drm/tests: hdmi: Fix memory leaks in drm_display_mode_from_cea_vic()
[drm/drm-misc.git] / drivers / platform / mellanox / mlxbf-bootctl.c
blobdd5f370c316823260bf83ccb6bce49aa90f7817b
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Mellanox boot control driver
5 * This driver provides a sysfs interface for systems management
6 * software to manage reset-time actions.
8 * Copyright (C) 2019 Mellanox Technologies
9 */
11 #include <linux/acpi.h>
12 #include <linux/arm-smccc.h>
13 #include <linux/delay.h>
14 #include <linux/if_ether.h>
15 #include <linux/iopoll.h>
16 #include <linux/module.h>
17 #include <linux/platform_device.h>
19 #include "mlxbf-bootctl.h"
21 #define MLXBF_BOOTCTL_SB_SECURE_MASK 0x03
22 #define MLXBF_BOOTCTL_SB_TEST_MASK 0x0c
23 #define MLXBF_BOOTCTL_SB_DEV_MASK BIT(4)
25 #define MLXBF_SB_KEY_NUM 4
27 /* UUID used to probe ATF service. */
28 static const char *mlxbf_bootctl_svc_uuid_str =
29 "89c036b4-e7d7-11e6-8797-001aca00bfc4";
31 struct mlxbf_bootctl_name {
32 u32 value;
33 const char *name;
36 static struct mlxbf_bootctl_name boot_names[] = {
37 { MLXBF_BOOTCTL_EXTERNAL, "external" },
38 { MLXBF_BOOTCTL_EMMC, "emmc" },
39 { MLNX_BOOTCTL_SWAP_EMMC, "swap_emmc" },
40 { MLXBF_BOOTCTL_EMMC_LEGACY, "emmc_legacy" },
41 { MLXBF_BOOTCTL_NONE, "none" },
44 enum {
45 MLXBF_BOOTCTL_SB_LIFECYCLE_PRODUCTION = 0,
46 MLXBF_BOOTCTL_SB_LIFECYCLE_GA_SECURE = 1,
47 MLXBF_BOOTCTL_SB_LIFECYCLE_GA_NON_SECURE = 2,
48 MLXBF_BOOTCTL_SB_LIFECYCLE_RMA = 3
51 static const char * const mlxbf_bootctl_lifecycle_states[] = {
52 [MLXBF_BOOTCTL_SB_LIFECYCLE_PRODUCTION] = "Production",
53 [MLXBF_BOOTCTL_SB_LIFECYCLE_GA_SECURE] = "GA Secured",
54 [MLXBF_BOOTCTL_SB_LIFECYCLE_GA_NON_SECURE] = "GA Non-Secured",
55 [MLXBF_BOOTCTL_SB_LIFECYCLE_RMA] = "RMA",
58 /* Log header format. */
59 #define MLXBF_RSH_LOG_TYPE_MASK GENMASK_ULL(59, 56)
60 #define MLXBF_RSH_LOG_LEN_MASK GENMASK_ULL(54, 48)
61 #define MLXBF_RSH_LOG_LEVEL_MASK GENMASK_ULL(7, 0)
63 /* Log module ID and type (only MSG type in Linux driver for now). */
64 #define MLXBF_RSH_LOG_TYPE_MSG 0x04ULL
66 /* Log ctl/data register offset. */
67 #define MLXBF_RSH_SCRATCH_BUF_CTL_OFF 0
68 #define MLXBF_RSH_SCRATCH_BUF_DATA_OFF 0x10
70 /* Log message levels. */
71 enum {
72 MLXBF_RSH_LOG_INFO,
73 MLXBF_RSH_LOG_WARN,
74 MLXBF_RSH_LOG_ERR,
75 MLXBF_RSH_LOG_ASSERT
78 /* Mapped pointer for RSH_BOOT_FIFO_DATA and RSH_BOOT_FIFO_COUNT register. */
79 static void __iomem *mlxbf_rsh_boot_data;
80 static void __iomem *mlxbf_rsh_boot_cnt;
82 /* Mapped pointer for rsh log semaphore/ctrl/data register. */
83 static void __iomem *mlxbf_rsh_semaphore;
84 static void __iomem *mlxbf_rsh_scratch_buf_ctl;
85 static void __iomem *mlxbf_rsh_scratch_buf_data;
87 /* Rsh log levels. */
88 static const char * const mlxbf_rsh_log_level[] = {
89 "INFO", "WARN", "ERR", "ASSERT"};
91 static DEFINE_MUTEX(icm_ops_lock);
92 static DEFINE_MUTEX(os_up_lock);
93 static DEFINE_MUTEX(mfg_ops_lock);
96 * Objects are stored within the MFG partition per type.
97 * Type 0 is not supported.
99 enum {
100 MLNX_MFG_TYPE_OOB_MAC = 1,
101 MLNX_MFG_TYPE_OPN_0,
102 MLNX_MFG_TYPE_OPN_1,
103 MLNX_MFG_TYPE_OPN_2,
104 MLNX_MFG_TYPE_SKU_0,
105 MLNX_MFG_TYPE_SKU_1,
106 MLNX_MFG_TYPE_SKU_2,
107 MLNX_MFG_TYPE_MODL_0,
108 MLNX_MFG_TYPE_MODL_1,
109 MLNX_MFG_TYPE_MODL_2,
110 MLNX_MFG_TYPE_SN_0,
111 MLNX_MFG_TYPE_SN_1,
112 MLNX_MFG_TYPE_SN_2,
113 MLNX_MFG_TYPE_UUID_0,
114 MLNX_MFG_TYPE_UUID_1,
115 MLNX_MFG_TYPE_UUID_2,
116 MLNX_MFG_TYPE_UUID_3,
117 MLNX_MFG_TYPE_UUID_4,
118 MLNX_MFG_TYPE_REV,
121 #define MLNX_MFG_OPN_VAL_LEN 24
122 #define MLNX_MFG_SKU_VAL_LEN 24
123 #define MLNX_MFG_MODL_VAL_LEN 24
124 #define MLNX_MFG_SN_VAL_LEN 24
125 #define MLNX_MFG_UUID_VAL_LEN 40
126 #define MLNX_MFG_REV_VAL_LEN 8
127 #define MLNX_MFG_VAL_QWORD_CNT(type) \
128 (MLNX_MFG_##type##_VAL_LEN / sizeof(u64))
131 * The MAC address consists of 6 bytes (2 digits each) separated by ':'.
132 * The expected format is: "XX:XX:XX:XX:XX:XX"
134 #define MLNX_MFG_OOB_MAC_FORMAT_LEN \
135 ((ETH_ALEN * 2) + (ETH_ALEN - 1))
137 /* ARM SMC call which is atomic and no need for lock. */
138 static int mlxbf_bootctl_smc(unsigned int smc_op, int smc_arg)
140 struct arm_smccc_res res;
142 arm_smccc_smc(smc_op, smc_arg, 0, 0, 0, 0, 0, 0, &res);
144 return res.a0;
147 /* Return the action in integer or an error code. */
148 static int mlxbf_bootctl_reset_action_to_val(const char *action)
150 int i;
152 for (i = 0; i < ARRAY_SIZE(boot_names); i++)
153 if (sysfs_streq(boot_names[i].name, action))
154 return boot_names[i].value;
156 return -EINVAL;
159 /* Return the action in string. */
160 static const char *mlxbf_bootctl_action_to_string(int action)
162 int i;
164 for (i = 0; i < ARRAY_SIZE(boot_names); i++)
165 if (boot_names[i].value == action)
166 return boot_names[i].name;
168 return "invalid action";
171 static ssize_t post_reset_wdog_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
174 int ret;
176 ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_POST_RESET_WDOG, 0);
177 if (ret < 0)
178 return ret;
180 return sprintf(buf, "%d\n", ret);
183 static ssize_t post_reset_wdog_store(struct device *dev,
184 struct device_attribute *attr,
185 const char *buf, size_t count)
187 unsigned long value;
188 int ret;
190 ret = kstrtoul(buf, 10, &value);
191 if (ret)
192 return ret;
194 ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_SET_POST_RESET_WDOG, value);
195 if (ret < 0)
196 return ret;
198 return count;
201 static ssize_t mlxbf_bootctl_show(int smc_op, char *buf)
203 int action;
205 action = mlxbf_bootctl_smc(smc_op, 0);
206 if (action < 0)
207 return action;
209 return sprintf(buf, "%s\n", mlxbf_bootctl_action_to_string(action));
212 static int mlxbf_bootctl_store(int smc_op, const char *buf, size_t count)
214 int ret, action;
216 action = mlxbf_bootctl_reset_action_to_val(buf);
217 if (action < 0)
218 return action;
220 ret = mlxbf_bootctl_smc(smc_op, action);
221 if (ret < 0)
222 return ret;
224 return count;
227 static ssize_t reset_action_show(struct device *dev,
228 struct device_attribute *attr, char *buf)
230 return mlxbf_bootctl_show(MLXBF_BOOTCTL_GET_RESET_ACTION, buf);
233 static ssize_t reset_action_store(struct device *dev,
234 struct device_attribute *attr,
235 const char *buf, size_t count)
237 return mlxbf_bootctl_store(MLXBF_BOOTCTL_SET_RESET_ACTION, buf, count);
240 static ssize_t second_reset_action_show(struct device *dev,
241 struct device_attribute *attr,
242 char *buf)
244 return mlxbf_bootctl_show(MLXBF_BOOTCTL_GET_SECOND_RESET_ACTION, buf);
247 static ssize_t second_reset_action_store(struct device *dev,
248 struct device_attribute *attr,
249 const char *buf, size_t count)
251 return mlxbf_bootctl_store(MLXBF_BOOTCTL_SET_SECOND_RESET_ACTION, buf,
252 count);
255 static ssize_t lifecycle_state_show(struct device *dev,
256 struct device_attribute *attr, char *buf)
258 int status_bits;
259 int use_dev_key;
260 int test_state;
261 int lc_state;
263 status_bits = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_TBB_FUSE_STATUS,
264 MLXBF_BOOTCTL_FUSE_STATUS_LIFECYCLE);
265 if (status_bits < 0)
266 return status_bits;
268 use_dev_key = status_bits & MLXBF_BOOTCTL_SB_DEV_MASK;
269 test_state = status_bits & MLXBF_BOOTCTL_SB_TEST_MASK;
270 lc_state = status_bits & MLXBF_BOOTCTL_SB_SECURE_MASK;
273 * If the test bits are set, we specify that the current state may be
274 * due to using the test bits.
276 if (test_state) {
277 return sprintf(buf, "%s(test)\n",
278 mlxbf_bootctl_lifecycle_states[lc_state]);
279 } else if (use_dev_key &&
280 (lc_state == MLXBF_BOOTCTL_SB_LIFECYCLE_GA_SECURE)) {
281 return sprintf(buf, "Secured (development)\n");
284 return sprintf(buf, "%s\n", mlxbf_bootctl_lifecycle_states[lc_state]);
287 static ssize_t secure_boot_fuse_state_show(struct device *dev,
288 struct device_attribute *attr,
289 char *buf)
291 int burnt, valid, key, key_state, buf_len = 0, upper_key_used = 0;
292 const char *status;
294 key_state = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_TBB_FUSE_STATUS,
295 MLXBF_BOOTCTL_FUSE_STATUS_KEYS);
296 if (key_state < 0)
297 return key_state;
300 * key_state contains the bits for 4 Key versions, loaded from eFuses
301 * after a hard reset. Lower 4 bits are a thermometer code indicating
302 * key programming has started for key n (0000 = none, 0001 = version 0,
303 * 0011 = version 1, 0111 = version 2, 1111 = version 3). Upper 4 bits
304 * are a thermometer code indicating key programming has completed for
305 * key n (same encodings as the start bits). This allows for detection
306 * of an interruption in the programming process which has left the key
307 * partially programmed (and thus invalid). The process is to burn the
308 * eFuse for the new key start bit, burn the key eFuses, then burn the
309 * eFuse for the new key complete bit.
311 * For example 0000_0000: no key valid, 0001_0001: key version 0 valid,
312 * 0011_0011: key 1 version valid, 0011_0111: key version 2 started
313 * programming but did not complete, etc. The most recent key for which
314 * both start and complete bit is set is loaded. On soft reset, this
315 * register is not modified.
317 for (key = MLXBF_SB_KEY_NUM - 1; key >= 0; key--) {
318 burnt = key_state & BIT(key);
319 valid = key_state & BIT(key + MLXBF_SB_KEY_NUM);
321 if (burnt && valid)
322 upper_key_used = 1;
324 if (upper_key_used) {
325 if (burnt)
326 status = valid ? "Used" : "Wasted";
327 else
328 status = valid ? "Invalid" : "Skipped";
329 } else {
330 if (burnt)
331 status = valid ? "InUse" : "Incomplete";
332 else
333 status = valid ? "Invalid" : "Free";
335 buf_len += sprintf(buf + buf_len, "%d:%s ", key, status);
337 buf_len += sprintf(buf + buf_len, "\n");
339 return buf_len;
342 static ssize_t fw_reset_store(struct device *dev,
343 struct device_attribute *attr,
344 const char *buf, size_t count)
346 unsigned long key;
347 int err;
349 err = kstrtoul(buf, 16, &key);
350 if (err)
351 return err;
353 if (mlxbf_bootctl_smc(MLXBF_BOOTCTL_FW_RESET, key) < 0)
354 return -EINVAL;
356 return count;
359 /* Size(8-byte words) of the log buffer. */
360 #define RSH_SCRATCH_BUF_CTL_IDX_MASK 0x7f
362 /* 100ms timeout */
363 #define RSH_SCRATCH_BUF_POLL_TIMEOUT 100000
365 static int mlxbf_rsh_log_sem_lock(void)
367 unsigned long reg;
369 return readq_poll_timeout(mlxbf_rsh_semaphore, reg, !reg, 0,
370 RSH_SCRATCH_BUF_POLL_TIMEOUT);
373 static void mlxbf_rsh_log_sem_unlock(void)
375 writeq(0, mlxbf_rsh_semaphore);
378 static ssize_t rsh_log_store(struct device *dev,
379 struct device_attribute *attr,
380 const char *buf, size_t count)
382 int rc, idx, num, len, level = MLXBF_RSH_LOG_INFO;
383 size_t size = count;
384 u64 data;
386 if (!size)
387 return -EINVAL;
389 if (!mlxbf_rsh_semaphore || !mlxbf_rsh_scratch_buf_ctl)
390 return -EOPNOTSUPP;
392 /* Ignore line break at the end. */
393 if (buf[size - 1] == '\n')
394 size--;
396 /* Check the message prefix. */
397 for (idx = 0; idx < ARRAY_SIZE(mlxbf_rsh_log_level); idx++) {
398 len = strlen(mlxbf_rsh_log_level[idx]);
399 if (len + 1 < size &&
400 !strncmp(buf, mlxbf_rsh_log_level[idx], len)) {
401 buf += len;
402 size -= len;
403 level = idx;
404 break;
408 /* Ignore leading spaces. */
409 while (size > 0 && buf[0] == ' ') {
410 size--;
411 buf++;
414 /* Take the semaphore. */
415 rc = mlxbf_rsh_log_sem_lock();
416 if (rc)
417 return rc;
419 /* Calculate how many words are available. */
420 idx = readq(mlxbf_rsh_scratch_buf_ctl);
421 num = min((int)DIV_ROUND_UP(size, sizeof(u64)),
422 RSH_SCRATCH_BUF_CTL_IDX_MASK - idx - 1);
423 if (num <= 0)
424 goto done;
426 /* Write Header. */
427 data = FIELD_PREP(MLXBF_RSH_LOG_TYPE_MASK, MLXBF_RSH_LOG_TYPE_MSG);
428 data |= FIELD_PREP(MLXBF_RSH_LOG_LEN_MASK, num);
429 data |= FIELD_PREP(MLXBF_RSH_LOG_LEVEL_MASK, level);
430 writeq(data, mlxbf_rsh_scratch_buf_data);
432 /* Write message. */
433 for (idx = 0; idx < num && size > 0; idx++) {
434 if (size < sizeof(u64)) {
435 data = 0;
436 memcpy(&data, buf, size);
437 size = 0;
438 } else {
439 memcpy(&data, buf, sizeof(u64));
440 size -= sizeof(u64);
441 buf += sizeof(u64);
443 writeq(data, mlxbf_rsh_scratch_buf_data);
446 done:
447 /* Release the semaphore. */
448 mlxbf_rsh_log_sem_unlock();
450 /* Ignore the rest if no more space. */
451 return count;
454 static ssize_t large_icm_show(struct device *dev,
455 struct device_attribute *attr, char *buf)
457 struct arm_smccc_res res;
459 mutex_lock(&icm_ops_lock);
460 arm_smccc_smc(MLNX_HANDLE_GET_ICM_INFO, 0, 0, 0, 0,
461 0, 0, 0, &res);
462 mutex_unlock(&icm_ops_lock);
463 if (res.a0)
464 return -EPERM;
466 return sysfs_emit(buf, "0x%lx", res.a1);
469 static ssize_t large_icm_store(struct device *dev,
470 struct device_attribute *attr,
471 const char *buf, size_t count)
473 struct arm_smccc_res res;
474 unsigned long icm_data;
475 int err;
477 err = kstrtoul(buf, MLXBF_LARGE_ICMC_MAX_STRING_SIZE, &icm_data);
478 if (err)
479 return err;
481 if ((icm_data != 0 && icm_data < MLXBF_LARGE_ICMC_SIZE_MIN) ||
482 icm_data > MLXBF_LARGE_ICMC_SIZE_MAX || icm_data % MLXBF_LARGE_ICMC_GRANULARITY)
483 return -EPERM;
485 mutex_lock(&icm_ops_lock);
486 arm_smccc_smc(MLNX_HANDLE_SET_ICM_INFO, icm_data, 0, 0, 0, 0, 0, 0, &res);
487 mutex_unlock(&icm_ops_lock);
489 return res.a0 ? -EPERM : count;
492 static ssize_t os_up_store(struct device *dev,
493 struct device_attribute *attr,
494 const char *buf, size_t count)
496 struct arm_smccc_res res;
497 unsigned long val;
498 int err;
500 err = kstrtoul(buf, 10, &val);
501 if (err)
502 return err;
504 if (val != 1)
505 return -EINVAL;
507 mutex_lock(&os_up_lock);
508 arm_smccc_smc(MLNX_HANDLE_OS_UP, 0, 0, 0, 0, 0, 0, 0, &res);
509 mutex_unlock(&os_up_lock);
511 return count;
514 static ssize_t oob_mac_show(struct device *dev,
515 struct device_attribute *attr, char *buf)
517 struct arm_smccc_res res;
518 u8 *mac_byte_ptr;
520 mutex_lock(&mfg_ops_lock);
521 arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO, MLNX_MFG_TYPE_OOB_MAC, 0, 0, 0,
522 0, 0, 0, &res);
523 mutex_unlock(&mfg_ops_lock);
524 if (res.a0)
525 return -EPERM;
527 mac_byte_ptr = (u8 *)&res.a1;
529 return sysfs_format_mac(buf, mac_byte_ptr, ETH_ALEN);
532 static ssize_t oob_mac_store(struct device *dev,
533 struct device_attribute *attr,
534 const char *buf, size_t count)
536 unsigned int byte[MLNX_MFG_OOB_MAC_FORMAT_LEN] = { 0 };
537 struct arm_smccc_res res;
538 int byte_idx, len;
539 u64 mac_addr = 0;
540 u8 *mac_byte_ptr;
542 if ((count - 1) != MLNX_MFG_OOB_MAC_FORMAT_LEN)
543 return -EINVAL;
545 len = sscanf(buf, "%02x:%02x:%02x:%02x:%02x:%02x",
546 &byte[0], &byte[1], &byte[2],
547 &byte[3], &byte[4], &byte[5]);
548 if (len != ETH_ALEN)
549 return -EINVAL;
551 mac_byte_ptr = (u8 *)&mac_addr;
553 for (byte_idx = 0; byte_idx < ETH_ALEN; byte_idx++)
554 mac_byte_ptr[byte_idx] = (u8)byte[byte_idx];
556 mutex_lock(&mfg_ops_lock);
557 arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO, MLNX_MFG_TYPE_OOB_MAC,
558 ETH_ALEN, mac_addr, 0, 0, 0, 0, &res);
559 mutex_unlock(&mfg_ops_lock);
561 return res.a0 ? -EPERM : count;
564 static ssize_t opn_show(struct device *dev,
565 struct device_attribute *attr, char *buf)
567 u64 opn_data[MLNX_MFG_VAL_QWORD_CNT(OPN) + 1] = { 0 };
568 struct arm_smccc_res res;
569 int word;
571 mutex_lock(&mfg_ops_lock);
572 for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(OPN); word++) {
573 arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
574 MLNX_MFG_TYPE_OPN_0 + word,
575 0, 0, 0, 0, 0, 0, &res);
576 if (res.a0) {
577 mutex_unlock(&mfg_ops_lock);
578 return -EPERM;
580 opn_data[word] = res.a1;
582 mutex_unlock(&mfg_ops_lock);
584 return sysfs_emit(buf, "%s", (char *)opn_data);
587 static ssize_t opn_store(struct device *dev,
588 struct device_attribute *attr,
589 const char *buf, size_t count)
591 u64 opn[MLNX_MFG_VAL_QWORD_CNT(OPN)] = { 0 };
592 struct arm_smccc_res res;
593 int word;
595 if (count > MLNX_MFG_OPN_VAL_LEN)
596 return -EINVAL;
598 memcpy(opn, buf, count);
600 mutex_lock(&mfg_ops_lock);
601 for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(OPN); word++) {
602 arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
603 MLNX_MFG_TYPE_OPN_0 + word,
604 sizeof(u64), opn[word], 0, 0, 0, 0, &res);
605 if (res.a0) {
606 mutex_unlock(&mfg_ops_lock);
607 return -EPERM;
610 mutex_unlock(&mfg_ops_lock);
612 return count;
615 static ssize_t sku_show(struct device *dev,
616 struct device_attribute *attr, char *buf)
618 u64 sku_data[MLNX_MFG_VAL_QWORD_CNT(SKU) + 1] = { 0 };
619 struct arm_smccc_res res;
620 int word;
622 mutex_lock(&mfg_ops_lock);
623 for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(SKU); word++) {
624 arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
625 MLNX_MFG_TYPE_SKU_0 + word,
626 0, 0, 0, 0, 0, 0, &res);
627 if (res.a0) {
628 mutex_unlock(&mfg_ops_lock);
629 return -EPERM;
631 sku_data[word] = res.a1;
633 mutex_unlock(&mfg_ops_lock);
635 return sysfs_emit(buf, "%s", (char *)sku_data);
638 static ssize_t sku_store(struct device *dev,
639 struct device_attribute *attr,
640 const char *buf, size_t count)
642 u64 sku[MLNX_MFG_VAL_QWORD_CNT(SKU)] = { 0 };
643 struct arm_smccc_res res;
644 int word;
646 if (count > MLNX_MFG_SKU_VAL_LEN)
647 return -EINVAL;
649 memcpy(sku, buf, count);
651 mutex_lock(&mfg_ops_lock);
652 for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(SKU); word++) {
653 arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
654 MLNX_MFG_TYPE_SKU_0 + word,
655 sizeof(u64), sku[word], 0, 0, 0, 0, &res);
656 if (res.a0) {
657 mutex_unlock(&mfg_ops_lock);
658 return -EPERM;
661 mutex_unlock(&mfg_ops_lock);
663 return count;
666 static ssize_t modl_show(struct device *dev,
667 struct device_attribute *attr, char *buf)
669 u64 modl_data[MLNX_MFG_VAL_QWORD_CNT(MODL) + 1] = { 0 };
670 struct arm_smccc_res res;
671 int word;
673 mutex_lock(&mfg_ops_lock);
674 for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(MODL); word++) {
675 arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
676 MLNX_MFG_TYPE_MODL_0 + word,
677 0, 0, 0, 0, 0, 0, &res);
678 if (res.a0) {
679 mutex_unlock(&mfg_ops_lock);
680 return -EPERM;
682 modl_data[word] = res.a1;
684 mutex_unlock(&mfg_ops_lock);
686 return sysfs_emit(buf, "%s", (char *)modl_data);
689 static ssize_t modl_store(struct device *dev,
690 struct device_attribute *attr,
691 const char *buf, size_t count)
693 u64 modl[MLNX_MFG_VAL_QWORD_CNT(MODL)] = { 0 };
694 struct arm_smccc_res res;
695 int word;
697 if (count > MLNX_MFG_MODL_VAL_LEN)
698 return -EINVAL;
700 memcpy(modl, buf, count);
702 mutex_lock(&mfg_ops_lock);
703 for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(MODL); word++) {
704 arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
705 MLNX_MFG_TYPE_MODL_0 + word,
706 sizeof(u64), modl[word], 0, 0, 0, 0, &res);
707 if (res.a0) {
708 mutex_unlock(&mfg_ops_lock);
709 return -EPERM;
712 mutex_unlock(&mfg_ops_lock);
714 return count;
717 static ssize_t sn_show(struct device *dev,
718 struct device_attribute *attr, char *buf)
720 u64 sn_data[MLNX_MFG_VAL_QWORD_CNT(SN) + 1] = { 0 };
721 struct arm_smccc_res res;
722 int word;
724 mutex_lock(&mfg_ops_lock);
725 for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(SN); word++) {
726 arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
727 MLNX_MFG_TYPE_SN_0 + word,
728 0, 0, 0, 0, 0, 0, &res);
729 if (res.a0) {
730 mutex_unlock(&mfg_ops_lock);
731 return -EPERM;
733 sn_data[word] = res.a1;
735 mutex_unlock(&mfg_ops_lock);
737 return sysfs_emit(buf, "%s", (char *)sn_data);
740 static ssize_t sn_store(struct device *dev,
741 struct device_attribute *attr,
742 const char *buf, size_t count)
744 u64 sn[MLNX_MFG_VAL_QWORD_CNT(SN)] = { 0 };
745 struct arm_smccc_res res;
746 int word;
748 if (count > MLNX_MFG_SN_VAL_LEN)
749 return -EINVAL;
751 memcpy(sn, buf, count);
753 mutex_lock(&mfg_ops_lock);
754 for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(SN); word++) {
755 arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
756 MLNX_MFG_TYPE_SN_0 + word,
757 sizeof(u64), sn[word], 0, 0, 0, 0, &res);
758 if (res.a0) {
759 mutex_unlock(&mfg_ops_lock);
760 return -EPERM;
763 mutex_unlock(&mfg_ops_lock);
765 return count;
768 static ssize_t uuid_show(struct device *dev,
769 struct device_attribute *attr, char *buf)
771 u64 uuid_data[MLNX_MFG_VAL_QWORD_CNT(UUID) + 1] = { 0 };
772 struct arm_smccc_res res;
773 int word;
775 mutex_lock(&mfg_ops_lock);
776 for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(UUID); word++) {
777 arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
778 MLNX_MFG_TYPE_UUID_0 + word,
779 0, 0, 0, 0, 0, 0, &res);
780 if (res.a0) {
781 mutex_unlock(&mfg_ops_lock);
782 return -EPERM;
784 uuid_data[word] = res.a1;
786 mutex_unlock(&mfg_ops_lock);
788 return sysfs_emit(buf, "%s", (char *)uuid_data);
791 static ssize_t uuid_store(struct device *dev,
792 struct device_attribute *attr,
793 const char *buf, size_t count)
795 u64 uuid[MLNX_MFG_VAL_QWORD_CNT(UUID)] = { 0 };
796 struct arm_smccc_res res;
797 int word;
799 if (count > MLNX_MFG_UUID_VAL_LEN)
800 return -EINVAL;
802 memcpy(uuid, buf, count);
804 mutex_lock(&mfg_ops_lock);
805 for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(UUID); word++) {
806 arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
807 MLNX_MFG_TYPE_UUID_0 + word,
808 sizeof(u64), uuid[word], 0, 0, 0, 0, &res);
809 if (res.a0) {
810 mutex_unlock(&mfg_ops_lock);
811 return -EPERM;
814 mutex_unlock(&mfg_ops_lock);
816 return count;
819 static ssize_t rev_show(struct device *dev,
820 struct device_attribute *attr, char *buf)
822 u64 rev_data[MLNX_MFG_VAL_QWORD_CNT(REV) + 1] = { 0 };
823 struct arm_smccc_res res;
824 int word;
826 mutex_lock(&mfg_ops_lock);
827 for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(REV); word++) {
828 arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
829 MLNX_MFG_TYPE_REV + word,
830 0, 0, 0, 0, 0, 0, &res);
831 if (res.a0) {
832 mutex_unlock(&mfg_ops_lock);
833 return -EPERM;
835 rev_data[word] = res.a1;
837 mutex_unlock(&mfg_ops_lock);
839 return sysfs_emit(buf, "%s", (char *)rev_data);
842 static ssize_t rev_store(struct device *dev,
843 struct device_attribute *attr,
844 const char *buf, size_t count)
846 u64 rev[MLNX_MFG_VAL_QWORD_CNT(REV)] = { 0 };
847 struct arm_smccc_res res;
848 int word;
850 if (count > MLNX_MFG_REV_VAL_LEN)
851 return -EINVAL;
853 memcpy(rev, buf, count);
855 mutex_lock(&mfg_ops_lock);
856 for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(REV); word++) {
857 arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
858 MLNX_MFG_TYPE_REV + word,
859 sizeof(u64), rev[word], 0, 0, 0, 0, &res);
860 if (res.a0) {
861 mutex_unlock(&mfg_ops_lock);
862 return -EPERM;
865 mutex_unlock(&mfg_ops_lock);
867 return count;
870 static ssize_t mfg_lock_store(struct device *dev,
871 struct device_attribute *attr,
872 const char *buf, size_t count)
874 struct arm_smccc_res res;
875 unsigned long val;
876 int err;
878 err = kstrtoul(buf, 10, &val);
879 if (err)
880 return err;
882 if (val != 1)
883 return -EINVAL;
885 mutex_lock(&mfg_ops_lock);
886 arm_smccc_smc(MLXBF_BOOTCTL_LOCK_MFG_INFO, 0, 0, 0, 0, 0, 0, 0, &res);
887 mutex_unlock(&mfg_ops_lock);
889 return count;
892 static DEVICE_ATTR_RW(post_reset_wdog);
893 static DEVICE_ATTR_RW(reset_action);
894 static DEVICE_ATTR_RW(second_reset_action);
895 static DEVICE_ATTR_RO(lifecycle_state);
896 static DEVICE_ATTR_RO(secure_boot_fuse_state);
897 static DEVICE_ATTR_WO(fw_reset);
898 static DEVICE_ATTR_WO(rsh_log);
899 static DEVICE_ATTR_RW(large_icm);
900 static DEVICE_ATTR_WO(os_up);
901 static DEVICE_ATTR_RW(oob_mac);
902 static DEVICE_ATTR_RW(opn);
903 static DEVICE_ATTR_RW(sku);
904 static DEVICE_ATTR_RW(modl);
905 static DEVICE_ATTR_RW(sn);
906 static DEVICE_ATTR_RW(uuid);
907 static DEVICE_ATTR_RW(rev);
908 static DEVICE_ATTR_WO(mfg_lock);
910 static struct attribute *mlxbf_bootctl_attrs[] = {
911 &dev_attr_post_reset_wdog.attr,
912 &dev_attr_reset_action.attr,
913 &dev_attr_second_reset_action.attr,
914 &dev_attr_lifecycle_state.attr,
915 &dev_attr_secure_boot_fuse_state.attr,
916 &dev_attr_fw_reset.attr,
917 &dev_attr_rsh_log.attr,
918 &dev_attr_large_icm.attr,
919 &dev_attr_os_up.attr,
920 &dev_attr_oob_mac.attr,
921 &dev_attr_opn.attr,
922 &dev_attr_sku.attr,
923 &dev_attr_modl.attr,
924 &dev_attr_sn.attr,
925 &dev_attr_uuid.attr,
926 &dev_attr_rev.attr,
927 &dev_attr_mfg_lock.attr,
928 NULL
931 ATTRIBUTE_GROUPS(mlxbf_bootctl);
933 static const struct acpi_device_id mlxbf_bootctl_acpi_ids[] = {
934 {"MLNXBF04", 0},
938 MODULE_DEVICE_TABLE(acpi, mlxbf_bootctl_acpi_ids);
940 static ssize_t mlxbf_bootctl_bootfifo_read(struct file *filp,
941 struct kobject *kobj,
942 struct bin_attribute *bin_attr,
943 char *buf, loff_t pos,
944 size_t count)
946 unsigned long timeout = msecs_to_jiffies(500);
947 unsigned long expire = jiffies + timeout;
948 u64 data, cnt = 0;
949 char *p = buf;
951 while (count >= sizeof(data)) {
952 /* Give up reading if no more data within 500ms. */
953 if (!cnt) {
954 cnt = readq(mlxbf_rsh_boot_cnt);
955 if (!cnt) {
956 if (time_after(jiffies, expire))
957 break;
958 usleep_range(10, 50);
959 continue;
963 data = readq(mlxbf_rsh_boot_data);
964 memcpy(p, &data, sizeof(data));
965 count -= sizeof(data);
966 p += sizeof(data);
967 cnt--;
968 expire = jiffies + timeout;
971 return p - buf;
974 static struct bin_attribute mlxbf_bootctl_bootfifo_sysfs_attr = {
975 .attr = { .name = "bootfifo", .mode = 0400 },
976 .read = mlxbf_bootctl_bootfifo_read,
979 static bool mlxbf_bootctl_guid_match(const guid_t *guid,
980 const struct arm_smccc_res *res)
982 guid_t id = GUID_INIT(res->a0, res->a1, res->a1 >> 16,
983 res->a2, res->a2 >> 8, res->a2 >> 16,
984 res->a2 >> 24, res->a3, res->a3 >> 8,
985 res->a3 >> 16, res->a3 >> 24);
987 return guid_equal(guid, &id);
990 static int mlxbf_bootctl_probe(struct platform_device *pdev)
992 struct arm_smccc_res res = { 0 };
993 void __iomem *reg;
994 guid_t guid;
995 int ret;
997 /* Map the resource of the bootfifo data register. */
998 mlxbf_rsh_boot_data = devm_platform_ioremap_resource(pdev, 0);
999 if (IS_ERR(mlxbf_rsh_boot_data))
1000 return PTR_ERR(mlxbf_rsh_boot_data);
1002 /* Map the resource of the bootfifo counter register. */
1003 mlxbf_rsh_boot_cnt = devm_platform_ioremap_resource(pdev, 1);
1004 if (IS_ERR(mlxbf_rsh_boot_cnt))
1005 return PTR_ERR(mlxbf_rsh_boot_cnt);
1007 /* Map the resource of the rshim semaphore register. */
1008 mlxbf_rsh_semaphore = devm_platform_ioremap_resource(pdev, 2);
1009 if (IS_ERR(mlxbf_rsh_semaphore))
1010 return PTR_ERR(mlxbf_rsh_semaphore);
1012 /* Map the resource of the scratch buffer (log) registers. */
1013 reg = devm_platform_ioremap_resource(pdev, 3);
1014 if (IS_ERR(reg))
1015 return PTR_ERR(reg);
1016 mlxbf_rsh_scratch_buf_ctl = reg + MLXBF_RSH_SCRATCH_BUF_CTL_OFF;
1017 mlxbf_rsh_scratch_buf_data = reg + MLXBF_RSH_SCRATCH_BUF_DATA_OFF;
1019 /* Ensure we have the UUID we expect for this service. */
1020 arm_smccc_smc(MLXBF_BOOTCTL_SIP_SVC_UID, 0, 0, 0, 0, 0, 0, 0, &res);
1021 guid_parse(mlxbf_bootctl_svc_uuid_str, &guid);
1022 if (!mlxbf_bootctl_guid_match(&guid, &res))
1023 return -ENODEV;
1026 * When watchdog is used, it sets boot mode to MLXBF_BOOTCTL_SWAP_EMMC
1027 * in case of boot failures. However it doesn't clear the state if there
1028 * is no failure. Restore the default boot mode here to avoid any
1029 * unnecessary boot partition swapping.
1031 ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_SET_RESET_ACTION,
1032 MLXBF_BOOTCTL_EMMC);
1033 if (ret < 0)
1034 dev_warn(&pdev->dev, "Unable to reset the EMMC boot mode\n");
1036 ret = sysfs_create_bin_file(&pdev->dev.kobj,
1037 &mlxbf_bootctl_bootfifo_sysfs_attr);
1038 if (ret)
1039 pr_err("Unable to create bootfifo sysfs file, error %d\n", ret);
1041 return ret;
1044 static void mlxbf_bootctl_remove(struct platform_device *pdev)
1046 sysfs_remove_bin_file(&pdev->dev.kobj,
1047 &mlxbf_bootctl_bootfifo_sysfs_attr);
1050 static struct platform_driver mlxbf_bootctl_driver = {
1051 .probe = mlxbf_bootctl_probe,
1052 .remove_new = mlxbf_bootctl_remove,
1053 .driver = {
1054 .name = "mlxbf-bootctl",
1055 .dev_groups = mlxbf_bootctl_groups,
1056 .acpi_match_table = mlxbf_bootctl_acpi_ids,
1060 module_platform_driver(mlxbf_bootctl_driver);
1062 MODULE_DESCRIPTION("Mellanox boot control driver");
1063 MODULE_LICENSE("GPL v2");
1064 MODULE_AUTHOR("Mellanox Technologies");