1 // SPDX-License-Identifier: GPL-2.0-only
3 * MPU3050 gyroscope driver
5 * Copyright (C) 2016 Linaro Ltd.
6 * Author: Linus Walleij <linus.walleij@linaro.org>
8 * Based on the input subsystem driver, Copyright (C) 2011 Wistron Co.Ltd
9 * Joseph Lai <joseph_lai@wistron.com> and trimmed down by
10 * Alan Cox <alan@linux.intel.com> in turn based on bma023.c.
11 * Device behaviour based on a misc driver posted by Nathan Royer in 2011.
13 * TODO: add support for setting up the low pass 3dB frequency.
16 #include <linux/bitfield.h>
17 #include <linux/bitops.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/iio/buffer.h>
21 #include <linux/iio/iio.h>
22 #include <linux/iio/sysfs.h>
23 #include <linux/iio/trigger.h>
24 #include <linux/iio/trigger_consumer.h>
25 #include <linux/iio/triggered_buffer.h>
26 #include <linux/interrupt.h>
27 #include <linux/module.h>
28 #include <linux/pm_runtime.h>
29 #include <linux/property.h>
30 #include <linux/random.h>
31 #include <linux/slab.h>
35 #define MPU3050_CHIP_ID 0x68
36 #define MPU3050_CHIP_ID_MASK 0x7E
39 * Register map: anything suffixed *_H is a big-endian high byte and always
40 * followed by the corresponding low byte (*_L) even though these are not
41 * explicitly included in the register definitions.
43 #define MPU3050_CHIP_ID_REG 0x00
44 #define MPU3050_PRODUCT_ID_REG 0x01
45 #define MPU3050_XG_OFFS_TC 0x05
46 #define MPU3050_YG_OFFS_TC 0x08
47 #define MPU3050_ZG_OFFS_TC 0x0B
48 #define MPU3050_X_OFFS_USR_H 0x0C
49 #define MPU3050_Y_OFFS_USR_H 0x0E
50 #define MPU3050_Z_OFFS_USR_H 0x10
51 #define MPU3050_FIFO_EN 0x12
52 #define MPU3050_AUX_VDDIO 0x13
53 #define MPU3050_SLV_ADDR 0x14
54 #define MPU3050_SMPLRT_DIV 0x15
55 #define MPU3050_DLPF_FS_SYNC 0x16
56 #define MPU3050_INT_CFG 0x17
57 #define MPU3050_AUX_ADDR 0x18
58 #define MPU3050_INT_STATUS 0x1A
59 #define MPU3050_TEMP_H 0x1B
60 #define MPU3050_XOUT_H 0x1D
61 #define MPU3050_YOUT_H 0x1F
62 #define MPU3050_ZOUT_H 0x21
63 #define MPU3050_DMP_CFG1 0x35
64 #define MPU3050_DMP_CFG2 0x36
65 #define MPU3050_BANK_SEL 0x37
66 #define MPU3050_MEM_START_ADDR 0x38
67 #define MPU3050_MEM_R_W 0x39
68 #define MPU3050_FIFO_COUNT_H 0x3A
69 #define MPU3050_FIFO_R 0x3C
70 #define MPU3050_USR_CTRL 0x3D
71 #define MPU3050_PWR_MGM 0x3E
73 /* MPU memory bank read options */
74 #define MPU3050_MEM_PRFTCH BIT(5)
75 #define MPU3050_MEM_USER_BANK BIT(4)
76 /* Bits 8-11 select memory bank */
77 #define MPU3050_MEM_RAM_BANK_0 0
78 #define MPU3050_MEM_RAM_BANK_1 1
79 #define MPU3050_MEM_RAM_BANK_2 2
80 #define MPU3050_MEM_RAM_BANK_3 3
81 #define MPU3050_MEM_OTP_BANK_0 4
83 #define MPU3050_AXIS_REGS(axis) (MPU3050_XOUT_H + (axis * 2))
88 #define MPU3050_FIFO_EN_FOOTER BIT(0)
89 #define MPU3050_FIFO_EN_AUX_ZOUT BIT(1)
90 #define MPU3050_FIFO_EN_AUX_YOUT BIT(2)
91 #define MPU3050_FIFO_EN_AUX_XOUT BIT(3)
92 #define MPU3050_FIFO_EN_GYRO_ZOUT BIT(4)
93 #define MPU3050_FIFO_EN_GYRO_YOUT BIT(5)
94 #define MPU3050_FIFO_EN_GYRO_XOUT BIT(6)
95 #define MPU3050_FIFO_EN_TEMP_OUT BIT(7)
98 * Digital Low Pass filter (DLPF)
100 * and Synchronization
102 #define MPU3050_EXT_SYNC_NONE 0x00
103 #define MPU3050_EXT_SYNC_TEMP 0x20
104 #define MPU3050_EXT_SYNC_GYROX 0x40
105 #define MPU3050_EXT_SYNC_GYROY 0x60
106 #define MPU3050_EXT_SYNC_GYROZ 0x80
107 #define MPU3050_EXT_SYNC_ACCELX 0xA0
108 #define MPU3050_EXT_SYNC_ACCELY 0xC0
109 #define MPU3050_EXT_SYNC_ACCELZ 0xE0
110 #define MPU3050_EXT_SYNC_MASK 0xE0
111 #define MPU3050_EXT_SYNC_SHIFT 5
113 #define MPU3050_FS_250DPS 0x00
114 #define MPU3050_FS_500DPS 0x08
115 #define MPU3050_FS_1000DPS 0x10
116 #define MPU3050_FS_2000DPS 0x18
117 #define MPU3050_FS_MASK 0x18
118 #define MPU3050_FS_SHIFT 3
120 #define MPU3050_DLPF_CFG_256HZ_NOLPF2 0x00
121 #define MPU3050_DLPF_CFG_188HZ 0x01
122 #define MPU3050_DLPF_CFG_98HZ 0x02
123 #define MPU3050_DLPF_CFG_42HZ 0x03
124 #define MPU3050_DLPF_CFG_20HZ 0x04
125 #define MPU3050_DLPF_CFG_10HZ 0x05
126 #define MPU3050_DLPF_CFG_5HZ 0x06
127 #define MPU3050_DLPF_CFG_2100HZ_NOLPF 0x07
128 #define MPU3050_DLPF_CFG_MASK 0x07
129 #define MPU3050_DLPF_CFG_SHIFT 0
131 /* Interrupt config */
132 #define MPU3050_INT_RAW_RDY_EN BIT(0)
133 #define MPU3050_INT_DMP_DONE_EN BIT(1)
134 #define MPU3050_INT_MPU_RDY_EN BIT(2)
135 #define MPU3050_INT_ANYRD_2CLEAR BIT(4)
136 #define MPU3050_INT_LATCH_EN BIT(5)
137 #define MPU3050_INT_OPEN BIT(6)
138 #define MPU3050_INT_ACTL BIT(7)
139 /* Interrupt status */
140 #define MPU3050_INT_STATUS_RAW_RDY BIT(0)
141 #define MPU3050_INT_STATUS_DMP_DONE BIT(1)
142 #define MPU3050_INT_STATUS_MPU_RDY BIT(2)
143 #define MPU3050_INT_STATUS_FIFO_OVFLW BIT(7)
145 #define MPU3050_USR_CTRL_FIFO_EN BIT(6)
146 #define MPU3050_USR_CTRL_AUX_IF_EN BIT(5)
147 #define MPU3050_USR_CTRL_AUX_IF_RST BIT(3)
148 #define MPU3050_USR_CTRL_FIFO_RST BIT(1)
149 #define MPU3050_USR_CTRL_GYRO_RST BIT(0)
151 #define MPU3050_PWR_MGM_PLL_X 0x01
152 #define MPU3050_PWR_MGM_PLL_Y 0x02
153 #define MPU3050_PWR_MGM_PLL_Z 0x03
154 #define MPU3050_PWR_MGM_CLKSEL_MASK 0x07
155 #define MPU3050_PWR_MGM_STBY_ZG BIT(3)
156 #define MPU3050_PWR_MGM_STBY_YG BIT(4)
157 #define MPU3050_PWR_MGM_STBY_XG BIT(5)
158 #define MPU3050_PWR_MGM_SLEEP BIT(6)
159 #define MPU3050_PWR_MGM_RESET BIT(7)
160 #define MPU3050_PWR_MGM_MASK 0xff
163 * Fullscale precision is (for finest precision) +/- 250 deg/s, so the full
164 * scale is actually 500 deg/s. All 16 bits are then used to cover this scale,
165 * in two's complement.
167 static unsigned int mpu3050_fs_precision
[] = {
168 IIO_DEGREE_TO_RAD(250),
169 IIO_DEGREE_TO_RAD(500),
170 IIO_DEGREE_TO_RAD(1000),
171 IIO_DEGREE_TO_RAD(2000)
177 static const char mpu3050_reg_vdd
[] = "vdd";
178 static const char mpu3050_reg_vlogic
[] = "vlogic";
180 static unsigned int mpu3050_get_freq(struct mpu3050
*mpu3050
)
184 if (mpu3050
->lpf
== MPU3050_DLPF_CFG_256HZ_NOLPF2
)
188 freq
/= (mpu3050
->divisor
+ 1);
193 static int mpu3050_start_sampling(struct mpu3050
*mpu3050
)
200 ret
= regmap_set_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
201 MPU3050_PWR_MGM_RESET
);
205 /* Turn on the Z-axis PLL */
206 ret
= regmap_update_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
207 MPU3050_PWR_MGM_CLKSEL_MASK
,
208 MPU3050_PWR_MGM_PLL_Z
);
212 /* Write calibration offset registers */
213 for (i
= 0; i
< 3; i
++)
214 raw_val
[i
] = cpu_to_be16(mpu3050
->calibration
[i
]);
216 ret
= regmap_bulk_write(mpu3050
->map
, MPU3050_X_OFFS_USR_H
, raw_val
,
221 /* Set low pass filter (sample rate), sync and full scale */
222 ret
= regmap_write(mpu3050
->map
, MPU3050_DLPF_FS_SYNC
,
223 MPU3050_EXT_SYNC_NONE
<< MPU3050_EXT_SYNC_SHIFT
|
224 mpu3050
->fullscale
<< MPU3050_FS_SHIFT
|
225 mpu3050
->lpf
<< MPU3050_DLPF_CFG_SHIFT
);
229 /* Set up sampling frequency */
230 ret
= regmap_write(mpu3050
->map
, MPU3050_SMPLRT_DIV
, mpu3050
->divisor
);
235 * Max 50 ms start-up time after setting DLPF_FS_SYNC
236 * according to the data sheet, then wait for the next sample
237 * at this frequency T = 1000/f ms.
239 msleep(50 + 1000 / mpu3050_get_freq(mpu3050
));
244 static int mpu3050_set_8khz_samplerate(struct mpu3050
*mpu3050
)
248 enum mpu3050_lpf lpf
;
251 divisor
= mpu3050
->divisor
;
253 mpu3050
->lpf
= LPF_256_HZ_NOLPF
; /* 8 kHz base frequency */
254 mpu3050
->divisor
= 0; /* Divide by 1 */
255 ret
= mpu3050_start_sampling(mpu3050
);
258 mpu3050
->divisor
= divisor
;
263 static int mpu3050_read_raw(struct iio_dev
*indio_dev
,
264 struct iio_chan_spec
const *chan
,
268 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
273 case IIO_CHAN_INFO_OFFSET
:
274 switch (chan
->type
) {
277 * The temperature scaling is (x+23000)/280 Celsius
278 * for the "best fit straight line" temperature range
279 * of -30C..85C. The 23000 includes room temperature
280 * offset of +35C, 280 is the precision scale and x is
281 * the 16-bit signed integer reported by hardware.
283 * Temperature value itself represents temperature of
291 case IIO_CHAN_INFO_CALIBBIAS
:
292 switch (chan
->type
) {
294 *val
= mpu3050
->calibration
[chan
->scan_index
-1];
299 case IIO_CHAN_INFO_SAMP_FREQ
:
300 *val
= mpu3050_get_freq(mpu3050
);
302 case IIO_CHAN_INFO_SCALE
:
303 switch (chan
->type
) {
305 /* Millidegrees, see about temperature scaling above */
308 return IIO_VAL_FRACTIONAL
;
311 * Convert to the corresponding full scale in
312 * radians. All 16 bits are used with sign to
313 * span the available scale: to account for the one
314 * missing value if we multiply by 1/S16_MAX, instead
315 * multiply with 2/U16_MAX.
317 *val
= mpu3050_fs_precision
[mpu3050
->fullscale
] * 2;
319 return IIO_VAL_FRACTIONAL
;
323 case IIO_CHAN_INFO_RAW
:
325 pm_runtime_get_sync(mpu3050
->dev
);
326 mutex_lock(&mpu3050
->lock
);
328 ret
= mpu3050_set_8khz_samplerate(mpu3050
);
330 goto out_read_raw_unlock
;
332 switch (chan
->type
) {
334 ret
= regmap_bulk_read(mpu3050
->map
, MPU3050_TEMP_H
,
335 &raw_val
, sizeof(raw_val
));
337 dev_err(mpu3050
->dev
,
338 "error reading temperature\n");
339 goto out_read_raw_unlock
;
342 *val
= (s16
)be16_to_cpu(raw_val
);
345 goto out_read_raw_unlock
;
347 ret
= regmap_bulk_read(mpu3050
->map
,
348 MPU3050_AXIS_REGS(chan
->scan_index
-1),
352 dev_err(mpu3050
->dev
,
353 "error reading axis data\n");
354 goto out_read_raw_unlock
;
357 *val
= be16_to_cpu(raw_val
);
360 goto out_read_raw_unlock
;
363 goto out_read_raw_unlock
;
372 mutex_unlock(&mpu3050
->lock
);
373 pm_runtime_mark_last_busy(mpu3050
->dev
);
374 pm_runtime_put_autosuspend(mpu3050
->dev
);
379 static int mpu3050_write_raw(struct iio_dev
*indio_dev
,
380 const struct iio_chan_spec
*chan
,
381 int val
, int val2
, long mask
)
383 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
385 * Couldn't figure out a way to precalculate these at compile time.
388 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[0] * 1000000 * 2,
391 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[1] * 1000000 * 2,
393 unsigned int fs1000
=
394 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[2] * 1000000 * 2,
396 unsigned int fs2000
=
397 DIV_ROUND_CLOSEST(mpu3050_fs_precision
[3] * 1000000 * 2,
401 case IIO_CHAN_INFO_CALIBBIAS
:
402 if (chan
->type
!= IIO_ANGL_VEL
)
404 mpu3050
->calibration
[chan
->scan_index
-1] = val
;
406 case IIO_CHAN_INFO_SAMP_FREQ
:
408 * The max samplerate is 8000 Hz, the minimum
411 if (val
< 4 || val
> 8000)
415 * Above 1000 Hz we must turn off the digital low pass filter
416 * so we get a base frequency of 8kHz to the divider
419 mpu3050
->lpf
= LPF_256_HZ_NOLPF
;
420 mpu3050
->divisor
= DIV_ROUND_CLOSEST(8000, val
) - 1;
424 mpu3050
->lpf
= LPF_188_HZ
;
425 mpu3050
->divisor
= DIV_ROUND_CLOSEST(1000, val
) - 1;
427 case IIO_CHAN_INFO_SCALE
:
428 if (chan
->type
!= IIO_ANGL_VEL
)
431 * We support +/-250, +/-500, +/-1000 and +/2000 deg/s
432 * which means we need to round to the closest radians
433 * which will be roughly +/-4.3, +/-8.7, +/-17.5, +/-35
434 * rad/s. The scale is then for the 16 bits used to cover
435 * it 2/(2^16) of that.
438 /* Just too large, set the max range */
440 mpu3050
->fullscale
= FS_2000_DPS
;
445 * Now we're dealing with fractions below zero in millirad/s
446 * do some integer interpolation and match with the closest
447 * fullscale in the table.
450 val2
< ((fs500
+ fs250
) / 2))
451 mpu3050
->fullscale
= FS_250_DPS
;
452 else if (val2
<= fs500
||
453 val2
< ((fs1000
+ fs500
) / 2))
454 mpu3050
->fullscale
= FS_500_DPS
;
455 else if (val2
<= fs1000
||
456 val2
< ((fs2000
+ fs1000
) / 2))
457 mpu3050
->fullscale
= FS_1000_DPS
;
460 mpu3050
->fullscale
= FS_2000_DPS
;
469 static irqreturn_t
mpu3050_trigger_handler(int irq
, void *p
)
471 const struct iio_poll_func
*pf
= p
;
472 struct iio_dev
*indio_dev
= pf
->indio_dev
;
473 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
477 s64 timestamp
__aligned(8);
480 unsigned int datums_from_fifo
= 0;
483 * If we're using the hardware trigger, get the precise timestamp from
484 * the top half of the threaded IRQ handler. Otherwise get the
485 * timestamp here so it will be close in time to the actual values
486 * read from the registers.
488 if (iio_trigger_using_own(indio_dev
))
489 timestamp
= mpu3050
->hw_timestamp
;
491 timestamp
= iio_get_time_ns(indio_dev
);
493 mutex_lock(&mpu3050
->lock
);
495 /* Using the hardware IRQ trigger? Check the buffer then. */
496 if (mpu3050
->hw_irq_trigger
) {
499 /* X, Y, Z + temperature */
500 unsigned int bytes_per_datum
= 8;
501 bool fifo_overflow
= false;
503 ret
= regmap_bulk_read(mpu3050
->map
,
504 MPU3050_FIFO_COUNT_H
,
506 sizeof(raw_fifocnt
));
508 goto out_trigger_unlock
;
509 fifocnt
= be16_to_cpu(raw_fifocnt
);
511 if (fifocnt
== 512) {
512 dev_info(mpu3050
->dev
,
513 "FIFO overflow! Emptying and resetting FIFO\n");
514 fifo_overflow
= true;
515 /* Reset and enable the FIFO */
516 ret
= regmap_set_bits(mpu3050
->map
, MPU3050_USR_CTRL
,
517 MPU3050_USR_CTRL_FIFO_EN
|
518 MPU3050_USR_CTRL_FIFO_RST
);
520 dev_info(mpu3050
->dev
, "error resetting FIFO\n");
521 goto out_trigger_unlock
;
523 mpu3050
->pending_fifo_footer
= false;
527 dev_dbg(mpu3050
->dev
,
528 "%d bytes in the FIFO\n",
531 while (!fifo_overflow
&& fifocnt
> bytes_per_datum
) {
534 __be16 fifo_values
[5];
537 * If there is a FIFO footer in the pipe, first clear
538 * that out. This follows the complex algorithm in the
539 * datasheet that states that you may never leave the
540 * FIFO empty after the first reading: you have to
541 * always leave two footer bytes in it. The footer is
542 * in practice just two zero bytes.
544 if (mpu3050
->pending_fifo_footer
) {
545 toread
= bytes_per_datum
+ 2;
548 toread
= bytes_per_datum
;
550 /* Put in some dummy value */
551 fifo_values
[0] = cpu_to_be16(0xAAAA);
554 ret
= regmap_bulk_read(mpu3050
->map
,
556 &fifo_values
[offset
],
559 goto out_trigger_unlock
;
561 dev_dbg(mpu3050
->dev
,
562 "%04x %04x %04x %04x %04x\n",
569 /* Index past the footer (fifo_values[0]) and push */
570 iio_push_to_buffers_with_ts_unaligned(indio_dev
,
577 mpu3050
->pending_fifo_footer
= true;
580 * If we're emptying the FIFO, just make sure to
581 * check if something new appeared.
583 if (fifocnt
< bytes_per_datum
) {
584 ret
= regmap_bulk_read(mpu3050
->map
,
585 MPU3050_FIFO_COUNT_H
,
587 sizeof(raw_fifocnt
));
589 goto out_trigger_unlock
;
590 fifocnt
= be16_to_cpu(raw_fifocnt
);
593 if (fifocnt
< bytes_per_datum
)
594 dev_dbg(mpu3050
->dev
,
595 "%d bytes left in the FIFO\n",
599 * At this point, the timestamp that triggered the
600 * hardware interrupt is no longer valid for what
601 * we are reading (the interrupt likely fired for
602 * the value on the top of the FIFO), so set the
603 * timestamp to zero and let userspace deal with it.
610 * If we picked some datums from the FIFO that's enough, else
611 * fall through and just read from the current value registers.
612 * This happens in two cases:
614 * - We are using some other trigger (external, like an HRTimer)
615 * than the sensor's own sample generator. In this case the
616 * sensor is just set to the max sampling frequency and we give
617 * the trigger a copy of the latest value every time we get here.
619 * - The hardware trigger is active but unused and we actually use
620 * another trigger which calls here with a frequency higher
621 * than what the device provides data. We will then just read
622 * duplicate values directly from the hardware registers.
624 if (datums_from_fifo
) {
625 dev_dbg(mpu3050
->dev
,
626 "read %d datums from the FIFO\n",
628 goto out_trigger_unlock
;
631 ret
= regmap_bulk_read(mpu3050
->map
, MPU3050_TEMP_H
, scan
.chans
,
634 dev_err(mpu3050
->dev
,
635 "error reading axis data\n");
636 goto out_trigger_unlock
;
639 iio_push_to_buffers_with_timestamp(indio_dev
, &scan
, timestamp
);
642 mutex_unlock(&mpu3050
->lock
);
643 iio_trigger_notify_done(indio_dev
->trig
);
648 static int mpu3050_buffer_preenable(struct iio_dev
*indio_dev
)
650 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
652 pm_runtime_get_sync(mpu3050
->dev
);
654 /* Unless we have OUR trigger active, run at full speed */
655 if (!mpu3050
->hw_irq_trigger
)
656 return mpu3050_set_8khz_samplerate(mpu3050
);
661 static int mpu3050_buffer_postdisable(struct iio_dev
*indio_dev
)
663 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
665 pm_runtime_mark_last_busy(mpu3050
->dev
);
666 pm_runtime_put_autosuspend(mpu3050
->dev
);
671 static const struct iio_buffer_setup_ops mpu3050_buffer_setup_ops
= {
672 .preenable
= mpu3050_buffer_preenable
,
673 .postdisable
= mpu3050_buffer_postdisable
,
676 static const struct iio_mount_matrix
*
677 mpu3050_get_mount_matrix(const struct iio_dev
*indio_dev
,
678 const struct iio_chan_spec
*chan
)
680 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
682 return &mpu3050
->orientation
;
685 static const struct iio_chan_spec_ext_info mpu3050_ext_info
[] = {
686 IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE
, mpu3050_get_mount_matrix
),
690 #define MPU3050_AXIS_CHANNEL(axis, index) \
692 .type = IIO_ANGL_VEL, \
694 .channel2 = IIO_MOD_##axis, \
695 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \
696 BIT(IIO_CHAN_INFO_CALIBBIAS), \
697 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \
698 .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ),\
699 .ext_info = mpu3050_ext_info, \
700 .scan_index = index, \
705 .endianness = IIO_BE, \
709 static const struct iio_chan_spec mpu3050_channels
[] = {
712 .info_mask_separate
= BIT(IIO_CHAN_INFO_RAW
) |
713 BIT(IIO_CHAN_INFO_SCALE
) |
714 BIT(IIO_CHAN_INFO_OFFSET
),
715 .info_mask_shared_by_all
= BIT(IIO_CHAN_INFO_SAMP_FREQ
),
721 .endianness
= IIO_BE
,
724 MPU3050_AXIS_CHANNEL(X
, 1),
725 MPU3050_AXIS_CHANNEL(Y
, 2),
726 MPU3050_AXIS_CHANNEL(Z
, 3),
727 IIO_CHAN_SOFT_TIMESTAMP(4),
730 /* Four channels apart from timestamp, scan mask = 0x0f */
731 static const unsigned long mpu3050_scan_masks
[] = { 0xf, 0 };
734 * These are just the hardcoded factors resulting from the more elaborate
735 * calculations done with fractions in the scale raw get/set functions.
737 static IIO_CONST_ATTR(anglevel_scale_available
,
743 static struct attribute
*mpu3050_attributes
[] = {
744 &iio_const_attr_anglevel_scale_available
.dev_attr
.attr
,
748 static const struct attribute_group mpu3050_attribute_group
= {
749 .attrs
= mpu3050_attributes
,
752 static const struct iio_info mpu3050_info
= {
753 .read_raw
= mpu3050_read_raw
,
754 .write_raw
= mpu3050_write_raw
,
755 .attrs
= &mpu3050_attribute_group
,
759 * mpu3050_read_mem() - read MPU-3050 internal memory
760 * @mpu3050: device to read from
762 * @addr: target address
763 * @len: number of bytes
764 * @buf: the buffer to store the read bytes in
766 static int mpu3050_read_mem(struct mpu3050
*mpu3050
,
774 ret
= regmap_write(mpu3050
->map
,
780 ret
= regmap_write(mpu3050
->map
,
781 MPU3050_MEM_START_ADDR
,
786 return regmap_bulk_read(mpu3050
->map
,
792 static int mpu3050_hw_init(struct mpu3050
*mpu3050
)
799 ret
= regmap_set_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
800 MPU3050_PWR_MGM_RESET
);
804 /* Turn on the PLL */
805 ret
= regmap_update_bits(mpu3050
->map
,
807 MPU3050_PWR_MGM_CLKSEL_MASK
,
808 MPU3050_PWR_MGM_PLL_Z
);
813 ret
= regmap_write(mpu3050
->map
,
819 /* Read out the 8 bytes of OTP (one-time-programmable) memory */
820 ret
= mpu3050_read_mem(mpu3050
,
821 (MPU3050_MEM_PRFTCH
|
822 MPU3050_MEM_USER_BANK
|
823 MPU3050_MEM_OTP_BANK_0
),
830 /* This is device-unique data so it goes into the entropy pool */
831 add_device_randomness(&otp_le
, sizeof(otp_le
));
833 otp
= le64_to_cpu(otp_le
);
835 dev_info(mpu3050
->dev
,
836 "die ID: %04llX, wafer ID: %02llX, A lot ID: %04llX, "
837 "W lot ID: %03llX, WP ID: %01llX, rev ID: %02llX\n",
838 /* Die ID, bits 0-12 */
839 FIELD_GET(GENMASK_ULL(12, 0), otp
),
840 /* Wafer ID, bits 13-17 */
841 FIELD_GET(GENMASK_ULL(17, 13), otp
),
842 /* A lot ID, bits 18-33 */
843 FIELD_GET(GENMASK_ULL(33, 18), otp
),
844 /* W lot ID, bits 34-45 */
845 FIELD_GET(GENMASK_ULL(45, 34), otp
),
846 /* WP ID, bits 47-49 */
847 FIELD_GET(GENMASK_ULL(49, 47), otp
),
848 /* rev ID, bits 50-55 */
849 FIELD_GET(GENMASK_ULL(55, 50), otp
));
854 static int mpu3050_power_up(struct mpu3050
*mpu3050
)
858 ret
= regulator_bulk_enable(ARRAY_SIZE(mpu3050
->regs
), mpu3050
->regs
);
860 dev_err(mpu3050
->dev
, "cannot enable regulators\n");
864 * 20-100 ms start-up time for register read/write according to
865 * the datasheet, be on the safe side and wait 200 ms.
869 /* Take device out of sleep mode */
870 ret
= regmap_clear_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
871 MPU3050_PWR_MGM_SLEEP
);
873 regulator_bulk_disable(ARRAY_SIZE(mpu3050
->regs
), mpu3050
->regs
);
874 dev_err(mpu3050
->dev
, "error setting power mode\n");
877 usleep_range(10000, 20000);
882 static int mpu3050_power_down(struct mpu3050
*mpu3050
)
887 * Put MPU-3050 into sleep mode before cutting regulators.
888 * This is important, because we may not be the sole user
889 * of the regulator so the power may stay on after this, and
890 * then we would be wasting power unless we go to sleep mode
893 ret
= regmap_set_bits(mpu3050
->map
, MPU3050_PWR_MGM
,
894 MPU3050_PWR_MGM_SLEEP
);
896 dev_err(mpu3050
->dev
, "error putting to sleep\n");
898 ret
= regulator_bulk_disable(ARRAY_SIZE(mpu3050
->regs
), mpu3050
->regs
);
900 dev_err(mpu3050
->dev
, "error disabling regulators\n");
905 static irqreturn_t
mpu3050_irq_handler(int irq
, void *p
)
907 struct iio_trigger
*trig
= p
;
908 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
909 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
911 if (!mpu3050
->hw_irq_trigger
)
914 /* Get the time stamp as close in time as possible */
915 mpu3050
->hw_timestamp
= iio_get_time_ns(indio_dev
);
917 return IRQ_WAKE_THREAD
;
920 static irqreturn_t
mpu3050_irq_thread(int irq
, void *p
)
922 struct iio_trigger
*trig
= p
;
923 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
924 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
928 /* ACK IRQ and check if it was from us */
929 ret
= regmap_read(mpu3050
->map
, MPU3050_INT_STATUS
, &val
);
931 dev_err(mpu3050
->dev
, "error reading IRQ status\n");
934 if (!(val
& MPU3050_INT_STATUS_RAW_RDY
))
937 iio_trigger_poll_nested(p
);
943 * mpu3050_drdy_trigger_set_state() - set data ready interrupt state
944 * @trig: trigger instance
945 * @enable: true if trigger should be enabled, false to disable
947 static int mpu3050_drdy_trigger_set_state(struct iio_trigger
*trig
,
950 struct iio_dev
*indio_dev
= iio_trigger_get_drvdata(trig
);
951 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
955 /* Disabling trigger: disable interrupt and return */
957 /* Disable all interrupts */
958 ret
= regmap_write(mpu3050
->map
,
962 dev_err(mpu3050
->dev
, "error disabling IRQ\n");
965 ret
= regmap_read(mpu3050
->map
, MPU3050_INT_STATUS
, &val
);
967 dev_err(mpu3050
->dev
, "error clearing IRQ status\n");
969 /* Disable all things in the FIFO and reset it */
970 ret
= regmap_write(mpu3050
->map
, MPU3050_FIFO_EN
, 0);
972 dev_err(mpu3050
->dev
, "error disabling FIFO\n");
974 ret
= regmap_write(mpu3050
->map
, MPU3050_USR_CTRL
,
975 MPU3050_USR_CTRL_FIFO_RST
);
977 dev_err(mpu3050
->dev
, "error resetting FIFO\n");
979 pm_runtime_mark_last_busy(mpu3050
->dev
);
980 pm_runtime_put_autosuspend(mpu3050
->dev
);
981 mpu3050
->hw_irq_trigger
= false;
985 /* Else we're enabling the trigger from this point */
986 pm_runtime_get_sync(mpu3050
->dev
);
987 mpu3050
->hw_irq_trigger
= true;
989 /* Disable all things in the FIFO */
990 ret
= regmap_write(mpu3050
->map
, MPU3050_FIFO_EN
, 0);
994 /* Reset and enable the FIFO */
995 ret
= regmap_set_bits(mpu3050
->map
, MPU3050_USR_CTRL
,
996 MPU3050_USR_CTRL_FIFO_EN
|
997 MPU3050_USR_CTRL_FIFO_RST
);
1001 mpu3050
->pending_fifo_footer
= false;
1003 /* Turn on the FIFO for temp+X+Y+Z */
1004 ret
= regmap_write(mpu3050
->map
, MPU3050_FIFO_EN
,
1005 MPU3050_FIFO_EN_TEMP_OUT
|
1006 MPU3050_FIFO_EN_GYRO_XOUT
|
1007 MPU3050_FIFO_EN_GYRO_YOUT
|
1008 MPU3050_FIFO_EN_GYRO_ZOUT
|
1009 MPU3050_FIFO_EN_FOOTER
);
1013 /* Configure the sample engine */
1014 ret
= mpu3050_start_sampling(mpu3050
);
1018 /* Clear IRQ flag */
1019 ret
= regmap_read(mpu3050
->map
, MPU3050_INT_STATUS
, &val
);
1021 dev_err(mpu3050
->dev
, "error clearing IRQ status\n");
1023 /* Give us interrupts whenever there is new data ready */
1024 val
= MPU3050_INT_RAW_RDY_EN
;
1026 if (mpu3050
->irq_actl
)
1027 val
|= MPU3050_INT_ACTL
;
1028 if (mpu3050
->irq_latch
)
1029 val
|= MPU3050_INT_LATCH_EN
;
1030 if (mpu3050
->irq_opendrain
)
1031 val
|= MPU3050_INT_OPEN
;
1033 ret
= regmap_write(mpu3050
->map
, MPU3050_INT_CFG
, val
);
1041 static const struct iio_trigger_ops mpu3050_trigger_ops
= {
1042 .set_trigger_state
= mpu3050_drdy_trigger_set_state
,
1045 static int mpu3050_trigger_probe(struct iio_dev
*indio_dev
, int irq
)
1047 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
1048 struct device
*dev
= mpu3050
->dev
;
1049 unsigned long irq_trig
;
1052 mpu3050
->trig
= devm_iio_trigger_alloc(&indio_dev
->dev
,
1055 iio_device_id(indio_dev
));
1059 /* Check if IRQ is open drain */
1060 mpu3050
->irq_opendrain
= device_property_read_bool(dev
, "drive-open-drain");
1062 irq_trig
= irqd_get_trigger_type(irq_get_irq_data(irq
));
1064 * Configure the interrupt generator hardware to supply whatever
1065 * the interrupt is configured for, edges low/high level low/high,
1066 * we can provide it all.
1069 case IRQF_TRIGGER_RISING
:
1070 dev_info(&indio_dev
->dev
,
1071 "pulse interrupts on the rising edge\n");
1073 case IRQF_TRIGGER_FALLING
:
1074 mpu3050
->irq_actl
= true;
1075 dev_info(&indio_dev
->dev
,
1076 "pulse interrupts on the falling edge\n");
1078 case IRQF_TRIGGER_HIGH
:
1079 mpu3050
->irq_latch
= true;
1080 dev_info(&indio_dev
->dev
,
1081 "interrupts active high level\n");
1083 * With level IRQs, we mask the IRQ until it is processed,
1084 * but with edge IRQs (pulses) we can queue several interrupts
1087 irq_trig
|= IRQF_ONESHOT
;
1089 case IRQF_TRIGGER_LOW
:
1090 mpu3050
->irq_latch
= true;
1091 mpu3050
->irq_actl
= true;
1092 irq_trig
|= IRQF_ONESHOT
;
1093 dev_info(&indio_dev
->dev
,
1094 "interrupts active low level\n");
1097 /* This is the most preferred mode, if possible */
1098 dev_err(&indio_dev
->dev
,
1099 "unsupported IRQ trigger specified (%lx), enforce "
1100 "rising edge\n", irq_trig
);
1101 irq_trig
= IRQF_TRIGGER_RISING
;
1105 /* An open drain line can be shared with several devices */
1106 if (mpu3050
->irq_opendrain
)
1107 irq_trig
|= IRQF_SHARED
;
1109 ret
= request_threaded_irq(irq
,
1110 mpu3050_irq_handler
,
1113 mpu3050
->trig
->name
,
1116 dev_err(dev
, "can't get IRQ %d, error %d\n", irq
, ret
);
1121 mpu3050
->trig
->dev
.parent
= dev
;
1122 mpu3050
->trig
->ops
= &mpu3050_trigger_ops
;
1123 iio_trigger_set_drvdata(mpu3050
->trig
, indio_dev
);
1125 ret
= iio_trigger_register(mpu3050
->trig
);
1129 indio_dev
->trig
= iio_trigger_get(mpu3050
->trig
);
1134 int mpu3050_common_probe(struct device
*dev
,
1139 struct iio_dev
*indio_dev
;
1140 struct mpu3050
*mpu3050
;
1144 indio_dev
= devm_iio_device_alloc(dev
, sizeof(*mpu3050
));
1147 mpu3050
= iio_priv(indio_dev
);
1151 mutex_init(&mpu3050
->lock
);
1152 /* Default fullscale: 2000 degrees per second */
1153 mpu3050
->fullscale
= FS_2000_DPS
;
1154 /* 1 kHz, divide by 100, default frequency = 10 Hz */
1155 mpu3050
->lpf
= MPU3050_DLPF_CFG_188HZ
;
1156 mpu3050
->divisor
= 99;
1158 /* Read the mounting matrix, if present */
1159 ret
= iio_read_mount_matrix(dev
, &mpu3050
->orientation
);
1163 /* Fetch and turn on regulators */
1164 mpu3050
->regs
[0].supply
= mpu3050_reg_vdd
;
1165 mpu3050
->regs
[1].supply
= mpu3050_reg_vlogic
;
1166 ret
= devm_regulator_bulk_get(dev
, ARRAY_SIZE(mpu3050
->regs
),
1169 dev_err(dev
, "Cannot get regulators\n");
1173 ret
= mpu3050_power_up(mpu3050
);
1177 ret
= regmap_read(map
, MPU3050_CHIP_ID_REG
, &val
);
1179 dev_err(dev
, "could not read device ID\n");
1182 goto err_power_down
;
1185 if ((val
& MPU3050_CHIP_ID_MASK
) != MPU3050_CHIP_ID
) {
1186 dev_err(dev
, "unsupported chip id %02x\n",
1187 (u8
)(val
& MPU3050_CHIP_ID_MASK
));
1189 goto err_power_down
;
1192 ret
= regmap_read(map
, MPU3050_PRODUCT_ID_REG
, &val
);
1194 dev_err(dev
, "could not read device ID\n");
1197 goto err_power_down
;
1199 dev_info(dev
, "found MPU-3050 part no: %d, version: %d\n",
1200 ((val
>> 4) & 0xf), (val
& 0xf));
1202 ret
= mpu3050_hw_init(mpu3050
);
1204 goto err_power_down
;
1206 indio_dev
->channels
= mpu3050_channels
;
1207 indio_dev
->num_channels
= ARRAY_SIZE(mpu3050_channels
);
1208 indio_dev
->info
= &mpu3050_info
;
1209 indio_dev
->available_scan_masks
= mpu3050_scan_masks
;
1210 indio_dev
->modes
= INDIO_DIRECT_MODE
;
1211 indio_dev
->name
= name
;
1213 ret
= iio_triggered_buffer_setup(indio_dev
, iio_pollfunc_store_time
,
1214 mpu3050_trigger_handler
,
1215 &mpu3050_buffer_setup_ops
);
1217 dev_err(dev
, "triggered buffer setup failed\n");
1218 goto err_power_down
;
1221 ret
= iio_device_register(indio_dev
);
1223 dev_err(dev
, "device register failed\n");
1224 goto err_cleanup_buffer
;
1227 dev_set_drvdata(dev
, indio_dev
);
1229 /* Check if we have an assigned IRQ to use as trigger */
1231 ret
= mpu3050_trigger_probe(indio_dev
, irq
);
1233 dev_err(dev
, "failed to register trigger\n");
1236 /* Enable runtime PM */
1237 pm_runtime_get_noresume(dev
);
1238 pm_runtime_set_active(dev
);
1239 pm_runtime_enable(dev
);
1241 * Set autosuspend to two orders of magnitude larger than the
1242 * start-up time. 100ms start-up time means 10000ms autosuspend,
1245 pm_runtime_set_autosuspend_delay(dev
, 10000);
1246 pm_runtime_use_autosuspend(dev
);
1247 pm_runtime_put(dev
);
1252 iio_triggered_buffer_cleanup(indio_dev
);
1254 mpu3050_power_down(mpu3050
);
1259 void mpu3050_common_remove(struct device
*dev
)
1261 struct iio_dev
*indio_dev
= dev_get_drvdata(dev
);
1262 struct mpu3050
*mpu3050
= iio_priv(indio_dev
);
1264 pm_runtime_get_sync(dev
);
1265 pm_runtime_put_noidle(dev
);
1266 pm_runtime_disable(dev
);
1267 iio_triggered_buffer_cleanup(indio_dev
);
1269 free_irq(mpu3050
->irq
, mpu3050
);
1270 iio_device_unregister(indio_dev
);
1271 mpu3050_power_down(mpu3050
);
1274 static int mpu3050_runtime_suspend(struct device
*dev
)
1276 return mpu3050_power_down(iio_priv(dev_get_drvdata(dev
)));
1279 static int mpu3050_runtime_resume(struct device
*dev
)
1281 return mpu3050_power_up(iio_priv(dev_get_drvdata(dev
)));
1284 DEFINE_RUNTIME_DEV_PM_OPS(mpu3050_dev_pm_ops
, mpu3050_runtime_suspend
,
1285 mpu3050_runtime_resume
, NULL
);
1286 MODULE_AUTHOR("Linus Walleij");
1287 MODULE_DESCRIPTION("MPU3050 gyroscope driver");
1288 MODULE_LICENSE("GPL");