drm/tests: hdmi: Fix memory leaks in drm_display_mode_from_cea_vic()
[drm/drm-misc.git] / drivers / iio / adc / hx711.c
blob8da0419ecfa3575aa54a93707c681ec8ced28be8
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * HX711: analog to digital converter for weight sensor module
5 * Copyright (c) 2016 Andreas Klinger <ak@it-klinger.de>
6 */
7 #include <linux/err.h>
8 #include <linux/kernel.h>
9 #include <linux/module.h>
10 #include <linux/mod_devicetable.h>
11 #include <linux/platform_device.h>
12 #include <linux/property.h>
13 #include <linux/slab.h>
14 #include <linux/sched.h>
15 #include <linux/delay.h>
16 #include <linux/iio/iio.h>
17 #include <linux/iio/sysfs.h>
18 #include <linux/iio/buffer.h>
19 #include <linux/iio/trigger_consumer.h>
20 #include <linux/iio/triggered_buffer.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/regulator/consumer.h>
24 /* gain to pulse and scale conversion */
25 #define HX711_GAIN_MAX 3
26 #define HX711_RESET_GAIN 128
28 struct hx711_gain_to_scale {
29 int gain;
30 int gain_pulse;
31 int scale;
32 int channel;
36 * .scale depends on AVDD which in turn is known as soon as the regulator
37 * is available
38 * therefore we set .scale in hx711_probe()
40 * channel A in documentation is channel 0 in source code
41 * channel B in documentation is channel 1 in source code
43 static struct hx711_gain_to_scale hx711_gain_to_scale[HX711_GAIN_MAX] = {
44 { 128, 1, 0, 0 },
45 { 32, 2, 0, 1 },
46 { 64, 3, 0, 0 }
49 static int hx711_get_gain_to_pulse(int gain)
51 int i;
53 for (i = 0; i < HX711_GAIN_MAX; i++)
54 if (hx711_gain_to_scale[i].gain == gain)
55 return hx711_gain_to_scale[i].gain_pulse;
56 return 1;
59 static int hx711_get_gain_to_scale(int gain)
61 int i;
63 for (i = 0; i < HX711_GAIN_MAX; i++)
64 if (hx711_gain_to_scale[i].gain == gain)
65 return hx711_gain_to_scale[i].scale;
66 return 0;
69 static int hx711_get_scale_to_gain(int scale)
71 int i;
73 for (i = 0; i < HX711_GAIN_MAX; i++)
74 if (hx711_gain_to_scale[i].scale == scale)
75 return hx711_gain_to_scale[i].gain;
76 return -EINVAL;
79 struct hx711_data {
80 struct device *dev;
81 struct gpio_desc *gpiod_pd_sck;
82 struct gpio_desc *gpiod_dout;
83 int gain_set; /* gain set on device */
84 int gain_chan_a; /* gain for channel A */
85 struct mutex lock;
87 * triggered buffer
88 * 2x32-bit channel + 64-bit naturally aligned timestamp
90 u32 buffer[4] __aligned(8);
92 * delay after a rising edge on SCK until the data is ready DOUT
93 * this is dependent on the hx711 where the datasheet tells a
94 * maximum value of 100 ns
95 * but also on potential parasitic capacities on the wiring
97 u32 data_ready_delay_ns;
98 u32 clock_frequency;
101 static int hx711_cycle(struct hx711_data *hx711_data)
103 unsigned long flags;
106 * if preempted for more then 60us while PD_SCK is high:
107 * hx711 is going in reset
108 * ==> measuring is false
110 local_irq_save(flags);
111 gpiod_set_value(hx711_data->gpiod_pd_sck, 1);
114 * wait until DOUT is ready
115 * it turned out that parasitic capacities are extending the time
116 * until DOUT has reached it's value
118 ndelay(hx711_data->data_ready_delay_ns);
121 * here we are not waiting for 0.2 us as suggested by the datasheet,
122 * because the oscilloscope showed in a test scenario
123 * at least 1.15 us for PD_SCK high (T3 in datasheet)
124 * and 0.56 us for PD_SCK low on TI Sitara with 800 MHz
126 gpiod_set_value(hx711_data->gpiod_pd_sck, 0);
127 local_irq_restore(flags);
130 * make it a square wave for addressing cases with capacitance on
131 * PC_SCK
133 ndelay(hx711_data->data_ready_delay_ns);
135 /* sample as late as possible */
136 return gpiod_get_value(hx711_data->gpiod_dout);
139 static int hx711_read(struct hx711_data *hx711_data)
141 int i, ret;
142 int value = 0;
143 int val = gpiod_get_value(hx711_data->gpiod_dout);
145 /* we double check if it's really down */
146 if (val)
147 return -EIO;
149 for (i = 0; i < 24; i++) {
150 value <<= 1;
151 ret = hx711_cycle(hx711_data);
152 if (ret)
153 value++;
156 value ^= 0x800000;
158 for (i = 0; i < hx711_get_gain_to_pulse(hx711_data->gain_set); i++)
159 hx711_cycle(hx711_data);
161 return value;
164 static int hx711_wait_for_ready(struct hx711_data *hx711_data)
166 int i, val;
169 * in some rare cases the reset takes quite a long time
170 * especially when the channel is changed.
171 * Allow up to one second for it
173 for (i = 0; i < 100; i++) {
174 val = gpiod_get_value(hx711_data->gpiod_dout);
175 if (!val)
176 break;
177 /* sleep at least 10 ms */
178 msleep(10);
180 if (val)
181 return -EIO;
183 return 0;
186 static int hx711_reset(struct hx711_data *hx711_data)
188 int val = hx711_wait_for_ready(hx711_data);
190 if (val) {
192 * an examination with the oszilloscope indicated
193 * that the first value read after the reset is not stable
194 * if we reset too short;
195 * the shorter the reset cycle
196 * the less reliable the first value after reset is;
197 * there were no problems encountered with a value
198 * of 10 ms or higher
200 gpiod_set_value(hx711_data->gpiod_pd_sck, 1);
201 msleep(10);
202 gpiod_set_value(hx711_data->gpiod_pd_sck, 0);
204 val = hx711_wait_for_ready(hx711_data);
206 /* after a reset the gain is 128 */
207 hx711_data->gain_set = HX711_RESET_GAIN;
210 return val;
213 static int hx711_set_gain_for_channel(struct hx711_data *hx711_data, int chan)
215 int ret;
217 if (chan == 0) {
218 if (hx711_data->gain_set == 32) {
219 hx711_data->gain_set = hx711_data->gain_chan_a;
221 ret = hx711_read(hx711_data);
222 if (ret < 0)
223 return ret;
225 ret = hx711_wait_for_ready(hx711_data);
226 if (ret)
227 return ret;
229 } else {
230 if (hx711_data->gain_set != 32) {
231 hx711_data->gain_set = 32;
233 ret = hx711_read(hx711_data);
234 if (ret < 0)
235 return ret;
237 ret = hx711_wait_for_ready(hx711_data);
238 if (ret)
239 return ret;
243 return 0;
246 static int hx711_reset_read(struct hx711_data *hx711_data, int chan)
248 int ret;
249 int val;
252 * hx711_reset() must be called from here
253 * because it could be calling hx711_read() by itself
255 if (hx711_reset(hx711_data)) {
256 dev_err(hx711_data->dev, "reset failed!");
257 return -EIO;
260 ret = hx711_set_gain_for_channel(hx711_data, chan);
261 if (ret < 0)
262 return ret;
264 val = hx711_read(hx711_data);
266 return val;
269 static int hx711_read_raw(struct iio_dev *indio_dev,
270 const struct iio_chan_spec *chan,
271 int *val, int *val2, long mask)
273 struct hx711_data *hx711_data = iio_priv(indio_dev);
275 switch (mask) {
276 case IIO_CHAN_INFO_RAW:
277 mutex_lock(&hx711_data->lock);
279 *val = hx711_reset_read(hx711_data, chan->channel);
281 mutex_unlock(&hx711_data->lock);
283 if (*val < 0)
284 return *val;
285 return IIO_VAL_INT;
286 case IIO_CHAN_INFO_SCALE:
287 *val = 0;
288 mutex_lock(&hx711_data->lock);
290 *val2 = hx711_get_gain_to_scale(hx711_data->gain_set);
292 mutex_unlock(&hx711_data->lock);
294 return IIO_VAL_INT_PLUS_NANO;
295 default:
296 return -EINVAL;
300 static int hx711_write_raw(struct iio_dev *indio_dev,
301 struct iio_chan_spec const *chan,
302 int val,
303 int val2,
304 long mask)
306 struct hx711_data *hx711_data = iio_priv(indio_dev);
307 int ret;
308 int gain;
310 switch (mask) {
311 case IIO_CHAN_INFO_SCALE:
313 * a scale greater than 1 mV per LSB is not possible
314 * with the HX711, therefore val must be 0
316 if (val != 0)
317 return -EINVAL;
319 mutex_lock(&hx711_data->lock);
321 gain = hx711_get_scale_to_gain(val2);
322 if (gain < 0) {
323 mutex_unlock(&hx711_data->lock);
324 return gain;
327 if (gain != hx711_data->gain_set) {
328 hx711_data->gain_set = gain;
329 if (gain != 32)
330 hx711_data->gain_chan_a = gain;
332 ret = hx711_read(hx711_data);
333 if (ret < 0) {
334 mutex_unlock(&hx711_data->lock);
335 return ret;
339 mutex_unlock(&hx711_data->lock);
340 return 0;
341 default:
342 return -EINVAL;
345 return 0;
348 static int hx711_write_raw_get_fmt(struct iio_dev *indio_dev,
349 struct iio_chan_spec const *chan,
350 long mask)
352 return IIO_VAL_INT_PLUS_NANO;
355 static irqreturn_t hx711_trigger(int irq, void *p)
357 struct iio_poll_func *pf = p;
358 struct iio_dev *indio_dev = pf->indio_dev;
359 struct hx711_data *hx711_data = iio_priv(indio_dev);
360 int i, j = 0;
362 mutex_lock(&hx711_data->lock);
364 memset(hx711_data->buffer, 0, sizeof(hx711_data->buffer));
366 iio_for_each_active_channel(indio_dev, i) {
367 hx711_data->buffer[j] = hx711_reset_read(hx711_data,
368 indio_dev->channels[i].channel);
369 j++;
372 iio_push_to_buffers_with_timestamp(indio_dev, hx711_data->buffer,
373 pf->timestamp);
375 mutex_unlock(&hx711_data->lock);
377 iio_trigger_notify_done(indio_dev->trig);
379 return IRQ_HANDLED;
382 static ssize_t hx711_scale_available_show(struct device *dev,
383 struct device_attribute *attr,
384 char *buf)
386 struct iio_dev_attr *iio_attr = to_iio_dev_attr(attr);
387 int channel = iio_attr->address;
388 int i, len = 0;
390 for (i = 0; i < HX711_GAIN_MAX; i++)
391 if (hx711_gain_to_scale[i].channel == channel)
392 len += sprintf(buf + len, "0.%09d ",
393 hx711_gain_to_scale[i].scale);
395 len += sprintf(buf + len, "\n");
397 return len;
400 static IIO_DEVICE_ATTR(in_voltage0_scale_available, S_IRUGO,
401 hx711_scale_available_show, NULL, 0);
403 static IIO_DEVICE_ATTR(in_voltage1_scale_available, S_IRUGO,
404 hx711_scale_available_show, NULL, 1);
406 static struct attribute *hx711_attributes[] = {
407 &iio_dev_attr_in_voltage0_scale_available.dev_attr.attr,
408 &iio_dev_attr_in_voltage1_scale_available.dev_attr.attr,
409 NULL,
412 static const struct attribute_group hx711_attribute_group = {
413 .attrs = hx711_attributes,
416 static const struct iio_info hx711_iio_info = {
417 .read_raw = hx711_read_raw,
418 .write_raw = hx711_write_raw,
419 .write_raw_get_fmt = hx711_write_raw_get_fmt,
420 .attrs = &hx711_attribute_group,
423 static const struct iio_chan_spec hx711_chan_spec[] = {
425 .type = IIO_VOLTAGE,
426 .channel = 0,
427 .indexed = 1,
428 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
429 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),
430 .scan_index = 0,
431 .scan_type = {
432 .sign = 'u',
433 .realbits = 24,
434 .storagebits = 32,
435 .endianness = IIO_CPU,
439 .type = IIO_VOLTAGE,
440 .channel = 1,
441 .indexed = 1,
442 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW),
443 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),
444 .scan_index = 1,
445 .scan_type = {
446 .sign = 'u',
447 .realbits = 24,
448 .storagebits = 32,
449 .endianness = IIO_CPU,
452 IIO_CHAN_SOFT_TIMESTAMP(2),
455 static int hx711_probe(struct platform_device *pdev)
457 struct device *dev = &pdev->dev;
458 struct hx711_data *hx711_data;
459 struct iio_dev *indio_dev;
460 int ret;
461 int i;
463 indio_dev = devm_iio_device_alloc(dev, sizeof(struct hx711_data));
464 if (!indio_dev)
465 return dev_err_probe(dev, -ENOMEM, "failed to allocate IIO device\n");
467 hx711_data = iio_priv(indio_dev);
468 hx711_data->dev = dev;
470 mutex_init(&hx711_data->lock);
473 * PD_SCK stands for power down and serial clock input of HX711
474 * in the driver it is an output
476 hx711_data->gpiod_pd_sck = devm_gpiod_get(dev, "sck", GPIOD_OUT_LOW);
477 if (IS_ERR(hx711_data->gpiod_pd_sck))
478 return dev_err_probe(dev, PTR_ERR(hx711_data->gpiod_pd_sck),
479 "failed to get sck-gpiod\n");
482 * DOUT stands for serial data output of HX711
483 * for the driver it is an input
485 hx711_data->gpiod_dout = devm_gpiod_get(dev, "dout", GPIOD_IN);
486 if (IS_ERR(hx711_data->gpiod_dout))
487 return dev_err_probe(dev, PTR_ERR(hx711_data->gpiod_dout),
488 "failed to get dout-gpiod\n");
490 ret = devm_regulator_get_enable_read_voltage(dev, "avdd");
491 if (ret < 0)
492 return ret;
495 * with
496 * full scale differential input range: AVDD / GAIN
497 * full scale output data: 2^24
498 * we can say:
499 * AVDD / GAIN = 2^24
500 * therefore:
501 * 1 LSB = AVDD / GAIN / 2^24
502 * AVDD is in uV, but we need 10^-9 mV
503 * approximately to fit into a 32 bit number:
504 * 1 LSB = (AVDD * 100) / GAIN / 1678 [10^-9 mV]
507 /* we need 10^-9 mV */
508 ret *= 100;
510 for (i = 0; i < HX711_GAIN_MAX; i++)
511 hx711_gain_to_scale[i].scale =
512 ret / hx711_gain_to_scale[i].gain / 1678;
514 hx711_data->gain_set = 128;
515 hx711_data->gain_chan_a = 128;
517 hx711_data->clock_frequency = 400000;
518 ret = device_property_read_u32(&pdev->dev, "clock-frequency",
519 &hx711_data->clock_frequency);
522 * datasheet says the high level of PD_SCK has a maximum duration
523 * of 50 microseconds
525 if (hx711_data->clock_frequency < 20000) {
526 dev_warn(dev, "clock-frequency too low - assuming 400 kHz\n");
527 hx711_data->clock_frequency = 400000;
530 hx711_data->data_ready_delay_ns =
531 1000000000 / hx711_data->clock_frequency;
533 indio_dev->name = "hx711";
534 indio_dev->info = &hx711_iio_info;
535 indio_dev->modes = INDIO_DIRECT_MODE;
536 indio_dev->channels = hx711_chan_spec;
537 indio_dev->num_channels = ARRAY_SIZE(hx711_chan_spec);
539 ret = devm_iio_triggered_buffer_setup(dev, indio_dev,
540 iio_pollfunc_store_time,
541 hx711_trigger, NULL);
542 if (ret < 0)
543 return dev_err_probe(dev, ret,
544 "setup of iio triggered buffer failed\n");
546 ret = devm_iio_device_register(dev, indio_dev);
547 if (ret < 0)
548 return dev_err_probe(dev, ret, "Couldn't register the device\n");
550 return 0;
553 static const struct of_device_id of_hx711_match[] = {
554 { .compatible = "avia,hx711", },
558 MODULE_DEVICE_TABLE(of, of_hx711_match);
560 static struct platform_driver hx711_driver = {
561 .probe = hx711_probe,
562 .driver = {
563 .name = "hx711-gpio",
564 .of_match_table = of_hx711_match,
568 module_platform_driver(hx711_driver);
570 MODULE_AUTHOR("Andreas Klinger <ak@it-klinger.de>");
571 MODULE_DESCRIPTION("HX711 bitbanging driver - ADC for weight cells");
572 MODULE_LICENSE("GPL");
573 MODULE_ALIAS("platform:hx711-gpio");