1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * Freescale MXS LRADC ADC driver
5 * Copyright (c) 2012 DENX Software Engineering, GmbH.
6 * Copyright (c) 2017 Ksenija Stanojevic <ksenija.stanojevic@gmail.com>
9 * Marek Vasut <marex@denx.de>
10 * Ksenija Stanojevic <ksenija.stanojevic@gmail.com>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/err.h>
16 #include <linux/interrupt.h>
17 #include <linux/mfd/core.h>
18 #include <linux/mfd/mxs-lradc.h>
19 #include <linux/module.h>
20 #include <linux/of_irq.h>
21 #include <linux/platform_device.h>
22 #include <linux/sysfs.h>
24 #include <linux/iio/buffer.h>
25 #include <linux/iio/iio.h>
26 #include <linux/iio/trigger.h>
27 #include <linux/iio/trigger_consumer.h>
28 #include <linux/iio/triggered_buffer.h>
29 #include <linux/iio/sysfs.h>
32 * Make this runtime configurable if necessary. Currently, if the buffered mode
33 * is enabled, the LRADC takes LRADC_DELAY_TIMER_LOOP samples of data before
34 * triggering IRQ. The sampling happens every (LRADC_DELAY_TIMER_PER / 2000)
35 * seconds. The result is that the samples arrive every 500mS.
37 #define LRADC_DELAY_TIMER_PER 200
38 #define LRADC_DELAY_TIMER_LOOP 5
40 #define VREF_MV_BASE 1850
42 static const char *mx23_lradc_adc_irq_names
[] = {
51 static const char *mx28_lradc_adc_irq_names
[] = {
64 static const u32 mxs_lradc_adc_vref_mv
[][LRADC_MAX_TOTAL_CHANS
] = {
66 VREF_MV_BASE
, /* CH0 */
67 VREF_MV_BASE
, /* CH1 */
68 VREF_MV_BASE
, /* CH2 */
69 VREF_MV_BASE
, /* CH3 */
70 VREF_MV_BASE
, /* CH4 */
71 VREF_MV_BASE
, /* CH5 */
72 VREF_MV_BASE
* 2, /* CH6 VDDIO */
73 VREF_MV_BASE
* 4, /* CH7 VBATT */
74 VREF_MV_BASE
, /* CH8 Temp sense 0 */
75 VREF_MV_BASE
, /* CH9 Temp sense 1 */
76 VREF_MV_BASE
, /* CH10 */
77 VREF_MV_BASE
, /* CH11 */
78 VREF_MV_BASE
, /* CH12 USB_DP */
79 VREF_MV_BASE
, /* CH13 USB_DN */
80 VREF_MV_BASE
, /* CH14 VBG */
81 VREF_MV_BASE
* 4, /* CH15 VDD5V */
84 VREF_MV_BASE
, /* CH0 */
85 VREF_MV_BASE
, /* CH1 */
86 VREF_MV_BASE
, /* CH2 */
87 VREF_MV_BASE
, /* CH3 */
88 VREF_MV_BASE
, /* CH4 */
89 VREF_MV_BASE
, /* CH5 */
90 VREF_MV_BASE
, /* CH6 */
91 VREF_MV_BASE
* 4, /* CH7 VBATT */
92 VREF_MV_BASE
, /* CH8 Temp sense 0 */
93 VREF_MV_BASE
, /* CH9 Temp sense 1 */
94 VREF_MV_BASE
* 2, /* CH10 VDDIO */
95 VREF_MV_BASE
, /* CH11 VTH */
96 VREF_MV_BASE
* 2, /* CH12 VDDA */
97 VREF_MV_BASE
, /* CH13 VDDD */
98 VREF_MV_BASE
, /* CH14 VBG */
99 VREF_MV_BASE
* 4, /* CH15 VDD5V */
103 enum mxs_lradc_divbytwo
{
104 MXS_LRADC_DIV_DISABLED
= 0,
105 MXS_LRADC_DIV_ENABLED
,
108 struct mxs_lradc_scale
{
109 unsigned int integer
;
113 struct mxs_lradc_adc
{
114 struct mxs_lradc
*lradc
;
118 /* Maximum of 8 channels + 8 byte ts */
119 u32 buffer
[10] __aligned(8);
120 struct iio_trigger
*trig
;
121 struct completion completion
;
125 struct mxs_lradc_scale scale_avail
[LRADC_MAX_TOTAL_CHANS
][2];
126 unsigned long is_divided
;
130 /* Raw I/O operations */
131 static int mxs_lradc_adc_read_single(struct iio_dev
*iio_dev
, int chan
,
134 struct mxs_lradc_adc
*adc
= iio_priv(iio_dev
);
135 struct mxs_lradc
*lradc
= adc
->lradc
;
139 * See if there is no buffered operation in progress. If there is simply
140 * bail out. This can be improved to support both buffered and raw IO at
141 * the same time, yet the code becomes horribly complicated. Therefore I
142 * applied KISS principle here.
144 ret
= iio_device_claim_direct_mode(iio_dev
);
148 reinit_completion(&adc
->completion
);
151 * No buffered operation in progress, map the channel and trigger it.
152 * Virtual channel 0 is always used here as the others are always not
153 * used if doing raw sampling.
155 if (lradc
->soc
== IMX28_LRADC
)
156 writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
157 adc
->base
+ LRADC_CTRL1
+ STMP_OFFSET_REG_CLR
);
158 writel(0x1, adc
->base
+ LRADC_CTRL0
+ STMP_OFFSET_REG_CLR
);
160 /* Enable / disable the divider per requirement */
161 if (test_bit(chan
, &adc
->is_divided
))
162 writel(1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET
,
163 adc
->base
+ LRADC_CTRL2
+ STMP_OFFSET_REG_SET
);
165 writel(1 << LRADC_CTRL2_DIVIDE_BY_TWO_OFFSET
,
166 adc
->base
+ LRADC_CTRL2
+ STMP_OFFSET_REG_CLR
);
168 /* Clean the slot's previous content, then set new one. */
169 writel(LRADC_CTRL4_LRADCSELECT_MASK(0),
170 adc
->base
+ LRADC_CTRL4
+ STMP_OFFSET_REG_CLR
);
171 writel(chan
, adc
->base
+ LRADC_CTRL4
+ STMP_OFFSET_REG_SET
);
173 writel(0, adc
->base
+ LRADC_CH(0));
175 /* Enable the IRQ and start sampling the channel. */
176 writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
177 adc
->base
+ LRADC_CTRL1
+ STMP_OFFSET_REG_SET
);
178 writel(BIT(0), adc
->base
+ LRADC_CTRL0
+ STMP_OFFSET_REG_SET
);
180 /* Wait for completion on the channel, 1 second max. */
181 ret
= wait_for_completion_killable_timeout(&adc
->completion
, HZ
);
188 *val
= readl(adc
->base
+ LRADC_CH(0)) & LRADC_CH_VALUE_MASK
;
192 writel(LRADC_CTRL1_LRADC_IRQ_EN(0),
193 adc
->base
+ LRADC_CTRL1
+ STMP_OFFSET_REG_CLR
);
195 iio_device_release_direct_mode(iio_dev
);
200 static int mxs_lradc_adc_read_temp(struct iio_dev
*iio_dev
, int *val
)
204 ret
= mxs_lradc_adc_read_single(iio_dev
, 8, &min
);
205 if (ret
!= IIO_VAL_INT
)
208 ret
= mxs_lradc_adc_read_single(iio_dev
, 9, &max
);
209 if (ret
!= IIO_VAL_INT
)
217 static int mxs_lradc_adc_read_raw(struct iio_dev
*iio_dev
,
218 const struct iio_chan_spec
*chan
,
219 int *val
, int *val2
, long m
)
221 struct mxs_lradc_adc
*adc
= iio_priv(iio_dev
);
224 case IIO_CHAN_INFO_RAW
:
225 if (chan
->type
== IIO_TEMP
)
226 return mxs_lradc_adc_read_temp(iio_dev
, val
);
228 return mxs_lradc_adc_read_single(iio_dev
, chan
->channel
, val
);
230 case IIO_CHAN_INFO_SCALE
:
231 if (chan
->type
== IIO_TEMP
) {
233 * From the datasheet, we have to multiply by 1.012 and
238 return IIO_VAL_INT_PLUS_MICRO
;
241 *val
= adc
->vref_mv
[chan
->channel
];
242 *val2
= chan
->scan_type
.realbits
-
243 test_bit(chan
->channel
, &adc
->is_divided
);
244 return IIO_VAL_FRACTIONAL_LOG2
;
246 case IIO_CHAN_INFO_OFFSET
:
247 if (chan
->type
== IIO_TEMP
) {
249 * The calculated value from the ADC is in Kelvin, we
250 * want Celsius for hwmon so the offset is -273.15
251 * The offset is applied before scaling so it is
252 * actually -213.15 * 4 / 1.012 = -1079.644268
257 return IIO_VAL_INT_PLUS_MICRO
;
269 static int mxs_lradc_adc_write_raw(struct iio_dev
*iio_dev
,
270 const struct iio_chan_spec
*chan
,
271 int val
, int val2
, long m
)
273 struct mxs_lradc_adc
*adc
= iio_priv(iio_dev
);
274 struct mxs_lradc_scale
*scale_avail
=
275 adc
->scale_avail
[chan
->channel
];
278 ret
= iio_device_claim_direct_mode(iio_dev
);
283 case IIO_CHAN_INFO_SCALE
:
285 if (val
== scale_avail
[MXS_LRADC_DIV_DISABLED
].integer
&&
286 val2
== scale_avail
[MXS_LRADC_DIV_DISABLED
].nano
) {
287 /* divider by two disabled */
288 clear_bit(chan
->channel
, &adc
->is_divided
);
290 } else if (val
== scale_avail
[MXS_LRADC_DIV_ENABLED
].integer
&&
291 val2
== scale_avail
[MXS_LRADC_DIV_ENABLED
].nano
) {
292 /* divider by two enabled */
293 set_bit(chan
->channel
, &adc
->is_divided
);
303 iio_device_release_direct_mode(iio_dev
);
308 static int mxs_lradc_adc_write_raw_get_fmt(struct iio_dev
*iio_dev
,
309 const struct iio_chan_spec
*chan
,
312 return IIO_VAL_INT_PLUS_NANO
;
315 static ssize_t
mxs_lradc_adc_show_scale_avail(struct device
*dev
,
316 struct device_attribute
*attr
,
319 struct iio_dev
*iio
= dev_to_iio_dev(dev
);
320 struct mxs_lradc_adc
*adc
= iio_priv(iio
);
321 struct iio_dev_attr
*iio_attr
= to_iio_dev_attr(attr
);
324 ch
= iio_attr
->address
;
325 for (i
= 0; i
< ARRAY_SIZE(adc
->scale_avail
[ch
]); i
++)
326 len
+= sprintf(buf
+ len
, "%u.%09u ",
327 adc
->scale_avail
[ch
][i
].integer
,
328 adc
->scale_avail
[ch
][i
].nano
);
330 len
+= sprintf(buf
+ len
, "\n");
335 #define SHOW_SCALE_AVAILABLE_ATTR(ch)\
336 IIO_DEVICE_ATTR(in_voltage##ch##_scale_available, 0444,\
337 mxs_lradc_adc_show_scale_avail, NULL, ch)
339 static SHOW_SCALE_AVAILABLE_ATTR(0);
340 static SHOW_SCALE_AVAILABLE_ATTR(1);
341 static SHOW_SCALE_AVAILABLE_ATTR(2);
342 static SHOW_SCALE_AVAILABLE_ATTR(3);
343 static SHOW_SCALE_AVAILABLE_ATTR(4);
344 static SHOW_SCALE_AVAILABLE_ATTR(5);
345 static SHOW_SCALE_AVAILABLE_ATTR(6);
346 static SHOW_SCALE_AVAILABLE_ATTR(7);
347 static SHOW_SCALE_AVAILABLE_ATTR(10);
348 static SHOW_SCALE_AVAILABLE_ATTR(11);
349 static SHOW_SCALE_AVAILABLE_ATTR(12);
350 static SHOW_SCALE_AVAILABLE_ATTR(13);
351 static SHOW_SCALE_AVAILABLE_ATTR(14);
352 static SHOW_SCALE_AVAILABLE_ATTR(15);
354 static struct attribute
*mxs_lradc_adc_attributes
[] = {
355 &iio_dev_attr_in_voltage0_scale_available
.dev_attr
.attr
,
356 &iio_dev_attr_in_voltage1_scale_available
.dev_attr
.attr
,
357 &iio_dev_attr_in_voltage2_scale_available
.dev_attr
.attr
,
358 &iio_dev_attr_in_voltage3_scale_available
.dev_attr
.attr
,
359 &iio_dev_attr_in_voltage4_scale_available
.dev_attr
.attr
,
360 &iio_dev_attr_in_voltage5_scale_available
.dev_attr
.attr
,
361 &iio_dev_attr_in_voltage6_scale_available
.dev_attr
.attr
,
362 &iio_dev_attr_in_voltage7_scale_available
.dev_attr
.attr
,
363 &iio_dev_attr_in_voltage10_scale_available
.dev_attr
.attr
,
364 &iio_dev_attr_in_voltage11_scale_available
.dev_attr
.attr
,
365 &iio_dev_attr_in_voltage12_scale_available
.dev_attr
.attr
,
366 &iio_dev_attr_in_voltage13_scale_available
.dev_attr
.attr
,
367 &iio_dev_attr_in_voltage14_scale_available
.dev_attr
.attr
,
368 &iio_dev_attr_in_voltage15_scale_available
.dev_attr
.attr
,
372 static const struct attribute_group mxs_lradc_adc_attribute_group
= {
373 .attrs
= mxs_lradc_adc_attributes
,
376 static const struct iio_info mxs_lradc_adc_iio_info
= {
377 .read_raw
= mxs_lradc_adc_read_raw
,
378 .write_raw
= mxs_lradc_adc_write_raw
,
379 .write_raw_get_fmt
= mxs_lradc_adc_write_raw_get_fmt
,
380 .attrs
= &mxs_lradc_adc_attribute_group
,
384 static irqreturn_t
mxs_lradc_adc_handle_irq(int irq
, void *data
)
386 struct iio_dev
*iio
= data
;
387 struct mxs_lradc_adc
*adc
= iio_priv(iio
);
388 struct mxs_lradc
*lradc
= adc
->lradc
;
389 unsigned long reg
= readl(adc
->base
+ LRADC_CTRL1
);
392 if (!(reg
& mxs_lradc_irq_mask(lradc
)))
395 if (iio_buffer_enabled(iio
)) {
396 if (reg
& lradc
->buffer_vchans
) {
397 spin_lock_irqsave(&adc
->lock
, flags
);
398 iio_trigger_poll(iio
->trig
);
399 spin_unlock_irqrestore(&adc
->lock
, flags
);
401 } else if (reg
& LRADC_CTRL1_LRADC_IRQ(0)) {
402 complete(&adc
->completion
);
405 writel(reg
& mxs_lradc_irq_mask(lradc
),
406 adc
->base
+ LRADC_CTRL1
+ STMP_OFFSET_REG_CLR
);
412 /* Trigger handling */
413 static irqreturn_t
mxs_lradc_adc_trigger_handler(int irq
, void *p
)
415 struct iio_poll_func
*pf
= p
;
416 struct iio_dev
*iio
= pf
->indio_dev
;
417 struct mxs_lradc_adc
*adc
= iio_priv(iio
);
418 const u32 chan_value
= LRADC_CH_ACCUMULATE
|
419 ((LRADC_DELAY_TIMER_LOOP
- 1) << LRADC_CH_NUM_SAMPLES_OFFSET
);
420 unsigned int i
, j
= 0;
422 for_each_set_bit(i
, iio
->active_scan_mask
, LRADC_MAX_TOTAL_CHANS
) {
423 adc
->buffer
[j
] = readl(adc
->base
+ LRADC_CH(j
));
424 writel(chan_value
, adc
->base
+ LRADC_CH(j
));
425 adc
->buffer
[j
] &= LRADC_CH_VALUE_MASK
;
426 adc
->buffer
[j
] /= LRADC_DELAY_TIMER_LOOP
;
430 iio_push_to_buffers_with_timestamp(iio
, adc
->buffer
, pf
->timestamp
);
432 iio_trigger_notify_done(iio
->trig
);
437 static int mxs_lradc_adc_configure_trigger(struct iio_trigger
*trig
, bool state
)
439 struct iio_dev
*iio
= iio_trigger_get_drvdata(trig
);
440 struct mxs_lradc_adc
*adc
= iio_priv(iio
);
441 const u32 st
= state
? STMP_OFFSET_REG_SET
: STMP_OFFSET_REG_CLR
;
443 writel(LRADC_DELAY_KICK
, adc
->base
+ (LRADC_DELAY(0) + st
));
448 static const struct iio_trigger_ops mxs_lradc_adc_trigger_ops
= {
449 .set_trigger_state
= &mxs_lradc_adc_configure_trigger
,
452 static int mxs_lradc_adc_trigger_init(struct iio_dev
*iio
)
455 struct iio_trigger
*trig
;
456 struct mxs_lradc_adc
*adc
= iio_priv(iio
);
458 trig
= devm_iio_trigger_alloc(&iio
->dev
, "%s-dev%i", iio
->name
,
463 trig
->dev
.parent
= adc
->dev
;
464 iio_trigger_set_drvdata(trig
, iio
);
465 trig
->ops
= &mxs_lradc_adc_trigger_ops
;
467 ret
= iio_trigger_register(trig
);
476 static void mxs_lradc_adc_trigger_remove(struct iio_dev
*iio
)
478 struct mxs_lradc_adc
*adc
= iio_priv(iio
);
480 iio_trigger_unregister(adc
->trig
);
483 static int mxs_lradc_adc_buffer_preenable(struct iio_dev
*iio
)
485 struct mxs_lradc_adc
*adc
= iio_priv(iio
);
486 struct mxs_lradc
*lradc
= adc
->lradc
;
488 unsigned long enable
= 0;
492 const u32 chan_value
= LRADC_CH_ACCUMULATE
|
493 ((LRADC_DELAY_TIMER_LOOP
- 1) << LRADC_CH_NUM_SAMPLES_OFFSET
);
495 if (lradc
->soc
== IMX28_LRADC
)
496 writel(lradc
->buffer_vchans
<< LRADC_CTRL1_LRADC_IRQ_EN_OFFSET
,
497 adc
->base
+ LRADC_CTRL1
+ STMP_OFFSET_REG_CLR
);
498 writel(lradc
->buffer_vchans
,
499 adc
->base
+ LRADC_CTRL0
+ STMP_OFFSET_REG_CLR
);
501 for_each_set_bit(chan
, iio
->active_scan_mask
, LRADC_MAX_TOTAL_CHANS
) {
502 ctrl4_set
|= chan
<< LRADC_CTRL4_LRADCSELECT_OFFSET(ofs
);
503 ctrl4_clr
|= LRADC_CTRL4_LRADCSELECT_MASK(ofs
);
504 ctrl1_irq
|= LRADC_CTRL1_LRADC_IRQ_EN(ofs
);
505 writel(chan_value
, adc
->base
+ LRADC_CH(ofs
));
506 bitmap_set(&enable
, ofs
, 1);
510 writel(LRADC_DELAY_TRIGGER_LRADCS_MASK
| LRADC_DELAY_KICK
,
511 adc
->base
+ LRADC_DELAY(0) + STMP_OFFSET_REG_CLR
);
512 writel(ctrl4_clr
, adc
->base
+ LRADC_CTRL4
+ STMP_OFFSET_REG_CLR
);
513 writel(ctrl4_set
, adc
->base
+ LRADC_CTRL4
+ STMP_OFFSET_REG_SET
);
514 writel(ctrl1_irq
, adc
->base
+ LRADC_CTRL1
+ STMP_OFFSET_REG_SET
);
515 writel(enable
<< LRADC_DELAY_TRIGGER_LRADCS_OFFSET
,
516 adc
->base
+ LRADC_DELAY(0) + STMP_OFFSET_REG_SET
);
521 static int mxs_lradc_adc_buffer_postdisable(struct iio_dev
*iio
)
523 struct mxs_lradc_adc
*adc
= iio_priv(iio
);
524 struct mxs_lradc
*lradc
= adc
->lradc
;
526 writel(LRADC_DELAY_TRIGGER_LRADCS_MASK
| LRADC_DELAY_KICK
,
527 adc
->base
+ LRADC_DELAY(0) + STMP_OFFSET_REG_CLR
);
529 writel(lradc
->buffer_vchans
,
530 adc
->base
+ LRADC_CTRL0
+ STMP_OFFSET_REG_CLR
);
531 if (lradc
->soc
== IMX28_LRADC
)
532 writel(lradc
->buffer_vchans
<< LRADC_CTRL1_LRADC_IRQ_EN_OFFSET
,
533 adc
->base
+ LRADC_CTRL1
+ STMP_OFFSET_REG_CLR
);
538 static bool mxs_lradc_adc_validate_scan_mask(struct iio_dev
*iio
,
539 const unsigned long *mask
)
541 struct mxs_lradc_adc
*adc
= iio_priv(iio
);
542 struct mxs_lradc
*lradc
= adc
->lradc
;
543 const int map_chans
= bitmap_weight(mask
, LRADC_MAX_TOTAL_CHANS
);
545 unsigned long rsvd_mask
= 0;
547 if (lradc
->use_touchbutton
)
548 rsvd_mask
|= CHAN_MASK_TOUCHBUTTON
;
549 if (lradc
->touchscreen_wire
== MXS_LRADC_TOUCHSCREEN_4WIRE
)
550 rsvd_mask
|= CHAN_MASK_TOUCHSCREEN_4WIRE
;
551 if (lradc
->touchscreen_wire
== MXS_LRADC_TOUCHSCREEN_5WIRE
)
552 rsvd_mask
|= CHAN_MASK_TOUCHSCREEN_5WIRE
;
554 if (lradc
->use_touchbutton
)
556 if (lradc
->touchscreen_wire
)
559 /* Test for attempts to map channels with special mode of operation. */
560 if (bitmap_intersects(mask
, &rsvd_mask
, LRADC_MAX_TOTAL_CHANS
))
563 /* Test for attempts to map more channels then available slots. */
564 if (map_chans
+ rsvd_chans
> LRADC_MAX_MAPPED_CHANS
)
570 static const struct iio_buffer_setup_ops mxs_lradc_adc_buffer_ops
= {
571 .preenable
= &mxs_lradc_adc_buffer_preenable
,
572 .postdisable
= &mxs_lradc_adc_buffer_postdisable
,
573 .validate_scan_mask
= &mxs_lradc_adc_validate_scan_mask
,
576 /* Driver initialization */
577 #define MXS_ADC_CHAN(idx, chan_type, name) { \
578 .type = (chan_type), \
580 .scan_index = (idx), \
581 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
582 BIT(IIO_CHAN_INFO_SCALE), \
587 .realbits = LRADC_RESOLUTION, \
590 .datasheet_name = (name), \
593 static const struct iio_chan_spec mx23_lradc_chan_spec
[] = {
594 MXS_ADC_CHAN(0, IIO_VOLTAGE
, "LRADC0"),
595 MXS_ADC_CHAN(1, IIO_VOLTAGE
, "LRADC1"),
596 MXS_ADC_CHAN(2, IIO_VOLTAGE
, "LRADC2"),
597 MXS_ADC_CHAN(3, IIO_VOLTAGE
, "LRADC3"),
598 MXS_ADC_CHAN(4, IIO_VOLTAGE
, "LRADC4"),
599 MXS_ADC_CHAN(5, IIO_VOLTAGE
, "LRADC5"),
600 MXS_ADC_CHAN(6, IIO_VOLTAGE
, "VDDIO"),
601 MXS_ADC_CHAN(7, IIO_VOLTAGE
, "VBATT"),
602 /* Combined Temperature sensors */
607 .info_mask_separate
= BIT(IIO_CHAN_INFO_RAW
) |
608 BIT(IIO_CHAN_INFO_OFFSET
) |
609 BIT(IIO_CHAN_INFO_SCALE
),
611 .scan_type
= {.sign
= 'u', .realbits
= 18, .storagebits
= 32,},
612 .datasheet_name
= "TEMP_DIE",
614 /* Hidden channel to keep indexes */
621 MXS_ADC_CHAN(10, IIO_VOLTAGE
, NULL
),
622 MXS_ADC_CHAN(11, IIO_VOLTAGE
, NULL
),
623 MXS_ADC_CHAN(12, IIO_VOLTAGE
, "USB_DP"),
624 MXS_ADC_CHAN(13, IIO_VOLTAGE
, "USB_DN"),
625 MXS_ADC_CHAN(14, IIO_VOLTAGE
, "VBG"),
626 MXS_ADC_CHAN(15, IIO_VOLTAGE
, "VDD5V"),
629 static const struct iio_chan_spec mx28_lradc_chan_spec
[] = {
630 MXS_ADC_CHAN(0, IIO_VOLTAGE
, "LRADC0"),
631 MXS_ADC_CHAN(1, IIO_VOLTAGE
, "LRADC1"),
632 MXS_ADC_CHAN(2, IIO_VOLTAGE
, "LRADC2"),
633 MXS_ADC_CHAN(3, IIO_VOLTAGE
, "LRADC3"),
634 MXS_ADC_CHAN(4, IIO_VOLTAGE
, "LRADC4"),
635 MXS_ADC_CHAN(5, IIO_VOLTAGE
, "LRADC5"),
636 MXS_ADC_CHAN(6, IIO_VOLTAGE
, "LRADC6"),
637 MXS_ADC_CHAN(7, IIO_VOLTAGE
, "VBATT"),
638 /* Combined Temperature sensors */
643 .info_mask_separate
= BIT(IIO_CHAN_INFO_RAW
) |
644 BIT(IIO_CHAN_INFO_OFFSET
) |
645 BIT(IIO_CHAN_INFO_SCALE
),
647 .scan_type
= {.sign
= 'u', .realbits
= 18, .storagebits
= 32,},
648 .datasheet_name
= "TEMP_DIE",
650 /* Hidden channel to keep indexes */
657 MXS_ADC_CHAN(10, IIO_VOLTAGE
, "VDDIO"),
658 MXS_ADC_CHAN(11, IIO_VOLTAGE
, "VTH"),
659 MXS_ADC_CHAN(12, IIO_VOLTAGE
, "VDDA"),
660 MXS_ADC_CHAN(13, IIO_VOLTAGE
, "VDDD"),
661 MXS_ADC_CHAN(14, IIO_VOLTAGE
, "VBG"),
662 MXS_ADC_CHAN(15, IIO_VOLTAGE
, "VDD5V"),
665 static void mxs_lradc_adc_hw_init(struct mxs_lradc_adc
*adc
)
667 /* The ADC always uses DELAY CHANNEL 0. */
669 (1 << (LRADC_DELAY_TRIGGER_DELAYS_OFFSET
+ 0)) |
670 (LRADC_DELAY_TIMER_PER
<< LRADC_DELAY_DELAY_OFFSET
);
672 /* Configure DELAY CHANNEL 0 for generic ADC sampling. */
673 writel(adc_cfg
, adc
->base
+ LRADC_DELAY(0));
676 * Start internal temperature sensing by clearing bit
677 * HW_LRADC_CTRL2_TEMPSENSE_PWD. This bit can be left cleared
680 writel(0, adc
->base
+ LRADC_CTRL2
);
683 static void mxs_lradc_adc_hw_stop(struct mxs_lradc_adc
*adc
)
685 writel(0, adc
->base
+ LRADC_DELAY(0));
688 static int mxs_lradc_adc_probe(struct platform_device
*pdev
)
690 struct device
*dev
= &pdev
->dev
;
691 struct mxs_lradc
*lradc
= dev_get_drvdata(dev
->parent
);
692 struct mxs_lradc_adc
*adc
;
694 struct resource
*iores
;
695 int ret
, irq
, virq
, i
, s
, n
;
697 const char **irq_name
;
699 /* Allocate the IIO device. */
700 iio
= devm_iio_device_alloc(dev
, sizeof(*adc
));
702 dev_err(dev
, "Failed to allocate IIO device\n");
710 iores
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
714 adc
->base
= devm_ioremap(dev
, iores
->start
, resource_size(iores
));
718 init_completion(&adc
->completion
);
719 spin_lock_init(&adc
->lock
);
721 platform_set_drvdata(pdev
, iio
);
723 iio
->name
= pdev
->name
;
724 iio
->dev
.of_node
= dev
->parent
->of_node
;
725 iio
->info
= &mxs_lradc_adc_iio_info
;
726 iio
->modes
= INDIO_DIRECT_MODE
;
728 if (lradc
->soc
== IMX23_LRADC
) {
729 iio
->channels
= mx23_lradc_chan_spec
;
730 iio
->num_channels
= ARRAY_SIZE(mx23_lradc_chan_spec
);
731 irq_name
= mx23_lradc_adc_irq_names
;
732 n
= ARRAY_SIZE(mx23_lradc_adc_irq_names
);
734 iio
->channels
= mx28_lradc_chan_spec
;
735 iio
->num_channels
= ARRAY_SIZE(mx28_lradc_chan_spec
);
736 irq_name
= mx28_lradc_adc_irq_names
;
737 n
= ARRAY_SIZE(mx28_lradc_adc_irq_names
);
740 ret
= stmp_reset_block(adc
->base
);
744 for (i
= 0; i
< n
; i
++) {
745 irq
= platform_get_irq_byname(pdev
, irq_name
[i
]);
749 virq
= irq_of_parse_and_map(dev
->parent
->of_node
, irq
);
751 ret
= devm_request_irq(dev
, virq
, mxs_lradc_adc_handle_irq
,
752 0, irq_name
[i
], iio
);
757 ret
= mxs_lradc_adc_trigger_init(iio
);
761 ret
= iio_triggered_buffer_setup(iio
, &iio_pollfunc_store_time
,
762 &mxs_lradc_adc_trigger_handler
,
763 &mxs_lradc_adc_buffer_ops
);
767 adc
->vref_mv
= mxs_lradc_adc_vref_mv
[lradc
->soc
];
769 /* Populate available ADC input ranges */
770 for (i
= 0; i
< LRADC_MAX_TOTAL_CHANS
; i
++) {
771 for (s
= 0; s
< ARRAY_SIZE(adc
->scale_avail
[i
]); s
++) {
773 * [s=0] = optional divider by two disabled (default)
774 * [s=1] = optional divider by two enabled
776 * The scale is calculated by doing:
777 * Vref >> (realbits - s)
778 * which multiplies by two on the second component
781 scale_uv
= ((u64
)adc
->vref_mv
[i
] * 100000000) >>
782 (LRADC_RESOLUTION
- s
);
783 adc
->scale_avail
[i
][s
].nano
=
784 do_div(scale_uv
, 100000000) * 10;
785 adc
->scale_avail
[i
][s
].integer
= scale_uv
;
789 /* Configure the hardware. */
790 mxs_lradc_adc_hw_init(adc
);
792 /* Register IIO device. */
793 ret
= iio_device_register(iio
);
795 dev_err(dev
, "Failed to register IIO device\n");
802 mxs_lradc_adc_hw_stop(adc
);
803 iio_triggered_buffer_cleanup(iio
);
805 mxs_lradc_adc_trigger_remove(iio
);
809 static void mxs_lradc_adc_remove(struct platform_device
*pdev
)
811 struct iio_dev
*iio
= platform_get_drvdata(pdev
);
812 struct mxs_lradc_adc
*adc
= iio_priv(iio
);
814 iio_device_unregister(iio
);
815 mxs_lradc_adc_hw_stop(adc
);
816 iio_triggered_buffer_cleanup(iio
);
817 mxs_lradc_adc_trigger_remove(iio
);
820 static struct platform_driver mxs_lradc_adc_driver
= {
822 .name
= "mxs-lradc-adc",
824 .probe
= mxs_lradc_adc_probe
,
825 .remove_new
= mxs_lradc_adc_remove
,
827 module_platform_driver(mxs_lradc_adc_driver
);
829 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
830 MODULE_DESCRIPTION("Freescale MXS LRADC driver general purpose ADC driver");
831 MODULE_LICENSE("GPL");
832 MODULE_ALIAS("platform:mxs-lradc-adc");