drm/tests: hdmi: Fix memory leaks in drm_display_mode_from_cea_vic()
[drm/drm-misc.git] / drivers / crypto / padlock-sha.c
blob6865c7f1fc1a2343611ed56fd561461bf5d7ec23
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Cryptographic API.
5 * Support for VIA PadLock hardware crypto engine.
7 * Copyright (c) 2006 Michal Ludvig <michal@logix.cz>
8 */
10 #include <crypto/internal/hash.h>
11 #include <crypto/padlock.h>
12 #include <crypto/sha1.h>
13 #include <crypto/sha2.h>
14 #include <linux/err.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/errno.h>
18 #include <linux/interrupt.h>
19 #include <linux/kernel.h>
20 #include <linux/scatterlist.h>
21 #include <asm/cpu_device_id.h>
22 #include <asm/fpu/api.h>
24 struct padlock_sha_desc {
25 struct shash_desc fallback;
28 struct padlock_sha_ctx {
29 struct crypto_shash *fallback;
32 static int padlock_sha_init(struct shash_desc *desc)
34 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
35 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
37 dctx->fallback.tfm = ctx->fallback;
38 return crypto_shash_init(&dctx->fallback);
41 static int padlock_sha_update(struct shash_desc *desc,
42 const u8 *data, unsigned int length)
44 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
46 return crypto_shash_update(&dctx->fallback, data, length);
49 static int padlock_sha_export(struct shash_desc *desc, void *out)
51 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
53 return crypto_shash_export(&dctx->fallback, out);
56 static int padlock_sha_import(struct shash_desc *desc, const void *in)
58 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
59 struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
61 dctx->fallback.tfm = ctx->fallback;
62 return crypto_shash_import(&dctx->fallback, in);
65 static inline void padlock_output_block(uint32_t *src,
66 uint32_t *dst, size_t count)
68 while (count--)
69 *dst++ = swab32(*src++);
72 static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in,
73 unsigned int count, u8 *out)
75 /* We can't store directly to *out as it may be unaligned. */
76 /* BTW Don't reduce the buffer size below 128 Bytes!
77 * PadLock microcode needs it that big. */
78 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
79 ((aligned(STACK_ALIGN)));
80 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
81 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
82 struct sha1_state state;
83 unsigned int space;
84 unsigned int leftover;
85 int err;
87 err = crypto_shash_export(&dctx->fallback, &state);
88 if (err)
89 goto out;
91 if (state.count + count > ULONG_MAX)
92 return crypto_shash_finup(&dctx->fallback, in, count, out);
94 leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1;
95 space = SHA1_BLOCK_SIZE - leftover;
96 if (space) {
97 if (count > space) {
98 err = crypto_shash_update(&dctx->fallback, in, space) ?:
99 crypto_shash_export(&dctx->fallback, &state);
100 if (err)
101 goto out;
102 count -= space;
103 in += space;
104 } else {
105 memcpy(state.buffer + leftover, in, count);
106 in = state.buffer;
107 count += leftover;
108 state.count &= ~(SHA1_BLOCK_SIZE - 1);
112 memcpy(result, &state.state, SHA1_DIGEST_SIZE);
114 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
116 : "c"((unsigned long)state.count + count), \
117 "a"((unsigned long)state.count), \
118 "S"(in), "D"(result));
120 padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
122 out:
123 return err;
126 static int padlock_sha1_final(struct shash_desc *desc, u8 *out)
128 u8 buf[4];
130 return padlock_sha1_finup(desc, buf, 0, out);
133 static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in,
134 unsigned int count, u8 *out)
136 /* We can't store directly to *out as it may be unaligned. */
137 /* BTW Don't reduce the buffer size below 128 Bytes!
138 * PadLock microcode needs it that big. */
139 char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
140 ((aligned(STACK_ALIGN)));
141 char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
142 struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
143 struct sha256_state state;
144 unsigned int space;
145 unsigned int leftover;
146 int err;
148 err = crypto_shash_export(&dctx->fallback, &state);
149 if (err)
150 goto out;
152 if (state.count + count > ULONG_MAX)
153 return crypto_shash_finup(&dctx->fallback, in, count, out);
155 leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1;
156 space = SHA256_BLOCK_SIZE - leftover;
157 if (space) {
158 if (count > space) {
159 err = crypto_shash_update(&dctx->fallback, in, space) ?:
160 crypto_shash_export(&dctx->fallback, &state);
161 if (err)
162 goto out;
163 count -= space;
164 in += space;
165 } else {
166 memcpy(state.buf + leftover, in, count);
167 in = state.buf;
168 count += leftover;
169 state.count &= ~(SHA1_BLOCK_SIZE - 1);
173 memcpy(result, &state.state, SHA256_DIGEST_SIZE);
175 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
177 : "c"((unsigned long)state.count + count), \
178 "a"((unsigned long)state.count), \
179 "S"(in), "D"(result));
181 padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
183 out:
184 return err;
187 static int padlock_sha256_final(struct shash_desc *desc, u8 *out)
189 u8 buf[4];
191 return padlock_sha256_finup(desc, buf, 0, out);
194 static int padlock_init_tfm(struct crypto_shash *hash)
196 const char *fallback_driver_name = crypto_shash_alg_name(hash);
197 struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
198 struct crypto_shash *fallback_tfm;
200 /* Allocate a fallback and abort if it failed. */
201 fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
202 CRYPTO_ALG_NEED_FALLBACK);
203 if (IS_ERR(fallback_tfm)) {
204 printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
205 fallback_driver_name);
206 return PTR_ERR(fallback_tfm);
209 ctx->fallback = fallback_tfm;
210 hash->descsize += crypto_shash_descsize(fallback_tfm);
211 return 0;
214 static void padlock_exit_tfm(struct crypto_shash *hash)
216 struct padlock_sha_ctx *ctx = crypto_shash_ctx(hash);
218 crypto_free_shash(ctx->fallback);
221 static struct shash_alg sha1_alg = {
222 .digestsize = SHA1_DIGEST_SIZE,
223 .init = padlock_sha_init,
224 .update = padlock_sha_update,
225 .finup = padlock_sha1_finup,
226 .final = padlock_sha1_final,
227 .export = padlock_sha_export,
228 .import = padlock_sha_import,
229 .init_tfm = padlock_init_tfm,
230 .exit_tfm = padlock_exit_tfm,
231 .descsize = sizeof(struct padlock_sha_desc),
232 .statesize = sizeof(struct sha1_state),
233 .base = {
234 .cra_name = "sha1",
235 .cra_driver_name = "sha1-padlock",
236 .cra_priority = PADLOCK_CRA_PRIORITY,
237 .cra_flags = CRYPTO_ALG_NEED_FALLBACK,
238 .cra_blocksize = SHA1_BLOCK_SIZE,
239 .cra_ctxsize = sizeof(struct padlock_sha_ctx),
240 .cra_module = THIS_MODULE,
244 static struct shash_alg sha256_alg = {
245 .digestsize = SHA256_DIGEST_SIZE,
246 .init = padlock_sha_init,
247 .update = padlock_sha_update,
248 .finup = padlock_sha256_finup,
249 .final = padlock_sha256_final,
250 .export = padlock_sha_export,
251 .import = padlock_sha_import,
252 .init_tfm = padlock_init_tfm,
253 .exit_tfm = padlock_exit_tfm,
254 .descsize = sizeof(struct padlock_sha_desc),
255 .statesize = sizeof(struct sha256_state),
256 .base = {
257 .cra_name = "sha256",
258 .cra_driver_name = "sha256-padlock",
259 .cra_priority = PADLOCK_CRA_PRIORITY,
260 .cra_flags = CRYPTO_ALG_NEED_FALLBACK,
261 .cra_blocksize = SHA256_BLOCK_SIZE,
262 .cra_ctxsize = sizeof(struct padlock_sha_ctx),
263 .cra_module = THIS_MODULE,
267 /* Add two shash_alg instance for hardware-implemented *
268 * multiple-parts hash supported by VIA Nano Processor.*/
269 static int padlock_sha1_init_nano(struct shash_desc *desc)
271 struct sha1_state *sctx = shash_desc_ctx(desc);
273 *sctx = (struct sha1_state){
274 .state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
277 return 0;
280 static int padlock_sha1_update_nano(struct shash_desc *desc,
281 const u8 *data, unsigned int len)
283 struct sha1_state *sctx = shash_desc_ctx(desc);
284 unsigned int partial, done;
285 const u8 *src;
286 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
287 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
288 ((aligned(STACK_ALIGN)));
289 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
291 partial = sctx->count & 0x3f;
292 sctx->count += len;
293 done = 0;
294 src = data;
295 memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
297 if ((partial + len) >= SHA1_BLOCK_SIZE) {
299 /* Append the bytes in state's buffer to a block to handle */
300 if (partial) {
301 done = -partial;
302 memcpy(sctx->buffer + partial, data,
303 done + SHA1_BLOCK_SIZE);
304 src = sctx->buffer;
305 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
306 : "+S"(src), "+D"(dst) \
307 : "a"((long)-1), "c"((unsigned long)1));
308 done += SHA1_BLOCK_SIZE;
309 src = data + done;
312 /* Process the left bytes from the input data */
313 if (len - done >= SHA1_BLOCK_SIZE) {
314 asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
315 : "+S"(src), "+D"(dst)
316 : "a"((long)-1),
317 "c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
318 done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
319 src = data + done;
321 partial = 0;
323 memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
324 memcpy(sctx->buffer + partial, src, len - done);
326 return 0;
329 static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
331 struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
332 unsigned int partial, padlen;
333 __be64 bits;
334 static const u8 padding[64] = { 0x80, };
336 bits = cpu_to_be64(state->count << 3);
338 /* Pad out to 56 mod 64 */
339 partial = state->count & 0x3f;
340 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
341 padlock_sha1_update_nano(desc, padding, padlen);
343 /* Append length field bytes */
344 padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
346 /* Swap to output */
347 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
349 return 0;
352 static int padlock_sha256_init_nano(struct shash_desc *desc)
354 struct sha256_state *sctx = shash_desc_ctx(desc);
356 *sctx = (struct sha256_state){
357 .state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
358 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
361 return 0;
364 static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
365 unsigned int len)
367 struct sha256_state *sctx = shash_desc_ctx(desc);
368 unsigned int partial, done;
369 const u8 *src;
370 /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
371 u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
372 ((aligned(STACK_ALIGN)));
373 u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
375 partial = sctx->count & 0x3f;
376 sctx->count += len;
377 done = 0;
378 src = data;
379 memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
381 if ((partial + len) >= SHA256_BLOCK_SIZE) {
383 /* Append the bytes in state's buffer to a block to handle */
384 if (partial) {
385 done = -partial;
386 memcpy(sctx->buf + partial, data,
387 done + SHA256_BLOCK_SIZE);
388 src = sctx->buf;
389 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
390 : "+S"(src), "+D"(dst)
391 : "a"((long)-1), "c"((unsigned long)1));
392 done += SHA256_BLOCK_SIZE;
393 src = data + done;
396 /* Process the left bytes from input data*/
397 if (len - done >= SHA256_BLOCK_SIZE) {
398 asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
399 : "+S"(src), "+D"(dst)
400 : "a"((long)-1),
401 "c"((unsigned long)((len - done) / 64)));
402 done += ((len - done) - (len - done) % 64);
403 src = data + done;
405 partial = 0;
407 memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
408 memcpy(sctx->buf + partial, src, len - done);
410 return 0;
413 static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
415 struct sha256_state *state =
416 (struct sha256_state *)shash_desc_ctx(desc);
417 unsigned int partial, padlen;
418 __be64 bits;
419 static const u8 padding[64] = { 0x80, };
421 bits = cpu_to_be64(state->count << 3);
423 /* Pad out to 56 mod 64 */
424 partial = state->count & 0x3f;
425 padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
426 padlock_sha256_update_nano(desc, padding, padlen);
428 /* Append length field bytes */
429 padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
431 /* Swap to output */
432 padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
434 return 0;
437 static int padlock_sha_export_nano(struct shash_desc *desc,
438 void *out)
440 int statesize = crypto_shash_statesize(desc->tfm);
441 void *sctx = shash_desc_ctx(desc);
443 memcpy(out, sctx, statesize);
444 return 0;
447 static int padlock_sha_import_nano(struct shash_desc *desc,
448 const void *in)
450 int statesize = crypto_shash_statesize(desc->tfm);
451 void *sctx = shash_desc_ctx(desc);
453 memcpy(sctx, in, statesize);
454 return 0;
457 static struct shash_alg sha1_alg_nano = {
458 .digestsize = SHA1_DIGEST_SIZE,
459 .init = padlock_sha1_init_nano,
460 .update = padlock_sha1_update_nano,
461 .final = padlock_sha1_final_nano,
462 .export = padlock_sha_export_nano,
463 .import = padlock_sha_import_nano,
464 .descsize = sizeof(struct sha1_state),
465 .statesize = sizeof(struct sha1_state),
466 .base = {
467 .cra_name = "sha1",
468 .cra_driver_name = "sha1-padlock-nano",
469 .cra_priority = PADLOCK_CRA_PRIORITY,
470 .cra_blocksize = SHA1_BLOCK_SIZE,
471 .cra_module = THIS_MODULE,
475 static struct shash_alg sha256_alg_nano = {
476 .digestsize = SHA256_DIGEST_SIZE,
477 .init = padlock_sha256_init_nano,
478 .update = padlock_sha256_update_nano,
479 .final = padlock_sha256_final_nano,
480 .export = padlock_sha_export_nano,
481 .import = padlock_sha_import_nano,
482 .descsize = sizeof(struct sha256_state),
483 .statesize = sizeof(struct sha256_state),
484 .base = {
485 .cra_name = "sha256",
486 .cra_driver_name = "sha256-padlock-nano",
487 .cra_priority = PADLOCK_CRA_PRIORITY,
488 .cra_blocksize = SHA256_BLOCK_SIZE,
489 .cra_module = THIS_MODULE,
493 static const struct x86_cpu_id padlock_sha_ids[] = {
494 X86_MATCH_FEATURE(X86_FEATURE_PHE, NULL),
497 MODULE_DEVICE_TABLE(x86cpu, padlock_sha_ids);
499 static int __init padlock_init(void)
501 int rc = -ENODEV;
502 struct cpuinfo_x86 *c = &cpu_data(0);
503 struct shash_alg *sha1;
504 struct shash_alg *sha256;
506 if (!x86_match_cpu(padlock_sha_ids) || !boot_cpu_has(X86_FEATURE_PHE_EN))
507 return -ENODEV;
509 /* Register the newly added algorithm module if on *
510 * VIA Nano processor, or else just do as before */
511 if (c->x86_model < 0x0f) {
512 sha1 = &sha1_alg;
513 sha256 = &sha256_alg;
514 } else {
515 sha1 = &sha1_alg_nano;
516 sha256 = &sha256_alg_nano;
519 rc = crypto_register_shash(sha1);
520 if (rc)
521 goto out;
523 rc = crypto_register_shash(sha256);
524 if (rc)
525 goto out_unreg1;
527 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");
529 return 0;
531 out_unreg1:
532 crypto_unregister_shash(sha1);
534 out:
535 printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
536 return rc;
539 static void __exit padlock_fini(void)
541 struct cpuinfo_x86 *c = &cpu_data(0);
543 if (c->x86_model >= 0x0f) {
544 crypto_unregister_shash(&sha1_alg_nano);
545 crypto_unregister_shash(&sha256_alg_nano);
546 } else {
547 crypto_unregister_shash(&sha1_alg);
548 crypto_unregister_shash(&sha256_alg);
552 module_init(padlock_init);
553 module_exit(padlock_fini);
555 MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
556 MODULE_LICENSE("GPL");
557 MODULE_AUTHOR("Michal Ludvig");
559 MODULE_ALIAS_CRYPTO("sha1-all");
560 MODULE_ALIAS_CRYPTO("sha256-all");
561 MODULE_ALIAS_CRYPTO("sha1-padlock");
562 MODULE_ALIAS_CRYPTO("sha256-padlock");