block size. This means that a cipher block
696 * can span at most 2 descriptors. However, this does not allow a
697 * partial block to span into the final descriptor as that would
698 * violate the rule (since every descriptor's length must be at lest
699 * the block size). So, for example, assuming an 8 byte block size:
701 * 0xe --> 0xa --> 0x8
703 * is a valid length sequence, whereas:
705 * 0xe --> 0xb --> 0x7
707 * is not a valid sequence.
710 struct n2_skcipher_alg
{
711 struct list_head entry
;
713 struct skcipher_alg skcipher
;
716 static inline struct n2_skcipher_alg
*n2_skcipher_alg(struct crypto_skcipher
*tfm
)
718 struct skcipher_alg
*alg
= crypto_skcipher_alg(tfm
);
720 return container_of(alg
, struct n2_skcipher_alg
, skcipher
);
723 static int n2_aes_setkey(struct crypto_skcipher
*skcipher
, const u8
*key
,
726 struct crypto_tfm
*tfm
= crypto_skcipher_tfm(skcipher
);
727 struct n2_skcipher_context
*ctx
= crypto_tfm_ctx(tfm
);
728 struct n2_skcipher_alg
*n2alg
= n2_skcipher_alg(skcipher
);
730 ctx
->enc_type
= (n2alg
->enc_type
& ENC_TYPE_CHAINING_MASK
);
733 case AES_KEYSIZE_128
:
734 ctx
->enc_type
|= ENC_TYPE_ALG_AES128
;
736 case AES_KEYSIZE_192
:
737 ctx
->enc_type
|= ENC_TYPE_ALG_AES192
;
739 case AES_KEYSIZE_256
:
740 ctx
->enc_type
|= ENC_TYPE_ALG_AES256
;
746 ctx
->key_len
= keylen
;
747 memcpy(ctx
->key
.aes
, key
, keylen
);
751 static int n2_des_setkey(struct crypto_skcipher
*skcipher
, const u8
*key
,
754 struct crypto_tfm
*tfm
= crypto_skcipher_tfm(skcipher
);
755 struct n2_skcipher_context
*ctx
= crypto_tfm_ctx(tfm
);
756 struct n2_skcipher_alg
*n2alg
= n2_skcipher_alg(skcipher
);
759 err
= verify_skcipher_des_key(skcipher
, key
);
763 ctx
->enc_type
= n2alg
->enc_type
;
765 ctx
->key_len
= keylen
;
766 memcpy(ctx
->key
.des
, key
, keylen
);
770 static int n2_3des_setkey(struct crypto_skcipher
*skcipher
, const u8
*key
,
773 struct crypto_tfm
*tfm
= crypto_skcipher_tfm(skcipher
);
774 struct n2_skcipher_context
*ctx
= crypto_tfm_ctx(tfm
);
775 struct n2_skcipher_alg
*n2alg
= n2_skcipher_alg(skcipher
);
778 err
= verify_skcipher_des3_key(skcipher
, key
);
782 ctx
->enc_type
= n2alg
->enc_type
;
784 ctx
->key_len
= keylen
;
785 memcpy(ctx
->key
.des3
, key
, keylen
);
789 static inline int skcipher_descriptor_len(int nbytes
, unsigned int block_size
)
791 int this_len
= nbytes
;
793 this_len
-= (nbytes
& (block_size
- 1));
794 return this_len
> (1 << 16) ? (1 << 16) : this_len
;
797 static int __n2_crypt_chunk(struct crypto_skcipher
*skcipher
,
798 struct n2_crypto_chunk
*cp
,
799 struct spu_queue
*qp
, bool encrypt
)
801 struct n2_skcipher_context
*ctx
= crypto_skcipher_ctx(skcipher
);
802 struct cwq_initial_entry
*ent
;
806 ent
= spu_queue_alloc(qp
, cp
->arr_len
);
808 pr_info("queue_alloc() of %d fails\n",
813 in_place
= (cp
->dest_paddr
== cp
->arr
[0].src_paddr
);
815 ent
->control
= control_word_base(cp
->arr
[0].src_len
,
816 0, ctx
->enc_type
, 0, 0,
817 false, true, false, encrypt
,
819 (in_place
? OPCODE_INPLACE_BIT
: 0));
820 ent
->src_addr
= cp
->arr
[0].src_paddr
;
821 ent
->auth_key_addr
= 0UL;
822 ent
->auth_iv_addr
= 0UL;
823 ent
->final_auth_state_addr
= 0UL;
824 ent
->enc_key_addr
= __pa(&ctx
->key
);
825 ent
->enc_iv_addr
= cp
->iv_paddr
;
826 ent
->dest_addr
= (in_place
? 0UL : cp
->dest_paddr
);
828 for (i
= 1; i
< cp
->arr_len
; i
++) {
829 ent
= spu_queue_next(qp
, ent
);
831 ent
->control
= cp
->arr
[i
].src_len
- 1;
832 ent
->src_addr
= cp
->arr
[i
].src_paddr
;
833 ent
->auth_key_addr
= 0UL;
834 ent
->auth_iv_addr
= 0UL;
835 ent
->final_auth_state_addr
= 0UL;
836 ent
->enc_key_addr
= 0UL;
837 ent
->enc_iv_addr
= 0UL;
838 ent
->dest_addr
= 0UL;
840 ent
->control
|= CONTROL_END_OF_BLOCK
;
842 return (spu_queue_submit(qp
, ent
) != HV_EOK
) ? -EINVAL
: 0;
845 static int n2_compute_chunks(struct skcipher_request
*req
)
847 struct n2_request_context
*rctx
= skcipher_request_ctx(req
);
848 struct skcipher_walk
*walk
= &rctx
->walk
;
849 struct n2_crypto_chunk
*chunk
;
850 unsigned long dest_prev
;
851 unsigned int tot_len
;
855 err
= skcipher_walk_async(walk
, req
);
859 INIT_LIST_HEAD(&rctx
->chunk_list
);
861 chunk
= &rctx
->chunk
;
862 INIT_LIST_HEAD(&chunk
->entry
);
864 chunk
->iv_paddr
= 0UL;
866 chunk
->dest_paddr
= 0UL;
868 prev_in_place
= false;
872 while ((nbytes
= walk
->nbytes
) != 0) {
873 unsigned long dest_paddr
, src_paddr
;
877 src_paddr
= (page_to_phys(walk
->src
.phys
.page
) +
878 walk
->src
.phys
.offset
);
879 dest_paddr
= (page_to_phys(walk
->dst
.phys
.page
) +
880 walk
->dst
.phys
.offset
);
881 in_place
= (src_paddr
== dest_paddr
);
882 this_len
= skcipher_descriptor_len(nbytes
, walk
->blocksize
);
884 if (chunk
->arr_len
!= 0) {
885 if (in_place
!= prev_in_place
||
887 dest_paddr
!= dest_prev
) ||
888 chunk
->arr_len
== N2_CHUNK_ARR_LEN
||
889 tot_len
+ this_len
> (1 << 16)) {
890 chunk
->dest_final
= dest_prev
;
891 list_add_tail(&chunk
->entry
,
893 chunk
= kzalloc(sizeof(*chunk
), GFP_ATOMIC
);
898 INIT_LIST_HEAD(&chunk
->entry
);
901 if (chunk
->arr_len
== 0) {
902 chunk
->dest_paddr
= dest_paddr
;
905 chunk
->arr
[chunk
->arr_len
].src_paddr
= src_paddr
;
906 chunk
->arr
[chunk
->arr_len
].src_len
= this_len
;
909 dest_prev
= dest_paddr
+ this_len
;
910 prev_in_place
= in_place
;
913 err
= skcipher_walk_done(walk
, nbytes
- this_len
);
917 if (!err
&& chunk
->arr_len
!= 0) {
918 chunk
->dest_final
= dest_prev
;
919 list_add_tail(&chunk
->entry
, &rctx
->chunk_list
);
925 static void n2_chunk_complete(struct skcipher_request
*req
, void *final_iv
)
927 struct n2_request_context
*rctx
= skcipher_request_ctx(req
);
928 struct n2_crypto_chunk
*c
, *tmp
;
931 memcpy(rctx
->walk
.iv
, final_iv
, rctx
->walk
.blocksize
);
933 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
, entry
) {
935 if (unlikely(c
!= &rctx
->chunk
))
941 static int n2_do_ecb(struct skcipher_request
*req
, bool encrypt
)
943 struct n2_request_context
*rctx
= skcipher_request_ctx(req
);
944 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
945 int err
= n2_compute_chunks(req
);
946 struct n2_crypto_chunk
*c
, *tmp
;
947 unsigned long flags
, hv_ret
;
948 struct spu_queue
*qp
;
953 qp
= cpu_to_cwq
[get_cpu()];
958 spin_lock_irqsave(&qp
->lock
, flags
);
960 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
, entry
) {
961 err
= __n2_crypt_chunk(tfm
, c
, qp
, encrypt
);
965 if (unlikely(c
!= &rctx
->chunk
))
969 hv_ret
= wait_for_tail(qp
);
970 if (hv_ret
!= HV_EOK
)
974 spin_unlock_irqrestore(&qp
->lock
, flags
);
979 n2_chunk_complete(req
, NULL
);
983 static int n2_encrypt_ecb(struct skcipher_request
*req
)
985 return n2_do_ecb(req
, true);
988 static int n2_decrypt_ecb(struct skcipher_request
*req
)
990 return n2_do_ecb(req
, false);
993 static int n2_do_chaining(struct skcipher_request
*req
, bool encrypt
)
995 struct n2_request_context
*rctx
= skcipher_request_ctx(req
);
996 struct crypto_skcipher
*tfm
= crypto_skcipher_reqtfm(req
);
997 unsigned long flags
, hv_ret
, iv_paddr
;
998 int err
= n2_compute_chunks(req
);
999 struct n2_crypto_chunk
*c
, *tmp
;
1000 struct spu_queue
*qp
;
1001 void *final_iv_addr
;
1003 final_iv_addr
= NULL
;
1008 qp
= cpu_to_cwq
[get_cpu()];
1013 spin_lock_irqsave(&qp
->lock
, flags
);
1016 iv_paddr
= __pa(rctx
->walk
.iv
);
1017 list_for_each_entry_safe(c
, tmp
, &rctx
->chunk_list
,
1019 c
->iv_paddr
= iv_paddr
;
1020 err
= __n2_crypt_chunk(tfm
, c
, qp
, true);
1023 iv_paddr
= c
->dest_final
- rctx
->walk
.blocksize
;
1024 list_del(&c
->entry
);
1025 if (unlikely(c
!= &rctx
->chunk
))
1028 final_iv_addr
= __va(iv_paddr
);
1030 list_for_each_entry_safe_reverse(c
, tmp
, &rctx
->chunk_list
,
1032 if (c
== &rctx
->chunk
) {
1033 iv_paddr
= __pa(rctx
->walk
.iv
);
1035 iv_paddr
= (tmp
->arr
[tmp
->arr_len
-1].src_paddr
+
1036 tmp
->arr
[tmp
->arr_len
-1].src_len
-
1037 rctx
->walk
.blocksize
);
1039 if (!final_iv_addr
) {
1042 pa
= (c
->arr
[c
->arr_len
-1].src_paddr
+
1043 c
->arr
[c
->arr_len
-1].src_len
-
1044 rctx
->walk
.blocksize
);
1045 final_iv_addr
= rctx
->temp_iv
;
1046 memcpy(rctx
->temp_iv
, __va(pa
),
1047 rctx
->walk
.blocksize
);
1049 c
->iv_paddr
= iv_paddr
;
1050 err
= __n2_crypt_chunk(tfm
, c
, qp
, false);
1053 list_del(&c
->entry
);
1054 if (unlikely(c
!= &rctx
->chunk
))
1059 hv_ret
= wait_for_tail(qp
);
1060 if (hv_ret
!= HV_EOK
)
1064 spin_unlock_irqrestore(&qp
->lock
, flags
);
1069 n2_chunk_complete(req
, err
? NULL
: final_iv_addr
);
1073 static int n2_encrypt_chaining(struct skcipher_request
*req
)
1075 return n2_do_chaining(req
, true);
1078 static int n2_decrypt_chaining(struct skcipher_request
*req
)
1080 return n2_do_chaining(req
, false);
1083 struct n2_skcipher_tmpl
{
1085 const char *drv_name
;
1088 struct skcipher_alg skcipher
;
1091 static const struct n2_skcipher_tmpl skcipher_tmpls
[] = {
1092 /* DES: ECB CBC and CFB are supported */
1093 { .name
= "ecb(des)",
1094 .drv_name
= "ecb-des",
1095 .block_size
= DES_BLOCK_SIZE
,
1096 .enc_type
= (ENC_TYPE_ALG_DES
|
1097 ENC_TYPE_CHAINING_ECB
),
1099 .min_keysize
= DES_KEY_SIZE
,
1100 .max_keysize
= DES_KEY_SIZE
,
1101 .setkey
= n2_des_setkey
,
1102 .encrypt
= n2_encrypt_ecb
,
1103 .decrypt
= n2_decrypt_ecb
,
1106 { .name
= "cbc(des)",
1107 .drv_name
= "cbc-des",
1108 .block_size
= DES_BLOCK_SIZE
,
1109 .enc_type
= (ENC_TYPE_ALG_DES
|
1110 ENC_TYPE_CHAINING_CBC
),
1112 .ivsize
= DES_BLOCK_SIZE
,
1113 .min_keysize
= DES_KEY_SIZE
,
1114 .max_keysize
= DES_KEY_SIZE
,
1115 .setkey
= n2_des_setkey
,
1116 .encrypt
= n2_encrypt_chaining
,
1117 .decrypt
= n2_decrypt_chaining
,
1121 /* 3DES: ECB CBC and CFB are supported */
1122 { .name
= "ecb(des3_ede)",
1123 .drv_name
= "ecb-3des",
1124 .block_size
= DES_BLOCK_SIZE
,
1125 .enc_type
= (ENC_TYPE_ALG_3DES
|
1126 ENC_TYPE_CHAINING_ECB
),
1128 .min_keysize
= 3 * DES_KEY_SIZE
,
1129 .max_keysize
= 3 * DES_KEY_SIZE
,
1130 .setkey
= n2_3des_setkey
,
1131 .encrypt
= n2_encrypt_ecb
,
1132 .decrypt
= n2_decrypt_ecb
,
1135 { .name
= "cbc(des3_ede)",
1136 .drv_name
= "cbc-3des",
1137 .block_size
= DES_BLOCK_SIZE
,
1138 .enc_type
= (ENC_TYPE_ALG_3DES
|
1139 ENC_TYPE_CHAINING_CBC
),
1141 .ivsize
= DES_BLOCK_SIZE
,
1142 .min_keysize
= 3 * DES_KEY_SIZE
,
1143 .max_keysize
= 3 * DES_KEY_SIZE
,
1144 .setkey
= n2_3des_setkey
,
1145 .encrypt
= n2_encrypt_chaining
,
1146 .decrypt
= n2_decrypt_chaining
,
1150 /* AES: ECB CBC and CTR are supported */
1151 { .name
= "ecb(aes)",
1152 .drv_name
= "ecb-aes",
1153 .block_size
= AES_BLOCK_SIZE
,
1154 .enc_type
= (ENC_TYPE_ALG_AES128
|
1155 ENC_TYPE_CHAINING_ECB
),
1157 .min_keysize
= AES_MIN_KEY_SIZE
,
1158 .max_keysize
= AES_MAX_KEY_SIZE
,
1159 .setkey
= n2_aes_setkey
,
1160 .encrypt
= n2_encrypt_ecb
,
1161 .decrypt
= n2_decrypt_ecb
,
1164 { .name
= "cbc(aes)",
1165 .drv_name
= "cbc-aes",
1166 .block_size
= AES_BLOCK_SIZE
,
1167 .enc_type
= (ENC_TYPE_ALG_AES128
|
1168 ENC_TYPE_CHAINING_CBC
),
1170 .ivsize
= AES_BLOCK_SIZE
,
1171 .min_keysize
= AES_MIN_KEY_SIZE
,
1172 .max_keysize
= AES_MAX_KEY_SIZE
,
1173 .setkey
= n2_aes_setkey
,
1174 .encrypt
= n2_encrypt_chaining
,
1175 .decrypt
= n2_decrypt_chaining
,
1178 { .name
= "ctr(aes)",
1179 .drv_name
= "ctr-aes",
1180 .block_size
= AES_BLOCK_SIZE
,
1181 .enc_type
= (ENC_TYPE_ALG_AES128
|
1182 ENC_TYPE_CHAINING_COUNTER
),
1184 .ivsize
= AES_BLOCK_SIZE
,
1185 .min_keysize
= AES_MIN_KEY_SIZE
,
1186 .max_keysize
= AES_MAX_KEY_SIZE
,
1187 .setkey
= n2_aes_setkey
,
1188 .encrypt
= n2_encrypt_chaining
,
1189 .decrypt
= n2_encrypt_chaining
,
1194 #define NUM_CIPHER_TMPLS ARRAY_SIZE(skcipher_tmpls)
1196 static LIST_HEAD(skcipher_algs
);
1198 struct n2_hash_tmpl
{
1200 const u8
*hash_zero
;
1201 const u8
*hash_init
;
1210 static const __le32 n2_md5_init
[MD5_HASH_WORDS
] = {
1211 cpu_to_le32(MD5_H0
),
1212 cpu_to_le32(MD5_H1
),
1213 cpu_to_le32(MD5_H2
),
1214 cpu_to_le32(MD5_H3
),
1216 static const u32 n2_sha1_init
[SHA1_DIGEST_SIZE
/ 4] = {
1217 SHA1_H0
, SHA1_H1
, SHA1_H2
, SHA1_H3
, SHA1_H4
,
1219 static const u32 n2_sha256_init
[SHA256_DIGEST_SIZE
/ 4] = {
1220 SHA256_H0
, SHA256_H1
, SHA256_H2
, SHA256_H3
,
1221 SHA256_H4
, SHA256_H5
, SHA256_H6
, SHA256_H7
,
1223 static const u32 n2_sha224_init
[SHA256_DIGEST_SIZE
/ 4] = {
1224 SHA224_H0
, SHA224_H1
, SHA224_H2
, SHA224_H3
,
1225 SHA224_H4
, SHA224_H5
, SHA224_H6
, SHA224_H7
,
1228 static const struct n2_hash_tmpl hash_tmpls
[] = {
1230 .hash_zero
= md5_zero_message_hash
,
1231 .hash_init
= (u8
*)n2_md5_init
,
1232 .auth_type
= AUTH_TYPE_MD5
,
1233 .hmac_type
= AUTH_TYPE_HMAC_MD5
,
1234 .hw_op_hashsz
= MD5_DIGEST_SIZE
,
1235 .digest_size
= MD5_DIGEST_SIZE
,
1236 .statesize
= sizeof(struct md5_state
),
1237 .block_size
= MD5_HMAC_BLOCK_SIZE
},
1239 .hash_zero
= sha1_zero_message_hash
,
1240 .hash_init
= (u8
*)n2_sha1_init
,
1241 .auth_type
= AUTH_TYPE_SHA1
,
1242 .hmac_type
= AUTH_TYPE_HMAC_SHA1
,
1243 .hw_op_hashsz
= SHA1_DIGEST_SIZE
,
1244 .digest_size
= SHA1_DIGEST_SIZE
,
1245 .statesize
= sizeof(struct sha1_state
),
1246 .block_size
= SHA1_BLOCK_SIZE
},
1248 .hash_zero
= sha256_zero_message_hash
,
1249 .hash_init
= (u8
*)n2_sha256_init
,
1250 .auth_type
= AUTH_TYPE_SHA256
,
1251 .hmac_type
= AUTH_TYPE_HMAC_SHA256
,
1252 .hw_op_hashsz
= SHA256_DIGEST_SIZE
,
1253 .digest_size
= SHA256_DIGEST_SIZE
,
1254 .statesize
= sizeof(struct sha256_state
),
1255 .block_size
= SHA256_BLOCK_SIZE
},
1257 .hash_zero
= sha224_zero_message_hash
,
1258 .hash_init
= (u8
*)n2_sha224_init
,
1259 .auth_type
= AUTH_TYPE_SHA256
,
1260 .hmac_type
= AUTH_TYPE_RESERVED
,
1261 .hw_op_hashsz
= SHA256_DIGEST_SIZE
,
1262 .digest_size
= SHA224_DIGEST_SIZE
,
1263 .statesize
= sizeof(struct sha256_state
),
1264 .block_size
= SHA224_BLOCK_SIZE
},
1266 #define NUM_HASH_TMPLS ARRAY_SIZE(hash_tmpls)
1268 static LIST_HEAD(ahash_algs
);
1269 static LIST_HEAD(hmac_algs
);
1271 static int algs_registered
;
1273 static void __n2_unregister_algs(void)
1275 struct n2_skcipher_alg
*skcipher
, *skcipher_tmp
;
1276 struct n2_ahash_alg
*alg
, *alg_tmp
;
1277 struct n2_hmac_alg
*hmac
, *hmac_tmp
;
1279 list_for_each_entry_safe(skcipher
, skcipher_tmp
, &skcipher_algs
, entry
) {
1280 crypto_unregister_skcipher(&skcipher
->skcipher
);
1281 list_del(&skcipher
->entry
);
1284 list_for_each_entry_safe(hmac
, hmac_tmp
, &hmac_algs
, derived
.entry
) {
1285 crypto_unregister_ahash(&hmac
->derived
.alg
);
1286 list_del(&hmac
->derived
.entry
);
1289 list_for_each_entry_safe(alg
, alg_tmp
, &ahash_algs
, entry
) {
1290 crypto_unregister_ahash(&alg
->alg
);
1291 list_del(&alg
->entry
);
1296 static int n2_skcipher_init_tfm(struct crypto_skcipher
*tfm
)
1298 crypto_skcipher_set_reqsize(tfm
, sizeof(struct n2_request_context
));
1302 static int __n2_register_one_skcipher(const struct n2_skcipher_tmpl
*tmpl
)
1304 struct n2_skcipher_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1305 struct skcipher_alg
*alg
;
1312 *alg
= tmpl
->skcipher
;
1314 snprintf(alg
->base
.cra_name
, CRYPTO_MAX_ALG_NAME
, "%s", tmpl
->name
);
1315 snprintf(alg
->base
.cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "%s-n2", tmpl
->drv_name
);
1316 alg
->base
.cra_priority
= N2_CRA_PRIORITY
;
1317 alg
->base
.cra_flags
= CRYPTO_ALG_KERN_DRIVER_ONLY
| CRYPTO_ALG_ASYNC
|
1318 CRYPTO_ALG_ALLOCATES_MEMORY
;
1319 alg
->base
.cra_blocksize
= tmpl
->block_size
;
1320 p
->enc_type
= tmpl
->enc_type
;
1321 alg
->base
.cra_ctxsize
= sizeof(struct n2_skcipher_context
);
1322 alg
->base
.cra_module
= THIS_MODULE
;
1323 alg
->init
= n2_skcipher_init_tfm
;
1325 list_add(&p
->entry
, &skcipher_algs
);
1326 err
= crypto_register_skcipher(alg
);
1328 pr_err("%s alg registration failed\n", alg
->base
.cra_name
);
1329 list_del(&p
->entry
);
1332 pr_info("%s alg registered\n", alg
->base
.cra_name
);
1337 static int __n2_register_one_hmac(struct n2_ahash_alg
*n2ahash
)
1339 struct n2_hmac_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1340 struct ahash_alg
*ahash
;
1341 struct crypto_alg
*base
;
1347 p
->child_alg
= n2ahash
->alg
.halg
.base
.cra_name
;
1348 memcpy(&p
->derived
, n2ahash
, sizeof(struct n2_ahash_alg
));
1349 INIT_LIST_HEAD(&p
->derived
.entry
);
1351 ahash
= &p
->derived
.alg
;
1352 ahash
->digest
= n2_hmac_async_digest
;
1353 ahash
->setkey
= n2_hmac_async_setkey
;
1355 base
= &ahash
->halg
.base
;
1357 if (snprintf(base
->cra_name
, CRYPTO_MAX_ALG_NAME
, "hmac(%s)",
1358 p
->child_alg
) >= CRYPTO_MAX_ALG_NAME
)
1360 if (snprintf(base
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "hmac-%s-n2",
1361 p
->child_alg
) >= CRYPTO_MAX_ALG_NAME
)
1364 base
->cra_ctxsize
= sizeof(struct n2_hmac_ctx
);
1365 base
->cra_init
= n2_hmac_cra_init
;
1366 base
->cra_exit
= n2_hmac_cra_exit
;
1368 list_add(&p
->derived
.entry
, &hmac_algs
);
1369 err
= crypto_register_ahash(ahash
);
1371 pr_err("%s alg registration failed\n", base
->cra_name
);
1372 list_del(&p
->derived
.entry
);
1376 pr_info("%s alg registered\n", base
->cra_name
);
1381 static int __n2_register_one_ahash(const struct n2_hash_tmpl
*tmpl
)
1383 struct n2_ahash_alg
*p
= kzalloc(sizeof(*p
), GFP_KERNEL
);
1384 struct hash_alg_common
*halg
;
1385 struct crypto_alg
*base
;
1386 struct ahash_alg
*ahash
;
1392 p
->hash_zero
= tmpl
->hash_zero
;
1393 p
->hash_init
= tmpl
->hash_init
;
1394 p
->auth_type
= tmpl
->auth_type
;
1395 p
->hmac_type
= tmpl
->hmac_type
;
1396 p
->hw_op_hashsz
= tmpl
->hw_op_hashsz
;
1397 p
->digest_size
= tmpl
->digest_size
;
1400 ahash
->init
= n2_hash_async_init
;
1401 ahash
->update
= n2_hash_async_update
;
1402 ahash
->final
= n2_hash_async_final
;
1403 ahash
->finup
= n2_hash_async_finup
;
1404 ahash
->digest
= n2_hash_async_digest
;
1405 ahash
->export
= n2_hash_async_noexport
;
1406 ahash
->import
= n2_hash_async_noimport
;
1408 halg
= &ahash
->halg
;
1409 halg
->digestsize
= tmpl
->digest_size
;
1410 halg
->statesize
= tmpl
->statesize
;
1413 snprintf(base
->cra_name
, CRYPTO_MAX_ALG_NAME
, "%s", tmpl
->name
);
1414 snprintf(base
->cra_driver_name
, CRYPTO_MAX_ALG_NAME
, "%s-n2", tmpl
->name
);
1415 base
->cra_priority
= N2_CRA_PRIORITY
;
1416 base
->cra_flags
= CRYPTO_ALG_KERN_DRIVER_ONLY
|
1417 CRYPTO_ALG_NEED_FALLBACK
;
1418 base
->cra_blocksize
= tmpl
->block_size
;
1419 base
->cra_ctxsize
= sizeof(struct n2_hash_ctx
);
1420 base
->cra_module
= THIS_MODULE
;
1421 base
->cra_init
= n2_hash_cra_init
;
1422 base
->cra_exit
= n2_hash_cra_exit
;
1424 list_add(&p
->entry
, &ahash_algs
);
1425 err
= crypto_register_ahash(ahash
);
1427 pr_err("%s alg registration failed\n", base
->cra_name
);
1428 list_del(&p
->entry
);
1431 pr_info("%s alg registered\n", base
->cra_name
);
1433 if (!err
&& p
->hmac_type
!= AUTH_TYPE_RESERVED
)
1434 err
= __n2_register_one_hmac(p
);
1438 static int n2_register_algs(void)
1442 mutex_lock(&spu_lock
);
1443 if (algs_registered
++)
1446 for (i
= 0; i
< NUM_HASH_TMPLS
; i
++) {
1447 err
= __n2_register_one_ahash(&hash_tmpls
[i
]);
1449 __n2_unregister_algs();
1453 for (i
= 0; i
< NUM_CIPHER_TMPLS
; i
++) {
1454 err
= __n2_register_one_skcipher(&skcipher_tmpls
[i
]);
1456 __n2_unregister_algs();
1462 mutex_unlock(&spu_lock
);
1466 static void n2_unregister_algs(void)
1468 mutex_lock(&spu_lock
);
1469 if (!--algs_registered
)
1470 __n2_unregister_algs();
1471 mutex_unlock(&spu_lock
);
1474 /* To map CWQ queues to interrupt sources, the hypervisor API provides
1475 * a devino. This isn't very useful to us because all of the
1476 * interrupts listed in the device_node have been translated to
1477 * Linux virtual IRQ cookie numbers.
1479 * So we have to back-translate, going through the 'intr' and 'ino'
1480 * property tables of the n2cp MDESC node, matching it with the OF
1481 * 'interrupts' property entries, in order to figure out which
1482 * devino goes to which already-translated IRQ.
1484 static int find_devino_index(struct platform_device
*dev
, struct spu_mdesc_info
*ip
,
1485 unsigned long dev_ino
)
1487 const unsigned int *dev_intrs
;
1491 for (i
= 0; i
< ip
->num_intrs
; i
++) {
1492 if (ip
->ino_table
[i
].ino
== dev_ino
)
1495 if (i
== ip
->num_intrs
)
1498 intr
= ip
->ino_table
[i
].intr
;
1500 dev_intrs
= of_get_property(dev
->dev
.of_node
, "interrupts", NULL
);
1504 for (i
= 0; i
< dev
->archdata
.num_irqs
; i
++) {
1505 if (dev_intrs
[i
] == intr
)
1512 static int spu_map_ino(struct platform_device
*dev
, struct spu_mdesc_info
*ip
,
1513 const char *irq_name
, struct spu_queue
*p
,
1514 irq_handler_t handler
)
1519 herr
= sun4v_ncs_qhandle_to_devino(p
->qhandle
, &p
->devino
);
1523 index
= find_devino_index(dev
, ip
, p
->devino
);
1527 p
->irq
= dev
->archdata
.irqs
[index
];
1529 sprintf(p
->irq_name
, "%s-%d", irq_name
, index
);
1531 return request_irq(p
->irq
, handler
, 0, p
->irq_name
, p
);
1534 static struct kmem_cache
*queue_cache
[2];
1536 static void *new_queue(unsigned long q_type
)
1538 return kmem_cache_zalloc(queue_cache
[q_type
- 1], GFP_KERNEL
);
1541 static void free_queue(void *p
, unsigned long q_type
)
1543 kmem_cache_free(queue_cache
[q_type
- 1], p
);
1546 static int queue_cache_init(void)
1548 if (!queue_cache
[HV_NCS_QTYPE_MAU
- 1])
1549 queue_cache
[HV_NCS_QTYPE_MAU
- 1] =
1550 kmem_cache_create("mau_queue",
1553 MAU_ENTRY_SIZE
, 0, NULL
);
1554 if (!queue_cache
[HV_NCS_QTYPE_MAU
- 1])
1557 if (!queue_cache
[HV_NCS_QTYPE_CWQ
- 1])
1558 queue_cache
[HV_NCS_QTYPE_CWQ
- 1] =
1559 kmem_cache_create("cwq_queue",
1562 CWQ_ENTRY_SIZE
, 0, NULL
);
1563 if (!queue_cache
[HV_NCS_QTYPE_CWQ
- 1]) {
1564 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_MAU
- 1]);
1565 queue_cache
[HV_NCS_QTYPE_MAU
- 1] = NULL
;
1571 static void queue_cache_destroy(void)
1573 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_MAU
- 1]);
1574 kmem_cache_destroy(queue_cache
[HV_NCS_QTYPE_CWQ
- 1]);
1575 queue_cache
[HV_NCS_QTYPE_MAU
- 1] = NULL
;
1576 queue_cache
[HV_NCS_QTYPE_CWQ
- 1] = NULL
;
1579 static long spu_queue_register_workfn(void *arg
)
1581 struct spu_qreg
*qr
= arg
;
1582 struct spu_queue
*p
= qr
->queue
;
1583 unsigned long q_type
= qr
->type
;
1584 unsigned long hv_ret
;
1586 hv_ret
= sun4v_ncs_qconf(q_type
, __pa(p
->q
),
1587 CWQ_NUM_ENTRIES
, &p
->qhandle
);
1589 sun4v_ncs_sethead_marker(p
->qhandle
, 0);
1591 return hv_ret
? -EINVAL
: 0;
1594 static int spu_queue_register(struct spu_queue
*p
, unsigned long q_type
)
1596 int cpu
= cpumask_any_and(&p
->sharing
, cpu_online_mask
);
1597 struct spu_qreg qr
= { .queue
= p
, .type
= q_type
};
1599 return work_on_cpu_safe(cpu
, spu_queue_register_workfn
, &qr
);
1602 static int spu_queue_setup(struct spu_queue
*p
)
1606 p
->q
= new_queue(p
->q_type
);
1610 err
= spu_queue_register(p
, p
->q_type
);
1612 free_queue(p
->q
, p
->q_type
);
1619 static void spu_queue_destroy(struct spu_queue
*p
)
1621 unsigned long hv_ret
;
1626 hv_ret
= sun4v_ncs_qconf(p
->q_type
, p
->qhandle
, 0, &p
->qhandle
);
1629 free_queue(p
->q
, p
->q_type
);
1632 static void spu_list_destroy(struct list_head
*list
)
1634 struct spu_queue
*p
, *n
;
1636 list_for_each_entry_safe(p
, n
, list
, list
) {
1639 for (i
= 0; i
< NR_CPUS
; i
++) {
1640 if (cpu_to_cwq
[i
] == p
)
1641 cpu_to_cwq
[i
] = NULL
;
1645 free_irq(p
->irq
, p
);
1648 spu_queue_destroy(p
);
1654 /* Walk the backward arcs of a CWQ 'exec-unit' node,
1655 * gathering cpu membership information.
1657 static int spu_mdesc_walk_arcs(struct mdesc_handle
*mdesc
,
1658 struct platform_device
*dev
,
1659 u64 node
, struct spu_queue
*p
,
1660 struct spu_queue
**table
)
1664 mdesc_for_each_arc(arc
, mdesc
, node
, MDESC_ARC_TYPE_BACK
) {
1665 u64 tgt
= mdesc_arc_target(mdesc
, arc
);
1666 const char *name
= mdesc_node_name(mdesc
, tgt
);
1669 if (strcmp(name
, "cpu"))
1671 id
= mdesc_get_property(mdesc
, tgt
, "id", NULL
);
1672 if (table
[*id
] != NULL
) {
1673 dev_err(&dev
->dev
, "%pOF: SPU cpu slot already set.\n",
1677 cpumask_set_cpu(*id
, &p
->sharing
);
1683 /* Process an 'exec-unit' MDESC node of type 'cwq'. */
1684 static int handle_exec_unit(struct spu_mdesc_info
*ip
, struct list_head
*list
,
1685 struct platform_device
*dev
, struct mdesc_handle
*mdesc
,
1686 u64 node
, const char *iname
, unsigned long q_type
,
1687 irq_handler_t handler
, struct spu_queue
**table
)
1689 struct spu_queue
*p
;
1692 p
= kzalloc(sizeof(struct spu_queue
), GFP_KERNEL
);
1694 dev_err(&dev
->dev
, "%pOF: Could not allocate SPU queue.\n",
1699 cpumask_clear(&p
->sharing
);
1700 spin_lock_init(&p
->lock
);
1702 INIT_LIST_HEAD(&p
->jobs
);
1703 list_add(&p
->list
, list
);
1705 err
= spu_mdesc_walk_arcs(mdesc
, dev
, node
, p
, table
);
1709 err
= spu_queue_setup(p
);
1713 return spu_map_ino(dev
, ip
, iname
, p
, handler
);
1716 static int spu_mdesc_scan(struct mdesc_handle
*mdesc
, struct platform_device
*dev
,
1717 struct spu_mdesc_info
*ip
, struct list_head
*list
,
1718 const char *exec_name
, unsigned long q_type
,
1719 irq_handler_t handler
, struct spu_queue
**table
)
1724 mdesc_for_each_node_by_name(mdesc
, node
, "exec-unit") {
1727 type
= mdesc_get_property(mdesc
, node
, "type", NULL
);
1728 if (!type
|| strcmp(type
, exec_name
))
1731 err
= handle_exec_unit(ip
, list
, dev
, mdesc
, node
,
1732 exec_name
, q_type
, handler
, table
);
1734 spu_list_destroy(list
);
1742 static int get_irq_props(struct mdesc_handle
*mdesc
, u64 node
,
1743 struct spu_mdesc_info
*ip
)
1749 ino
= mdesc_get_property(mdesc
, node
, "ino", &ino_len
);
1751 printk("NO 'ino'\n");
1755 ip
->num_intrs
= ino_len
/ sizeof(u64
);
1756 ip
->ino_table
= kzalloc((sizeof(struct ino_blob
) *
1762 for (i
= 0; i
< ip
->num_intrs
; i
++) {
1763 struct ino_blob
*b
= &ip
->ino_table
[i
];
1771 static int grab_mdesc_irq_props(struct mdesc_handle
*mdesc
,
1772 struct platform_device
*dev
,
1773 struct spu_mdesc_info
*ip
,
1774 const char *node_name
)
1778 if (of_property_read_reg(dev
->dev
.of_node
, 0, ®
, NULL
) < 0)
1781 mdesc_for_each_node_by_name(mdesc
, node
, "virtual-device") {
1785 name
= mdesc_get_property(mdesc
, node
, "name", NULL
);
1786 if (!name
|| strcmp(name
, node_name
))
1788 chdl
= mdesc_get_property(mdesc
, node
, "cfg-handle", NULL
);
1789 if (!chdl
|| (*chdl
!= reg
))
1791 ip
->cfg_handle
= *chdl
;
1792 return get_irq_props(mdesc
, node
, ip
);
1798 static unsigned long n2_spu_hvapi_major
;
1799 static unsigned long n2_spu_hvapi_minor
;
1801 static int n2_spu_hvapi_register(void)
1805 n2_spu_hvapi_major
= 2;
1806 n2_spu_hvapi_minor
= 0;
1808 err
= sun4v_hvapi_register(HV_GRP_NCS
,
1810 &n2_spu_hvapi_minor
);
1813 pr_info("Registered NCS HVAPI version %lu.%lu\n",
1815 n2_spu_hvapi_minor
);
1820 static void n2_spu_hvapi_unregister(void)
1822 sun4v_hvapi_unregister(HV_GRP_NCS
);
1825 static int global_ref
;
1827 static int grab_global_resources(void)
1831 mutex_lock(&spu_lock
);
1836 err
= n2_spu_hvapi_register();
1840 err
= queue_cache_init();
1842 goto out_hvapi_release
;
1845 cpu_to_cwq
= kcalloc(NR_CPUS
, sizeof(struct spu_queue
*),
1848 goto out_queue_cache_destroy
;
1850 cpu_to_mau
= kcalloc(NR_CPUS
, sizeof(struct spu_queue
*),
1853 goto out_free_cwq_table
;
1860 mutex_unlock(&spu_lock
);
1867 out_queue_cache_destroy
:
1868 queue_cache_destroy();
1871 n2_spu_hvapi_unregister();
1875 static void release_global_resources(void)
1877 mutex_lock(&spu_lock
);
1878 if (!--global_ref
) {
1885 queue_cache_destroy();
1886 n2_spu_hvapi_unregister();
1888 mutex_unlock(&spu_lock
);
1891 static struct n2_crypto
*alloc_n2cp(void)
1893 struct n2_crypto
*np
= kzalloc(sizeof(struct n2_crypto
), GFP_KERNEL
);
1896 INIT_LIST_HEAD(&np
->cwq_list
);
1901 static void free_n2cp(struct n2_crypto
*np
)
1903 kfree(np
->cwq_info
.ino_table
);
1904 np
->cwq_info
.ino_table
= NULL
;
1909 static void n2_spu_driver_version(void)
1911 static int n2_spu_version_printed
;
1913 if (n2_spu_version_printed
++ == 0)
1914 pr_info("%s", version
);
1917 static int n2_crypto_probe(struct platform_device
*dev
)
1919 struct mdesc_handle
*mdesc
;
1920 struct n2_crypto
*np
;
1923 n2_spu_driver_version();
1925 pr_info("Found N2CP at %pOF\n", dev
->dev
.of_node
);
1929 dev_err(&dev
->dev
, "%pOF: Unable to allocate n2cp.\n",
1934 err
= grab_global_resources();
1936 dev_err(&dev
->dev
, "%pOF: Unable to grab global resources.\n",
1941 mdesc
= mdesc_grab();
1944 dev_err(&dev
->dev
, "%pOF: Unable to grab MDESC.\n",
1947 goto out_free_global
;
1949 err
= grab_mdesc_irq_props(mdesc
, dev
, &np
->cwq_info
, "n2cp");
1951 dev_err(&dev
->dev
, "%pOF: Unable to grab IRQ props.\n",
1953 mdesc_release(mdesc
);
1954 goto out_free_global
;
1957 err
= spu_mdesc_scan(mdesc
, dev
, &np
->cwq_info
, &np
->cwq_list
,
1958 "cwq", HV_NCS_QTYPE_CWQ
, cwq_intr
,
1960 mdesc_release(mdesc
);
1963 dev_err(&dev
->dev
, "%pOF: CWQ MDESC scan failed.\n",
1965 goto out_free_global
;
1968 err
= n2_register_algs();
1970 dev_err(&dev
->dev
, "%pOF: Unable to register algorithms.\n",
1972 goto out_free_spu_list
;
1975 dev_set_drvdata(&dev
->dev
, np
);
1980 spu_list_destroy(&np
->cwq_list
);
1983 release_global_resources();
1991 static void n2_crypto_remove(struct platform_device
*dev
)
1993 struct n2_crypto
*np
= dev_get_drvdata(&dev
->dev
);
1995 n2_unregister_algs();
1997 spu_list_destroy(&np
->cwq_list
);
1999 release_global_resources();
2004 static struct n2_mau
*alloc_ncp(void)
2006 struct n2_mau
*mp
= kzalloc(sizeof(struct n2_mau
), GFP_KERNEL
);
2009 INIT_LIST_HEAD(&mp
->mau_list
);
2014 static void free_ncp(struct n2_mau
*mp
)
2016 kfree(mp
->mau_info
.ino_table
);
2017 mp
->mau_info
.ino_table
= NULL
;
2022 static int n2_mau_probe(struct platform_device
*dev
)
2024 struct mdesc_handle
*mdesc
;
2028 n2_spu_driver_version();
2030 pr_info("Found NCP at %pOF\n", dev
->dev
.of_node
);
2034 dev_err(&dev
->dev
, "%pOF: Unable to allocate ncp.\n",
2039 err
= grab_global_resources();
2041 dev_err(&dev
->dev
, "%pOF: Unable to grab global resources.\n",
2046 mdesc
= mdesc_grab();
2049 dev_err(&dev
->dev
, "%pOF: Unable to grab MDESC.\n",
2052 goto out_free_global
;
2055 err
= grab_mdesc_irq_props(mdesc
, dev
, &mp
->mau_info
, "ncp");
2057 dev_err(&dev
->dev
, "%pOF: Unable to grab IRQ props.\n",
2059 mdesc_release(mdesc
);
2060 goto out_free_global
;
2063 err
= spu_mdesc_scan(mdesc
, dev
, &mp
->mau_info
, &mp
->mau_list
,
2064 "mau", HV_NCS_QTYPE_MAU
, mau_intr
,
2066 mdesc_release(mdesc
);
2069 dev_err(&dev
->dev
, "%pOF: MAU MDESC scan failed.\n",
2071 goto out_free_global
;
2074 dev_set_drvdata(&dev
->dev
, mp
);
2079 release_global_resources();
2087 static void n2_mau_remove(struct platform_device
*dev
)
2089 struct n2_mau
*mp
= dev_get_drvdata(&dev
->dev
);
2091 spu_list_destroy(&mp
->mau_list
);
2093 release_global_resources();
2098 static const struct of_device_id n2_crypto_match
[] = {
2101 .compatible
= "SUNW,n2-cwq",
2105 .compatible
= "SUNW,vf-cwq",
2109 .compatible
= "SUNW,kt-cwq",
2114 MODULE_DEVICE_TABLE(of
, n2_crypto_match
);
2116 static struct platform_driver n2_crypto_driver
= {
2119 .of_match_table
= n2_crypto_match
,
2121 .probe
= n2_crypto_probe
,
2122 .remove_new
= n2_crypto_remove
,
2125 static const struct of_device_id n2_mau_match
[] = {
2128 .compatible
= "SUNW,n2-mau",
2132 .compatible
= "SUNW,vf-mau",
2136 .compatible
= "SUNW,kt-mau",
2141 MODULE_DEVICE_TABLE(of
, n2_mau_match
);
2143 static struct platform_driver n2_mau_driver
= {
2146 .of_match_table
= n2_mau_match
,
2148 .probe
= n2_mau_probe
,
2149 .remove_new
= n2_mau_remove
,
2152 static struct platform_driver
* const drivers
[] = {
2157 static int __init
n2_init(void)
2159 return platform_register_drivers(drivers
, ARRAY_SIZE(drivers
));
2162 static void __exit
n2_exit(void)
2164 platform_unregister_drivers(drivers
, ARRAY_SIZE(drivers
));
2167 module_init(n2_init
);
2168 module_exit(n2_exit
);