2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright (c) 2019-2020 Microchip Technology Inc. and its subsidiaries
4 * Copyright 2016 Microsemi Corporation
5 * Copyright 2014-2015 PMC-Sierra, Inc.
6 * Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; version 2 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
15 * NON INFRINGEMENT. See the GNU General Public License for more details.
17 * Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/types.h>
24 #include <linux/pci.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <linux/unaligned.h>
55 #include <asm/div64.h>
60 * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61 * with an optional trailing '-' followed by a byte value (0-255).
63 #define HPSA_DRIVER_VERSION "3.4.20-200"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20 /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10 /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000 /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000 /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76 /* How long to wait before giving up on a command */
77 #define HPSA_EH_PTRAID_TIMEOUT (240 * HZ)
79 /* Embedded module documentation macros - see modules.h */
80 MODULE_AUTHOR("Hewlett-Packard Company");
81 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
83 MODULE_VERSION(HPSA_DRIVER_VERSION
);
84 MODULE_LICENSE("GPL");
85 MODULE_ALIAS("cciss");
87 static int hpsa_simple_mode
;
88 module_param(hpsa_simple_mode
, int, S_IRUGO
|S_IWUSR
);
89 MODULE_PARM_DESC(hpsa_simple_mode
,
90 "Use 'simple mode' rather than 'performant mode'");
92 /* define the PCI info for the cards we can control */
93 static const struct pci_device_id hpsa_pci_device_id
[] = {
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3233},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3356},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103c, 0x1920},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1921},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1922},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1923},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1924},
114 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103c, 0x1925},
115 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1926},
116 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1928},
117 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSH
, 0x103C, 0x1929},
118 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BD},
119 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BE},
120 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21BF},
121 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C0},
122 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C1},
123 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C2},
124 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C3},
125 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C4},
126 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C5},
127 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C6},
128 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C7},
129 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C8},
130 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21C9},
131 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CA},
132 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CB},
133 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CC},
134 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CD},
135 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSI
, 0x103C, 0x21CE},
136 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0580},
137 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0581},
138 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0582},
139 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0583},
140 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0584},
141 {PCI_VENDOR_ID_ADAPTEC2
, 0x0290, 0x9005, 0x0585},
142 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0076},
143 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0087},
144 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x007D},
145 {PCI_VENDOR_ID_HP_3PAR
, 0x0075, 0x1590, 0x0088},
146 {PCI_VENDOR_ID_HP
, 0x333f, 0x103c, 0x333f},
147 {PCI_VENDOR_ID_HP
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
148 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
149 {PCI_VENDOR_ID_COMPAQ
, PCI_ANY_ID
, PCI_ANY_ID
, PCI_ANY_ID
,
150 PCI_CLASS_STORAGE_RAID
<< 8, 0xffff << 8, 0},
154 MODULE_DEVICE_TABLE(pci
, hpsa_pci_device_id
);
156 /* board_id = Subsystem Device ID & Vendor ID
157 * product = Marketing Name for the board
158 * access = Address of the struct of function pointers
160 static struct board_type products
[] = {
161 {0x40700E11, "Smart Array 5300", &SA5A_access
},
162 {0x40800E11, "Smart Array 5i", &SA5B_access
},
163 {0x40820E11, "Smart Array 532", &SA5B_access
},
164 {0x40830E11, "Smart Array 5312", &SA5B_access
},
165 {0x409A0E11, "Smart Array 641", &SA5A_access
},
166 {0x409B0E11, "Smart Array 642", &SA5A_access
},
167 {0x409C0E11, "Smart Array 6400", &SA5A_access
},
168 {0x409D0E11, "Smart Array 6400 EM", &SA5A_access
},
169 {0x40910E11, "Smart Array 6i", &SA5A_access
},
170 {0x3225103C, "Smart Array P600", &SA5A_access
},
171 {0x3223103C, "Smart Array P800", &SA5A_access
},
172 {0x3234103C, "Smart Array P400", &SA5A_access
},
173 {0x3235103C, "Smart Array P400i", &SA5A_access
},
174 {0x3211103C, "Smart Array E200i", &SA5A_access
},
175 {0x3212103C, "Smart Array E200", &SA5A_access
},
176 {0x3213103C, "Smart Array E200i", &SA5A_access
},
177 {0x3214103C, "Smart Array E200i", &SA5A_access
},
178 {0x3215103C, "Smart Array E200i", &SA5A_access
},
179 {0x3237103C, "Smart Array E500", &SA5A_access
},
180 {0x323D103C, "Smart Array P700m", &SA5A_access
},
181 {0x3241103C, "Smart Array P212", &SA5_access
},
182 {0x3243103C, "Smart Array P410", &SA5_access
},
183 {0x3245103C, "Smart Array P410i", &SA5_access
},
184 {0x3247103C, "Smart Array P411", &SA5_access
},
185 {0x3249103C, "Smart Array P812", &SA5_access
},
186 {0x324A103C, "Smart Array P712m", &SA5_access
},
187 {0x324B103C, "Smart Array P711m", &SA5_access
},
188 {0x3233103C, "HP StorageWorks 1210m", &SA5_access
}, /* alias of 333f */
189 {0x3350103C, "Smart Array P222", &SA5_access
},
190 {0x3351103C, "Smart Array P420", &SA5_access
},
191 {0x3352103C, "Smart Array P421", &SA5_access
},
192 {0x3353103C, "Smart Array P822", &SA5_access
},
193 {0x3354103C, "Smart Array P420i", &SA5_access
},
194 {0x3355103C, "Smart Array P220i", &SA5_access
},
195 {0x3356103C, "Smart Array P721m", &SA5_access
},
196 {0x1920103C, "Smart Array P430i", &SA5_access
},
197 {0x1921103C, "Smart Array P830i", &SA5_access
},
198 {0x1922103C, "Smart Array P430", &SA5_access
},
199 {0x1923103C, "Smart Array P431", &SA5_access
},
200 {0x1924103C, "Smart Array P830", &SA5_access
},
201 {0x1925103C, "Smart Array P831", &SA5_access
},
202 {0x1926103C, "Smart Array P731m", &SA5_access
},
203 {0x1928103C, "Smart Array P230i", &SA5_access
},
204 {0x1929103C, "Smart Array P530", &SA5_access
},
205 {0x21BD103C, "Smart Array P244br", &SA5_access
},
206 {0x21BE103C, "Smart Array P741m", &SA5_access
},
207 {0x21BF103C, "Smart HBA H240ar", &SA5_access
},
208 {0x21C0103C, "Smart Array P440ar", &SA5_access
},
209 {0x21C1103C, "Smart Array P840ar", &SA5_access
},
210 {0x21C2103C, "Smart Array P440", &SA5_access
},
211 {0x21C3103C, "Smart Array P441", &SA5_access
},
212 {0x21C4103C, "Smart Array", &SA5_access
},
213 {0x21C5103C, "Smart Array P841", &SA5_access
},
214 {0x21C6103C, "Smart HBA H244br", &SA5_access
},
215 {0x21C7103C, "Smart HBA H240", &SA5_access
},
216 {0x21C8103C, "Smart HBA H241", &SA5_access
},
217 {0x21C9103C, "Smart Array", &SA5_access
},
218 {0x21CA103C, "Smart Array P246br", &SA5_access
},
219 {0x21CB103C, "Smart Array P840", &SA5_access
},
220 {0x21CC103C, "Smart Array", &SA5_access
},
221 {0x21CD103C, "Smart Array", &SA5_access
},
222 {0x21CE103C, "Smart HBA", &SA5_access
},
223 {0x05809005, "SmartHBA-SA", &SA5_access
},
224 {0x05819005, "SmartHBA-SA 8i", &SA5_access
},
225 {0x05829005, "SmartHBA-SA 8i8e", &SA5_access
},
226 {0x05839005, "SmartHBA-SA 8e", &SA5_access
},
227 {0x05849005, "SmartHBA-SA 16i", &SA5_access
},
228 {0x05859005, "SmartHBA-SA 4i4e", &SA5_access
},
229 {0x00761590, "HP Storage P1224 Array Controller", &SA5_access
},
230 {0x00871590, "HP Storage P1224e Array Controller", &SA5_access
},
231 {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access
},
232 {0x00881590, "HP Storage P1228e Array Controller", &SA5_access
},
233 {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access
},
234 {0xFFFF103C, "Unknown Smart Array", &SA5_access
},
237 static struct scsi_transport_template
*hpsa_sas_transport_template
;
238 static int hpsa_add_sas_host(struct ctlr_info
*h
);
239 static void hpsa_delete_sas_host(struct ctlr_info
*h
);
240 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
241 struct hpsa_scsi_dev_t
*device
);
242 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
);
243 static struct hpsa_scsi_dev_t
244 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
245 struct sas_rphy
*rphy
);
247 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
248 static const struct scsi_cmnd hpsa_cmd_busy
;
249 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
250 static const struct scsi_cmnd hpsa_cmd_idle
;
251 static int number_of_controllers
;
253 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *dev_id
);
254 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *dev_id
);
255 static int hpsa_ioctl(struct scsi_device
*dev
, unsigned int cmd
,
257 static int hpsa_passthru_ioctl(struct ctlr_info
*h
,
258 IOCTL_Command_struct
*iocommand
);
259 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
,
260 BIG_IOCTL_Command_struct
*ioc
);
263 static int hpsa_compat_ioctl(struct scsi_device
*dev
, unsigned int cmd
,
267 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
);
268 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
);
269 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
);
270 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
271 struct scsi_cmnd
*scmd
);
272 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
273 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
275 static void hpsa_free_cmd_pool(struct ctlr_info
*h
);
276 #define VPD_PAGE (1 << 8)
277 #define HPSA_SIMPLE_ERROR_BITS 0x03
279 static int hpsa_scsi_queue_command(struct Scsi_Host
*h
, struct scsi_cmnd
*cmd
);
280 static void hpsa_scan_start(struct Scsi_Host
*);
281 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
282 unsigned long elapsed_time
);
283 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
);
285 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
);
286 static int hpsa_slave_alloc(struct scsi_device
*sdev
);
287 static int hpsa_slave_configure(struct scsi_device
*sdev
);
288 static void hpsa_slave_destroy(struct scsi_device
*sdev
);
290 static void hpsa_update_scsi_devices(struct ctlr_info
*h
);
291 static int check_for_unit_attention(struct ctlr_info
*h
,
292 struct CommandList
*c
);
293 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
294 struct CommandList
*c
);
295 /* performant mode helper functions */
296 static void calc_bucket_map(int *bucket
, int num_buckets
,
297 int nsgs
, int min_blocks
, u32
*bucket_map
);
298 static void hpsa_free_performant_mode(struct ctlr_info
*h
);
299 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
);
300 static inline u32
next_command(struct ctlr_info
*h
, u8 q
);
301 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
302 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
304 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
305 unsigned long *memory_bar
);
306 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
,
308 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
309 unsigned char lunaddr
[],
311 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
313 static inline void finish_cmd(struct CommandList
*c
);
314 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
);
315 #define BOARD_NOT_READY 0
316 #define BOARD_READY 1
317 static void hpsa_drain_accel_commands(struct ctlr_info
*h
);
318 static void hpsa_flush_cache(struct ctlr_info
*h
);
319 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
320 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
321 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
);
322 static void hpsa_command_resubmit_worker(struct work_struct
*work
);
323 static u32
lockup_detected(struct ctlr_info
*h
);
324 static int detect_controller_lockup(struct ctlr_info
*h
);
325 static void hpsa_disable_rld_caching(struct ctlr_info
*h
);
326 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
327 struct ReportExtendedLUNdata
*buf
, int bufsize
);
328 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
329 unsigned char scsi3addr
[], u8 page
);
330 static int hpsa_luns_changed(struct ctlr_info
*h
);
331 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
332 struct hpsa_scsi_dev_t
*dev
,
333 unsigned char *scsi3addr
);
335 static inline struct ctlr_info
*sdev_to_hba(struct scsi_device
*sdev
)
337 unsigned long *priv
= shost_priv(sdev
->host
);
338 return (struct ctlr_info
*) *priv
;
341 static inline struct ctlr_info
*shost_to_hba(struct Scsi_Host
*sh
)
343 unsigned long *priv
= shost_priv(sh
);
344 return (struct ctlr_info
*) *priv
;
347 static inline bool hpsa_is_cmd_idle(struct CommandList
*c
)
349 return c
->scsi_cmd
== SCSI_CMD_IDLE
;
352 /* extract sense key, asc, and ascq from sense data. -1 means invalid. */
353 static void decode_sense_data(const u8
*sense_data
, int sense_data_len
,
354 u8
*sense_key
, u8
*asc
, u8
*ascq
)
356 struct scsi_sense_hdr sshdr
;
363 if (sense_data_len
< 1)
366 rc
= scsi_normalize_sense(sense_data
, sense_data_len
, &sshdr
);
368 *sense_key
= sshdr
.sense_key
;
374 static int check_for_unit_attention(struct ctlr_info
*h
,
375 struct CommandList
*c
)
377 u8 sense_key
, asc
, ascq
;
380 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
381 sense_len
= sizeof(c
->err_info
->SenseInfo
);
383 sense_len
= c
->err_info
->SenseLen
;
385 decode_sense_data(c
->err_info
->SenseInfo
, sense_len
,
386 &sense_key
, &asc
, &ascq
);
387 if (sense_key
!= UNIT_ATTENTION
|| asc
== 0xff)
392 dev_warn(&h
->pdev
->dev
,
393 "%s: a state change detected, command retried\n",
397 dev_warn(&h
->pdev
->dev
,
398 "%s: LUN failure detected\n", h
->devname
);
400 case REPORT_LUNS_CHANGED
:
401 dev_warn(&h
->pdev
->dev
,
402 "%s: report LUN data changed\n", h
->devname
);
404 * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
405 * target (array) devices.
409 dev_warn(&h
->pdev
->dev
,
410 "%s: a power on or device reset detected\n",
413 case UNIT_ATTENTION_CLEARED
:
414 dev_warn(&h
->pdev
->dev
,
415 "%s: unit attention cleared by another initiator\n",
419 dev_warn(&h
->pdev
->dev
,
420 "%s: unknown unit attention detected\n",
427 static int check_for_busy(struct ctlr_info
*h
, struct CommandList
*c
)
429 if (c
->err_info
->CommandStatus
!= CMD_TARGET_STATUS
||
430 (c
->err_info
->ScsiStatus
!= SAM_STAT_BUSY
&&
431 c
->err_info
->ScsiStatus
!= SAM_STAT_TASK_SET_FULL
))
433 dev_warn(&h
->pdev
->dev
, HPSA
"device busy");
437 static u32
lockup_detected(struct ctlr_info
*h
);
438 static ssize_t
host_show_lockup_detected(struct device
*dev
,
439 struct device_attribute
*attr
, char *buf
)
443 struct Scsi_Host
*shost
= class_to_shost(dev
);
445 h
= shost_to_hba(shost
);
446 ld
= lockup_detected(h
);
448 return sprintf(buf
, "ld=%d\n", ld
);
451 static ssize_t
host_store_hp_ssd_smart_path_status(struct device
*dev
,
452 struct device_attribute
*attr
,
453 const char *buf
, size_t count
)
457 struct Scsi_Host
*shost
= class_to_shost(dev
);
460 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
462 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
463 strncpy(tmpbuf
, buf
, len
);
465 if (sscanf(tmpbuf
, "%d", &status
) != 1)
467 h
= shost_to_hba(shost
);
468 h
->acciopath_status
= !!status
;
469 dev_warn(&h
->pdev
->dev
,
470 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
471 h
->acciopath_status
? "enabled" : "disabled");
475 static ssize_t
host_store_raid_offload_debug(struct device
*dev
,
476 struct device_attribute
*attr
,
477 const char *buf
, size_t count
)
479 int debug_level
, len
;
481 struct Scsi_Host
*shost
= class_to_shost(dev
);
484 if (!capable(CAP_SYS_ADMIN
) || !capable(CAP_SYS_RAWIO
))
486 len
= count
> sizeof(tmpbuf
) - 1 ? sizeof(tmpbuf
) - 1 : count
;
487 strncpy(tmpbuf
, buf
, len
);
489 if (sscanf(tmpbuf
, "%d", &debug_level
) != 1)
493 h
= shost_to_hba(shost
);
494 h
->raid_offload_debug
= debug_level
;
495 dev_warn(&h
->pdev
->dev
, "hpsa: Set raid_offload_debug level = %d\n",
496 h
->raid_offload_debug
);
500 static ssize_t
host_store_rescan(struct device
*dev
,
501 struct device_attribute
*attr
,
502 const char *buf
, size_t count
)
505 struct Scsi_Host
*shost
= class_to_shost(dev
);
506 h
= shost_to_hba(shost
);
507 hpsa_scan_start(h
->scsi_host
);
511 static void hpsa_turn_off_ioaccel_for_device(struct hpsa_scsi_dev_t
*device
)
513 device
->offload_enabled
= 0;
514 device
->offload_to_be_enabled
= 0;
517 static ssize_t
host_show_firmware_revision(struct device
*dev
,
518 struct device_attribute
*attr
, char *buf
)
521 struct Scsi_Host
*shost
= class_to_shost(dev
);
522 unsigned char *fwrev
;
524 h
= shost_to_hba(shost
);
525 if (!h
->hba_inquiry_data
)
527 fwrev
= &h
->hba_inquiry_data
[32];
528 return snprintf(buf
, 20, "%c%c%c%c\n",
529 fwrev
[0], fwrev
[1], fwrev
[2], fwrev
[3]);
532 static ssize_t
host_show_commands_outstanding(struct device
*dev
,
533 struct device_attribute
*attr
, char *buf
)
535 struct Scsi_Host
*shost
= class_to_shost(dev
);
536 struct ctlr_info
*h
= shost_to_hba(shost
);
538 return snprintf(buf
, 20, "%d\n",
539 atomic_read(&h
->commands_outstanding
));
542 static ssize_t
host_show_transport_mode(struct device
*dev
,
543 struct device_attribute
*attr
, char *buf
)
546 struct Scsi_Host
*shost
= class_to_shost(dev
);
548 h
= shost_to_hba(shost
);
549 return snprintf(buf
, 20, "%s\n",
550 h
->transMethod
& CFGTBL_Trans_Performant
?
551 "performant" : "simple");
554 static ssize_t
host_show_hp_ssd_smart_path_status(struct device
*dev
,
555 struct device_attribute
*attr
, char *buf
)
558 struct Scsi_Host
*shost
= class_to_shost(dev
);
560 h
= shost_to_hba(shost
);
561 return snprintf(buf
, 30, "HP SSD Smart Path %s\n",
562 (h
->acciopath_status
== 1) ? "enabled" : "disabled");
565 /* List of controllers which cannot be hard reset on kexec with reset_devices */
566 static u32 unresettable_controller
[] = {
567 0x324a103C, /* Smart Array P712m */
568 0x324b103C, /* Smart Array P711m */
569 0x3223103C, /* Smart Array P800 */
570 0x3234103C, /* Smart Array P400 */
571 0x3235103C, /* Smart Array P400i */
572 0x3211103C, /* Smart Array E200i */
573 0x3212103C, /* Smart Array E200 */
574 0x3213103C, /* Smart Array E200i */
575 0x3214103C, /* Smart Array E200i */
576 0x3215103C, /* Smart Array E200i */
577 0x3237103C, /* Smart Array E500 */
578 0x323D103C, /* Smart Array P700m */
579 0x40800E11, /* Smart Array 5i */
580 0x409C0E11, /* Smart Array 6400 */
581 0x409D0E11, /* Smart Array 6400 EM */
582 0x40700E11, /* Smart Array 5300 */
583 0x40820E11, /* Smart Array 532 */
584 0x40830E11, /* Smart Array 5312 */
585 0x409A0E11, /* Smart Array 641 */
586 0x409B0E11, /* Smart Array 642 */
587 0x40910E11, /* Smart Array 6i */
590 /* List of controllers which cannot even be soft reset */
591 static u32 soft_unresettable_controller
[] = {
592 0x40800E11, /* Smart Array 5i */
593 0x40700E11, /* Smart Array 5300 */
594 0x40820E11, /* Smart Array 532 */
595 0x40830E11, /* Smart Array 5312 */
596 0x409A0E11, /* Smart Array 641 */
597 0x409B0E11, /* Smart Array 642 */
598 0x40910E11, /* Smart Array 6i */
599 /* Exclude 640x boards. These are two pci devices in one slot
600 * which share a battery backed cache module. One controls the
601 * cache, the other accesses the cache through the one that controls
602 * it. If we reset the one controlling the cache, the other will
603 * likely not be happy. Just forbid resetting this conjoined mess.
604 * The 640x isn't really supported by hpsa anyway.
606 0x409C0E11, /* Smart Array 6400 */
607 0x409D0E11, /* Smart Array 6400 EM */
610 static int board_id_in_array(u32 a
[], int nelems
, u32 board_id
)
614 for (i
= 0; i
< nelems
; i
++)
615 if (a
[i
] == board_id
)
620 static int ctlr_is_hard_resettable(u32 board_id
)
622 return !board_id_in_array(unresettable_controller
,
623 ARRAY_SIZE(unresettable_controller
), board_id
);
626 static int ctlr_is_soft_resettable(u32 board_id
)
628 return !board_id_in_array(soft_unresettable_controller
,
629 ARRAY_SIZE(soft_unresettable_controller
), board_id
);
632 static int ctlr_is_resettable(u32 board_id
)
634 return ctlr_is_hard_resettable(board_id
) ||
635 ctlr_is_soft_resettable(board_id
);
638 static ssize_t
host_show_resettable(struct device
*dev
,
639 struct device_attribute
*attr
, char *buf
)
642 struct Scsi_Host
*shost
= class_to_shost(dev
);
644 h
= shost_to_hba(shost
);
645 return snprintf(buf
, 20, "%d\n", ctlr_is_resettable(h
->board_id
));
648 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr
[])
650 return (scsi3addr
[3] & 0xC0) == 0x40;
653 static const char * const raid_label
[] = { "0", "4", "1(+0)", "5", "5+1", "6",
654 "1(+0)ADM", "UNKNOWN", "PHYS DRV"
656 #define HPSA_RAID_0 0
657 #define HPSA_RAID_4 1
658 #define HPSA_RAID_1 2 /* also used for RAID 10 */
659 #define HPSA_RAID_5 3 /* also used for RAID 50 */
660 #define HPSA_RAID_51 4
661 #define HPSA_RAID_6 5 /* also used for RAID 60 */
662 #define HPSA_RAID_ADM 6 /* also used for RAID 1+0 ADM */
663 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
664 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
666 static inline bool is_logical_device(struct hpsa_scsi_dev_t
*device
)
668 return !device
->physical_device
;
671 static ssize_t
raid_level_show(struct device
*dev
,
672 struct device_attribute
*attr
, char *buf
)
675 unsigned char rlevel
;
677 struct scsi_device
*sdev
;
678 struct hpsa_scsi_dev_t
*hdev
;
681 sdev
= to_scsi_device(dev
);
682 h
= sdev_to_hba(sdev
);
683 spin_lock_irqsave(&h
->lock
, flags
);
684 hdev
= sdev
->hostdata
;
686 spin_unlock_irqrestore(&h
->lock
, flags
);
690 /* Is this even a logical drive? */
691 if (!is_logical_device(hdev
)) {
692 spin_unlock_irqrestore(&h
->lock
, flags
);
693 l
= snprintf(buf
, PAGE_SIZE
, "N/A\n");
697 rlevel
= hdev
->raid_level
;
698 spin_unlock_irqrestore(&h
->lock
, flags
);
699 if (rlevel
> RAID_UNKNOWN
)
700 rlevel
= RAID_UNKNOWN
;
701 l
= snprintf(buf
, PAGE_SIZE
, "RAID %s\n", raid_label
[rlevel
]);
705 static ssize_t
lunid_show(struct device
*dev
,
706 struct device_attribute
*attr
, char *buf
)
709 struct scsi_device
*sdev
;
710 struct hpsa_scsi_dev_t
*hdev
;
712 unsigned char lunid
[8];
714 sdev
= to_scsi_device(dev
);
715 h
= sdev_to_hba(sdev
);
716 spin_lock_irqsave(&h
->lock
, flags
);
717 hdev
= sdev
->hostdata
;
719 spin_unlock_irqrestore(&h
->lock
, flags
);
722 memcpy(lunid
, hdev
->scsi3addr
, sizeof(lunid
));
723 spin_unlock_irqrestore(&h
->lock
, flags
);
724 return snprintf(buf
, 20, "0x%8phN\n", lunid
);
727 static ssize_t
unique_id_show(struct device
*dev
,
728 struct device_attribute
*attr
, char *buf
)
731 struct scsi_device
*sdev
;
732 struct hpsa_scsi_dev_t
*hdev
;
734 unsigned char sn
[16];
736 sdev
= to_scsi_device(dev
);
737 h
= sdev_to_hba(sdev
);
738 spin_lock_irqsave(&h
->lock
, flags
);
739 hdev
= sdev
->hostdata
;
741 spin_unlock_irqrestore(&h
->lock
, flags
);
744 memcpy(sn
, hdev
->device_id
, sizeof(sn
));
745 spin_unlock_irqrestore(&h
->lock
, flags
);
746 return snprintf(buf
, 16 * 2 + 2,
747 "%02X%02X%02X%02X%02X%02X%02X%02X"
748 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
749 sn
[0], sn
[1], sn
[2], sn
[3],
750 sn
[4], sn
[5], sn
[6], sn
[7],
751 sn
[8], sn
[9], sn
[10], sn
[11],
752 sn
[12], sn
[13], sn
[14], sn
[15]);
755 static ssize_t
sas_address_show(struct device
*dev
,
756 struct device_attribute
*attr
, char *buf
)
759 struct scsi_device
*sdev
;
760 struct hpsa_scsi_dev_t
*hdev
;
764 sdev
= to_scsi_device(dev
);
765 h
= sdev_to_hba(sdev
);
766 spin_lock_irqsave(&h
->lock
, flags
);
767 hdev
= sdev
->hostdata
;
768 if (!hdev
|| is_logical_device(hdev
) || !hdev
->expose_device
) {
769 spin_unlock_irqrestore(&h
->lock
, flags
);
772 sas_address
= hdev
->sas_address
;
773 spin_unlock_irqrestore(&h
->lock
, flags
);
775 return snprintf(buf
, PAGE_SIZE
, "0x%016llx\n", sas_address
);
778 static ssize_t
host_show_hp_ssd_smart_path_enabled(struct device
*dev
,
779 struct device_attribute
*attr
, char *buf
)
782 struct scsi_device
*sdev
;
783 struct hpsa_scsi_dev_t
*hdev
;
787 sdev
= to_scsi_device(dev
);
788 h
= sdev_to_hba(sdev
);
789 spin_lock_irqsave(&h
->lock
, flags
);
790 hdev
= sdev
->hostdata
;
792 spin_unlock_irqrestore(&h
->lock
, flags
);
795 offload_enabled
= hdev
->offload_enabled
;
796 spin_unlock_irqrestore(&h
->lock
, flags
);
798 if (hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
)
799 return snprintf(buf
, 20, "%d\n", offload_enabled
);
801 return snprintf(buf
, 40, "%s\n",
802 "Not applicable for a controller");
806 static ssize_t
path_info_show(struct device
*dev
,
807 struct device_attribute
*attr
, char *buf
)
810 struct scsi_device
*sdev
;
811 struct hpsa_scsi_dev_t
*hdev
;
817 u8 path_map_index
= 0;
819 unsigned char phys_connector
[2];
821 sdev
= to_scsi_device(dev
);
822 h
= sdev_to_hba(sdev
);
823 spin_lock_irqsave(&h
->devlock
, flags
);
824 hdev
= sdev
->hostdata
;
826 spin_unlock_irqrestore(&h
->devlock
, flags
);
831 for (i
= 0; i
< MAX_PATHS
; i
++) {
832 path_map_index
= 1<<i
;
833 if (i
== hdev
->active_path_index
)
835 else if (hdev
->path_map
& path_map_index
)
840 output_len
+= scnprintf(buf
+ output_len
,
841 PAGE_SIZE
- output_len
,
842 "[%d:%d:%d:%d] %20.20s ",
843 h
->scsi_host
->host_no
,
844 hdev
->bus
, hdev
->target
, hdev
->lun
,
845 scsi_device_type(hdev
->devtype
));
847 if (hdev
->devtype
== TYPE_RAID
|| is_logical_device(hdev
)) {
848 output_len
+= scnprintf(buf
+ output_len
,
849 PAGE_SIZE
- output_len
,
855 memcpy(&phys_connector
, &hdev
->phys_connector
[i
],
856 sizeof(phys_connector
));
857 if (phys_connector
[0] < '0')
858 phys_connector
[0] = '0';
859 if (phys_connector
[1] < '0')
860 phys_connector
[1] = '0';
861 output_len
+= scnprintf(buf
+ output_len
,
862 PAGE_SIZE
- output_len
,
865 if ((hdev
->devtype
== TYPE_DISK
|| hdev
->devtype
== TYPE_ZBC
) &&
866 hdev
->expose_device
) {
867 if (box
== 0 || box
== 0xFF) {
868 output_len
+= scnprintf(buf
+ output_len
,
869 PAGE_SIZE
- output_len
,
873 output_len
+= scnprintf(buf
+ output_len
,
874 PAGE_SIZE
- output_len
,
875 "BOX: %hhu BAY: %hhu %s\n",
878 } else if (box
!= 0 && box
!= 0xFF) {
879 output_len
+= scnprintf(buf
+ output_len
,
880 PAGE_SIZE
- output_len
, "BOX: %hhu %s\n",
883 output_len
+= scnprintf(buf
+ output_len
,
884 PAGE_SIZE
- output_len
, "%s\n", active
);
887 spin_unlock_irqrestore(&h
->devlock
, flags
);
891 static ssize_t
host_show_ctlr_num(struct device
*dev
,
892 struct device_attribute
*attr
, char *buf
)
895 struct Scsi_Host
*shost
= class_to_shost(dev
);
897 h
= shost_to_hba(shost
);
898 return snprintf(buf
, 20, "%d\n", h
->ctlr
);
901 static ssize_t
host_show_legacy_board(struct device
*dev
,
902 struct device_attribute
*attr
, char *buf
)
905 struct Scsi_Host
*shost
= class_to_shost(dev
);
907 h
= shost_to_hba(shost
);
908 return snprintf(buf
, 20, "%d\n", h
->legacy_board
? 1 : 0);
911 static DEVICE_ATTR_RO(raid_level
);
912 static DEVICE_ATTR_RO(lunid
);
913 static DEVICE_ATTR_RO(unique_id
);
914 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
915 static DEVICE_ATTR_RO(sas_address
);
916 static DEVICE_ATTR(hp_ssd_smart_path_enabled
, S_IRUGO
,
917 host_show_hp_ssd_smart_path_enabled
, NULL
);
918 static DEVICE_ATTR_RO(path_info
);
919 static DEVICE_ATTR(hp_ssd_smart_path_status
, S_IWUSR
|S_IRUGO
|S_IROTH
,
920 host_show_hp_ssd_smart_path_status
,
921 host_store_hp_ssd_smart_path_status
);
922 static DEVICE_ATTR(raid_offload_debug
, S_IWUSR
, NULL
,
923 host_store_raid_offload_debug
);
924 static DEVICE_ATTR(firmware_revision
, S_IRUGO
,
925 host_show_firmware_revision
, NULL
);
926 static DEVICE_ATTR(commands_outstanding
, S_IRUGO
,
927 host_show_commands_outstanding
, NULL
);
928 static DEVICE_ATTR(transport_mode
, S_IRUGO
,
929 host_show_transport_mode
, NULL
);
930 static DEVICE_ATTR(resettable
, S_IRUGO
,
931 host_show_resettable
, NULL
);
932 static DEVICE_ATTR(lockup_detected
, S_IRUGO
,
933 host_show_lockup_detected
, NULL
);
934 static DEVICE_ATTR(ctlr_num
, S_IRUGO
,
935 host_show_ctlr_num
, NULL
);
936 static DEVICE_ATTR(legacy_board
, S_IRUGO
,
937 host_show_legacy_board
, NULL
);
939 static struct attribute
*hpsa_sdev_attrs
[] = {
940 &dev_attr_raid_level
.attr
,
941 &dev_attr_lunid
.attr
,
942 &dev_attr_unique_id
.attr
,
943 &dev_attr_hp_ssd_smart_path_enabled
.attr
,
944 &dev_attr_path_info
.attr
,
945 &dev_attr_sas_address
.attr
,
949 ATTRIBUTE_GROUPS(hpsa_sdev
);
951 static struct attribute
*hpsa_shost_attrs
[] = {
952 &dev_attr_rescan
.attr
,
953 &dev_attr_firmware_revision
.attr
,
954 &dev_attr_commands_outstanding
.attr
,
955 &dev_attr_transport_mode
.attr
,
956 &dev_attr_resettable
.attr
,
957 &dev_attr_hp_ssd_smart_path_status
.attr
,
958 &dev_attr_raid_offload_debug
.attr
,
959 &dev_attr_lockup_detected
.attr
,
960 &dev_attr_ctlr_num
.attr
,
961 &dev_attr_legacy_board
.attr
,
965 ATTRIBUTE_GROUPS(hpsa_shost
);
967 #define HPSA_NRESERVED_CMDS (HPSA_CMDS_RESERVED_FOR_DRIVER +\
968 HPSA_MAX_CONCURRENT_PASSTHRUS)
970 static const struct scsi_host_template hpsa_driver_template
= {
971 .module
= THIS_MODULE
,
974 .queuecommand
= hpsa_scsi_queue_command
,
975 .scan_start
= hpsa_scan_start
,
976 .scan_finished
= hpsa_scan_finished
,
977 .change_queue_depth
= hpsa_change_queue_depth
,
979 .eh_device_reset_handler
= hpsa_eh_device_reset_handler
,
981 .slave_alloc
= hpsa_slave_alloc
,
982 .slave_configure
= hpsa_slave_configure
,
983 .slave_destroy
= hpsa_slave_destroy
,
985 .compat_ioctl
= hpsa_compat_ioctl
,
987 .sdev_groups
= hpsa_sdev_groups
,
988 .shost_groups
= hpsa_shost_groups
,
993 static inline u32
next_command(struct ctlr_info
*h
, u8 q
)
996 struct reply_queue_buffer
*rq
= &h
->reply_queue
[q
];
998 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
999 return h
->access
.command_completed(h
, q
);
1001 if (unlikely(!(h
->transMethod
& CFGTBL_Trans_Performant
)))
1002 return h
->access
.command_completed(h
, q
);
1004 if ((rq
->head
[rq
->current_entry
] & 1) == rq
->wraparound
) {
1005 a
= rq
->head
[rq
->current_entry
];
1006 rq
->current_entry
++;
1007 atomic_dec(&h
->commands_outstanding
);
1011 /* Check for wraparound */
1012 if (rq
->current_entry
== h
->max_commands
) {
1013 rq
->current_entry
= 0;
1014 rq
->wraparound
^= 1;
1020 * There are some special bits in the bus address of the
1021 * command that we have to set for the controller to know
1022 * how to process the command:
1024 * Normal performant mode:
1025 * bit 0: 1 means performant mode, 0 means simple mode.
1026 * bits 1-3 = block fetch table entry
1027 * bits 4-6 = command type (== 0)
1030 * bit 0 = "performant mode" bit.
1031 * bits 1-3 = block fetch table entry
1032 * bits 4-6 = command type (== 110)
1033 * (command type is needed because ioaccel1 mode
1034 * commands are submitted through the same register as normal
1035 * mode commands, so this is how the controller knows whether
1036 * the command is normal mode or ioaccel1 mode.)
1039 * bit 0 = "performant mode" bit.
1040 * bits 1-4 = block fetch table entry (note extra bit)
1041 * bits 4-6 = not needed, because ioaccel2 mode has
1042 * a separate special register for submitting commands.
1046 * set_performant_mode: Modify the tag for cciss performant
1047 * set bit 0 for pull model, bits 3-1 for block fetch
1050 #define DEFAULT_REPLY_QUEUE (-1)
1051 static void set_performant_mode(struct ctlr_info
*h
, struct CommandList
*c
,
1054 if (likely(h
->transMethod
& CFGTBL_Trans_Performant
)) {
1055 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
1056 if (unlikely(!h
->msix_vectors
))
1058 c
->Header
.ReplyQueue
= reply_queue
;
1062 static void set_ioaccel1_performant_mode(struct ctlr_info
*h
,
1063 struct CommandList
*c
,
1066 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
1069 * Tell the controller to post the reply to the queue for this
1070 * processor. This seems to give the best I/O throughput.
1072 cp
->ReplyQueue
= reply_queue
;
1074 * Set the bits in the address sent down to include:
1075 * - performant mode bit (bit 0)
1076 * - pull count (bits 1-3)
1077 * - command type (bits 4-6)
1079 c
->busaddr
|= 1 | (h
->ioaccel1_blockFetchTable
[c
->Header
.SGList
] << 1) |
1080 IOACCEL1_BUSADDR_CMDTYPE
;
1083 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info
*h
,
1084 struct CommandList
*c
,
1087 struct hpsa_tmf_struct
*cp
= (struct hpsa_tmf_struct
*)
1088 &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1090 /* Tell the controller to post the reply to the queue for this
1091 * processor. This seems to give the best I/O throughput.
1093 cp
->reply_queue
= reply_queue
;
1094 /* Set the bits in the address sent down to include:
1095 * - performant mode bit not used in ioaccel mode 2
1096 * - pull count (bits 0-3)
1097 * - command type isn't needed for ioaccel2
1099 c
->busaddr
|= h
->ioaccel2_blockFetchTable
[0];
1102 static void set_ioaccel2_performant_mode(struct ctlr_info
*h
,
1103 struct CommandList
*c
,
1106 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
1109 * Tell the controller to post the reply to the queue for this
1110 * processor. This seems to give the best I/O throughput.
1112 cp
->reply_queue
= reply_queue
;
1114 * Set the bits in the address sent down to include:
1115 * - performant mode bit not used in ioaccel mode 2
1116 * - pull count (bits 0-3)
1117 * - command type isn't needed for ioaccel2
1119 c
->busaddr
|= (h
->ioaccel2_blockFetchTable
[cp
->sg_count
]);
1122 static int is_firmware_flash_cmd(u8
*cdb
)
1124 return cdb
[0] == BMIC_WRITE
&& cdb
[6] == BMIC_FLASH_FIRMWARE
;
1128 * During firmware flash, the heartbeat register may not update as frequently
1129 * as it should. So we dial down lockup detection during firmware flash. and
1130 * dial it back up when firmware flash completes.
1132 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1133 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1134 #define HPSA_EVENT_MONITOR_INTERVAL (15 * HZ)
1135 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info
*h
,
1136 struct CommandList
*c
)
1138 if (!is_firmware_flash_cmd(c
->Request
.CDB
))
1140 atomic_inc(&h
->firmware_flash_in_progress
);
1141 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH
;
1144 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info
*h
,
1145 struct CommandList
*c
)
1147 if (is_firmware_flash_cmd(c
->Request
.CDB
) &&
1148 atomic_dec_and_test(&h
->firmware_flash_in_progress
))
1149 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
1152 static void __enqueue_cmd_and_start_io(struct ctlr_info
*h
,
1153 struct CommandList
*c
, int reply_queue
)
1155 dial_down_lockup_detection_during_fw_flash(h
, c
);
1156 atomic_inc(&h
->commands_outstanding
);
1158 * Check to see if the command is being retried.
1160 if (c
->device
&& !c
->retry_pending
)
1161 atomic_inc(&c
->device
->commands_outstanding
);
1163 reply_queue
= h
->reply_map
[raw_smp_processor_id()];
1164 switch (c
->cmd_type
) {
1166 set_ioaccel1_performant_mode(h
, c
, reply_queue
);
1167 writel(c
->busaddr
, h
->vaddr
+ SA5_REQUEST_PORT_OFFSET
);
1170 set_ioaccel2_performant_mode(h
, c
, reply_queue
);
1171 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1174 set_ioaccel2_tmf_performant_mode(h
, c
, reply_queue
);
1175 writel(c
->busaddr
, h
->vaddr
+ IOACCEL2_INBOUND_POSTQ_32
);
1178 set_performant_mode(h
, c
, reply_queue
);
1179 h
->access
.submit_command(h
, c
);
1183 static void enqueue_cmd_and_start_io(struct ctlr_info
*h
, struct CommandList
*c
)
1185 __enqueue_cmd_and_start_io(h
, c
, DEFAULT_REPLY_QUEUE
);
1188 static inline int is_hba_lunid(unsigned char scsi3addr
[])
1190 return memcmp(scsi3addr
, RAID_CTLR_LUNID
, 8) == 0;
1193 static inline int is_scsi_rev_5(struct ctlr_info
*h
)
1195 if (!h
->hba_inquiry_data
)
1197 if ((h
->hba_inquiry_data
[2] & 0x07) == 5)
1202 static int hpsa_find_target_lun(struct ctlr_info
*h
,
1203 unsigned char scsi3addr
[], int bus
, int *target
, int *lun
)
1205 /* finds an unused bus, target, lun for a new physical device
1206 * assumes h->devlock is held
1209 DECLARE_BITMAP(lun_taken
, HPSA_MAX_DEVICES
);
1211 bitmap_zero(lun_taken
, HPSA_MAX_DEVICES
);
1213 for (i
= 0; i
< h
->ndevices
; i
++) {
1214 if (h
->dev
[i
]->bus
== bus
&& h
->dev
[i
]->target
!= -1)
1215 __set_bit(h
->dev
[i
]->target
, lun_taken
);
1218 i
= find_first_zero_bit(lun_taken
, HPSA_MAX_DEVICES
);
1219 if (i
< HPSA_MAX_DEVICES
) {
1228 static void hpsa_show_dev_msg(const char *level
, struct ctlr_info
*h
,
1229 struct hpsa_scsi_dev_t
*dev
, char *description
)
1231 #define LABEL_SIZE 25
1232 char label
[LABEL_SIZE
];
1234 if (h
== NULL
|| h
->pdev
== NULL
|| h
->scsi_host
== NULL
)
1237 switch (dev
->devtype
) {
1239 snprintf(label
, LABEL_SIZE
, "controller");
1241 case TYPE_ENCLOSURE
:
1242 snprintf(label
, LABEL_SIZE
, "enclosure");
1247 snprintf(label
, LABEL_SIZE
, "external");
1248 else if (!is_logical_dev_addr_mode(dev
->scsi3addr
))
1249 snprintf(label
, LABEL_SIZE
, "%s",
1250 raid_label
[PHYSICAL_DRIVE
]);
1252 snprintf(label
, LABEL_SIZE
, "RAID-%s",
1253 dev
->raid_level
> RAID_UNKNOWN
? "?" :
1254 raid_label
[dev
->raid_level
]);
1257 snprintf(label
, LABEL_SIZE
, "rom");
1260 snprintf(label
, LABEL_SIZE
, "tape");
1262 case TYPE_MEDIUM_CHANGER
:
1263 snprintf(label
, LABEL_SIZE
, "changer");
1266 snprintf(label
, LABEL_SIZE
, "UNKNOWN");
1270 dev_printk(level
, &h
->pdev
->dev
,
1271 "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1272 h
->scsi_host
->host_no
, dev
->bus
, dev
->target
, dev
->lun
,
1274 scsi_device_type(dev
->devtype
),
1278 dev
->offload_config
? '+' : '-',
1279 dev
->offload_to_be_enabled
? '+' : '-',
1280 dev
->expose_device
);
1283 /* Add an entry into h->dev[] array. */
1284 static int hpsa_scsi_add_entry(struct ctlr_info
*h
,
1285 struct hpsa_scsi_dev_t
*device
,
1286 struct hpsa_scsi_dev_t
*added
[], int *nadded
)
1288 /* assumes h->devlock is held */
1289 int n
= h
->ndevices
;
1291 unsigned char addr1
[8], addr2
[8];
1292 struct hpsa_scsi_dev_t
*sd
;
1294 if (n
>= HPSA_MAX_DEVICES
) {
1295 dev_err(&h
->pdev
->dev
, "too many devices, some will be "
1300 /* physical devices do not have lun or target assigned until now. */
1301 if (device
->lun
!= -1)
1302 /* Logical device, lun is already assigned. */
1305 /* If this device a non-zero lun of a multi-lun device
1306 * byte 4 of the 8-byte LUN addr will contain the logical
1307 * unit no, zero otherwise.
1309 if (device
->scsi3addr
[4] == 0) {
1310 /* This is not a non-zero lun of a multi-lun device */
1311 if (hpsa_find_target_lun(h
, device
->scsi3addr
,
1312 device
->bus
, &device
->target
, &device
->lun
) != 0)
1317 /* This is a non-zero lun of a multi-lun device.
1318 * Search through our list and find the device which
1319 * has the same 8 byte LUN address, excepting byte 4 and 5.
1320 * Assign the same bus and target for this new LUN.
1321 * Use the logical unit number from the firmware.
1323 memcpy(addr1
, device
->scsi3addr
, 8);
1326 for (i
= 0; i
< n
; i
++) {
1328 memcpy(addr2
, sd
->scsi3addr
, 8);
1331 /* differ only in byte 4 and 5? */
1332 if (memcmp(addr1
, addr2
, 8) == 0) {
1333 device
->bus
= sd
->bus
;
1334 device
->target
= sd
->target
;
1335 device
->lun
= device
->scsi3addr
[4];
1339 if (device
->lun
== -1) {
1340 dev_warn(&h
->pdev
->dev
, "physical device with no LUN=0,"
1341 " suspect firmware bug or unsupported hardware "
1342 "configuration.\n");
1350 added
[*nadded
] = device
;
1352 hpsa_show_dev_msg(KERN_INFO
, h
, device
,
1353 device
->expose_device
? "added" : "masked");
1358 * Called during a scan operation.
1360 * Update an entry in h->dev[] array.
1362 static void hpsa_scsi_update_entry(struct ctlr_info
*h
,
1363 int entry
, struct hpsa_scsi_dev_t
*new_entry
)
1365 /* assumes h->devlock is held */
1366 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1368 /* Raid level changed. */
1369 h
->dev
[entry
]->raid_level
= new_entry
->raid_level
;
1372 * ioacccel_handle may have changed for a dual domain disk
1374 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1376 /* Raid offload parameters changed. Careful about the ordering. */
1377 if (new_entry
->offload_config
&& new_entry
->offload_to_be_enabled
) {
1379 * if drive is newly offload_enabled, we want to copy the
1380 * raid map data first. If previously offload_enabled and
1381 * offload_config were set, raid map data had better be
1382 * the same as it was before. If raid map data has changed
1383 * then it had better be the case that
1384 * h->dev[entry]->offload_enabled is currently 0.
1386 h
->dev
[entry
]->raid_map
= new_entry
->raid_map
;
1387 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1389 if (new_entry
->offload_to_be_enabled
) {
1390 h
->dev
[entry
]->ioaccel_handle
= new_entry
->ioaccel_handle
;
1391 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1393 h
->dev
[entry
]->hba_ioaccel_enabled
= new_entry
->hba_ioaccel_enabled
;
1394 h
->dev
[entry
]->offload_config
= new_entry
->offload_config
;
1395 h
->dev
[entry
]->offload_to_mirror
= new_entry
->offload_to_mirror
;
1396 h
->dev
[entry
]->queue_depth
= new_entry
->queue_depth
;
1399 * We can turn off ioaccel offload now, but need to delay turning
1400 * ioaccel on until we can update h->dev[entry]->phys_disk[], but we
1401 * can't do that until all the devices are updated.
1403 h
->dev
[entry
]->offload_to_be_enabled
= new_entry
->offload_to_be_enabled
;
1406 * turn ioaccel off immediately if told to do so.
1408 if (!new_entry
->offload_to_be_enabled
)
1409 h
->dev
[entry
]->offload_enabled
= 0;
1411 hpsa_show_dev_msg(KERN_INFO
, h
, h
->dev
[entry
], "updated");
1414 /* Replace an entry from h->dev[] array. */
1415 static void hpsa_scsi_replace_entry(struct ctlr_info
*h
,
1416 int entry
, struct hpsa_scsi_dev_t
*new_entry
,
1417 struct hpsa_scsi_dev_t
*added
[], int *nadded
,
1418 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1420 /* assumes h->devlock is held */
1421 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1422 removed
[*nremoved
] = h
->dev
[entry
];
1426 * New physical devices won't have target/lun assigned yet
1427 * so we need to preserve the values in the slot we are replacing.
1429 if (new_entry
->target
== -1) {
1430 new_entry
->target
= h
->dev
[entry
]->target
;
1431 new_entry
->lun
= h
->dev
[entry
]->lun
;
1434 h
->dev
[entry
] = new_entry
;
1435 added
[*nadded
] = new_entry
;
1438 hpsa_show_dev_msg(KERN_INFO
, h
, new_entry
, "replaced");
1441 /* Remove an entry from h->dev[] array. */
1442 static void hpsa_scsi_remove_entry(struct ctlr_info
*h
, int entry
,
1443 struct hpsa_scsi_dev_t
*removed
[], int *nremoved
)
1445 /* assumes h->devlock is held */
1447 struct hpsa_scsi_dev_t
*sd
;
1449 BUG_ON(entry
< 0 || entry
>= HPSA_MAX_DEVICES
);
1452 removed
[*nremoved
] = h
->dev
[entry
];
1455 for (i
= entry
; i
< h
->ndevices
-1; i
++)
1456 h
->dev
[i
] = h
->dev
[i
+1];
1458 hpsa_show_dev_msg(KERN_INFO
, h
, sd
, "removed");
1461 #define SCSI3ADDR_EQ(a, b) ( \
1462 (a)[7] == (b)[7] && \
1463 (a)[6] == (b)[6] && \
1464 (a)[5] == (b)[5] && \
1465 (a)[4] == (b)[4] && \
1466 (a)[3] == (b)[3] && \
1467 (a)[2] == (b)[2] && \
1468 (a)[1] == (b)[1] && \
1471 static void fixup_botched_add(struct ctlr_info
*h
,
1472 struct hpsa_scsi_dev_t
*added
)
1474 /* called when scsi_add_device fails in order to re-adjust
1475 * h->dev[] to match the mid layer's view.
1477 unsigned long flags
;
1480 spin_lock_irqsave(&h
->lock
, flags
);
1481 for (i
= 0; i
< h
->ndevices
; i
++) {
1482 if (h
->dev
[i
] == added
) {
1483 for (j
= i
; j
< h
->ndevices
-1; j
++)
1484 h
->dev
[j
] = h
->dev
[j
+1];
1489 spin_unlock_irqrestore(&h
->lock
, flags
);
1493 static inline int device_is_the_same(struct hpsa_scsi_dev_t
*dev1
,
1494 struct hpsa_scsi_dev_t
*dev2
)
1496 /* we compare everything except lun and target as these
1497 * are not yet assigned. Compare parts likely
1500 if (memcmp(dev1
->scsi3addr
, dev2
->scsi3addr
,
1501 sizeof(dev1
->scsi3addr
)) != 0)
1503 if (memcmp(dev1
->device_id
, dev2
->device_id
,
1504 sizeof(dev1
->device_id
)) != 0)
1506 if (memcmp(dev1
->model
, dev2
->model
, sizeof(dev1
->model
)) != 0)
1508 if (memcmp(dev1
->vendor
, dev2
->vendor
, sizeof(dev1
->vendor
)) != 0)
1510 if (dev1
->devtype
!= dev2
->devtype
)
1512 if (dev1
->bus
!= dev2
->bus
)
1517 static inline int device_updated(struct hpsa_scsi_dev_t
*dev1
,
1518 struct hpsa_scsi_dev_t
*dev2
)
1520 /* Device attributes that can change, but don't mean
1521 * that the device is a different device, nor that the OS
1522 * needs to be told anything about the change.
1524 if (dev1
->raid_level
!= dev2
->raid_level
)
1526 if (dev1
->offload_config
!= dev2
->offload_config
)
1528 if (dev1
->offload_to_be_enabled
!= dev2
->offload_to_be_enabled
)
1530 if (!is_logical_dev_addr_mode(dev1
->scsi3addr
))
1531 if (dev1
->queue_depth
!= dev2
->queue_depth
)
1534 * This can happen for dual domain devices. An active
1535 * path change causes the ioaccel handle to change
1537 * for example note the handle differences between p0 and p1
1538 * Device WWN ,WWN hash,Handle
1539 * D016 p0|0x3 [02]P2E:01:01,0x5000C5005FC4DACA,0x9B5616,0x01030003
1540 * p1 0x5000C5005FC4DAC9,0x6798C0,0x00040004
1542 if (dev1
->ioaccel_handle
!= dev2
->ioaccel_handle
)
1547 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
1548 * and return needle location in *index. If scsi3addr matches, but not
1549 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1550 * location in *index.
1551 * In the case of a minor device attribute change, such as RAID level, just
1552 * return DEVICE_UPDATED, along with the updated device's location in index.
1553 * If needle not found, return DEVICE_NOT_FOUND.
1555 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t
*needle
,
1556 struct hpsa_scsi_dev_t
*haystack
[], int haystack_size
,
1560 #define DEVICE_NOT_FOUND 0
1561 #define DEVICE_CHANGED 1
1562 #define DEVICE_SAME 2
1563 #define DEVICE_UPDATED 3
1565 return DEVICE_NOT_FOUND
;
1567 for (i
= 0; i
< haystack_size
; i
++) {
1568 if (haystack
[i
] == NULL
) /* previously removed. */
1570 if (SCSI3ADDR_EQ(needle
->scsi3addr
, haystack
[i
]->scsi3addr
)) {
1572 if (device_is_the_same(needle
, haystack
[i
])) {
1573 if (device_updated(needle
, haystack
[i
]))
1574 return DEVICE_UPDATED
;
1577 /* Keep offline devices offline */
1578 if (needle
->volume_offline
)
1579 return DEVICE_NOT_FOUND
;
1580 return DEVICE_CHANGED
;
1585 return DEVICE_NOT_FOUND
;
1588 static void hpsa_monitor_offline_device(struct ctlr_info
*h
,
1589 unsigned char scsi3addr
[])
1591 struct offline_device_entry
*device
;
1592 unsigned long flags
;
1594 /* Check to see if device is already on the list */
1595 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1596 list_for_each_entry(device
, &h
->offline_device_list
, offline_list
) {
1597 if (memcmp(device
->scsi3addr
, scsi3addr
,
1598 sizeof(device
->scsi3addr
)) == 0) {
1599 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1603 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1605 /* Device is not on the list, add it. */
1606 device
= kmalloc(sizeof(*device
), GFP_KERNEL
);
1610 memcpy(device
->scsi3addr
, scsi3addr
, sizeof(device
->scsi3addr
));
1611 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
1612 list_add_tail(&device
->offline_list
, &h
->offline_device_list
);
1613 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
1616 /* Print a message explaining various offline volume states */
1617 static void hpsa_show_volume_status(struct ctlr_info
*h
,
1618 struct hpsa_scsi_dev_t
*sd
)
1620 if (sd
->volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
)
1621 dev_info(&h
->pdev
->dev
,
1622 "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1623 h
->scsi_host
->host_no
,
1624 sd
->bus
, sd
->target
, sd
->lun
);
1625 switch (sd
->volume_offline
) {
1628 case HPSA_LV_UNDERGOING_ERASE
:
1629 dev_info(&h
->pdev
->dev
,
1630 "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1631 h
->scsi_host
->host_no
,
1632 sd
->bus
, sd
->target
, sd
->lun
);
1634 case HPSA_LV_NOT_AVAILABLE
:
1635 dev_info(&h
->pdev
->dev
,
1636 "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1637 h
->scsi_host
->host_no
,
1638 sd
->bus
, sd
->target
, sd
->lun
);
1640 case HPSA_LV_UNDERGOING_RPI
:
1641 dev_info(&h
->pdev
->dev
,
1642 "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1643 h
->scsi_host
->host_no
,
1644 sd
->bus
, sd
->target
, sd
->lun
);
1646 case HPSA_LV_PENDING_RPI
:
1647 dev_info(&h
->pdev
->dev
,
1648 "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1649 h
->scsi_host
->host_no
,
1650 sd
->bus
, sd
->target
, sd
->lun
);
1652 case HPSA_LV_ENCRYPTED_NO_KEY
:
1653 dev_info(&h
->pdev
->dev
,
1654 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1655 h
->scsi_host
->host_no
,
1656 sd
->bus
, sd
->target
, sd
->lun
);
1658 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
1659 dev_info(&h
->pdev
->dev
,
1660 "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1661 h
->scsi_host
->host_no
,
1662 sd
->bus
, sd
->target
, sd
->lun
);
1664 case HPSA_LV_UNDERGOING_ENCRYPTION
:
1665 dev_info(&h
->pdev
->dev
,
1666 "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1667 h
->scsi_host
->host_no
,
1668 sd
->bus
, sd
->target
, sd
->lun
);
1670 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
1671 dev_info(&h
->pdev
->dev
,
1672 "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1673 h
->scsi_host
->host_no
,
1674 sd
->bus
, sd
->target
, sd
->lun
);
1676 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
1677 dev_info(&h
->pdev
->dev
,
1678 "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1679 h
->scsi_host
->host_no
,
1680 sd
->bus
, sd
->target
, sd
->lun
);
1682 case HPSA_LV_PENDING_ENCRYPTION
:
1683 dev_info(&h
->pdev
->dev
,
1684 "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1685 h
->scsi_host
->host_no
,
1686 sd
->bus
, sd
->target
, sd
->lun
);
1688 case HPSA_LV_PENDING_ENCRYPTION_REKEYING
:
1689 dev_info(&h
->pdev
->dev
,
1690 "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1691 h
->scsi_host
->host_no
,
1692 sd
->bus
, sd
->target
, sd
->lun
);
1698 * Figure the list of physical drive pointers for a logical drive with
1699 * raid offload configured.
1701 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info
*h
,
1702 struct hpsa_scsi_dev_t
*dev
[], int ndevices
,
1703 struct hpsa_scsi_dev_t
*logical_drive
)
1705 struct raid_map_data
*map
= &logical_drive
->raid_map
;
1706 struct raid_map_disk_data
*dd
= &map
->data
[0];
1708 int total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
1709 le16_to_cpu(map
->metadata_disks_per_row
);
1710 int nraid_map_entries
= le16_to_cpu(map
->row_cnt
) *
1711 le16_to_cpu(map
->layout_map_count
) *
1712 total_disks_per_row
;
1713 int nphys_disk
= le16_to_cpu(map
->layout_map_count
) *
1714 total_disks_per_row
;
1717 if (nraid_map_entries
> RAID_MAP_MAX_ENTRIES
)
1718 nraid_map_entries
= RAID_MAP_MAX_ENTRIES
;
1720 logical_drive
->nphysical_disks
= nraid_map_entries
;
1723 for (i
= 0; i
< nraid_map_entries
; i
++) {
1724 logical_drive
->phys_disk
[i
] = NULL
;
1725 if (!logical_drive
->offload_config
)
1727 for (j
= 0; j
< ndevices
; j
++) {
1730 if (dev
[j
]->devtype
!= TYPE_DISK
&&
1731 dev
[j
]->devtype
!= TYPE_ZBC
)
1733 if (is_logical_device(dev
[j
]))
1735 if (dev
[j
]->ioaccel_handle
!= dd
[i
].ioaccel_handle
)
1738 logical_drive
->phys_disk
[i
] = dev
[j
];
1740 qdepth
= min(h
->nr_cmds
, qdepth
+
1741 logical_drive
->phys_disk
[i
]->queue_depth
);
1746 * This can happen if a physical drive is removed and
1747 * the logical drive is degraded. In that case, the RAID
1748 * map data will refer to a physical disk which isn't actually
1749 * present. And in that case offload_enabled should already
1750 * be 0, but we'll turn it off here just in case
1752 if (!logical_drive
->phys_disk
[i
]) {
1753 dev_warn(&h
->pdev
->dev
,
1754 "%s: [%d:%d:%d:%d] A phys disk component of LV is missing, turning off offload_enabled for LV.\n",
1756 h
->scsi_host
->host_no
, logical_drive
->bus
,
1757 logical_drive
->target
, logical_drive
->lun
);
1758 hpsa_turn_off_ioaccel_for_device(logical_drive
);
1759 logical_drive
->queue_depth
= 8;
1762 if (nraid_map_entries
)
1764 * This is correct for reads, too high for full stripe writes,
1765 * way too high for partial stripe writes
1767 logical_drive
->queue_depth
= qdepth
;
1769 if (logical_drive
->external
)
1770 logical_drive
->queue_depth
= EXTERNAL_QD
;
1772 logical_drive
->queue_depth
= h
->nr_cmds
;
1776 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info
*h
,
1777 struct hpsa_scsi_dev_t
*dev
[], int ndevices
)
1781 for (i
= 0; i
< ndevices
; i
++) {
1784 if (dev
[i
]->devtype
!= TYPE_DISK
&&
1785 dev
[i
]->devtype
!= TYPE_ZBC
)
1787 if (!is_logical_device(dev
[i
]))
1791 * If offload is currently enabled, the RAID map and
1792 * phys_disk[] assignment *better* not be changing
1793 * because we would be changing ioaccel phsy_disk[] pointers
1794 * on a ioaccel volume processing I/O requests.
1796 * If an ioaccel volume status changed, initially because it was
1797 * re-configured and thus underwent a transformation, or
1798 * a drive failed, we would have received a state change
1799 * request and ioaccel should have been turned off. When the
1800 * transformation completes, we get another state change
1801 * request to turn ioaccel back on. In this case, we need
1802 * to update the ioaccel information.
1804 * Thus: If it is not currently enabled, but will be after
1805 * the scan completes, make sure the ioaccel pointers
1809 if (!dev
[i
]->offload_enabled
&& dev
[i
]->offload_to_be_enabled
)
1810 hpsa_figure_phys_disk_ptrs(h
, dev
, ndevices
, dev
[i
]);
1814 static int hpsa_add_device(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*device
)
1821 if (is_logical_device(device
)) /* RAID */
1822 rc
= scsi_add_device(h
->scsi_host
, device
->bus
,
1823 device
->target
, device
->lun
);
1825 rc
= hpsa_add_sas_device(h
->sas_host
, device
);
1830 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info
*h
,
1831 struct hpsa_scsi_dev_t
*dev
)
1836 for (i
= 0; i
< h
->nr_cmds
; i
++) {
1837 struct CommandList
*c
= h
->cmd_pool
+ i
;
1838 int refcount
= atomic_inc_return(&c
->refcount
);
1840 if (refcount
> 1 && hpsa_cmd_dev_match(h
, c
, dev
,
1842 unsigned long flags
;
1844 spin_lock_irqsave(&h
->lock
, flags
); /* Implied MB */
1845 if (!hpsa_is_cmd_idle(c
))
1847 spin_unlock_irqrestore(&h
->lock
, flags
);
1857 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info
*h
,
1858 struct hpsa_scsi_dev_t
*device
)
1862 int num_wait
= NUM_WAIT
;
1864 if (device
->external
)
1865 num_wait
= HPSA_EH_PTRAID_TIMEOUT
;
1868 cmds
= hpsa_find_outstanding_commands_for_dev(h
, device
);
1871 if (++waits
> num_wait
)
1876 if (waits
> num_wait
) {
1877 dev_warn(&h
->pdev
->dev
,
1878 "%s: removing device [%d:%d:%d:%d] with %d outstanding commands!\n",
1880 h
->scsi_host
->host_no
,
1881 device
->bus
, device
->target
, device
->lun
, cmds
);
1885 static void hpsa_remove_device(struct ctlr_info
*h
,
1886 struct hpsa_scsi_dev_t
*device
)
1888 struct scsi_device
*sdev
= NULL
;
1894 * Allow for commands to drain
1896 device
->removed
= 1;
1897 hpsa_wait_for_outstanding_commands_for_dev(h
, device
);
1899 if (is_logical_device(device
)) { /* RAID */
1900 sdev
= scsi_device_lookup(h
->scsi_host
, device
->bus
,
1901 device
->target
, device
->lun
);
1903 scsi_remove_device(sdev
);
1904 scsi_device_put(sdev
);
1907 * We don't expect to get here. Future commands
1908 * to this device will get a selection timeout as
1909 * if the device were gone.
1911 hpsa_show_dev_msg(KERN_WARNING
, h
, device
,
1912 "didn't find device for removal.");
1916 hpsa_remove_sas_device(device
);
1920 static void adjust_hpsa_scsi_table(struct ctlr_info
*h
,
1921 struct hpsa_scsi_dev_t
*sd
[], int nsds
)
1923 /* sd contains scsi3 addresses and devtypes, and inquiry
1924 * data. This function takes what's in sd to be the current
1925 * reality and updates h->dev[] to reflect that reality.
1927 int i
, entry
, device_change
, changes
= 0;
1928 struct hpsa_scsi_dev_t
*csd
;
1929 unsigned long flags
;
1930 struct hpsa_scsi_dev_t
**added
, **removed
;
1931 int nadded
, nremoved
;
1934 * A reset can cause a device status to change
1935 * re-schedule the scan to see what happened.
1937 spin_lock_irqsave(&h
->reset_lock
, flags
);
1938 if (h
->reset_in_progress
) {
1939 h
->drv_req_rescan
= 1;
1940 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
1943 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
1945 added
= kcalloc(HPSA_MAX_DEVICES
, sizeof(*added
), GFP_KERNEL
);
1946 removed
= kcalloc(HPSA_MAX_DEVICES
, sizeof(*removed
), GFP_KERNEL
);
1948 if (!added
|| !removed
) {
1949 dev_warn(&h
->pdev
->dev
, "out of memory in "
1950 "adjust_hpsa_scsi_table\n");
1954 spin_lock_irqsave(&h
->devlock
, flags
);
1956 /* find any devices in h->dev[] that are not in
1957 * sd[] and remove them from h->dev[], and for any
1958 * devices which have changed, remove the old device
1959 * info and add the new device info.
1960 * If minor device attributes change, just update
1961 * the existing device structure.
1966 while (i
< h
->ndevices
) {
1968 device_change
= hpsa_scsi_find_entry(csd
, sd
, nsds
, &entry
);
1969 if (device_change
== DEVICE_NOT_FOUND
) {
1971 hpsa_scsi_remove_entry(h
, i
, removed
, &nremoved
);
1972 continue; /* remove ^^^, hence i not incremented */
1973 } else if (device_change
== DEVICE_CHANGED
) {
1975 hpsa_scsi_replace_entry(h
, i
, sd
[entry
],
1976 added
, &nadded
, removed
, &nremoved
);
1977 /* Set it to NULL to prevent it from being freed
1978 * at the bottom of hpsa_update_scsi_devices()
1981 } else if (device_change
== DEVICE_UPDATED
) {
1982 hpsa_scsi_update_entry(h
, i
, sd
[entry
]);
1987 /* Now, make sure every device listed in sd[] is also
1988 * listed in h->dev[], adding them if they aren't found
1991 for (i
= 0; i
< nsds
; i
++) {
1992 if (!sd
[i
]) /* if already added above. */
1995 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1996 * as the SCSI mid-layer does not handle such devices well.
1997 * It relentlessly loops sending TUR at 3Hz, then READ(10)
1998 * at 160Hz, and prevents the system from coming up.
2000 if (sd
[i
]->volume_offline
) {
2001 hpsa_show_volume_status(h
, sd
[i
]);
2002 hpsa_show_dev_msg(KERN_INFO
, h
, sd
[i
], "offline");
2006 device_change
= hpsa_scsi_find_entry(sd
[i
], h
->dev
,
2007 h
->ndevices
, &entry
);
2008 if (device_change
== DEVICE_NOT_FOUND
) {
2010 if (hpsa_scsi_add_entry(h
, sd
[i
], added
, &nadded
) != 0)
2012 sd
[i
] = NULL
; /* prevent from being freed later. */
2013 } else if (device_change
== DEVICE_CHANGED
) {
2014 /* should never happen... */
2016 dev_warn(&h
->pdev
->dev
,
2017 "device unexpectedly changed.\n");
2018 /* but if it does happen, we just ignore that device */
2021 hpsa_update_log_drive_phys_drive_ptrs(h
, h
->dev
, h
->ndevices
);
2024 * Now that h->dev[]->phys_disk[] is coherent, we can enable
2025 * any logical drives that need it enabled.
2027 * The raid map should be current by now.
2029 * We are updating the device list used for I/O requests.
2031 for (i
= 0; i
< h
->ndevices
; i
++) {
2032 if (h
->dev
[i
] == NULL
)
2034 h
->dev
[i
]->offload_enabled
= h
->dev
[i
]->offload_to_be_enabled
;
2037 spin_unlock_irqrestore(&h
->devlock
, flags
);
2039 /* Monitor devices which are in one of several NOT READY states to be
2040 * brought online later. This must be done without holding h->devlock,
2041 * so don't touch h->dev[]
2043 for (i
= 0; i
< nsds
; i
++) {
2044 if (!sd
[i
]) /* if already added above. */
2046 if (sd
[i
]->volume_offline
)
2047 hpsa_monitor_offline_device(h
, sd
[i
]->scsi3addr
);
2050 /* Don't notify scsi mid layer of any changes the first time through
2051 * (or if there are no changes) scsi_scan_host will do it later the
2052 * first time through.
2057 /* Notify scsi mid layer of any removed devices */
2058 for (i
= 0; i
< nremoved
; i
++) {
2059 if (removed
[i
] == NULL
)
2061 if (removed
[i
]->expose_device
)
2062 hpsa_remove_device(h
, removed
[i
]);
2067 /* Notify scsi mid layer of any added devices */
2068 for (i
= 0; i
< nadded
; i
++) {
2071 if (added
[i
] == NULL
)
2073 if (!(added
[i
]->expose_device
))
2075 rc
= hpsa_add_device(h
, added
[i
]);
2078 dev_warn(&h
->pdev
->dev
,
2079 "addition failed %d, device not added.", rc
);
2080 /* now we have to remove it from h->dev,
2081 * since it didn't get added to scsi mid layer
2083 fixup_botched_add(h
, added
[i
]);
2084 h
->drv_req_rescan
= 1;
2093 * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
2094 * Assume's h->devlock is held.
2096 static struct hpsa_scsi_dev_t
*lookup_hpsa_scsi_dev(struct ctlr_info
*h
,
2097 int bus
, int target
, int lun
)
2100 struct hpsa_scsi_dev_t
*sd
;
2102 for (i
= 0; i
< h
->ndevices
; i
++) {
2104 if (sd
->bus
== bus
&& sd
->target
== target
&& sd
->lun
== lun
)
2110 static int hpsa_slave_alloc(struct scsi_device
*sdev
)
2112 struct hpsa_scsi_dev_t
*sd
= NULL
;
2113 unsigned long flags
;
2114 struct ctlr_info
*h
;
2116 h
= sdev_to_hba(sdev
);
2117 spin_lock_irqsave(&h
->devlock
, flags
);
2118 if (sdev_channel(sdev
) == HPSA_PHYSICAL_DEVICE_BUS
) {
2119 struct scsi_target
*starget
;
2120 struct sas_rphy
*rphy
;
2122 starget
= scsi_target(sdev
);
2123 rphy
= target_to_rphy(starget
);
2124 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
2126 sd
->target
= sdev_id(sdev
);
2127 sd
->lun
= sdev
->lun
;
2131 sd
= lookup_hpsa_scsi_dev(h
, sdev_channel(sdev
),
2132 sdev_id(sdev
), sdev
->lun
);
2134 if (sd
&& sd
->expose_device
) {
2135 atomic_set(&sd
->ioaccel_cmds_out
, 0);
2136 sdev
->hostdata
= sd
;
2138 sdev
->hostdata
= NULL
;
2139 spin_unlock_irqrestore(&h
->devlock
, flags
);
2143 /* configure scsi device based on internal per-device structure */
2144 #define CTLR_TIMEOUT (120 * HZ)
2145 static int hpsa_slave_configure(struct scsi_device
*sdev
)
2147 struct hpsa_scsi_dev_t
*sd
;
2150 sd
= sdev
->hostdata
;
2151 sdev
->no_uld_attach
= !sd
|| !sd
->expose_device
;
2154 sd
->was_removed
= 0;
2155 queue_depth
= sd
->queue_depth
!= 0 ?
2156 sd
->queue_depth
: sdev
->host
->can_queue
;
2158 queue_depth
= EXTERNAL_QD
;
2159 sdev
->eh_timeout
= HPSA_EH_PTRAID_TIMEOUT
;
2160 blk_queue_rq_timeout(sdev
->request_queue
,
2161 HPSA_EH_PTRAID_TIMEOUT
);
2163 if (is_hba_lunid(sd
->scsi3addr
)) {
2164 sdev
->eh_timeout
= CTLR_TIMEOUT
;
2165 blk_queue_rq_timeout(sdev
->request_queue
, CTLR_TIMEOUT
);
2168 queue_depth
= sdev
->host
->can_queue
;
2171 scsi_change_queue_depth(sdev
, queue_depth
);
2176 static void hpsa_slave_destroy(struct scsi_device
*sdev
)
2178 struct hpsa_scsi_dev_t
*hdev
= NULL
;
2180 hdev
= sdev
->hostdata
;
2183 hdev
->was_removed
= 1;
2186 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2190 if (!h
->ioaccel2_cmd_sg_list
)
2192 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2193 kfree(h
->ioaccel2_cmd_sg_list
[i
]);
2194 h
->ioaccel2_cmd_sg_list
[i
] = NULL
;
2196 kfree(h
->ioaccel2_cmd_sg_list
);
2197 h
->ioaccel2_cmd_sg_list
= NULL
;
2200 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info
*h
)
2204 if (h
->chainsize
<= 0)
2207 h
->ioaccel2_cmd_sg_list
=
2208 kcalloc(h
->nr_cmds
, sizeof(*h
->ioaccel2_cmd_sg_list
),
2210 if (!h
->ioaccel2_cmd_sg_list
)
2212 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2213 h
->ioaccel2_cmd_sg_list
[i
] =
2214 kmalloc_array(h
->maxsgentries
,
2215 sizeof(*h
->ioaccel2_cmd_sg_list
[i
]),
2217 if (!h
->ioaccel2_cmd_sg_list
[i
])
2223 hpsa_free_ioaccel2_sg_chain_blocks(h
);
2227 static void hpsa_free_sg_chain_blocks(struct ctlr_info
*h
)
2231 if (!h
->cmd_sg_list
)
2233 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2234 kfree(h
->cmd_sg_list
[i
]);
2235 h
->cmd_sg_list
[i
] = NULL
;
2237 kfree(h
->cmd_sg_list
);
2238 h
->cmd_sg_list
= NULL
;
2241 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info
*h
)
2245 if (h
->chainsize
<= 0)
2248 h
->cmd_sg_list
= kcalloc(h
->nr_cmds
, sizeof(*h
->cmd_sg_list
),
2250 if (!h
->cmd_sg_list
)
2253 for (i
= 0; i
< h
->nr_cmds
; i
++) {
2254 h
->cmd_sg_list
[i
] = kmalloc_array(h
->chainsize
,
2255 sizeof(*h
->cmd_sg_list
[i
]),
2257 if (!h
->cmd_sg_list
[i
])
2264 hpsa_free_sg_chain_blocks(h
);
2268 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2269 struct io_accel2_cmd
*cp
, struct CommandList
*c
)
2271 struct ioaccel2_sg_element
*chain_block
;
2275 chain_block
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
2276 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2277 temp64
= dma_map_single(&h
->pdev
->dev
, chain_block
, chain_size
,
2279 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2280 /* prevent subsequent unmapping */
2281 cp
->sg
->address
= 0;
2284 cp
->sg
->address
= cpu_to_le64(temp64
);
2288 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info
*h
,
2289 struct io_accel2_cmd
*cp
)
2291 struct ioaccel2_sg_element
*chain_sg
;
2296 temp64
= le64_to_cpu(chain_sg
->address
);
2297 chain_size
= le32_to_cpu(cp
->sg
[0].length
);
2298 dma_unmap_single(&h
->pdev
->dev
, temp64
, chain_size
, DMA_TO_DEVICE
);
2301 static int hpsa_map_sg_chain_block(struct ctlr_info
*h
,
2302 struct CommandList
*c
)
2304 struct SGDescriptor
*chain_sg
, *chain_block
;
2308 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2309 chain_block
= h
->cmd_sg_list
[c
->cmdindex
];
2310 chain_sg
->Ext
= cpu_to_le32(HPSA_SG_CHAIN
);
2311 chain_len
= sizeof(*chain_sg
) *
2312 (le16_to_cpu(c
->Header
.SGTotal
) - h
->max_cmd_sg_entries
);
2313 chain_sg
->Len
= cpu_to_le32(chain_len
);
2314 temp64
= dma_map_single(&h
->pdev
->dev
, chain_block
, chain_len
,
2316 if (dma_mapping_error(&h
->pdev
->dev
, temp64
)) {
2317 /* prevent subsequent unmapping */
2318 chain_sg
->Addr
= cpu_to_le64(0);
2321 chain_sg
->Addr
= cpu_to_le64(temp64
);
2325 static void hpsa_unmap_sg_chain_block(struct ctlr_info
*h
,
2326 struct CommandList
*c
)
2328 struct SGDescriptor
*chain_sg
;
2330 if (le16_to_cpu(c
->Header
.SGTotal
) <= h
->max_cmd_sg_entries
)
2333 chain_sg
= &c
->SG
[h
->max_cmd_sg_entries
- 1];
2334 dma_unmap_single(&h
->pdev
->dev
, le64_to_cpu(chain_sg
->Addr
),
2335 le32_to_cpu(chain_sg
->Len
), DMA_TO_DEVICE
);
2339 /* Decode the various types of errors on ioaccel2 path.
2340 * Return 1 for any error that should generate a RAID path retry.
2341 * Return 0 for errors that don't require a RAID path retry.
2343 static int handle_ioaccel_mode2_error(struct ctlr_info
*h
,
2344 struct CommandList
*c
,
2345 struct scsi_cmnd
*cmd
,
2346 struct io_accel2_cmd
*c2
,
2347 struct hpsa_scsi_dev_t
*dev
)
2351 u32 ioaccel2_resid
= 0;
2353 switch (c2
->error_data
.serv_response
) {
2354 case IOACCEL2_SERV_RESPONSE_COMPLETE
:
2355 switch (c2
->error_data
.status
) {
2356 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD
:
2360 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND
:
2361 cmd
->result
|= SAM_STAT_CHECK_CONDITION
;
2362 if (c2
->error_data
.data_present
!=
2363 IOACCEL2_SENSE_DATA_PRESENT
) {
2364 memset(cmd
->sense_buffer
, 0,
2365 SCSI_SENSE_BUFFERSIZE
);
2368 /* copy the sense data */
2369 data_len
= c2
->error_data
.sense_data_len
;
2370 if (data_len
> SCSI_SENSE_BUFFERSIZE
)
2371 data_len
= SCSI_SENSE_BUFFERSIZE
;
2372 if (data_len
> sizeof(c2
->error_data
.sense_data_buff
))
2374 sizeof(c2
->error_data
.sense_data_buff
);
2375 memcpy(cmd
->sense_buffer
,
2376 c2
->error_data
.sense_data_buff
, data_len
);
2379 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY
:
2382 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON
:
2385 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
:
2388 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED
:
2396 case IOACCEL2_SERV_RESPONSE_FAILURE
:
2397 switch (c2
->error_data
.status
) {
2398 case IOACCEL2_STATUS_SR_IO_ERROR
:
2399 case IOACCEL2_STATUS_SR_IO_ABORTED
:
2400 case IOACCEL2_STATUS_SR_OVERRUN
:
2403 case IOACCEL2_STATUS_SR_UNDERRUN
:
2404 cmd
->result
= (DID_OK
<< 16); /* host byte */
2405 ioaccel2_resid
= get_unaligned_le32(
2406 &c2
->error_data
.resid_cnt
[0]);
2407 scsi_set_resid(cmd
, ioaccel2_resid
);
2409 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE
:
2410 case IOACCEL2_STATUS_SR_INVALID_DEVICE
:
2411 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED
:
2413 * Did an HBA disk disappear? We will eventually
2414 * get a state change event from the controller but
2415 * in the meantime, we need to tell the OS that the
2416 * HBA disk is no longer there and stop I/O
2417 * from going down. This allows the potential re-insert
2418 * of the disk to get the same device node.
2420 if (dev
->physical_device
&& dev
->expose_device
) {
2421 cmd
->result
= DID_NO_CONNECT
<< 16;
2423 h
->drv_req_rescan
= 1;
2424 dev_warn(&h
->pdev
->dev
,
2425 "%s: device is gone!\n", __func__
);
2428 * Retry by sending down the RAID path.
2429 * We will get an event from ctlr to
2430 * trigger rescan regardless.
2438 case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE
:
2440 case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS
:
2442 case IOACCEL2_SERV_RESPONSE_TMF_REJECTED
:
2445 case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN
:
2455 return retry
; /* retry on raid path? */
2458 static void hpsa_cmd_resolve_events(struct ctlr_info
*h
,
2459 struct CommandList
*c
)
2461 struct hpsa_scsi_dev_t
*dev
= c
->device
;
2464 * Reset c->scsi_cmd here so that the reset handler will know
2465 * this command has completed. Then, check to see if the handler is
2466 * waiting for this command, and, if so, wake it.
2468 c
->scsi_cmd
= SCSI_CMD_IDLE
;
2469 mb(); /* Declare command idle before checking for pending events. */
2471 atomic_dec(&dev
->commands_outstanding
);
2472 if (dev
->in_reset
&&
2473 atomic_read(&dev
->commands_outstanding
) <= 0)
2474 wake_up_all(&h
->event_sync_wait_queue
);
2478 static void hpsa_cmd_resolve_and_free(struct ctlr_info
*h
,
2479 struct CommandList
*c
)
2481 hpsa_cmd_resolve_events(h
, c
);
2482 cmd_tagged_free(h
, c
);
2485 static void hpsa_cmd_free_and_done(struct ctlr_info
*h
,
2486 struct CommandList
*c
, struct scsi_cmnd
*cmd
)
2488 hpsa_cmd_resolve_and_free(h
, c
);
2493 static void hpsa_retry_cmd(struct ctlr_info
*h
, struct CommandList
*c
)
2495 INIT_WORK(&c
->work
, hpsa_command_resubmit_worker
);
2496 queue_work_on(raw_smp_processor_id(), h
->resubmit_wq
, &c
->work
);
2499 static void process_ioaccel2_completion(struct ctlr_info
*h
,
2500 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
2501 struct hpsa_scsi_dev_t
*dev
)
2503 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
2505 /* check for good status */
2506 if (likely(c2
->error_data
.serv_response
== 0 &&
2507 c2
->error_data
.status
== 0)) {
2509 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2513 * Any RAID offload error results in retry which will use
2514 * the normal I/O path so the controller can handle whatever is
2517 if (is_logical_device(dev
) &&
2518 c2
->error_data
.serv_response
==
2519 IOACCEL2_SERV_RESPONSE_FAILURE
) {
2520 if (c2
->error_data
.status
==
2521 IOACCEL2_STATUS_SR_IOACCEL_DISABLED
) {
2522 hpsa_turn_off_ioaccel_for_device(dev
);
2525 if (dev
->in_reset
) {
2526 cmd
->result
= DID_RESET
<< 16;
2527 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2530 return hpsa_retry_cmd(h
, c
);
2533 if (handle_ioaccel_mode2_error(h
, c
, cmd
, c2
, dev
))
2534 return hpsa_retry_cmd(h
, c
);
2536 return hpsa_cmd_free_and_done(h
, c
, cmd
);
2539 /* Returns 0 on success, < 0 otherwise. */
2540 static int hpsa_evaluate_tmf_status(struct ctlr_info
*h
,
2541 struct CommandList
*cp
)
2543 u8 tmf_status
= cp
->err_info
->ScsiStatus
;
2545 switch (tmf_status
) {
2546 case CISS_TMF_COMPLETE
:
2548 * CISS_TMF_COMPLETE never happens, instead,
2549 * ei->CommandStatus == 0 for this case.
2551 case CISS_TMF_SUCCESS
:
2553 case CISS_TMF_INVALID_FRAME
:
2554 case CISS_TMF_NOT_SUPPORTED
:
2555 case CISS_TMF_FAILED
:
2556 case CISS_TMF_WRONG_LUN
:
2557 case CISS_TMF_OVERLAPPED_TAG
:
2560 dev_warn(&h
->pdev
->dev
, "Unknown TMF status: 0x%02x\n",
2567 static void complete_scsi_command(struct CommandList
*cp
)
2569 struct scsi_cmnd
*cmd
;
2570 struct ctlr_info
*h
;
2571 struct ErrorInfo
*ei
;
2572 struct hpsa_scsi_dev_t
*dev
;
2573 struct io_accel2_cmd
*c2
;
2576 u8 asc
; /* additional sense code */
2577 u8 ascq
; /* additional sense code qualifier */
2578 unsigned long sense_data_size
;
2585 cmd
->result
= DID_NO_CONNECT
<< 16;
2586 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2589 dev
= cmd
->device
->hostdata
;
2591 cmd
->result
= DID_NO_CONNECT
<< 16;
2592 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2594 c2
= &h
->ioaccel2_cmd_pool
[cp
->cmdindex
];
2596 scsi_dma_unmap(cmd
); /* undo the DMA mappings */
2597 if ((cp
->cmd_type
== CMD_SCSI
) &&
2598 (le16_to_cpu(cp
->Header
.SGTotal
) > h
->max_cmd_sg_entries
))
2599 hpsa_unmap_sg_chain_block(h
, cp
);
2601 if ((cp
->cmd_type
== CMD_IOACCEL2
) &&
2602 (c2
->sg
[0].chain_indicator
== IOACCEL2_CHAIN
))
2603 hpsa_unmap_ioaccel2_sg_chain_block(h
, c2
);
2605 cmd
->result
= (DID_OK
<< 16); /* host byte */
2607 /* SCSI command has already been cleaned up in SML */
2608 if (dev
->was_removed
) {
2609 hpsa_cmd_resolve_and_free(h
, cp
);
2613 if (cp
->cmd_type
== CMD_IOACCEL2
|| cp
->cmd_type
== CMD_IOACCEL1
) {
2614 if (dev
->physical_device
&& dev
->expose_device
&&
2616 cmd
->result
= DID_NO_CONNECT
<< 16;
2617 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2619 if (likely(cp
->phys_disk
!= NULL
))
2620 atomic_dec(&cp
->phys_disk
->ioaccel_cmds_out
);
2624 * We check for lockup status here as it may be set for
2625 * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2626 * fail_all_oustanding_cmds()
2628 if (unlikely(ei
->CommandStatus
== CMD_CTLR_LOCKUP
)) {
2629 /* DID_NO_CONNECT will prevent a retry */
2630 cmd
->result
= DID_NO_CONNECT
<< 16;
2631 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2634 if (cp
->cmd_type
== CMD_IOACCEL2
)
2635 return process_ioaccel2_completion(h
, cp
, cmd
, dev
);
2637 scsi_set_resid(cmd
, ei
->ResidualCnt
);
2638 if (ei
->CommandStatus
== 0)
2639 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2641 /* For I/O accelerator commands, copy over some fields to the normal
2642 * CISS header used below for error handling.
2644 if (cp
->cmd_type
== CMD_IOACCEL1
) {
2645 struct io_accel1_cmd
*c
= &h
->ioaccel_cmd_pool
[cp
->cmdindex
];
2646 cp
->Header
.SGList
= scsi_sg_count(cmd
);
2647 cp
->Header
.SGTotal
= cpu_to_le16(cp
->Header
.SGList
);
2648 cp
->Request
.CDBLen
= le16_to_cpu(c
->io_flags
) &
2649 IOACCEL1_IOFLAGS_CDBLEN_MASK
;
2650 cp
->Header
.tag
= c
->tag
;
2651 memcpy(cp
->Header
.LUN
.LunAddrBytes
, c
->CISS_LUN
, 8);
2652 memcpy(cp
->Request
.CDB
, c
->CDB
, cp
->Request
.CDBLen
);
2654 /* Any RAID offload error results in retry which will use
2655 * the normal I/O path so the controller can handle whatever's
2658 if (is_logical_device(dev
)) {
2659 if (ei
->CommandStatus
== CMD_IOACCEL_DISABLED
)
2660 dev
->offload_enabled
= 0;
2661 return hpsa_retry_cmd(h
, cp
);
2665 /* an error has occurred */
2666 switch (ei
->CommandStatus
) {
2668 case CMD_TARGET_STATUS
:
2669 cmd
->result
|= ei
->ScsiStatus
;
2670 /* copy the sense data */
2671 if (SCSI_SENSE_BUFFERSIZE
< sizeof(ei
->SenseInfo
))
2672 sense_data_size
= SCSI_SENSE_BUFFERSIZE
;
2674 sense_data_size
= sizeof(ei
->SenseInfo
);
2675 if (ei
->SenseLen
< sense_data_size
)
2676 sense_data_size
= ei
->SenseLen
;
2677 memcpy(cmd
->sense_buffer
, ei
->SenseInfo
, sense_data_size
);
2679 decode_sense_data(ei
->SenseInfo
, sense_data_size
,
2680 &sense_key
, &asc
, &ascq
);
2681 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
) {
2682 switch (sense_key
) {
2683 case ABORTED_COMMAND
:
2684 cmd
->result
|= DID_SOFT_ERROR
<< 16;
2686 case UNIT_ATTENTION
:
2687 if (asc
== 0x3F && ascq
== 0x0E)
2688 h
->drv_req_rescan
= 1;
2690 case ILLEGAL_REQUEST
:
2691 if (asc
== 0x25 && ascq
== 0x00) {
2693 cmd
->result
= DID_NO_CONNECT
<< 16;
2699 /* Problem was not a check condition
2700 * Pass it up to the upper layers...
2702 if (ei
->ScsiStatus
) {
2703 dev_warn(&h
->pdev
->dev
, "cp %p has status 0x%x "
2704 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2705 "Returning result: 0x%x\n",
2707 sense_key
, asc
, ascq
,
2709 } else { /* scsi status is zero??? How??? */
2710 dev_warn(&h
->pdev
->dev
, "cp %p SCSI status was 0. "
2711 "Returning no connection.\n", cp
),
2713 /* Ordinarily, this case should never happen,
2714 * but there is a bug in some released firmware
2715 * revisions that allows it to happen if, for
2716 * example, a 4100 backplane loses power and
2717 * the tape drive is in it. We assume that
2718 * it's a fatal error of some kind because we
2719 * can't show that it wasn't. We will make it
2720 * look like selection timeout since that is
2721 * the most common reason for this to occur,
2722 * and it's severe enough.
2725 cmd
->result
= DID_NO_CONNECT
<< 16;
2729 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2731 case CMD_DATA_OVERRUN
:
2732 dev_warn(&h
->pdev
->dev
,
2733 "CDB %16phN data overrun\n", cp
->Request
.CDB
);
2736 /* print_bytes(cp, sizeof(*cp), 1, 0);
2738 /* We get CMD_INVALID if you address a non-existent device
2739 * instead of a selection timeout (no response). You will
2740 * see this if you yank out a drive, then try to access it.
2741 * This is kind of a shame because it means that any other
2742 * CMD_INVALID (e.g. driver bug) will get interpreted as a
2743 * missing target. */
2744 cmd
->result
= DID_NO_CONNECT
<< 16;
2747 case CMD_PROTOCOL_ERR
:
2748 cmd
->result
= DID_ERROR
<< 16;
2749 dev_warn(&h
->pdev
->dev
, "CDB %16phN : protocol error\n",
2752 case CMD_HARDWARE_ERR
:
2753 cmd
->result
= DID_ERROR
<< 16;
2754 dev_warn(&h
->pdev
->dev
, "CDB %16phN : hardware error\n",
2757 case CMD_CONNECTION_LOST
:
2758 cmd
->result
= DID_ERROR
<< 16;
2759 dev_warn(&h
->pdev
->dev
, "CDB %16phN : connection lost\n",
2763 cmd
->result
= DID_ABORT
<< 16;
2765 case CMD_ABORT_FAILED
:
2766 cmd
->result
= DID_ERROR
<< 16;
2767 dev_warn(&h
->pdev
->dev
, "CDB %16phN : abort failed\n",
2770 case CMD_UNSOLICITED_ABORT
:
2771 cmd
->result
= DID_SOFT_ERROR
<< 16; /* retry the command */
2772 dev_warn(&h
->pdev
->dev
, "CDB %16phN : unsolicited abort\n",
2776 cmd
->result
= DID_TIME_OUT
<< 16;
2777 dev_warn(&h
->pdev
->dev
, "CDB %16phN timed out\n",
2780 case CMD_UNABORTABLE
:
2781 cmd
->result
= DID_ERROR
<< 16;
2782 dev_warn(&h
->pdev
->dev
, "Command unabortable\n");
2784 case CMD_TMF_STATUS
:
2785 if (hpsa_evaluate_tmf_status(h
, cp
)) /* TMF failed? */
2786 cmd
->result
= DID_ERROR
<< 16;
2788 case CMD_IOACCEL_DISABLED
:
2789 /* This only handles the direct pass-through case since RAID
2790 * offload is handled above. Just attempt a retry.
2792 cmd
->result
= DID_SOFT_ERROR
<< 16;
2793 dev_warn(&h
->pdev
->dev
,
2794 "cp %p had HP SSD Smart Path error\n", cp
);
2797 cmd
->result
= DID_ERROR
<< 16;
2798 dev_warn(&h
->pdev
->dev
, "cp %p returned unknown status %x\n",
2799 cp
, ei
->CommandStatus
);
2802 return hpsa_cmd_free_and_done(h
, cp
, cmd
);
2805 static void hpsa_pci_unmap(struct pci_dev
*pdev
, struct CommandList
*c
,
2806 int sg_used
, enum dma_data_direction data_direction
)
2810 for (i
= 0; i
< sg_used
; i
++)
2811 dma_unmap_single(&pdev
->dev
, le64_to_cpu(c
->SG
[i
].Addr
),
2812 le32_to_cpu(c
->SG
[i
].Len
),
2816 static int hpsa_map_one(struct pci_dev
*pdev
,
2817 struct CommandList
*cp
,
2820 enum dma_data_direction data_direction
)
2824 if (buflen
== 0 || data_direction
== DMA_NONE
) {
2825 cp
->Header
.SGList
= 0;
2826 cp
->Header
.SGTotal
= cpu_to_le16(0);
2830 addr64
= dma_map_single(&pdev
->dev
, buf
, buflen
, data_direction
);
2831 if (dma_mapping_error(&pdev
->dev
, addr64
)) {
2832 /* Prevent subsequent unmap of something never mapped */
2833 cp
->Header
.SGList
= 0;
2834 cp
->Header
.SGTotal
= cpu_to_le16(0);
2837 cp
->SG
[0].Addr
= cpu_to_le64(addr64
);
2838 cp
->SG
[0].Len
= cpu_to_le32(buflen
);
2839 cp
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* we are not chaining */
2840 cp
->Header
.SGList
= 1; /* no. SGs contig in this cmd */
2841 cp
->Header
.SGTotal
= cpu_to_le16(1); /* total sgs in cmd list */
2845 #define NO_TIMEOUT ((unsigned long) -1)
2846 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2847 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info
*h
,
2848 struct CommandList
*c
, int reply_queue
, unsigned long timeout_msecs
)
2850 DECLARE_COMPLETION_ONSTACK(wait
);
2853 __enqueue_cmd_and_start_io(h
, c
, reply_queue
);
2854 if (timeout_msecs
== NO_TIMEOUT
) {
2855 /* TODO: get rid of this no-timeout thing */
2856 wait_for_completion_io(&wait
);
2859 if (!wait_for_completion_io_timeout(&wait
,
2860 msecs_to_jiffies(timeout_msecs
))) {
2861 dev_warn(&h
->pdev
->dev
, "Command timed out.\n");
2867 static int hpsa_scsi_do_simple_cmd(struct ctlr_info
*h
, struct CommandList
*c
,
2868 int reply_queue
, unsigned long timeout_msecs
)
2870 if (unlikely(lockup_detected(h
))) {
2871 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
2874 return hpsa_scsi_do_simple_cmd_core(h
, c
, reply_queue
, timeout_msecs
);
2877 static u32
lockup_detected(struct ctlr_info
*h
)
2880 u32 rc
, *lockup_detected
;
2883 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
2884 rc
= *lockup_detected
;
2889 #define MAX_DRIVER_CMD_RETRIES 25
2890 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info
*h
,
2891 struct CommandList
*c
, enum dma_data_direction data_direction
,
2892 unsigned long timeout_msecs
)
2894 int backoff_time
= 10, retry_count
= 0;
2898 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
2899 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
2904 if (retry_count
> 3) {
2905 msleep(backoff_time
);
2906 if (backoff_time
< 1000)
2909 } while ((check_for_unit_attention(h
, c
) ||
2910 check_for_busy(h
, c
)) &&
2911 retry_count
<= MAX_DRIVER_CMD_RETRIES
);
2912 hpsa_pci_unmap(h
->pdev
, c
, 1, data_direction
);
2913 if (retry_count
> MAX_DRIVER_CMD_RETRIES
)
2918 static void hpsa_print_cmd(struct ctlr_info
*h
, char *txt
,
2919 struct CommandList
*c
)
2921 const u8
*cdb
= c
->Request
.CDB
;
2922 const u8
*lun
= c
->Header
.LUN
.LunAddrBytes
;
2924 dev_warn(&h
->pdev
->dev
, "%s: LUN:%8phN CDB:%16phN\n",
2928 static void hpsa_scsi_interpret_error(struct ctlr_info
*h
,
2929 struct CommandList
*cp
)
2931 const struct ErrorInfo
*ei
= cp
->err_info
;
2932 struct device
*d
= &cp
->h
->pdev
->dev
;
2933 u8 sense_key
, asc
, ascq
;
2936 switch (ei
->CommandStatus
) {
2937 case CMD_TARGET_STATUS
:
2938 if (ei
->SenseLen
> sizeof(ei
->SenseInfo
))
2939 sense_len
= sizeof(ei
->SenseInfo
);
2941 sense_len
= ei
->SenseLen
;
2942 decode_sense_data(ei
->SenseInfo
, sense_len
,
2943 &sense_key
, &asc
, &ascq
);
2944 hpsa_print_cmd(h
, "SCSI status", cp
);
2945 if (ei
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
)
2946 dev_warn(d
, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2947 sense_key
, asc
, ascq
);
2949 dev_warn(d
, "SCSI Status = 0x%02x\n", ei
->ScsiStatus
);
2950 if (ei
->ScsiStatus
== 0)
2951 dev_warn(d
, "SCSI status is abnormally zero. "
2952 "(probably indicates selection timeout "
2953 "reported incorrectly due to a known "
2954 "firmware bug, circa July, 2001.)\n");
2956 case CMD_DATA_UNDERRUN
: /* let mid layer handle it. */
2958 case CMD_DATA_OVERRUN
:
2959 hpsa_print_cmd(h
, "overrun condition", cp
);
2962 /* controller unfortunately reports SCSI passthru's
2963 * to non-existent targets as invalid commands.
2965 hpsa_print_cmd(h
, "invalid command", cp
);
2966 dev_warn(d
, "probably means device no longer present\n");
2969 case CMD_PROTOCOL_ERR
:
2970 hpsa_print_cmd(h
, "protocol error", cp
);
2972 case CMD_HARDWARE_ERR
:
2973 hpsa_print_cmd(h
, "hardware error", cp
);
2975 case CMD_CONNECTION_LOST
:
2976 hpsa_print_cmd(h
, "connection lost", cp
);
2979 hpsa_print_cmd(h
, "aborted", cp
);
2981 case CMD_ABORT_FAILED
:
2982 hpsa_print_cmd(h
, "abort failed", cp
);
2984 case CMD_UNSOLICITED_ABORT
:
2985 hpsa_print_cmd(h
, "unsolicited abort", cp
);
2988 hpsa_print_cmd(h
, "timed out", cp
);
2990 case CMD_UNABORTABLE
:
2991 hpsa_print_cmd(h
, "unabortable", cp
);
2993 case CMD_CTLR_LOCKUP
:
2994 hpsa_print_cmd(h
, "controller lockup detected", cp
);
2997 hpsa_print_cmd(h
, "unknown status", cp
);
2998 dev_warn(d
, "Unknown command status %x\n",
3003 static int hpsa_do_receive_diagnostic(struct ctlr_info
*h
, u8
*scsi3addr
,
3004 u8 page
, u8
*buf
, size_t bufsize
)
3007 struct CommandList
*c
;
3008 struct ErrorInfo
*ei
;
3011 if (fill_cmd(c
, RECEIVE_DIAGNOSTIC
, h
, buf
, bufsize
,
3012 page
, scsi3addr
, TYPE_CMD
)) {
3016 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3021 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3022 hpsa_scsi_interpret_error(h
, c
);
3030 static u64
hpsa_get_enclosure_logical_identifier(struct ctlr_info
*h
,
3037 buf
= kzalloc(1024, GFP_KERNEL
);
3041 rc
= hpsa_do_receive_diagnostic(h
, scsi3addr
, RECEIVE_DIAGNOSTIC
,
3047 sa
= get_unaligned_be64(buf
+12);
3054 static int hpsa_scsi_do_inquiry(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3055 u16 page
, unsigned char *buf
,
3056 unsigned char bufsize
)
3059 struct CommandList
*c
;
3060 struct ErrorInfo
*ei
;
3064 if (fill_cmd(c
, HPSA_INQUIRY
, h
, buf
, bufsize
,
3065 page
, scsi3addr
, TYPE_CMD
)) {
3069 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3074 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3075 hpsa_scsi_interpret_error(h
, c
);
3083 static int hpsa_send_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
3084 u8 reset_type
, int reply_queue
)
3087 struct CommandList
*c
;
3088 struct ErrorInfo
*ei
;
3093 /* fill_cmd can't fail here, no data buffer to map. */
3094 (void) fill_cmd(c
, reset_type
, h
, NULL
, 0, 0, dev
->scsi3addr
, TYPE_MSG
);
3095 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
3097 dev_warn(&h
->pdev
->dev
, "Failed to send reset command\n");
3100 /* no unmap needed here because no data xfer. */
3103 if (ei
->CommandStatus
!= 0) {
3104 hpsa_scsi_interpret_error(h
, c
);
3112 static bool hpsa_cmd_dev_match(struct ctlr_info
*h
, struct CommandList
*c
,
3113 struct hpsa_scsi_dev_t
*dev
,
3114 unsigned char *scsi3addr
)
3118 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
3119 struct hpsa_tmf_struct
*ac
= (struct hpsa_tmf_struct
*) c2
;
3121 if (hpsa_is_cmd_idle(c
))
3124 switch (c
->cmd_type
) {
3126 case CMD_IOCTL_PEND
:
3127 match
= !memcmp(scsi3addr
, &c
->Header
.LUN
.LunAddrBytes
,
3128 sizeof(c
->Header
.LUN
.LunAddrBytes
));
3133 if (c
->phys_disk
== dev
) {
3134 /* HBA mode match */
3137 /* Possible RAID mode -- check each phys dev. */
3138 /* FIXME: Do we need to take out a lock here? If
3139 * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3141 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3142 /* FIXME: an alternate test might be
3144 * match = dev->phys_disk[i]->ioaccel_handle
3145 * == c2->scsi_nexus; */
3146 match
= dev
->phys_disk
[i
] == c
->phys_disk
;
3152 for (i
= 0; i
< dev
->nphysical_disks
&& !match
; i
++) {
3153 match
= dev
->phys_disk
[i
]->ioaccel_handle
==
3154 le32_to_cpu(ac
->it_nexus
);
3158 case 0: /* The command is in the middle of being initialized. */
3163 dev_err(&h
->pdev
->dev
, "unexpected cmd_type: %d\n",
3171 static int hpsa_do_reset(struct ctlr_info
*h
, struct hpsa_scsi_dev_t
*dev
,
3172 u8 reset_type
, int reply_queue
)
3176 /* We can really only handle one reset at a time */
3177 if (mutex_lock_interruptible(&h
->reset_mutex
) == -EINTR
) {
3178 dev_warn(&h
->pdev
->dev
, "concurrent reset wait interrupted.\n");
3182 rc
= hpsa_send_reset(h
, dev
, reset_type
, reply_queue
);
3184 /* incremented by sending the reset request */
3185 atomic_dec(&dev
->commands_outstanding
);
3186 wait_event(h
->event_sync_wait_queue
,
3187 atomic_read(&dev
->commands_outstanding
) <= 0 ||
3188 lockup_detected(h
));
3191 if (unlikely(lockup_detected(h
))) {
3192 dev_warn(&h
->pdev
->dev
,
3193 "Controller lockup detected during reset wait\n");
3198 rc
= wait_for_device_to_become_ready(h
, dev
->scsi3addr
, 0);
3200 mutex_unlock(&h
->reset_mutex
);
3204 static void hpsa_get_raid_level(struct ctlr_info
*h
,
3205 unsigned char *scsi3addr
, unsigned char *raid_level
)
3210 *raid_level
= RAID_UNKNOWN
;
3211 buf
= kzalloc(64, GFP_KERNEL
);
3215 if (!hpsa_vpd_page_supported(h
, scsi3addr
,
3216 HPSA_VPD_LV_DEVICE_GEOMETRY
))
3219 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3220 HPSA_VPD_LV_DEVICE_GEOMETRY
, buf
, 64);
3223 *raid_level
= buf
[8];
3224 if (*raid_level
> RAID_UNKNOWN
)
3225 *raid_level
= RAID_UNKNOWN
;
3231 #define HPSA_MAP_DEBUG
3232 #ifdef HPSA_MAP_DEBUG
3233 static void hpsa_debug_map_buff(struct ctlr_info
*h
, int rc
,
3234 struct raid_map_data
*map_buff
)
3236 struct raid_map_disk_data
*dd
= &map_buff
->data
[0];
3238 u16 map_cnt
, row_cnt
, disks_per_row
;
3243 /* Show details only if debugging has been activated. */
3244 if (h
->raid_offload_debug
< 2)
3247 dev_info(&h
->pdev
->dev
, "structure_size = %u\n",
3248 le32_to_cpu(map_buff
->structure_size
));
3249 dev_info(&h
->pdev
->dev
, "volume_blk_size = %u\n",
3250 le32_to_cpu(map_buff
->volume_blk_size
));
3251 dev_info(&h
->pdev
->dev
, "volume_blk_cnt = 0x%llx\n",
3252 le64_to_cpu(map_buff
->volume_blk_cnt
));
3253 dev_info(&h
->pdev
->dev
, "physicalBlockShift = %u\n",
3254 map_buff
->phys_blk_shift
);
3255 dev_info(&h
->pdev
->dev
, "parity_rotation_shift = %u\n",
3256 map_buff
->parity_rotation_shift
);
3257 dev_info(&h
->pdev
->dev
, "strip_size = %u\n",
3258 le16_to_cpu(map_buff
->strip_size
));
3259 dev_info(&h
->pdev
->dev
, "disk_starting_blk = 0x%llx\n",
3260 le64_to_cpu(map_buff
->disk_starting_blk
));
3261 dev_info(&h
->pdev
->dev
, "disk_blk_cnt = 0x%llx\n",
3262 le64_to_cpu(map_buff
->disk_blk_cnt
));
3263 dev_info(&h
->pdev
->dev
, "data_disks_per_row = %u\n",
3264 le16_to_cpu(map_buff
->data_disks_per_row
));
3265 dev_info(&h
->pdev
->dev
, "metadata_disks_per_row = %u\n",
3266 le16_to_cpu(map_buff
->metadata_disks_per_row
));
3267 dev_info(&h
->pdev
->dev
, "row_cnt = %u\n",
3268 le16_to_cpu(map_buff
->row_cnt
));
3269 dev_info(&h
->pdev
->dev
, "layout_map_count = %u\n",
3270 le16_to_cpu(map_buff
->layout_map_count
));
3271 dev_info(&h
->pdev
->dev
, "flags = 0x%x\n",
3272 le16_to_cpu(map_buff
->flags
));
3273 dev_info(&h
->pdev
->dev
, "encryption = %s\n",
3274 le16_to_cpu(map_buff
->flags
) &
3275 RAID_MAP_FLAG_ENCRYPT_ON
? "ON" : "OFF");
3276 dev_info(&h
->pdev
->dev
, "dekindex = %u\n",
3277 le16_to_cpu(map_buff
->dekindex
));
3278 map_cnt
= le16_to_cpu(map_buff
->layout_map_count
);
3279 for (map
= 0; map
< map_cnt
; map
++) {
3280 dev_info(&h
->pdev
->dev
, "Map%u:\n", map
);
3281 row_cnt
= le16_to_cpu(map_buff
->row_cnt
);
3282 for (row
= 0; row
< row_cnt
; row
++) {
3283 dev_info(&h
->pdev
->dev
, " Row%u:\n", row
);
3285 le16_to_cpu(map_buff
->data_disks_per_row
);
3286 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3287 dev_info(&h
->pdev
->dev
,
3288 " D%02u: h=0x%04x xor=%u,%u\n",
3289 col
, dd
->ioaccel_handle
,
3290 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3292 le16_to_cpu(map_buff
->metadata_disks_per_row
);
3293 for (col
= 0; col
< disks_per_row
; col
++, dd
++)
3294 dev_info(&h
->pdev
->dev
,
3295 " M%02u: h=0x%04x xor=%u,%u\n",
3296 col
, dd
->ioaccel_handle
,
3297 dd
->xor_mult
[0], dd
->xor_mult
[1]);
3302 static void hpsa_debug_map_buff(__attribute__((unused
)) struct ctlr_info
*h
,
3303 __attribute__((unused
)) int rc
,
3304 __attribute__((unused
)) struct raid_map_data
*map_buff
)
3309 static int hpsa_get_raid_map(struct ctlr_info
*h
,
3310 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3313 struct CommandList
*c
;
3314 struct ErrorInfo
*ei
;
3318 if (fill_cmd(c
, HPSA_GET_RAID_MAP
, h
, &this_device
->raid_map
,
3319 sizeof(this_device
->raid_map
), 0,
3320 scsi3addr
, TYPE_CMD
)) {
3321 dev_warn(&h
->pdev
->dev
, "hpsa_get_raid_map fill_cmd failed\n");
3325 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3330 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3331 hpsa_scsi_interpret_error(h
, c
);
3337 /* @todo in the future, dynamically allocate RAID map memory */
3338 if (le32_to_cpu(this_device
->raid_map
.structure_size
) >
3339 sizeof(this_device
->raid_map
)) {
3340 dev_warn(&h
->pdev
->dev
, "RAID map size is too large!\n");
3343 hpsa_debug_map_buff(h
, rc
, &this_device
->raid_map
);
3350 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info
*h
,
3351 unsigned char scsi3addr
[], u16 bmic_device_index
,
3352 struct bmic_sense_subsystem_info
*buf
, size_t bufsize
)
3355 struct CommandList
*c
;
3356 struct ErrorInfo
*ei
;
3360 rc
= fill_cmd(c
, BMIC_SENSE_SUBSYSTEM_INFORMATION
, h
, buf
, bufsize
,
3361 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3365 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3366 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3368 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3373 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3374 hpsa_scsi_interpret_error(h
, c
);
3382 static int hpsa_bmic_id_controller(struct ctlr_info
*h
,
3383 struct bmic_identify_controller
*buf
, size_t bufsize
)
3386 struct CommandList
*c
;
3387 struct ErrorInfo
*ei
;
3391 rc
= fill_cmd(c
, BMIC_IDENTIFY_CONTROLLER
, h
, buf
, bufsize
,
3392 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3396 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3401 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3402 hpsa_scsi_interpret_error(h
, c
);
3410 static int hpsa_bmic_id_physical_device(struct ctlr_info
*h
,
3411 unsigned char scsi3addr
[], u16 bmic_device_index
,
3412 struct bmic_identify_physical_device
*buf
, size_t bufsize
)
3415 struct CommandList
*c
;
3416 struct ErrorInfo
*ei
;
3419 rc
= fill_cmd(c
, BMIC_IDENTIFY_PHYSICAL_DEVICE
, h
, buf
, bufsize
,
3420 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3424 c
->Request
.CDB
[2] = bmic_device_index
& 0xff;
3425 c
->Request
.CDB
[9] = (bmic_device_index
>> 8) & 0xff;
3427 hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3430 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3431 hpsa_scsi_interpret_error(h
, c
);
3441 * get enclosure information
3442 * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3443 * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3444 * Uses id_physical_device to determine the box_index.
3446 static void hpsa_get_enclosure_info(struct ctlr_info
*h
,
3447 unsigned char *scsi3addr
,
3448 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
3449 struct hpsa_scsi_dev_t
*encl_dev
)
3452 struct CommandList
*c
= NULL
;
3453 struct ErrorInfo
*ei
= NULL
;
3454 struct bmic_sense_storage_box_params
*bssbp
= NULL
;
3455 struct bmic_identify_physical_device
*id_phys
= NULL
;
3456 struct ext_report_lun_entry
*rle
;
3457 u16 bmic_device_index
= 0;
3459 if (rle_index
< 0 || rle_index
>= HPSA_MAX_PHYS_LUN
)
3462 rle
= &rlep
->LUN
[rle_index
];
3465 hpsa_get_enclosure_logical_identifier(h
, scsi3addr
);
3467 bmic_device_index
= GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]);
3469 if (encl_dev
->target
== -1 || encl_dev
->lun
== -1) {
3474 if (bmic_device_index
== 0xFF00 || MASKED_DEVICE(&rle
->lunid
[0])) {
3479 bssbp
= kzalloc(sizeof(*bssbp
), GFP_KERNEL
);
3483 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
3487 rc
= hpsa_bmic_id_physical_device(h
, scsi3addr
, bmic_device_index
,
3488 id_phys
, sizeof(*id_phys
));
3490 dev_warn(&h
->pdev
->dev
, "%s: id_phys failed %d bdi[0x%x]\n",
3491 __func__
, encl_dev
->external
, bmic_device_index
);
3497 rc
= fill_cmd(c
, BMIC_SENSE_STORAGE_BOX_PARAMS
, h
, bssbp
,
3498 sizeof(*bssbp
), 0, RAID_CTLR_LUNID
, TYPE_CMD
);
3503 if (id_phys
->phys_connector
[1] == 'E')
3504 c
->Request
.CDB
[5] = id_phys
->box_index
;
3506 c
->Request
.CDB
[5] = 0;
3508 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3514 if (ei
->CommandStatus
!= 0 && ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3519 encl_dev
->box
[id_phys
->active_path_number
] = bssbp
->phys_box_on_port
;
3520 memcpy(&encl_dev
->phys_connector
[id_phys
->active_path_number
],
3521 bssbp
->phys_connector
, sizeof(bssbp
->phys_connector
));
3532 hpsa_show_dev_msg(KERN_INFO
, h
, encl_dev
,
3533 "Error, could not get enclosure information");
3536 static u64
hpsa_get_sas_address_from_report_physical(struct ctlr_info
*h
,
3537 unsigned char *scsi3addr
)
3539 struct ReportExtendedLUNdata
*physdev
;
3544 physdev
= kzalloc(sizeof(*physdev
), GFP_KERNEL
);
3548 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
3549 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
3553 nphysicals
= get_unaligned_be32(physdev
->LUNListLength
) / 24;
3555 for (i
= 0; i
< nphysicals
; i
++)
3556 if (!memcmp(&physdev
->LUN
[i
].lunid
[0], scsi3addr
, 8)) {
3557 sa
= get_unaligned_be64(&physdev
->LUN
[i
].wwid
[0]);
3566 static void hpsa_get_sas_address(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3567 struct hpsa_scsi_dev_t
*dev
)
3572 if (is_hba_lunid(scsi3addr
)) {
3573 struct bmic_sense_subsystem_info
*ssi
;
3575 ssi
= kzalloc(sizeof(*ssi
), GFP_KERNEL
);
3579 rc
= hpsa_bmic_sense_subsystem_information(h
,
3580 scsi3addr
, 0, ssi
, sizeof(*ssi
));
3582 sa
= get_unaligned_be64(ssi
->primary_world_wide_id
);
3583 h
->sas_address
= sa
;
3588 sa
= hpsa_get_sas_address_from_report_physical(h
, scsi3addr
);
3590 dev
->sas_address
= sa
;
3593 static void hpsa_ext_ctrl_present(struct ctlr_info
*h
,
3594 struct ReportExtendedLUNdata
*physdev
)
3599 if (h
->discovery_polling
)
3602 nphysicals
= (get_unaligned_be32(physdev
->LUNListLength
) / 24) + 1;
3604 for (i
= 0; i
< nphysicals
; i
++) {
3605 if (physdev
->LUN
[i
].device_type
==
3606 BMIC_DEVICE_TYPE_CONTROLLER
3607 && !is_hba_lunid(physdev
->LUN
[i
].lunid
)) {
3608 dev_info(&h
->pdev
->dev
,
3609 "External controller present, activate discovery polling and disable rld caching\n");
3610 hpsa_disable_rld_caching(h
);
3611 h
->discovery_polling
= 1;
3617 /* Get a device id from inquiry page 0x83 */
3618 static bool hpsa_vpd_page_supported(struct ctlr_info
*h
,
3619 unsigned char scsi3addr
[], u8 page
)
3624 unsigned char *buf
, bufsize
;
3626 buf
= kzalloc(256, GFP_KERNEL
);
3630 /* Get the size of the page list first */
3631 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3632 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3633 buf
, HPSA_VPD_HEADER_SZ
);
3635 goto exit_unsupported
;
3637 if ((pages
+ HPSA_VPD_HEADER_SZ
) <= 255)
3638 bufsize
= pages
+ HPSA_VPD_HEADER_SZ
;
3642 /* Get the whole VPD page list */
3643 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3644 VPD_PAGE
| HPSA_VPD_SUPPORTED_PAGES
,
3647 goto exit_unsupported
;
3650 for (i
= 1; i
<= pages
; i
++)
3651 if (buf
[3 + i
] == page
)
3652 goto exit_supported
;
3662 * Called during a scan operation.
3663 * Sets ioaccel status on the new device list, not the existing device list
3665 * The device list used during I/O will be updated later in
3666 * adjust_hpsa_scsi_table.
3668 static void hpsa_get_ioaccel_status(struct ctlr_info
*h
,
3669 unsigned char *scsi3addr
, struct hpsa_scsi_dev_t
*this_device
)
3675 this_device
->offload_config
= 0;
3676 this_device
->offload_enabled
= 0;
3677 this_device
->offload_to_be_enabled
= 0;
3679 buf
= kzalloc(64, GFP_KERNEL
);
3682 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_IOACCEL_STATUS
))
3684 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
,
3685 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
, buf
, 64);
3689 #define IOACCEL_STATUS_BYTE 4
3690 #define OFFLOAD_CONFIGURED_BIT 0x01
3691 #define OFFLOAD_ENABLED_BIT 0x02
3692 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
3693 this_device
->offload_config
=
3694 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
3695 if (this_device
->offload_config
) {
3696 bool offload_enabled
=
3697 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
3699 * Check to see if offload can be enabled.
3701 if (offload_enabled
) {
3702 rc
= hpsa_get_raid_map(h
, scsi3addr
, this_device
);
3703 if (rc
) /* could not load raid_map */
3705 this_device
->offload_to_be_enabled
= 1;
3714 /* Get the device id from inquiry page 0x83 */
3715 static int hpsa_get_device_id(struct ctlr_info
*h
, unsigned char *scsi3addr
,
3716 unsigned char *device_id
, int index
, int buflen
)
3721 /* Does controller have VPD for device id? */
3722 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_DEVICE_ID
))
3723 return 1; /* not supported */
3725 buf
= kzalloc(64, GFP_KERNEL
);
3729 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
|
3730 HPSA_VPD_LV_DEVICE_ID
, buf
, 64);
3734 memcpy(device_id
, &buf
[8], buflen
);
3739 return rc
; /*0 - got id, otherwise, didn't */
3742 static int hpsa_scsi_do_report_luns(struct ctlr_info
*h
, int logical
,
3743 void *buf
, int bufsize
,
3744 int extended_response
)
3747 struct CommandList
*c
;
3748 unsigned char scsi3addr
[8];
3749 struct ErrorInfo
*ei
;
3753 /* address the controller */
3754 memset(scsi3addr
, 0, sizeof(scsi3addr
));
3755 if (fill_cmd(c
, logical
? HPSA_REPORT_LOG
: HPSA_REPORT_PHYS
, h
,
3756 buf
, bufsize
, 0, scsi3addr
, TYPE_CMD
)) {
3760 if (extended_response
)
3761 c
->Request
.CDB
[1] = extended_response
;
3762 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
3767 if (ei
->CommandStatus
!= 0 &&
3768 ei
->CommandStatus
!= CMD_DATA_UNDERRUN
) {
3769 hpsa_scsi_interpret_error(h
, c
);
3772 struct ReportLUNdata
*rld
= buf
;
3774 if (rld
->extended_response_flag
!= extended_response
) {
3775 if (!h
->legacy_board
) {
3776 dev_err(&h
->pdev
->dev
,
3777 "report luns requested format %u, got %u\n",
3779 rld
->extended_response_flag
);
3790 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info
*h
,
3791 struct ReportExtendedLUNdata
*buf
, int bufsize
)
3794 struct ReportLUNdata
*lbuf
;
3796 rc
= hpsa_scsi_do_report_luns(h
, 0, buf
, bufsize
,
3797 HPSA_REPORT_PHYS_EXTENDED
);
3798 if (!rc
|| rc
!= -EOPNOTSUPP
)
3801 /* REPORT PHYS EXTENDED is not supported */
3802 lbuf
= kzalloc(sizeof(*lbuf
), GFP_KERNEL
);
3806 rc
= hpsa_scsi_do_report_luns(h
, 0, lbuf
, sizeof(*lbuf
), 0);
3811 /* Copy ReportLUNdata header */
3812 memcpy(buf
, lbuf
, 8);
3813 nphys
= be32_to_cpu(*((__be32
*)lbuf
->LUNListLength
)) / 8;
3814 for (i
= 0; i
< nphys
; i
++)
3815 memcpy(buf
->LUN
[i
].lunid
, lbuf
->LUN
[i
], 8);
3821 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info
*h
,
3822 struct ReportLUNdata
*buf
, int bufsize
)
3824 return hpsa_scsi_do_report_luns(h
, 1, buf
, bufsize
, 0);
3827 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t
*device
,
3828 int bus
, int target
, int lun
)
3831 device
->target
= target
;
3835 /* Use VPD inquiry to get details of volume status */
3836 static int hpsa_get_volume_status(struct ctlr_info
*h
,
3837 unsigned char scsi3addr
[])
3844 buf
= kzalloc(64, GFP_KERNEL
);
3846 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3848 /* Does controller have VPD for logical volume status? */
3849 if (!hpsa_vpd_page_supported(h
, scsi3addr
, HPSA_VPD_LV_STATUS
))
3852 /* Get the size of the VPD return buffer */
3853 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3854 buf
, HPSA_VPD_HEADER_SZ
);
3859 /* Now get the whole VPD buffer */
3860 rc
= hpsa_scsi_do_inquiry(h
, scsi3addr
, VPD_PAGE
| HPSA_VPD_LV_STATUS
,
3861 buf
, size
+ HPSA_VPD_HEADER_SZ
);
3864 status
= buf
[4]; /* status byte */
3870 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3873 /* Determine offline status of a volume.
3876 * 0xff (offline for unknown reasons)
3877 * # (integer code indicating one of several NOT READY states
3878 * describing why a volume is to be kept offline)
3880 static unsigned char hpsa_volume_offline(struct ctlr_info
*h
,
3881 unsigned char scsi3addr
[])
3883 struct CommandList
*c
;
3884 unsigned char *sense
;
3885 u8 sense_key
, asc
, ascq
;
3888 #define ASC_LUN_NOT_READY 0x04
3889 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3890 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3894 (void) fill_cmd(c
, TEST_UNIT_READY
, h
, NULL
, 0, 0, scsi3addr
, TYPE_CMD
);
3895 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
3899 return HPSA_VPD_LV_STATUS_UNSUPPORTED
;
3901 sense
= c
->err_info
->SenseInfo
;
3902 if (c
->err_info
->SenseLen
> sizeof(c
->err_info
->SenseInfo
))
3903 sense_len
= sizeof(c
->err_info
->SenseInfo
);
3905 sense_len
= c
->err_info
->SenseLen
;
3906 decode_sense_data(sense
, sense_len
, &sense_key
, &asc
, &ascq
);
3909 /* Determine the reason for not ready state */
3910 ldstat
= hpsa_get_volume_status(h
, scsi3addr
);
3912 /* Keep volume offline in certain cases: */
3914 case HPSA_LV_FAILED
:
3915 case HPSA_LV_UNDERGOING_ERASE
:
3916 case HPSA_LV_NOT_AVAILABLE
:
3917 case HPSA_LV_UNDERGOING_RPI
:
3918 case HPSA_LV_PENDING_RPI
:
3919 case HPSA_LV_ENCRYPTED_NO_KEY
:
3920 case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER
:
3921 case HPSA_LV_UNDERGOING_ENCRYPTION
:
3922 case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING
:
3923 case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER
:
3925 case HPSA_VPD_LV_STATUS_UNSUPPORTED
:
3926 /* If VPD status page isn't available,
3927 * use ASC/ASCQ to determine state
3929 if ((ascq
== ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS
) ||
3930 (ascq
== ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ
))
3939 static int hpsa_update_device_info(struct ctlr_info
*h
,
3940 unsigned char scsi3addr
[], struct hpsa_scsi_dev_t
*this_device
,
3941 unsigned char *is_OBDR_device
)
3944 #define OBDR_SIG_OFFSET 43
3945 #define OBDR_TAPE_SIG "$DR-10"
3946 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3947 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3949 unsigned char *inq_buff
;
3950 unsigned char *obdr_sig
;
3953 inq_buff
= kzalloc(OBDR_TAPE_INQ_SIZE
, GFP_KERNEL
);
3959 /* Do an inquiry to the device to see what it is. */
3960 if (hpsa_scsi_do_inquiry(h
, scsi3addr
, 0, inq_buff
,
3961 (unsigned char) OBDR_TAPE_INQ_SIZE
) != 0) {
3962 dev_err(&h
->pdev
->dev
,
3963 "%s: inquiry failed, device will be skipped.\n",
3965 rc
= HPSA_INQUIRY_FAILED
;
3969 scsi_sanitize_inquiry_string(&inq_buff
[8], 8);
3970 scsi_sanitize_inquiry_string(&inq_buff
[16], 16);
3972 this_device
->devtype
= (inq_buff
[0] & 0x1f);
3973 memcpy(this_device
->scsi3addr
, scsi3addr
, 8);
3974 memcpy(this_device
->vendor
, &inq_buff
[8],
3975 sizeof(this_device
->vendor
));
3976 memcpy(this_device
->model
, &inq_buff
[16],
3977 sizeof(this_device
->model
));
3978 this_device
->rev
= inq_buff
[2];
3979 memset(this_device
->device_id
, 0,
3980 sizeof(this_device
->device_id
));
3981 if (hpsa_get_device_id(h
, scsi3addr
, this_device
->device_id
, 8,
3982 sizeof(this_device
->device_id
)) < 0) {
3983 dev_err(&h
->pdev
->dev
,
3984 "hpsa%d: %s: can't get device id for [%d:%d:%d:%d]\t%s\t%.16s\n",
3986 h
->scsi_host
->host_no
,
3987 this_device
->bus
, this_device
->target
,
3989 scsi_device_type(this_device
->devtype
),
3990 this_device
->model
);
3991 rc
= HPSA_LV_FAILED
;
3995 if ((this_device
->devtype
== TYPE_DISK
||
3996 this_device
->devtype
== TYPE_ZBC
) &&
3997 is_logical_dev_addr_mode(scsi3addr
)) {
3998 unsigned char volume_offline
;
4000 hpsa_get_raid_level(h
, scsi3addr
, &this_device
->raid_level
);
4001 if (h
->fw_support
& MISC_FW_RAID_OFFLOAD_BASIC
)
4002 hpsa_get_ioaccel_status(h
, scsi3addr
, this_device
);
4003 volume_offline
= hpsa_volume_offline(h
, scsi3addr
);
4004 if (volume_offline
== HPSA_VPD_LV_STATUS_UNSUPPORTED
&&
4007 * Legacy boards might not support volume status
4009 dev_info(&h
->pdev
->dev
,
4010 "C0:T%d:L%d Volume status not available, assuming online.\n",
4011 this_device
->target
, this_device
->lun
);
4014 this_device
->volume_offline
= volume_offline
;
4015 if (volume_offline
== HPSA_LV_FAILED
) {
4016 rc
= HPSA_LV_FAILED
;
4017 dev_err(&h
->pdev
->dev
,
4018 "%s: LV failed, device will be skipped.\n",
4023 this_device
->raid_level
= RAID_UNKNOWN
;
4024 this_device
->offload_config
= 0;
4025 hpsa_turn_off_ioaccel_for_device(this_device
);
4026 this_device
->hba_ioaccel_enabled
= 0;
4027 this_device
->volume_offline
= 0;
4028 this_device
->queue_depth
= h
->nr_cmds
;
4031 if (this_device
->external
)
4032 this_device
->queue_depth
= EXTERNAL_QD
;
4034 if (is_OBDR_device
) {
4035 /* See if this is a One-Button-Disaster-Recovery device
4036 * by looking for "$DR-10" at offset 43 in inquiry data.
4038 obdr_sig
= &inq_buff
[OBDR_SIG_OFFSET
];
4039 *is_OBDR_device
= (this_device
->devtype
== TYPE_ROM
&&
4040 strncmp(obdr_sig
, OBDR_TAPE_SIG
,
4041 OBDR_SIG_LEN
) == 0);
4052 * Helper function to assign bus, target, lun mapping of devices.
4053 * Logical drive target and lun are assigned at this time, but
4054 * physical device lun and target assignment are deferred (assigned
4055 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
4057 static void figure_bus_target_lun(struct ctlr_info
*h
,
4058 u8
*lunaddrbytes
, struct hpsa_scsi_dev_t
*device
)
4060 u32 lunid
= get_unaligned_le32(lunaddrbytes
);
4062 if (!is_logical_dev_addr_mode(lunaddrbytes
)) {
4063 /* physical device, target and lun filled in later */
4064 if (is_hba_lunid(lunaddrbytes
)) {
4065 int bus
= HPSA_HBA_BUS
;
4068 bus
= HPSA_LEGACY_HBA_BUS
;
4069 hpsa_set_bus_target_lun(device
,
4070 bus
, 0, lunid
& 0x3fff);
4072 /* defer target, lun assignment for physical devices */
4073 hpsa_set_bus_target_lun(device
,
4074 HPSA_PHYSICAL_DEVICE_BUS
, -1, -1);
4077 /* It's a logical device */
4078 if (device
->external
) {
4079 hpsa_set_bus_target_lun(device
,
4080 HPSA_EXTERNAL_RAID_VOLUME_BUS
, (lunid
>> 16) & 0x3fff,
4084 hpsa_set_bus_target_lun(device
, HPSA_RAID_VOLUME_BUS
,
4088 static int figure_external_status(struct ctlr_info
*h
, int raid_ctlr_position
,
4089 int i
, int nphysicals
, int nlocal_logicals
)
4091 /* In report logicals, local logicals are listed first,
4092 * then any externals.
4094 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4096 if (i
== raid_ctlr_position
)
4099 if (i
< logicals_start
)
4102 /* i is in logicals range, but still within local logicals */
4103 if ((i
- nphysicals
- (raid_ctlr_position
== 0)) < nlocal_logicals
)
4106 return 1; /* it's an external lun */
4110 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
4111 * logdev. The number of luns in physdev and logdev are returned in
4112 * *nphysicals and *nlogicals, respectively.
4113 * Returns 0 on success, -1 otherwise.
4115 static int hpsa_gather_lun_info(struct ctlr_info
*h
,
4116 struct ReportExtendedLUNdata
*physdev
, u32
*nphysicals
,
4117 struct ReportLUNdata
*logdev
, u32
*nlogicals
)
4119 if (hpsa_scsi_do_report_phys_luns(h
, physdev
, sizeof(*physdev
))) {
4120 dev_err(&h
->pdev
->dev
, "report physical LUNs failed.\n");
4123 *nphysicals
= be32_to_cpu(*((__be32
*)physdev
->LUNListLength
)) / 24;
4124 if (*nphysicals
> HPSA_MAX_PHYS_LUN
) {
4125 dev_warn(&h
->pdev
->dev
, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4126 HPSA_MAX_PHYS_LUN
, *nphysicals
- HPSA_MAX_PHYS_LUN
);
4127 *nphysicals
= HPSA_MAX_PHYS_LUN
;
4129 if (hpsa_scsi_do_report_log_luns(h
, logdev
, sizeof(*logdev
))) {
4130 dev_err(&h
->pdev
->dev
, "report logical LUNs failed.\n");
4133 *nlogicals
= be32_to_cpu(*((__be32
*) logdev
->LUNListLength
)) / 8;
4134 /* Reject Logicals in excess of our max capability. */
4135 if (*nlogicals
> HPSA_MAX_LUN
) {
4136 dev_warn(&h
->pdev
->dev
,
4137 "maximum logical LUNs (%d) exceeded. "
4138 "%d LUNs ignored.\n", HPSA_MAX_LUN
,
4139 *nlogicals
- HPSA_MAX_LUN
);
4140 *nlogicals
= HPSA_MAX_LUN
;
4142 if (*nlogicals
+ *nphysicals
> HPSA_MAX_PHYS_LUN
) {
4143 dev_warn(&h
->pdev
->dev
,
4144 "maximum logical + physical LUNs (%d) exceeded. "
4145 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN
,
4146 *nphysicals
+ *nlogicals
- HPSA_MAX_PHYS_LUN
);
4147 *nlogicals
= HPSA_MAX_PHYS_LUN
- *nphysicals
;
4152 static u8
*figure_lunaddrbytes(struct ctlr_info
*h
, int raid_ctlr_position
,
4153 int i
, int nphysicals
, int nlogicals
,
4154 struct ReportExtendedLUNdata
*physdev_list
,
4155 struct ReportLUNdata
*logdev_list
)
4157 /* Helper function, figure out where the LUN ID info is coming from
4158 * given index i, lists of physical and logical devices, where in
4159 * the list the raid controller is supposed to appear (first or last)
4162 int logicals_start
= nphysicals
+ (raid_ctlr_position
== 0);
4163 int last_device
= nphysicals
+ nlogicals
+ (raid_ctlr_position
== 0);
4165 if (i
== raid_ctlr_position
)
4166 return RAID_CTLR_LUNID
;
4168 if (i
< logicals_start
)
4169 return &physdev_list
->LUN
[i
-
4170 (raid_ctlr_position
== 0)].lunid
[0];
4172 if (i
< last_device
)
4173 return &logdev_list
->LUN
[i
- nphysicals
-
4174 (raid_ctlr_position
== 0)][0];
4179 /* get physical drive ioaccel handle and queue depth */
4180 static void hpsa_get_ioaccel_drive_info(struct ctlr_info
*h
,
4181 struct hpsa_scsi_dev_t
*dev
,
4182 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4183 struct bmic_identify_physical_device
*id_phys
)
4186 struct ext_report_lun_entry
*rle
;
4188 if (rle_index
< 0 || rle_index
>= HPSA_MAX_PHYS_LUN
)
4191 rle
= &rlep
->LUN
[rle_index
];
4193 dev
->ioaccel_handle
= rle
->ioaccel_handle
;
4194 if ((rle
->device_flags
& 0x08) && dev
->ioaccel_handle
)
4195 dev
->hba_ioaccel_enabled
= 1;
4196 memset(id_phys
, 0, sizeof(*id_phys
));
4197 rc
= hpsa_bmic_id_physical_device(h
, &rle
->lunid
[0],
4198 GET_BMIC_DRIVE_NUMBER(&rle
->lunid
[0]), id_phys
,
4201 /* Reserve space for FW operations */
4202 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4203 #define DRIVE_QUEUE_DEPTH 7
4205 le16_to_cpu(id_phys
->current_queue_depth_limit
) -
4206 DRIVE_CMDS_RESERVED_FOR_FW
;
4208 dev
->queue_depth
= DRIVE_QUEUE_DEPTH
; /* conservative */
4211 static void hpsa_get_path_info(struct hpsa_scsi_dev_t
*this_device
,
4212 struct ReportExtendedLUNdata
*rlep
, int rle_index
,
4213 struct bmic_identify_physical_device
*id_phys
)
4215 struct ext_report_lun_entry
*rle
;
4217 if (rle_index
< 0 || rle_index
>= HPSA_MAX_PHYS_LUN
)
4220 rle
= &rlep
->LUN
[rle_index
];
4222 if ((rle
->device_flags
& 0x08) && this_device
->ioaccel_handle
)
4223 this_device
->hba_ioaccel_enabled
= 1;
4225 memcpy(&this_device
->active_path_index
,
4226 &id_phys
->active_path_number
,
4227 sizeof(this_device
->active_path_index
));
4228 memcpy(&this_device
->path_map
,
4229 &id_phys
->redundant_path_present_map
,
4230 sizeof(this_device
->path_map
));
4231 memcpy(&this_device
->box
,
4232 &id_phys
->alternate_paths_phys_box_on_port
,
4233 sizeof(this_device
->box
));
4234 memcpy(&this_device
->phys_connector
,
4235 &id_phys
->alternate_paths_phys_connector
,
4236 sizeof(this_device
->phys_connector
));
4237 memcpy(&this_device
->bay
,
4238 &id_phys
->phys_bay_in_box
,
4239 sizeof(this_device
->bay
));
4242 /* get number of local logical disks. */
4243 static int hpsa_set_local_logical_count(struct ctlr_info
*h
,
4244 struct bmic_identify_controller
*id_ctlr
,
4250 dev_warn(&h
->pdev
->dev
, "%s: id_ctlr buffer is NULL.\n",
4254 memset(id_ctlr
, 0, sizeof(*id_ctlr
));
4255 rc
= hpsa_bmic_id_controller(h
, id_ctlr
, sizeof(*id_ctlr
));
4257 if (id_ctlr
->configured_logical_drive_count
< 255)
4258 *nlocals
= id_ctlr
->configured_logical_drive_count
;
4260 *nlocals
= le16_to_cpu(
4261 id_ctlr
->extended_logical_unit_count
);
4267 static bool hpsa_is_disk_spare(struct ctlr_info
*h
, u8
*lunaddrbytes
)
4269 struct bmic_identify_physical_device
*id_phys
;
4270 bool is_spare
= false;
4273 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4277 rc
= hpsa_bmic_id_physical_device(h
,
4279 GET_BMIC_DRIVE_NUMBER(lunaddrbytes
),
4280 id_phys
, sizeof(*id_phys
));
4282 is_spare
= (id_phys
->more_flags
>> 6) & 0x01;
4288 #define RPL_DEV_FLAG_NON_DISK 0x1
4289 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED 0x2
4290 #define RPL_DEV_FLAG_UNCONFIG_DISK 0x4
4292 #define BMIC_DEVICE_TYPE_ENCLOSURE 6
4294 static bool hpsa_skip_device(struct ctlr_info
*h
, u8
*lunaddrbytes
,
4295 struct ext_report_lun_entry
*rle
)
4300 if (!MASKED_DEVICE(lunaddrbytes
))
4303 device_flags
= rle
->device_flags
;
4304 device_type
= rle
->device_type
;
4306 if (device_flags
& RPL_DEV_FLAG_NON_DISK
) {
4307 if (device_type
== BMIC_DEVICE_TYPE_ENCLOSURE
)
4312 if (!(device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED
))
4315 if (device_flags
& RPL_DEV_FLAG_UNCONFIG_DISK
)
4319 * Spares may be spun down, we do not want to
4320 * do an Inquiry to a RAID set spare drive as
4321 * that would have them spun up, that is a
4322 * performance hit because I/O to the RAID device
4323 * stops while the spin up occurs which can take
4326 if (hpsa_is_disk_spare(h
, lunaddrbytes
))
4332 static void hpsa_update_scsi_devices(struct ctlr_info
*h
)
4334 /* the idea here is we could get notified
4335 * that some devices have changed, so we do a report
4336 * physical luns and report logical luns cmd, and adjust
4337 * our list of devices accordingly.
4339 * The scsi3addr's of devices won't change so long as the
4340 * adapter is not reset. That means we can rescan and
4341 * tell which devices we already know about, vs. new
4342 * devices, vs. disappearing devices.
4344 struct ReportExtendedLUNdata
*physdev_list
= NULL
;
4345 struct ReportLUNdata
*logdev_list
= NULL
;
4346 struct bmic_identify_physical_device
*id_phys
= NULL
;
4347 struct bmic_identify_controller
*id_ctlr
= NULL
;
4350 u32 nlocal_logicals
= 0;
4351 u32 ndev_allocated
= 0;
4352 struct hpsa_scsi_dev_t
**currentsd
, *this_device
, *tmpdevice
;
4354 int i
, ndevs_to_allocate
;
4355 int raid_ctlr_position
;
4356 bool physical_device
;
4358 currentsd
= kcalloc(HPSA_MAX_DEVICES
, sizeof(*currentsd
), GFP_KERNEL
);
4359 physdev_list
= kzalloc(sizeof(*physdev_list
), GFP_KERNEL
);
4360 logdev_list
= kzalloc(sizeof(*logdev_list
), GFP_KERNEL
);
4361 tmpdevice
= kzalloc(sizeof(*tmpdevice
), GFP_KERNEL
);
4362 id_phys
= kzalloc(sizeof(*id_phys
), GFP_KERNEL
);
4363 id_ctlr
= kzalloc(sizeof(*id_ctlr
), GFP_KERNEL
);
4365 if (!currentsd
|| !physdev_list
|| !logdev_list
||
4366 !tmpdevice
|| !id_phys
|| !id_ctlr
) {
4367 dev_err(&h
->pdev
->dev
, "out of memory\n");
4371 h
->drv_req_rescan
= 0; /* cancel scheduled rescan - we're doing it. */
4373 if (hpsa_gather_lun_info(h
, physdev_list
, &nphysicals
,
4374 logdev_list
, &nlogicals
)) {
4375 h
->drv_req_rescan
= 1;
4379 /* Set number of local logicals (non PTRAID) */
4380 if (hpsa_set_local_logical_count(h
, id_ctlr
, &nlocal_logicals
)) {
4381 dev_warn(&h
->pdev
->dev
,
4382 "%s: Can't determine number of local logical devices.\n",
4386 /* We might see up to the maximum number of logical and physical disks
4387 * plus external target devices, and a device for the local RAID
4390 ndevs_to_allocate
= nphysicals
+ nlogicals
+ MAX_EXT_TARGETS
+ 1;
4392 hpsa_ext_ctrl_present(h
, physdev_list
);
4394 /* Allocate the per device structures */
4395 for (i
= 0; i
< ndevs_to_allocate
; i
++) {
4396 if (i
>= HPSA_MAX_DEVICES
) {
4397 dev_warn(&h
->pdev
->dev
, "maximum devices (%d) exceeded."
4398 " %d devices ignored.\n", HPSA_MAX_DEVICES
,
4399 ndevs_to_allocate
- HPSA_MAX_DEVICES
);
4403 currentsd
[i
] = kzalloc(sizeof(*currentsd
[i
]), GFP_KERNEL
);
4404 if (!currentsd
[i
]) {
4405 h
->drv_req_rescan
= 1;
4411 if (is_scsi_rev_5(h
))
4412 raid_ctlr_position
= 0;
4414 raid_ctlr_position
= nphysicals
+ nlogicals
;
4416 /* adjust our table of devices */
4417 for (i
= 0; i
< nphysicals
+ nlogicals
+ 1; i
++) {
4418 u8
*lunaddrbytes
, is_OBDR
= 0;
4420 int phys_dev_index
= i
- (raid_ctlr_position
== 0);
4421 bool skip_device
= false;
4423 memset(tmpdevice
, 0, sizeof(*tmpdevice
));
4425 physical_device
= i
< nphysicals
+ (raid_ctlr_position
== 0);
4427 /* Figure out where the LUN ID info is coming from */
4428 lunaddrbytes
= figure_lunaddrbytes(h
, raid_ctlr_position
,
4429 i
, nphysicals
, nlogicals
, physdev_list
, logdev_list
);
4431 /* Determine if this is a lun from an external target array */
4432 tmpdevice
->external
=
4433 figure_external_status(h
, raid_ctlr_position
, i
,
4434 nphysicals
, nlocal_logicals
);
4437 * Skip over some devices such as a spare.
4439 if (phys_dev_index
>= 0 && !tmpdevice
->external
&&
4441 skip_device
= hpsa_skip_device(h
, lunaddrbytes
,
4442 &physdev_list
->LUN
[phys_dev_index
]);
4447 /* Get device type, vendor, model, device id, raid_map */
4448 rc
= hpsa_update_device_info(h
, lunaddrbytes
, tmpdevice
,
4450 if (rc
== -ENOMEM
) {
4451 dev_warn(&h
->pdev
->dev
,
4452 "Out of memory, rescan deferred.\n");
4453 h
->drv_req_rescan
= 1;
4457 h
->drv_req_rescan
= 1;
4461 figure_bus_target_lun(h
, lunaddrbytes
, tmpdevice
);
4462 this_device
= currentsd
[ncurrent
];
4464 *this_device
= *tmpdevice
;
4465 this_device
->physical_device
= physical_device
;
4468 * Expose all devices except for physical devices that
4471 if (MASKED_DEVICE(lunaddrbytes
) && this_device
->physical_device
)
4472 this_device
->expose_device
= 0;
4474 this_device
->expose_device
= 1;
4478 * Get the SAS address for physical devices that are exposed.
4480 if (this_device
->physical_device
&& this_device
->expose_device
)
4481 hpsa_get_sas_address(h
, lunaddrbytes
, this_device
);
4483 switch (this_device
->devtype
) {
4485 /* We don't *really* support actual CD-ROM devices,
4486 * just "One Button Disaster Recovery" tape drive
4487 * which temporarily pretends to be a CD-ROM drive.
4488 * So we check that the device is really an OBDR tape
4489 * device by checking for "$DR-10" in bytes 43-48 of
4497 if (this_device
->physical_device
) {
4498 /* The disk is in HBA mode. */
4499 /* Never use RAID mapper in HBA mode. */
4500 this_device
->offload_enabled
= 0;
4501 hpsa_get_ioaccel_drive_info(h
, this_device
,
4502 physdev_list
, phys_dev_index
, id_phys
);
4503 hpsa_get_path_info(this_device
,
4504 physdev_list
, phys_dev_index
, id_phys
);
4509 case TYPE_MEDIUM_CHANGER
:
4512 case TYPE_ENCLOSURE
:
4513 if (!this_device
->external
)
4514 hpsa_get_enclosure_info(h
, lunaddrbytes
,
4515 physdev_list
, phys_dev_index
,
4520 /* Only present the Smartarray HBA as a RAID controller.
4521 * If it's a RAID controller other than the HBA itself
4522 * (an external RAID controller, MSA500 or similar)
4525 if (!is_hba_lunid(lunaddrbytes
))
4532 if (ncurrent
>= HPSA_MAX_DEVICES
)
4536 if (h
->sas_host
== NULL
) {
4539 rc
= hpsa_add_sas_host(h
);
4541 dev_warn(&h
->pdev
->dev
,
4542 "Could not add sas host %d\n", rc
);
4547 adjust_hpsa_scsi_table(h
, currentsd
, ncurrent
);
4550 for (i
= 0; i
< ndev_allocated
; i
++)
4551 kfree(currentsd
[i
]);
4553 kfree(physdev_list
);
4559 static void hpsa_set_sg_descriptor(struct SGDescriptor
*desc
,
4560 struct scatterlist
*sg
)
4562 u64 addr64
= (u64
) sg_dma_address(sg
);
4563 unsigned int len
= sg_dma_len(sg
);
4565 desc
->Addr
= cpu_to_le64(addr64
);
4566 desc
->Len
= cpu_to_le32(len
);
4571 * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4572 * dma mapping and fills in the scatter gather entries of the
4575 static int hpsa_scatter_gather(struct ctlr_info
*h
,
4576 struct CommandList
*cp
,
4577 struct scsi_cmnd
*cmd
)
4579 struct scatterlist
*sg
;
4580 int use_sg
, i
, sg_limit
, chained
;
4581 struct SGDescriptor
*curr_sg
;
4583 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4585 use_sg
= scsi_dma_map(cmd
);
4590 goto sglist_finished
;
4593 * If the number of entries is greater than the max for a single list,
4594 * then we have a chained list; we will set up all but one entry in the
4595 * first list (the last entry is saved for link information);
4596 * otherwise, we don't have a chained list and we'll set up at each of
4597 * the entries in the one list.
4600 chained
= use_sg
> h
->max_cmd_sg_entries
;
4601 sg_limit
= chained
? h
->max_cmd_sg_entries
- 1 : use_sg
;
4602 scsi_for_each_sg(cmd
, sg
, sg_limit
, i
) {
4603 hpsa_set_sg_descriptor(curr_sg
, sg
);
4609 * Continue with the chained list. Set curr_sg to the chained
4610 * list. Modify the limit to the total count less the entries
4611 * we've already set up. Resume the scan at the list entry
4612 * where the previous loop left off.
4614 curr_sg
= h
->cmd_sg_list
[cp
->cmdindex
];
4615 sg_limit
= use_sg
- sg_limit
;
4616 for_each_sg(sg
, sg
, sg_limit
, i
) {
4617 hpsa_set_sg_descriptor(curr_sg
, sg
);
4622 /* Back the pointer up to the last entry and mark it as "last". */
4623 (curr_sg
- 1)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4625 if (use_sg
+ chained
> h
->maxSG
)
4626 h
->maxSG
= use_sg
+ chained
;
4629 cp
->Header
.SGList
= h
->max_cmd_sg_entries
;
4630 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
+ 1);
4631 if (hpsa_map_sg_chain_block(h
, cp
)) {
4632 scsi_dma_unmap(cmd
);
4640 cp
->Header
.SGList
= (u8
) use_sg
; /* no. SGs contig in this cmd */
4641 cp
->Header
.SGTotal
= cpu_to_le16(use_sg
); /* total sgs in cmd list */
4645 static inline void warn_zero_length_transfer(struct ctlr_info
*h
,
4646 u8
*cdb
, int cdb_len
,
4649 dev_warn(&h
->pdev
->dev
,
4650 "%s: Blocking zero-length request: CDB:%*phN\n",
4651 func
, cdb_len
, cdb
);
4654 #define IO_ACCEL_INELIGIBLE 1
4655 /* zero-length transfers trigger hardware errors. */
4656 static bool is_zero_length_transfer(u8
*cdb
)
4660 /* Block zero-length transfer sizes on certain commands. */
4664 case VERIFY
: /* 0x2F */
4665 case WRITE_VERIFY
: /* 0x2E */
4666 block_cnt
= get_unaligned_be16(&cdb
[7]);
4670 case VERIFY_12
: /* 0xAF */
4671 case WRITE_VERIFY_12
: /* 0xAE */
4672 block_cnt
= get_unaligned_be32(&cdb
[6]);
4676 case VERIFY_16
: /* 0x8F */
4677 block_cnt
= get_unaligned_be32(&cdb
[10]);
4683 return block_cnt
== 0;
4686 static int fixup_ioaccel_cdb(u8
*cdb
, int *cdb_len
)
4692 /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4700 if (*cdb_len
== 6) {
4701 block
= (((cdb
[1] & 0x1F) << 16) |
4708 BUG_ON(*cdb_len
!= 12);
4709 block
= get_unaligned_be32(&cdb
[2]);
4710 block_cnt
= get_unaligned_be32(&cdb
[6]);
4712 if (block_cnt
> 0xffff)
4713 return IO_ACCEL_INELIGIBLE
;
4715 cdb
[0] = is_write
? WRITE_10
: READ_10
;
4717 cdb
[2] = (u8
) (block
>> 24);
4718 cdb
[3] = (u8
) (block
>> 16);
4719 cdb
[4] = (u8
) (block
>> 8);
4720 cdb
[5] = (u8
) (block
);
4722 cdb
[7] = (u8
) (block_cnt
>> 8);
4723 cdb
[8] = (u8
) (block_cnt
);
4731 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info
*h
,
4732 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4733 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4735 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4736 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[c
->cmdindex
];
4738 unsigned int total_len
= 0;
4739 struct scatterlist
*sg
;
4742 struct SGDescriptor
*curr_sg
;
4743 u32 control
= IOACCEL1_CONTROL_SIMPLEQUEUE
;
4745 /* TODO: implement chaining support */
4746 if (scsi_sg_count(cmd
) > h
->ioaccel_maxsg
) {
4747 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4748 return IO_ACCEL_INELIGIBLE
;
4751 BUG_ON(cmd
->cmd_len
> IOACCEL1_IOFLAGS_CDBLEN_MAX
);
4753 if (is_zero_length_transfer(cdb
)) {
4754 warn_zero_length_transfer(h
, cdb
, cdb_len
, __func__
);
4755 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4756 return IO_ACCEL_INELIGIBLE
;
4759 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4760 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4761 return IO_ACCEL_INELIGIBLE
;
4764 c
->cmd_type
= CMD_IOACCEL1
;
4766 /* Adjust the DMA address to point to the accelerated command buffer */
4767 c
->busaddr
= (u32
) h
->ioaccel_cmd_pool_dhandle
+
4768 (c
->cmdindex
* sizeof(*cp
));
4769 BUG_ON(c
->busaddr
& 0x0000007F);
4771 use_sg
= scsi_dma_map(cmd
);
4773 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4779 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4780 addr64
= (u64
) sg_dma_address(sg
);
4781 len
= sg_dma_len(sg
);
4783 curr_sg
->Addr
= cpu_to_le64(addr64
);
4784 curr_sg
->Len
= cpu_to_le32(len
);
4785 curr_sg
->Ext
= cpu_to_le32(0);
4788 (--curr_sg
)->Ext
= cpu_to_le32(HPSA_SG_LAST
);
4790 switch (cmd
->sc_data_direction
) {
4792 control
|= IOACCEL1_CONTROL_DATA_OUT
;
4794 case DMA_FROM_DEVICE
:
4795 control
|= IOACCEL1_CONTROL_DATA_IN
;
4798 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4801 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4802 cmd
->sc_data_direction
);
4807 control
|= IOACCEL1_CONTROL_NODATAXFER
;
4810 c
->Header
.SGList
= use_sg
;
4811 /* Fill out the command structure to submit */
4812 cp
->dev_handle
= cpu_to_le16(ioaccel_handle
& 0xFFFF);
4813 cp
->transfer_len
= cpu_to_le32(total_len
);
4814 cp
->io_flags
= cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ
|
4815 (cdb_len
& IOACCEL1_IOFLAGS_CDBLEN_MASK
));
4816 cp
->control
= cpu_to_le32(control
);
4817 memcpy(cp
->CDB
, cdb
, cdb_len
);
4818 memcpy(cp
->CISS_LUN
, scsi3addr
, 8);
4819 /* Tag was already set at init time. */
4820 enqueue_cmd_and_start_io(h
, c
);
4825 * Queue a command directly to a device behind the controller using the
4826 * I/O accelerator path.
4828 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info
*h
,
4829 struct CommandList
*c
)
4831 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4832 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4842 return hpsa_scsi_ioaccel_queue_command(h
, c
, dev
->ioaccel_handle
,
4843 cmd
->cmnd
, cmd
->cmd_len
, dev
->scsi3addr
, dev
);
4847 * Set encryption parameters for the ioaccel2 request
4849 static void set_encrypt_ioaccel2(struct ctlr_info
*h
,
4850 struct CommandList
*c
, struct io_accel2_cmd
*cp
)
4852 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4853 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
4854 struct raid_map_data
*map
= &dev
->raid_map
;
4857 /* Are we doing encryption on this device */
4858 if (!(le16_to_cpu(map
->flags
) & RAID_MAP_FLAG_ENCRYPT_ON
))
4860 /* Set the data encryption key index. */
4861 cp
->dekindex
= map
->dekindex
;
4863 /* Set the encryption enable flag, encoded into direction field. */
4864 cp
->direction
|= IOACCEL2_DIRECTION_ENCRYPT_MASK
;
4866 /* Set encryption tweak values based on logical block address
4867 * If block size is 512, tweak value is LBA.
4868 * For other block sizes, tweak is (LBA * block size)/ 512)
4870 switch (cmd
->cmnd
[0]) {
4871 /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4874 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
4875 (cmd
->cmnd
[2] << 8) |
4880 /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4883 first_block
= get_unaligned_be32(&cmd
->cmnd
[2]);
4887 first_block
= get_unaligned_be64(&cmd
->cmnd
[2]);
4890 dev_err(&h
->pdev
->dev
,
4891 "ERROR: %s: size (0x%x) not supported for encryption\n",
4892 __func__
, cmd
->cmnd
[0]);
4897 if (le32_to_cpu(map
->volume_blk_size
) != 512)
4898 first_block
= first_block
*
4899 le32_to_cpu(map
->volume_blk_size
)/512;
4901 cp
->tweak_lower
= cpu_to_le32(first_block
);
4902 cp
->tweak_upper
= cpu_to_le32(first_block
>> 32);
4905 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info
*h
,
4906 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
4907 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
4909 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
4910 struct io_accel2_cmd
*cp
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
4911 struct ioaccel2_sg_element
*curr_sg
;
4913 struct scatterlist
*sg
;
4921 if (!cmd
->device
->hostdata
)
4924 BUG_ON(scsi_sg_count(cmd
) > h
->maxsgentries
);
4926 if (is_zero_length_transfer(cdb
)) {
4927 warn_zero_length_transfer(h
, cdb
, cdb_len
, __func__
);
4928 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4929 return IO_ACCEL_INELIGIBLE
;
4932 if (fixup_ioaccel_cdb(cdb
, &cdb_len
)) {
4933 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4934 return IO_ACCEL_INELIGIBLE
;
4937 c
->cmd_type
= CMD_IOACCEL2
;
4938 /* Adjust the DMA address to point to the accelerated command buffer */
4939 c
->busaddr
= (u32
) h
->ioaccel2_cmd_pool_dhandle
+
4940 (c
->cmdindex
* sizeof(*cp
));
4941 BUG_ON(c
->busaddr
& 0x0000007F);
4943 memset(cp
, 0, sizeof(*cp
));
4944 cp
->IU_type
= IOACCEL2_IU_TYPE
;
4946 use_sg
= scsi_dma_map(cmd
);
4948 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
4954 if (use_sg
> h
->ioaccel_maxsg
) {
4955 addr64
= le64_to_cpu(
4956 h
->ioaccel2_cmd_sg_list
[c
->cmdindex
]->address
);
4957 curr_sg
->address
= cpu_to_le64(addr64
);
4958 curr_sg
->length
= 0;
4959 curr_sg
->reserved
[0] = 0;
4960 curr_sg
->reserved
[1] = 0;
4961 curr_sg
->reserved
[2] = 0;
4962 curr_sg
->chain_indicator
= IOACCEL2_CHAIN
;
4964 curr_sg
= h
->ioaccel2_cmd_sg_list
[c
->cmdindex
];
4966 scsi_for_each_sg(cmd
, sg
, use_sg
, i
) {
4967 addr64
= (u64
) sg_dma_address(sg
);
4968 len
= sg_dma_len(sg
);
4970 curr_sg
->address
= cpu_to_le64(addr64
);
4971 curr_sg
->length
= cpu_to_le32(len
);
4972 curr_sg
->reserved
[0] = 0;
4973 curr_sg
->reserved
[1] = 0;
4974 curr_sg
->reserved
[2] = 0;
4975 curr_sg
->chain_indicator
= 0;
4980 * Set the last s/g element bit
4982 (curr_sg
- 1)->chain_indicator
= IOACCEL2_LAST_SG
;
4984 switch (cmd
->sc_data_direction
) {
4986 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4987 cp
->direction
|= IOACCEL2_DIR_DATA_OUT
;
4989 case DMA_FROM_DEVICE
:
4990 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4991 cp
->direction
|= IOACCEL2_DIR_DATA_IN
;
4994 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
4995 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
4998 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
4999 cmd
->sc_data_direction
);
5004 cp
->direction
&= ~IOACCEL2_DIRECTION_MASK
;
5005 cp
->direction
|= IOACCEL2_DIR_NO_DATA
;
5008 /* Set encryption parameters, if necessary */
5009 set_encrypt_ioaccel2(h
, c
, cp
);
5011 cp
->scsi_nexus
= cpu_to_le32(ioaccel_handle
);
5012 cp
->Tag
= cpu_to_le32(c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
);
5013 memcpy(cp
->cdb
, cdb
, sizeof(cp
->cdb
));
5015 cp
->data_len
= cpu_to_le32(total_len
);
5016 cp
->err_ptr
= cpu_to_le64(c
->busaddr
+
5017 offsetof(struct io_accel2_cmd
, error_data
));
5018 cp
->err_len
= cpu_to_le32(sizeof(cp
->error_data
));
5020 /* fill in sg elements */
5021 if (use_sg
> h
->ioaccel_maxsg
) {
5023 cp
->sg
[0].length
= cpu_to_le32(use_sg
* sizeof(cp
->sg
[0]));
5024 if (hpsa_map_ioaccel2_sg_chain_block(h
, cp
, c
)) {
5025 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
5026 scsi_dma_unmap(cmd
);
5030 cp
->sg_count
= (u8
) use_sg
;
5032 if (phys_disk
->in_reset
) {
5033 cmd
->result
= DID_RESET
<< 16;
5037 enqueue_cmd_and_start_io(h
, c
);
5042 * Queue a command to the correct I/O accelerator path.
5044 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info
*h
,
5045 struct CommandList
*c
, u32 ioaccel_handle
, u8
*cdb
, int cdb_len
,
5046 u8
*scsi3addr
, struct hpsa_scsi_dev_t
*phys_disk
)
5048 if (!c
->scsi_cmd
->device
)
5051 if (!c
->scsi_cmd
->device
->hostdata
)
5054 if (phys_disk
->in_reset
)
5057 /* Try to honor the device's queue depth */
5058 if (atomic_inc_return(&phys_disk
->ioaccel_cmds_out
) >
5059 phys_disk
->queue_depth
) {
5060 atomic_dec(&phys_disk
->ioaccel_cmds_out
);
5061 return IO_ACCEL_INELIGIBLE
;
5063 if (h
->transMethod
& CFGTBL_Trans_io_accel1
)
5064 return hpsa_scsi_ioaccel1_queue_command(h
, c
, ioaccel_handle
,
5065 cdb
, cdb_len
, scsi3addr
,
5068 return hpsa_scsi_ioaccel2_queue_command(h
, c
, ioaccel_handle
,
5069 cdb
, cdb_len
, scsi3addr
,
5073 static void raid_map_helper(struct raid_map_data
*map
,
5074 int offload_to_mirror
, u32
*map_index
, u32
*current_group
)
5076 if (offload_to_mirror
== 0) {
5077 /* use physical disk in the first mirrored group. */
5078 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
5082 /* determine mirror group that *map_index indicates */
5083 *current_group
= *map_index
/
5084 le16_to_cpu(map
->data_disks_per_row
);
5085 if (offload_to_mirror
== *current_group
)
5087 if (*current_group
< le16_to_cpu(map
->layout_map_count
) - 1) {
5088 /* select map index from next group */
5089 *map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5092 /* select map index from first group */
5093 *map_index
%= le16_to_cpu(map
->data_disks_per_row
);
5096 } while (offload_to_mirror
!= *current_group
);
5100 * Attempt to perform offload RAID mapping for a logical volume I/O.
5102 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info
*h
,
5103 struct CommandList
*c
)
5105 struct scsi_cmnd
*cmd
= c
->scsi_cmd
;
5106 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5107 struct raid_map_data
*map
= &dev
->raid_map
;
5108 struct raid_map_disk_data
*dd
= &map
->data
[0];
5111 u64 first_block
, last_block
;
5114 u64 first_row
, last_row
;
5115 u32 first_row_offset
, last_row_offset
;
5116 u32 first_column
, last_column
;
5117 u64 r0_first_row
, r0_last_row
;
5118 u32 r5or6_blocks_per_row
;
5119 u64 r5or6_first_row
, r5or6_last_row
;
5120 u32 r5or6_first_row_offset
, r5or6_last_row_offset
;
5121 u32 r5or6_first_column
, r5or6_last_column
;
5122 u32 total_disks_per_row
;
5124 u32 first_group
, last_group
, current_group
;
5132 #if BITS_PER_LONG == 32
5135 int offload_to_mirror
;
5143 /* check for valid opcode, get LBA and block count */
5144 switch (cmd
->cmnd
[0]) {
5149 first_block
= (((cmd
->cmnd
[1] & 0x1F) << 16) |
5150 (cmd
->cmnd
[2] << 8) |
5152 block_cnt
= cmd
->cmnd
[4];
5161 (((u64
) cmd
->cmnd
[2]) << 24) |
5162 (((u64
) cmd
->cmnd
[3]) << 16) |
5163 (((u64
) cmd
->cmnd
[4]) << 8) |
5166 (((u32
) cmd
->cmnd
[7]) << 8) |
5174 (((u64
) cmd
->cmnd
[2]) << 24) |
5175 (((u64
) cmd
->cmnd
[3]) << 16) |
5176 (((u64
) cmd
->cmnd
[4]) << 8) |
5179 (((u32
) cmd
->cmnd
[6]) << 24) |
5180 (((u32
) cmd
->cmnd
[7]) << 16) |
5181 (((u32
) cmd
->cmnd
[8]) << 8) |
5189 (((u64
) cmd
->cmnd
[2]) << 56) |
5190 (((u64
) cmd
->cmnd
[3]) << 48) |
5191 (((u64
) cmd
->cmnd
[4]) << 40) |
5192 (((u64
) cmd
->cmnd
[5]) << 32) |
5193 (((u64
) cmd
->cmnd
[6]) << 24) |
5194 (((u64
) cmd
->cmnd
[7]) << 16) |
5195 (((u64
) cmd
->cmnd
[8]) << 8) |
5198 (((u32
) cmd
->cmnd
[10]) << 24) |
5199 (((u32
) cmd
->cmnd
[11]) << 16) |
5200 (((u32
) cmd
->cmnd
[12]) << 8) |
5204 return IO_ACCEL_INELIGIBLE
; /* process via normal I/O path */
5206 last_block
= first_block
+ block_cnt
- 1;
5208 /* check for write to non-RAID-0 */
5209 if (is_write
&& dev
->raid_level
!= 0)
5210 return IO_ACCEL_INELIGIBLE
;
5212 /* check for invalid block or wraparound */
5213 if (last_block
>= le64_to_cpu(map
->volume_blk_cnt
) ||
5214 last_block
< first_block
)
5215 return IO_ACCEL_INELIGIBLE
;
5217 /* calculate stripe information for the request */
5218 blocks_per_row
= le16_to_cpu(map
->data_disks_per_row
) *
5219 le16_to_cpu(map
->strip_size
);
5220 strip_size
= le16_to_cpu(map
->strip_size
);
5221 #if BITS_PER_LONG == 32
5222 tmpdiv
= first_block
;
5223 (void) do_div(tmpdiv
, blocks_per_row
);
5225 tmpdiv
= last_block
;
5226 (void) do_div(tmpdiv
, blocks_per_row
);
5228 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5229 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5230 tmpdiv
= first_row_offset
;
5231 (void) do_div(tmpdiv
, strip_size
);
5232 first_column
= tmpdiv
;
5233 tmpdiv
= last_row_offset
;
5234 (void) do_div(tmpdiv
, strip_size
);
5235 last_column
= tmpdiv
;
5237 first_row
= first_block
/ blocks_per_row
;
5238 last_row
= last_block
/ blocks_per_row
;
5239 first_row_offset
= (u32
) (first_block
- (first_row
* blocks_per_row
));
5240 last_row_offset
= (u32
) (last_block
- (last_row
* blocks_per_row
));
5241 first_column
= first_row_offset
/ strip_size
;
5242 last_column
= last_row_offset
/ strip_size
;
5245 /* if this isn't a single row/column then give to the controller */
5246 if ((first_row
!= last_row
) || (first_column
!= last_column
))
5247 return IO_ACCEL_INELIGIBLE
;
5249 /* proceeding with driver mapping */
5250 total_disks_per_row
= le16_to_cpu(map
->data_disks_per_row
) +
5251 le16_to_cpu(map
->metadata_disks_per_row
);
5252 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5253 le16_to_cpu(map
->row_cnt
);
5254 map_index
= (map_row
* total_disks_per_row
) + first_column
;
5256 switch (dev
->raid_level
) {
5258 break; /* nothing special to do */
5260 /* Handles load balance across RAID 1 members.
5261 * (2-drive R1 and R10 with even # of drives.)
5262 * Appropriate for SSDs, not optimal for HDDs
5263 * Ensure we have the correct raid_map.
5265 if (le16_to_cpu(map
->layout_map_count
) != 2) {
5266 hpsa_turn_off_ioaccel_for_device(dev
);
5267 return IO_ACCEL_INELIGIBLE
;
5269 if (dev
->offload_to_mirror
)
5270 map_index
+= le16_to_cpu(map
->data_disks_per_row
);
5271 dev
->offload_to_mirror
= !dev
->offload_to_mirror
;
5274 /* Handles N-way mirrors (R1-ADM)
5275 * and R10 with # of drives divisible by 3.)
5276 * Ensure we have the correct raid_map.
5278 if (le16_to_cpu(map
->layout_map_count
) != 3) {
5279 hpsa_turn_off_ioaccel_for_device(dev
);
5280 return IO_ACCEL_INELIGIBLE
;
5283 offload_to_mirror
= dev
->offload_to_mirror
;
5284 raid_map_helper(map
, offload_to_mirror
,
5285 &map_index
, ¤t_group
);
5286 /* set mirror group to use next time */
5288 (offload_to_mirror
>=
5289 le16_to_cpu(map
->layout_map_count
) - 1)
5290 ? 0 : offload_to_mirror
+ 1;
5291 dev
->offload_to_mirror
= offload_to_mirror
;
5292 /* Avoid direct use of dev->offload_to_mirror within this
5293 * function since multiple threads might simultaneously
5294 * increment it beyond the range of dev->layout_map_count -1.
5299 if (le16_to_cpu(map
->layout_map_count
) <= 1)
5302 /* Verify first and last block are in same RAID group */
5303 r5or6_blocks_per_row
=
5304 le16_to_cpu(map
->strip_size
) *
5305 le16_to_cpu(map
->data_disks_per_row
);
5306 if (r5or6_blocks_per_row
== 0) {
5307 hpsa_turn_off_ioaccel_for_device(dev
);
5308 return IO_ACCEL_INELIGIBLE
;
5310 stripesize
= r5or6_blocks_per_row
*
5311 le16_to_cpu(map
->layout_map_count
);
5312 #if BITS_PER_LONG == 32
5313 tmpdiv
= first_block
;
5314 first_group
= do_div(tmpdiv
, stripesize
);
5315 tmpdiv
= first_group
;
5316 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5317 first_group
= tmpdiv
;
5318 tmpdiv
= last_block
;
5319 last_group
= do_div(tmpdiv
, stripesize
);
5320 tmpdiv
= last_group
;
5321 (void) do_div(tmpdiv
, r5or6_blocks_per_row
);
5322 last_group
= tmpdiv
;
5324 first_group
= (first_block
% stripesize
) / r5or6_blocks_per_row
;
5325 last_group
= (last_block
% stripesize
) / r5or6_blocks_per_row
;
5327 if (first_group
!= last_group
)
5328 return IO_ACCEL_INELIGIBLE
;
5330 /* Verify request is in a single row of RAID 5/6 */
5331 #if BITS_PER_LONG == 32
5332 tmpdiv
= first_block
;
5333 (void) do_div(tmpdiv
, stripesize
);
5334 first_row
= r5or6_first_row
= r0_first_row
= tmpdiv
;
5335 tmpdiv
= last_block
;
5336 (void) do_div(tmpdiv
, stripesize
);
5337 r5or6_last_row
= r0_last_row
= tmpdiv
;
5339 first_row
= r5or6_first_row
= r0_first_row
=
5340 first_block
/ stripesize
;
5341 r5or6_last_row
= r0_last_row
= last_block
/ stripesize
;
5343 if (r5or6_first_row
!= r5or6_last_row
)
5344 return IO_ACCEL_INELIGIBLE
;
5347 /* Verify request is in a single column */
5348 #if BITS_PER_LONG == 32
5349 tmpdiv
= first_block
;
5350 first_row_offset
= do_div(tmpdiv
, stripesize
);
5351 tmpdiv
= first_row_offset
;
5352 first_row_offset
= (u32
) do_div(tmpdiv
, r5or6_blocks_per_row
);
5353 r5or6_first_row_offset
= first_row_offset
;
5354 tmpdiv
= last_block
;
5355 r5or6_last_row_offset
= do_div(tmpdiv
, stripesize
);
5356 tmpdiv
= r5or6_last_row_offset
;
5357 r5or6_last_row_offset
= do_div(tmpdiv
, r5or6_blocks_per_row
);
5358 tmpdiv
= r5or6_first_row_offset
;
5359 (void) do_div(tmpdiv
, map
->strip_size
);
5360 first_column
= r5or6_first_column
= tmpdiv
;
5361 tmpdiv
= r5or6_last_row_offset
;
5362 (void) do_div(tmpdiv
, map
->strip_size
);
5363 r5or6_last_column
= tmpdiv
;
5365 first_row_offset
= r5or6_first_row_offset
=
5366 (u32
)((first_block
% stripesize
) %
5367 r5or6_blocks_per_row
);
5369 r5or6_last_row_offset
=
5370 (u32
)((last_block
% stripesize
) %
5371 r5or6_blocks_per_row
);
5373 first_column
= r5or6_first_column
=
5374 r5or6_first_row_offset
/ le16_to_cpu(map
->strip_size
);
5376 r5or6_last_row_offset
/ le16_to_cpu(map
->strip_size
);
5378 if (r5or6_first_column
!= r5or6_last_column
)
5379 return IO_ACCEL_INELIGIBLE
;
5381 /* Request is eligible */
5382 map_row
= ((u32
)(first_row
>> map
->parity_rotation_shift
)) %
5383 le16_to_cpu(map
->row_cnt
);
5385 map_index
= (first_group
*
5386 (le16_to_cpu(map
->row_cnt
) * total_disks_per_row
)) +
5387 (map_row
* total_disks_per_row
) + first_column
;
5390 return IO_ACCEL_INELIGIBLE
;
5393 if (unlikely(map_index
>= RAID_MAP_MAX_ENTRIES
))
5394 return IO_ACCEL_INELIGIBLE
;
5396 c
->phys_disk
= dev
->phys_disk
[map_index
];
5398 return IO_ACCEL_INELIGIBLE
;
5400 disk_handle
= dd
[map_index
].ioaccel_handle
;
5401 disk_block
= le64_to_cpu(map
->disk_starting_blk
) +
5402 first_row
* le16_to_cpu(map
->strip_size
) +
5403 (first_row_offset
- first_column
*
5404 le16_to_cpu(map
->strip_size
));
5405 disk_block_cnt
= block_cnt
;
5407 /* handle differing logical/physical block sizes */
5408 if (map
->phys_blk_shift
) {
5409 disk_block
<<= map
->phys_blk_shift
;
5410 disk_block_cnt
<<= map
->phys_blk_shift
;
5412 BUG_ON(disk_block_cnt
> 0xffff);
5414 /* build the new CDB for the physical disk I/O */
5415 if (disk_block
> 0xffffffff) {
5416 cdb
[0] = is_write
? WRITE_16
: READ_16
;
5418 cdb
[2] = (u8
) (disk_block
>> 56);
5419 cdb
[3] = (u8
) (disk_block
>> 48);
5420 cdb
[4] = (u8
) (disk_block
>> 40);
5421 cdb
[5] = (u8
) (disk_block
>> 32);
5422 cdb
[6] = (u8
) (disk_block
>> 24);
5423 cdb
[7] = (u8
) (disk_block
>> 16);
5424 cdb
[8] = (u8
) (disk_block
>> 8);
5425 cdb
[9] = (u8
) (disk_block
);
5426 cdb
[10] = (u8
) (disk_block_cnt
>> 24);
5427 cdb
[11] = (u8
) (disk_block_cnt
>> 16);
5428 cdb
[12] = (u8
) (disk_block_cnt
>> 8);
5429 cdb
[13] = (u8
) (disk_block_cnt
);
5434 cdb
[0] = is_write
? WRITE_10
: READ_10
;
5436 cdb
[2] = (u8
) (disk_block
>> 24);
5437 cdb
[3] = (u8
) (disk_block
>> 16);
5438 cdb
[4] = (u8
) (disk_block
>> 8);
5439 cdb
[5] = (u8
) (disk_block
);
5441 cdb
[7] = (u8
) (disk_block_cnt
>> 8);
5442 cdb
[8] = (u8
) (disk_block_cnt
);
5446 return hpsa_scsi_ioaccel_queue_command(h
, c
, disk_handle
, cdb
, cdb_len
,
5448 dev
->phys_disk
[map_index
]);
5452 * Submit commands down the "normal" RAID stack path
5453 * All callers to hpsa_ciss_submit must check lockup_detected
5454 * beforehand, before (opt.) and after calling cmd_alloc
5456 static int hpsa_ciss_submit(struct ctlr_info
*h
,
5457 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5458 struct hpsa_scsi_dev_t
*dev
)
5460 cmd
->host_scribble
= (unsigned char *) c
;
5461 c
->cmd_type
= CMD_SCSI
;
5463 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
5464 memcpy(&c
->Header
.LUN
.LunAddrBytes
[0], &dev
->scsi3addr
[0], 8);
5465 c
->Header
.tag
= cpu_to_le64((c
->cmdindex
<< DIRECT_LOOKUP_SHIFT
));
5467 /* Fill in the request block... */
5469 c
->Request
.Timeout
= 0;
5470 BUG_ON(cmd
->cmd_len
> sizeof(c
->Request
.CDB
));
5471 c
->Request
.CDBLen
= cmd
->cmd_len
;
5472 memcpy(c
->Request
.CDB
, cmd
->cmnd
, cmd
->cmd_len
);
5473 switch (cmd
->sc_data_direction
) {
5475 c
->Request
.type_attr_dir
=
5476 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_WRITE
);
5478 case DMA_FROM_DEVICE
:
5479 c
->Request
.type_attr_dir
=
5480 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_READ
);
5483 c
->Request
.type_attr_dir
=
5484 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_NONE
);
5486 case DMA_BIDIRECTIONAL
:
5487 /* This can happen if a buggy application does a scsi passthru
5488 * and sets both inlen and outlen to non-zero. ( see
5489 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5492 c
->Request
.type_attr_dir
=
5493 TYPE_ATTR_DIR(TYPE_CMD
, ATTR_SIMPLE
, XFER_RSVD
);
5494 /* This is technically wrong, and hpsa controllers should
5495 * reject it with CMD_INVALID, which is the most correct
5496 * response, but non-fibre backends appear to let it
5497 * slide by, and give the same results as if this field
5498 * were set correctly. Either way is acceptable for
5499 * our purposes here.
5505 dev_err(&h
->pdev
->dev
, "unknown data direction: %d\n",
5506 cmd
->sc_data_direction
);
5511 if (hpsa_scatter_gather(h
, c
, cmd
) < 0) { /* Fill SG list */
5512 hpsa_cmd_resolve_and_free(h
, c
);
5513 return SCSI_MLQUEUE_HOST_BUSY
;
5516 if (dev
->in_reset
) {
5517 hpsa_cmd_resolve_and_free(h
, c
);
5518 return SCSI_MLQUEUE_HOST_BUSY
;
5523 enqueue_cmd_and_start_io(h
, c
);
5524 /* the cmd'll come back via intr handler in complete_scsi_command() */
5528 static void hpsa_cmd_init(struct ctlr_info
*h
, int index
,
5529 struct CommandList
*c
)
5531 dma_addr_t cmd_dma_handle
, err_dma_handle
;
5533 /* Zero out all of commandlist except the last field, refcount */
5534 memset(c
, 0, offsetof(struct CommandList
, refcount
));
5535 c
->Header
.tag
= cpu_to_le64((u64
) (index
<< DIRECT_LOOKUP_SHIFT
));
5536 cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5537 c
->err_info
= h
->errinfo_pool
+ index
;
5538 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5539 err_dma_handle
= h
->errinfo_pool_dhandle
5540 + index
* sizeof(*c
->err_info
);
5541 c
->cmdindex
= index
;
5542 c
->busaddr
= (u32
) cmd_dma_handle
;
5543 c
->ErrDesc
.Addr
= cpu_to_le64((u64
) err_dma_handle
);
5544 c
->ErrDesc
.Len
= cpu_to_le32((u32
) sizeof(*c
->err_info
));
5546 c
->scsi_cmd
= SCSI_CMD_IDLE
;
5549 static void hpsa_preinitialize_commands(struct ctlr_info
*h
)
5553 for (i
= 0; i
< h
->nr_cmds
; i
++) {
5554 struct CommandList
*c
= h
->cmd_pool
+ i
;
5556 hpsa_cmd_init(h
, i
, c
);
5557 atomic_set(&c
->refcount
, 0);
5561 static inline void hpsa_cmd_partial_init(struct ctlr_info
*h
, int index
,
5562 struct CommandList
*c
)
5564 dma_addr_t cmd_dma_handle
= h
->cmd_pool_dhandle
+ index
* sizeof(*c
);
5566 BUG_ON(c
->cmdindex
!= index
);
5568 memset(c
->Request
.CDB
, 0, sizeof(c
->Request
.CDB
));
5569 memset(c
->err_info
, 0, sizeof(*c
->err_info
));
5570 c
->busaddr
= (u32
) cmd_dma_handle
;
5573 static int hpsa_ioaccel_submit(struct ctlr_info
*h
,
5574 struct CommandList
*c
, struct scsi_cmnd
*cmd
,
5577 struct hpsa_scsi_dev_t
*dev
= cmd
->device
->hostdata
;
5578 int rc
= IO_ACCEL_INELIGIBLE
;
5581 return SCSI_MLQUEUE_HOST_BUSY
;
5584 return SCSI_MLQUEUE_HOST_BUSY
;
5586 if (hpsa_simple_mode
)
5587 return IO_ACCEL_INELIGIBLE
;
5589 cmd
->host_scribble
= (unsigned char *) c
;
5591 if (dev
->offload_enabled
) {
5592 hpsa_cmd_init(h
, c
->cmdindex
, c
); /* Zeroes out all fields */
5593 c
->cmd_type
= CMD_SCSI
;
5596 if (retry
) /* Resubmit but do not increment device->commands_outstanding. */
5597 c
->retry_pending
= true;
5598 rc
= hpsa_scsi_ioaccel_raid_map(h
, c
);
5599 if (rc
< 0) /* scsi_dma_map failed. */
5600 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5601 } else if (dev
->hba_ioaccel_enabled
) {
5602 hpsa_cmd_init(h
, c
->cmdindex
, c
); /* Zeroes out all fields */
5603 c
->cmd_type
= CMD_SCSI
;
5606 if (retry
) /* Resubmit but do not increment device->commands_outstanding. */
5607 c
->retry_pending
= true;
5608 rc
= hpsa_scsi_ioaccel_direct_map(h
, c
);
5609 if (rc
< 0) /* scsi_dma_map failed. */
5610 rc
= SCSI_MLQUEUE_HOST_BUSY
;
5615 static void hpsa_command_resubmit_worker(struct work_struct
*work
)
5617 struct scsi_cmnd
*cmd
;
5618 struct hpsa_scsi_dev_t
*dev
;
5619 struct CommandList
*c
= container_of(work
, struct CommandList
, work
);
5622 dev
= cmd
->device
->hostdata
;
5624 cmd
->result
= DID_NO_CONNECT
<< 16;
5625 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5628 if (dev
->in_reset
) {
5629 cmd
->result
= DID_RESET
<< 16;
5630 return hpsa_cmd_free_and_done(c
->h
, c
, cmd
);
5633 if (c
->cmd_type
== CMD_IOACCEL2
) {
5634 struct ctlr_info
*h
= c
->h
;
5635 struct io_accel2_cmd
*c2
= &h
->ioaccel2_cmd_pool
[c
->cmdindex
];
5638 if (c2
->error_data
.serv_response
==
5639 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL
) {
5640 /* Resubmit with the retry_pending flag set. */
5641 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, true);
5644 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5646 * If we get here, it means dma mapping failed.
5647 * Try again via scsi mid layer, which will
5648 * then get SCSI_MLQUEUE_HOST_BUSY.
5650 cmd
->result
= DID_IMM_RETRY
<< 16;
5651 return hpsa_cmd_free_and_done(h
, c
, cmd
);
5653 /* else, fall thru and resubmit down CISS path */
5656 hpsa_cmd_partial_init(c
->h
, c
->cmdindex
, c
);
5658 * Here we have not come in though queue_command, so we
5659 * can set the retry_pending flag to true for a driver initiated
5660 * retry attempt (I.E. not a SML retry).
5661 * I.E. We are submitting a driver initiated retry.
5662 * Note: hpsa_ciss_submit does not zero out the command fields like
5663 * ioaccel submit does.
5665 c
->retry_pending
= true;
5666 if (hpsa_ciss_submit(c
->h
, c
, cmd
, dev
)) {
5668 * If we get here, it means dma mapping failed. Try
5669 * again via scsi mid layer, which will then get
5670 * SCSI_MLQUEUE_HOST_BUSY.
5672 * hpsa_ciss_submit will have already freed c
5673 * if it encountered a dma mapping failure.
5675 cmd
->result
= DID_IMM_RETRY
<< 16;
5680 /* Running in struct Scsi_Host->host_lock less mode */
5681 static int hpsa_scsi_queue_command(struct Scsi_Host
*sh
, struct scsi_cmnd
*cmd
)
5683 struct ctlr_info
*h
;
5684 struct hpsa_scsi_dev_t
*dev
;
5685 struct CommandList
*c
;
5688 /* Get the ptr to our adapter structure out of cmd->host. */
5689 h
= sdev_to_hba(cmd
->device
);
5691 BUG_ON(scsi_cmd_to_rq(cmd
)->tag
< 0);
5693 dev
= cmd
->device
->hostdata
;
5695 cmd
->result
= DID_NO_CONNECT
<< 16;
5701 cmd
->result
= DID_NO_CONNECT
<< 16;
5706 if (unlikely(lockup_detected(h
))) {
5707 cmd
->result
= DID_NO_CONNECT
<< 16;
5713 return SCSI_MLQUEUE_DEVICE_BUSY
;
5715 c
= cmd_tagged_alloc(h
, cmd
);
5717 return SCSI_MLQUEUE_DEVICE_BUSY
;
5720 * This is necessary because the SML doesn't zero out this field during
5726 * Call alternate submit routine for I/O accelerated commands.
5727 * Retries always go down the normal I/O path.
5728 * Note: If cmd->retries is non-zero, then this is a SML
5729 * initiated retry and not a driver initiated retry.
5730 * This command has been obtained from cmd_tagged_alloc
5731 * and is therefore a brand-new command.
5733 if (likely(cmd
->retries
== 0 &&
5734 !blk_rq_is_passthrough(scsi_cmd_to_rq(cmd
)) &&
5735 h
->acciopath_status
)) {
5736 /* Submit with the retry_pending flag unset. */
5737 rc
= hpsa_ioaccel_submit(h
, c
, cmd
, false);
5740 if (rc
== SCSI_MLQUEUE_HOST_BUSY
) {
5741 hpsa_cmd_resolve_and_free(h
, c
);
5742 return SCSI_MLQUEUE_HOST_BUSY
;
5745 return hpsa_ciss_submit(h
, c
, cmd
, dev
);
5748 static void hpsa_scan_complete(struct ctlr_info
*h
)
5750 unsigned long flags
;
5752 spin_lock_irqsave(&h
->scan_lock
, flags
);
5753 h
->scan_finished
= 1;
5754 wake_up(&h
->scan_wait_queue
);
5755 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5758 static void hpsa_scan_start(struct Scsi_Host
*sh
)
5760 struct ctlr_info
*h
= shost_to_hba(sh
);
5761 unsigned long flags
;
5764 * Don't let rescans be initiated on a controller known to be locked
5765 * up. If the controller locks up *during* a rescan, that thread is
5766 * probably hosed, but at least we can prevent new rescan threads from
5767 * piling up on a locked up controller.
5769 if (unlikely(lockup_detected(h
)))
5770 return hpsa_scan_complete(h
);
5773 * If a scan is already waiting to run, no need to add another
5775 spin_lock_irqsave(&h
->scan_lock
, flags
);
5776 if (h
->scan_waiting
) {
5777 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5781 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5783 /* wait until any scan already in progress is finished. */
5785 spin_lock_irqsave(&h
->scan_lock
, flags
);
5786 if (h
->scan_finished
)
5788 h
->scan_waiting
= 1;
5789 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5790 wait_event(h
->scan_wait_queue
, h
->scan_finished
);
5791 /* Note: We don't need to worry about a race between this
5792 * thread and driver unload because the midlayer will
5793 * have incremented the reference count, so unload won't
5794 * happen if we're in here.
5797 h
->scan_finished
= 0; /* mark scan as in progress */
5798 h
->scan_waiting
= 0;
5799 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5801 if (unlikely(lockup_detected(h
)))
5802 return hpsa_scan_complete(h
);
5805 * Do the scan after a reset completion
5807 spin_lock_irqsave(&h
->reset_lock
, flags
);
5808 if (h
->reset_in_progress
) {
5809 h
->drv_req_rescan
= 1;
5810 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5811 hpsa_scan_complete(h
);
5814 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
5816 hpsa_update_scsi_devices(h
);
5818 hpsa_scan_complete(h
);
5821 static int hpsa_change_queue_depth(struct scsi_device
*sdev
, int qdepth
)
5823 struct hpsa_scsi_dev_t
*logical_drive
= sdev
->hostdata
;
5830 else if (qdepth
> logical_drive
->queue_depth
)
5831 qdepth
= logical_drive
->queue_depth
;
5833 return scsi_change_queue_depth(sdev
, qdepth
);
5836 static int hpsa_scan_finished(struct Scsi_Host
*sh
,
5837 unsigned long elapsed_time
)
5839 struct ctlr_info
*h
= shost_to_hba(sh
);
5840 unsigned long flags
;
5843 spin_lock_irqsave(&h
->scan_lock
, flags
);
5844 finished
= h
->scan_finished
;
5845 spin_unlock_irqrestore(&h
->scan_lock
, flags
);
5849 static int hpsa_scsi_host_alloc(struct ctlr_info
*h
)
5851 struct Scsi_Host
*sh
;
5853 sh
= scsi_host_alloc(&hpsa_driver_template
, sizeof(struct ctlr_info
*));
5855 dev_err(&h
->pdev
->dev
, "scsi_host_alloc failed\n");
5862 sh
->max_channel
= 3;
5863 sh
->max_cmd_len
= MAX_COMMAND_SIZE
;
5864 sh
->max_lun
= HPSA_MAX_LUN
;
5865 sh
->max_id
= HPSA_MAX_LUN
;
5866 sh
->can_queue
= h
->nr_cmds
- HPSA_NRESERVED_CMDS
;
5867 sh
->cmd_per_lun
= sh
->can_queue
;
5868 sh
->sg_tablesize
= h
->maxsgentries
;
5869 sh
->transportt
= hpsa_sas_transport_template
;
5870 sh
->hostdata
[0] = (unsigned long) h
;
5871 sh
->irq
= pci_irq_vector(h
->pdev
, 0);
5872 sh
->unique_id
= sh
->irq
;
5878 static int hpsa_scsi_add_host(struct ctlr_info
*h
)
5882 rv
= scsi_add_host(h
->scsi_host
, &h
->pdev
->dev
);
5884 dev_err(&h
->pdev
->dev
, "scsi_add_host failed\n");
5887 scsi_scan_host(h
->scsi_host
);
5892 * The block layer has already gone to the trouble of picking out a unique,
5893 * small-integer tag for this request. We use an offset from that value as
5894 * an index to select our command block. (The offset allows us to reserve the
5895 * low-numbered entries for our own uses.)
5897 static int hpsa_get_cmd_index(struct scsi_cmnd
*scmd
)
5899 int idx
= scsi_cmd_to_rq(scmd
)->tag
;
5904 /* Offset to leave space for internal cmds. */
5905 return idx
+= HPSA_NRESERVED_CMDS
;
5909 * Send a TEST_UNIT_READY command to the specified LUN using the specified
5910 * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5912 static int hpsa_send_test_unit_ready(struct ctlr_info
*h
,
5913 struct CommandList
*c
, unsigned char lunaddr
[],
5918 /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5919 (void) fill_cmd(c
, TEST_UNIT_READY
, h
,
5920 NULL
, 0, 0, lunaddr
, TYPE_CMD
);
5921 rc
= hpsa_scsi_do_simple_cmd(h
, c
, reply_queue
, NO_TIMEOUT
);
5924 /* no unmap needed here because no data xfer. */
5926 /* Check if the unit is already ready. */
5927 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
5931 * The first command sent after reset will receive "unit attention" to
5932 * indicate that the LUN has been reset...this is actually what we're
5933 * looking for (but, success is good too).
5935 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
5936 c
->err_info
->ScsiStatus
== SAM_STAT_CHECK_CONDITION
&&
5937 (c
->err_info
->SenseInfo
[2] == NO_SENSE
||
5938 c
->err_info
->SenseInfo
[2] == UNIT_ATTENTION
))
5945 * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5946 * returns zero when the unit is ready, and non-zero when giving up.
5948 static int hpsa_wait_for_test_unit_ready(struct ctlr_info
*h
,
5949 struct CommandList
*c
,
5950 unsigned char lunaddr
[], int reply_queue
)
5954 int waittime
= 1; /* seconds */
5956 /* Send test unit ready until device ready, or give up. */
5957 for (count
= 0; count
< HPSA_TUR_RETRY_LIMIT
; count
++) {
5960 * Wait for a bit. do this first, because if we send
5961 * the TUR right away, the reset will just abort it.
5963 msleep(1000 * waittime
);
5965 rc
= hpsa_send_test_unit_ready(h
, c
, lunaddr
, reply_queue
);
5969 /* Increase wait time with each try, up to a point. */
5970 if (waittime
< HPSA_MAX_WAIT_INTERVAL_SECS
)
5973 dev_warn(&h
->pdev
->dev
,
5974 "waiting %d secs for device to become ready.\n",
5981 static int wait_for_device_to_become_ready(struct ctlr_info
*h
,
5982 unsigned char lunaddr
[],
5989 struct CommandList
*c
;
5994 * If no specific reply queue was requested, then send the TUR
5995 * repeatedly, requesting a reply on each reply queue; otherwise execute
5996 * the loop exactly once using only the specified queue.
5998 if (reply_queue
== DEFAULT_REPLY_QUEUE
) {
6000 last_queue
= h
->nreply_queues
- 1;
6002 first_queue
= reply_queue
;
6003 last_queue
= reply_queue
;
6006 for (rq
= first_queue
; rq
<= last_queue
; rq
++) {
6007 rc
= hpsa_wait_for_test_unit_ready(h
, c
, lunaddr
, rq
);
6013 dev_warn(&h
->pdev
->dev
, "giving up on device.\n");
6015 dev_warn(&h
->pdev
->dev
, "device is ready.\n");
6021 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
6022 * complaining. Doing a host- or bus-reset can't do anything good here.
6024 static int hpsa_eh_device_reset_handler(struct scsi_cmnd
*scsicmd
)
6028 struct ctlr_info
*h
;
6029 struct hpsa_scsi_dev_t
*dev
= NULL
;
6032 unsigned long flags
;
6034 /* find the controller to which the command to be aborted was sent */
6035 h
= sdev_to_hba(scsicmd
->device
);
6036 if (h
== NULL
) /* paranoia */
6039 spin_lock_irqsave(&h
->reset_lock
, flags
);
6040 h
->reset_in_progress
= 1;
6041 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
6043 if (lockup_detected(h
)) {
6045 goto return_reset_status
;
6048 dev
= scsicmd
->device
->hostdata
;
6050 dev_err(&h
->pdev
->dev
, "%s: device lookup failed\n", __func__
);
6052 goto return_reset_status
;
6055 if (dev
->devtype
== TYPE_ENCLOSURE
) {
6057 goto return_reset_status
;
6060 /* if controller locked up, we can guarantee command won't complete */
6061 if (lockup_detected(h
)) {
6062 snprintf(msg
, sizeof(msg
),
6063 "cmd %d RESET FAILED, lockup detected",
6064 hpsa_get_cmd_index(scsicmd
));
6065 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
6067 goto return_reset_status
;
6070 /* this reset request might be the result of a lockup; check */
6071 if (detect_controller_lockup(h
)) {
6072 snprintf(msg
, sizeof(msg
),
6073 "cmd %d RESET FAILED, new lockup detected",
6074 hpsa_get_cmd_index(scsicmd
));
6075 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
6077 goto return_reset_status
;
6080 /* Do not attempt on controller */
6081 if (is_hba_lunid(dev
->scsi3addr
)) {
6083 goto return_reset_status
;
6086 if (is_logical_dev_addr_mode(dev
->scsi3addr
))
6087 reset_type
= HPSA_DEVICE_RESET_MSG
;
6089 reset_type
= HPSA_PHYS_TARGET_RESET
;
6091 sprintf(msg
, "resetting %s",
6092 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ");
6093 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
6096 * wait to see if any commands will complete before sending reset
6098 dev
->in_reset
= true; /* block any new cmds from OS for this device */
6099 for (i
= 0; i
< 10; i
++) {
6100 if (atomic_read(&dev
->commands_outstanding
) > 0)
6106 /* send a reset to the SCSI LUN which the command was sent to */
6107 rc
= hpsa_do_reset(h
, dev
, reset_type
, DEFAULT_REPLY_QUEUE
);
6113 sprintf(msg
, "reset %s %s",
6114 reset_type
== HPSA_DEVICE_RESET_MSG
? "logical " : "physical ",
6115 rc
== SUCCESS
? "completed successfully" : "failed");
6116 hpsa_show_dev_msg(KERN_WARNING
, h
, dev
, msg
);
6118 return_reset_status
:
6119 spin_lock_irqsave(&h
->reset_lock
, flags
);
6120 h
->reset_in_progress
= 0;
6122 dev
->in_reset
= false;
6123 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
6128 * For operations with an associated SCSI command, a command block is allocated
6129 * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6130 * block request tag as an index into a table of entries. cmd_tagged_free() is
6131 * the complement, although cmd_free() may be called instead.
6132 * This function is only called for new requests from queue_command.
6134 static struct CommandList
*cmd_tagged_alloc(struct ctlr_info
*h
,
6135 struct scsi_cmnd
*scmd
)
6137 int idx
= hpsa_get_cmd_index(scmd
);
6138 struct CommandList
*c
= h
->cmd_pool
+ idx
;
6140 if (idx
< HPSA_NRESERVED_CMDS
|| idx
>= h
->nr_cmds
) {
6141 dev_err(&h
->pdev
->dev
, "Bad block tag: %d not in [%d..%d]\n",
6142 idx
, HPSA_NRESERVED_CMDS
, h
->nr_cmds
- 1);
6143 /* The index value comes from the block layer, so if it's out of
6144 * bounds, it's probably not our bug.
6149 if (unlikely(!hpsa_is_cmd_idle(c
))) {
6151 * We expect that the SCSI layer will hand us a unique tag
6152 * value. Thus, there should never be a collision here between
6153 * two requests...because if the selected command isn't idle
6154 * then someone is going to be very disappointed.
6156 if (idx
!= h
->last_collision_tag
) { /* Print once per tag */
6157 dev_warn(&h
->pdev
->dev
,
6158 "%s: tag collision (tag=%d)\n", __func__
, idx
);
6160 scsi_print_command(scmd
);
6161 h
->last_collision_tag
= idx
;
6166 atomic_inc(&c
->refcount
);
6167 hpsa_cmd_partial_init(h
, idx
, c
);
6170 * This is a new command obtained from queue_command so
6171 * there have not been any driver initiated retry attempts.
6173 c
->retry_pending
= false;
6178 static void cmd_tagged_free(struct ctlr_info
*h
, struct CommandList
*c
)
6181 * Release our reference to the block. We don't need to do anything
6182 * else to free it, because it is accessed by index.
6184 (void)atomic_dec(&c
->refcount
);
6188 * For operations that cannot sleep, a command block is allocated at init,
6189 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6190 * which ones are free or in use. Lock must be held when calling this.
6191 * cmd_free() is the complement.
6192 * This function never gives up and returns NULL. If it hangs,
6193 * another thread must call cmd_free() to free some tags.
6196 static struct CommandList
*cmd_alloc(struct ctlr_info
*h
)
6198 struct CommandList
*c
;
6203 * There is some *extremely* small but non-zero chance that that
6204 * multiple threads could get in here, and one thread could
6205 * be scanning through the list of bits looking for a free
6206 * one, but the free ones are always behind him, and other
6207 * threads sneak in behind him and eat them before he can
6208 * get to them, so that while there is always a free one, a
6209 * very unlucky thread might be starved anyway, never able to
6210 * beat the other threads. In reality, this happens so
6211 * infrequently as to be indistinguishable from never.
6213 * Note that we start allocating commands before the SCSI host structure
6214 * is initialized. Since the search starts at bit zero, this
6215 * all works, since we have at least one command structure available;
6216 * however, it means that the structures with the low indexes have to be
6217 * reserved for driver-initiated requests, while requests from the block
6218 * layer will use the higher indexes.
6222 i
= find_next_zero_bit(h
->cmd_pool_bits
,
6223 HPSA_NRESERVED_CMDS
,
6225 if (unlikely(i
>= HPSA_NRESERVED_CMDS
)) {
6229 c
= h
->cmd_pool
+ i
;
6230 refcount
= atomic_inc_return(&c
->refcount
);
6231 if (unlikely(refcount
> 1)) {
6232 cmd_free(h
, c
); /* already in use */
6233 offset
= (i
+ 1) % HPSA_NRESERVED_CMDS
;
6236 set_bit(i
, h
->cmd_pool_bits
);
6237 break; /* it's ours now. */
6239 hpsa_cmd_partial_init(h
, i
, c
);
6243 * cmd_alloc is for "internal" commands and they are never
6246 c
->retry_pending
= false;
6252 * This is the complementary operation to cmd_alloc(). Note, however, in some
6253 * corner cases it may also be used to free blocks allocated by
6254 * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6255 * the clear-bit is harmless.
6257 static void cmd_free(struct ctlr_info
*h
, struct CommandList
*c
)
6259 if (atomic_dec_and_test(&c
->refcount
)) {
6262 i
= c
- h
->cmd_pool
;
6263 clear_bit(i
, h
->cmd_pool_bits
);
6267 #ifdef CONFIG_COMPAT
6269 static int hpsa_ioctl32_passthru(struct scsi_device
*dev
, unsigned int cmd
,
6272 struct ctlr_info
*h
= sdev_to_hba(dev
);
6273 IOCTL32_Command_struct __user
*arg32
= arg
;
6274 IOCTL_Command_struct arg64
;
6281 memset(&arg64
, 0, sizeof(arg64
));
6282 if (copy_from_user(&arg64
, arg32
, offsetof(IOCTL_Command_struct
, buf
)))
6284 if (get_user(cp
, &arg32
->buf
))
6286 arg64
.buf
= compat_ptr(cp
);
6288 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6290 err
= hpsa_passthru_ioctl(h
, &arg64
);
6291 atomic_inc(&h
->passthru_cmds_avail
);
6294 if (copy_to_user(&arg32
->error_info
, &arg64
.error_info
,
6295 sizeof(arg32
->error_info
)))
6300 static int hpsa_ioctl32_big_passthru(struct scsi_device
*dev
,
6301 unsigned int cmd
, void __user
*arg
)
6303 struct ctlr_info
*h
= sdev_to_hba(dev
);
6304 BIG_IOCTL32_Command_struct __user
*arg32
= arg
;
6305 BIG_IOCTL_Command_struct arg64
;
6311 memset(&arg64
, 0, sizeof(arg64
));
6312 if (copy_from_user(&arg64
, arg32
,
6313 offsetof(BIG_IOCTL32_Command_struct
, buf
)))
6315 if (get_user(cp
, &arg32
->buf
))
6317 arg64
.buf
= compat_ptr(cp
);
6319 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6321 err
= hpsa_big_passthru_ioctl(h
, &arg64
);
6322 atomic_inc(&h
->passthru_cmds_avail
);
6325 if (copy_to_user(&arg32
->error_info
, &arg64
.error_info
,
6326 sizeof(arg32
->error_info
)))
6331 static int hpsa_compat_ioctl(struct scsi_device
*dev
, unsigned int cmd
,
6335 case CCISS_GETPCIINFO
:
6336 case CCISS_GETINTINFO
:
6337 case CCISS_SETINTINFO
:
6338 case CCISS_GETNODENAME
:
6339 case CCISS_SETNODENAME
:
6340 case CCISS_GETHEARTBEAT
:
6341 case CCISS_GETBUSTYPES
:
6342 case CCISS_GETFIRMVER
:
6343 case CCISS_GETDRIVVER
:
6344 case CCISS_REVALIDVOLS
:
6345 case CCISS_DEREGDISK
:
6346 case CCISS_REGNEWDISK
:
6348 case CCISS_RESCANDISK
:
6349 case CCISS_GETLUNINFO
:
6350 return hpsa_ioctl(dev
, cmd
, arg
);
6352 case CCISS_PASSTHRU32
:
6353 return hpsa_ioctl32_passthru(dev
, cmd
, arg
);
6354 case CCISS_BIG_PASSTHRU32
:
6355 return hpsa_ioctl32_big_passthru(dev
, cmd
, arg
);
6358 return -ENOIOCTLCMD
;
6363 static int hpsa_getpciinfo_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6365 struct hpsa_pci_info pciinfo
;
6369 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
6370 pciinfo
.bus
= h
->pdev
->bus
->number
;
6371 pciinfo
.dev_fn
= h
->pdev
->devfn
;
6372 pciinfo
.board_id
= h
->board_id
;
6373 if (copy_to_user(argp
, &pciinfo
, sizeof(pciinfo
)))
6378 static int hpsa_getdrivver_ioctl(struct ctlr_info
*h
, void __user
*argp
)
6380 DriverVer_type DriverVer
;
6381 unsigned char vmaj
, vmin
, vsubmin
;
6384 rc
= sscanf(HPSA_DRIVER_VERSION
, "%hhu.%hhu.%hhu",
6385 &vmaj
, &vmin
, &vsubmin
);
6387 dev_info(&h
->pdev
->dev
, "driver version string '%s' "
6388 "unrecognized.", HPSA_DRIVER_VERSION
);
6393 DriverVer
= (vmaj
<< 16) | (vmin
<< 8) | vsubmin
;
6396 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
6401 static int hpsa_passthru_ioctl(struct ctlr_info
*h
,
6402 IOCTL_Command_struct
*iocommand
)
6404 struct CommandList
*c
;
6409 if (!capable(CAP_SYS_RAWIO
))
6411 if ((iocommand
->buf_size
< 1) &&
6412 (iocommand
->Request
.Type
.Direction
!= XFER_NONE
)) {
6415 if (iocommand
->buf_size
> 0) {
6416 buff
= kmalloc(iocommand
->buf_size
, GFP_KERNEL
);
6419 if (iocommand
->Request
.Type
.Direction
& XFER_WRITE
) {
6420 /* Copy the data into the buffer we created */
6421 if (copy_from_user(buff
, iocommand
->buf
,
6422 iocommand
->buf_size
)) {
6427 memset(buff
, 0, iocommand
->buf_size
);
6432 /* Fill in the command type */
6433 c
->cmd_type
= CMD_IOCTL_PEND
;
6434 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6435 /* Fill in Command Header */
6436 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
6437 if (iocommand
->buf_size
> 0) { /* buffer to fill */
6438 c
->Header
.SGList
= 1;
6439 c
->Header
.SGTotal
= cpu_to_le16(1);
6440 } else { /* no buffers to fill */
6441 c
->Header
.SGList
= 0;
6442 c
->Header
.SGTotal
= cpu_to_le16(0);
6444 memcpy(&c
->Header
.LUN
, &iocommand
->LUN_info
, sizeof(c
->Header
.LUN
));
6446 /* Fill in Request block */
6447 memcpy(&c
->Request
, &iocommand
->Request
,
6448 sizeof(c
->Request
));
6450 /* Fill in the scatter gather information */
6451 if (iocommand
->buf_size
> 0) {
6452 temp64
= dma_map_single(&h
->pdev
->dev
, buff
,
6453 iocommand
->buf_size
, DMA_BIDIRECTIONAL
);
6454 if (dma_mapping_error(&h
->pdev
->dev
, (dma_addr_t
) temp64
)) {
6455 c
->SG
[0].Addr
= cpu_to_le64(0);
6456 c
->SG
[0].Len
= cpu_to_le32(0);
6460 c
->SG
[0].Addr
= cpu_to_le64(temp64
);
6461 c
->SG
[0].Len
= cpu_to_le32(iocommand
->buf_size
);
6462 c
->SG
[0].Ext
= cpu_to_le32(HPSA_SG_LAST
); /* not chaining */
6464 rc
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6466 if (iocommand
->buf_size
> 0)
6467 hpsa_pci_unmap(h
->pdev
, c
, 1, DMA_BIDIRECTIONAL
);
6468 check_ioctl_unit_attention(h
, c
);
6474 /* Copy the error information out */
6475 memcpy(&iocommand
->error_info
, c
->err_info
,
6476 sizeof(iocommand
->error_info
));
6477 if ((iocommand
->Request
.Type
.Direction
& XFER_READ
) &&
6478 iocommand
->buf_size
> 0) {
6479 /* Copy the data out of the buffer we created */
6480 if (copy_to_user(iocommand
->buf
, buff
, iocommand
->buf_size
)) {
6492 static int hpsa_big_passthru_ioctl(struct ctlr_info
*h
,
6493 BIG_IOCTL_Command_struct
*ioc
)
6495 struct CommandList
*c
;
6496 unsigned char **buff
= NULL
;
6497 int *buff_size
= NULL
;
6503 BYTE __user
*data_ptr
;
6505 if (!capable(CAP_SYS_RAWIO
))
6508 if ((ioc
->buf_size
< 1) &&
6509 (ioc
->Request
.Type
.Direction
!= XFER_NONE
))
6511 /* Check kmalloc limits using all SGs */
6512 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
)
6514 if (ioc
->buf_size
> ioc
->malloc_size
* SG_ENTRIES_IN_CMD
)
6516 buff
= kcalloc(SG_ENTRIES_IN_CMD
, sizeof(char *), GFP_KERNEL
);
6521 buff_size
= kmalloc_array(SG_ENTRIES_IN_CMD
, sizeof(int), GFP_KERNEL
);
6526 left
= ioc
->buf_size
;
6527 data_ptr
= ioc
->buf
;
6529 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
6530 buff_size
[sg_used
] = sz
;
6531 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
6532 if (buff
[sg_used
] == NULL
) {
6536 if (ioc
->Request
.Type
.Direction
& XFER_WRITE
) {
6537 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
6542 memset(buff
[sg_used
], 0, sz
);
6549 c
->cmd_type
= CMD_IOCTL_PEND
;
6550 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6551 c
->Header
.ReplyQueue
= 0;
6552 c
->Header
.SGList
= (u8
) sg_used
;
6553 c
->Header
.SGTotal
= cpu_to_le16(sg_used
);
6554 memcpy(&c
->Header
.LUN
, &ioc
->LUN_info
, sizeof(c
->Header
.LUN
));
6555 memcpy(&c
->Request
, &ioc
->Request
, sizeof(c
->Request
));
6556 if (ioc
->buf_size
> 0) {
6558 for (i
= 0; i
< sg_used
; i
++) {
6559 temp64
= dma_map_single(&h
->pdev
->dev
, buff
[i
],
6560 buff_size
[i
], DMA_BIDIRECTIONAL
);
6561 if (dma_mapping_error(&h
->pdev
->dev
,
6562 (dma_addr_t
) temp64
)) {
6563 c
->SG
[i
].Addr
= cpu_to_le64(0);
6564 c
->SG
[i
].Len
= cpu_to_le32(0);
6565 hpsa_pci_unmap(h
->pdev
, c
, i
,
6570 c
->SG
[i
].Addr
= cpu_to_le64(temp64
);
6571 c
->SG
[i
].Len
= cpu_to_le32(buff_size
[i
]);
6572 c
->SG
[i
].Ext
= cpu_to_le32(0);
6574 c
->SG
[--i
].Ext
= cpu_to_le32(HPSA_SG_LAST
);
6576 status
= hpsa_scsi_do_simple_cmd(h
, c
, DEFAULT_REPLY_QUEUE
,
6579 hpsa_pci_unmap(h
->pdev
, c
, sg_used
, DMA_BIDIRECTIONAL
);
6580 check_ioctl_unit_attention(h
, c
);
6586 /* Copy the error information out */
6587 memcpy(&ioc
->error_info
, c
->err_info
, sizeof(ioc
->error_info
));
6588 if ((ioc
->Request
.Type
.Direction
& XFER_READ
) && ioc
->buf_size
> 0) {
6591 /* Copy the data out of the buffer we created */
6592 BYTE __user
*ptr
= ioc
->buf
;
6593 for (i
= 0; i
< sg_used
; i
++) {
6594 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
6598 ptr
+= buff_size
[i
];
6608 for (i
= 0; i
< sg_used
; i
++)
6616 static void check_ioctl_unit_attention(struct ctlr_info
*h
,
6617 struct CommandList
*c
)
6619 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
6620 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
6621 (void) check_for_unit_attention(h
, c
);
6627 static int hpsa_ioctl(struct scsi_device
*dev
, unsigned int cmd
,
6630 struct ctlr_info
*h
= sdev_to_hba(dev
);
6634 case CCISS_DEREGDISK
:
6635 case CCISS_REGNEWDISK
:
6637 hpsa_scan_start(h
->scsi_host
);
6639 case CCISS_GETPCIINFO
:
6640 return hpsa_getpciinfo_ioctl(h
, argp
);
6641 case CCISS_GETDRIVVER
:
6642 return hpsa_getdrivver_ioctl(h
, argp
);
6643 case CCISS_PASSTHRU
: {
6644 IOCTL_Command_struct iocommand
;
6648 if (copy_from_user(&iocommand
, argp
, sizeof(iocommand
)))
6650 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6652 rc
= hpsa_passthru_ioctl(h
, &iocommand
);
6653 atomic_inc(&h
->passthru_cmds_avail
);
6654 if (!rc
&& copy_to_user(argp
, &iocommand
, sizeof(iocommand
)))
6658 case CCISS_BIG_PASSTHRU
: {
6659 BIG_IOCTL_Command_struct ioc
;
6662 if (copy_from_user(&ioc
, argp
, sizeof(ioc
)))
6664 if (atomic_dec_if_positive(&h
->passthru_cmds_avail
) < 0)
6666 rc
= hpsa_big_passthru_ioctl(h
, &ioc
);
6667 atomic_inc(&h
->passthru_cmds_avail
);
6668 if (!rc
&& copy_to_user(argp
, &ioc
, sizeof(ioc
)))
6677 static void hpsa_send_host_reset(struct ctlr_info
*h
, u8 reset_type
)
6679 struct CommandList
*c
;
6683 /* fill_cmd can't fail here, no data buffer to map */
6684 (void) fill_cmd(c
, HPSA_DEVICE_RESET_MSG
, h
, NULL
, 0, 0,
6685 RAID_CTLR_LUNID
, TYPE_MSG
);
6686 c
->Request
.CDB
[1] = reset_type
; /* fill_cmd defaults to target reset */
6688 enqueue_cmd_and_start_io(h
, c
);
6689 /* Don't wait for completion, the reset won't complete. Don't free
6690 * the command either. This is the last command we will send before
6691 * re-initializing everything, so it doesn't matter and won't leak.
6696 static int fill_cmd(struct CommandList
*c
, u8 cmd
, struct ctlr_info
*h
,
6697 void *buff
, size_t size
, u16 page_code
, unsigned char *scsi3addr
,
6700 enum dma_data_direction dir
= DMA_NONE
;
6702 c
->cmd_type
= CMD_IOCTL_PEND
;
6703 c
->scsi_cmd
= SCSI_CMD_BUSY
;
6704 c
->Header
.ReplyQueue
= 0;
6705 if (buff
!= NULL
&& size
> 0) {
6706 c
->Header
.SGList
= 1;
6707 c
->Header
.SGTotal
= cpu_to_le16(1);
6709 c
->Header
.SGList
= 0;
6710 c
->Header
.SGTotal
= cpu_to_le16(0);
6712 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
6714 if (cmd_type
== TYPE_CMD
) {
6717 /* are we trying to read a vital product page */
6718 if (page_code
& VPD_PAGE
) {
6719 c
->Request
.CDB
[1] = 0x01;
6720 c
->Request
.CDB
[2] = (page_code
& 0xff);
6722 c
->Request
.CDBLen
= 6;
6723 c
->Request
.type_attr_dir
=
6724 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6725 c
->Request
.Timeout
= 0;
6726 c
->Request
.CDB
[0] = HPSA_INQUIRY
;
6727 c
->Request
.CDB
[4] = size
& 0xFF;
6729 case RECEIVE_DIAGNOSTIC
:
6730 c
->Request
.CDBLen
= 6;
6731 c
->Request
.type_attr_dir
=
6732 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6733 c
->Request
.Timeout
= 0;
6734 c
->Request
.CDB
[0] = cmd
;
6735 c
->Request
.CDB
[1] = 1;
6736 c
->Request
.CDB
[2] = 1;
6737 c
->Request
.CDB
[3] = (size
>> 8) & 0xFF;
6738 c
->Request
.CDB
[4] = size
& 0xFF;
6740 case HPSA_REPORT_LOG
:
6741 case HPSA_REPORT_PHYS
:
6742 /* Talking to controller so It's a physical command
6743 mode = 00 target = 0. Nothing to write.
6745 c
->Request
.CDBLen
= 12;
6746 c
->Request
.type_attr_dir
=
6747 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6748 c
->Request
.Timeout
= 0;
6749 c
->Request
.CDB
[0] = cmd
;
6750 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6751 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6752 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6753 c
->Request
.CDB
[9] = size
& 0xFF;
6755 case BMIC_SENSE_DIAG_OPTIONS
:
6756 c
->Request
.CDBLen
= 16;
6757 c
->Request
.type_attr_dir
=
6758 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6759 c
->Request
.Timeout
= 0;
6760 /* Spec says this should be BMIC_WRITE */
6761 c
->Request
.CDB
[0] = BMIC_READ
;
6762 c
->Request
.CDB
[6] = BMIC_SENSE_DIAG_OPTIONS
;
6764 case BMIC_SET_DIAG_OPTIONS
:
6765 c
->Request
.CDBLen
= 16;
6766 c
->Request
.type_attr_dir
=
6767 TYPE_ATTR_DIR(cmd_type
,
6768 ATTR_SIMPLE
, XFER_WRITE
);
6769 c
->Request
.Timeout
= 0;
6770 c
->Request
.CDB
[0] = BMIC_WRITE
;
6771 c
->Request
.CDB
[6] = BMIC_SET_DIAG_OPTIONS
;
6773 case HPSA_CACHE_FLUSH
:
6774 c
->Request
.CDBLen
= 12;
6775 c
->Request
.type_attr_dir
=
6776 TYPE_ATTR_DIR(cmd_type
,
6777 ATTR_SIMPLE
, XFER_WRITE
);
6778 c
->Request
.Timeout
= 0;
6779 c
->Request
.CDB
[0] = BMIC_WRITE
;
6780 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
6781 c
->Request
.CDB
[7] = (size
>> 8) & 0xFF;
6782 c
->Request
.CDB
[8] = size
& 0xFF;
6784 case TEST_UNIT_READY
:
6785 c
->Request
.CDBLen
= 6;
6786 c
->Request
.type_attr_dir
=
6787 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6788 c
->Request
.Timeout
= 0;
6790 case HPSA_GET_RAID_MAP
:
6791 c
->Request
.CDBLen
= 12;
6792 c
->Request
.type_attr_dir
=
6793 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6794 c
->Request
.Timeout
= 0;
6795 c
->Request
.CDB
[0] = HPSA_CISS_READ
;
6796 c
->Request
.CDB
[1] = cmd
;
6797 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
6798 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6799 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6800 c
->Request
.CDB
[9] = size
& 0xFF;
6802 case BMIC_SENSE_CONTROLLER_PARAMETERS
:
6803 c
->Request
.CDBLen
= 10;
6804 c
->Request
.type_attr_dir
=
6805 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6806 c
->Request
.Timeout
= 0;
6807 c
->Request
.CDB
[0] = BMIC_READ
;
6808 c
->Request
.CDB
[6] = BMIC_SENSE_CONTROLLER_PARAMETERS
;
6809 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6810 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
6812 case BMIC_IDENTIFY_PHYSICAL_DEVICE
:
6813 c
->Request
.CDBLen
= 10;
6814 c
->Request
.type_attr_dir
=
6815 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6816 c
->Request
.Timeout
= 0;
6817 c
->Request
.CDB
[0] = BMIC_READ
;
6818 c
->Request
.CDB
[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE
;
6819 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6820 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6822 case BMIC_SENSE_SUBSYSTEM_INFORMATION
:
6823 c
->Request
.CDBLen
= 10;
6824 c
->Request
.type_attr_dir
=
6825 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6826 c
->Request
.Timeout
= 0;
6827 c
->Request
.CDB
[0] = BMIC_READ
;
6828 c
->Request
.CDB
[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION
;
6829 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6830 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6832 case BMIC_SENSE_STORAGE_BOX_PARAMS
:
6833 c
->Request
.CDBLen
= 10;
6834 c
->Request
.type_attr_dir
=
6835 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6836 c
->Request
.Timeout
= 0;
6837 c
->Request
.CDB
[0] = BMIC_READ
;
6838 c
->Request
.CDB
[6] = BMIC_SENSE_STORAGE_BOX_PARAMS
;
6839 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6840 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6842 case BMIC_IDENTIFY_CONTROLLER
:
6843 c
->Request
.CDBLen
= 10;
6844 c
->Request
.type_attr_dir
=
6845 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_READ
);
6846 c
->Request
.Timeout
= 0;
6847 c
->Request
.CDB
[0] = BMIC_READ
;
6848 c
->Request
.CDB
[1] = 0;
6849 c
->Request
.CDB
[2] = 0;
6850 c
->Request
.CDB
[3] = 0;
6851 c
->Request
.CDB
[4] = 0;
6852 c
->Request
.CDB
[5] = 0;
6853 c
->Request
.CDB
[6] = BMIC_IDENTIFY_CONTROLLER
;
6854 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
6855 c
->Request
.CDB
[8] = (size
>> 8) & 0XFF;
6856 c
->Request
.CDB
[9] = 0;
6859 dev_warn(&h
->pdev
->dev
, "unknown command 0x%c\n", cmd
);
6862 } else if (cmd_type
== TYPE_MSG
) {
6865 case HPSA_PHYS_TARGET_RESET
:
6866 c
->Request
.CDBLen
= 16;
6867 c
->Request
.type_attr_dir
=
6868 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6869 c
->Request
.Timeout
= 0; /* Don't time out */
6870 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6871 c
->Request
.CDB
[0] = HPSA_RESET
;
6872 c
->Request
.CDB
[1] = HPSA_TARGET_RESET_TYPE
;
6873 /* Physical target reset needs no control bytes 4-7*/
6874 c
->Request
.CDB
[4] = 0x00;
6875 c
->Request
.CDB
[5] = 0x00;
6876 c
->Request
.CDB
[6] = 0x00;
6877 c
->Request
.CDB
[7] = 0x00;
6879 case HPSA_DEVICE_RESET_MSG
:
6880 c
->Request
.CDBLen
= 16;
6881 c
->Request
.type_attr_dir
=
6882 TYPE_ATTR_DIR(cmd_type
, ATTR_SIMPLE
, XFER_NONE
);
6883 c
->Request
.Timeout
= 0; /* Don't time out */
6884 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
6885 c
->Request
.CDB
[0] = cmd
;
6886 c
->Request
.CDB
[1] = HPSA_RESET_TYPE_LUN
;
6887 /* If bytes 4-7 are zero, it means reset the */
6889 c
->Request
.CDB
[4] = 0x00;
6890 c
->Request
.CDB
[5] = 0x00;
6891 c
->Request
.CDB
[6] = 0x00;
6892 c
->Request
.CDB
[7] = 0x00;
6895 dev_warn(&h
->pdev
->dev
, "unknown message type %d\n",
6900 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
6904 switch (GET_DIR(c
->Request
.type_attr_dir
)) {
6906 dir
= DMA_FROM_DEVICE
;
6909 dir
= DMA_TO_DEVICE
;
6915 dir
= DMA_BIDIRECTIONAL
;
6917 if (hpsa_map_one(h
->pdev
, c
, buff
, size
, dir
))
6923 * Map (physical) PCI mem into (virtual) kernel space
6925 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
6927 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
6928 ulong page_offs
= ((ulong
) base
) - page_base
;
6929 void __iomem
*page_remapped
= ioremap(page_base
,
6932 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
6935 static inline unsigned long get_next_completion(struct ctlr_info
*h
, u8 q
)
6937 return h
->access
.command_completed(h
, q
);
6940 static inline bool interrupt_pending(struct ctlr_info
*h
)
6942 return h
->access
.intr_pending(h
);
6945 static inline long interrupt_not_for_us(struct ctlr_info
*h
)
6947 return (h
->access
.intr_pending(h
) == 0) ||
6948 (h
->interrupts_enabled
== 0);
6951 static inline int bad_tag(struct ctlr_info
*h
, u32 tag_index
,
6954 if (unlikely(tag_index
>= h
->nr_cmds
)) {
6955 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
6961 static inline void finish_cmd(struct CommandList
*c
)
6963 dial_up_lockup_detection_on_fw_flash_complete(c
->h
, c
);
6964 if (likely(c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_SCSI
6965 || c
->cmd_type
== CMD_IOACCEL2
))
6966 complete_scsi_command(c
);
6967 else if (c
->cmd_type
== CMD_IOCTL_PEND
|| c
->cmd_type
== IOACCEL2_TMF
)
6968 complete(c
->waiting
);
6971 /* process completion of an indexed ("direct lookup") command */
6972 static inline void process_indexed_cmd(struct ctlr_info
*h
,
6976 struct CommandList
*c
;
6978 tag_index
= raw_tag
>> DIRECT_LOOKUP_SHIFT
;
6979 if (!bad_tag(h
, tag_index
, raw_tag
)) {
6980 c
= h
->cmd_pool
+ tag_index
;
6985 /* Some controllers, like p400, will give us one interrupt
6986 * after a soft reset, even if we turned interrupts off.
6987 * Only need to check for this in the hpsa_xxx_discard_completions
6990 static int ignore_bogus_interrupt(struct ctlr_info
*h
)
6992 if (likely(!reset_devices
))
6995 if (likely(h
->interrupts_enabled
))
6998 dev_info(&h
->pdev
->dev
, "Received interrupt while interrupts disabled "
6999 "(known firmware bug.) Ignoring.\n");
7005 * Convert &h->q[x] (passed to interrupt handlers) back to h.
7006 * Relies on (h-q[x] == x) being true for x such that
7007 * 0 <= x < MAX_REPLY_QUEUES.
7009 static struct ctlr_info
*queue_to_hba(u8
*queue
)
7011 return container_of((queue
- *queue
), struct ctlr_info
, q
[0]);
7014 static irqreturn_t
hpsa_intx_discard_completions(int irq
, void *queue
)
7016 struct ctlr_info
*h
= queue_to_hba(queue
);
7017 u8 q
= *(u8
*) queue
;
7020 if (ignore_bogus_interrupt(h
))
7023 if (interrupt_not_for_us(h
))
7025 h
->last_intr_timestamp
= get_jiffies_64();
7026 while (interrupt_pending(h
)) {
7027 raw_tag
= get_next_completion(h
, q
);
7028 while (raw_tag
!= FIFO_EMPTY
)
7029 raw_tag
= next_command(h
, q
);
7034 static irqreturn_t
hpsa_msix_discard_completions(int irq
, void *queue
)
7036 struct ctlr_info
*h
= queue_to_hba(queue
);
7038 u8 q
= *(u8
*) queue
;
7040 if (ignore_bogus_interrupt(h
))
7043 h
->last_intr_timestamp
= get_jiffies_64();
7044 raw_tag
= get_next_completion(h
, q
);
7045 while (raw_tag
!= FIFO_EMPTY
)
7046 raw_tag
= next_command(h
, q
);
7050 static irqreturn_t
do_hpsa_intr_intx(int irq
, void *queue
)
7052 struct ctlr_info
*h
= queue_to_hba((u8
*) queue
);
7054 u8 q
= *(u8
*) queue
;
7056 if (interrupt_not_for_us(h
))
7058 h
->last_intr_timestamp
= get_jiffies_64();
7059 while (interrupt_pending(h
)) {
7060 raw_tag
= get_next_completion(h
, q
);
7061 while (raw_tag
!= FIFO_EMPTY
) {
7062 process_indexed_cmd(h
, raw_tag
);
7063 raw_tag
= next_command(h
, q
);
7069 static irqreturn_t
do_hpsa_intr_msi(int irq
, void *queue
)
7071 struct ctlr_info
*h
= queue_to_hba(queue
);
7073 u8 q
= *(u8
*) queue
;
7075 h
->last_intr_timestamp
= get_jiffies_64();
7076 raw_tag
= get_next_completion(h
, q
);
7077 while (raw_tag
!= FIFO_EMPTY
) {
7078 process_indexed_cmd(h
, raw_tag
);
7079 raw_tag
= next_command(h
, q
);
7084 /* Send a message CDB to the firmware. Careful, this only works
7085 * in simple mode, not performant mode due to the tag lookup.
7086 * We only ever use this immediately after a controller reset.
7088 static int hpsa_message(struct pci_dev
*pdev
, unsigned char opcode
,
7092 struct CommandListHeader CommandHeader
;
7093 struct RequestBlock Request
;
7094 struct ErrDescriptor ErrorDescriptor
;
7096 struct Command
*cmd
;
7097 static const size_t cmd_sz
= sizeof(*cmd
) +
7098 sizeof(cmd
->ErrorDescriptor
);
7102 void __iomem
*vaddr
;
7105 vaddr
= pci_ioremap_bar(pdev
, 0);
7109 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7110 * CCISS commands, so they must be allocated from the lower 4GiB of
7113 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
7119 cmd
= dma_alloc_coherent(&pdev
->dev
, cmd_sz
, &paddr64
, GFP_KERNEL
);
7125 /* This must fit, because of the 32-bit consistent DMA mask. Also,
7126 * although there's no guarantee, we assume that the address is at
7127 * least 4-byte aligned (most likely, it's page-aligned).
7129 paddr32
= cpu_to_le32(paddr64
);
7131 cmd
->CommandHeader
.ReplyQueue
= 0;
7132 cmd
->CommandHeader
.SGList
= 0;
7133 cmd
->CommandHeader
.SGTotal
= cpu_to_le16(0);
7134 cmd
->CommandHeader
.tag
= cpu_to_le64(paddr64
);
7135 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
7137 cmd
->Request
.CDBLen
= 16;
7138 cmd
->Request
.type_attr_dir
=
7139 TYPE_ATTR_DIR(TYPE_MSG
, ATTR_HEADOFQUEUE
, XFER_NONE
);
7140 cmd
->Request
.Timeout
= 0; /* Don't time out */
7141 cmd
->Request
.CDB
[0] = opcode
;
7142 cmd
->Request
.CDB
[1] = type
;
7143 memset(&cmd
->Request
.CDB
[2], 0, 14); /* rest of the CDB is reserved */
7144 cmd
->ErrorDescriptor
.Addr
=
7145 cpu_to_le64((le32_to_cpu(paddr32
) + sizeof(*cmd
)));
7146 cmd
->ErrorDescriptor
.Len
= cpu_to_le32(sizeof(struct ErrorInfo
));
7148 writel(le32_to_cpu(paddr32
), vaddr
+ SA5_REQUEST_PORT_OFFSET
);
7150 for (i
= 0; i
< HPSA_MSG_SEND_RETRY_LIMIT
; i
++) {
7151 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
7152 if ((tag
& ~HPSA_SIMPLE_ERROR_BITS
) == paddr64
)
7154 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS
);
7159 /* we leak the DMA buffer here ... no choice since the controller could
7160 * still complete the command.
7162 if (i
== HPSA_MSG_SEND_RETRY_LIMIT
) {
7163 dev_err(&pdev
->dev
, "controller message %02x:%02x timed out\n",
7168 dma_free_coherent(&pdev
->dev
, cmd_sz
, cmd
, paddr64
);
7170 if (tag
& HPSA_ERROR_BIT
) {
7171 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
7176 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
7181 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7183 static int hpsa_controller_hard_reset(struct pci_dev
*pdev
,
7184 void __iomem
*vaddr
, u32 use_doorbell
)
7188 /* For everything after the P600, the PCI power state method
7189 * of resetting the controller doesn't work, so we have this
7190 * other way using the doorbell register.
7192 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
7193 writel(use_doorbell
, vaddr
+ SA5_DOORBELL
);
7195 /* PMC hardware guys tell us we need a 10 second delay after
7196 * doorbell reset and before any attempt to talk to the board
7197 * at all to ensure that this actually works and doesn't fall
7198 * over in some weird corner cases.
7201 } else { /* Try to do it the PCI power state way */
7203 /* Quoting from the Open CISS Specification: "The Power
7204 * Management Control/Status Register (CSR) controls the power
7205 * state of the device. The normal operating state is D0,
7206 * CSR=00h. The software off state is D3, CSR=03h. To reset
7207 * the controller, place the interface device in D3 then to D0,
7208 * this causes a secondary PCI reset which will reset the
7213 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
7215 /* enter the D3hot power management state */
7216 rc
= pci_set_power_state(pdev
, PCI_D3hot
);
7222 /* enter the D0 power management state */
7223 rc
= pci_set_power_state(pdev
, PCI_D0
);
7228 * The P600 requires a small delay when changing states.
7229 * Otherwise we may think the board did not reset and we bail.
7230 * This for kdump only and is particular to the P600.
7237 static void init_driver_version(char *driver_version
, int len
)
7239 memset(driver_version
, 0, len
);
7240 strncpy(driver_version
, HPSA
" " HPSA_DRIVER_VERSION
, len
- 1);
7243 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem
*cfgtable
)
7245 char *driver_version
;
7246 int i
, size
= sizeof(cfgtable
->driver_version
);
7248 driver_version
= kmalloc(size
, GFP_KERNEL
);
7249 if (!driver_version
)
7252 init_driver_version(driver_version
, size
);
7253 for (i
= 0; i
< size
; i
++)
7254 writeb(driver_version
[i
], &cfgtable
->driver_version
[i
]);
7255 kfree(driver_version
);
7259 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem
*cfgtable
,
7260 unsigned char *driver_ver
)
7264 for (i
= 0; i
< sizeof(cfgtable
->driver_version
); i
++)
7265 driver_ver
[i
] = readb(&cfgtable
->driver_version
[i
]);
7268 static int controller_reset_failed(struct CfgTable __iomem
*cfgtable
)
7271 char *driver_ver
, *old_driver_ver
;
7272 int rc
, size
= sizeof(cfgtable
->driver_version
);
7274 old_driver_ver
= kmalloc_array(2, size
, GFP_KERNEL
);
7275 if (!old_driver_ver
)
7277 driver_ver
= old_driver_ver
+ size
;
7279 /* After a reset, the 32 bytes of "driver version" in the cfgtable
7280 * should have been changed, otherwise we know the reset failed.
7282 init_driver_version(old_driver_ver
, size
);
7283 read_driver_ver_from_cfgtable(cfgtable
, driver_ver
);
7284 rc
= !memcmp(driver_ver
, old_driver_ver
, size
);
7285 kfree(old_driver_ver
);
7288 /* This does a hard reset of the controller using PCI power management
7289 * states or the using the doorbell register.
7291 static int hpsa_kdump_hard_reset_controller(struct pci_dev
*pdev
, u32 board_id
)
7295 u64 cfg_base_addr_index
;
7296 void __iomem
*vaddr
;
7297 unsigned long paddr
;
7298 u32 misc_fw_support
;
7300 struct CfgTable __iomem
*cfgtable
;
7302 u16 command_register
;
7304 /* For controllers as old as the P600, this is very nearly
7307 * pci_save_state(pci_dev);
7308 * pci_set_power_state(pci_dev, PCI_D3hot);
7309 * pci_set_power_state(pci_dev, PCI_D0);
7310 * pci_restore_state(pci_dev);
7312 * For controllers newer than the P600, the pci power state
7313 * method of resetting doesn't work so we have another way
7314 * using the doorbell register.
7317 if (!ctlr_is_resettable(board_id
)) {
7318 dev_warn(&pdev
->dev
, "Controller not resettable\n");
7322 /* if controller is soft- but not hard resettable... */
7323 if (!ctlr_is_hard_resettable(board_id
))
7324 return -ENOTSUPP
; /* try soft reset later. */
7326 /* Save the PCI command register */
7327 pci_read_config_word(pdev
, 4, &command_register
);
7328 pci_save_state(pdev
);
7330 /* find the first memory BAR, so we can find the cfg table */
7331 rc
= hpsa_pci_find_memory_BAR(pdev
, &paddr
);
7334 vaddr
= remap_pci_mem(paddr
, 0x250);
7338 /* find cfgtable in order to check if reset via doorbell is supported */
7339 rc
= hpsa_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
7340 &cfg_base_addr_index
, &cfg_offset
);
7343 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
7344 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
7349 rc
= write_driver_ver_to_cfgtable(cfgtable
);
7351 goto unmap_cfgtable
;
7353 /* If reset via doorbell register is supported, use that.
7354 * There are two such methods. Favor the newest method.
7356 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
7357 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET2
;
7359 use_doorbell
= DOORBELL_CTLR_RESET2
;
7361 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
7363 dev_warn(&pdev
->dev
,
7364 "Soft reset not supported. Firmware update is required.\n");
7365 rc
= -ENOTSUPP
; /* try soft reset */
7366 goto unmap_cfgtable
;
7370 rc
= hpsa_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
7372 goto unmap_cfgtable
;
7374 pci_restore_state(pdev
);
7375 pci_write_config_word(pdev
, 4, command_register
);
7377 /* Some devices (notably the HP Smart Array 5i Controller)
7378 need a little pause here */
7379 msleep(HPSA_POST_RESET_PAUSE_MSECS
);
7381 rc
= hpsa_wait_for_board_state(pdev
, vaddr
, BOARD_READY
);
7383 dev_warn(&pdev
->dev
,
7384 "Failed waiting for board to become ready after hard reset\n");
7385 goto unmap_cfgtable
;
7388 rc
= controller_reset_failed(vaddr
);
7390 goto unmap_cfgtable
;
7392 dev_warn(&pdev
->dev
, "Unable to successfully reset "
7393 "controller. Will try soft reset.\n");
7396 dev_info(&pdev
->dev
, "board ready after hard reset.\n");
7408 * We cannot read the structure directly, for portability we must use
7410 * This is for debug only.
7412 static void print_cfg_table(struct device
*dev
, struct CfgTable __iomem
*tb
)
7418 dev_info(dev
, "Controller Configuration information\n");
7419 dev_info(dev
, "------------------------------------\n");
7420 for (i
= 0; i
< 4; i
++)
7421 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
7422 temp_name
[4] = '\0';
7423 dev_info(dev
, " Signature = %s\n", temp_name
);
7424 dev_info(dev
, " Spec Number = %d\n", readl(&(tb
->SpecValence
)));
7425 dev_info(dev
, " Transport methods supported = 0x%x\n",
7426 readl(&(tb
->TransportSupport
)));
7427 dev_info(dev
, " Transport methods active = 0x%x\n",
7428 readl(&(tb
->TransportActive
)));
7429 dev_info(dev
, " Requested transport Method = 0x%x\n",
7430 readl(&(tb
->HostWrite
.TransportRequest
)));
7431 dev_info(dev
, " Coalesce Interrupt Delay = 0x%x\n",
7432 readl(&(tb
->HostWrite
.CoalIntDelay
)));
7433 dev_info(dev
, " Coalesce Interrupt Count = 0x%x\n",
7434 readl(&(tb
->HostWrite
.CoalIntCount
)));
7435 dev_info(dev
, " Max outstanding commands = %d\n",
7436 readl(&(tb
->CmdsOutMax
)));
7437 dev_info(dev
, " Bus Types = 0x%x\n", readl(&(tb
->BusTypes
)));
7438 for (i
= 0; i
< 16; i
++)
7439 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
7440 temp_name
[16] = '\0';
7441 dev_info(dev
, " Server Name = %s\n", temp_name
);
7442 dev_info(dev
, " Heartbeat Counter = 0x%x\n\n\n",
7443 readl(&(tb
->HeartBeat
)));
7444 #endif /* HPSA_DEBUG */
7447 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
7449 int i
, offset
, mem_type
, bar_type
;
7451 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
7454 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
7455 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
7456 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
7459 mem_type
= pci_resource_flags(pdev
, i
) &
7460 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
7462 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
7463 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
7464 offset
+= 4; /* 32 bit */
7466 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
7469 default: /* reserved in PCI 2.2 */
7470 dev_warn(&pdev
->dev
,
7471 "base address is invalid\n");
7475 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
7481 static void hpsa_disable_interrupt_mode(struct ctlr_info
*h
)
7483 pci_free_irq_vectors(h
->pdev
);
7484 h
->msix_vectors
= 0;
7487 static void hpsa_setup_reply_map(struct ctlr_info
*h
)
7489 const struct cpumask
*mask
;
7490 unsigned int queue
, cpu
;
7492 for (queue
= 0; queue
< h
->msix_vectors
; queue
++) {
7493 mask
= pci_irq_get_affinity(h
->pdev
, queue
);
7497 for_each_cpu(cpu
, mask
)
7498 h
->reply_map
[cpu
] = queue
;
7503 for_each_possible_cpu(cpu
)
7504 h
->reply_map
[cpu
] = 0;
7507 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7508 * controllers that are capable. If not, we use legacy INTx mode.
7510 static int hpsa_interrupt_mode(struct ctlr_info
*h
)
7512 unsigned int flags
= PCI_IRQ_INTX
;
7515 /* Some boards advertise MSI but don't really support it */
7516 switch (h
->board_id
) {
7523 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, MAX_REPLY_QUEUES
,
7524 PCI_IRQ_MSIX
| PCI_IRQ_AFFINITY
);
7526 h
->msix_vectors
= ret
;
7530 flags
|= PCI_IRQ_MSI
;
7534 ret
= pci_alloc_irq_vectors(h
->pdev
, 1, 1, flags
);
7540 static int hpsa_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
,
7544 u32 subsystem_vendor_id
, subsystem_device_id
;
7546 subsystem_vendor_id
= pdev
->subsystem_vendor
;
7547 subsystem_device_id
= pdev
->subsystem_device
;
7548 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
7549 subsystem_vendor_id
;
7552 *legacy_board
= false;
7553 for (i
= 0; i
< ARRAY_SIZE(products
); i
++)
7554 if (*board_id
== products
[i
].board_id
) {
7555 if (products
[i
].access
!= &SA5A_access
&&
7556 products
[i
].access
!= &SA5B_access
)
7558 dev_warn(&pdev
->dev
,
7559 "legacy board ID: 0x%08x\n",
7562 *legacy_board
= true;
7566 dev_warn(&pdev
->dev
, "unrecognized board ID: 0x%08x\n", *board_id
);
7568 *legacy_board
= true;
7569 return ARRAY_SIZE(products
) - 1; /* generic unknown smart array */
7572 static int hpsa_pci_find_memory_BAR(struct pci_dev
*pdev
,
7573 unsigned long *memory_bar
)
7577 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
7578 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
7579 /* addressing mode bits already removed */
7580 *memory_bar
= pci_resource_start(pdev
, i
);
7581 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
7585 dev_warn(&pdev
->dev
, "no memory BAR found\n");
7589 static int hpsa_wait_for_board_state(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7595 iterations
= HPSA_BOARD_READY_ITERATIONS
;
7597 iterations
= HPSA_BOARD_NOT_READY_ITERATIONS
;
7599 for (i
= 0; i
< iterations
; i
++) {
7600 scratchpad
= readl(vaddr
+ SA5_SCRATCHPAD_OFFSET
);
7601 if (wait_for_ready
) {
7602 if (scratchpad
== HPSA_FIRMWARE_READY
)
7605 if (scratchpad
!= HPSA_FIRMWARE_READY
)
7608 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS
);
7610 dev_warn(&pdev
->dev
, "board not ready, timed out.\n");
7614 static int hpsa_find_cfg_addrs(struct pci_dev
*pdev
, void __iomem
*vaddr
,
7615 u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
7618 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
7619 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
7620 *cfg_base_addr
&= (u32
) 0x0000ffff;
7621 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
7622 if (*cfg_base_addr_index
== -1) {
7623 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index\n");
7629 static void hpsa_free_cfgtables(struct ctlr_info
*h
)
7631 if (h
->transtable
) {
7632 iounmap(h
->transtable
);
7633 h
->transtable
= NULL
;
7636 iounmap(h
->cfgtable
);
7641 /* Find and map CISS config table and transfer table
7642 + * several items must be unmapped (freed) later
7644 static int hpsa_find_cfgtables(struct ctlr_info
*h
)
7648 u64 cfg_base_addr_index
;
7652 rc
= hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
7653 &cfg_base_addr_index
, &cfg_offset
);
7656 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7657 cfg_base_addr_index
) + cfg_offset
, sizeof(*h
->cfgtable
));
7659 dev_err(&h
->pdev
->dev
, "Failed mapping cfgtable\n");
7662 rc
= write_driver_ver_to_cfgtable(h
->cfgtable
);
7665 /* Find performant mode table. */
7666 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
7667 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
7668 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
7669 sizeof(*h
->transtable
));
7670 if (!h
->transtable
) {
7671 dev_err(&h
->pdev
->dev
, "Failed mapping transfer table\n");
7672 hpsa_free_cfgtables(h
);
7678 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info
*h
)
7680 #define MIN_MAX_COMMANDS 16
7681 BUILD_BUG_ON(MIN_MAX_COMMANDS
<= HPSA_NRESERVED_CMDS
);
7683 h
->max_commands
= readl(&h
->cfgtable
->MaxPerformantModeCommands
);
7685 /* Limit commands in memory limited kdump scenario. */
7686 if (reset_devices
&& h
->max_commands
> 32)
7687 h
->max_commands
= 32;
7689 if (h
->max_commands
< MIN_MAX_COMMANDS
) {
7690 dev_warn(&h
->pdev
->dev
,
7691 "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7694 h
->max_commands
= MIN_MAX_COMMANDS
;
7698 /* If the controller reports that the total max sg entries is greater than 512,
7699 * then we know that chained SG blocks work. (Original smart arrays did not
7700 * support chained SG blocks and would return zero for max sg entries.)
7702 static int hpsa_supports_chained_sg_blocks(struct ctlr_info
*h
)
7704 return h
->maxsgentries
> 512;
7707 /* Interrogate the hardware for some limits:
7708 * max commands, max SG elements without chaining, and with chaining,
7709 * SG chain block size, etc.
7711 static void hpsa_find_board_params(struct ctlr_info
*h
)
7713 hpsa_get_max_perf_mode_cmds(h
);
7714 h
->nr_cmds
= h
->max_commands
;
7715 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxScatterGatherElements
));
7716 h
->fw_support
= readl(&(h
->cfgtable
->misc_fw_support
));
7717 if (hpsa_supports_chained_sg_blocks(h
)) {
7718 /* Limit in-command s/g elements to 32 save dma'able memory. */
7719 h
->max_cmd_sg_entries
= 32;
7720 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sg_entries
;
7721 h
->maxsgentries
--; /* save one for chain pointer */
7724 * Original smart arrays supported at most 31 s/g entries
7725 * embedded inline in the command (trying to use more
7726 * would lock up the controller)
7728 h
->max_cmd_sg_entries
= 31;
7729 h
->maxsgentries
= 31; /* default to traditional values */
7733 /* Find out what task management functions are supported and cache */
7734 h
->TMFSupportFlags
= readl(&(h
->cfgtable
->TMFSupportFlags
));
7735 if (!(HPSATMF_PHYS_TASK_ABORT
& h
->TMFSupportFlags
))
7736 dev_warn(&h
->pdev
->dev
, "Physical aborts not supported\n");
7737 if (!(HPSATMF_LOG_TASK_ABORT
& h
->TMFSupportFlags
))
7738 dev_warn(&h
->pdev
->dev
, "Logical aborts not supported\n");
7739 if (!(HPSATMF_IOACCEL_ENABLED
& h
->TMFSupportFlags
))
7740 dev_warn(&h
->pdev
->dev
, "HP SSD Smart Path aborts not supported\n");
7743 static inline bool hpsa_CISS_signature_present(struct ctlr_info
*h
)
7745 if (!check_signature(h
->cfgtable
->Signature
, "CISS", 4)) {
7746 dev_err(&h
->pdev
->dev
, "not a valid CISS config table\n");
7752 static inline void hpsa_set_driver_support_bits(struct ctlr_info
*h
)
7756 driver_support
= readl(&(h
->cfgtable
->driver_support
));
7757 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7759 driver_support
|= ENABLE_SCSI_PREFETCH
;
7761 driver_support
|= ENABLE_UNIT_ATTN
;
7762 writel(driver_support
, &(h
->cfgtable
->driver_support
));
7765 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
7766 * in a prefetch beyond physical memory.
7768 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info
*h
)
7772 if (h
->board_id
!= 0x3225103C)
7774 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
7775 dma_prefetch
|= 0x8000;
7776 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
7779 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info
*h
)
7783 unsigned long flags
;
7784 /* wait until the clear_event_notify bit 6 is cleared by controller. */
7785 for (i
= 0; i
< MAX_CLEAR_EVENT_WAIT
; i
++) {
7786 spin_lock_irqsave(&h
->lock
, flags
);
7787 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7788 spin_unlock_irqrestore(&h
->lock
, flags
);
7789 if (!(doorbell_value
& DOORBELL_CLEAR_EVENTS
))
7791 /* delay and try again */
7792 msleep(CLEAR_EVENT_WAIT_INTERVAL
);
7799 static int hpsa_wait_for_mode_change_ack(struct ctlr_info
*h
)
7803 unsigned long flags
;
7805 /* under certain very rare conditions, this can take awhile.
7806 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7807 * as we enter this code.)
7809 for (i
= 0; i
< MAX_MODE_CHANGE_WAIT
; i
++) {
7810 if (h
->remove_in_progress
)
7812 spin_lock_irqsave(&h
->lock
, flags
);
7813 doorbell_value
= readl(h
->vaddr
+ SA5_DOORBELL
);
7814 spin_unlock_irqrestore(&h
->lock
, flags
);
7815 if (!(doorbell_value
& CFGTBL_ChangeReq
))
7817 /* delay and try again */
7818 msleep(MODE_CHANGE_WAIT_INTERVAL
);
7825 /* return -ENODEV or other reason on error, 0 on success */
7826 static int hpsa_enter_simple_mode(struct ctlr_info
*h
)
7830 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
7831 if (!(trans_support
& SIMPLE_MODE
))
7834 h
->max_commands
= readl(&(h
->cfgtable
->CmdsOutMax
));
7836 /* Update the field, and then ring the doorbell */
7837 writel(CFGTBL_Trans_Simple
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
7838 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
7839 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
7840 if (hpsa_wait_for_mode_change_ack(h
))
7842 print_cfg_table(&h
->pdev
->dev
, h
->cfgtable
);
7843 if (!(readl(&(h
->cfgtable
->TransportActive
)) & CFGTBL_Trans_Simple
))
7845 h
->transMethod
= CFGTBL_Trans_Simple
;
7848 dev_err(&h
->pdev
->dev
, "failed to enter simple mode\n");
7852 /* free items allocated or mapped by hpsa_pci_init */
7853 static void hpsa_free_pci_init(struct ctlr_info
*h
)
7855 hpsa_free_cfgtables(h
); /* pci_init 4 */
7856 iounmap(h
->vaddr
); /* pci_init 3 */
7858 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
7860 * call pci_disable_device before pci_release_regions per
7861 * Documentation/driver-api/pci/pci.rst
7863 pci_disable_device(h
->pdev
); /* pci_init 1 */
7864 pci_release_regions(h
->pdev
); /* pci_init 2 */
7867 /* several items must be freed later */
7868 static int hpsa_pci_init(struct ctlr_info
*h
)
7870 int prod_index
, err
;
7873 prod_index
= hpsa_lookup_board_id(h
->pdev
, &h
->board_id
, &legacy_board
);
7876 h
->product_name
= products
[prod_index
].product_name
;
7877 h
->access
= *(products
[prod_index
].access
);
7878 h
->legacy_board
= legacy_board
;
7879 pci_disable_link_state(h
->pdev
, PCIE_LINK_STATE_L0S
|
7880 PCIE_LINK_STATE_L1
| PCIE_LINK_STATE_CLKPM
);
7882 err
= pci_enable_device(h
->pdev
);
7884 dev_err(&h
->pdev
->dev
, "failed to enable PCI device\n");
7885 pci_disable_device(h
->pdev
);
7889 err
= pci_request_regions(h
->pdev
, HPSA
);
7891 dev_err(&h
->pdev
->dev
,
7892 "failed to obtain PCI resources\n");
7893 pci_disable_device(h
->pdev
);
7897 pci_set_master(h
->pdev
);
7899 err
= hpsa_interrupt_mode(h
);
7903 /* setup mapping between CPU and reply queue */
7904 hpsa_setup_reply_map(h
);
7906 err
= hpsa_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
7908 goto clean2
; /* intmode+region, pci */
7909 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
7911 dev_err(&h
->pdev
->dev
, "failed to remap PCI mem\n");
7913 goto clean2
; /* intmode+region, pci */
7915 err
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
7917 goto clean3
; /* vaddr, intmode+region, pci */
7918 err
= hpsa_find_cfgtables(h
);
7920 goto clean3
; /* vaddr, intmode+region, pci */
7921 hpsa_find_board_params(h
);
7923 if (!hpsa_CISS_signature_present(h
)) {
7925 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7927 hpsa_set_driver_support_bits(h
);
7928 hpsa_p600_dma_prefetch_quirk(h
);
7929 err
= hpsa_enter_simple_mode(h
);
7931 goto clean4
; /* cfgtables, vaddr, intmode+region, pci */
7934 clean4
: /* cfgtables, vaddr, intmode+region, pci */
7935 hpsa_free_cfgtables(h
);
7936 clean3
: /* vaddr, intmode+region, pci */
7939 clean2
: /* intmode+region, pci */
7940 hpsa_disable_interrupt_mode(h
);
7943 * call pci_disable_device before pci_release_regions per
7944 * Documentation/driver-api/pci/pci.rst
7946 pci_disable_device(h
->pdev
);
7947 pci_release_regions(h
->pdev
);
7951 static void hpsa_hba_inquiry(struct ctlr_info
*h
)
7955 #define HBA_INQUIRY_BYTE_COUNT 64
7956 h
->hba_inquiry_data
= kmalloc(HBA_INQUIRY_BYTE_COUNT
, GFP_KERNEL
);
7957 if (!h
->hba_inquiry_data
)
7959 rc
= hpsa_scsi_do_inquiry(h
, RAID_CTLR_LUNID
, 0,
7960 h
->hba_inquiry_data
, HBA_INQUIRY_BYTE_COUNT
);
7962 kfree(h
->hba_inquiry_data
);
7963 h
->hba_inquiry_data
= NULL
;
7967 static int hpsa_init_reset_devices(struct pci_dev
*pdev
, u32 board_id
)
7970 void __iomem
*vaddr
;
7975 /* kdump kernel is loading, we don't know in which state is
7976 * the pci interface. The dev->enable_cnt is equal zero
7977 * so we call enable+disable, wait a while and switch it on.
7979 rc
= pci_enable_device(pdev
);
7981 dev_warn(&pdev
->dev
, "Failed to enable PCI device\n");
7984 pci_disable_device(pdev
);
7985 msleep(260); /* a randomly chosen number */
7986 rc
= pci_enable_device(pdev
);
7988 dev_warn(&pdev
->dev
, "failed to enable device.\n");
7992 pci_set_master(pdev
);
7994 vaddr
= pci_ioremap_bar(pdev
, 0);
7995 if (vaddr
== NULL
) {
7999 writel(SA5_INTR_OFF
, vaddr
+ SA5_REPLY_INTR_MASK_OFFSET
);
8002 /* Reset the controller with a PCI power-cycle or via doorbell */
8003 rc
= hpsa_kdump_hard_reset_controller(pdev
, board_id
);
8005 /* -ENOTSUPP here means we cannot reset the controller
8006 * but it's already (and still) up and running in
8007 * "performant mode". Or, it might be 640x, which can't reset
8008 * due to concerns about shared bbwc between 6402/6404 pair.
8013 /* Now try to get the controller to respond to a no-op */
8014 dev_info(&pdev
->dev
, "Waiting for controller to respond to no-op\n");
8015 for (i
= 0; i
< HPSA_POST_RESET_NOOP_RETRIES
; i
++) {
8016 if (hpsa_noop(pdev
) == 0)
8019 dev_warn(&pdev
->dev
, "no-op failed%s\n",
8020 (i
< 11 ? "; re-trying" : ""));
8025 pci_disable_device(pdev
);
8029 static void hpsa_free_cmd_pool(struct ctlr_info
*h
)
8031 bitmap_free(h
->cmd_pool_bits
);
8032 h
->cmd_pool_bits
= NULL
;
8034 dma_free_coherent(&h
->pdev
->dev
,
8035 h
->nr_cmds
* sizeof(struct CommandList
),
8037 h
->cmd_pool_dhandle
);
8039 h
->cmd_pool_dhandle
= 0;
8041 if (h
->errinfo_pool
) {
8042 dma_free_coherent(&h
->pdev
->dev
,
8043 h
->nr_cmds
* sizeof(struct ErrorInfo
),
8045 h
->errinfo_pool_dhandle
);
8046 h
->errinfo_pool
= NULL
;
8047 h
->errinfo_pool_dhandle
= 0;
8051 static int hpsa_alloc_cmd_pool(struct ctlr_info
*h
)
8053 h
->cmd_pool_bits
= bitmap_zalloc(h
->nr_cmds
, GFP_KERNEL
);
8054 h
->cmd_pool
= dma_alloc_coherent(&h
->pdev
->dev
,
8055 h
->nr_cmds
* sizeof(*h
->cmd_pool
),
8056 &h
->cmd_pool_dhandle
, GFP_KERNEL
);
8057 h
->errinfo_pool
= dma_alloc_coherent(&h
->pdev
->dev
,
8058 h
->nr_cmds
* sizeof(*h
->errinfo_pool
),
8059 &h
->errinfo_pool_dhandle
, GFP_KERNEL
);
8060 if ((h
->cmd_pool_bits
== NULL
)
8061 || (h
->cmd_pool
== NULL
)
8062 || (h
->errinfo_pool
== NULL
)) {
8063 dev_err(&h
->pdev
->dev
, "out of memory in %s", __func__
);
8066 hpsa_preinitialize_commands(h
);
8069 hpsa_free_cmd_pool(h
);
8073 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8074 static void hpsa_free_irqs(struct ctlr_info
*h
)
8079 if (hpsa_simple_mode
)
8080 irq_vector
= h
->intr_mode
;
8082 if (!h
->msix_vectors
|| h
->intr_mode
!= PERF_MODE_INT
) {
8083 /* Single reply queue, only one irq to free */
8084 free_irq(pci_irq_vector(h
->pdev
, irq_vector
),
8085 &h
->q
[h
->intr_mode
]);
8086 h
->q
[h
->intr_mode
] = 0;
8090 for (i
= 0; i
< h
->msix_vectors
; i
++) {
8091 free_irq(pci_irq_vector(h
->pdev
, i
), &h
->q
[i
]);
8094 for (; i
< MAX_REPLY_QUEUES
; i
++)
8098 /* returns 0 on success; cleans up and returns -Enn on error */
8099 static int hpsa_request_irqs(struct ctlr_info
*h
,
8100 irqreturn_t (*msixhandler
)(int, void *),
8101 irqreturn_t (*intxhandler
)(int, void *))
8106 if (hpsa_simple_mode
)
8107 irq_vector
= h
->intr_mode
;
8110 * initialize h->q[x] = x so that interrupt handlers know which
8113 for (i
= 0; i
< MAX_REPLY_QUEUES
; i
++)
8116 if (h
->intr_mode
== PERF_MODE_INT
&& h
->msix_vectors
> 0) {
8117 /* If performant mode and MSI-X, use multiple reply queues */
8118 for (i
= 0; i
< h
->msix_vectors
; i
++) {
8119 sprintf(h
->intrname
[i
], "%s-msix%d", h
->devname
, i
);
8120 rc
= request_irq(pci_irq_vector(h
->pdev
, i
), msixhandler
,
8126 dev_err(&h
->pdev
->dev
,
8127 "failed to get irq %d for %s\n",
8128 pci_irq_vector(h
->pdev
, i
), h
->devname
);
8129 for (j
= 0; j
< i
; j
++) {
8130 free_irq(pci_irq_vector(h
->pdev
, j
), &h
->q
[j
]);
8133 for (; j
< MAX_REPLY_QUEUES
; j
++)
8139 /* Use single reply pool */
8140 if (h
->msix_vectors
> 0 || h
->pdev
->msi_enabled
) {
8141 sprintf(h
->intrname
[0], "%s-msi%s", h
->devname
,
8142 h
->msix_vectors
? "x" : "");
8143 rc
= request_irq(pci_irq_vector(h
->pdev
, irq_vector
),
8146 &h
->q
[h
->intr_mode
]);
8148 sprintf(h
->intrname
[h
->intr_mode
],
8149 "%s-intx", h
->devname
);
8150 rc
= request_irq(pci_irq_vector(h
->pdev
, irq_vector
),
8151 intxhandler
, IRQF_SHARED
,
8153 &h
->q
[h
->intr_mode
]);
8157 dev_err(&h
->pdev
->dev
, "failed to get irq %d for %s\n",
8158 pci_irq_vector(h
->pdev
, irq_vector
), h
->devname
);
8165 static int hpsa_kdump_soft_reset(struct ctlr_info
*h
)
8168 hpsa_send_host_reset(h
, HPSA_RESET_TYPE_CONTROLLER
);
8170 dev_info(&h
->pdev
->dev
, "Waiting for board to soft reset.\n");
8171 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_NOT_READY
);
8173 dev_warn(&h
->pdev
->dev
, "Soft reset had no effect.\n");
8177 dev_info(&h
->pdev
->dev
, "Board reset, awaiting READY status.\n");
8178 rc
= hpsa_wait_for_board_state(h
->pdev
, h
->vaddr
, BOARD_READY
);
8180 dev_warn(&h
->pdev
->dev
, "Board failed to become ready "
8181 "after soft reset.\n");
8188 static void hpsa_free_reply_queues(struct ctlr_info
*h
)
8192 for (i
= 0; i
< h
->nreply_queues
; i
++) {
8193 if (!h
->reply_queue
[i
].head
)
8195 dma_free_coherent(&h
->pdev
->dev
,
8196 h
->reply_queue_size
,
8197 h
->reply_queue
[i
].head
,
8198 h
->reply_queue
[i
].busaddr
);
8199 h
->reply_queue
[i
].head
= NULL
;
8200 h
->reply_queue
[i
].busaddr
= 0;
8202 h
->reply_queue_size
= 0;
8205 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info
*h
)
8207 hpsa_free_performant_mode(h
); /* init_one 7 */
8208 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
8209 hpsa_free_cmd_pool(h
); /* init_one 5 */
8210 hpsa_free_irqs(h
); /* init_one 4 */
8211 scsi_host_put(h
->scsi_host
); /* init_one 3 */
8212 h
->scsi_host
= NULL
; /* init_one 3 */
8213 hpsa_free_pci_init(h
); /* init_one 2_5 */
8214 free_percpu(h
->lockup_detected
); /* init_one 2 */
8215 h
->lockup_detected
= NULL
; /* init_one 2 */
8216 if (h
->resubmit_wq
) {
8217 destroy_workqueue(h
->resubmit_wq
); /* init_one 1 */
8218 h
->resubmit_wq
= NULL
;
8220 if (h
->rescan_ctlr_wq
) {
8221 destroy_workqueue(h
->rescan_ctlr_wq
);
8222 h
->rescan_ctlr_wq
= NULL
;
8224 if (h
->monitor_ctlr_wq
) {
8225 destroy_workqueue(h
->monitor_ctlr_wq
);
8226 h
->monitor_ctlr_wq
= NULL
;
8229 kfree(h
); /* init_one 1 */
8232 /* Called when controller lockup detected. */
8233 static void fail_all_outstanding_cmds(struct ctlr_info
*h
)
8236 struct CommandList
*c
;
8239 flush_workqueue(h
->resubmit_wq
); /* ensure all cmds are fully built */
8240 for (i
= 0; i
< h
->nr_cmds
; i
++) {
8241 c
= h
->cmd_pool
+ i
;
8242 refcount
= atomic_inc_return(&c
->refcount
);
8244 c
->err_info
->CommandStatus
= CMD_CTLR_LOCKUP
;
8246 atomic_dec(&h
->commands_outstanding
);
8251 dev_warn(&h
->pdev
->dev
,
8252 "failed %d commands in fail_all\n", failcount
);
8255 static void set_lockup_detected_for_all_cpus(struct ctlr_info
*h
, u32 value
)
8259 for_each_online_cpu(cpu
) {
8260 u32
*lockup_detected
;
8261 lockup_detected
= per_cpu_ptr(h
->lockup_detected
, cpu
);
8262 *lockup_detected
= value
;
8264 wmb(); /* be sure the per-cpu variables are out to memory */
8267 static void controller_lockup_detected(struct ctlr_info
*h
)
8269 unsigned long flags
;
8270 u32 lockup_detected
;
8272 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8273 spin_lock_irqsave(&h
->lock
, flags
);
8274 lockup_detected
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
8275 if (!lockup_detected
) {
8276 /* no heartbeat, but controller gave us a zero. */
8277 dev_warn(&h
->pdev
->dev
,
8278 "lockup detected after %d but scratchpad register is zero\n",
8279 h
->heartbeat_sample_interval
/ HZ
);
8280 lockup_detected
= 0xffffffff;
8282 set_lockup_detected_for_all_cpus(h
, lockup_detected
);
8283 spin_unlock_irqrestore(&h
->lock
, flags
);
8284 dev_warn(&h
->pdev
->dev
, "Controller lockup detected: 0x%08x after %d\n",
8285 lockup_detected
, h
->heartbeat_sample_interval
/ HZ
);
8286 if (lockup_detected
== 0xffff0000) {
8287 dev_warn(&h
->pdev
->dev
, "Telling controller to do a CHKPT\n");
8288 writel(DOORBELL_GENERATE_CHKPT
, h
->vaddr
+ SA5_DOORBELL
);
8290 pci_disable_device(h
->pdev
);
8291 fail_all_outstanding_cmds(h
);
8294 static int detect_controller_lockup(struct ctlr_info
*h
)
8298 unsigned long flags
;
8300 now
= get_jiffies_64();
8301 /* If we've received an interrupt recently, we're ok. */
8302 if (time_after64(h
->last_intr_timestamp
+
8303 (h
->heartbeat_sample_interval
), now
))
8307 * If we've already checked the heartbeat recently, we're ok.
8308 * This could happen if someone sends us a signal. We
8309 * otherwise don't care about signals in this thread.
8311 if (time_after64(h
->last_heartbeat_timestamp
+
8312 (h
->heartbeat_sample_interval
), now
))
8315 /* If heartbeat has not changed since we last looked, we're not ok. */
8316 spin_lock_irqsave(&h
->lock
, flags
);
8317 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
8318 spin_unlock_irqrestore(&h
->lock
, flags
);
8319 if (h
->last_heartbeat
== heartbeat
) {
8320 controller_lockup_detected(h
);
8325 h
->last_heartbeat
= heartbeat
;
8326 h
->last_heartbeat_timestamp
= now
;
8331 * Set ioaccel status for all ioaccel volumes.
8333 * Called from monitor controller worker (hpsa_event_monitor_worker)
8335 * A Volume (or Volumes that comprise an Array set) may be undergoing a
8336 * transformation, so we will be turning off ioaccel for all volumes that
8337 * make up the Array.
8339 static void hpsa_set_ioaccel_status(struct ctlr_info
*h
)
8345 struct hpsa_scsi_dev_t
*device
;
8350 buf
= kmalloc(64, GFP_KERNEL
);
8355 * Run through current device list used during I/O requests.
8357 for (i
= 0; i
< h
->ndevices
; i
++) {
8358 int offload_to_be_enabled
= 0;
8359 int offload_config
= 0;
8365 if (!hpsa_vpd_page_supported(h
, device
->scsi3addr
,
8366 HPSA_VPD_LV_IOACCEL_STATUS
))
8371 rc
= hpsa_scsi_do_inquiry(h
, device
->scsi3addr
,
8372 VPD_PAGE
| HPSA_VPD_LV_IOACCEL_STATUS
,
8377 ioaccel_status
= buf
[IOACCEL_STATUS_BYTE
];
8380 * Check if offload is still configured on
8383 !!(ioaccel_status
& OFFLOAD_CONFIGURED_BIT
);
8385 * If offload is configured on, check to see if ioaccel
8386 * needs to be enabled.
8389 offload_to_be_enabled
=
8390 !!(ioaccel_status
& OFFLOAD_ENABLED_BIT
);
8393 * If ioaccel is to be re-enabled, re-enable later during the
8394 * scan operation so the driver can get a fresh raidmap
8395 * before turning ioaccel back on.
8397 if (offload_to_be_enabled
)
8401 * Immediately turn off ioaccel for any volume the
8402 * controller tells us to. Some of the reasons could be:
8403 * transformation - change to the LVs of an Array.
8404 * degraded volume - component failure
8406 hpsa_turn_off_ioaccel_for_device(device
);
8412 static void hpsa_ack_ctlr_events(struct ctlr_info
*h
)
8416 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8419 /* Ask the controller to clear the events we're handling. */
8420 if ((h
->transMethod
& (CFGTBL_Trans_io_accel1
8421 | CFGTBL_Trans_io_accel2
)) &&
8422 (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
||
8423 h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)) {
8425 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE
)
8426 event_type
= "state change";
8427 if (h
->events
& HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE
)
8428 event_type
= "configuration change";
8429 /* Stop sending new RAID offload reqs via the IO accelerator */
8430 scsi_block_requests(h
->scsi_host
);
8431 hpsa_set_ioaccel_status(h
);
8432 hpsa_drain_accel_commands(h
);
8433 /* Set 'accelerator path config change' bit */
8434 dev_warn(&h
->pdev
->dev
,
8435 "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8436 h
->events
, event_type
);
8437 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8438 /* Set the "clear event notify field update" bit 6 */
8439 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8440 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8441 hpsa_wait_for_clear_event_notify_ack(h
);
8442 scsi_unblock_requests(h
->scsi_host
);
8444 /* Acknowledge controller notification events. */
8445 writel(h
->events
, &(h
->cfgtable
->clear_event_notify
));
8446 writel(DOORBELL_CLEAR_EVENTS
, h
->vaddr
+ SA5_DOORBELL
);
8447 hpsa_wait_for_clear_event_notify_ack(h
);
8452 /* Check a register on the controller to see if there are configuration
8453 * changes (added/changed/removed logical drives, etc.) which mean that
8454 * we should rescan the controller for devices.
8455 * Also check flag for driver-initiated rescan.
8457 static int hpsa_ctlr_needs_rescan(struct ctlr_info
*h
)
8459 if (h
->drv_req_rescan
) {
8460 h
->drv_req_rescan
= 0;
8464 if (!(h
->fw_support
& MISC_FW_EVENT_NOTIFY
))
8467 h
->events
= readl(&(h
->cfgtable
->event_notify
));
8468 return h
->events
& RESCAN_REQUIRED_EVENT_BITS
;
8472 * Check if any of the offline devices have become ready
8474 static int hpsa_offline_devices_ready(struct ctlr_info
*h
)
8476 unsigned long flags
;
8477 struct offline_device_entry
*d
;
8478 struct list_head
*this, *tmp
;
8480 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8481 list_for_each_safe(this, tmp
, &h
->offline_device_list
) {
8482 d
= list_entry(this, struct offline_device_entry
,
8484 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8485 if (!hpsa_volume_offline(h
, d
->scsi3addr
)) {
8486 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8487 list_del(&d
->offline_list
);
8488 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8491 spin_lock_irqsave(&h
->offline_device_lock
, flags
);
8493 spin_unlock_irqrestore(&h
->offline_device_lock
, flags
);
8497 static int hpsa_luns_changed(struct ctlr_info
*h
)
8499 int rc
= 1; /* assume there are changes */
8500 struct ReportLUNdata
*logdev
= NULL
;
8502 /* if we can't find out if lun data has changed,
8503 * assume that it has.
8506 if (!h
->lastlogicals
)
8509 logdev
= kzalloc(sizeof(*logdev
), GFP_KERNEL
);
8513 if (hpsa_scsi_do_report_luns(h
, 1, logdev
, sizeof(*logdev
), 0)) {
8514 dev_warn(&h
->pdev
->dev
,
8515 "report luns failed, can't track lun changes.\n");
8518 if (memcmp(logdev
, h
->lastlogicals
, sizeof(*logdev
))) {
8519 dev_info(&h
->pdev
->dev
,
8520 "Lun changes detected.\n");
8521 memcpy(h
->lastlogicals
, logdev
, sizeof(*logdev
));
8524 rc
= 0; /* no changes detected. */
8530 static void hpsa_perform_rescan(struct ctlr_info
*h
)
8532 struct Scsi_Host
*sh
= NULL
;
8533 unsigned long flags
;
8536 * Do the scan after the reset
8538 spin_lock_irqsave(&h
->reset_lock
, flags
);
8539 if (h
->reset_in_progress
) {
8540 h
->drv_req_rescan
= 1;
8541 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
8544 spin_unlock_irqrestore(&h
->reset_lock
, flags
);
8546 sh
= scsi_host_get(h
->scsi_host
);
8548 hpsa_scan_start(sh
);
8550 h
->drv_req_rescan
= 0;
8555 * watch for controller events
8557 static void hpsa_event_monitor_worker(struct work_struct
*work
)
8559 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8560 struct ctlr_info
, event_monitor_work
);
8561 unsigned long flags
;
8563 spin_lock_irqsave(&h
->lock
, flags
);
8564 if (h
->remove_in_progress
) {
8565 spin_unlock_irqrestore(&h
->lock
, flags
);
8568 spin_unlock_irqrestore(&h
->lock
, flags
);
8570 if (hpsa_ctlr_needs_rescan(h
)) {
8571 hpsa_ack_ctlr_events(h
);
8572 hpsa_perform_rescan(h
);
8575 spin_lock_irqsave(&h
->lock
, flags
);
8576 if (!h
->remove_in_progress
)
8577 queue_delayed_work(h
->monitor_ctlr_wq
, &h
->event_monitor_work
,
8578 HPSA_EVENT_MONITOR_INTERVAL
);
8579 spin_unlock_irqrestore(&h
->lock
, flags
);
8582 static void hpsa_rescan_ctlr_worker(struct work_struct
*work
)
8584 unsigned long flags
;
8585 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8586 struct ctlr_info
, rescan_ctlr_work
);
8588 spin_lock_irqsave(&h
->lock
, flags
);
8589 if (h
->remove_in_progress
) {
8590 spin_unlock_irqrestore(&h
->lock
, flags
);
8593 spin_unlock_irqrestore(&h
->lock
, flags
);
8595 if (h
->drv_req_rescan
|| hpsa_offline_devices_ready(h
)) {
8596 hpsa_perform_rescan(h
);
8597 } else if (h
->discovery_polling
) {
8598 if (hpsa_luns_changed(h
)) {
8599 dev_info(&h
->pdev
->dev
,
8600 "driver discovery polling rescan.\n");
8601 hpsa_perform_rescan(h
);
8604 spin_lock_irqsave(&h
->lock
, flags
);
8605 if (!h
->remove_in_progress
)
8606 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8607 h
->heartbeat_sample_interval
);
8608 spin_unlock_irqrestore(&h
->lock
, flags
);
8611 static void hpsa_monitor_ctlr_worker(struct work_struct
*work
)
8613 unsigned long flags
;
8614 struct ctlr_info
*h
= container_of(to_delayed_work(work
),
8615 struct ctlr_info
, monitor_ctlr_work
);
8617 detect_controller_lockup(h
);
8618 if (lockup_detected(h
))
8621 spin_lock_irqsave(&h
->lock
, flags
);
8622 if (!h
->remove_in_progress
)
8623 queue_delayed_work(h
->monitor_ctlr_wq
, &h
->monitor_ctlr_work
,
8624 h
->heartbeat_sample_interval
);
8625 spin_unlock_irqrestore(&h
->lock
, flags
);
8628 static struct workqueue_struct
*hpsa_create_controller_wq(struct ctlr_info
*h
,
8631 struct workqueue_struct
*wq
= NULL
;
8633 wq
= alloc_ordered_workqueue("%s_%d_hpsa", 0, name
, h
->ctlr
);
8635 dev_err(&h
->pdev
->dev
, "failed to create %s workqueue\n", name
);
8640 static void hpda_free_ctlr_info(struct ctlr_info
*h
)
8642 kfree(h
->reply_map
);
8646 static struct ctlr_info
*hpda_alloc_ctlr_info(void)
8648 struct ctlr_info
*h
;
8650 h
= kzalloc(sizeof(*h
), GFP_KERNEL
);
8654 h
->reply_map
= kcalloc(nr_cpu_ids
, sizeof(*h
->reply_map
), GFP_KERNEL
);
8655 if (!h
->reply_map
) {
8662 static int hpsa_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
8665 struct ctlr_info
*h
;
8666 int try_soft_reset
= 0;
8667 unsigned long flags
;
8670 if (number_of_controllers
== 0)
8671 printk(KERN_INFO DRIVER_NAME
"\n");
8673 rc
= hpsa_lookup_board_id(pdev
, &board_id
, NULL
);
8675 dev_warn(&pdev
->dev
, "Board ID not found\n");
8679 rc
= hpsa_init_reset_devices(pdev
, board_id
);
8681 if (rc
!= -ENOTSUPP
)
8683 /* If the reset fails in a particular way (it has no way to do
8684 * a proper hard reset, so returns -ENOTSUPP) we can try to do
8685 * a soft reset once we get the controller configured up to the
8686 * point that it can accept a command.
8692 reinit_after_soft_reset
:
8694 /* Command structures must be aligned on a 32-byte boundary because
8695 * the 5 lower bits of the address are used by the hardware. and by
8696 * the driver. See comments in hpsa.h for more info.
8698 BUILD_BUG_ON(sizeof(struct CommandList
) % COMMANDLIST_ALIGNMENT
);
8699 h
= hpda_alloc_ctlr_info();
8701 dev_err(&pdev
->dev
, "Failed to allocate controller head\n");
8707 h
->intr_mode
= hpsa_simple_mode
? SIMPLE_MODE_INT
: PERF_MODE_INT
;
8708 INIT_LIST_HEAD(&h
->offline_device_list
);
8709 spin_lock_init(&h
->lock
);
8710 spin_lock_init(&h
->offline_device_lock
);
8711 spin_lock_init(&h
->scan_lock
);
8712 spin_lock_init(&h
->reset_lock
);
8713 atomic_set(&h
->passthru_cmds_avail
, HPSA_MAX_CONCURRENT_PASSTHRUS
);
8715 /* Allocate and clear per-cpu variable lockup_detected */
8716 h
->lockup_detected
= alloc_percpu(u32
);
8717 if (!h
->lockup_detected
) {
8718 dev_err(&h
->pdev
->dev
, "Failed to allocate lockup detector\n");
8720 goto clean1
; /* aer/h */
8722 set_lockup_detected_for_all_cpus(h
, 0);
8724 rc
= hpsa_pci_init(h
);
8726 goto clean2
; /* lu, aer/h */
8728 /* relies on h-> settings made by hpsa_pci_init, including
8729 * interrupt_mode h->intr */
8730 rc
= hpsa_scsi_host_alloc(h
);
8732 goto clean2_5
; /* pci, lu, aer/h */
8734 sprintf(h
->devname
, HPSA
"%d", h
->scsi_host
->host_no
);
8735 h
->ctlr
= number_of_controllers
;
8736 number_of_controllers
++;
8738 /* configure PCI DMA stuff */
8739 rc
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
8741 rc
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
8743 dev_err(&pdev
->dev
, "no suitable DMA available\n");
8744 goto clean3
; /* shost, pci, lu, aer/h */
8748 /* make sure the board interrupts are off */
8749 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8751 rc
= hpsa_request_irqs(h
, do_hpsa_intr_msi
, do_hpsa_intr_intx
);
8753 goto clean3
; /* shost, pci, lu, aer/h */
8754 rc
= hpsa_alloc_cmd_pool(h
);
8756 goto clean4
; /* irq, shost, pci, lu, aer/h */
8757 rc
= hpsa_alloc_sg_chain_blocks(h
);
8759 goto clean5
; /* cmd, irq, shost, pci, lu, aer/h */
8760 init_waitqueue_head(&h
->scan_wait_queue
);
8761 init_waitqueue_head(&h
->event_sync_wait_queue
);
8762 mutex_init(&h
->reset_mutex
);
8763 h
->scan_finished
= 1; /* no scan currently in progress */
8764 h
->scan_waiting
= 0;
8766 pci_set_drvdata(pdev
, h
);
8769 spin_lock_init(&h
->devlock
);
8770 rc
= hpsa_put_ctlr_into_performant_mode(h
);
8772 goto clean6
; /* sg, cmd, irq, shost, pci, lu, aer/h */
8774 /* create the resubmit workqueue */
8775 h
->rescan_ctlr_wq
= hpsa_create_controller_wq(h
, "rescan");
8776 if (!h
->rescan_ctlr_wq
) {
8781 h
->resubmit_wq
= hpsa_create_controller_wq(h
, "resubmit");
8782 if (!h
->resubmit_wq
) {
8784 goto clean7
; /* aer/h */
8787 h
->monitor_ctlr_wq
= hpsa_create_controller_wq(h
, "monitor");
8788 if (!h
->monitor_ctlr_wq
) {
8794 * At this point, the controller is ready to take commands.
8795 * Now, if reset_devices and the hard reset didn't work, try
8796 * the soft reset and see if that works.
8798 if (try_soft_reset
) {
8800 /* This is kind of gross. We may or may not get a completion
8801 * from the soft reset command, and if we do, then the value
8802 * from the fifo may or may not be valid. So, we wait 10 secs
8803 * after the reset throwing away any completions we get during
8804 * that time. Unregister the interrupt handler and register
8805 * fake ones to scoop up any residual completions.
8807 spin_lock_irqsave(&h
->lock
, flags
);
8808 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8809 spin_unlock_irqrestore(&h
->lock
, flags
);
8811 rc
= hpsa_request_irqs(h
, hpsa_msix_discard_completions
,
8812 hpsa_intx_discard_completions
);
8814 dev_warn(&h
->pdev
->dev
,
8815 "Failed to request_irq after soft reset.\n");
8817 * cannot goto clean7 or free_irqs will be called
8818 * again. Instead, do its work
8820 hpsa_free_performant_mode(h
); /* clean7 */
8821 hpsa_free_sg_chain_blocks(h
); /* clean6 */
8822 hpsa_free_cmd_pool(h
); /* clean5 */
8824 * skip hpsa_free_irqs(h) clean4 since that
8825 * was just called before request_irqs failed
8830 rc
= hpsa_kdump_soft_reset(h
);
8832 /* Neither hard nor soft reset worked, we're hosed. */
8835 dev_info(&h
->pdev
->dev
, "Board READY.\n");
8836 dev_info(&h
->pdev
->dev
,
8837 "Waiting for stale completions to drain.\n");
8838 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8840 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8842 rc
= controller_reset_failed(h
->cfgtable
);
8844 dev_info(&h
->pdev
->dev
,
8845 "Soft reset appears to have failed.\n");
8847 /* since the controller's reset, we have to go back and re-init
8848 * everything. Easiest to just forget what we've done and do it
8851 hpsa_undo_allocations_after_kdump_soft_reset(h
);
8854 /* don't goto clean, we already unallocated */
8857 goto reinit_after_soft_reset
;
8860 /* Enable Accelerated IO path at driver layer */
8861 h
->acciopath_status
= 1;
8862 /* Disable discovery polling.*/
8863 h
->discovery_polling
= 0;
8866 /* Turn the interrupts on so we can service requests */
8867 h
->access
.set_intr_mask(h
, HPSA_INTR_ON
);
8869 hpsa_hba_inquiry(h
);
8871 h
->lastlogicals
= kzalloc(sizeof(*(h
->lastlogicals
)), GFP_KERNEL
);
8872 if (!h
->lastlogicals
)
8873 dev_info(&h
->pdev
->dev
,
8874 "Can't track change to report lun data\n");
8876 /* hook into SCSI subsystem */
8877 rc
= hpsa_scsi_add_host(h
);
8879 goto clean8
; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8881 /* Monitor the controller for firmware lockups */
8882 h
->heartbeat_sample_interval
= HEARTBEAT_SAMPLE_INTERVAL
;
8883 INIT_DELAYED_WORK(&h
->monitor_ctlr_work
, hpsa_monitor_ctlr_worker
);
8884 schedule_delayed_work(&h
->monitor_ctlr_work
,
8885 h
->heartbeat_sample_interval
);
8886 INIT_DELAYED_WORK(&h
->rescan_ctlr_work
, hpsa_rescan_ctlr_worker
);
8887 queue_delayed_work(h
->rescan_ctlr_wq
, &h
->rescan_ctlr_work
,
8888 h
->heartbeat_sample_interval
);
8889 INIT_DELAYED_WORK(&h
->event_monitor_work
, hpsa_event_monitor_worker
);
8890 schedule_delayed_work(&h
->event_monitor_work
,
8891 HPSA_EVENT_MONITOR_INTERVAL
);
8894 clean8
: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8895 kfree(h
->lastlogicals
);
8896 clean7
: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8897 hpsa_free_performant_mode(h
);
8898 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
8899 clean6
: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8900 hpsa_free_sg_chain_blocks(h
);
8901 clean5
: /* cmd, irq, shost, pci, lu, aer/h */
8902 hpsa_free_cmd_pool(h
);
8903 clean4
: /* irq, shost, pci, lu, aer/h */
8905 clean3
: /* shost, pci, lu, aer/h */
8906 scsi_host_put(h
->scsi_host
);
8907 h
->scsi_host
= NULL
;
8908 clean2_5
: /* pci, lu, aer/h */
8909 hpsa_free_pci_init(h
);
8910 clean2
: /* lu, aer/h */
8911 if (h
->lockup_detected
) {
8912 free_percpu(h
->lockup_detected
);
8913 h
->lockup_detected
= NULL
;
8915 clean1
: /* wq/aer/h */
8916 if (h
->resubmit_wq
) {
8917 destroy_workqueue(h
->resubmit_wq
);
8918 h
->resubmit_wq
= NULL
;
8920 if (h
->rescan_ctlr_wq
) {
8921 destroy_workqueue(h
->rescan_ctlr_wq
);
8922 h
->rescan_ctlr_wq
= NULL
;
8924 if (h
->monitor_ctlr_wq
) {
8925 destroy_workqueue(h
->monitor_ctlr_wq
);
8926 h
->monitor_ctlr_wq
= NULL
;
8928 hpda_free_ctlr_info(h
);
8932 static void hpsa_flush_cache(struct ctlr_info
*h
)
8935 struct CommandList
*c
;
8938 if (unlikely(lockup_detected(h
)))
8940 flush_buf
= kzalloc(4, GFP_KERNEL
);
8946 if (fill_cmd(c
, HPSA_CACHE_FLUSH
, h
, flush_buf
, 4, 0,
8947 RAID_CTLR_LUNID
, TYPE_CMD
)) {
8950 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_TO_DEVICE
,
8954 if (c
->err_info
->CommandStatus
!= 0)
8956 dev_warn(&h
->pdev
->dev
,
8957 "error flushing cache on controller\n");
8962 /* Make controller gather fresh report lun data each time we
8963 * send down a report luns request
8965 static void hpsa_disable_rld_caching(struct ctlr_info
*h
)
8968 struct CommandList
*c
;
8971 /* Don't bother trying to set diag options if locked up */
8972 if (unlikely(h
->lockup_detected
))
8975 options
= kzalloc(sizeof(*options
), GFP_KERNEL
);
8981 /* first, get the current diag options settings */
8982 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
8983 RAID_CTLR_LUNID
, TYPE_CMD
))
8986 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
8988 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
8991 /* Now, set the bit for disabling the RLD caching */
8992 *options
|= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
;
8994 if (fill_cmd(c
, BMIC_SET_DIAG_OPTIONS
, h
, options
, 4, 0,
8995 RAID_CTLR_LUNID
, TYPE_CMD
))
8998 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_TO_DEVICE
,
9000 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
9003 /* Now verify that it got set: */
9004 if (fill_cmd(c
, BMIC_SENSE_DIAG_OPTIONS
, h
, options
, 4, 0,
9005 RAID_CTLR_LUNID
, TYPE_CMD
))
9008 rc
= hpsa_scsi_do_simple_cmd_with_retry(h
, c
, DMA_FROM_DEVICE
,
9010 if ((rc
!= 0) || (c
->err_info
->CommandStatus
!= 0))
9013 if (*options
& HPSA_DIAG_OPTS_DISABLE_RLD_CACHING
)
9017 dev_err(&h
->pdev
->dev
,
9018 "Error: failed to disable report lun data caching.\n");
9024 static void __hpsa_shutdown(struct pci_dev
*pdev
)
9026 struct ctlr_info
*h
;
9028 h
= pci_get_drvdata(pdev
);
9029 /* Turn board interrupts off and send the flush cache command
9030 * sendcmd will turn off interrupt, and send the flush...
9031 * To write all data in the battery backed cache to disks
9033 hpsa_flush_cache(h
);
9034 h
->access
.set_intr_mask(h
, HPSA_INTR_OFF
);
9035 hpsa_free_irqs(h
); /* init_one 4 */
9036 hpsa_disable_interrupt_mode(h
); /* pci_init 2 */
9039 static void hpsa_shutdown(struct pci_dev
*pdev
)
9041 __hpsa_shutdown(pdev
);
9042 pci_disable_device(pdev
);
9045 static void hpsa_free_device_info(struct ctlr_info
*h
)
9049 for (i
= 0; i
< h
->ndevices
; i
++) {
9055 static void hpsa_remove_one(struct pci_dev
*pdev
)
9057 struct ctlr_info
*h
;
9058 unsigned long flags
;
9060 if (pci_get_drvdata(pdev
) == NULL
) {
9061 dev_err(&pdev
->dev
, "unable to remove device\n");
9064 h
= pci_get_drvdata(pdev
);
9066 /* Get rid of any controller monitoring work items */
9067 spin_lock_irqsave(&h
->lock
, flags
);
9068 h
->remove_in_progress
= 1;
9069 spin_unlock_irqrestore(&h
->lock
, flags
);
9070 cancel_delayed_work_sync(&h
->monitor_ctlr_work
);
9071 cancel_delayed_work_sync(&h
->rescan_ctlr_work
);
9072 cancel_delayed_work_sync(&h
->event_monitor_work
);
9073 destroy_workqueue(h
->rescan_ctlr_wq
);
9074 destroy_workqueue(h
->resubmit_wq
);
9075 destroy_workqueue(h
->monitor_ctlr_wq
);
9077 hpsa_delete_sas_host(h
);
9080 * Call before disabling interrupts.
9081 * scsi_remove_host can trigger I/O operations especially
9082 * when multipath is enabled. There can be SYNCHRONIZE CACHE
9083 * operations which cannot complete and will hang the system.
9086 scsi_remove_host(h
->scsi_host
); /* init_one 8 */
9087 /* includes hpsa_free_irqs - init_one 4 */
9088 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9089 __hpsa_shutdown(pdev
);
9091 hpsa_free_device_info(h
); /* scan */
9093 kfree(h
->hba_inquiry_data
); /* init_one 10 */
9094 h
->hba_inquiry_data
= NULL
; /* init_one 10 */
9095 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9096 hpsa_free_performant_mode(h
); /* init_one 7 */
9097 hpsa_free_sg_chain_blocks(h
); /* init_one 6 */
9098 hpsa_free_cmd_pool(h
); /* init_one 5 */
9099 kfree(h
->lastlogicals
);
9101 /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9103 scsi_host_put(h
->scsi_host
); /* init_one 3 */
9104 h
->scsi_host
= NULL
; /* init_one 3 */
9106 /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9107 hpsa_free_pci_init(h
); /* init_one 2.5 */
9109 free_percpu(h
->lockup_detected
); /* init_one 2 */
9110 h
->lockup_detected
= NULL
; /* init_one 2 */
9112 hpda_free_ctlr_info(h
); /* init_one 1 */
9115 static int __maybe_unused
hpsa_suspend(
9116 __attribute__((unused
)) struct device
*dev
)
9121 static int __maybe_unused hpsa_resume
9122 (__attribute__((unused
)) struct device
*dev
)
9127 static SIMPLE_DEV_PM_OPS(hpsa_pm_ops
, hpsa_suspend
, hpsa_resume
);
9129 static struct pci_driver hpsa_pci_driver
= {
9131 .probe
= hpsa_init_one
,
9132 .remove
= hpsa_remove_one
,
9133 .id_table
= hpsa_pci_device_id
, /* id_table */
9134 .shutdown
= hpsa_shutdown
,
9135 .driver
.pm
= &hpsa_pm_ops
,
9138 /* Fill in bucket_map[], given nsgs (the max number of
9139 * scatter gather elements supported) and bucket[],
9140 * which is an array of 8 integers. The bucket[] array
9141 * contains 8 different DMA transfer sizes (in 16
9142 * byte increments) which the controller uses to fetch
9143 * commands. This function fills in bucket_map[], which
9144 * maps a given number of scatter gather elements to one of
9145 * the 8 DMA transfer sizes. The point of it is to allow the
9146 * controller to only do as much DMA as needed to fetch the
9147 * command, with the DMA transfer size encoded in the lower
9148 * bits of the command address.
9150 static void calc_bucket_map(int bucket
[], int num_buckets
,
9151 int nsgs
, int min_blocks
, u32
*bucket_map
)
9155 /* Note, bucket_map must have nsgs+1 entries. */
9156 for (i
= 0; i
<= nsgs
; i
++) {
9157 /* Compute size of a command with i SG entries */
9158 size
= i
+ min_blocks
;
9159 b
= num_buckets
; /* Assume the biggest bucket */
9160 /* Find the bucket that is just big enough */
9161 for (j
= 0; j
< num_buckets
; j
++) {
9162 if (bucket
[j
] >= size
) {
9167 /* for a command with i SG entries, use bucket b. */
9173 * return -ENODEV on err, 0 on success (or no action)
9174 * allocates numerous items that must be freed later
9176 static int hpsa_enter_performant_mode(struct ctlr_info
*h
, u32 trans_support
)
9179 unsigned long register_value
;
9180 unsigned long transMethod
= CFGTBL_Trans_Performant
|
9181 (trans_support
& CFGTBL_Trans_use_short_tags
) |
9182 CFGTBL_Trans_enable_directed_msix
|
9183 (trans_support
& (CFGTBL_Trans_io_accel1
|
9184 CFGTBL_Trans_io_accel2
));
9185 struct access_method access
= SA5_performant_access
;
9187 /* This is a bit complicated. There are 8 registers on
9188 * the controller which we write to to tell it 8 different
9189 * sizes of commands which there may be. It's a way of
9190 * reducing the DMA done to fetch each command. Encoded into
9191 * each command's tag are 3 bits which communicate to the controller
9192 * which of the eight sizes that command fits within. The size of
9193 * each command depends on how many scatter gather entries there are.
9194 * Each SG entry requires 16 bytes. The eight registers are programmed
9195 * with the number of 16-byte blocks a command of that size requires.
9196 * The smallest command possible requires 5 such 16 byte blocks.
9197 * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9198 * blocks. Note, this only extends to the SG entries contained
9199 * within the command block, and does not extend to chained blocks
9200 * of SG elements. bft[] contains the eight values we write to
9201 * the registers. They are not evenly distributed, but have more
9202 * sizes for small commands, and fewer sizes for larger commands.
9204 int bft
[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD
+ 4};
9205 #define MIN_IOACCEL2_BFT_ENTRY 5
9206 #define HPSA_IOACCEL2_HEADER_SZ 4
9207 int bft2
[16] = {MIN_IOACCEL2_BFT_ENTRY
, 6, 7, 8, 9, 10, 11, 12,
9208 13, 14, 15, 16, 17, 18, 19,
9209 HPSA_IOACCEL2_HEADER_SZ
+ IOACCEL2_MAXSGENTRIES
};
9210 BUILD_BUG_ON(ARRAY_SIZE(bft2
) != 16);
9211 BUILD_BUG_ON(ARRAY_SIZE(bft
) != 8);
9212 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) >
9213 16 * MIN_IOACCEL2_BFT_ENTRY
);
9214 BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element
) != 16);
9215 BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD
+ 4);
9216 /* 5 = 1 s/g entry or 4k
9217 * 6 = 2 s/g entry or 8k
9218 * 8 = 4 s/g entry or 16k
9219 * 10 = 6 s/g entry or 24k
9222 /* If the controller supports either ioaccel method then
9223 * we can also use the RAID stack submit path that does not
9224 * perform the superfluous readl() after each command submission.
9226 if (trans_support
& (CFGTBL_Trans_io_accel1
| CFGTBL_Trans_io_accel2
))
9227 access
= SA5_performant_access_no_read
;
9229 /* Controller spec: zero out this buffer. */
9230 for (i
= 0; i
< h
->nreply_queues
; i
++)
9231 memset(h
->reply_queue
[i
].head
, 0, h
->reply_queue_size
);
9233 bft
[7] = SG_ENTRIES_IN_CMD
+ 4;
9234 calc_bucket_map(bft
, ARRAY_SIZE(bft
),
9235 SG_ENTRIES_IN_CMD
, 4, h
->blockFetchTable
);
9236 for (i
= 0; i
< 8; i
++)
9237 writel(bft
[i
], &h
->transtable
->BlockFetch
[i
]);
9239 /* size of controller ring buffer */
9240 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
9241 writel(h
->nreply_queues
, &h
->transtable
->RepQCount
);
9242 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
9243 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
9245 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9246 writel(0, &h
->transtable
->RepQAddr
[i
].upper
);
9247 writel(h
->reply_queue
[i
].busaddr
,
9248 &h
->transtable
->RepQAddr
[i
].lower
);
9251 writel(0, &h
->cfgtable
->HostWrite
.command_pool_addr_hi
);
9252 writel(transMethod
, &(h
->cfgtable
->HostWrite
.TransportRequest
));
9254 * enable outbound interrupt coalescing in accelerator mode;
9256 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9257 access
= SA5_ioaccel_mode1_access
;
9258 writel(10, &h
->cfgtable
->HostWrite
.CoalIntDelay
);
9259 writel(4, &h
->cfgtable
->HostWrite
.CoalIntCount
);
9261 if (trans_support
& CFGTBL_Trans_io_accel2
)
9262 access
= SA5_ioaccel_mode2_access
;
9263 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9264 if (hpsa_wait_for_mode_change_ack(h
)) {
9265 dev_err(&h
->pdev
->dev
,
9266 "performant mode problem - doorbell timeout\n");
9269 register_value
= readl(&(h
->cfgtable
->TransportActive
));
9270 if (!(register_value
& CFGTBL_Trans_Performant
)) {
9271 dev_err(&h
->pdev
->dev
,
9272 "performant mode problem - transport not active\n");
9275 /* Change the access methods to the performant access methods */
9277 h
->transMethod
= transMethod
;
9279 if (!((trans_support
& CFGTBL_Trans_io_accel1
) ||
9280 (trans_support
& CFGTBL_Trans_io_accel2
)))
9283 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9284 /* Set up I/O accelerator mode */
9285 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9286 writel(i
, h
->vaddr
+ IOACCEL_MODE1_REPLY_QUEUE_INDEX
);
9287 h
->reply_queue
[i
].current_entry
=
9288 readl(h
->vaddr
+ IOACCEL_MODE1_PRODUCER_INDEX
);
9290 bft
[7] = h
->ioaccel_maxsg
+ 8;
9291 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->ioaccel_maxsg
, 8,
9292 h
->ioaccel1_blockFetchTable
);
9294 /* initialize all reply queue entries to unused */
9295 for (i
= 0; i
< h
->nreply_queues
; i
++)
9296 memset(h
->reply_queue
[i
].head
,
9297 (u8
) IOACCEL_MODE1_REPLY_UNUSED
,
9298 h
->reply_queue_size
);
9300 /* set all the constant fields in the accelerator command
9301 * frames once at init time to save CPU cycles later.
9303 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9304 struct io_accel1_cmd
*cp
= &h
->ioaccel_cmd_pool
[i
];
9306 cp
->function
= IOACCEL1_FUNCTION_SCSIIO
;
9307 cp
->err_info
= (u32
) (h
->errinfo_pool_dhandle
+
9308 (i
* sizeof(struct ErrorInfo
)));
9309 cp
->err_info_len
= sizeof(struct ErrorInfo
);
9310 cp
->sgl_offset
= IOACCEL1_SGLOFFSET
;
9311 cp
->host_context_flags
=
9312 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT
);
9313 cp
->timeout_sec
= 0;
9316 cpu_to_le64((i
<< DIRECT_LOOKUP_SHIFT
));
9318 cpu_to_le64(h
->ioaccel_cmd_pool_dhandle
+
9319 (i
* sizeof(struct io_accel1_cmd
)));
9321 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9322 u64 cfg_offset
, cfg_base_addr_index
;
9323 u32 bft2_offset
, cfg_base_addr
;
9325 hpsa_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
9326 &cfg_base_addr_index
, &cfg_offset
);
9327 BUILD_BUG_ON(offsetof(struct io_accel2_cmd
, sg
) != 64);
9328 bft2
[15] = h
->ioaccel_maxsg
+ HPSA_IOACCEL2_HEADER_SZ
;
9329 calc_bucket_map(bft2
, ARRAY_SIZE(bft2
), h
->ioaccel_maxsg
,
9330 4, h
->ioaccel2_blockFetchTable
);
9331 bft2_offset
= readl(&h
->cfgtable
->io_accel_request_size_offset
);
9332 BUILD_BUG_ON(offsetof(struct CfgTable
,
9333 io_accel_request_size_offset
) != 0xb8);
9334 h
->ioaccel2_bft2_regs
=
9335 remap_pci_mem(pci_resource_start(h
->pdev
,
9336 cfg_base_addr_index
) +
9337 cfg_offset
+ bft2_offset
,
9339 sizeof(*h
->ioaccel2_bft2_regs
));
9340 for (i
= 0; i
< ARRAY_SIZE(bft2
); i
++)
9341 writel(bft2
[i
], &h
->ioaccel2_bft2_regs
[i
]);
9343 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
9344 if (hpsa_wait_for_mode_change_ack(h
)) {
9345 dev_err(&h
->pdev
->dev
,
9346 "performant mode problem - enabling ioaccel mode\n");
9352 /* Free ioaccel1 mode command blocks and block fetch table */
9353 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9355 if (h
->ioaccel_cmd_pool
) {
9356 dma_free_coherent(&h
->pdev
->dev
,
9357 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9358 h
->ioaccel_cmd_pool
,
9359 h
->ioaccel_cmd_pool_dhandle
);
9360 h
->ioaccel_cmd_pool
= NULL
;
9361 h
->ioaccel_cmd_pool_dhandle
= 0;
9363 kfree(h
->ioaccel1_blockFetchTable
);
9364 h
->ioaccel1_blockFetchTable
= NULL
;
9367 /* Allocate ioaccel1 mode command blocks and block fetch table */
9368 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info
*h
)
9371 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9372 if (h
->ioaccel_maxsg
> IOACCEL1_MAXSGENTRIES
)
9373 h
->ioaccel_maxsg
= IOACCEL1_MAXSGENTRIES
;
9375 /* Command structures must be aligned on a 128-byte boundary
9376 * because the 7 lower bits of the address are used by the
9379 BUILD_BUG_ON(sizeof(struct io_accel1_cmd
) %
9380 IOACCEL1_COMMANDLIST_ALIGNMENT
);
9381 h
->ioaccel_cmd_pool
=
9382 dma_alloc_coherent(&h
->pdev
->dev
,
9383 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
),
9384 &h
->ioaccel_cmd_pool_dhandle
, GFP_KERNEL
);
9386 h
->ioaccel1_blockFetchTable
=
9387 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9388 sizeof(u32
)), GFP_KERNEL
);
9390 if ((h
->ioaccel_cmd_pool
== NULL
) ||
9391 (h
->ioaccel1_blockFetchTable
== NULL
))
9394 memset(h
->ioaccel_cmd_pool
, 0,
9395 h
->nr_cmds
* sizeof(*h
->ioaccel_cmd_pool
));
9399 hpsa_free_ioaccel1_cmd_and_bft(h
);
9403 /* Free ioaccel2 mode command blocks and block fetch table */
9404 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9406 hpsa_free_ioaccel2_sg_chain_blocks(h
);
9408 if (h
->ioaccel2_cmd_pool
) {
9409 dma_free_coherent(&h
->pdev
->dev
,
9410 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9411 h
->ioaccel2_cmd_pool
,
9412 h
->ioaccel2_cmd_pool_dhandle
);
9413 h
->ioaccel2_cmd_pool
= NULL
;
9414 h
->ioaccel2_cmd_pool_dhandle
= 0;
9416 kfree(h
->ioaccel2_blockFetchTable
);
9417 h
->ioaccel2_blockFetchTable
= NULL
;
9420 /* Allocate ioaccel2 mode command blocks and block fetch table */
9421 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info
*h
)
9425 /* Allocate ioaccel2 mode command blocks and block fetch table */
9428 readl(&(h
->cfgtable
->io_accel_max_embedded_sg_count
));
9429 if (h
->ioaccel_maxsg
> IOACCEL2_MAXSGENTRIES
)
9430 h
->ioaccel_maxsg
= IOACCEL2_MAXSGENTRIES
;
9432 BUILD_BUG_ON(sizeof(struct io_accel2_cmd
) %
9433 IOACCEL2_COMMANDLIST_ALIGNMENT
);
9434 h
->ioaccel2_cmd_pool
=
9435 dma_alloc_coherent(&h
->pdev
->dev
,
9436 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
),
9437 &h
->ioaccel2_cmd_pool_dhandle
, GFP_KERNEL
);
9439 h
->ioaccel2_blockFetchTable
=
9440 kmalloc(((h
->ioaccel_maxsg
+ 1) *
9441 sizeof(u32
)), GFP_KERNEL
);
9443 if ((h
->ioaccel2_cmd_pool
== NULL
) ||
9444 (h
->ioaccel2_blockFetchTable
== NULL
)) {
9449 rc
= hpsa_allocate_ioaccel2_sg_chain_blocks(h
);
9453 memset(h
->ioaccel2_cmd_pool
, 0,
9454 h
->nr_cmds
* sizeof(*h
->ioaccel2_cmd_pool
));
9458 hpsa_free_ioaccel2_cmd_and_bft(h
);
9462 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9463 static void hpsa_free_performant_mode(struct ctlr_info
*h
)
9465 kfree(h
->blockFetchTable
);
9466 h
->blockFetchTable
= NULL
;
9467 hpsa_free_reply_queues(h
);
9468 hpsa_free_ioaccel1_cmd_and_bft(h
);
9469 hpsa_free_ioaccel2_cmd_and_bft(h
);
9472 /* return -ENODEV on error, 0 on success (or no action)
9473 * allocates numerous items that must be freed later
9475 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info
*h
)
9480 if (hpsa_simple_mode
)
9483 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
9484 if (!(trans_support
& PERFORMANT_MODE
))
9487 /* Check for I/O accelerator mode support */
9488 if (trans_support
& CFGTBL_Trans_io_accel1
) {
9489 rc
= hpsa_alloc_ioaccel1_cmd_and_bft(h
);
9492 } else if (trans_support
& CFGTBL_Trans_io_accel2
) {
9493 rc
= hpsa_alloc_ioaccel2_cmd_and_bft(h
);
9498 h
->nreply_queues
= h
->msix_vectors
> 0 ? h
->msix_vectors
: 1;
9499 hpsa_get_max_perf_mode_cmds(h
);
9500 /* Performant mode ring buffer and supporting data structures */
9501 h
->reply_queue_size
= h
->max_commands
* sizeof(u64
);
9503 for (i
= 0; i
< h
->nreply_queues
; i
++) {
9504 h
->reply_queue
[i
].head
= dma_alloc_coherent(&h
->pdev
->dev
,
9505 h
->reply_queue_size
,
9506 &h
->reply_queue
[i
].busaddr
,
9508 if (!h
->reply_queue
[i
].head
) {
9510 goto clean1
; /* rq, ioaccel */
9512 h
->reply_queue
[i
].size
= h
->max_commands
;
9513 h
->reply_queue
[i
].wraparound
= 1; /* spec: init to 1 */
9514 h
->reply_queue
[i
].current_entry
= 0;
9517 /* Need a block fetch table for performant mode */
9518 h
->blockFetchTable
= kmalloc(((SG_ENTRIES_IN_CMD
+ 1) *
9519 sizeof(u32
)), GFP_KERNEL
);
9520 if (!h
->blockFetchTable
) {
9522 goto clean1
; /* rq, ioaccel */
9525 rc
= hpsa_enter_performant_mode(h
, trans_support
);
9527 goto clean2
; /* bft, rq, ioaccel */
9530 clean2
: /* bft, rq, ioaccel */
9531 kfree(h
->blockFetchTable
);
9532 h
->blockFetchTable
= NULL
;
9533 clean1
: /* rq, ioaccel */
9534 hpsa_free_reply_queues(h
);
9535 hpsa_free_ioaccel1_cmd_and_bft(h
);
9536 hpsa_free_ioaccel2_cmd_and_bft(h
);
9540 static int is_accelerated_cmd(struct CommandList
*c
)
9542 return c
->cmd_type
== CMD_IOACCEL1
|| c
->cmd_type
== CMD_IOACCEL2
;
9545 static void hpsa_drain_accel_commands(struct ctlr_info
*h
)
9547 struct CommandList
*c
= NULL
;
9548 int i
, accel_cmds_out
;
9551 do { /* wait for all outstanding ioaccel commands to drain out */
9553 for (i
= 0; i
< h
->nr_cmds
; i
++) {
9554 c
= h
->cmd_pool
+ i
;
9555 refcount
= atomic_inc_return(&c
->refcount
);
9556 if (refcount
> 1) /* Command is allocated */
9557 accel_cmds_out
+= is_accelerated_cmd(c
);
9560 if (accel_cmds_out
<= 0)
9566 static struct hpsa_sas_phy
*hpsa_alloc_sas_phy(
9567 struct hpsa_sas_port
*hpsa_sas_port
)
9569 struct hpsa_sas_phy
*hpsa_sas_phy
;
9570 struct sas_phy
*phy
;
9572 hpsa_sas_phy
= kzalloc(sizeof(*hpsa_sas_phy
), GFP_KERNEL
);
9576 phy
= sas_phy_alloc(hpsa_sas_port
->parent_node
->parent_dev
,
9577 hpsa_sas_port
->next_phy_index
);
9579 kfree(hpsa_sas_phy
);
9583 hpsa_sas_port
->next_phy_index
++;
9584 hpsa_sas_phy
->phy
= phy
;
9585 hpsa_sas_phy
->parent_port
= hpsa_sas_port
;
9587 return hpsa_sas_phy
;
9590 static void hpsa_free_sas_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9592 struct sas_phy
*phy
= hpsa_sas_phy
->phy
;
9594 sas_port_delete_phy(hpsa_sas_phy
->parent_port
->port
, phy
);
9595 if (hpsa_sas_phy
->added_to_port
)
9596 list_del(&hpsa_sas_phy
->phy_list_entry
);
9597 sas_phy_delete(phy
);
9598 kfree(hpsa_sas_phy
);
9601 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy
*hpsa_sas_phy
)
9604 struct hpsa_sas_port
*hpsa_sas_port
;
9605 struct sas_phy
*phy
;
9606 struct sas_identify
*identify
;
9608 hpsa_sas_port
= hpsa_sas_phy
->parent_port
;
9609 phy
= hpsa_sas_phy
->phy
;
9611 identify
= &phy
->identify
;
9612 memset(identify
, 0, sizeof(*identify
));
9613 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9614 identify
->device_type
= SAS_END_DEVICE
;
9615 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9616 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9617 phy
->minimum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9618 phy
->maximum_linkrate_hw
= SAS_LINK_RATE_UNKNOWN
;
9619 phy
->minimum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9620 phy
->maximum_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9621 phy
->negotiated_linkrate
= SAS_LINK_RATE_UNKNOWN
;
9623 rc
= sas_phy_add(hpsa_sas_phy
->phy
);
9627 sas_port_add_phy(hpsa_sas_port
->port
, hpsa_sas_phy
->phy
);
9628 list_add_tail(&hpsa_sas_phy
->phy_list_entry
,
9629 &hpsa_sas_port
->phy_list_head
);
9630 hpsa_sas_phy
->added_to_port
= true;
9636 hpsa_sas_port_add_rphy(struct hpsa_sas_port
*hpsa_sas_port
,
9637 struct sas_rphy
*rphy
)
9639 struct sas_identify
*identify
;
9641 identify
= &rphy
->identify
;
9642 identify
->sas_address
= hpsa_sas_port
->sas_address
;
9643 identify
->initiator_port_protocols
= SAS_PROTOCOL_STP
;
9644 identify
->target_port_protocols
= SAS_PROTOCOL_STP
;
9646 return sas_rphy_add(rphy
);
9649 static struct hpsa_sas_port
9650 *hpsa_alloc_sas_port(struct hpsa_sas_node
*hpsa_sas_node
,
9654 struct hpsa_sas_port
*hpsa_sas_port
;
9655 struct sas_port
*port
;
9657 hpsa_sas_port
= kzalloc(sizeof(*hpsa_sas_port
), GFP_KERNEL
);
9661 INIT_LIST_HEAD(&hpsa_sas_port
->phy_list_head
);
9662 hpsa_sas_port
->parent_node
= hpsa_sas_node
;
9664 port
= sas_port_alloc_num(hpsa_sas_node
->parent_dev
);
9666 goto free_hpsa_port
;
9668 rc
= sas_port_add(port
);
9672 hpsa_sas_port
->port
= port
;
9673 hpsa_sas_port
->sas_address
= sas_address
;
9674 list_add_tail(&hpsa_sas_port
->port_list_entry
,
9675 &hpsa_sas_node
->port_list_head
);
9677 return hpsa_sas_port
;
9680 sas_port_free(port
);
9682 kfree(hpsa_sas_port
);
9687 static void hpsa_free_sas_port(struct hpsa_sas_port
*hpsa_sas_port
)
9689 struct hpsa_sas_phy
*hpsa_sas_phy
;
9690 struct hpsa_sas_phy
*next
;
9692 list_for_each_entry_safe(hpsa_sas_phy
, next
,
9693 &hpsa_sas_port
->phy_list_head
, phy_list_entry
)
9694 hpsa_free_sas_phy(hpsa_sas_phy
);
9696 sas_port_delete(hpsa_sas_port
->port
);
9697 list_del(&hpsa_sas_port
->port_list_entry
);
9698 kfree(hpsa_sas_port
);
9701 static struct hpsa_sas_node
*hpsa_alloc_sas_node(struct device
*parent_dev
)
9703 struct hpsa_sas_node
*hpsa_sas_node
;
9705 hpsa_sas_node
= kzalloc(sizeof(*hpsa_sas_node
), GFP_KERNEL
);
9706 if (hpsa_sas_node
) {
9707 hpsa_sas_node
->parent_dev
= parent_dev
;
9708 INIT_LIST_HEAD(&hpsa_sas_node
->port_list_head
);
9711 return hpsa_sas_node
;
9714 static void hpsa_free_sas_node(struct hpsa_sas_node
*hpsa_sas_node
)
9716 struct hpsa_sas_port
*hpsa_sas_port
;
9717 struct hpsa_sas_port
*next
;
9722 list_for_each_entry_safe(hpsa_sas_port
, next
,
9723 &hpsa_sas_node
->port_list_head
, port_list_entry
)
9724 hpsa_free_sas_port(hpsa_sas_port
);
9726 kfree(hpsa_sas_node
);
9729 static struct hpsa_scsi_dev_t
9730 *hpsa_find_device_by_sas_rphy(struct ctlr_info
*h
,
9731 struct sas_rphy
*rphy
)
9734 struct hpsa_scsi_dev_t
*device
;
9736 for (i
= 0; i
< h
->ndevices
; i
++) {
9738 if (!device
->sas_port
)
9740 if (device
->sas_port
->rphy
== rphy
)
9747 static int hpsa_add_sas_host(struct ctlr_info
*h
)
9750 struct device
*parent_dev
;
9751 struct hpsa_sas_node
*hpsa_sas_node
;
9752 struct hpsa_sas_port
*hpsa_sas_port
;
9753 struct hpsa_sas_phy
*hpsa_sas_phy
;
9755 parent_dev
= &h
->scsi_host
->shost_dev
;
9757 hpsa_sas_node
= hpsa_alloc_sas_node(parent_dev
);
9761 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, h
->sas_address
);
9762 if (!hpsa_sas_port
) {
9767 hpsa_sas_phy
= hpsa_alloc_sas_phy(hpsa_sas_port
);
9768 if (!hpsa_sas_phy
) {
9773 rc
= hpsa_sas_port_add_phy(hpsa_sas_phy
);
9777 h
->sas_host
= hpsa_sas_node
;
9782 sas_phy_free(hpsa_sas_phy
->phy
);
9783 kfree(hpsa_sas_phy
);
9785 hpsa_free_sas_port(hpsa_sas_port
);
9787 hpsa_free_sas_node(hpsa_sas_node
);
9792 static void hpsa_delete_sas_host(struct ctlr_info
*h
)
9794 hpsa_free_sas_node(h
->sas_host
);
9797 static int hpsa_add_sas_device(struct hpsa_sas_node
*hpsa_sas_node
,
9798 struct hpsa_scsi_dev_t
*device
)
9801 struct hpsa_sas_port
*hpsa_sas_port
;
9802 struct sas_rphy
*rphy
;
9804 hpsa_sas_port
= hpsa_alloc_sas_port(hpsa_sas_node
, device
->sas_address
);
9808 rphy
= sas_end_device_alloc(hpsa_sas_port
->port
);
9814 hpsa_sas_port
->rphy
= rphy
;
9815 device
->sas_port
= hpsa_sas_port
;
9817 rc
= hpsa_sas_port_add_rphy(hpsa_sas_port
, rphy
);
9824 sas_rphy_free(rphy
);
9826 hpsa_free_sas_port(hpsa_sas_port
);
9827 device
->sas_port
= NULL
;
9832 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t
*device
)
9834 if (device
->sas_port
) {
9835 hpsa_free_sas_port(device
->sas_port
);
9836 device
->sas_port
= NULL
;
9841 hpsa_sas_get_linkerrors(struct sas_phy
*phy
)
9847 hpsa_sas_get_enclosure_identifier(struct sas_rphy
*rphy
, u64
*identifier
)
9849 struct Scsi_Host
*shost
= phy_to_shost(rphy
);
9850 struct ctlr_info
*h
;
9851 struct hpsa_scsi_dev_t
*sd
;
9856 h
= shost_to_hba(shost
);
9861 sd
= hpsa_find_device_by_sas_rphy(h
, rphy
);
9865 *identifier
= sd
->eli
;
9871 hpsa_sas_get_bay_identifier(struct sas_rphy
*rphy
)
9877 hpsa_sas_phy_reset(struct sas_phy
*phy
, int hard_reset
)
9883 hpsa_sas_phy_enable(struct sas_phy
*phy
, int enable
)
9889 hpsa_sas_phy_setup(struct sas_phy
*phy
)
9895 hpsa_sas_phy_release(struct sas_phy
*phy
)
9900 hpsa_sas_phy_speed(struct sas_phy
*phy
, struct sas_phy_linkrates
*rates
)
9905 static struct sas_function_template hpsa_sas_transport_functions
= {
9906 .get_linkerrors
= hpsa_sas_get_linkerrors
,
9907 .get_enclosure_identifier
= hpsa_sas_get_enclosure_identifier
,
9908 .get_bay_identifier
= hpsa_sas_get_bay_identifier
,
9909 .phy_reset
= hpsa_sas_phy_reset
,
9910 .phy_enable
= hpsa_sas_phy_enable
,
9911 .phy_setup
= hpsa_sas_phy_setup
,
9912 .phy_release
= hpsa_sas_phy_release
,
9913 .set_phy_speed
= hpsa_sas_phy_speed
,
9917 * This is it. Register the PCI driver information for the cards we control
9918 * the OS will call our registered routines when it finds one of our cards.
9920 static int __init
hpsa_init(void)
9924 hpsa_sas_transport_template
=
9925 sas_attach_transport(&hpsa_sas_transport_functions
);
9926 if (!hpsa_sas_transport_template
)
9929 rc
= pci_register_driver(&hpsa_pci_driver
);
9932 sas_release_transport(hpsa_sas_transport_template
);
9937 static void __exit
hpsa_cleanup(void)
9939 pci_unregister_driver(&hpsa_pci_driver
);
9940 sas_release_transport(hpsa_sas_transport_template
);
9943 static void __attribute__((unused
)) verify_offsets(void)
9945 #define VERIFY_OFFSET(member, offset) \
9946 BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9948 VERIFY_OFFSET(structure_size
, 0);
9949 VERIFY_OFFSET(volume_blk_size
, 4);
9950 VERIFY_OFFSET(volume_blk_cnt
, 8);
9951 VERIFY_OFFSET(phys_blk_shift
, 16);
9952 VERIFY_OFFSET(parity_rotation_shift
, 17);
9953 VERIFY_OFFSET(strip_size
, 18);
9954 VERIFY_OFFSET(disk_starting_blk
, 20);
9955 VERIFY_OFFSET(disk_blk_cnt
, 28);
9956 VERIFY_OFFSET(data_disks_per_row
, 36);
9957 VERIFY_OFFSET(metadata_disks_per_row
, 38);
9958 VERIFY_OFFSET(row_cnt
, 40);
9959 VERIFY_OFFSET(layout_map_count
, 42);
9960 VERIFY_OFFSET(flags
, 44);
9961 VERIFY_OFFSET(dekindex
, 46);
9962 /* VERIFY_OFFSET(reserved, 48 */
9963 VERIFY_OFFSET(data
, 64);
9965 #undef VERIFY_OFFSET
9967 #define VERIFY_OFFSET(member, offset) \
9968 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9970 VERIFY_OFFSET(IU_type
, 0);
9971 VERIFY_OFFSET(direction
, 1);
9972 VERIFY_OFFSET(reply_queue
, 2);
9973 /* VERIFY_OFFSET(reserved1, 3); */
9974 VERIFY_OFFSET(scsi_nexus
, 4);
9975 VERIFY_OFFSET(Tag
, 8);
9976 VERIFY_OFFSET(cdb
, 16);
9977 VERIFY_OFFSET(cciss_lun
, 32);
9978 VERIFY_OFFSET(data_len
, 40);
9979 VERIFY_OFFSET(cmd_priority_task_attr
, 44);
9980 VERIFY_OFFSET(sg_count
, 45);
9981 /* VERIFY_OFFSET(reserved3 */
9982 VERIFY_OFFSET(err_ptr
, 48);
9983 VERIFY_OFFSET(err_len
, 56);
9984 /* VERIFY_OFFSET(reserved4 */
9985 VERIFY_OFFSET(sg
, 64);
9987 #undef VERIFY_OFFSET
9989 #define VERIFY_OFFSET(member, offset) \
9990 BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9992 VERIFY_OFFSET(dev_handle
, 0x00);
9993 VERIFY_OFFSET(reserved1
, 0x02);
9994 VERIFY_OFFSET(function
, 0x03);
9995 VERIFY_OFFSET(reserved2
, 0x04);
9996 VERIFY_OFFSET(err_info
, 0x0C);
9997 VERIFY_OFFSET(reserved3
, 0x10);
9998 VERIFY_OFFSET(err_info_len
, 0x12);
9999 VERIFY_OFFSET(reserved4
, 0x13);
10000 VERIFY_OFFSET(sgl_offset
, 0x14);
10001 VERIFY_OFFSET(reserved5
, 0x15);
10002 VERIFY_OFFSET(transfer_len
, 0x1C);
10003 VERIFY_OFFSET(reserved6
, 0x20);
10004 VERIFY_OFFSET(io_flags
, 0x24);
10005 VERIFY_OFFSET(reserved7
, 0x26);
10006 VERIFY_OFFSET(LUN
, 0x34);
10007 VERIFY_OFFSET(control
, 0x3C);
10008 VERIFY_OFFSET(CDB
, 0x40);
10009 VERIFY_OFFSET(reserved8
, 0x50);
10010 VERIFY_OFFSET(host_context_flags
, 0x60);
10011 VERIFY_OFFSET(timeout_sec
, 0x62);
10012 VERIFY_OFFSET(ReplyQueue
, 0x64);
10013 VERIFY_OFFSET(reserved9
, 0x65);
10014 VERIFY_OFFSET(tag
, 0x68);
10015 VERIFY_OFFSET(host_addr
, 0x70);
10016 VERIFY_OFFSET(CISS_LUN
, 0x78);
10017 VERIFY_OFFSET(SG
, 0x78 + 8);
10018 #undef VERIFY_OFFSET
10021 module_init(hpsa_init
);
10022 module_exit(hpsa_cleanup
);